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ABSTRACT In this paper, we consider a cloud radio access network-based system consisting of one network
operator (NO) and several content providers (CPs). The NO owns a cloud cache and provides caching as a
service for CPs, who provide contents to users. While the NO wishes to motivate CPs to rent its cache and
maximize its profit, CPs want to optimize the service performance for users and their renting utilities. Due
to the time separation between cache allocation and user association problems, we model the interactions
between the NO and CPs as a hierarchical game, i.e., a cache renting scheme between the NO and CPs in the
cache allocation problem and the willingness of CPs in the user association problem. In the cache allocation
problem, we propose a contract theory-based incentive mechanism in which the NO designs and offers an
optimal contract to various types of CPs. We then formulate the user association problem as a many-to-
many matching game with externalities. To solve this matching game, we propose a matching algorithm that
converges to a two-sided exchange stable matching with low complexity. The simulation results demonstrate
that this proposed approach is beneficial to the NO’s profit and incentivize the CP to rent the cache with
truthful private information. In addition, the system performance of the proposed approach in terms of the
total data rate–delay tradeoff outperforms than the benchmarks.

INDEX TERMS Cloud RAN, caching as a service, cache allocation, contract theory, asymmetric informa-
tion, matching game, externalities.

I. INTRODUCTION
CRAN is a promising paradigm technology for meeting the
rapid increase in mobile Internet traffic. CRAN represents
a combination of wireless and information technology (IT)
where cloud computing is incorporated into radio access
networks [1]–[3]. In CRANs, the traditional role of the
base stations (BSs) is split into two parts based on their
functions: a pool of baseband units (BBUs) deployed with
high-performance processors and the distributed remote radio
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heads (RRHs) equipped with antennas, and used for com-
pressing and forwarding signals between users and central-
ized BBU pool [4], [5]. As connected with RRHs through
wired or wireless fronthaul links, the BBU pool redefines
RAN as a software defined environment instead of the con-
ventional hardware defined infrastructure. Therefore, more
functionalities can be incorporated into the BBU pool [6].
Caching as a service is one functionality extension for

CRAN, where the requested contents can be obtained from
the dynamic storage deployed in the cloud cache. The use of
caching at the cloud level has recently emerged as a promising
technique to overcome the limitations of the backhaul link.
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The advantages of caching at the cloud level are: 1) BBUs
have greater cache sizes, larger coverage areas and more eas-
ily to scalable compared with BSs or APs; 2) BBUs are closer
to the users than the content servers in the core network; and
3) RRHs do not need to be modified, instead only focusing
on the basic signal transmission functionalities [6], [7].

In this paper, we consider a CRAN system with caching as
a service consisting of one NO and multiple CPs. The NO is
the owner of the CRAN system, which includes cloud cache,
fronthaul and RRHs. The NO divides its cache space into
multiple partitions and leases them to the CPs which have
users but no infrastructure. One real example of such a NO
is the SKT company in Korea. In 2016, SKT with Nokia first
deployed a CRAN system, and has further plan to provide
caching services at BBUs in the near future [8], [9]. Similar
to edge caching at BSs, some CPs such as Netflix, Hulu,
Sling TV, HBO Now, etc. can rent cache space from the NO
to reduce the capital expenditure (CAPEX) and operating
expenditure (OPEX). The NO wants to maximize its own
cache leasing revenue, which depends on how the cache is
allocated to the CPs as well as the corresponding payment.
Differently, CPs desire to maximize their benefits while pro-
viding a better quality of service performance considering the
data rate and the E2E delay of their users. The E2E delay is
the sum of the backhaul delay and the wireless transmission
delay. The backhaul delay is reduced by judiciously renting
the cloud caches while the wireless transmission delay and
data rate can be improved using an efficient user association
scheme. CPs need to choose a proper cache capacity to rent
as well as the corresponding payment to satisfy both the rent-
ing benefits and the service performance. Therefore, in this
paper, we focus on two problems: cache allocation and user
association.

On the one hand, if the cache allocation is known, the back-
haul delay can be determined. Moreover, the backhaul delay
is a part of the E2E delay, which should be minimized when
making the user association decision. Thus the cache alloca-
tion’s output affects the outcome of user association. On the
other hand, changing the user association leads to changes
in the wireless transmission delay of CPs. Because the user
association and cache allocation are different in timescale and
because CPs wish to minimize the E2E delay, we assume the
willingness of CPs to rent the cache is proportional to the
wireless transmission delay: that is, the larger the wireless
transmission delay for each CP suffers, the more willingness
to rent the CP is. Therefore, changing the wireless trans-
mission delay because of the user association changes the
order of willingness of CPs or the willingness difference
between CPs. In addition, the cloud cache capacity is limited
and the NO wants to maximize its cache leasing utility and
attract more CPs to rent. Thus, changing the rent willingness
of CPs changes in the cloud cache partition and the allocation
to the CPs. Therefore, the cache allocation is influenced by
the user association.

For the cache allocation problem, both the NO and CPs
benefit from leasing and renting the cloud cache, respectively.

The NO partitions its cache storage into virtual segments and
leases each segment (partition) to the CPs. This gives the NO
an opportunity to profit. In addition, the NO can reduce the
backhaul usage cost when the requested file is cached at the
cloud level. In turn, the CP can increase its revenue by pro-
viding a faster service for their users while reducing CAPEX
and OPEX of deploying the network infrastructure for each
CP. In this paper, we choose contract theory [10]–[12]
as a framework to optimize the cache allocation and pricing
problems. This is because in commercial caching systems,
CPs can be untruthful and not reveal accurate private infor-
mation in order to mislead the NO into charging them much
lower prices or giving them more cache space; this is called
the asymmetric information problem between the CPs and
the NO. Under this situation, we cannot use the Stackelberg
game as in previous works [13], [14] because those authors
assumed that the players are truthful and reveal all private
information. To deal with the asymmetric information prob-
lem, we use contract theory in this paper. Contract theory not
only functions as the incentive mechanism to motivate CPs to
rent the cache space and leverage their private information,
but also helps the NO maximize its utility. Based on contract
theory, we design the contract so that each CP is incentivized
to choose the contract intended for its types which is defined
as its rent willingness, thus maximizing the NO’s.

‘‘Another problem is user association, which determines
the wireless transmission delay. In CRAN, the dense deploy-
ment of RRHs leads to severe interference. To deal with
this problem, cooperative transmission (i.e., coordinatedmul-
tipoint or CoMP) based on the concept of multicell trans-
mission is a potential solution [15], [16]. In this paper,
we consider a model of a cooperative transmission network
where each user is cooperatively served by multiple RRHs
and each RRH can serve multiple users. In addition, we real-
ize that the user-RRH associations are affected by other
peers due to intra-cluster interference. Moreover, the limited
fronthaul capacity and user fairness must be considered.
To obtain larger profits from users, CPs have to provide
better service performance by maximizing the data rate and
minimizing the E2E delay to users. Therefore, the ratio of
data rate and E2E delay can be considered as the parameter
for service performance of each user. In this paper, we call
this ratio as the datarate - delay tradeoff. In user association
problem, the objective is to maximize the social welfare of
the system, defined as the sum of the tradeoffs between the
data rates and the E2E delays of the users in the system.
However, due to the nonconvexity of the formulated problem,
the conventional exhaustive method may be impractical to
solve the problem. Centralized methods can provide the
optimal solution but require the high computation complexity
and global control information [17]. Other methods such
as noncooperative game theory have some shortcomings:
distributed implementation limitation due to the require-
ment of knowledge of other players’ actions, impractical
unilateral deviations due to one-sided (or unilateral) stability
notions investigation [17]. In this paper, we regard the user
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association as a many-to-many matching game with external-
ities. The RRHs and users can be viewed as two sets of players
to be matched with each other to maximize the utilities,
considering interdependencies that exist among users due
to interference. The matching game [18]–[21] can provide
an adaptive and low complexity framework to solve the
association problem in a self-organized manner.’’

