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ASSEMBLER SOFTWARE- FOR THE ATHENA COMPUTER

ABSTRACT

The Athena Computer lacks essential software for general 

computational purposes. All programming on the Athena is 

performed using numeric machine instructions.

Software was prepared to eliminate this problem. An 

assembler program was prepared to allow Athena users to pro­

gram the Athena Computer in assembly language. The assembler 

program translates the user's assembly language program into 

numeric machine code for the Athena Computer. The assembler 

has features which allow the user ipo refer to storage locations 

using symbolic names and write operation codes in symbolic form. 

The assembler also allows the user to specify constants in the 

form which the user thinks of it, such as 1.0 for a floating­

point constant. The assembler language programmer can write 

calls on closed subroutines and the assembler will generate 

the necessary linkages. Calls on open subroutines (macros) 

may be made. The assembler will automatically insert the macro 

code in-line following the macro call. To aid the user in de­

bugging his program, numerous checks for errors are made and a 

error message is printed out if an error is detected. An Athena 

assembly language programmer's guide was prepared to aid users 

in programming the Athena. A systems programmer's guide was 



provided to aid in modifying the assembler program itself as 

requirements change.
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Example ♦

1 00 0040 017004 DD 4

1 00 0041 340042 WP S+l

*DD' , opcode 017, with a mode of 4, causes the digital

printer to space. The 'Wait PartialA * * * * * * * 1 instruction halts program 

execution until the printer has completed spacing.

A significant problem with the Athena is doing program

execution across a drum group boundary. In this discussion,

the problem will be defined, and then the solution will be

presented. The drum on the Athena consists of eight groups,

of 1024 words each. The groups are numbe^d 0-7, and the

words 0-1023. If a program is executing on say group zero,

and arrives at the last word of group zero (location 1023),

execution will not continue with the first word of group one

but will start over again at location zero of group zero.

*
3.11 Programming Errors

As a programming aid, the assembler provides error de­

tection facilities for the programmer. Diagnostic messages are 

printed above the offending instruction line in the output 

listing. An error number is given 'for use in diagnosing the 

problem. An explanation of the meaning of the error numbers 

is given in Appendix B.

3.12 Executing a Program Across Drum Group Boundaries
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CHAPTER I

INTRODUCTION

The Athena computer was designed as a special purpose 

on-ground guidance control computer for the Titan 1 ICBM. 

Input to the machine consisted of radar tracking data as well 

as other parameters such as weather information. This data 

was analyzed and compared to a pre-entered target data. 

Steering and acceleration corrections were generated and 

transmitted to the in-flight missile. The computer also en­

abled the transmission of aiming instructions for the missile 

warhead when certain criteria was satisfied.

The Department of Electrical Engineering, University of 

Houston, acquired the Athena as a piece of government surplus. 

The Athena has been modified to a general purpose digital 

computer. Indexing capabilities have been added and the 

magnetic drum has been modified from a read-only memory to a 

random access memory. The word size on the drum was increased 

from seventeen bits to eighteen bits per word. Problems 

which made sequential program tedious when extended sequence 

instructions, such as multiply, divide, and shift were used, 

have been eliminated. A typewriter has been interfaced with 

the Athena and a set of input/output operation codes created 

to allow input and output of information on the typewriter.
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The Athena had no software when it arrived at the 

University of Houston. All programming was in machine lan­

guage. The purpose of this thesis is to provide assembly 

language programming capabilities for the Athena computer.

To provide the Athena computer with 'assembly language 

programming capabilities, an assembler program 

was prepared. The assembler program was written in Fortran V 

for execution on the Univac 1108 computer. The assembler 

program will normally be executed from a teletype terminal. 

Input to the assembler program is an Athena assembly language 

source program. The assembler program assembles the source 
program and prints out the results.'. An object program for 

the Athena is also punched out on the teletype terminal paper 

tape punch. The paper tape is then placed on the Athena's 

paper tape reader and read into the Athena's drum memory and 

executed.

Chapter III presents an "Athena Assembly Language Pro­

gramming Guide" for users of the assembler program. The guide 

covers all aspects of assembly language programming and pre­

sents many examples to illustrate assembly language programming 

techniques.

In Chapter IV the theory and structure of the assembler 

program is described. A syntactical definition for the 

Athena assembly language is presented. The assembler program 
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processes Athena assembly /language instructions based on these 

syntactical definitions. In processing a source program, the 

assembler makes two complete passes over the source program.

The documentation on the assembler program is presented in 

Appendix A. Appendix A presents documentation on the individual 

subroutines and functions which comprise the assembler program. 

Deck setups for executing the assembler program are described.

Appendix B gives a listing of error message numbers and 

describes their meaning.

Appendix C is a reference for assembler users. It pre­

sents a list of all alphanumeric characters used by the Athena
I 

computer and their internal binaryrepresentation in the Athena 

computer.

Appendix D presents a listing of macro programs used to 

perform floating-point arithmetic on the Athena. Macro programs 

are discussed in Chapter III.

Appendix E is a reference table of operation codes for 

the Athena. It gives the name of each operation code recog­

nized by the assembler program and briefly describes the 

operation code. Included on the list of operation codes are 

several new mnemonic operation which duplicate the functions
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of original mnemonic opera'tion codes. The mnemonic meaning 

of several of the original operation have become obscure and 

are no longer meaningful. For example, mnemonic operation 

code "TP" is an original operation code which clears the 

accumulator and loads the accumulator with the content of a 

core memory location. The original meaning of "TP" is ob­

scure. Another mnemonic operation code, "LA", for "Load 

Accumulator", which duplicates the functions of "TP", was 

made available to Athena assembly language programmers.

I 
: I

'I



CHAPTER II

BASIC OPERATION OF THE ATHENA COMPUTER

The Athena has two separate and distinct memories, a 

magnetic core memory of 256 twenty-four bit words and a mag­

netic drum of 8192 eighteen bit words. The addressing of 

these two memories requires specifications of different 

length. This difference is reflected in the instruction 

word format (see Figure 2-1). In an instruction affecting 

core memory, the lower eight bits are used as an address and 

the upper nine are the operation code. Bit eight is ignored. 

A drum address requires a thirteen bit specification which 

is divided into two parts. The upper three bits determine 

which of the eight groups of the drum is desired, and the 

lower ten bits determine the specific location within that 

group. Thus, in an instruction affecting drum memory, the 

lower thirteen bits are used for an address and the upper 

five bits are the operation code (see Figure 2-1).

A timing track on the drum is the basis for all timing 

signals in the computer. A 200 KHz sine wave on the timing 

track is converted into a 200 KHz pulse train (Figure 2-1). 

This pulse train itself is not used for timing in the machine 

but is divided into two 100 KHz timing pulse trains, CPO and 

CPI. The CPO and CPI pulses are used in the Main Pulse
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17 9 8 0

OPERATION CODE MAGNETIC CORE ADDRESS
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INSTRUCTION WORD FORMAT



Distributer (MPD) to generate the eight Main Pulses, MPO 

through MP7. From Figure 2-1, it is seen that odd numbered

7

Main Pulses occur coincidentally with CPI pulses, and even 

numbered Main Pulses, with CPO pulses. Some operation codes 

require only Main Pulses to complete their operation while 

others require both Main Pulses and CPO and CPI. To stop the 

computer, the Main Pulse Distributer is inhibited from gener­

ating Main Pulses. The basic cycle time, 40 microseconds, 

for the computer is the time required to generate a complete 

set of Main Pulses (MPO through MP7).

The basic operation, disregarding Input/Output, occurs 
i

in the following manner (see Figure 2-2). On MPO, execution 

of the instruction in the Program Control Register (PCR) is 

begun and continues through MPG. During this period, the 

next instruction to be executed is read from a drum location 

which is specified by the Program Address Register (PAR) and 

is placed in the Drum Transfer Register (DTR). At the same 

time the DTR is loaded, the PAR is incremented for the next 

instruction. On completion of execution, a MD Resume signal 

is sent to the Main Pulse Distributer to allow generation of 

MP7. On MP7 the instruction in DTR is transferred into the 

PCR, and on the following MPO the cycle is reinitiated. On 

branch and extended sequence instructions, such as the multi­

ply, divide, and shift instructions, an extended sequence flip
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BASIC COMPUTER OPERATION

Fig. 2-2
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flop is set and the MD Restate signal is delayed or altered 

until completion of the operation. Interlacing is used in 

the drum address decode network to prevent delay in reading 

the next instruction.



CHAPTER III

ATHENA ASSEMBLY LANGUAGE PROGRAMMING GUIDE

3.1 Introduction

An assembly language is a symbolic form of machine 

language. While machine language is numeric, assembly 

language allows alphabetic names for operation codes and 

storage locations. A program called an assembler translates 

a program written in assembly language into machine language 

which can be executed by the computer.

This chapter is a guide to programming in assembly 

language on the Athena computer. The general topic of 

assembly language will first be discussed and then a detailed 

description will be given of Athena Assembly Language 

Programming.

3.2 A Look at Assembly Language

To write programs directly in machine language, several 

clerical activities must be performed. The machine language 

program must keep track of exactly what locations are used 

for which instructions, data areas and constants, so that 

he may refer to these locations correctly later in the program 

and also that the program does not erase data, instructions, 

or constants by inadvertently using the same space for another 

purpose. Tables are referred to in writing the numerical
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operation codes required by the computer. Constants must be 

expressed in binary form.

Until the early 1950*5 all programming was done directly 

in machine language. It was tedious, and the performance of 

clerical jobs by programmers resulted in many clerical errors. 

Assembly languages evolved as symbolic ways of writing, machine 

language. The clerical tasks are, as far as possible, delegated 

to the assembler, which is a program that translates programs 

written in assembly language into machine language. The 

assembler keeps track of the storage locations used; the pro­

grammer refers to them symbolically, using names suggestive 

of the actual meaning in the problem oriented program. The 

assembly language programmer is also allowed to write operation 

codes in symbolic form; SA, for instance, may be written for 

"Store Accumulator" and the assembler will translate SA to the 

numerical operation code 004.

An assembler also allows the programmer to specify con­

stants and data areas symbolically. The constant may be given 

in the form in which the programmer thinks of it, such as 1.0 

for a floating point constant. The length of the storage area 

to be assigned to the constant may be specified, as well as a 

symbolic name by which the programmer will refer to the constant. 

The assembler will do the necessary conversions of the constants 

to binary representations, allocate storage, and keep a table 
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of names and corresponding- addresses. The same storage allo­

cations and symbol table procedures are used for data areas.

The assembly language programmer can conveniently write 

calls on open and closed subroutines. The instructions that 

make up an open subroutine are placed in line at each place 

where the execution may be desired. For closed subroutines 

the assembler generates the necessary linkages between the 

calling and called subroutine.

Modifications of programs written in assembly language 

is much easier than modification of programs written directly 

in machine language. Insertion of instructions, for example, । 
changes the allocation of all storage addresses after the point 

of insertion. In a program written directly in machine language 

the programmer would have to change the addresses of all affect­

ed instructions and constants, and all references to them, with 

the strong likelihood of error. Changing the size of a data 

area has similar hazards. To change an assembler language 

program, however, it is usually necessary only to change or in­

sert the directly affected assembly language instruction; the 

assembler will reassign all addresses and references to in­

structions, constants and data areas according to the current 

structure of the program. Thus the assembler helps to avoid 

many potential mistakes in changing of a program.

The assembler produces a printed listing of the program.
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showing the assembly language, the corresponding machine 

language generated, and diagnostic error messages. Many pro­

gramming errors are caught in the assembly process, and do 

not have to be found, one by one, through debugging execution 

runs.

3.3 Information Formats for the Athena Assembly Language

In this section, the various categories of information 

that are pertinent to the Athena will be introduced. This 

information includes instruction and data. In each case, 

both symbolic and actual representations will be of interest.

3.3.1 Statement Formats

A statement is the basic element of an assembler source 

program. A statement may be the symbolic counterpart of a 

computer instruction; it may be an instruction to the assembler 

or it may be expository information (a comment).

3.3.1.1 Label Field

The label field begins in Column 1 and is terminated, 

by a blank column. A label is a symbol used by the programmer 

to identify a statement. Normally the use of a label i$ 

optional.

3.3.1.2 Command Field

The command field begins in the first nonblank 

column-following the label field or in the first nonblank 
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column following Column 1 if the label field is omitted. The 

entry in a command is a mnemonic operation code and, as such, 

is mandatory for every statement (except comments).

3.3.1.3 Operand Field

The operand field begins in the first nonblank 

column following the command field and it is terminated by a 

blank, or upon reaching Column 72; which ever comes first. 

Normally an operand is required in the operand field but there 

are exceptions.

3.3.1.4 Comment Field
■■■ I

/

The comment field begins in the first nonblank 

column following the operand field. If no operand field is 

present, the comment field cannot be used. The comment field 

is terminated at Column 80. Use of this field is optional 

and its use has no effect on the assembly.

3.3.1.5 Sequence Field

The sequence field (Columns 73-80) is provided as 

an aid to the programmer in keeping the source statements in 

order. Use of this entry is optional.

3.3.1.6 Continuation Lines

Continuation lines are not permitted.
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3.3.1.7 Comment Lines ,

If an asterisk (*) appears in Column 1 of a statement, 

then the entire line is considered to be comment. All valid 

characters may be used and there is no effect on the assembly.

3.3.1.8 Output Listings

The following is an example of the format used for
I

output listings.

MACHINE COL. ASSEMBLER
CARD GRP LOC CODE 1 INSTRUCTION

1 00 0040 014732 EXPL1 DATA 0'14732' EXAMPLE 1

2 *A COMMENT CARD EXAMPLE 2

3 000040 EXPL3 EQU EXPL1 EXAMPLE 3

4 00 0041 000012 EXPL4 DATA 10 EXAMPLE 4

5 00 0042 000000 EXPL 5 DATA,2 12 EXAMPLE 5

00 0043 000014

6 000031 EXPL6 EQU 25 EXAMPLE 6
***DIAGNOSTIC MESSAGE 28

7 00 0044 424716 EXPL7 DATA 0'7424716' EXAMPLE 7

The first integer under the column labeled "CARD" gives 

the card count. This count is begun at the beginning of the 

assembly process and is incremented by one for each source 

statement (e.g.. Examples 1-8).

The number under the column labeled "GRP LOG" is a six 

digit octal number that gives the address that has been assigned
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to the binary code generated by the particular source 

statement.

The first two digits indicate the drum group in which 

the code will be located. The Athena drum has eight groups, 

therefore, this will be a number between zero and seven. The 

last four digits indicate location of the code within the 

drum group.

The code generated, if any, appears under the column 

labeled "MACHINE CODE" (e.g., Examples 1, 4, and 5). In cer­

tain cases, the source statement does not result in object 

code and thus only a value (e.g., Example 6) or a location, 

l000040l (e.g., Example 3) is indicated. All code generated 

is printed in octal form.

An exact copy of the source image appears under the 

heading "ASSEMBLER INSTRUCTION."

When an error is detected by the assembler, the 

message ***DIAGNOSTIC***ERROR MESSAGE (number) is printed 

above the erroneous assembler instruction and a number is 

printed indicating the error number. See Appendix B for the 

list of error messages.

Comment cards are printed out as card images.

In all further examples of output listing, the 

heading labels will be omitted.
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3.3.2 Basic Directives '

Directives are assembler instructions that do not have 

counterparts in the instruction repertoire of the computer. 

Instead, directives supply information to the assembler and/or 

invoke certain actions by it.

3.3.2.1 Data

The assembler instruction

LABEL DATA, W A

places the value associated with the symbol ‘A1 into an area 

of drum whose size is 'w* words. If a label is present, it 

is assigned the value of the location (or instruction) counter.
'I

The operand field may contain only one entry. If 'w* is 

omitted, a field size of one word is assumed. The value of

•w* must

1

not exceed
Examples 
000040

100.

000003 LB DATA,2 0'3474120*

000041 474120

2 000042 000040 DATA LB

3 000043 000000 DATA,3 31

000044 000000

000045 000037

***DIAGNOSTIC *** MESSAGE 30

4 000046 000000 DATA

In Line 1, above, the value in the operand field, 
0* 3474120*, is stored in two consecutive words starting at
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location 40o. The label “LB is assigned the value of 40o. o o
Note that the value of the octal constant, 0*3474120*, the 

decimal constant, 31, and the value of the symbol, LB, are 

all stored right justified within the field with leading zeroes. 

If the operand field is blank, as in Line 4 above, error 

message 30 is printed and zeroes are entered in the field.
i

3.3.2.2 RES

The directive 'RES* is used to reserve drum storage 

locations.

label RES n
i'RES* reserves a data field ’n* words long. If *n* 'l

is omitted a diagnostic is printed and one word is reserved 

for the symbol in the label field.

3.3.2.3 EQU

When the assembler encounters ’EQU* in the command 

field, the symbol in the label field is given the value of 

the expression in the operand field. Several examples are 

shown below.

1 000040 000000 A " RES 10

2 000040 DELTA EQU A

3 000041 A128 EQU A+l

4 000037 AAA EQU A-l
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3.3.2.4 LOG

’LOG1 sets the location counter to the value in the 

operand field as shown in examples below. The location counter 

is printed out in the second column of the output listing under 

the column heading of 'GRP LOG.1 It is the counter by which 

the assembler maintains a record of where information being 

generated will be stored at execution time.

1 00 0040 000012 A DATA 10

2 LOG 38

3 00 0046 000014 B DATA 0'14'

4 f

i
LOG 0'53*

5 00 0053 000040 'l c DATA A

The 'LOG' operand field may contain either an integer

number or an octal number inside an octal declaration.

The location counter is initially set to 40o by the o 
assembler unless a 'LOG' instruction is used to set another

value initially. The Athena will automatically start execu­

tion at location 40o. It is possible though to start execu- o
tion at another location by manual means.

3.3.2.5 END

The 'END' directive terminates an assembler program.

It establishes conditions for the assembly of a new assembler 

program where the listed symbols have a quite distinct value 

from any that they had in the preceeding assembler program.
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The following program will'illustrate this.

CARD GRD LOG MACHINE CODE ASSEMBLER INSTRUCTION

1 00 0040 000012 PHI DATA 10

2 000040 BETA EQU PHI

3 END

4 00 0041 001437 PHI । DATA 0'1437'

5 000041 BETA EQU PHI

6 END

BETA = 40o in Line 2. The ‘END1 directive then o
terminates the first program. In the second program BETA = 41o. 

i °

In the second program the symbols have different values which

are independent of their previous values.