Therefore, with all the considered above problems,
the main contributions of this paper are summarized as
follows:
• We present a general framework to model the caching
model and the E2E delay. Furthermore, we utilize a hier-
archical structure to represent the interactions between
theNO andCPs in both the cache allocation problem and
the user association problem. Cache allocation presents
a scheme to partition the cloud cache into slices and
then assigns them to the CPs with the objective of
maximizing the utility of the NO and incentivizing the
rental use of CPs. The user association assigns the
associations between the RRHs and users by considering
the limited fronthaul capacity and user fairness.

• For cache allocation, we propose a contract-basedmodel
where the NO acts as a monopolist to set up the optimal
cache-price contract and offers it to the CPs. The CPs are
classified into different types based on their willingness
to cache and their request rate. Each CP will choose the
contract item that maximize its utility as compared with
the alternatives.We develop an algorithm for the optimal
contract design based on the sequential optimization.

• For user association, we formulate this problem as
a many-to-many matching game with externalities.
We propose an algorithm to obtain a two-sided exchange
stable matching. We also analyze the stability, conver-
gence, and complexity of the proposed algorithm.

• We carry out simulations to validate the effectiveness of
the proposed scheme. The results show that our proposed
method can guarantee good CP incentive. The results
also show the effectiveness of the proposed scheme in
terms of the total data rate-delay tradeoff compared with
the benchmarks.

The rest of this paper is organized as follows. Some related
works are presented in Section II. The system model and
general problem are described in Section III followed by
the hierarchical game framework in Section IV. The contract
formulation is presented in Section V for the allocating cache
for the CPs. In Section VI, we propose the user associa-
tion algorithm based on a many-to-many matching game.
The simulation results are shown in Section VII. Finally,
conclusions are drawn in Section VIII.

II. RELATED WORK
A. CACHING IN CRAN
Some recent studies have been performed on caching in
CRAN [22]–[25], but these works only focus on reducing the
content access latency. Peng et al. [26] investigated the cache
size allocation problem in cellular networks to maximize the

user success probability (USP). Chu et al. [27] proposed a
utility-driven cache partitioning approach for multiple con-
tent providers. A cache is partitioned into slices, with each
partition being dedicated to a particular content provider.
A formal proof is given in [27] that partitioning the cache
yields better performance compared to sharing. The work
in [28] is similar to [26] but was explored from a game-
theoretic cache allocation standpoint. However, these works
do not consider the commercial perspective, where the NO
and CPs participate in renting and leasing cache space. Both
the NO and CPs benefit from this type of being commerce
and are selfish, wishing to maximize their own benefits and
thus, producing a competition problem among entities.

B. CONTRACT THEORY
Contract theory is often studied to handle the information
asymmetry problem and can be applied to many areas of
wireless networks such as Device to Device (D2D), cognitive
radio, delay tolerance networks (DTN), etc. Zhang et al. [29]
proposed a contract theoretic approach to address the prob-
lem of incentive user participation in D2D communications.
Gao et al. [30] proposed a framework to solve the problem of
spectrum sharing in cognitive radio networks with a primary
user (PU) which is a seller who offers a spectrum trading con-
tract as (qualities, prices), and secondary users (SUs), which
are buyers that select contracts to sign. In [31], contract theory
was applied to solve the user incentive problem by offloading
delay services for the operator in a DTN. Inspired by these
studies, we model the interactions between the NO and CPs
based on the contract theoretic approach to incentivize CPs
to rent cache space from the NO while maximizing the NO’s
utility. Different from traditional contract models with two
feasible contract conditions, we impose cache capacity con-
straints and propose an algorithm to find the optimal contract.
In addition, we consider dynamic contract theory based cache
allocation, which is related to the user association stage.

C. MATCHING GAME
‘‘Matching game is a technique that provides mathematically
tractable solutions for problems of matching players in two
distinct sets [17], [32]. The study in [33] formulated a joint
uplink (UL) and downlink (DL) user association problem that
maximizes the sum-rate for UL and DL transmission of all
users. They formulated the problem as a distributed two-sided
iterative matching game and obtain a solution of the game.
The solution of the gamewas guaranteed to converge and pro-
vides Pareto-optimal stable associations. In [34], the social
network-aware user association in wireless small cell net-
works was formulated as a matching game between users
and their serving nodes (base stations). The problem was
decomposed into a dynamic clustering problem in which base
stations were grouped into disjoint clusters based on mutual
interference. Subsequently, a many-to-one user-base station
matching game was carried out per cluster. The study in [35]
model the interactions between the femtocell user equipments
and femtocell base stations in the uplink cognitive femtocell
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network. A distributed framework based on the matching
game and distributed algorithms are developed to enable
the cognitive femtocell network to make decisions about
user association, subchannel allocation, and transmit power.
Pantisano et al. [36] studied the problem of user cell asso-
ciation in a small cell network. While the preferences list of
the players in [33]–[35] is fixed, the preference of players
(BSs and users) in [36] are interdependent and dynamic.
In addition, the authors viewed the user association as amany-
to-one matching game with externalities and proposed a dis-
tributed algorithm that enables the players to self-organize
into a stable matching. In contrast, our proposed technique
is based on a many-to-many matching game to solve the user
association problem. Because the preference lists of all play-
ers (RRHs and users) are dynamic, we present an algorithm
to achieve a swap stable matching based on the concepts of
swap operation and two-sided exchange stability.’’

III. SYSTEM MODEL
We consider one NO and a set K = {1, 2, . . . ,K } of CPs,
as shown in Fig. 1. The NO owns CRAN, which includes the
BBUpool, cloud cache, and a set of RRHsR = {1, 2, . . . ,R}.
RRH is connected to the BBU pool via the fronthaul, while
the BBU pool connects to the content server through backhaul
links. Cloud cache in the BBU pool helps decrease the traffic
exchange between the users and the content server through
limited backhaul links. The capacity of the backhaul link is
limited and is represented by DB.

FIGURE 1. System model and corresponding traffic delivery queuing.

We assume that each CP k ∈ K owns a content server in the
core network and a set Uk of Uk users. The total set of users
in the system is denoted by U =

⋃
k∈K Uk . The file library of

CP k ∈ K is denoted by the set Fk of Fk files with the same
size. This is reasonable because heterogeneous contents can
be divided into multiple contents chunks of the same size.
We normalized the file size of 1.

TABLE 1. Table of key notation.

A. CACHING MODEL
The key notations used in this paper are listed in Table 1. The
request for file f ∈ Fk is modeled as an inhomogeneous
Poisson point process with rate ηfk , which is the sum of
requests for file f of all users of CP k . Based on the Che’s
approximation [37], [38], we have hfk = 1− eηfkTk ≈ ηfkTk ,
where hfk is the cache hit probability of file f ∈ Fk and Tk is
the characteristic time of cache partition of CP k , which can
be considered as timer in TTL caching. In addition, we sup-
pose the cache partition in which CP k rents a fraction βk of
the cloud cache space. Thus, we have

∑
f ∈Fk

hfk = βkQ, and
therefore,

Tk =
βkQ∑
f ∈Fk

ηfk
. (1)

Thus, the hit rate of CP k can be expressed as:

Hk =
∑
f ∈Fk

ηfkhfk ≈
∑
f ∈Fk

η2fk Tk =

∑
f ∈Fk

η2fkβkQ∑
f ∈Fk

ηfk
. (2)

The cache hit probability hfk of file f ∈ Fk is the probability
that a request for file f results in a hit [27]. Therefore,
we consider the hit rate of CP k as the average number of
requests resulting in a hit in the set of files Fk of CP k .
Correspondingly, the hit ratio of CP k , which is defined as
the ratio between the hit requests and total requests, can be
given by hk =

Hk∑
f ∈Fk ηfk

. We can see that the hit rate Hk and

hit ratio hk depend on the fraction βk of cache space rented by
CP k . In addition, to guarantee a hit ratio hk ≤ 1, we should

have βk ≤
(
∑

f ∈Fk ηfk )
2∑

f ∈Fk η
2
fk Q

.

B. TRANSMISSION MODEL
Requested content can be sent from the content server or cloud
cache. We model the traffic delivery process as a queueing
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system, as shown in Fig. 1. Through out the paper, we assume
that the requests within each queue are served in a FIFO
manner and the buffer size is infinite.

1) BACKHAUL DOWNLINK TRAFFIC
When a requested file is not cached in cloud cache, the file has
to be fetched from the content server through the backhaul.
We assume that traffic arrives at the backhaul toward user
u ∈ Uk according to a Poisson process with a request rate
of λu(1 − hk ). Let α =

∑
k∈K

∑
u∈Uk (λu(1− hk )) be the

total the traffic through the backhaul links. Then, we assume
that the traffic is evenly distributed to m active backhauls to
the BBUs with probability 1

m . Therefore, the mean incoming
traffic rate routed to each active backhaul is α

m . We also
assume that the expected data rates of the backhauls are
constant during the user association process. We model the
traffic delivery in the backhaul as an M/M/1 queuing system.
Therefore, the backhaul delay of user u ∈ Uk is as follows:

τBu =
λu(1− hk )
DB − α

m
. (3)

2) WIRELESS TRANSMISSION TRAFFIC
Denote by γu the received signal to interference plus noise
ratio (SINR) at user u, which is given by [22]

γu =

∑
r∈R purgurxur

Iinter + Iintra + σ 2 , (4)

where pur and gur are the transmit power and channel
coefficient from RRH r to user u, respectively. xur is the
association indicator, which is equal to 1 if user u asso-
ciates with RRH r , and equal to 0, otherwise. The first
component Iinter =

∑
r∈R purhur (1 − xur ) in the denom-

inator is the inter interference, and the second component
Iintra =

∑
r∈R

∑
u′∈U pu′rhu′rxurxu′r is the intra interference.

σ 2 characterizes the noise spectral density at each user’s
receiver. The achievable rate of user u ∈ U is expressed as

cu = W log(1+ γu) (5)

whereW is the bandwidth. Here, the channel gain reflects the
slow fading including pathloss and shadowing. In addition,
according to Burke’s Theorem [39], the arrival process of
wireless transmission is a Poisson function with rate λu.
Therefore, the wireless transmission queue for user u ∈ U can
be regarded as anM/M/1 queue, and thewireless transmission
delay for user u ∈ U is expressed as

τWu =
λu

cu − λu
. (6)

Therefore, the end-to-end delay of delivering traffic for user
u ∈ Uk is given by τBu + τ

W
u . We can see that the end-to-

end delay of user u is impacted by the cache capacity that
CP k rents and the RRHs associated with user u. In addition,
to guarantee stability of the queueing system, we should have
cu > λu. Moreover, to account for the limited fronthaul,

the maximum number of users that can connect with RRH r
is limitted, i.e., ∑

k∈K

∑
u∈Uk

xur ≤ qr . (7)

IV. HIERACHICAL GAME FRAMEWORK
Here, we consider the interaction between the NO and CPs
through two problems: the cache allocation and user associ-
ation problems. Even though two processes, cache allocation
and user association affect the E2E delay, they differ in time
scale: the user association is determined at amuch faster time-
scale than that of cache allocation. Both the NO and CPs
are selfish in leasing and renting cache. The NO wants to
attract more CPs to rent its cache spaces and the NO further
maximizes its profits by offering the optimal cache partition
and corresponding payment, whereas the CPs also wish to
maximize their utility by obtaining a large amount of cache
space with a low price. In addition, CPs want to provide the
best service to their users in terms of the data rate and the E2E
delay. They aim to maximize the tradeoff between the data
rate and the E2E delay, which is determined by the association
between RRHs and users. Specifically, after selecting the
cache partition, each CP can estimate the backhaul delay for
each its user. We note that the backhaul delay is a part of
the end-to-end delay, which is an element of the objective of
RRH-user association. Therefore, there is an indirect effect
of the cache allocation results on the user association. On the
other hand, depending on the user association, each CP can
estimate the wireless transmission delay of each of its users.
When the wireless transmission delay of one CP is high,
the willingness to rent cache of this CP is high, because the
E2E delay is even higher if this CP does not rent cache.
In other words, the greater the delay the CP suffers due to
wireless transmission, the greater its willingness to rent cache
space. Since the limited capacity cache space is shared among
CPs, the NO needs to determine a cache partition by fully
considering the willingness of CPs in order to attract more
CPs to rent.When the willingness of the CPs changes, the NO
is required to modify the allocation of cache space to the CPs
and corresponding payment so that the NO can maximize its
utility and provide incentive to the CPs: the CP with higher
renting willingness should have more cache space. There also
exist indirect effects of user association results on the cache
allocation results.

We use an example to explain the influence of user associa-
tion on the cache allocation. Suppose there are 3 CPs A,B,C
who rent the cache space from the NO. In the first time
slot, the cache size percentage allocated to the three CPs are
50%, 20%, 30%, respectively. This allocation corresponds to
the backhaul delay of A,B,C of 10, 11, 12, respectively.
Based on the given backhaul delay, the user association is
determined to maximize the social welfare. Suppose, the sum
of the wireless transmission delay after user association of
the three CPs are 9, 8, 6, respectively. Based on the wireless
transmission delay, we have that the order of willingness
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of the three CPs is A,B,C, where A has the highest will-
ingness to rent the cache and C has the lowest. Therefore,
the cache allocation in the second time slot should be in
the same order as the willingness, such as: 45%, 35%, 20%
for A,B,C , respectively. The scenario under investigation,
therefore, allows two levels of competition and one cyclic
dependency, as described above.

The competitions and cyclic dependency can be illustrated
utilizing the hierarchical framework shown in Fig. 2, where
two different game formulations are adopted to investigate
these inter-linked problems. Especially, cache allocation is
formulated using a contract model in which the NO calculates
the fraction of cache space leased to each type of CP and the
corresponding payment. Meanwhile, the user association is
formulated as a many-to-many matching game with external-
ities. At the beginning of each time slot, the NO determines an
optimal contract given the user association results in the last
time slot. Then the NO will broadcast the optimal contract
to the CPs. After evaluation of the contract, the CP sends
feedback to the NO regarding the contract type. After getting
the feedback from the CPs, the NO will assign the cache
space to the CPs. In one time slot, the cache allocation is
fixed. Based on the cache allocation, the users and RRHs will
determine their coordination in order to maximize the social
welfare of the system.

FIGURE 2. Illustration of the hierarchical game framework.

In the following, the contract cache allocation is studied
from a theoretical viewpoint in Section V, and the matching
game based user association will be presented in Section VI.

V. CONTRACT THEORY BASED CACHE ALLOCATION
It is known that the cache capacity of the NO is limited.
In addition, if the CPs rent cache space at the cloud level,
the NO can decrease the cost of downloading a file from
the server through a backhaul link. Thus, the NO needs to
identify an incentive mechanism to attract CPs to rent and
maximize its utility. Furthermore, CPs also want to maximize
their utilities. However, the NO does not know what type of
CPs are present, related to the willingness to cache and the
request rate. This makes it difficult for the NO to decide the

optimal cache allocation and corresponding payment, which
results in information asymmetry between the NO and CPs.
To deal with this problem, we implement the contract theory
because thismethod can incentivize CPs to reveal the accurate
information. Specifically, the NO will design a menu of con-
tracts to define the percentage of its total cache space leased
to the CP and the corresponding payment. In this section,
we present the utilities of the NO and CPs, the formulation of
the contract problem, and the design of the optimal contract.