3.3.2.6 DEF

If a symbol occurs in the operand field of a ’DEF* 

directive, the value of the symbol is made available to other 

programs that are assembled along with the program in which 

the 'DEF1 appears. In other programs if a symbol appears in 

the operand field of a statement but nowhere appears in the 

label field of a statement, the symbol is assumed to have been 

defined in a ’DEF* statement in another program. An example 

is shown on the following page.



21

1 00 0040 000012 AA DATA 10

2 00 0041 000014 BB DATA 12

3 00 0042 000017 CC DATA 15

4 DEF AA

5 DEF BB

6 END

7 00 0043 000147 ( BB DATA 0’147'

8 000040 ALPHA EQU AA

9 000043 BETA EQU BB

10 ***DIAGNOSTIC*♦MESSAGE 23

11 ♦♦♦DIAGNOSTIC*i ♦MESSAGE 8

12 J GAMMA EQU CC

13 END

AA is assigned a value of 40o in Line 0 1. AA is de-

fined as available to other programs by a 'DEF* statement in 

Line 4. In Line 8, the value of AA is assigned to ALPHA. 

The result is that ALPHA is given a value of 40o. o
BB is assigned a value of 41o in Line 2. BB is also Q

defined as available to other programs by a 'DEF* statement 

in Line 5. BB is then assigned a value of 43g in Line 7. 

When BETA is equated with BB in Line 9, BETA is set equal to 

43g which is the value assigned BB in the second program. 

This illustrates that the value assigned a symbol in the 

present program takes precedent over values for symbols made 
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available to other programs through ‘DEF1 statements.

CC is assigned a value of 42g in Line 3. The value 

of CC was not made available to other programs by a ‘DEF* 

statement in the first program. In the second program GAMMA 

is equated with CC in Line 10. Diagnostic messages result. 

CC has not been assigned a value in the present program, nor 

made available through a 'DEF* statement in the first program. 

CC has no value.

3.3.3 Symbols

A symbol may contain 1-15 characters. The following 

are legitimate characters; A-Z, 0-9. A symbol must have at 

least one non-numeric character. A blank is used to terminate 

fields and hence cannot be used as a symbol character.

The dollar sign 1$' is used to indicate the current 

value of the location counter. The following are examples.

1 00 0040 000001 THISISASYMBOL DATA g

***DIAGNOSTIC***MESSAGE 14
000007 THISSYMBOLISTOOLONG EQU 7

***DIAGNOSTIC** *MESSAGE 2
3 000001 1845 EQU 1

***DIAGNOSTIC***MESSAGE 2
4 000003 ABC%% EQU 3
5 000004 14A8 EQU 4
6' 000005 BFS4 EQU 4
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In the preceding examples, Lines 1, 5, and 6 have 

legal symbols appearing in their label fields. These three 

lines have symbols less than 15 characters long and consis­

ting of letters and digits only or letters only. Lines 2, 

3, and 4 have illegal symbols in their label field. Line 2 

has a symbol more than 15 characters long. Line 3 has a sym­

bol consisting of only digits, and Line 4 has an illegal 

character appearing in the symbol. A diagnostic error message 

appears above each erroneous line. Error message number 14 

declares the symbol in the label field to be too long. Error 

message number 2 declares the symbol to contain only digits 

or a symbol other than a letter or digit.

A symbol may be defined only once in a given program. 

A symbol is defined within a program by its appearance in the 

label field of an assembly language instruction or directive. 

In the case of all instructions and most directives (e.g., 

RES, DATA) the assembler assigns to the symbol the current 

value of the location counter. In an *EQU* statement, the 

symbol is assigned the value in the operand field.

3.3.4 Constants

The assembler language allows for the introduction of 

a wide variety of constants into the computer program. These 

values include character string constants, octal constants, 

decimal constants, and floating point constants.



24

3.3.4.1 Character String 'Constants

Character string constants are the octal representation 

for alphanumeric characters. See Appendix C for a list of 

alphanumeric characters and their octal representations.

A character string appearing inside a character 

string declaration will be converted to its octal representa­

tion and stored in the data field provided. To declare a 

string of characters to be a character string constant, the 

character string is enclosed in quote marks and preceded 

by a "C". After conversion of the characters to their octal rep­

resentation, the characters are stored left justified in the 

data field. Trailing blanks are provided to fill out the data 

field. The character string can include any character includ­

ing blanks (i.e., A-Z, 0-9,;, &, ,, ., :, /). A

single quote mark is represented by two quote marks inside the 

character string declaration. No more than 24 characters may 

appear in a character string declaration.

Since on the Athena flexowriter, a character is in­

completely specified unless case is given (i.e., "A" can be 

an upper case "A", or lower case "a"), provisions are made to 

specify the character case along with the character in the 

converted character string. Inserted before the octal rep­

resentation for the characters is another octal number identifying 

the case of the character. Inserted in front of upper case
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characters is the octal number 74O. Inserted in front of o
lower case characters is the octal number 72O. These two o
octal numbers are commands to the flexowriter latching it 

into a mode where only upper case characters are printed out 

thereafter if the command is 74g, and only lower case charac­

ters are printed out thereafter if the command is 72o. If o
only upper case characters appear in the character string

then only a single 74o upper case command has to be inserted Q
in front of all these characters to identify all of them as 

upper case characters and also insure that they will all be 

printed out in upper case on the flexowriter. If upper case 

and lower case characters appear interspersed in a character 

string, upper and lower case flexowriter commands (i.e., 74o Q
and 72O) are placed before each occurrence of a one or more o
upper or lower case characters. The following are examples

of character string constants.

1 000040

000041

746162

631414

Al DATA,2 C'ABC'

2 000042

000043

746140

631414

A2 DATA,2 C'A"C'

3 000044

000045

746114

621414

A3 DATA,2 C'A B*

4 000046

000047

746172

407462

A4 DATA,2 C'A-B'
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In the preceding 'examples of character string 

constants. Line 1 shows a typical character string conversion 

to its octal representation. The conversion is the characters 

’ABC’. The first two octal numbers (74O) of the generated o
machine code is a command to the flexowriter, placing it in 

the upper case mode. The octal representation for A, B, and 

C follow, where A = 61g, B = 62g, and C = 63g. Trailing blanks 

are used to fill out the rest of the second data word. The 

octal representation for a blank is 14o.
o

Two consecutive quotes represent a single quote in 

a character string. Line 2 illustrates a character string 
I 

containing two consecutive quotes.'1

Line 3 illustrates a character string containing 

a blank.

Line 4 illustrates a character string containing 

both upper case and lower case characters. The assembler 

places an upper case (74g) at the head of the string to insure 

that the flexowriter is in the upper mode when it types the 

'A' (octal representation 61o) which follows. The minus sign o
(-) following the A is a lower case character. The assembler 

inserts a lower case mode command (72O) in front of the octal o
representations for a minus sign (40o). The ’B’ following the Q
minus sign is an upper case character. The assembler inserts 

an upper case mode command (74o) for the flexowriter and then o
a 62g for the ’B’.
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3.3.4.2 Octal Constants

The assembler accepts octal constants. Octal 

constants which appear inside an octal constant format, are 

placed in the data field right justified. An octal con­

stant declaration consists of an octal number enclosed in 

quote marks and preceded by a "0".

Octal constant declarations may be preceded by a 

plus "+", or minus sign. An octal constant may not be 

more than twelve digits long. The following are examples of 

octal constants.

1 000040 000012 DATA 0,12'

2 000041 112345 DATA,2 0*11234567741

000042 677741

3 . 000043 000000 DATA,3 0' 1473450000"'

001473

450000

4 000044 777746 DATA -0'31*

3.3.4.3 Decimal Integer Constants

Decimal integer constants appearing in the operand 

field of a statement are converted to octal and stored right 

justified in the data field provided. A decimal integer con­

stant requires no declaration. A decimal integer constant 

may be preceded by a plus or minus sign. A decimal integer
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may not be more than six digits in size. The following are

examples of decimal integer constants.

1 00 0040 000012 DATA 10

2 00 0041 777765 DATA -10

3 00 0042 000000 DATA,2 4

00 0043 000004

3.3.4.4 Floating-Point Numbers

The Athena computer has no hardware facilities to 

perform floating-point arithmetic. However, software programs 

may be used to perform floating-point arithmetic. The assem­

bler converts real numbers to a special floating-point format 

for doing software floating-point arithmetic.

To declare a real number to be a floating-point 

number, a floating-point declaration is used. The floating­

point declaration consists of enclosing the real number in 

quote marks and preceding it by a "F". The real number inside 

the quote marks may consist of no more than six digits and a 

mandatory decimal point or no more than six digits and a man­

datory decimal point followed by an "E", followed by an op­

tional plus "+" or sign, followed by a two digit integer 

not greater than 38.

Real numbers are converted to floating-point numbers 

and stored in two consecutive drum words. The first word 
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contains the fraction in fractional form (decimal point to 

left of the leftmost bit) and the second word contains the 

exponent in integer form (decimal point to right of rightmost 

bit). If the real number is positive the leftmost bit of the 

fraction will be zero; if negative, the leftmost bit is one. 

The fraction is normalized so that the second bit from the 

left is one if the real number is positive; zero if the real 

number is negative. The exponent is stored right justified 

in integer form in the second word. A positive exponent will 

be stored as a positive integer; a negative exponent as a 

negative integer.

The value of a positive floating-point number (N) 

is determined as follows.

N = F X 2EXP

Example

1 00 0040 200000 AA DATA,2 F'4.0’

00 0041 000004

N = 2/8 x 24 = 1/4 x 16 = 4

To convert negative floating-point numbers, the 

fraction must be complemented first.

The 'Normal1 or 'True Zero' has a fraction of zero 

and an exponent of zero.
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3.3.5 Expressions •

In assembler language, a value may be indicated via 

a simple arithmetic expression. The assembler will handle 

simple arithmetic expressions in the operand field of the 

form.

symbol t decimal integer

octal constant ± decimal integer

decimal integer ± decimal integer

dollar sign ($) i decimal integer

± decimal integer

± octal’ constant
I

The following are some examples of expressions

1 00 0040 -* 777774 AA DATA 4-7

2 00 0042 000003 DATA 0'12'-7

3 000010 BB EQU 6+2

4 000013 CC EQU BB+3

5 000014 DD EQU 0'17'-3

6 000044 EE EQU $+1

7 00 0043 000041 DATA AA+1

3.3.6 Literals

A literal is a constant preceded by an equal sign (=) 

or enclosed in a literal declaration (L 'constant*). The 

constant may be one of four types, a character string constant 
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octal constant, integer constant, or a floating-point constant. 

The value of the constant is enclosed in single quotes, with a 

prefix designating the type of constant. When a literal appears 

in an assembler statement, the assembler stores the binary value 

of the constant in a drum location following the rest of the 

program. The address where the constant is stored is the value 

used in assembling the instruction in which the literal was 

encountered. When the assembler completes printing the assembled 

source program, the last items to be printed will always be the 

value of the literals and their addresses. The following are

examples of literals.

1 00 0040 060044 'iLA = 10

2 00 0041 060045 LA L,0,744,,

3 00 0042 060046 LA = F'4.0’

4 00 0043 060050 LA = C’AB'

00 0044 000012

00 0045 000744

00 0046 200000

00 0047 000004

00 0050 746162

3.4 Addressing

Having surveyed the large variety of information types 

that can be effectively handled by the assembler, we will 

now turn our attention to the methods which the programmer 
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may use to reference information that is stored in the core 

memory and on the drum of the Athena. For the most part, 

these methods are direct reflections of hardware facilities 

(e.g., the accumulator and index register) but certain ones 

are simply notational convention provided by the assembler 

(e.g., arithmetic expressions that must be evaluated to ob­

tain an address component).

3.4.1 Immediate Addressing

The value of interest is explicitly mentioned as part

of the instruction and thus no address is used. Consider the

following example.
1

1 00 0040 140017
1

A CA 15

2 00 0041 140044 TkA CA 0'44*

CA loads the rightmost 12 bits of the instruction word

into the X register at bit positions xj2-23' c-*-ears accumu­

lator and adds the quantity in the X register to the accumulator.

Decimal 15 and 0’44’ is used, because it is in the appropriate

part of the instruction at the time of execution.

3.4.2 Direct Addressing

The desired address is given in the reference address

field of the instruction.

1 00 0040 060157 LA 0'157'

- 2 00 0041 060100 LA 64
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The first ’Load Acaumulator’ loads the contents of core 

location 0'157’ into the accumulator. 0*157’ is a direct 

address. The second address is another example of a direct 

address using a decimal number (i.e., 64).

3.4.3 Relative Addressing

In relative addressing the desired address is expressed 

symbolically.

1 00 0040 001773 ALPHA DATA 0'1773'

2 00 0041 000144 DATA 0'144'

3 00 0042 060040 LA ALPHA

4 00 0043 060041 LA ALPHA + 1

In Line 3 above, the instruction 'Loads the Accumulator'

with the contents of location ALPHA, ALPHA is the symbolic

name given to location 40o. In Line 4 the source of the o
'Load Accumulative is one word after the address ALPHA.

3.4.4 Indirect Addressing

In indirect addressing, the desired address is at a 

remote location and the reference address field is used to 

point to that location. The Athena does not have hardware 

to perform indirect addressing. A short softward program is 

given below which will perform indirect addressing off the 

drum.



34

RW ALPHA

CX 0

AC 0'76'

W BETA

BETA RES 1

The program below does an indirect address off core

memory.

LA ALPHA

CX 0

AC 0'06*

SA BETA {
1,

BETA RES 1

The first program does an indirect address off the

drum. The address of the desired quantity is stored in lo

cation ALPHA. Line 1 places the content of ALPHA in the 

accumulator. Line 2 is an instruction (i.e., the CX instruc­

tion) which clears and loads the lower 12 bits of the exchange 

register with the value in the operand field. Line 2 places 

zeroes in the lower 12 bits of the exchange register. The 

instruction in Line 3 (i.e., the AC instruction) loads the 

upper 12 bits of the exchange register with the value in its 

operand field and then adds all 24 bits of the exchange 

register to all 24 bits of the accumulator. Line 3 adds the 
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opcode for a 'Read Word* instruction onto the front of 

address obtained from ALPHA. The accumulator now contains 

a machine code to do a lRead Word* the contents of the 

address contained in ALPHA. Line 4 stores the machine code 

into location BETA. This machine code will be executed next. 

ALPHA and BETA are assumed to be drum address and ALPHA is 

assumed to contain a drum address.

The second program does an indirect address off core 

memory on the Athena. The description of the process is 

similar to the indirect address off the drum. ALPHA and BETA 

are assumed to be core address and the content of ALPHA is 

a core address.

3.4.5 Indexing

In indexing the contents of the index register is added 

to the contents of the address field and the resulting address 

is used to obtain the operand of the instruction. The follow-

ing is an example of indexing.

1 00 0040 000000 AA DATA,3 16
00 0041 000000

00 0042 000020
2 00 0043 520003 LIRI 2
3 . 00 0044 024001 INDEX
4 00 0045 760040 RW AA
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Line 2 does a ’Load' Index Register Immediate* with two.

Line 3 causes the contents of the index register to be added to 

the address field of the following instruction. When Line 4, a 

’Read Word* instruction, is executed, its address field has been 

modified to a value of 40g + 2g = 42g. The contents of location 

42O on the drum is read into the accumulator, o
The thirteen bits of the index register allow every 

address on the drum or core memory to be accessed by indexing. 

The indexing instructions will be discussed in detail in a later 

section of this chapter.

3.5 Movement of Information j
'i

In this section the instruction repertoire of the Athena 

will be discussed. The instructions discussed will be limited 

to those that are concerned primarily with movement of informa­

tion within the confines of the CPU, drum, and core memory.. In 

subsequent sections, the remainder of the instruction repertoire 

will be considered.

The most general form of each instruction is assembled 

along with a comment that gives the operation code and a de­

scription of the instruction function.

3.5.1 Clear and Load the Exchange (X) Register Immediate 
CX ‘ V

Example

■ 00 0040 120014 CX 12
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CX, opcode 12o, clears the exchange register and places o
the rightmost 12 bits of the instruction word in the exchange

(X) register at bit positions ^qq-h* an integer or
12 octal constant, not more than 2 -1 m size. This is an im­

mediate instruction.

3.5.2 Clear and Load the Accumulator Via the Exchange Register

Immediate

CA Value

Example

1 00 0040 140017 CA 15

’CA’, opcode 14, transmits the rightmost 12 bits of the 

instruction word to the exchange (X) register at bit positions 

x12-23' ciears the accumulator and adds the quantity in X to 
the accumulator. ’Value* is an integer or octal constant not 

12greater than 2 -1 in size. This is an immediate instruction.

The use of a *CX* instruction preceding a ’CA* instruc-

tion will result in a complete 24 bit number being loaded into

the accumulator. Example:

00 0040 120777 CX ,777'

00 0041 140777 CA '777*

Executions of the two instructions above will cause 

the number 777777O to be loaded into the accumulator.
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3.5.3 Load Accumulator •

LA Core Address

or TP Core Address

Example

1 000104 AA EQU 70

2 00 0040 060104 LA Ms.

3 00 0041 060104 TP AA

A 'Load Accumulator', opcode 060 or TP, opcode 060, 

clears the accumulator and adds the content of the magnetic 

core storage address to the accumulator. Note that an 'EQU' 

statement was used in Line 1 to specify the location 70 

(104g) for the core address intended when the symbol AA is 

used.

3.5.4 Load Complement Accumulator

LCA Core Address

or TN Core Address

Example

1 000103 AA EQU 67

2 00 0040 062103 LCA AA

3 00 0041 062103 TN AA

A 'Load Complement Accumulator*, opcode 062 or TN, op-

code 062, clears the accumulator and subtracts the content of 

the magnetic core storage address from the accumulator.
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3.5.5 Store Accumulator «

SA Core Address

Example

1 000103 AA EQU 67

2 00 0040 004103 SA AA

Store Accumulator, opcode 004, stores the contents of 

the accumulator in core storage.

3.5.6 Read Word

RW Drum Address

Example

1 00 0040 777776 CC DATA -1

2 00 0041 760040 RW CC

'Read Word1, opcode 76, clears the accumulator and 

loads ah 18 bit word from the drum into the lower 18 bits of 

the accumulator. If the leftmost bit of the drum word is one, 

the upper six bits of the 24 bit accumulator are set to one 

to provide sign extension. The content of the accumulator 

after execution of the preceding example would be; 77777776O.
o

3.5.7 Read Upper

RU Drum Address

Example

1 00 0040 112233

2 00 0041 700040

AA DATA 0'112233

RU AA
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'Read Upper', opcode 70, transmits twelve bits of drum 

word to the upper twelve bits of the accumulator. If the con­

tent of the drum word is 112233o and the content of the ac- o 
cumulator is 44556677O. After execution of a 'Read Upper' o 
instruction the content of the accumulator is 33116677O. Note o
that the lower six bits of the drum word (33O) were transmitted o
to the upper six bits of the accumulator. The upper six bits

of the drum word (llo) were transmitted to the next six bits of o
the accumulator. The lower twelve bits of the accumulator were 

unchanged.