A. UTILITY MODEL FOR CACHE ALLOCATION
1) UTILITY OF CP K
The utility of CP k is defined as

ACPk (βk ,Pk ) = ωkHk − Pk = ωk

∑
f ∈Fk

η2fk∑
f ∈Fk

ηfk
βkQ− Pk , (8)

where ωk > 0 and is proportional to the wireless trans-
mission delay

∑
u∈Uk (τ

B
u + τ

W
u ) which is given by the user

association. The utility of CP k is the difference between the
benefit of CP k from renting cache and the price Pk charged

by the NO.We further define θk = ωk
∑

f ∈Fk η
2
fk∑

f ∈Fk ηfk
as the renting

willingness of CP k . We also let θk denote the type of CP k .
We assume there are totalK different types, andwe denote the
set of types2 = {θ1, θ2, . . . , θK }. Without loss of generality,
we assume θ1 < . . . < θk < . . . < θK . The NO does not
have exact information for the individual θk of every CP k .

2) UTILITY OF THE NO FROM PARTITIONING AND
LEASING CACHE TO THE CPS
The NO is the CRAN owner who owns the BBUs, fronthaul
and RRHs. To transmit the requested file to the users of the
CPs, the NO also needs to rent the backhaul links to retrieve
files from the core network to the BBUs. However, the back-
haul usage cost of the NO depends on the cache allocation
among CPs at the BBUs. This is because when a requested
file is cached at the BBUs, the file can be transmitted directly
to the users. The utility of the NO is determined by the
difference between the payment from leasing the cache to all
CPs and the backhaul usage cost. Thus, the utility of the NO
from partitioning and leasing cache to the CPs is expressed
as

ANO(β, P) =
∑
k∈K

(Pk − ϕk (βk )), (9)

where the backhaul usage cost, ϕk (βk ), is a convex and
decreasing function of the cache partition βk ; and β =
{βk ,∀k ∈ K},P = {Pk ,∀k ∈ K} are the cache allocation
and payment vectors, respectively.

The selfish and rational NO not only wants to maximize its
utility but also applies different strategies to different types
of CPs with different willingness to rent cache. In the cache
trading market, the private information of CPs is unknown
by the NO. Some CPs can claim wrong information willing-
ness and/or request rates so that the allocated cache partition
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capacity is higher or the price charged is lower. Thus, it is
difficult for the NO to know exactly what type of a CP is.

It is well known that contract theory is an useful tech-
nique in modeling the incentive mechanism under asymmet-
ric information. The contract design in this paper can be
categorized as adverse selection case, i.e., the type of the CP
is unknown to the NO. The NO acts as a monopolist in the
market and designs the contract entries for various CPs to
maximize its total utility, where the contract {βk (θk ),Pk (θk )}
is assigned for CP type θk . If CP k accepts the contract, then
this CP will receive cache partition βk and pay an amount
Pk to the NO. In the following, the interactions of the NO
and CPs are formulated as a game based on the framework of
contract theory.

B. CONTRACT FORMULATION
To incentivize CP type k to rent cache space, it must be
individual rational (IR), i.e.,

IR: ACPk (βk ,Pk ) = θkβkQ− Pk ≥ 0, ∀k ∈ K. (10)

The contracts should bring a non-negative utility to the CP,
which motivates the CP to actively participate in the trade.
In addition, type k CPwould prefer to choose the contact item
(βk ,Pk ) rather than contract item design for other types. Thus
the CP should be incentive compatible (IC), i.e.,

IC: ACPk (βk ,Pk ) ≥ ACPk (βj,Pj)

θkβkQ− Pk ≥ θkβjQ− Pj, ∀k, j ∈ K, k 6= j. (11)

The IC condition ensures that the CP k will accept the contract
(βk ,Pk ) designed for it rather than choosing other contracts
(βj,Pj), k 6= j. These two constraints guarantee that the
optimal contract can provide participation incentive for the
users. In addition to the IC and IR constraints, the NO will
need to design the contract such that the expected cache size
leased meets the cache size limit of the BS, i.e.,∑

k∈K
βk ≤ 1. (12)

The optimal contract design can be formulated as the NO’s
total utility maximization problem, i.e.,

(CA) : max
β,P

ANO(β, P),

s.t. : (10), (11), (12),

min

(
1,

(
∑

f ∈Fk
ηfk )2∑

f ∈Fk
η2fk Q

)
≥βk≥0, ∀k ∈ K. (13)

C. CONDITIONS FOR FEASIBLE CONTRACT
In this section, we analyze the feasibility of the contract
design, which is formulated in (13).
Lemma 1: For any feasible contract (β, P), βi ≥ βj if and

only if θi ≥ θj.
Proof: We refer to [10] for the proof. This Lemma sim-

ply proves that the NO must provide more cache capacity to
the CPs with higher types, which is themonotonicity property
of contract design. �

Lemma 2: For any feasible contract (β, P), the utilities of
CPs must satisfy

0 < ACP1 < . . . < ACPk < . . . < ACPK . (14)
Proof: We refer to [10] for the proof. �

Thus, the higher type CPs gain more utility than the lower
type CPs. From the IC constraint and the two lemmas above,
we can easily deduce the following. If a CP selects a contract
designed meant for a high type, even though it will receive
more cache space, the profit of the hit rate cannot compensate
for the payment to the NO. Moreover, if a CP selects a con-
tract intended for a low type, this CP receives a smaller cache
space although it pays less to the NO. The CP can receive the
maximum utility if and only if it selects the contract that best
fits with its type. Thus, we can guarantee that the contract is
truthfully self-revealed.
Theorem 1 (Sufficient and Necessary Conditions for Con-

tract Feasibility): A contract (β, P) is feasible if and only if
all of the following three conditions hold:
(a): 0 ≤ β1 ≤ β2 ≤ . . . ≤ βK ;
(b): θ1β1 Q− P1 ≥ 0;
(c): θk (βk −βk−1) ≤ Pk −Pk−1 ≤ θk−1(βk −βk−1),∀k ∈
{2, 3, . . . ,K }.

The proof can be found in Appendix A.

D. OPTIMALITY OF CONTRACT
The optimal contract can be obtained either by solving
problem (13) directly or by applying a sequential optimiza-
tion aproach. In this part, we adopt a sequential optimization
approach. First, we derive the best payment P∗ given a fixed
cache allocation β, and then we derive the best cache alloca-
tion β∗ for the optimal contract.
Lemma 3: Given the cache allocation β, then the unique

optimal price sastifies:

P∗1 = θ1β1Q,

P∗k = P∗k−1 + θk (βkQ− βk−1Q). (15)
The proof can be found in Appendix B.
From (15), we can conclude that

P∗k = θ1β1Q+
∑k

i=1
Zi, ∀k ∈ {1, 2, . . . ,K }, (16)

where

Zi =

{
0, if i = 1,
(βiQ− βi−1Q)θi, if i = 2, 3, . . . ,K .

Based on Lemma 3, we can simplify problem (13) as

max
{β}

ANO =
∑
k∈K

(θ1β1Q+
k∑
i=1

Zi − ϕk )

s.t. (12),

β1 ≤ β2 ≤ . . . ≤ βK ,

min

(
1,

(
∑

f ∈Fk
ηfk )2∑

f ∈Fk
η2fkQ

)
≥ βk . (17)
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In order to solve this problem, one standard approach
is to leave out the monotonicity condition and then
determine whether the obtained solution satisfies this
condition.