3.5.8 Read Lower ;
'l

RL Drum Address

Example

1 00 0040 112233 AA DATA 0'112233*

2 00 0041 660040 RL AA

'Read Lower', opcode 66, transmits the lower twelve

bits of a drum word to the lower twelve bits of the accumulator.

If the content of the drum word is 112233O and the content of. o
the accumulator is 44556677O, after execution of a 'Read Lower' o
the content of the accumulator is 44552233O. o

3.5.9 Write Word

w

Example

Drum Address

1 00 0040 000000 AA RES 1
2 00 0041 620040 vra AA
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'Write Word', opcode 62, stores the lower eighteen bits 

of the accumulator into a drum location. If the content of the 

accumulator is 11223344-, and a 'Write Word' is executed, the o 
content of the drum location where the information was stored 

would be 223344-. Q

3.5.10 Write Upper i

wu
Example

Drum Address

1 00 0040 000000 AA RES 1

2 00 0041 640040 WU AA

'Write Upper', opcode 64, stores the upper twelve bits 
I

of the accumulator into a drum location. If the content of the

accumulator is 11223344g, and a 'Write Upper' instruction is 

executed, the content of the drum location where the informa­

tion is stored would be 117722g. Note that the upper six bits 

of the accumulator (11g) are stored in the upper six bits of 

the drum word and the next six bits of the accumulator (22O) o
are stored in the lower six bits of the drum word. The middle 

six bits of the drum word are set to all one.

3.5.11 Write Lower

WL

Example

Drum Address

1 00 0040 000000 AA RES 1

2 00 0041 600040 V7L AA



42

’Write Lower1, opcode 60, stores the lower twelve bits 

of the accumulator into a drum location. If the content of 

the accumulator is 11223344-, and a ’Write Lower’ instruction o
is executed, the content of the drum location where the infor­

mation is stored is 443377-. Note that the lower six bits of o
the accumulator (44o) were stored in the upper six bits of the o
drum word, and the next most significant six bits of the accumu­

lator (33O) were stored in the middle six bits of the drum o
location. The lower six bits of the drum word were set to all 

ones.

3.5.12 Load Index Register j

LIR Core Address

or LV Core Address

Example

1 00 0040 026050 LIR 40

2 00 0041 026050 LV 40

’Load Index Register’, opcode 026, or ’LV’, opcode 026, 

loads the lower thirteen bits of the contents of the core 

address into the index register. The index register will a
13accept a number no larger than 2-1.

3-5.13 Load Index Register Immediate

LIRI Value

Example

. 1 00 0040 520050 LIRI 40
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'Load Index Register Immediate*, opcode 52, loads the 

value given in the operand field of this instruction, into the 

index register. Execution of the *LIRI* instruction in the 

example above, with the value 40 in the argument field, would 

result in the value 40 being placed in the index register. The 

value in the operand field of a 'LIRI* instruction cannot be 
greater than 2^^-l.

3.5.14 Load Index Register from the Exchange (X) Register 

LIRX 

Example

1 00 0040 000100 1 AA DATA 64

2 00 0041 760040 RW AA

3 00 0042 426000 LIRX

'Load Index Register from the Exchange Register', 

LIRX (426), causes the lower thirteen bits of the exchange 

(X) register to be loaded into the index register. This in­

struction is useful since several instructions (such as the 

'Read Word* instruction) cause information to pass through 

the exchange register where it is retained until the next 

instruction is executed. The preceding example illustrates 

the use of the 'LIRX* instruction. In studying the example 

it is seen that Line 1 store 100o in locations 40o on the o o
drum. The 'Read Word* instruction in Line 2 loads the con­

tent of location 40g into the accumulator. In the process.
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it also stores the content of location 40o into the exchange o
register where it is retained until execution of the next 

instruction. The 1LIRX' instruction now loads the content 

of the exchange register into the index register. The net 

result of this sequence of executions is that the content of 

a drum location (location 40o) is loaded into the index o 
register.

3.5.15 Store Index Register

SIR Core Address 

Example

1 000055 AA EQU 45

2 00 0040 404055 SIR AA

'Store Index Register*, opcode 404, stores the content

of the index register into the core address specified by the 

operand field (i.e., location 45 in above example).

3.5.16 Index

INDEX

or TD 1

Example

1 00 0040 000000 BB DATA, 2 20

000024

2 • 00 0042 520001 LIRI 1

3 00 0043 024001 INDEX
4 00 0044 760040 RW BB
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’Index1, opcode 024001, or a ’TD’ instruction, opcode 

024, with a 1 in the operand field, adds the content of the 

index register to the address field of the instruction that 

follows. Then upon execution of the instruction following 

the ’Index’ instruction, the modified address field is used 

in the execution.

In the preceding example, the ’LIRI' instruction in 

Line 2 places a one in the index register. The ’INDEX’ in­

struction in Line 3 causes the content of the index register 

to be added to the address field of the following instruction 

(i.e., 40o + lo = 41o). The machine code instruction of Line 4 o o o
has now been modified to the value,760041o. Execution of 1 o
Line 4 now causes the content of drum location 41o to be loaded o
into the accumulator. The original ’Read Word* instruction of 

statement four is not modified by the indexing instruction 

(i.e., the content of location 44g has not changed).

The ’INDEX’ instruction can be used with every instruc­

tion in the Athena repertoire.

Use of the ’TD* instruction with a one in the operand 

field will accomplish the same result as the single ’INDEX* 

instruction.

3.5.17 Increment the Index Register

INC

or TD 2
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Example '

1 00 0040 520005 A LIRI 5

2 00 0041 024002 A INC

’Increment1 the index register, INC (024002) or a ’TD* 

instruction with a l2’ in the operand field will cause one to 

be added to the content of the index register. In the example, 

the ’Load Index Register ImmediateV instruction of Line 1 

causes five to be loaded into the index register. The content 

of the index register after execution of the ’Increment’ (INC) 

instruction of Line 2 is now six.

3.5.18 Index and Increment the Index Register

INDEX I

or TD 3

Example

1 00 0040 000000 A CC DATA, 3 0'1234567'

00 0041 000001 A

00 0043 234567 A

2 00 0044 520000 A LIRI 1

3 00 0045 024003 A INDEXl

4 00 0046 760040 RW CC

’Index and Increment’ the index register, INDEXl (024003) 

or the 'TD* instruction, opcode 024, with a ’3’ in the operand 

field, adds the content of the index register to the instruction 

that follows, and then adds one to the content of the index 
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register. In the example hbove, the 'Load Index Register 

Immediate' instruction of Line 2, loads one into the index 

register. The 'Index and Increment* instruction that follows 

adds the content of the index register to the address field 

of the ‘Read Word* (RW) instruction of Line 4, and then adds 

one to the content of the index register (i.e., 1 + 1 = 2). 

Execution of the modified ’Read Word' instruction (760041) 

causes the content of location CC + 1 (i.e., location 41o) o 
to be loaded into the accumulator. The original 'Read Word* 

instruction of Line 4 is not modified by the indexing instruc­

tion (i.e., the contents of location 46O is unchanged). ' Q
I 
'l

3.5.19 Exercising the Instructions

The following short program moves ten words of in-

formation from one table to another table on the drum.
1 LOC 0*300*
2 00 0300 000000 FROM RES 10
3 00 0312 000000 TO RES 10
4 000050 TEMP EQU 40
5 000012 NUMB 2 EQU 10
6 00 0324 520000 LIRI 0
7 00 0325 024001 START INDEX
8 00 0326 760300 • RW FROM .
9 00 0327 024003 INDEXI

10 00 0330 020312 WW TO
11 00 0331 626050 SIR TEMP
12 00 0332 120012 CX NUMB 2
13 00 0333 140000 CA 0
14 00 0334 066050 SB TEMP
15 00 0335 240325 BNEZ START
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3.6 Arithmetic Operations'

The instruction repertoire of the Athena includes commands 

for carrying out the basic arithmetic operation on data fields. 

These operations along with the related ‘shift* instructions 

are the subject of this chapter.

3.6.1 Add to the Accumulator Immediately Via the Exchange

Register

AC V

Example

00 0040 150010 AC 8

AC (15) transmits the rightmost 12 bits of the instruc­

tion word to the exchange (X) register at bit positions xi2-23* 

The contents of the exchange register is then added to the 

contents of the accumulator. V is an integer or octal constant,
12not greater than 2 -1 m size. This is an immediate instruction.

The use of a ’CX* instruction preceding an ‘AC* instruc­

tion will result in a complete 24 bit number being added to the 

content of the accumulator.

Example:

00 0040 127777 CX ‘ 0'7777'

00 0041 157777 AC 0'7777'

Execution of the two instructions above will cause the 

number77777777Oto be added to the content of the accumulator.
o-
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3.6.2 Add and Subtract •

AD Core Address

SB Core Address

Example

1 000051 AA EQU 41

2 00 0040 064051 AD AA

3 00 0041 066051 SB AA

'Add1, AD (064), adds the contents of the accumulator 

to the quantity in core storage and places the result in the 

accumulator. A check is made for overflow.

’Subtract*, SB (066), subtracts from the contents of 

the accumulator the quantity in core storage and places the 

results in the accumulator. A check is made for overflow.

3.6.3 Multiply and Divide

MP

DV

Example

Core

Core

Address

Address

1 00 0040 000005 AA DATA 5

2 00 0041 000006 BB DATA 6
3 000016 cc EQU 14
4 00 0042 760040 RW AA
5 00 0043 004016 SA CC
6 00 0044 760041 RW BB
7 00 0045 110016 MP CC
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8 00 0046 104027 LS 23

9 *

10 00 0047 760041 RW BB

11 00 0050 106027 RS 23

12 00 0051 112016 DV CC

13 00 0052 104027 LS 23

14 00 0053
l

114000 OC

'Multiply1t opcode 110, multiplies the content of the 

accumulator by the quantity in core.storage and places the 

result in the accumulator and quotient (AQ) register.

'Divide', opcode 112, divides the content of the AQ
I 

register by the quantity in core storage and places the quo­

tient in the Q register and the absolute value of the remain­

der in the accumulator.

In the example, the content of the drum location AA is 

stored in core storage at location CC. The content of drum 

location BB is loaded into the accumulator and then multiplied 

by the content of core location CC. The result of the multi­

plication (5x6= 30) is right justified in the AQ register 

(this being integer arithmetic). In Line 8, a 'Left 

Shift', LS instruction is executed to left shift the final 

result into the accumulator for disposition.

Also shown in the example is the use of the division 

code. In Line 10, the content of BB is placed in the accumulator. 
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The content of the accumulator is the shifted over into the 

quotient register. The content of the AQ register is then 

divided by the content of core location CC. The result 

(6/5 = 1) is in the quotient register. A 'Left Shift* instruc­

tion is executed to left shift the result into the accumulator 

for disposition.

I3.6.4 Right Shift

RS k

Example

1 00 0040 106014 RS 12

The ‘Right Shift* instruction, RS (106), shifts the 
I

contents of the accumulator and quotient register to the right 
by ‘k* bits (0 - k i 31). The contents of the accumulator is 

shifted over into the quotient register. The algebraic sign is 

retained (ones shifted in from the left if negative, zeroes 

shifted in from the left if negative).

3.6.5 Right Shift Logical 

RSL k 

Example 

00 0040 506022 RSL 18

‘Right Shift Logical*, opcode 506, shifts the contents 

of the accumulator and quotient register to the right by ’k’ 

bits (0 - k - 31) . The- compliment of. the algebraic sign is 

retained (zeros shifted in from the left if negative, ones if 

positive).
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3.6.6 Left Shift

LS k

Example

1 00 0040 104014 A LS 12

The ’Left Shift’ instruction, LS (104), shifts the 

contents of the accumulator and quotient registers to the left 

•k* bits (0 k 1 31). A check is made for a shift overflow 

during the ’Left Shift* operation. A shift overflow occurs 

when the sign of a number is changed at any time during the 

left shift operation. When a shift overflow is detected, the 

system will stop execution unless the next instruction is an 

'Overflow Jump’, (OJ), or an 'Overflow Condition', (OC). 

Execution of either of these instructions will clear the 

overflow fault. If no overflow is detected, execution will 

continue uninterrupted.

3.6.7 Transfer the Quotient Register

TQ k 

Example

1 00 040 102027 A TQ 23

'Transfer Quotient’ register", TQ (102) , left shifts 

the content of the accumulator and quotient register 'k* places 

(0 1 k - 31). After shifting the algebraic sign is placed from

A24 to * A23*
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3.6.8 Overflow •

Overflow is a condition in which a number is too large 

in magnitude to be expressed in a register. Three types of 

overflow conditions are detected by the Athena computer. They 

are addition overflow, subtraction overflow, and shifting 

overflow.

Addition overflow exists when two numbers are added 

whose sum is two large in magnitude to be expressed in the 

register that receives the sum. In order for overflow to be 

possible during addition, the signs of the two original numbers 

must be the same. If the signs are the same and the sum of 

the two numbers is different in sign, then overflow has occurred.

Subtraction overflow is possible when the signs of the 

two numbers are opposite. If the signs are different, the 

sign of the final difference should be the same sign as the 

minuend; that is subtracting a negative number from a positive 

number, the result should be positive.

Shifting overflow occurs when the sign of a number is 

changed at any time during the left shift operation.

The Athena provides two instructions for handling over­

flow conditions during arithmetic operations. These are the 

'Overflow Jump1 instruction and the 'Overflow Condition' 

instruction.’
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3.6.8.1 Overflow Jump .

OJ Drum Address

Example

1 00 0040 064032 AD '32'

2 00 0041 26XXXX OJ ERROR ROUTINE

'Overflow Jump*, OJ (26), on detection of an overflow

error in the preceding instruction, causes the computer to clear 

the overflow flip-flop and transfers control to the address 

given in the operand field. Execution continues from that 

point. If an overflow condition was not detected in the pre­

ceding instruction, no action is taken and execution is con­

tinued with the next instruction in line.

3.6.8.2 Overflow Condition

OC (no argument)

Example

1 00 0040 066014 SB 12

2 00 0041 114000 OC

If an overflow has occurred since the last 'Overflow 

Condition', 'Overflow Jump' or 'Wait Computation1 the 'Overflow 

Condition', (114), instruction will clear the overflow condi­

tion flip-flop and lights the 'COMP FAULT' light on the console. 

Program execution then continues with the next instruction in 

line. If no overflow has occurred, no action is taken and' 

execution continues with the next instruction in line.
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3.6.9 Floating-Point Arithmetic

The Athena computer has no hardware facilities for 

floating-point arithmetic. Several macro type programs which 

perform floating-point add, subtract, multiply, and divide 

are presented in Section 3.8.1.5 where macro type programs 

are discussed. These programs are stored permanently in the 

assembler.

3.6.9.1 Shifting Floating-Point Numbers

There are rules for shifting the fractional part of 

a floating-point number right or left without disturbing its 

value. For each right shift of the fractional part of the 

floating-point number, add one to the value of the exponent. 

For each left shift of the fractional part subtract one from 

the exponent.

3.7 Selective Sequencing

The ability to move items of information and perform 

arithmetic operations is fundamental to the utility of a 

digital computer; but it is the ability to selectively and 

repeatedly execute instructions that gives a digital computer 

its real power. The material in this section is concerned 

with the facilities of the Athena computer that enable a user 

to pose questions about items of information and conditionally 

(or unconditionally) alter the flow of his program.



3.7.1 Unconditional Branch (Jump)

B Drum Address

UJ Drum Address

Example

1 00 0040 200042 B LOAD

2 00 0041 200042 UJ LOAD

3 00 0042 060062 LOAD LA 50

1 Branch *, opcodei 20, or 'Unconditional Jump*, opcode

20, cause the program to branch to the drum address given in 

the argument field. Program execution continues from that 

point.

Jump*, opcode 22, branchsif the content of the accumulator

3.7.2 Branch If Less Than (Zero) or Sign Jump

BLZ Drum Address

BL Drum Address

SJ Drum Address

Example

1 00 0040 777773 AA DATA -4

2 00 0041 760040 RW AA

3 00 0042 220043 BLZ BB

4 00 0043 • BB EQU $

'Branch if Less than (Zero)', opcode 22, or ' Sign

is negative.
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3.7.3 Branch If Not Equal (Zero) or Zero Jump

BNEZ Drum Address

or BNE Drum Address

or ZJ Drum Address

’Branch If Not Equal (Zero)1, or ’Zero Jump1, opcode 24, 

causes the program, to branch if the content of the accumulator 

is non-zero.

3.7.4 Branch If Greater Than Zero

Execution of the three instructions below will cause the 

program to branch if the content of the accumulator is greater 

than zero.

BLZ CONTINUE

BNEZ Drum Address

CONTINUE EQU $

3.7.5 Branch If Greater Than or Equal to Zero

The following instructions will perform a branch if the 

content of the accumulator is greater than or equal to zero.

BLZ CONTINUE

B Drum Address

CONTINUE EQU $

3.7.6 Branch If Less Than or Equal to Zero

The following instructions will perform a branch if the 

content of the accumulator is less than or equal to zero.
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BLZ drum Address

BNEZ CONTINUE

B Drum Address

CONTINUE EQU $

3.7.7 Branch If Equal to Zero

The following instructions will perform a branch if the 

content of the accumulator is zero.

BNEZ CONTINUE

B Drum Address

CONTINUE EQU $

3.7.8 Branch (Jump) If Index Register is Equal to Zero

BIZ Drum Address

or JIZ Drum Address

Example

1 00 0040 5217774 LIRI -2

2 00 0041 300044 NEXT BIZ CONTINUE

3 00 0042 024002 INC

4 00 0043 200041 B NEXT

5 000044 CONTINUE EQU $

’Branch If Index register Zero, opcode 30, or 1 Jump

If Index register Zero1, opcode 30, cause a branch if the con­

tent of the index register is zero. This instruction allows 

the index register to be used as a loop counter. A simple 

example is presented above. The example will also illustrate 
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a problem to be encountered using the index register as a loop 

counter. In the example, the index register is loaded with a 

minus two (-2) first. Then the 'BIZ* instruction checks to see 

if the index register contains a zero, which it doesn't. Then 

the 'INC', increments the index register by one. The index 

register now contains a minus one. A branch instruction then 

branchs the program back up to NEXT. Executions will continue 

in this loop until the index register is zero, at which time 

the 'BIZ1 instruction will cause a branch to CONTINUE. The 

program will make "three" passes through the loop before leav­

ing it; not two. The reason is that index register passes 

through negative zero as it is incremented to zero. This is 

an extra count. Negative zero is a binary number consisting 

of all ones. In the example the index register went through 

the sequence -2, -1, -0, 0.