After removing the monotonicity condition, we can repre-
sent the objective function of problem (17) as:

max
{β}

ANO =
∑
k∈K

ANOk

s.t. : (12),

min

(
1,

(
∑

f ∈Fk
ηfk )2∑

f ∈Fk
η2fk Q

)
≥ βk , ∀k ∈ K, (18)

where ANOk = θkβkQ + (K − k)1k − ϕk and 1k = (θk −
θk+1)βkQ,∀k < K , and1k = 0 when k = K . Obviously, all
ANOk ,∀k ∈ K are convex functions of βk . The Langrangian
of (18) is:

L =
∑
k∈K

ANOk − η

(∑
k∈K

βk − 1

)
−

∑
k∈K

νk (βk − ok ), (19)

where η and νk are the Langrange multipliers, ok =

min
(
1,

(
∑

f ∈Fk ηfk )
2∑

f ∈Fk η
2
fk Q

)
. Applying the KKT condition, β

∗

k ,

k ∈ K are solutions of
(ANOk )′ − η − νk = 0, ∀k ∈ K,
νk (βk − ok ) = 0, ∀k ∈ K,
η(
∑
k∈K

βk − 1) = 0,

where (ANOk )′ is the first-order derivative of ANOk with respect
to βk .
Furthermore, we need to check whether these solutions

satisfy the monotonicity condition. If β
∗

k satisfies the mono-
tonicity condition, it can be regarded as our desired optimal
quality β∗k . Otherwise, we need to make some adjustments
based on the following proposition.
Proposition 1: Let ANO1 (β) and ANO2 (β) be concave func-

tions on β. If β
∗

1 ≥ β
∗

2 where β
∗

1 = argmax
β1

ANO1 (β1) and

β
∗

2 = argmax
β2

ANO2 (β2), where

{
β∗1 , β

∗

2
}
= argmax

β1,β2

2∑
i=1

ANOi (βi) s.t. β1 ≤ β2.

Proof: We refer to [30] for the detailed proof of
Proposition 1. �
Proposition 1 can be extended to a more general form:

if β
∗

1 ≥ β
∗

2 ≥ . . . ≥ β
∗

K where β
∗

i = argmax
βk

ANOk (βk ),

then β∗1 = β∗2 = . . . = β∗K where
{
β∗k

}
=

argmax
xi

K∑
k=1

ANOk (βk ) s.t β1 ≤ β2 ≤ . . . ≤ βK .

We denote a subsequence of {β
∗

k}, say {β
∗

i , β
∗

i+1, . . . ,

β
∗

j }, as an infeasible subsequence, if β
∗

i ≥ β
∗

i+1 ≥ . . .

≥ β
∗

j . For example, in a cache allocation {β
∗

k} =

{0.04, 0.16, 0.16, 0.12, 0.32, 0.2}, there are two feasible sub-
sequences, i.e., {β

∗

2, β
∗

3, β
∗

4} and {β
∗

5, β
∗

6}. According to
Proposition 1, the adjusted values satisfy β∗i = β∗i+1 =

. . . = β∗j . Moreover, β∗i ,β
∗

i+1,. . . , β
∗
j maintains the capacity

constraints

β∗i + β
∗

i+1 + . . .+ β
∗
j = β

∗

i + β
∗

i+1 + . . .+ β
∗

j .

Therefore, β∗i = β
∗

i+1 = . . . = β
∗
j =

β
∗

i +β
∗

i+1+β
∗

j
j−i+1

Substituting the feasible allocation {β∗k } into (16),
we obtain the corresponding optimal price P∗k :

P∗k = θ1β
∗

1Q+
∑k

i=1
Z∗i (20)

for any k ∈ {1, 2, . . . ,K }, where

Z∗i =

{
0, if i = 1,
(β∗i Q− β

∗

i−1Q)θi, if i = 2, 3, . . . ,K .

Note that, using the sequential optimization approach,
the original problem in (13) has been significantly simpli-
fied by decreasing the number of constraints and variables.
In addition, based on Lemma 3, there is no gap between
the solution by using the sequential optimization approach
and a solution attained by solving (13) directly. The contract
algorithm is illustrated in Algorithm 1.

Algorithm 1 Optimal Contract Algorithm
INPUT: Q,K ,2 = {θ1, θ2, . . . , θK }
OUTPUT: (β, P)
Step 1. Cache partition for k = 1, . . . ,K do

set ANOk = θkβkQ+ (K − k)S1k − ϕk

β
∗

k , k ∈ K is the solution of


(ANOk )′ − η − νk = 0,
νk (βk − ok ) = 0
η(
∑
k∈K

βk − 1) = 0,

end
while β

∗
is not feasible do

find an infeasible subsequence {β
∗

i , β
∗

i+1, . . . , β
∗

j }

set β∗i = β
∗

i+1 = . . . = β
∗
j =

β
∗

i +β
∗

i+1+β
∗

j
j−i+1

end
Step 2. Payment
for k = 1, . . . ,K do

set Z∗i =

{
0, if i = 1,
(β∗i Q− β

∗

i−1Q)θi, if i = 2, 3, . . . ,K .

set P∗k = θ1β
∗

1Q+
∑k

i=1 Z
∗
i

end

VI. USER ASSOCIATION AS A MANY-TO-MANY
MATCHING GAME WITH EXTERNALITIES
In this section, given a cache partition among the CPs,
we focus on solving the association of RRHs with
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users to maximize the total social welfare by solving
the problem:

(RA) : max
x

SRA =
∑
u∈U

cu
τBu + τ

W
u

s.t : (7),∑
r∈R

xur ≤ qu, ∀u ∈ U ,

xur = {0, 1}, ∀u ∈ U , ∀r ∈ R,
β is given, (21)

where x = {xur ,∀u ∈ U ,∀r ∈ R} is the matrix of associa-
tion indicator. The numerator in the objective function is the
achievable rate of user u and the denominator is the total delay
that user u experiences, which is the sum of the backhaul
delay τBu and the transmission delay τWu . Given cache parti-
tion β from Section V, each user u can calculate the backhaul
delay τBu . The backhaul delay of one user depends on the
cache space capacity of the CP to which this user belongs.
As a result, the cache allocation affects to the user association.
To this end, a utility matching algorithm is proposed. In this
section, we first introduce the definition of thematching game
and utility, and then describe in detail the algorithm used to
obtain a stable matching.

A. DEFINITION AND UTILITY FUNCTION
We consider the set of users U and the set of RRHs R
as two disjoint sets of selfish and rational players aiming
to maximize their own benefits. Specifically, if RRH r is
assigned to user u, then we say user u and RRH r are matched
with each other and form a matching pair. A matching is
defined as an assignment of RRH inR to users in U , formally
presented as follows
Definition 1: Given two disjoint sets U of users and R of

RRHs, a many-to-many matching Υ is a mapping from the set
U ∪ R ∪ {0} into the set of all subsets of U ∪ R ∪ {0} such
that, for every u ∈ U and r ∈ R:
1) Υ (u) ⊆ R
2) Υ (r) ⊆ U
3) | Υ (u) |≤ qu

4) | Υ (r) |≤ qr

5) u ∈ Υ (r)⇔ r ∈ Υ (u).
Condition 1) states that each user is matched with a subset
of RRHs, and condition 2) implies that each RRH is matched
with a subset of users. We assume that the number of RRHs
being mapped for each user is no larger than qu, and similarly
the number of users being mapped for each RRH is no larger
than qr , taking into account the limited fronthaul link, which
reflect on the condition 3) and 4), respectively. The condition
5) shows that if u matches with r , r matches with u.
The utility of user u can be defined as the ratio between the

data rate and the E2E delay, which shows the tradeoff of data
rate delay of user u. The utility of user u can be present as

SRAu =
cu

τBu + τ
W
u
, ∀u ∈ U . (22)

The utility of RRH r is defined as the sum of the utilities of
the users connecting to this RRH and can be presented as

SRA,Rr =

∑
u∈U

SRAu xur , ∀r ∈ R. (23)

The total social welfare of the system is the sum of data rate
delay tradeoff of all users in the system and can be present as

SRA =
∑
u∈U

SRAu . (24)