3.8 Subroutines

The creation of subroutines extends the instruction 

repertoire of a computer by providing new functions which can. 

be invoked in much the same manner as an individual instruc­

tion. The creation and use of subroutines is normally 

accomplished by packaging appropriate sets of instructions in 

a standard manner and employing certain facilities provided 

by the assembler for this purpose.

There are several motives for using subroutines. The f
use of subroutines can result in a saving of space, e.g., a set 
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of instructions may be used many times throughout a program 

but occupy only a single set of drum locations.

The use of subroutines can result in a saving of both 

programming and assembly time since a set of instructions can 

be packaged for extended use. Of perhaps primary importance 

is the possibility of extending the usefulness of the individual 

programmer, e.g., the limits imposed by the availability of 

personal time and knowledge are extended through the use of 

prepackaged sets of instructions that may be executed through 

adherence to a standard set of conventions.

3.8.1 Open Subroutines j

In an open subroutine the instructions that make up the 

open subroutine are always placed in line at each place where 

their execution may be desired.

Special techniques are not used to pass control or in­

formation to (or from) an open subroutine. Proper placement 

establishes all communcation.

Open subroutines are usually short-longer sequences of 

instructions are normally packaged as closed subroutines in 

order to conserve space.

3.8.1.1 Macro Instructions

The macro facility of the assembler allows a programmer 

to give a name•to a sequence of instructions that make up an 

open subroutine. Later, he may ask for the insertion of the • 
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named instructions at any'point in his program that he wishes.

The programmer may also direct that certain parameter sub­

stitutions be made at the point of insertion.

3.8.1.2 Macro Definitions

The coding sequence that defines a macro is delimited 

by the directives 'MACRO* and 'END*. The macro name appears 

in the label field of the ’MACRO* directive. The operand 

field may contain dummy variables. When the macro call is 

processed, call arguments are substituted for dummy variables 

wherever they appear in the macro. An example of a macro 

definition is shown as follows.

SUM MACRO LABEL ,ARG 1, ARG2 , ARG 3

*THIS MACRO SUMS ARG1 AND ARG2, RESULT IN ARG3

LABEL RW ARG1

SA 100

RW ARG2

AD 100

WW ARG3

END

In the example SUM is the name of the macro, and 

appears as such in the label field of the MACRO directive. 

This simple macro sums two numbers, ARG1, and ARG2, then stores 

the result in ARG3. A location on the core memory (location 
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100) is used to hold intermediate results. LABEL, ARG1, ARG2, 

and ARG3 are dummy arguments. The first dummy argument is 

always used for label substitution. The other dummy arguments 

may occur anywhere in the macro. This includes the label 

field, command field or operand field. The END directive in­

dicates the end of the macro definition.

Comment cards are permitted in macro definition and 

are stored with the macro definition. The END directive when 

used on a MACRO definition only serves to indicate the finish 

of the MACRO definition.

The definition of a particular macro must precede 

any reference to it.

3.8.1.3 Using the Macro

To call for the use of a macro, its name is placed in 

the command field of a statement just as if it were an opera­

tion code. If a label is attached, it is placed in the approp­

riate place by the assembler. Arguments in the operand field 

are substituted also. The number of arguments in the operand 

field of the macro call and the macro definition must be equal. 

An example of a call on the macro defined previously would 

cause the following code to be substituted in line.
ALPHA SUM X,Y,Z
*THIS MACRO SUMS ARG1 AND ARG2,RESULT IN ARG3
ALPHA RW X

SA 100
RVJ Y
AD 100
WW Z
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3.8.1.4 Substitution of Arguments

When the macro is used, the arguments of the macro 

call are substituted for the dummy arguments in the macro 

definition. The preceding example of a macro call indicates 

how the argument substitutions are made. The label ALPHA is 

substituted for the first dummy argument in the macro defini­

tion. X is substituted for ARG1, Y for ARG2 and Z for ARG3. 

There is no restriction on where dummy arguments are used in an 

instruction. Dummy arguments may appear in the label field, 

command field, or argument field. A dummy argument may appear 

more than once in the body of the macro. No more than one 

dummy argument may appear in the label, command, or argument 

field. ' Dummy arguments and call arguments may consist of any 

character other than a comma or blank. The number of call 

arguments has to equal the number of dummy arguments, exclud­

ing the label. A label is not required in the macro call. 

The following are examples of macro definitions and macro 

calls.

TEST MACRO LABEL, ARG1, ARG2, BRANCH, ADDRESS 

LABEL LA ARG1

SB ARG2

BRANCH ADDRESS 

END 

A macro call is made on the preceding macro definition. The 

code generated is:
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TEST

LA

ALPHA, BETA, BLZ,

ALPHA

LESS THAN

SB BETA

BLZ LESS THAN

A second example.

SQUARE-INDEX-REG MACRO LABEL

LABEL

AA

SIR .

LA

MP

LS

OC i
1

SA

LIR

END

SQUARE-INDEX-REG

100

100

100

23

100

100

AA SIR 100

LA. 100

MP 100

LS 23

OC

LIR 100

3.8.1.5 Macro Programs for Floating-Point Arithmetic

The Athena computer has no hardware facilities for 

floating-point arithmetic. Several macros for performing 
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floating-point arithmetic are discussed in this section. 

These macros are an integral part of the assembler. 

The discussion that follows will describe how to call these 

macros. The macro definitions, as they are stored in the 

assembler, are given in Appendix D. As is evidenced by the 

length of the floating-point arithmetic macros in Appendix D, 

floating-point arithmetic requires much more storage (not 

only for the data but for the instructions themselves) and 

execution time than integer arithmetic.

3.8.1.5.1 Floating Add and Subtract Macro Program

The call on this macro is;

label FA Ll,L2,L3,L4,L5,L6,L7,A1,A2,B1,B2,C1,C2 

The floating add macro takes two floating-point 

numbers A and B, adds them together and stores the result in 

C. All locations are core addresses. The first number A is 

stored in core location Al and A2. B is stored in core loca­

tions Bl and B2. The result is stored in core locations Cl 

and C2. Al, Bl, and Cl are assumed to be the locations of 

the fractional part of the floating-point numbers. A2, B2 

and C2 are assumed to be the locations of the exponent of the 

floating-point numbers. The calling arguments Ll, L2, L3, L4, 

L5, L6, and L7 are labels used internally by the macro. With 

each call on the floating add macro, new symbols have to be 

provided for Ll, L2, L3, L4, L5, L6, and L7. No storage 

locations have to be provided for Ll - L7.



65

Three core locations have 'to be provided for the macro to

store intermediate results. These temporaries are TEMPI,

TEMP 2 and TEMP3. Two> typical call on the floating-point add

macro are as follows.

TEMPI EQU 200

TEMP 2 EQU 210

TEMP 3 EQU
1

220 i

AA EQU 100

BB EQU 102

CC EQU 104

XX EQU 10
1

YY EQU 20 i

ZZ EQU 30

FA Pl,P2,P3fP4,P5,P6,P7,AA,AA4-l,BB,BB+l,CC,CC+l 

FA R1,R2,R3,R4,R5,R6,R7,XX,XX+1,YY,YY+1,ZZ,ZZ+1 

In the above example, the first three statements 

designate core locations for the temporaries, TEMPI, TEMP2, and 

TEMP3. The following six statements designate core memory lo­

cations for floating-point numbers AA, BB, CC, XX, YY, and ZZ. 

In each case it is assumed that the fractional part of the 

floating-point number is stored in the core memory location 

designated for the symbol (for example, the fractional part of 

floating-point number AA is stored in core location 100) and 

the exponent of the floating-point number is stored in the next 
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location (the exponent of "AA is stored in core loaction 101). 

In the above example of calls on the floating add macro, the 

first call adds floating-point numbers AA and BB and stores 

the result in CC. Seven symbols, Pl, P2, P3, P4, P5, P6, and 

P7, are provided to the macro for use as internal labels.

The second call on the floating add macro, adds floating-point 

numbers XX and YY and stores the result in ZZ. Seven new sym­

bols, Rl, R2, R3, R4, R5, R6 and R7 are provided to the macro 

for use as internal labels.

Floating subtract is performed by complementing 

the number to be subtracted and then floating add the comple­

mented number to the other number (i.e., A-B = A+(-B)). To 

complement a floating-point number, it is only necessary to 

complement the fractional part of the number. The exponent 

is left unchanged. The following is an example of a floating 

subtract using the floating add macro.

TEMPI EQU 100

TEMP 2 EQU 101

TEMP 3 EQU. 102

COMPL EQU 200

AA EQU 201

BB EQU 203

CC EQU 205

LCA BB

SA COMPL

FA I1,I2,I3,I4,I5,I6,I7,AA,AA+1,COMPL,BB+1
CC,CC+1



67

In the precediiig example, the floating subtraction 

of floating-point number BB from floating-point number AA is 

performed (i.e., AA - BB). The result is stored in CC. The 

first seven statements designate core locations for TEMPI, 

TEMP2, TEMP3, COMPL, AA, BB, and CC. In the two statements 

preceding the floating add macro call, the factional part of 

BB complemented and stored into core location COMPL. COMPL 

is then used as a calling argument in the floating add macro 

call in place of BB. Again II, 12, 13, 14, 15, 16 and 17 are 

provided to the macro for use as internal labels.

3.8.1.5.2 Floating Multiply Macro Program

The call on the floating multiply macro is:

label FM L1,L2,L3,L4,A1,A2,B1,B2,C1,C2

The floating multiply macro takes two floating­

point numbers A and B, multiplies them together and stores 

the result in C. All locations are core addresses. The first 

number A is stored in core location Al and A2, and B is stored 

in core location Bl and B2. Al, Bl, and Cl are assumed to be 

the core addresses for the fractional part of the floating­

point number. A2, B2, and C2 are assumed to be the core 

addresses for the exponents. The calling arguments Ll, L2, 

L3, and L4 are labels used internally by the macro. With each 

call on the floating multiply macro, new symbols have to be 

provided. No storage locations have to be provided for Ll - 

L4. A core location has to be provided for



68

the macro to store intermediate results. The temporary is

called TEMPI. A typical call on the floating multiply macro

is shown in the following example.

TEMPI EQU 10

AA EQU 100

BB EQU 102

CC EQU 104 ।

FM M1,M2,M3,M4,AA,AA+1,BB,BB+1,CC,CC+1

In the preceding example, the first four statements 

designate core locations for TEMPI, AA, BB, and CC. The frac­

tional parts of AA and BB are assumed to be stored in core 
locations AA and BB (i.e., 100 and'102). The exponents of AA 

and BB are assumed to be stored in core locations AA+1 and 

BB+1 (i.e., 101 and 103). The results of the floating multiply 

are stored in core location CC and CC+1 (i.e., 104 and 105). 

Location CC will contain the fractional part and CC+1 will con­

tain the exponent. Four symbols. Ml, M2, M3 and M4 were pro­

vided to the macro for use as internal labels.

3.8.1.5.3 Floating Divide Macro Program

The call on the floating divide macro is: 

label FD Ll,L2,L3,L4,Al,A2,B1,B2,C1,C2 

The floating divide macro takes two floating-point 

numbers A and B, divides B into A,(A/B), and stores the result 

in C. Numbers A and B are stored in core location Al, A2, and 
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Bl, B2 respectively. Al a<nd Bl are assumed to be the core ad 

addresses for the fractional parts of A and B. A2 and B2 are 

assumed to be the core addresses for the exponents of A and 

B. The floating divide macro stores the result of the division 

in Cl and C2. Cl will contain the fractional part and C2 the 

exponent of C. The calling arguments Ll, L2, L3 and L4 are 

labels used internally by the macro. With each call on the 

floating divide macro, new symbols have to be provided for Ll, 

L2, L3 and L4. No storage locations have to be provided for 

Ll L4. A core location has to be provided for the macro to

store intermediate results. The temporary is called TEMPI. A i
typical call on the floating divide macro is shown in the following

example.

TEMPI EQU 220

XX EQU 10

YY EQU 12

ZZ EQU 14

FD Fl,F2,F3,F4,XX,XX+1,YY,YY+1,ZZ,ZZ+1

In the preceding example, the first four statements 

designate core locations for TEMPI, XX, YY, and ZZ. The frac­

tional parts of XX and YY are assumed to be stored in core 

locations XX and YY (i.e., 10 and 12). The exponents of XX and 

YY are assumed to be stored in core locations XX+1 and YY+1 

(i.e., 11 and 13). The results of the floating divide (XX/YY) 

are stored in core locations ZZ and ZZ+1 (i.e., 14 and
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15). Location ZZ (i.e., 14} will contain the fractional part 

and ZZ+1 (i.e., 15) will contain the exponent. Four symbols 

Fl, F2, F3 and F4 were provided to the macro for use as inter­

nal labels.

3.8.2 Closed Subroutines

Instructions that make up a closed subroutine normally 

occur only once in a given user's program. In addition to the 

desired instructions, a number of additional instructions must 

be added to handle overhead functions such as receiving and 

returning control and transmitting appropriate information.
I
!3. 8.2.1 Transfer of Control 'i

Execution of the following instructions causes control 

to be transfered to the closed subroutine.

B LO2

LO1 DATA RETURN ADDRESS

L02 RW L01

B subroutine name

RETURN ADDRESS EQU . $

Thus control is passed to the subroutine, with the address to 

be returned to, stored in the accumulator.

3.8.2.2 Entry into the Subroutine

On entry into a subroutine, the return address, which 

is stored in the accumulator is stored for subsequent use.
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This is accomplished with 'a store into a temporary location 

such as:

WW TEMP

3.8.2.3 Transfer of~Information

Along with control it is often necessary to pass data 

to a subroutine and/or receive answers back. On the Athena
i

the best method is to designate a section of core memory or 

drum storage to serve as a buffer area between the calling pro­

gram and the subroutine. Information to be passed to the sub­

routine is placed in the area previous to transfer of control 

to the subroutine. Information to(be passed back to the calling
'i

program is contained in this area on return from the subroutine.

3.8.2.4 Return of Control to Calling Program

Return of control to the calling program from the 

subroutine is accomplished with the following instructions.

RW TEMP

CX 0

AC 0*20*

WW RETURiQ

RETURN RES 1

The return address which is stored in TEMP is loaded into the

accumulator. The opcode for a ’Branch* instruction is placed 

onto the front of the address. The ‘Branch* opcode with the 
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return address is stored in the next drum location for 

execution. Subsequent execution of the 'Branch* instruction 

causes control to return to the calling program at the point 

following the call to the subroutine.

3.8.2.5 Example of a Closed Subroutine

The following example illustrates a closed subroutine 

**PLACED DATA FOR SUBROUTINE INTO

**BUFFER AREA

RW ALPHA

ww BUFFER1

RW BETA

ww BUFFER2
*

**STORE RETURI^I ADDRESS AND PASS

**CONTROL TO SUBROUTINE
*

B L02

L01 DATA RETURNADDRESS

L02 RW L01

B SUMSQR

RETURNADDRESS EQU $
**

**GET RETURNED DATA FROM BUFFER AREA

RW BUFFER3
W GAMMA
WC
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♦♦SUBROUTINE SUM 'OF SQUARES 
*

♦STORE RETURN ADDRESS
*

SUMSQR WW TEMP
1

* 1

♦SQUARE FIRST NUMBER
*

RW BUFFER1

SA 100
MP ;i!00

LS 23

OC

SA 101
*

♦SQUARE SECOND NUMBER
*

RW BUFFER2

SA 100

MP 100

LS 23

OC
*

♦SUM THE SQUARES
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AD 101
*

*STORE RESULT IN BUFFER AREA
*

WW BUFFERS

*RETURN TO CALLING PROGRAM
*

RW TEMP

CX i 0
1

AC 'i 0’20'

W RETURN

RETURN RES 1
*

*

*THE FOLLOVJING IS THE

*DATA AREA FOR THE

*PROGRAM
*

ALPHA DATA 4

BETA DATA 5

GAMMA RES 1

BUFFER1 RES 1
BUFFERS RES 1

BUFFERS RES 1
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In the preceding "example, a call is made on a short 

subroutine. The subroutine forms the sum of the squares of 

two numbers. Data for the subroutine is passed to and from 

the subroutine through a buffer area. The various features 

of the example have been explained previously.

3.9 Control Operations
i

The Athena provides two computer control instructions. 

These are the ’Wait Partial* command, and ’Wait Computation’ 

command.

3.9.1 Wait Partial............. I

VIP Drum Address

Example

1 00 0040 017000 DD O

2 00 0041 340042 WP S+l

’Wait Partial’, opcode 34, causes the computer to 

hault and wait for the Partial Cycle Sync pulse. When it 

comes, the program branch to the address given in the operand 

field of the 'Wait Partial’ instruction. One use of the ’Wait 

Partial’ instruction is after output instructions. On execu­

tion of an output instruction, program execution is halted 

while the output device types. The output device on comple­

tion of its activities, initiates a Partial Cycle Sync pulse. 

The 'Wait Partial' instruction starts program execution again 



76
at the address given in the operand field on receipt of this 

pulse.

3.9.2 Wait Cycle

WC Drum Address

1 00 0040 000410 A WC 0'410’

'Wait Cycle' opcode 00, causes the computer to wait 

for the Computation Cycle Sync pulse. When it arrives, it 

takes the address in the Program Control Register for the 

next instruction; however, only group zero can be referenced 

with this instruction. If this sync pulse should occur un­

expectedly, that is, during the execution of an instruction, 

the Program Control Register is cleared at the completion 

of the current instruction; the SYNC FAULT indicator is lit; 

the address zero, group zero, is taken as the address of the 

next instruction.

3.10 Output

The Athena computer provides six instructions for out- 

putting information. Four instructions are provided for out- 

putting to the flexowriter and two instructions for outputting 

onto the digital printer. Information may be outputted in 

decimal, octal or alphanumeric format.

3.10.1 Print Octal

PRT0

or DD 3
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Example '

1 00 0040 017003 PRT0

2 00 0041 340042 WP S+l

’Print Octal’, opcode 017003, or ’DD’, opcode 017,

with a 3 in the operand field, prints the content of the accumu­

lator in octal form on the digital printer (8 digits}. The 

’Wait Partial’ instruction halts execution until the digital 

printer is completed.

3.10.2 Print Decimal

PRTD

or DD

Example

1 00

2 if
i

PRTD0040 017002

2 00 0041 340042 WP S+l

’Print Decimal’, opcode 017002, or ’DD’, opcode 017, 

with a 2 in the operand field, prints the 32 least significant 

bits of the accumulator and quotient register in decimal form 

on the digital printer (sign and seven digits). The 'Wait 

Partial’ instruction halts execution until the printer is 

completed. - "

3.10.3 Type Octal Short

TYPE0S

or DD 0
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Example «

1 00 0040 017000 TYPE0S

2 00 0041 340042 WP S+l

'Type Octal Short', opcode 017000, or 1DD’, opcode 017, 

with a zero in the operand field, types the 18 least signifi­

cant bits of the accumulator in octal form on the flexowriter 

(6 octal digits). The flexowriter ,then does an automatic 

space. The 'Wait Partial' instruction in the example halts 

execution until the flexowriter is completed.

3.10.4 Type Octal Long

TYPE0L

or DA

Example

1 00 0040

2 00 0041

3

417003

340042

1
1

TYPE0L

V7P S+l

'Type Octal Long', opcode 417003, or 'DA', opcode 417, 

with a 3 in the operand field, types the content of the accumu­

lator in octal form on the flexowriter and then does an auto­

matic return. The 'Wait Partial' instruction in the example 

halts execution until the flexowriter has completed typing.

3.10.5 Type Decimal

TYPED

or DA 2
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’Type Decimal’ opcode 417002, or ’DA*, opcode 417 with 

a 2 in the operand field, types the content of bits 8-0 of the 

accumulator and 23-0 of the quotient register in decimal (BCD) 

form on the flexowriter (sign and 7 digits). If the leftmost 

digits is 8^q, it will space over one for a plus sign. If the 

leftmost digit is it will type (") for a minus sign. After 

the decimal number, the flexowriter does an automatic carriage 

return. The 'Wait Partial* instruction in the example, halts 

program execution until the flexowriter has completed typing.

3.10.6 Type Alphanumeric

TYPEA ;
'i

or DD 1

Example

1 00 0040 017001 TYPEA

2 00 0042 340042 VJP S+l

’Type Alphanumeric*, opcode 017001, or *DD*, opcode 

017, with a 1 in the operand field, types the 18 least sig­

nificant bits of the accumulator in alphanumeric form on the 

flexowriter (3 characters). The ’Wait Partial’ instruction 

halts program execution until the flexowriter has completed 

typing.

3.10.7 Space Digital Printer

DD 4
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Example '

1 00 0040 017004 DD 4

1 00 0041 340042 WP S+l

‘DDA * * * * * * * 1, opcode 017, with a mode of 4, causes the digital 

printer to space. The ’Wait Partial* instruction halts program 

execution until the printer has completed spacing.

A significant problem with the Athena is doing program

execution across a drum group boundary. In this discussion,

the problem will be defined, and then the solution will be

presented. The drum on the Athena consists of eight groups,

of 102 4 words each. The groups are numbeied 0-7, and the

words 0-1023. If a program is executing on say group zero,

and arrives at the last word of group zero (location 1023),

execution will not continue with the first word of group one

but will start over again at location zero of group zero.

I

3.11 Programming Errors

As a programming aid, the assembler provides error de­

tection facilities for the programmer. Diagnostic messages are 

printed above the offending instruction line in the output 
listing. An error number is given ‘for use in diagnosing the 

problem. An explanation of the meaning of the error numbers 

is given in Appendix B.

3.12 Executing a Program Across Drum Group Boundaries 
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The program address register which contains the address of 

the next executable statement, does not automatically incre­

ment the group address portion of its address when it arrives 

at a group boundary. It retains the group address portion 

(the upper 3 bits) and starts the word address portion (the 

lower 10 bits) over at zero. The group address portion may 

be set to a new group number by executing a branch instruction.

To insure that program execution continues into the next 

group, a branch instruction is inserted into the assembly 

language program whenever a group boundary is about the be 

crossed. The branch instruction contains the address of the 

first word of the next group in its operand field. The branch 

instruction will increment the group portion (the upper 3 bits) 

of the program address register by one. The following example 

illustrates what has been said.

The programmer inputs the following program to the 

assembler.

LOG 1021

LA 100

SA 102

MP 100

LS 23

OC

The assembler output is the following.
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1 f LOG 1021

2 00 1775 060144 LA 100

3 00 1776 004146 SA 102

00 1777 202000 B S+l

4 01 0000 110144 MP 100

5 01 0001 104027 LS 23

6 01 0002 114000 OC

In the example above, the assembler has inserted a 

•Branch* statement after Line 3. This ’Branch* statement 

causes execution to continue with Line 4 which is on the 

next group of the drum (note the location counter value for 

Line 4; group 1, location 0000).

There are three variations to this theme. The above 

method will not work if the ‘Branch* instruction were 

accidentally inserted following an ’Index* or 'Index and 

Increment* instruction. The index instructions would modify 

the address portion of the branch instructions and the re­

sults would be unpredictable. The solution to this problem 

is to check for the presence of .an indexing instruction at 

the time of insertion of a 'Branch to next group* instruction 

into the program. If an indexing instruction is present, a 

'Branch to next group* instruction is inserted in its place 

and the indexing instruction is moved to first word of the 

next group. The following example illustrates this method.
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The programmer inputs the following program to the 

assembler.

LOG 0’1775 1

LIRI 10

INDEX 100

LA 40 1
SA

The assembler output is as follows.

1 LOG 0 *1775’

2 00 1775 520012 LIRI 10

00 1776 202000 B S+2

00 1777
/

202000 B S+l

3 01 0000 024001 INDEX

4 01 0001 060144 LA 100

5 01 0002 004050 SA 40

The second variation involves the ’Wait Partial* instruc­

tion. The 'Wait Partial* instruction accomplishes the same 

result as a unconditional ’Branch’ instruction.when it appears 

as the last executable instruction in a drum group. If the 

last instruction in a drum group is a ’Wait Partial* instruc­

tion, a 'Branch to next group’ instruction is not inserted in 

the program.

The third variation involves data storage areas. A .

'Branch to next group’ instruction is not inserted among data 
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statements when the locati'on counter crosses a drum group 

boundary for obvious reasons.



CHAPTER IV

4.1 Introduction

Broadly speaking, an assembler is a program which 

produces a machine language object program from a symbolic 

assembly language source program. In other words, it 

translates a program in assembly language into a program 

in machine language.

In this chapter the internal structure of the assembler 

will be described. After a brief description of the assembly 

process, the tasks an assembler must perform will be described. 

The gross structure of the assembler will be described and 

interfaces identified. A detailed discussion of the 

assembler then follows.

4.2 Athena Assembly Language

There are several disadvantages to using direct machine 

language. It is difficult to work with octal numbers and 

the numeric operations codes are difficult to remember. In 

addition, use of numeric addresses make it difficult to modify 

a program. Instructions must be stored in sequence. Inserting 

new instructions or deleting old ones cause the location 

of many of the remaining instructions to change, resulting in 

a change in all instructions which refer to them.
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Symbolic assembly language attempts to overcome these 

disadvantages by permitting the use of symbols for operation 

codes, addresses and other items in the instructions. A 

symbol is a group of letters and digits. Symbols act as names 

or labels and usually are chosen to have some mnemonic signifi­

cance. The symbols for the operation codes are fixed. They 

are frequently an abbreviation of their name. The symbols used 

for addresses are selected by the writer of the program. When 

a symbol is used for the address of an instruction or datum, 

that instruction or datum must be labeled with that symbol. 

Finally, in assembly language numbers are usually written in i 
decimal notation.

To describe the Athena assembly language, syntactical 

notation will be used. Syntactical notation allows a precise 

description of an assembly language. The following is a syn­

tactical definition, of the Athena assembly language.

machine instruction: = [label] - operation code - machine operand 

data directive: = [label] - DATA [, decimal integer] - literal 

[machine operand | constant 

reserve directive: = [label] - RES •- decimal integer 

equivalence directive: = label - EQU - machine operand 

set location counter directive: = LOG - decimal integer | octal 

constant 

define symbol directive: = DEF - symbol
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end of program directive: '= END

macro definition directive: = operation code - MACRO - [dummy
19 argument] {,dummy arguments}

macro call: = [label] - operation code - [call argument]
19 rq{, call arguments}

machine operand: = expression [ octal constant | symbol | decimal

integer | dollar sign

literal: = = constant | L*constant*

constant: = decimal integer | octal constant | floating-point

constant | character string constant

expression: = {octal constant | symbol | decimal integer]$}
I t

{+[-} decimal integer} | {+[-} {octal constant |

decimal integer}

label: = symbol
operation code: = ^^{any character except a comma or a blank}

15 symbol: = ^{letters or digits, at least one letter and no

blanks}
30dummy argument: ^{any character except a comma or blank}

call argument: = dummy argument
gdecimal integer: = °{digits}
12octal constant: = 0* ^{octal numbers}1

6 6™nfloating-point constant: = F'g{digits}n {digits}m=g

[E[+|-]2{digits}]*

character string constant: = C* 2^{any character, with a single

quote being represented by two quotes}*
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dollar sign: = $ '
digit: =0|l|2|3|4[5|6|7|8|9 

letter: = A | B | C-----X | Y | Z

octal number: =0|l[2|3[4|5|6|7 

The above syntactical definition for a machine instruction 

can be interpreted as follows: A machine instruction is de­

fined as consisting of an optional label, followed by a blank, 

followed by an operation code, followed by a machine operand. 

The brackets around the label indicate that it is optional.

The bar symbol (-) is used to indicate a blank.

The syntactical definition for a data directive reads; a 
i 

data directive is defined as consisting of an optional label, 

followed by a blank, followed by DATA, followed by an optional 

comma, and an optional decimal integer, followed by a blank, 

followed by a literal, or a machine operand or constant. The 

vertical slash (|) is a symbol for "or" as in literal or 

machine operand (literal | machine operand).

As a final example, the syntactical definition for an 

octal constant reads; an octal constant is defined as consisting 

of a 0 followed by a quote (’), followed by one to twelve oc­

tal numbers, followed by a quote (’). The parenthesis with the 

lower one and upper twelve indicate the lower and upper limits 

of the contents of the parenthesis.
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4.3 The Assembler *

Since assembly language can not be executed directly by 

the computer, it must first be translated into machine language. 

That is the function of the assembler. The input to the assem­

bler then is a symbolic assembly language program containing 

symbolic machine.instructions and directive instructions.

The assembler usually produces a single numeric machine 

language instruction for each symbolic machine instruction. 

The assembler must act upon the information given in each of 

the directives. The assembler has two major tasks. First it 

must process symbolic machine instructions. In so doing, it I Imust translate a symbolic operation code into a numeric opera­

tion code. In addition, it must also find the value of the 

operand field in order to determine the numeric value of the 

rightmost bits of the machine language instruction. Any label 

preceding the symbolic machine language instruction will have 

to be defined. The second major task of the assembler is to 

process the directives. These directives to the assembler 

define the values of symbols which do not appear as labels, 

define data, reserve space, set the location counter, segre­

gate programs and link programs.

4.4 Identification of Tasks, Gross Structure, and Interfaces 

In this section the assembly process will be discussed in

more detail. Two things must be done in order to generate a
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machine language instruction. First the symbolic operation 

code must be converted into a numeric operation code. Second 

the operand field must be evaluated. The conversion of sym­

bolic operation codes to numeric codes can be accomplished in 

a straightforward manner by table lookup. The evaluation of 

the operand field is considerably more difficult.

The operand field may contain a symbol, a literal, a 

constant, or an expression. An expression is defined as a 

symbol or constant added to or subtracted from an integer 

number. In evaluating an expression, the address (location) 

of a symbol is used rather than the contents. For example, if
I

the address of A is 42, then the value of A + 1 is 43 and not

1 plus the contents of memory location 42. The same is true 

for literals. The address where the literal is stored is used 

instead of the value of the literal. Thus, in order to eval­

uate the operand field, the values (locations) for all the 

symbols and literals which appear in operand fields are needed. 

This indicates that the values of symbols must be defined.

Values can be defined in two ways. If a symbol appears 

as a label in a machine instruction, its value is defined to 

be the relative location of that instruction. The EQU directive 

also defines the value of a symbol. A symbol defined in this 

way has a value equal to the value of the expression in the 

operand field of the EQU directive. To assign the relative 
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location of an instruction' or datum to be the value for a 

label, a relative location is assigned to each instruction 

or datum. Instructions and data are assigned locations on 

the drum sequentially in the order in which they appear in 

the source language program.

An additional task arises since a symbol need not be de­

fined before it is used. That is, an instruction such as a 

transfer may use in its operand field a symbol which does not 

appear as a label until later in the source program. The 

simplest solution to this problem is to make two passes over 

the source program. One complete pass is made for the purpose 
I 

of defining all of the symbols which occur in the program. 

Each symbol and its value are stored in a table called the 

symbol table.

Additional tasks are performed on the first pass. It is 

advantageous to eliminate any duplicate literals which may 

appear in the program. During the first pass all literals are 

collected into a single table. Duplication of entries in the 

literal table is not allowed. Literals are assigned locations 

on the drum following the body, or text, of the program. Thus, 

their location can be assigned only after the length of the 

text is known, that is, only after all instructions and data 

have been assigned locations.

A further task to be performed is the processing of the set 

location counter (LOG) directive, the program end (END) direc­

tive and the define symbol (DEF) directive.
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In processing the set /location counter (LOG) directive, 

the location counter is set equal to the value in the operand 

field.

The program end (END) directive terminates an existing 

program and establishes a new program where the symbols have 

a different value from any that may have existed before.

The define (DEF) directive is used to establish linkages 

between programs. The value of the symbol in the operand field 

is made available to other programs.

A final task is the recognition of a special symbol (a 

dollar sign - $) indicating the end of the source program. 

Recognition of the special symbol terminates Pass I and re­

sults in a call on Interpass and then Pass II

Hence, the assembler is divided into two main routines, 

each' of which passes over the source program once. In addition, 

some tasks which are required at the end of the first pass are 

incorporated into a third routine which is called Interpass 

processing. These three routines perform the following tasks.

A. First Pass: Pass I

1. Define the Symbols. Locations are assigned to all 

the instructions and data. EQU, DEF, LOG, and END 

directives are processed. Data and storage defini­

tions specified by DATA and RES directives are 

processed. Symbols and their addresses are entered 
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into the symbol table.

2. Literals. All literals are entered into the literal 

table with no duplicate entries.

B. Interpass.

In the interpass, locations are assigned to all 

literals in the literal table.

C. Second Pass.

Everything else is done in Pass II. This consists 

principally of generating the instructions and con­

sequently evaluating the operand field. In addition, 

the constants appearing in .the operand field of DATA 

directives are converted into machine language form. 

END and LOG directives are processed again.

.The interfaces between the three major routines are 

given in the following table.

4.5 Pass I: Symbol Definition

The major task of Pass I is to define all of the symbols ■ 

used in the program. Symbols are defined by their appearance 

in the label field of a machine instruction, data (DATA) 

directive, reserve storage CRES} directive, or an equivalence 

(EQU) directive. Whenever definition information is encountered
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/TABLE 4-1

INTERFACES BETWEEN THE PASS I, INTERPASS,

AND PASS II MODULES

ROUTINE INPUT OUTPUT

Pass I Source program ,
l

Symbol table
Literal table
Segment length

■ Source program

Interpass Literal table
Segment length

f

Literal table

Pass II
i

Symbol table
Source program
Literal table

Object program
Listing
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it is entered into the symbol table. Each entry contains the 

symbol and its value. To define the value of a symbol appear­

ing in the label field of•a machine instruction, DATA directive, 

or RES directive, the assembler must assign drum locations to 

each machine instruction, to the storage reserved by a RES 

directive and to the data words reserved by a DATA directive.

Storage locations are assigned sequentially. In order 

to keep track of the location to be assigned to the instruc­

tions and data, the assembler needs the length of the storage 

locations used by each DATA or RES directive. The next drum 

location available for assignment is remembered in a location 
'l

counter (LOG). The value of LC is the displacement, relative 

to the base of the segment, of the first unassigned word of 

drum storage. The location counter is incremented for each 

instruction.

To process a RES or DATA directive the assembler must de­

termine the number of words reserved by these directives. The 

location counter is then incremented by the value of this num­

ber. When a label is encountered on a machine instruction, DATA 

directive or RES directive, the label is entered into the symbol 

table along with the value of the location counter. The defini­

tion of a symbol appearing in the label field of an EQU directive 

is somewhat more complicated. The expression in the operand 

field is evaluated and this value is entered into the symbol 
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table along with the symbol. In order to evaluate the expression 

in the operand field all symbols used in it must have been pre­

viously defined, i.e., the symbol and its value must appear in 

the symbol table.

An additional task of Pass I is to collect all of the 

literals and eliminate any duplications. In order to do this, 

each operand field must be scanned for the occurrence of literals. 

If a literal is found it is converted into its binary represen­

tation and entered into the literal table along with its length. 

If a duplicate entry already appears in the literal table, no 

additional entry is made. 
i

Two additional tasks are required in order for Pass I to 

carry out its major functions. Before any processing of an 

input card can be achieved, the various elements in a machine 

instruction or directive must be isolated. The elements of a 

machine instruction are the label, the operation code, and the 

operand field. The location and isolation of these three ele­

ments of an instruction is called parsing. The final task that 

must be performed is that of distinguishing machine instructions 

from directives. This is achieved by putting a flag in the opera­

tion table which distinguishes between the two cases. All 

machine instructions and directives are stored in the operation 

table. This table gives the correspondence between the symbolic 

operation code and the numeric operation code as well as flags
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distinguishing machine instructions from directives.

An additional task performed by Pass I is the processing 

of the set location counter (LOG) directive, the end of pro­

gram (END) directive, and the define symbol (DEF) directive.

In processing the set location counter (LOG) directive, 

the location counter is set equal to the value in the operand 

field. The operand field contains an integer or octal con­

stant. This directive allows the programmer to set the value 

of the location counter.

The end of program (END) directive isolates programs 

from one another. The END directive terminates an existing 

program and establishes a new program where the symbols have 

a quite distinct value from any that may have existed before. 

The isolation of one program from another is accomplished by 

attaching a qualifier (called the program number - PRGNUM) to 

each symbol as it is entered into the symbol table. The quali­

fier (i.e., PRGNUM) is an integer number whose value is the 

same for all the symbols of a given program. The value of the 

qualifier is incremented by one by the occurrance of an END 

directive. This task is performed again in Pass II.