B. PREFERENCE LISTS
Both users and RRHs desire to obtain a high utility.
According to the utility function, each player can compute a
preference list over the players of the other set. The preference
list of one user is an ordering of potential RRHs, in which the
RRHs that give this user a higher utility, will be higher ranked.
Similarly, the preference list for an RRH is an ordering of
potential users, in which the users that provide this RRH a
higher utility, will be higher ranked. Specifically, for any user
u ∈ U , its preference u over the set of RRHs can be described
as follows. For any two RRHs r, r ′ ∈ R, r 6= r ′ and any two
matchings Υ,Υ ′, r ∈ Υ (u), r ′ ∈ Υ ′(u):

(r, Υ ) �u (r ′, Υ ′)⇔ SRAu (Υ ) > SRAu (Υ ′). (25)

where SRAu (Υ ) is the utility of user u when user u associates
with r in matching Υ and SRAu (Υ ′) is the utility of user u
when user u associates with r ′ in matching Υ ′. Similarly, for
any RRH r ∈ R, its preference over the set of users can be
explained as follows. For any two users u, u′ ⊆ U , u 6= u′,
and any two matchings Υ,Υ ′, u ∈ Υ (r), i′ ∈ Υ ′(r ′):

(u, Υ ) �r (u′, Υ ′)⇔ SRA,Rr (Υ ) > SRA,Rr (Υ ′), (26)

where SRA,Rr (Υ ) is the utility of RRH r when RRH r asso-
ciates with use u in matching Υ and SRA,Rr (Υ ′) is the utility
of RRH r when RRH r associates with use u′ in matching Υ ′.
(26) implies that r prefers user u to u′ only when r can obtain
a higher utility from u.

It is easy to see that the utility of each user is a function
of the interference from the other users associating with the
same RRHs. Therefore, the preference lists of the users not
only depend on the RRHs to which the user is matched with,
but also the other users associated with the same RRHs.
Similarly, the preference lists of the RRHs change under dif-
ferent matching states. In other words, there is interdenpen-
dency of the preference lists of users and RRHs. Therefore,
the matching game formulated above is a many-to-many
matching with externalities. Influenced by peer effects [19],
the outcome of this matching game heavily depends on the
dynamic interactions between the users. Due to the peer effect
between players, we introduce the concept of a two-sided
exchange stable matching based on the operations of the
matching results, namely swap matching as given below.
Definition 2: Let Υ be a matching with r ∈ Υ (u),

r ′ ∈ Υ (u′) and r ′ /∈ Υ (u), r /∈ Υ (u′). Let Υ ′ denote
a modified matching where two pairs swap their match,
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i.e., r ′ ∈ Υ ′(u), r ∈ Υ ′(u′) and r /∈ Υ ′(u), r ′ /∈ Υ ′(u′). Swap
matching occurs when

1) ∀s ∈ {u, u′}, SRAs (Υ ′) ≥s SRAs (Υ ),

2) ∃s ∈ {u, u′}, SRAs (Υ ′) >s SRAs (Υ ),

3) ∀s ∈ {Υ (r ′), Υ (r)}|{u, u′}, SRAs (Υ ′) ≥s SRAs (Υ ). (27)
Swap matching occurs when the utility of any player

involved in current matching will not decrease, which is
shown in condition (1) and at least one player’s utility
will increase, which is shown in condition (2). Condition
(2) avoids looping between equivalent matchings where the
utilities of all involved players are unchanged. In addition,
we have modified the definition in [19] via the condition (3).
This condition means that the utilities of the users matching
with the RRHs involved in the swap also increase. It is noted
that one of the user pairs involved in the swap can be a
‘‘hole’’, representing an open spot in an RRH, thus allowing
for single-user movement to available vacancies. Similarly,
one of the RRHs r involved in the swap can be a ‘‘hole’’.
However, in the conditions in (2), the utilities of all ‘‘holes’’
and players in the opposite set matched with the ‘‘holes’’ are
not considered. Through multiple swap operations, we show
how dynamic preferences of different players are associated
with each other, and the matching games’s externalities are
well handled. The players keep executing approved swap
operations so as to reach a stable status, also known as a two-
sided exchange stable matching, defined as below.
Definition 3: A matching Υ is two-sided exchange stable

(2ES) if no swap matching can occur.

C. STABLE MATCHING
With this definition of stability, we introduce two RRH-user
matching algorithms RRHA-1 to obtain a 2ES matching. This
algorithm is an extended version of the many-to-one match-
ing algorithms proposed in [19] and was inspired by the work
in [40] and [41]. Different from the many-to-one matchings,
we consider the constraints | Υ (u) |≤ qu and | Υ (r) |≤ qr

in the RRHA-1. The key idea of RRHA-1 is to keep consid-
ering approved swap matchings among the players so as to
reach a 2ES matching. Algorithm RRHA-1 has two phases.
In phase 1, the initial states are set up. RRHs and users are
randomly matched with each other to satisfy the constraints
| Υ (u) |≤ qu and | Υ (r) |≤ qr . In phase 2, each user
keeps looking for the other user and the available vacancies of
RRHs for which they can swap their matching RRHs (swap
matching conditions are satisfied) and then update the current
matching. This iteration stops when no more swaps occur.

D. STABILITY, CONVERGENCE, COMPLEXITY
In the following, we analyze the performance of the
RRHA-1 algorithm based on user association. More specifi-
cally, we prove the convergence, define and analyze the local
maxima, and prove the stability.
Definition 4: Social welfare is the matching Υ for which

there exists no matching Υ ′, obtained from Υ by swapping
two users such that SRA(Υ ′) > SRA(Υ ) where SRA(Υ ′) and

Algorithm 2 RRHA-1

INPUT: τBu , q
u, qr

OUTPUT: x = {xu,r ,∀u ∈ U ,∀r ∈ R}
Phase 1: Random matching
- Each user and RRH is randomly matched with another
subject according to | Υ (u) |≤ qu and | Υ (r) |≤ qr .
Phase 2: Swap matching
while there exist swap matching do

for every matching user u ∈ U do
-search for the U\{u} or an open spot O of
RRH’s available vacancies for the swap
matching pair (u, u′) along with
r ∈ Υ (u), r ′ ∈ Υ (u′), or swap matching pair
(u,O),
- if swap occurs then

- update Υ = Υ ′

else
u keep its matches

end
end

end
end

SRA(Υ ) are the total social welfare of the system when the
matching of the system are Υ and Υ ′, respectively.
Theorem 2: The proposed RRHA-1 algorithm converges to

a 2ES matching after a limited number of swap operations.
The proof can be found in Appendix C.
Lemma 4: All local maxima of SRA(Υ ) are two-sided

exchange stable.
The proof can be found in Appendix D.
However, not all 2ES matchings obtained by RRHA-1 are

local maxima of SRA(Υ ). For example, a swap might not
occur because the utility of one user will decreases although
the utility of another user increases a lot; then the overall util-
ity increases. If the swap is forced, then a one-sided exchange
stable matching occurs at the expense of the utility of one
user.

With regard to the computational complexity of the
algorithm RRHA-1, we present the analysis as follows.
In algorithm RRHA-1, for swap matching, a number of iter-
ations are performed to reach the final matching. In each
iteration, the users search for swapping users or an open spot.
Thus the complexity of the swap matching phase depends
on the numbers of iterations and attempts at swap matching
in each iteration. When Uqu = Rqr , each player remains
fully matched before and after every swap matching; thus,
for any swap matching, there are two users and two RRHs.
For each user u, there are qu(R − qu) possible RRH couples
to be swapped. Moreover, each RRH has a quota of qr .
Thus for each user, there are qu(R − qu)qr possible swaps.
Since there are U users, there are 1

2Uq
u(R − qu)qr swap

matchings in each iteration. With a given number of total
iterations of I ′, we have a computational complexity of
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1
2 I
′Uqu(R−qu)qr ≈ 1

2 I
′URquqr , because in practice, the total

number of RRHs R is usually significantly bigger than the
quota qu. Therefore, we have that the computation complexity
of algorithm RRHA-1 is O(I ′URquqr ).