The define symbol (DEF) directive is used to provide 

linkage between programs. If a symbol occurs in the operand 

field of a DEF directive, the value of the symbol is made 

available to other programs that are assembled along with the 
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program in which the DEF directive appears. To make use of the 

value of such a symbol, other programs must have the particular 

symbol appearing in the operand field of a machine instruction, 

DATA, or EQU directive. The particular symbol must not also be 

defined in the same program; i.e., the symbol must not appear 

in the label field of a machine instruction, DATA directive, or 

EQU directive in the program referencing it. The symbol appear­

ing in the operand field of the define symbol (DEF) directive 

is made available to other programs by being entered into the 

defined symbol table.

The source program is needed again in Pass II, therefore 
I 

a copy is made of the source program in Pass I for use in 

Pass II.

Figure 4.1 is the flow chart for Pass I. On the left side 

of the chart is the main loop for processing a machine instruc­

tion. It begins by reading the next line of the source program. 

The input line is parsed and the operation type is identified. 

If there is a label, it is entered into the symbol table. Any 

literals appearing in the operand field of the instruction are 

processed. The instruction counter is updated and the original 

source line is copied into an internal file for use in Pass II. 

On the right side of the flow chart is the processing of the 

directives (EQU, RES, DATA, LOG, END, and DEF). The two circles 

y, = and B will- be referred to later in this chapter when macros 

are discussed.



PASS I



100

4.6 Interpass <

At the end of Pass I, the literal table contains all of 

the literals which appear in the program and there are no 

duplicate entries in the table. Each literal must be assigned 

a drum location. Literals are assigned locations beginning 

with a displacement equal to the current segment length which 

is in fact the value of the location counter at the end of 

Pass I. It is the number of words occupied by the instruc­

tions, data, and reserved words generated from the machine 

instructions, DATA, and RES directives in the source program. 

As locations are assigned to the literals, the relative dis­

placement is added to the corresponding entry in the literal 

table. These literal addresses are needed in Pass II in 

order to evaluate operand fields.

The data base for Interpass consists of the literal table 

and the current segment length which is the input data. The 

output from Interpass is the literal table.

4.7 Pass II: Instruction Generation

The principal task of Pass II is to generate the numeric 

machine instructions. In order to-do this the following- 

functions must be performed. A symbolic operation code must 

be converted to a numeric operation code. This is achieved 

by finding the symbolic operation code in the operation table. 

The associated table entry contains the numeric operation code. 
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The operand field must be evaluated. The instruction can then 

be assembled. To assemble the instruction its format must be 

known. Again this information is found in the operation table. 

Knowing the format, the numeric operation code and the value 

of the argument field can be combined into a numeric machine 

instruction.

The generation of the data items defined by a DATA direc­

tive is similar to the generation of numeric machine instruc­

tions. The argument in the operand field of a DATA directive 

is converted into their binary form and assembled.

Reserve (RES) directives are processed again in the same 

manner as in Pass I. The operand fi,eld is evaluated and the 

location counter incremented by the value of the integer in 

the operand field.

‘ The set location counter (LOG) directive is evaluated 

again. The integer or octal constant in the operand field is 

evaluated. The location counter is set equal to the value in 

the operand field. The end of program (END) directive is 

processed again in the same manner as in Pass I. In addition, 

Pass II generates an object tape and output listing. To generate 

the object tape each machine instruction must be punched onto 

the paper tape in a format the Athena computer can handle. 

In addition, the data generated from DATA directives is punched 

onto the paper tape. Drum words reserved by RES directives are 
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punched onto the paper tap'e with zeroes in them. In order to 

determine the appropriate drum location for each instruction 

and datum, Pass II keeps a location counter in exactly the 

same fashion as the location counter kept by Pass I. The out­

put listing includes the original symbolic source instruction, 

the generated numeric instruction and data printed in octal 

and any error information which has been collected during the 

assembly process. This information consists of flags indi­

cating such errors as undefined symbols and unknown operation 

codes.

The data base for Pass II consists of the following. 

Input Internal Output

Source program Operation table Paper tape

Symbol table Location counter Output listing

Literal table Partially assembled
instructions 

Error flags

Figure 4.2 is the flow chart for Pass II. On the left side 

of the flow chart is the main loop for processing a machine 

operation. The sequence is very similar to Pass I. The source 

line is read, the type of instruction identified, the symbolic 

operation code looked up and the numeric operation obtained, 

the argument field is processed, the assembled instruction is 

sent to the tape punch file, the instruction, location, and 

the symbolic source line is printed out, and finally, the
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Figure 4.2

PASS II
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location counter is updated- by the appropriate amount.

The right side of the flow chart shows the processing 

for the EQU, DATA, RES, END, and LOG directives. The EQU 

directive involves no processing in Pass II since its only 

function was to define the value of a symbol in Pass I. 

Similarly, the DEF directive involves no processing. The 

DEF directive completed its function in Pass I by defining 

a symbol as being available to other programs.

4.8 Details of the Assembly Process

The following discussions consist of comments on the 

particular steps involved in the assembly process.

4.8.1 Locate Label, Operation Code, and Argument

This subroutine scans the source line and locates the 

label, operation code, and operand. The algorithm for iso­

lating the fields of an instruction is straightforward. The 

fields are separated by one or more blanks. Starting with 

the first character, each character in turn is examined to 

determine if it is a blank. If it is not a blank it is counted 

and stored. A blank indicates the termination of the field. 

All following blanks, up to the next non-blank are skipped. 

Storing and counting them starts on the next field. If the 

first character of the source line is a blank, then there is 

no label
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4.8.2 Process Literal

The input to this function is the content, of the operand 

field, and the its character count. The function processes 

the string of characters starting with the first character, 

until it has a complete literal. The function converts the 

string of characters representing the constant into a binary 

value. This value is returned as an argument. The literal 

table is probed to determine whether or not the table already 

contains the constant value. If not already there, the con­

stant value and drum storage requirement count are stored in 

the literal table. j

'I
4.8.3 Process Data Directive

The input to this routine is the content of the label 

field, operation code field, and operand field, and the count 

on the number of characters in these fields.

On Pass I, the label is checked for a legal symbol. 

The label with PRGNUM as a qualifier is entered into symbol 

along with the value of the location counter. On Pass I and 

Pass II, the operation code field character string is scanned 

for an integer number. This integer specifies the number of 

data words received by the data directive. The integer, if 

there, is converted from its character representation to a 

value. On Pass I, the location counter is then incremented 

by the integer value. If an integer is not found, one data 
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word is reserved for the d'ata directive. The location counter 

is increment by one.

On Pass I, only the operand field is evaluated for a 

literal. If a literal is found, it is converted to a value and 

entered into the literal table if not already there.

On Pass II, the operand field is evaluated and the 

machine code is generated. A check- is made of the operand 

field for each of the following: a literal, an expression, 

a symbol, a decimal integer, an octal constant, a floating­

point constant, a character string constant, and a dollar sign. 

If one of the preceding arguments is found, it is evaluated.
i

The value of the operand field is assembled into the data words 

reserved by this data directive. A call is made to the output 

routine. The location counter value, the assembled data, the 

count of data words, and the source line are given to the out­

put routine as input. The output routine copies the data words 

into the paper tape punch file, then prints out the location 

counter, the data words, and the source line. The location 

counter is incremented by the count on the number of data words 

reserved by the data directive.

4.8.4 Process Reserve Directive

The input to. this routine is the content of the label 

field and operand field, and the count on the number of 

characters in these fields.
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On Pass I, the labe'l field is checked for a legal symbol. 

The label with PRGNUM as a qualifier is entered into the symbol 

table along with the value of the location counter.

On Pass I and Pass II, the operand field is scanned for 

a decimal integer. This integer specifies the number of drum 

words being reserved by the reserve directive. The integer is 

converted from its character representation to an integer value. 

The location counter is incremented by the value of the integer.

4.8.5 Output Code

The input to this routine is the value of the location 
I 

counter, the numeric value of the operation code, the format I
for the operation code, the value of the operand field, and 

the source line. The output routine combines the numeric 

operation code with the operand value into a machine instruc­

tion with the aid of the format for the particular operation 

code. The format is a mask. The operand is first masked off 

and then added to the numeric operation code. The masking of 

the operand eliminates any higher order bits in the operand 

which might overlap into the numeric operation code part of 

the machine instruction. An error "message is printed if 

truncation of the operand results. The machine instruction 

is copied into the paper tape punch file. The location 

counter value, machine code, and source line are pointed out. 

The location counter is incremented.
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4.8.6 Evaluate Operand Fie,ld

Input to this routine is the content of the operand 

field. The content of the operand field is scanned. Evalua­

tion is stopped when all the characters in the field have been 

scanned. If nothing is found in the operand field, the value 

returned is zero. An expression appearing in the operand 

field may be a combination of a symbol or a decimal integer 

or an octal constant or dollar sign separated by a +, or - sign 

from a decimal integer. An expression may also consist simply 

of a + or - sign before a decimal integer or octal constant. 

The routine computes the value of such an expression using
■ i 

the value of the symbol which is found in the symbol table 

(which is usually an address) and the value of any constant 

in the expression combined according to the arithmetic opera­

tion- in the expression.

If only a symbol, decimal integer, octal constant, or 

dollar sign appears in the operand field, it is evaluated and 

a value is returned. The value of a symbol is obtained from 

the symbol table. Decimal integers and octal constants are 

evaluated directly and their value returned. The value re­

turned for a dollar sign ($) is the current value of the location 

counter.

4.9 Table Maintenance and Data Structures

The assembler has four tables, the operation table, the 

symbol table, the literal table, and the define (program linking) 
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table. In this section the techniques used in constructing 

these tables will be discussed. First, similarities will be 

examined and some general properties of the tables and table 

maintenance will be discussed.

Each of the tables is composed of a number of entries 

which are related to each other and associated with a key. 

For example, an operation table entry consists of a symbolic 

operation code which is the key, a directive flag, a numeric 

operation code, and an instruction format. A symbol table 

entry consists of a symbol which is the key, its value, and 

a multiple definition flag. A literal table entry consists 
i 

of a literal which is the key, its 1 location, and its length. 

A linkage table (defined symbol) entry consists of a symbol 

which is the key, and its value. A table is a collection of 

such entries. The table can be visualized as consisting of a 

number of rows, one for each entry. The elements of an entry 

are the columns of a matrix. A table is not really a matrix 

because, while in a matrix all elements are homogeneous, an 

entry in a table may consist of items of different types, e.g., 

binary integers and character strings. The term data structure 

implies a collection of related elements of possibly different 

data types. The relations which exist between the elements in 

a structure vary from structure to structure. The table is an 

example of data structure with a very simple relationship between 

its elements.
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Several functions (operations) are needed in order to 

manage a table. The following are the most basic and useful 

functions. Examples of its use in the assembler are given 

for each function.

1. Copy information from an entry: e.g., check direc­

tive flag, get value of symbol.

2. Add a new entry: e.g., process (enter) label, process 

new literal.

3. Modify existing entry: e.g., insert location in

literal table, change multi-definition flag in symbol 

table. ।
I

.4. Delete existing entry: this function is not used in 

the assembler.

5. Locate an entry: this is needed for all of the pre­

vious functions, even in (2) if avoidance of duplication 

is desired.

In managing a table, two aspects must be distinguished.

The relationship between items of an entry and the representa­

tion of the table in memory must be distinguished. The rela­

tionship between items determines the way the items can be 

accessed, e.g., the entries can be referenced sequentially by 

a numerical index or they can be referenced by specifying the 

key. Representation in memory also determines the number of 

words each item occupies and the mapping of the items into 
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memory, e.g., sequential items may not be located sequentially 

in memory.

One of the more important functions is that of locating 

an entry. In order to locate the entry corresponding to a 

given key in the table, the table must be searched, i.e., the 

key in each entry of the table must be examined in some se­

quence until the desired entry is found. There are two 

requirements that must be met in order to do this:

1. It must be possible to compare the key being sought

with the key part of an entry and detect when they 

match. ।

2. At some point in the search it must be possible to 

determine that no match will ever occur, i.e., the

. entry being sought is not in the table.

To illustrate these points, two different algorithms for 

locating an entry in a table will be looked at.

The first algorithm is a linear search. In this example 

the table is composed on N entries which are unordered. All 

the entries in the table are always stored in the first N 

places in the table, t^ - - - t^. A place is conceptually a 

row in the table viewed as a matrix. At any given time not 

all places necessarily contain entries. The search algorithm 

is straightforward. Each of the entries, t^, t2, -is examined 

in turn until the desired entry is found, or until t^ is 

reached. Then if t., does not match, the desired entry is not 
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in the table. This method has the advantage of being easy to 

implement and is used in the defined symbol (program linking) 

table. This table will generally have few entries and low 

usage.

The second algorithm is a random probe. This method has 

the advantage of increased efficiency at the cost of a more 

complicated search algorithm. The random probe method is used 

in implementing the symbol table, operation table, and literal 

table. The entries in these tables are stored in the first N 

places of a table, ^2 ~ ^N* an^ given time not all
places necessarily contain entries. Access to the table is 

I
through another table called a scatter index table. The 

scatter index table contains pointers to the entries in the 

table. The pointers are scattered through the scatter index 

table in a nonorder fashion. The size of the scatter index 

table is always fixed at, say, M places. The algorithm for 

searching for an entry, t , in the table.uses a randomizing (often 

called hashing) function which is applied to the key to cal­

culate the index to the place in the scatter index table where 

the pointer to entry t is located. This randomying function, 

R, is a function from the domain of keys to a range consisting 

of the integers from 1 to M, i.e.,

R(Key) [1, M]

This mapping is usually many to one, i.e., several different 
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keys may result in the same index to the scatter index table 

upon application of the randomizing function. Keys having the 

same index are chained together in the table.

Let R(key) -> i be the calculated index to the scatter 

index table. The search algorithm is then:

1. If location i of the scatter index table is empty, 

the key is not in the table.

2. If location i of the scatter index table is not 

empty, get the pointer p in location i and go to 

place tp in the table. If tp is equal to the 

key, the search is ended.. If tp is not equal to
I

the key, check to see if another entry is chained to 

tp . Search down the chain until the key is found.

If the key is not found on the chain, the key is not 

in the table.

The randomizing function used in the symbol table, operation 

table, and literal table is:

i = [sum of characters in key] mod M + 1

The hollerith representations for the characters in the 

key name are summed and then modulo arithmetic is performed 

of the result. The value of i is always 1 to M.

4.10 Macros and Macro Processing

In this section the macro facility of the assembler will 

be discussed. An overview of macro processing will be given.
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Then macro definitions and" macro expansions will be discussed.

The simplest form of a macro is an abbreviation for a 

sequence of symbolic assembly language instructions. For 

example,

RW AA

SA 100

RW BB

AD 100
SUM = '

SA 100

RW CC

AD 100 j
II

WW
1

DD

This sequence of instructions sums the variables AA, 

BB, and CC, then stores the result in DD. To use this macro, 

SUM is written in the program in the operation field of an 

instruction. The assembler will substitute for this single 

instruction the eight instructions written in the right-hand 

column. An instruction in which SUM appears in the operation 

field is called a macro instruction (or macro call).

The assembler's macro facilities are much more exten­

sive than this simple abbreviation capability. A macro in­

struction in its full generality is the invocation of some rule 

for generating a sequence of assembly language instructions.
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The sequence of ins true tiefns may be different each time the 

macro instruction is used.. To achieve this generality, the 

macro instruction includes arguments and the corresponding macro 

definition includes dummy variables which are substituted for 

by the arguments when the macro instruction is processed. For 

example, the definition of SUM might be:

RW ARG1

SA 100

RW ARG2

AD 100
SUM ARG1,ARG2,ARG3,ARG4 E

SA 100

RW ARG 3

AD 100

WW ARG 4

When the macro instruction SUM is used, four variables are 

written in the operand field. These are the call arguments 

which are substituted for dummy variables ARG1, ARG2, ARG3, 

and ARG4 in the definition. For example, the macro call.

SUM x,Y,Z,W-

will be replaced by the four instructions
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Rt'7 X

SA 100

RW Y

AD 100

SA 100

RW Z

AD 100

WW W

4.11 Overview of Macro Processing

In order to do macro processing, the assembler must 

recognize two types of constructs:, a macro definition and a 

macro call. To process the definition of a macro, the assem­

bler needs to store the name of the macro and the corresponding 

definition for use later whenever a call for that macro appears. 

The macro definition begins with a macro definition directive. 

The action taken in processing a macro definition consists of 

adding the name of the macro to the operation table and adding 

the definition of the macro to the macro definition table.

In a macro call the macro name is written in the opera­

tion field. This is recognized as a macro call by finding 

the name in the operation table where it was placed when the 

definition was processed. The major task in processing a 

macro call is to make a copy of the definition, substituting 

the arguments in the call for the dummy variables in the 
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definition. This copy is 'inserted into the source program in 

place of the macro call. The instructions in the copy must 

also be processed by the assembler in the same way as all the 

ordinary instructions since the inserted instructions may con­

tain literals which need to be inserted in the literal table 

and directives, such as EQU, which define symbols.

4.12 Macro Definitions

The format for a macro definition is as follows:

name MACRO P,, - - - P„ 1 N
— — — 

-- -- I 

END

The. definition begins with the MACRO directive which gives 

the name of the macro and the dummy variables. This is 

followed by a sequence of instructions which is terminated 

by an END directive. The sequence of instructions defines 

the macro. The END directive when used on a macro definition, 

simply indicates the finish of the macro definition.

Figure 4.3shows the processing of the macro definition 

that takes place when the MACRO directive is encountered. This 

flow chart is a patch which is to be inserted between points 

<= and S in Figure 4.1. The first action is to insert an entry 

in the operation table. The entry added to the operation table



Figure 4.3

PROCESSING OF MACRO DEFINITIONS
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contains the name of the nfacro operation. This corresponds 

to the symbolic name of the instruction for machine instruc­

tions. The flag field in the operation table is set to indi­

cate that the operation code is a macro name. Also an index 

is stored in the operation table of where in the macro defini­

tion table the macro definition can be found.

The next step is to scan the operand field of the MACRO 

directive for dummy arguments. Each dummy argument is assigned 

an index number identifying its place in the operand field. 

This index number will be used later to identify the dummy 

arguments appearing in the instruction lines which define the 

macro. 'i

Next in processing the definition is a loop which copies 

the instructions in the definition into the macro definition 

table. Before insertion, the source line is scanned for dummy 

arguments in the label field, operation code field, and operand 

field. The location of the dummy arguments and their identity 

(index number) is noted. Two more are set which indicate the 

positions of the operation code and operand in the source line. 

The source line is packed (no blanks except in literals) and 

inserted into the macro definition table. Also inserted with 

the packed source line are the indexes indicating the identity 

and location of any dummy arguments, indexes to the location of 

the operation code, and operand in the source line prior to 
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packing. The complete macro definition is copied into the 

macro definition table including the END directive. The copy­

ing terminates after the END directive has copied into the 

macro definition table.