VII. SIMULATION RESULTS
In this section, we present the simulation results to evaluate
our proposed framework. In this paper, the cache capacity has
the unit of files. We consider a cloud cache with capacity
in the range from 1 × 105 to 15 × 105 files in which each
file has normalized size of 1. Each CP serves a random
number of requests between 4 × 106 and 5.6 × 106. We
adopt homogeneous settings for users in the same CP, and the
users in the same CPs have the same file access pattern. File
popularities for the users of the CPs follow the Zipf distri-
bution in which the exponent characterizing the distribution
is varied from 0.5 to 0.6. The request rate of a user, which
is the average number of requests of this user per unit of
time, is randomly chosen. The request rate for file f of user
u of CP k being the product of request rate of this user and
the popularities pattern of file f . In addition, we assume the
RRHs are deployed at fixed locations. We consider a log-
distance path loss model given by Oo et al. [42]. The power
density of the noise is−174 dBm/Hz. Bandwidth= 60 KHz,
transmitting power = 1 watt.

A. PERFORMANCE OF CONTRACT BASED CACHE
ALLOCATION
To evaluate the proposed contract algorithm, which is called
as C-Scheme, three other cache allocation schemes are
implemented as follows.
• N-Scheme: Cache allocation is considered without
information asymmetry. In this case, the NO only needs
to consider the IR conditions and cache limitation con-
straints when it designs the contract.

• DC-Scheme: This scheme follows the decompose-and-
compare algorithm in [43].

• O-Scheme: In this scheme, the payment of CP type k
is defined as Pk = γk (βk )2. Thus, the utility of CP
type k is ACPk (βk ) = θkβkQ − γk (βk )2. We set the
cache allocation in this scheme as the same as that in C-
Scheme. To verify the unique optimal price with given
cache allocation, the payment is deploy deployed under
condition (ACPk )′ = 0, which is showed in Lemma 3.

The unit for the value of the utility is the unit of money.
Fig. 3 depicts the utility of the NO and six CPs in four

different cache allocation schemes. From this figure, we can
observe that the N-scheme gives the NO the highest utility
compared with three other schemes. This is because the
contract designed by the NO in the N-scheme is required to
satisfy only the IR conditions, whichmeans that the NO in the
N-scheme has more opportunities to make profit than in the
C-Scheme. Compared with the DC-scheme and O-scheme,
the utility of the NO in the C-scheme is higher because the
cache allocation and payment in the C-scheme are the optimal
solutions of (13). In contrast, the utilities of the CPs in the

FIGURE 3. Numerical results for comparisons of the utilities of the NO
and CPs achieved by four different schemes.

DC-scheme and O-scheme are higher than in the C-scheme
and all six CPs in the N-scheme have a utility of zeros.

Fig. 4 represents the utility of eachCP received by selecting
the different contracts for different types. Here the types of
CP1, CP2, CP3, CP4, CP5, CP6 are 1, 2, 4, 6, 5, 3, respec-
tively in which type 6 is the highest and type 1 is the lowest.
We can see the higher-type CPs receive higher utilities and
the lowest-type CP receives zero utility. These results reflect
the IR conditions in the contract design. In addition, each type
of CP can achieve maximum utility when selecting the right
contract design for this type. For example, CP 3, which is
classified as type 6, receives a utility of 4.0336 when it signs
the type 6 contract. This utility is higher than the utility it
can get when it signs other types of contracts, such as type-1,
type-2 or type-4 contracts. Another example is CP 1, which
is type-1. CP 1 receives zero utility when it signs the type-
1 contract and negative utility when it signs other contracts.
These examples verify the IC conditions in contract design.

FIGURE 4. Numerical results for the total utility of CPs when they sign
different contracts.

Fig. 5 shows the impact of the CRAN cache capacity on the
utility of the NO. There are six CPs with different numbers of
files in the libraries and different popularity patterns. It can be
observed that the utilities of the NO in four schemes except
the DC-scheme increase when the cache capacity grow. It is
because the InP gains more profit from leasing the cache with
a larger cache capacity. However, in the DC-scheme, first,
the NO’s utility increases when the cache capacity changes
from 105 to 9× 105 files and then decreases when the cache
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FIGURE 5. Numerical results for the impact of the cache capacity Q on
the utility of the NO.

capacity changes from 9× 105 to 11× 105 files. This can be
explained as follows. When the cache capacity Q increases,
the range of βk is narrower due to the relation between the
hit ratio, cache capacity and cache fraction. Furthermore, in
DC-scheme, the NO designs the contract by selecting the
highest utility contract among the set of candidate ones. The
narrower range of βk leads to the reduction of the number of
candidate contracts. Therefore, the increase of cache capac-
ity causes the loss of the NO’s utility in the DC-scheme.
In addition, in various cache capacity settings, the proposed
C-Scheme and N-Scheme allow the NO to obtain the highest
utilities, followed by the O-Scheme and the DC-Scheme.

Fig. 6 presents the variation of the NO’s utility when
the number of CPs is varied from 6 to 16. In this figure,
we assume the cache capacity of the NO is Q = 15 × 105

and all CPs have the same the number of files in the libraries,
the popularity patterns and the number of requests. Fig. 5
witnesses the increasing of the NO’s utility when the number
of CPs increases. This results from competition among the
CPs to rent the cache space at the cloud.

FIGURE 6. Numerical results for the impact of the number of CPs on the
utility of the NO.

B. PERFORMANCE OF MATCHING GAME-BASED USER
ASSOCIATION AND THE PROPOSED HIERARCHICAL
GAME FRAMEWORK
Fig. 7 shows the CDF of the number of swap operations
required for the RRHA-1 algorithm to converge when the
number of RRHs is 12 and the quota of each user and RRH are

FIGURE 7. Numerical results for Distribution of the total number of swap
operations in RRHA-1.

3 and 12, respectively. The speed of convergence decreases
when the number of users increases. Fig. 3 further reflects the
low computational complexity of the proposed RRHA-1. For
example, when the number of users is 48, the RRHA-1 con-
verges after 17 swap operations.

Fig. 8 illustrates the CDF of total data rate-delay tradeoff
v.s. the maximal number of users that can associate with the
same RRH qr . It is showed that when qr changes from 4 to 5
or from 5 to 6, the total tradeoff increases because the users
can select better RRHs to maximize their utilities. However,
when qr change from 5 to 6, there is no improvement in
the total tradeoff because when more users can be associ-
ated with one RRH, more intra-interference occurs between
the user suffers. We conclude that the system is limited by
interference.

FIGURE 8. Numerical results for Total social welfare v.s. the quota of
each RRH.

Furthermore, to verify the effectiveness of our proposed
scheme, we compare the proposed scheme (CA+RRHA)with
other schemes: i) contract theory based cache allocation and
random RRH-user association (CA+Random), ii) no cache at
the cloud cache and randomRRH-user association (Random),
and iii) no cache at the cloud cache and RRHA1 algorithm
based RRH-user association (RRHA-1). The cache capacity
is Q = 3 × 105, the number of RRH is 12, the number
of CPs are 6, the quota of each user and RRH are 2 and 6.
Fig. 9 shows the total datarate-delay tradeoff when the request
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FIGURE 9. Numerical results for Total tradeoff when changing the request
rate.

rate is varied. The unit of request rate is the average number
of requests by all users of CPs during one unit of time. In this
simulation, we assume that every user of CPs has the same
number of requests per unit of time. However, the number
of requests for different files of users of different CPs are
different because the file popularities of CPs are different
from each other. From Fig. 9, we can observe that when there
are more requests to serve, the total datarate-delay tradeoff
decreases. This is due to the increase in delay. In addition,
when the request rate increases, the differences between the
schemes using and not using the cloud cache are smaller.
This is due to the fact that the growth of the request rate
leads to a decline in the hit ratio, which results in increase
in delay. This result shows the reduction of the effects of
caching on the tradeoff of the data rate and delay with the
request rate. In Fig. 10, we assume that the total numbers of
requests of each CP are fixed. Therefore, when the number of
users grows, the request rate of one user of each CP decreases,
resulting in a decreasing in delay of each user. This is a
reason why in Fig. 10 we can observe an increase in total
datarate-delay tradeoff in all four schemes with the number of
users. Both Fig. 9 and Fig. 10 show that the proposed scheme
outperforms the other three benchmarks in terms of the total
tradeoff, which indicates the effectiveness of our proposed

FIGURE 10. Numerical results for Total tradeoff when changing the
number of users per CP and number of CPs.

scheme. When the number of users is 48 and the request rate
is 0.06, the total tradeoffs of the proposed scheme are two
times and 1.5 times higher than that of non-caching schemes,
respectively. As compared with random user association and
contract based allocation, our proposed scheme can provide
competitive total tradeoff.

VIII. CONCLUSION
In this paper, we investigate the cache allocation and user
association problems for the CRAN system with caching as
a service. For the cache allocation problem, we model the
commercial caching system as a monopoly market, where
the NO owns the cloud cache and RRHs and offers a cache
partition related contract to various types of CPs while maxi-
mizing its own profits. We first formulate the optimal con-
tract problem under an information asymmetric scenario.
Afterward, the algorithm for designing the optimal contract is
presented. Based on the cache allocation, we consider the user
association problem to maximize the social welfare, defined
as the sum of the tradeoff of the data rates and the E2E delay
of users. We formulate the problem of user association as a
many-to-many matching game with externalities and propose
a matching algorithm to achieve a two-sided exchange stable
matching within a limited number of iterations. The proper-
ties of the proposed algorithm also are discussed. Numerical
results verify the effectiveness of the proposed scheme in
incentivizing CPs to rent the cache and reveal their private
information. The utility of the NO is guaranteed to be maxi-
mal. In addition, the simulation results demonstrate that our
proposed scheme is able to improve at least two times of
social welfare as compared with the non-caching schemes,
even when the number of user is small. Our results also show
that swap matching based proposed scheme is competitive
with the random based user association. We hope the gap
between swap matching and random based user association
larger by the future work.

APPENDIX A
PROOF OF THE THEOREM 1
Before proving Theorem 1, we consider the three following
Lemmas.
Lemma 5: Given that the IC constraint holds, for the opti-

mal contract under incomplete information, the IR constraint
can be reduced by

θ1β1Q− P1 ≥ 0. (28)

Proof: With definition of types : θ1 < . . . < θk < . . . <

θK , we have θkβkQ−Pk ≥ θkβ1 Q−P1 ≥ θ1β1 Q−P1 ≥ 0.
�

Lemma 6: If Local Downward Incentive Contraints
(LDIC) are satisfied for all user type θk , k ∈ K, i.e.,

θkβkQ− Pk ≥ θkβk−1Q− Pk−1 (29)

then IC contraints will hold for any h ≤ k, h ∈ K, i.e.,

θkβkQ− Pk ≥ θkβhQ− Ph. (30)
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Proof: We have two LDIC as follows:

θkβkQ− Pk ≥ θkβk−1Q− Pk−1. (31)

θk−1βk−1Q− Pk−1 ≥ θk−1βk−2Q− Pk−2. (32)

We have θk > θk−1, so the inequality in (32) becomes

θk (βk−1 − βk−2)Q ≥ θk−1(βk−1 − βk−2)Q

≥ Pk−1 − Pk−2. (33)

Additionally, (31) is equivalent to

θk (βk − βk−1)Q ≥ Pk − Pk−1. (34)

Summing (33) and (34), we have:

θkβkQ− Pk ≥ θkβk−2Q− Pk−2. (35)

Therefore, if the LDIC holds for type-k-1 CP, the incentive
constraint with respect to type k-2 holds. This process can
be extended downward from type k-2 to 1 CPs, which prove
that all the downward incentive constraints hold. In view of
the random selection of θk , we have completed the proof. �
Lemma 7: If Local Upward Incentive Contraints (LUIC)

are satisfied for all user type θk , k ∈ K, i.e.,

θkβkQ− Pk ≥ θkβk+1Q− Pk+1, (36)

then IC contraints will be satisfied for any l ≥ k, l ∈ K,

θkβkQ− Pk ≥ θkβlQ− Pl . (37)

Proof: Proof is similar to Lemma 6. �
Proof for sufficient conditions of Theorem 1: (a) is implied
from Lemma 1. (b) is implies from Lemma 5. The left
inequality in (c) is derived from the LUIC ∀k ∈ K. The right
inequality in (c) is derived from the LDIC for all k ∈ K.
Proof for necessary conditions of Theorem 1: (a) is implied

from Lemma 1. (b) is the same as the necessary IR constraint
for the lowest CP type. (c) is derived from the necessary
IC constraint ∀k ∈ K.

APPENDIX B
PROOF OF THE LEMMA 3

Proof: Let us proceed contradiction. Given the fixed
cache allocation, the utility of the NO is decided by∑K

k=1 qkPk . Suppose that there exists another feasible pay-
ment {P′k ,∀k} that has better solution than {P∗k ,∀k} in (15).
Thus, there is at least one price P′k > P∗k for one type θk .
If k = 1, then P′1 > P∗1. Since P∗1 = θ1β1Q, then
P′1 > θ1β1Q, which violates the IR constraints for type θ1.
If k > 1, since {P′k ,∀k}must satisfy the LDIC: θkβkQ−P′k ≥
θkβk−1Q − P′k−1 or P′k ≤ P′k−1 + θk (βkQ − βk−1Q). By
substituting P∗k = P∗k−1+θk (βkQ−βk−1Q) into this equality,
we have P′k−1 ≥ P∗k−1. By the induction method, we have
P′1 > P∗1, which violates the IR constraint for type θ1. So we
have (15). �

APPENDIX C
PROOF OF THE THEOREM 2
We prove the Theorem 2 based on three following Lemmas.
Lemma 8: Any swap leads to improvement in total social

welfare, i.e., SRA(Υ ′) > SRA(Υ ).
Proof: We consider the arbitrary user uik the possi-

ble cases. In the first case, this user is not associated with
RRHs involved in the swap matching, and so the utility of
this user does not change. In the second case, this user is
one of two users involved in the swap matching, and the
utility of this user remains the same or increases under condi-
tions (1) and (2) of Definition 2. In the third case, this user
is associated with one RRH that participating in the swap
matching, and so the utility of its is not decreasing due to
the condition (3). �
Lemma 9: The proposed RRHA-1 algorithm is guaranteed

to converge to the final matching after a limited number of
swap operations.

Proof: Since the number of users and RRHs are finite,
we can find that the number of possible swaps for users
are finite. From Lemma 8, the total system social welfare
increases after swapping and has an upper bound. Therefore,
there exists a swap operation after which no more swapping
occurs and the social welfare stops increasing. RRHA-1 then
converges to final matching Υ ∗. �
Lemma 10: If the RRHA-1 converges to a matching Υ ∗,

then Υ ∗ is a 2ES matching
Proof: When the while loop in phase 2 of the algorithm

RRHA-1 is terminated, no user can find another with which
do swap. Thus, the matches of one user must be the best
choice for it in the current matching. So no user has the desire
to change from the current matching. Hence, the final result
matching is 2 ES matching. �

APPENDIX D
PROOF OF THE LEMMA 4

Proof: Suppose the total utility of matching Υ is
the local maxima of SRA(Υ ). The Υ is not a 2ES match-
ing, which means that there exists another swap that can
increase the overall utility of current matching, this contra-
dicts the assumption that Υ is a local maximum. Thus, Υ is
stable. �
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