4.13 Macro Expansion

When a macro operation is recognized in a macro call, 

two tasks have to be performed; the assembler must be made to 

process each instruction in the definition in the usual way. The 

call arguments must be substituted for the dummy variables before 

this processing takes place. The macro processor tricks the 

assembler and makes it think the lines of the expanded definition 
'i 

are coming from the input file. This is accomplished by moving 

each line from the macro definition table to the input read area. 

Figure 4.4 shows the expansion of the read-next-source-line box 

in Figure 4.1.

Figure 4.5 shows the processing which takes place when a 

macro call is recognized. Figure 4.5 is a patch to be made be­

tween y and g in Figure 4.1. A switch, MS, is turned on (if not 

already on) to indicate that the assembler is expanding a macro 

definition. Since the macro processor allows macro calls to be 

used in defining other macro, a macro call may occur during a 

macro expansion. To handle this situation, the current macro 

expansion is halted, and the correspondence table and index 

to the next line of the current macro are pushed onto a pushdown 

stack.
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EXPANSION OF "READ NEXT LINE" BOX

Fig. 4.4
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PROCESSING A MACRO OPERATION

Fig. 4.5
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From the operation table the index to the macro definition 

of the new macro is obtained. A correspondence table is built. 

This table contains the call arguments in the operand field of 

the new macro call. The call arguments are placed in the cor­

respondence table in the sequence in which they occur in the 

operand field of the macro call. The place of the call argu­

ments in the correspondence table correspond with the identifi­

cation numbers of the dummy variables they are to be substituted 

for.

The macro switch, MS, indicates to the assembler that the 

next source line is to come from the macro definition table 

rather than being read from the input file. This is seen in 

Figure 4.4. Each time the read routine is called, the macro 

switch is interrogated. If the switch is on the next line of 

the definition is copied from the macro definition table into 

the read area. As it is being copied, call arguments are sub­

stituted for any dummy variables which appear in the line. 

The proper substitution is made by examining the indexes placed 

in the macro definition table with the source line. The indexes 

indicate the identification number of the dummy argument and 

where they are located (label field, operation code field, or 

operand field). When a call argument is to be substituted for 

a dummy argument in the source line, the identification number 

of the dummy argument is used to obtain the proper call 
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argument from the correspondence table. The source line is 

also unpacked and re-assembled to its original form. When the 

END directive is encountered the definition has been completely- 

copied. The next step is to check the macro pushdown stack 

for the presence of the correspondence table and index to the 

next line of a previous macro call. If the macro pushdown 

stack contains a correspondence table and a macro table index, 

macro expansion continues with the macro from the top of the 

macro pushdown stack. When the macro expansion has been com­

pleted and the macro pushdown stack has been emptied, the macro 

switch is turned off. Succeeding lines will come from the 

input file.

4.13 Executing the Source Program Across Group Boundaries 

on the Athena 

Provisions must be made on the Athena computer to incre­

ment the drum address portion of the program address register 

when source program execution reaches a drum group boundary. 

When program execution arrives at the last word of say group 3, 

execution does not continue with the first word (location zero) 

of zero 4, but instead, goes back to location zero of group 3. 

To cause execution to continue with location zero of group 4, 

a branch instruction (opcode 200000o) to the first word of the o
next group (in this case location zero of group 4) has to be 

inserted in the source program at location 1023.
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There are three vari'ations to this problem. First, if 

a branch instruction is inserted at location 1023 of a particu­

lar group, the branch instruction cannot be preceded by an 

indexing instruction in location 1022. The solution is to 

move the indexing instruction so that it will follow the 

branch instruction. This is accomplished by inserting another 

branch instruction at location 1022. and move the indexing in­

struction to the first location (location zero) of the next 

group.

A second variation is the presence of a wait partial 

instruction at location 1023 already. No insertion of a 

branch instruction is required in this case. The source 

program is not changed.

A third variation involves storage locations such as 

data words and reserved locations. No branch instruction 

is inserted here.

Pass I is modified as shown in Figure 4.6 to test for a 

drum boundary and make the proper branch instruction inser­

tion if required. This patch in the flow graph of Pass I is 

inserted immediately preceding the start of the processing 

of machine instructions (preceding the test for a label on 

the left side of the flow graph in Figure 4.1).



126

INSERTING BRANCH INSTRUCTIONS AT 
GROUP BOUNDARIES

Fig. 4-. 6
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APPENDIX A

PROGRAM DOCUMENTATION FOR THE ATHENA ASSEMBLER

A.1 General Program Description

The Athena assembler program is written for the Univac 

1108, Exec. 8, system. The language used throughout the 

program is FORTRAN V. ,

The assembler program has two main programs. Program 

MAIN performs the function of Pass I as described in Chapter 

IV. Subroutine Pass II performs the functions of Pass II 

also described in Chapter IV. The functions of Interpass are 

performed by subroutine INTPAS.

The processing of source lines is performed by a series 

of functions, and subroutines, each corresponding to one of 

the' syntactical definitions for the Athena assembly language 

as described in Chapter IV. Functions and subroutines which 

have a corresponding syntactical definition are the following.

ARG - processes the syntactical definition for a "constant"

CHAR - processes the syntactical definition for a "character 

string constant"

DATA - processes the syntactical definition for the "data 

directive"

EQU - processes the syntactical definition for an "equiva­

lance directive"
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EXPR - processes the syntactical definition for an

"expression"

FLOATI - processes the syntactical definition for a 

"floating-point constant"

INTEGR - processes the syntactical definition for a 

"decimal integer constant"

LABL - processes the syntactical definition for a "label"

LITRAL - processes the syntactical definition for a 

"literal"

MACDEF - processes the syntactical definition for a

"macro definition directive" and enters the macro 

definition into the macro definition table

MACOPC - processes the syntactical definition for a "macro 

call"

OCTAL - processes the syntactical definition for an "octal 

constant"

OPRND - processes the syntactical definition for a "machine 

operand”

RES - processes the syntactical definition for a "reserve 

directive"

SYMBOL - processes the syntactical definition of a "symbol"

In addition to the above syntactical functions and subroutines 

the program has numerous utility routines. They are the following.
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ATHENA - converts Univac 1108 Hollerith characters to 

Athena Hollerith characters

DEFLK - looks up symbol in the define symbol (program 

linking) table and returns their value

ENTDEF - enters symbols and their value into the define 

symbol (program linking) table

ENTROP - enters operation codes and associated informa­

tion into the operation table

ENTRSY - enters symbols and their value into the symbol 

table

ERRER - prints out diagnostic,error messages
I

HTONUM - converts the Hollerith representation of an 

integer number to an integer value

ICHECK - scans a character string for a particular 

character or name

LITER - looks up literals in the literal table and returns 

their address

LITPRT - prints out the content of the literal table at 

the completion of the assembly process and 

punches an object program out on paper tape for 

the Athena computer. When triggered by another 

subroutine SETUP, it prints out the content of 

the operation table and macro definition table.

LOCATE - parses the source line and isolates the label, 

operation .code and operand
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LTABLE - enters literals into the literal table if not 

already entered

MACLIN - reads the next line of a macro definition from 

macro definition table, substitutes macro call 

arguments for dummy arguments, and returns the 

macro definition line as a return argument

MACLK - reads a macro definition line from the macro 

definition table

MACTAB - enters a macro definition line into the macro 

definition table

OPLOOK - looks up an operation code in operation table 

and returns its values

OUT - assembles a numeric machine instruction and then 

prints out the location counter, the numeric 

machine instruction, and the source line

PULLAS - pulls information off the macro pushdown stack 

PUSHAS - pushs information onto the macro pushdown stack 

READ - reads the next source line from the input file. 

If the macro switch is on, it reads the next 

source line from the macro definition table.

READF - reads an assembly language instruction line off 

the copy file, unpacks the line, and returns the 

line

SETUP - enters operation codes into the operation table 

and sets a trigger to cause the content of the 
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operation table and macro definition table to be 

printed out

SYMLK - looks up symbols in the symbol table and returns 

their value

UTOATH - converts binary object code to ASC II code useable 

by the Athena flexowriter tape reader

WRITEF - takes an instruction line, packs the line into 15 

words, and then copies the packed instruction onto 

the copy file

A.1.1 Usage 
I

A.1.1.1 Input Description '

Anything input by the user will be read by the input 

routine, READ, and an attempt will be made to assemble it. 

However the program will recognize as legitimate operation codes 

only the following.

1. Machine operation codes given in Appendix E.

2. Macro operation codes entered by the user.

3. Macro operation codes for floating-point arithme­

tic stored permanently in the macro definition 

table.

4. Directives to the assembler such as the DATA, RES, 

DEF, LOG, EQU, and END directives.

These operation codes are explained in detail in 

Chapter III and will not be repeated here.
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The format of the' source line or punched card is free 

form in Columns 1-72. The label field, operation code field, 

and operand field are delineated from each other by blank 

spaces. An * in Column 1 designates the source line as a 

comment statement. The user indicates the completion of in­

put with a dollar sign "$" in Column "I". The dollar sign 

indicates that no more source lines will follow.

A. 1.1.2 Output Description Process

Output of the assembler program is a series of lines 

giving the location counter, the numeric machine instruction 

generated by the source line and the source line. On comple­

tion of the printout of the assembled source program, the 

object program for the Athena is punched out on paper tape. 

It is necessary for the paper tape punch to be turned on before 

the start of the punching of the object program, therefore, as 

an aid to the user, a message is printed out saying "TURN ON 

PAPER TAPE PUNCH". A few seconds then elapsed before the start 

of punching of the object program. After completion of the 

punching, a message is printed saying "TURN OFF PAPER TAPE 

PUNCH."

A.1.1.3 Executing the Athena Assembler From a Teletype Terminal 

Figure A-l shows the statements required to execute 

the program on the Univac 1108, Exec. 8 system from a terminal. 

File ASSEMBLER contains the symbolic, relocatable, and absolute
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Col. 1

"RUN

"XQT

name, i.d., i.d.

ASSEMBLER.MAP1

Source Program

$

"FIN

Fig. A-l. Executing the Athena Assembler 
from a Teletype Terminal 
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elements. The assembler program is assumed to have been 

placed on the files at a prior time using the deck setup 

shown in Figure A-3.

A.1.1.4 Executing Athena Assembler with a Card Deck

In Figure A-2 the deck setup for executing the 

assembler using a card deck is shown. Executing the assembler 

using cards is a debugging aid only. The source program is 

executed on the teletype terminal to obtain a paper tape. 

The deck setup is for execution on the Univac 1108, Exec. 8 

system. The assembler is assumed to have been placed on files 

at a prior time. The file ASSEMBLER contains the symbolic, 

relocatable, and absolute elements of the Athena assembler.

A. 1.1.5 Deck Setup for Storing Athena Assembler on Files 

Figure A-3 shows the deck setup for storing the 

Athena assembler on file. The Athena assembler is placed 

on file to allow execution of the Athena assembler from the 

teletype terminal. The file ASSEMBLER contains the symbolic, 

relocatable, and absolute elements. The absolute element is 

called MAPI.

A.1.1.6 Deck Setup for Entering Macro Definition Permanently 

Into the Athena Assembler Program 

Entering macro definitions into the Athena assembler 

permanently is an aid to users. Storing widely used macro
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"FIN 

$

Athena Assembly Language Program

RUN

Figure A-2

XQT ASSEMBLER.MAPI

"ADD 029*STOP

"ADD 029*START

DECK SETUP FOR EXECUTING THE ATHENA ASSEMBLER 
PROGRAM WITH CARDS.
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"FIN 

IN ASSEMBLER

ASSEMBLER PROGRM CARDS

MAP , I MAP 1, AS SEMBLER. MAP 2

"ASG,UP ASSEMBLER.,F2

"ADD 02.6* START

"ADD 026*STOP

"RUl'J NAME ,i.d. ,i.d,5,150

Figure A-3

DECK SETUP OF PLACING ATHENA ASSEMBLER 
PROGRAM ON FILE.
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definitions permanently irC the macro definition table and their 

names and macro definition index in the operation table makes 

macro definitions easily available to users. Permanent storage 

eliminates the need to supply every macro definition needed 

with the source program on each occasion the Athena assembler 

is used. To facilitate entering macro definitions permanently, 

the Athena assembler uses a utility subroutine, SETUP, to aid 

the systems programmer.

To store macro definitions permanently, macro defi­

nitions must be entered into the macro definition table and the 

macro name and macro definition table index entered into the 
I

operation table. The contents of the macro definition table 

and the operation table must then be printed out. Fortran 

data cards are punched from the printout and entered into the 

body of the Athena assembler program in subroutines MACTAB and 

ENTROP. The Athena assembler is then placed on file again using 

the deck setup in Figure A-3.

Figure A-4 shows the deck setup for entering macro 

definitions into the macro definition table and operation table 

and then obtaining a printout of the contents of these tables. 

The Athena assembler program is assumed to have been placed 

on file previously using the deck setup in Figure A-3. In 

Figure A-4 Cards 3, 4, and 5 insert a call to subroutine SETUP 

in program MAIN. Card 9 is read by subroutine SETUP and causes
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"FIN

$

Macro Definition Cards

"ADD 029*STOP

$

"XQT ASSEMBLER.MAP2

IN ASSEMBLER.

"MAP,IN MAP2,ASSEMBLER.MAP2

CALL SETUP

-46,46

"FOR,S ASSEMBLER.MAIN,.MAIN

"ADD 029*START.

"RUN

Figure A-4

DECK SETUP USED TO AID IN CHANGING THE OPERATION TABLE 
AND ENTERING MACRO DEFINITIONS PERMANENTLY INTO THE 
MACRO DEFINITION TABLE.
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a return in subroutine SETUP to program MAIN after SETUP has 

set a trigger to cause subroutine LITPRT to print out the 

content of the macro definition table and operation table after 

the macro definitions have been entered. The macro definitions 

begin with Card 10.

A.1.1.7 Changing the Operation Codes

Changing the operation codes requires that new 

operation codes first be entered into the operation table and 

then the printing out of the content of the operation table. 

Fortran data cards are punched from the printout and entered 

into the body of the Athena assembler program in subroutine 

ENTROP. Subroutine SETUP aids the systems programmer by 

entering new operation codes into the operation table and 

then sets a trigger to cause subroutine LITPRT to print out 

the content of the operation table. To make use of subroutine 

SETUP, a call to subroutine SETUP must be inserted into program 

MAIN. Comment cards in program MAIN indicate

where the call on subroutine SETUP is inserted.
Figure A-4 shows the deck setup for entering new 

operation codes into the operation table and obtaining a print­

out of the content of the operation table. To enter new opera­

tion codes into the operation table, four data are punched for 

each new operation code and inserted following Card 8 in 

Figure A-4. The first data card has the operation code name 
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starting in Column 1. Any number of characters may be used 

in the name. The second data card has a number in Column 1 

identifying the "type" of operation code involved. The "type" 

number is "6" for all machine instructions. The third card 

gives the numeric value of the operation code. The numeric 

value of the operation code is a six digit octal number start­

ing in Column "1" and is read with a "06" format. The fourth 

card gives the mask to be used in masking off the address (or 

value) before it is added to the least significant bits of 

the numeric operation code to form a complete numeric machine 

instruction. The mask is a 12 digit octal number beginning 
I

in Column "1" and is read with a "012" format. The lower six 

digits of the mask are then used in masking the address. The 

upper six digits of the mask are always "777777" octal. An 

example of a mask for numeric operation code "060000" is 

"777777777400". Numeric operation code "060000" cause the 

content of the magnetic core storage location specified in 

its lower "8" bits to be loaded into the accumulator. The 

mask has its lower eight bits set to "0". The data cards 

for macro definitions starting vzith Card 10 in Figure A-4 

are not required. The last three cards on the deck setup, 

starting with the dollar sign card, are required.

A.1.2 Execution Characteristics



143

A.1.2.1 Program Restrictions 

The Athena assembler program is machine dependent.

Bit level manipulation of data makes the program dependent on 

the particular computer used in executing the program. The 

Athena assembler executes on the Univac 1108 or computers 

similar to the Univac 1108. Features of the Univac 1108 

which the program takes into consideration are the computer 

word length (36 bits per word), the byte length (six bits 

per byte), the computer1 s internal floating-pointing number 

representation, the computers representation for 

numbers (one's complement on the Univac 1108), and a special 
/ 

bit level manipulation function, the field function (FLD).

All subroutines and functions that are machine dependent have 

notations in their listings identifying them as 

machine dependent and indicating the particular statements 

which are machine dependent.

The Athena assembler program assembles 13,106 lines 

of assembly language instructions. No more than 666 labels, 

two characters long or 210 labels, fifteen characters long, 

may appear in the label field of the assembly language 

instructions. The capacity of the symbol table where the 

labels are stored depends- on the length of the labels. No 
1 g 

more than 1000 literals with values less than 2 -1 may appear

in the operand field. No more than 800 literals with values 
18 36greater than 2 -1 but less than 2 -1 may appear in the 
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operand field. The operation table has capacity for 500 

operation codes and macro names two characters in length or 

444 operation codes and macro names three characters in length. 

The longer the operation codes and macro names, the fewer 

that can be placed in the operation table.

The number of lines of macro definition which can 

be stored in the macro definition table depends on the number 

of characters used in the macro definition line. Assuming 

that each macro definition line contains a total of 11 charac­

ters in the label, operation code, and operand, 500 lines of 

macro definition can be stored in the macro definition table.
i

There may be a maximum of'100 symbols, two charac­

ters in length, appearing in the operand field of DEF directives. 

If the symbols are 15 characters long, only 21 symbols may 

appear in the operand field of DEF directives. The number 

of symbols the define symbol (program linking) table will hold 

depends on the length of the symbols used.

A. 1.2.2 Storage Requirements

Code (or instructions) for the Athena assembler occupy 

11628 words of memory. Data occupies 33932 words of memory. 

Total storage required is 45560 words.

A.1.2.3 Run Time

Execution time averaged 40 millisecond per assembly 

language instruction in test runs with the Athena assembler 
program on the Univac 1108 computer.
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A.2 Program MAIN

The MAIN program performs the functions of Pass I. The 

functions of Pass I are described in Chapter IV and will not 

be repeated here.

A. 3 Subroutine Pass II

Subroutine Pass II performs the functions of Pass II as 

described in Chapter IV. The functions of Pass II are de­

scribed very adequately in Chapter IV and will not be repeated 

here.

The calling sequence is
CALL PASS it

i

A. 4 Function ARG

Function ARG is used to examine the operand field for a 

decimal integer, octal constant, floating-point number, or a 

character string constant.

The calling sequence is:

ARG (FIELD, FLDCNT, ARGVAL, CNT, TYPE, PTR)

The function ARG examines the character string in the 

vector FIELD, starting with the character being pointed at 

by PTR, for a decimal integer, octal constant, floating-point 

number or a character string constant. If a constant is 

found, ARG is set to 1, and the value of the constant is 

returned in the vector ARGVAL. CNT is set equal to the number 
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of words of ARGVAL used td store the value of the constant.

PTR is left pointing to the next character in FIELD following 

the constant. If a character string constant is found, TYPE 

is set to 2, otherwise it is set to 1. FLDCNT is the count 

on the number of characters in vector FIELD.

A.5 Subroutine ATHENA i

Subroutine ATHENA converts Univac 1108 octal representa­

tions for characters to their equivalent representation for 

the Athena.

The calling sequence is:

CALL ATHENA (SYMBL, ATHSYM, CNT) 
'i 

The subroutine ATHENA takes a Univac 1108 octal repre­

sentation for a character (for example, the Univac 1108 

representation for "A” is "06g") passed to it in SYMBL and 

converts it to the equivalent octal representation for the 

Athena computer. The equivalent Athena octal representation 

is returned in ATHSYM. As an example, subroutine ATHENA will 

take the Univac 1108 representation for an "A", (06o) , and o
convert it to the Athena computer representation for "A" (61o). o 
Subroutine ATHENA keeps track of the case (upper case or 

lower case) of the characters and prefixes characters as 

required (i.e., places a 74g before a string of upper case 

characters and places a 72g before a string of lower case 

characters). CNT is set equal to the number of bytes being 
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returned in ATHSYM. CNT Will always be 1 or 2.

A.6 Function CHAR

Function CHAR processes a character string constant.

The calling sequence is:

CHAR (FIELD, FLDCNT, STRING, SCNT, PTR)

Function CHAR scans the content of the vector FIELD for 

a character string constant starting with the character 

pointed at by PTR. If a character string constant is found, 

function CHAR is set to 1 and the value of the character 

string constant is stored in vector STRING as a return argu­

ment. . The count of words of STRING needed to store the value 

of the character string constant is returned in SCNT. PTR is 

returned, pointing to the first character beyond the character 

string constant. FLDCNT is the count on the number of characters 

contained in vector FIELD.

If function CHAR does not find a character string constant, 

function CHAR is set to zero and PTR is reset to its original 

value.

A.7 Subroutine DATA

Subroutine DATA processes source lines containing a "DATA" 

directive in its operation code field.

The calling sequence is:

CALL DATA (LINE, LABEL, OPCODE, OPERAND, LABCNT, OPCCNT,

OPRCNT)
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Subroutine DATA processes the "DATA" directive in accordance 

with the value of METHOD. If METHOD = 1, the "DATA" directive 

is processed as needed in Pass I of the assembly process. If 

METHOD = 2, the "DATA" directive is processed in accordance 

with the needs of Pass II. A detailed description of the pro­

cessing of the "DATA" directive on Pass I and Pass II is given 

in Chapter IV.

Passed to subroutine DATA is the source line in vector 

LINE, the contents label field in vector LABEL, the contents 

of the operation code field in OPCODE, and the contents of the 

operand field in vector OPRAND. The count on the number of 
I 

characters in LABEL, OPCODE and OPRAND are stored in LABCNT, 

OPCCNT, and OPRCNT, respectively.

A.8 Subroutine DEFLK

Subroutine DEFLK looks up symbols contained in the define 

symbol table. Symbols which appear in the operand field of 

"DEF" directives are contained in the define symbol table. 

With a call to subroutine DEFLK, the value of any symbol con­

tained in the define symbol table may be obtained.

The calling sequence is:

CALL DEFLK (OP.RAND, OPRCNT, FOUND, VALUE)

Subroutine DEFLK looks up the symbol contained in vector 

OPRAND in the define symbol table and returns its value in 

VALUE. FOUND is set to 1 if the symbol was found in the table.
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FOUND is set to 0 if the symbol was not found. To change the 

size of the define symbol table, change the dimension of 

vector TABLE in subroutine DEFLK and subroutine ENTDEF. Sub­

routine ENTDEF enter symbols into the define symbol table.

A. 9 Subroutine ENTDEF

Subroutine ENTDEF enters symbols found in the operand 

field of "DEF" directives into the define symbol table. The 

value of the symbol is also entered into the define symbol 

table with the symbol.

The calling sequence is:

CALL ENTDEF (OPRAND, OPRCNT) ;
li

Subroutine ENTDEF obtains the value of symbol contained 

in vector OPRAND from the symbol table and enters OPRAND 

and its value into the define symbol table. OPRCNT is the 

count on the characters contained in vector OPRAND. To change 

the size of the define symbol table, change the dimension of 

vector TABLE in subroutine ENTDEF and subroutine DEFLK. Sub­

routine DEFLK obtains values for symbols from the define 

symbol table.

A.10 Subroutine ENTROP

Subroutine ENTROP enters operation code names, macro 

names and directive names into the operation table. Other 

information pertinent to these names is also entered.
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The calling sequence is:

CALL ENTROP (KEY, KEYCNT, TYPE, MACIND, OPCNUM, MASK) 

Subroutine ENTROP enters the operation code name, macro 

name, or directive name passed to it in vector KEY into the 

operation table. The count of characters KEYCNT, contained in 

KEY and the type code, TYPE, are entered with KEY into the 

operation table. The type code, TYPE, identifies the name in 

KEY as a machine operation code, name, macro name, or direc­

tive name. The following type codes are used: TYPE = 1 for 

a EQU directive, TYPE = 2 for a DATA directive, TYPE = 3 for 

a RES directive, TYPE = 4 for a MACRO directive, TYPE = 5 for 
I

a macro name, TYPE = 6 for a machine operation code, TYPE = 7 

for an END directive, TYPE = 8 for a DEF directive, and TYPE = 9 

for a LOC directive. If the name is a macro name, an index, 

MACIND, to the location of the macro in the macro definition 

table is entered into the operation table. If the name is a 

machine operation code, the numeric value of the machine opera­

tion code, OPCNUM, is entered into the operation table along 

with a mask, MASK, for the numeric operation code.

Subroutine ENTROP computes a hash address, KPLACE, from 

KEY which it uses as an index to the scatter table, TABLE. A 

pointer (the current value of PTR) is left in TABLE (KPLACE) 

which points to the place in the operation table storage area, 

FSL (PTR), where the subroutine calling arguments, KEY, KEYCNT,
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TYPE, MACIND, OPCNUM and MASK are stored. A detailed 

description of the operation table is given in Chapter IV.

All operation code names and directive names are stored 

in the operation table permanently. A few macro names are 

also stored permanently, but most macro names are entered on 

a temporary basic as each programmer defines them in his 

particular program. Permanent entries into the operation 

table are made by inserting data cards with the operation 

code name, directive name or macro name and associated in­

formation into subroutine ENTROP. Special provisions have 

been made for assisting the systems programmer in making 

permanent entries into the operation table. A detailed dis­

cussion of these provisions is presented in subroutine SETUP.

The size of the operation table may be changed by 

changing the dimensions of vector FSL in subroutine ENTROP 

and subroutine OPLOOK. Subroutine OPLOOK looks up operation 

codes, macro names, and directive names in the operation 

table.

A. 11 Subroutine ENTRSY

Subroutine ENTRSY enters symbols into the symbol table. 

The value of the symbol is entered also.

The calling sequence is:

CALL ENTRSY (KEY, KEYCNT, VALUE)

Subroutine ENTRSY enters the symbol in 

vector KEY into the symbol table. The symbol character 
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count, KEYCNT, the value of the symbol, VALUE, and the identi­

fication number of the program the symbol is being utilized 

in, are entered into the symbol table. The program identifi­

cation number, PRGNUM, is passed to subroutine ENTRSY through 

a common block from the MAIN program. The program number, 

PRGNUM, allows different assembly language programs to be 

assembled together while using the same symbol table for all 

of the programs. PRGNUM is different for each assembly language 

program. A more comprehensive discussion of the program iden­

tification number is given in Chapter IV in the discussion on 

the END directive, i I
Since a symbol may not be entered into the symbol table 

more than once, a flag is set when the symbol is entered the 

first time. Any attempts to enter the symbol again will result 

in an error message being printed out declaring the symbol to 

be multiply defined.

Subroutine ENTRSY computes a hash address, KPLACE, from 

KEY which is used as an index to the scatter table, TABLE. A 

pointer is left in TABLE (KPLACE) which points to the place in 

the symbol table storage area, FSL (PTR), where the KEY, KEYCNT 

and VALUE are stored. A detailed description of the operation 

of the symbol table is presented in Chapter IV in the discussion 

and data tables.

The size of the symbol table may be changed by changing 

the dimension of vector FSL in subroutine ENTRSY and subroutine 
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SYMLK. Subroutine SYMLK looks up symbols in the symbol table 

and returns their value.

A. 12 Subroutine EQU

Subroutine EQU processes the "EQU" directive.

The calling sequence is:

CALL EQU (LABEL, OPRAND, LABCNT, OPRCNT)

Subroutine EQU processes the label field and operand 

field of an "EQU" directive. The content of the label field 

is passed to subroutine EQU in vector LABEL. The label in 

LABEL is verified to be a legal symbol and then the 

operand field, stored in vector OPRAND, is evaluated 

for an expression, octal constant, decimal integer, or a 

location counter symbol (a dollar sign). LABEL and the value 

of .the operand field are entered into the symbol table.

A.13 Subroutine ERRER

Subroutine ERRER prints out error messages and their 

number.

The calling sequence is:

CALL ERRER (ARG)

Subroutine ERRER writes out an error message and an 

error message number, ARG. When ERRER is called during Pass I 

the error message is written onto File 3 with the rest of the 

source program. During Pass II, the error message is written 

out on the printer.
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A. 14 Function' EXPR

Function EXPR examines the operand field for an expression 

of the form:
octal constant ± decimal integer 

symbol ± decimal integer 

decimal integer ± decimal integer 

dollar sign + decimal integer 

± integer 

± octal constant

The calling sequence is:

EXPR (OPRAND, OPRCNT, VALUE, VALCNT, PTR)
I

Function EXPR scans the operand field in array OPRAND 

for an expression. Function EXPR starts scanning OPRAND at 

the character pointed at by pointer, PTR. If an expression is 

found, function EXPR is set to 1 and the value of the expression 

is returned in array VALUE. VALCNT gives the count on the 

number of words of array VALUE needed to hold the value of the 

expression. The pointer, PTR, is returned pointing to 

the first character following expression.

If no expression is found, the function EXPR is set to 

zero and the pointer PTR is reset to its original value.

OPRCNT is the count on the number of characters contained 

in array OPRAND.
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A.15 Function FLOATI ‘

Function FLOATI scans the operand field for a floating­

point number. If a floating-point number is found, it is 

processed and a value is returned.

The calling sequence is:

FLOATI (FIELD, FLDCNT, FNUM, FONT, PTR)

Function FLOATI scans vector FIELD, starting with the 

character pointed at by PTR, for a floating-point number. 

Function FLOATI searches for a floating-point number with the 

following format.

F* a maximum of 6 digits and a decimal point1 
i 

or F1 a maximum of 6 digits and a decimal point E + 2 digits*

Function FLOATI converts the real number found in the 

floating-point declaration to a floating-point number consisting 

of a fraction and an exponent. The fraction is returned in 

FNUM(l) and the exponent is returned in FNUM(2). The fraction 

is stored in the least significant 18 bits of FNUM(l) , 

left justified to bit 18. If the real number is positive, the 

18th bit will be zero and the 17th bit equal to 1. If the real 

number is negative, the 18th bit is 1 and the 17th bit zero. 

The exponent is stored right justified in FNUM(2) with the 

decimal point to the right of the least significant bit. The 

exponent is an integer number with no offset added to its value. 

The exponent is negative for real numbers less than one. If 
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the real number is zero, FNUM(11, the fraction, and FNUM(2), 

the exponent are set to zero.

If a floating-point number is found, the function 

FLOATI is set to 1. The pointer, PTR, is returned pointing 

to first character to the right the floating-point declara­

tion. If no floating-point number is found, function FLOATI 

is set to zero, and the pointer, PTR, reset to its original 

value.

A.16 Subroutine HTONUM

Subroutine HTONUM converts a decimal number expressed 

as a string of hollerith characters to its equivalent binary 

value.

The calling sequence is:

CALL HTONUM (IV, KOUNT, NUM)

Subroutine HTONUM converts the Hollerith decimal number 

passed to it in vector IV, to its equivalent binary value. 

KOUNT contains a count on the number of Hollerith characters 

being passed to subroutine HTONUM in Vector IV. A single 

Hollerith number in each word of Vector IV is assumed. The 

most significant digit of the decimal number is assumed to 

be stored in IV(1) and IV(2) contains the next most signifi­

cant digit, etc. The binary value of the Hollerith decimal 

number is returned in NUM.
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A.17 Function ICHECK

Function ICHECK examines a string of characters for a 

particular character or string of characters.

The calling sequence is:

ICHECK( VALUE, SYMBOL, COUNT, PTR)

Function ICHECK test to see if next ‘COUNT1 characters 

in the vector VALUE, and starting with the character pointed 

to by PTR (i.e., VALUE(PTR) through VALUE(PTR + COUNT - 1), 

match the characters found in SYMBOL. If a match is found, 

ICHECK returns a value of "1" and sets PTR = PTR + COUNT, if 

not ICHECK returns a value of "0" and PTR remains where it i 
I 

was.

A. 18 Function INTEGR

Function INTEGR examines a string of characters for a 

decimal integer. A decimal integer is defined to be a deci­

mal number consisting of six digits or less.

The calling sequence is:

INTEGR (FIELD, FLDCNT, INTGR, INTCNT, PTR)

Function INTEGR tests the character string in vector 

FIELD, starting with the character point to by PTR, for a 

decimal integer. Scanning continues until the first non­

digit is encountered or until ,,7" digits (one more than the 

maximum digits allowed in a decimal number) have been found. 

If the decimal number contains too many digits, it is truncated 

and an error message is printed out.
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If a decimal integer7 is found, INTEGR is set to "1" and 

the decimal integer is stored in vector INTGR for return.

INTCNT is set equal to the digit count of the decimal integer. 

PTR is set to PTR = PTR + INTCNT.

FLDCNT is the character count in FIELD.

A.19 Subroutine INTPAS i
I 

Subroutine INTPAS performs the duties of described for 

Interpass in Chapter IV. Subroutine INTPAS assigns drum 

storage location to each literal in the literal table. Literals 

are assigned locations beginning with a displacement equal to 

the current program length. The program length is in fact the 
I

value of the location counter at the end of Pass I. It is the 

number of words of machine code generated by instructions, data 

directives and reserve directives in the source program.

The calling sequence is: 

CALL INTPAS

A. 20 Function LABL

Function LABL checks for a legal symbol in the label 

field of a source line.

The calling sequence'is:

LABL (LABEL, LAECNT)

Function LABL checks the content of the label field which 

is passed to it in vector LABEL for a legal symbol. A legal 
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symbol is defined to consist of one to fifteen letters or 

digits, at least one of which is a letter. If a legal symbol 

is found, LABL is set to "1", if no symbol is found, LABL is 

set to "0", if an illegal symbol is found, LABL is set to "-1". 

LABCNT is the character count in LABEL.

A.21 Subroutine LITLK 
i 

Subroutine LITLK looks up literals in the literal table 

and returns their drum location.

The calling sequence is:

CALL LITLK (KEY;KEYCNT, FOUND, VALUE)
I.Subroutine LITLK probes the literal table for the literal 

placed in vector KEY. If KEY is found, its drum storage loca­

tion is returned in VALUE and FOUND is set to logical TRUE. 

KEY.CNT is the count of the number of words of vector KEY re­

quired for the literal.

Subroutine LITLK probes the literal table by first com­

puting a hash address, KPLACE, from KEY which is used as an 

index to the scatter table, TABLE. A pointer, KPROBE, stored, 

in TABLE (KPLACE) points to the place in the literal table 

storage area FSL (KPROBE + 1) where KEY and its drum location 

are stored. If KEY is not stored starting at FSL (KPROBE + 1), 

then the content of FSL (KPROBE) is checked for a pointer to 

the next literal of this chain. If FSL (KPROBE) = 0, then the 

literal is not in the table and the search is terminated. If
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FSL (KPROBE) contains a pointer, KPROBE is set to

KPROBE = FSL(KPROBE) and the next literal on the chain is 

checked for a match with KEY. If a KEY is not found in the 

chain, then the literal KEY is not in the table and FOUND is 

set equal to logical FALSE. A description of the operation 

of the literal table is given in Chapter IV in the discussion 

on data tables. i

The size of the literal table may be changed by changing 

the dimension of vector FSL in subroutine LITLK, subroutine 

LTABLE, subroutine INTPAS, and subroutine LITPRT.

A. 22 Subroutine LITPRT /

Subroutine LITPRT has three functions. It prints out 

the content of the literal table at the end of Pass II. It 

reads the content of the object code copy file and punches a 

paper tape for the Athena. If commanded to by subroutine 

SETUP, it prints out the content of the operation table and 

macro definition table.

The calling sequence is: 

CALL LITPRT

A. 23 Function LITRAL

Function LITRAL examines the operand field for a literal. 

The calling sequence is:

LITRAL (FIELD, FLDCNT, LITVAL, VALCNT, PTR)
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Function LITRAL scarfs the content of vector FIELD, 

starting with the character pointed to by PTR, for a literal. 

A literal is defined to consist of an equal sign in front of 

a constant (= constant) or a constant enclosed in quote marks 

and preceded by a "L" (L ’constant’). The literal is con­

verted to its binary form and returned in vector LITVAL.

VALCNT is the word count of the literal value. PTR is re­

turned pointing to the next character to the right of the 

literal in FIELD.

A. 24 Subroutine LOCATE
Subroutine LOCATE parses the,'source line for the label 

I 
operation code and operand.

The calling sequence is:

CALL LOCATE (CARD, LABEL, LABCNT, OPCODE, OPCNT, OPRAND, 

OPRCNT)

Subroutine LOCATE scans vector CARD for the label, opera­

tion code, and operand. The label and its character count are 

returned in LABEL and LABCNT. The operation code and its 

character count are returned in OPCODE and OPCCNT.' The operand 

and its character count are returned in OPRAND and OPRCNT.

A.25 Subroutine LTABLE

Subroutine LTABLE enters literals into the literal table.
The calling- sequence is

CALL LTABLE (KEY, KEYCNT)
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Subroutine LTABLE erfters the literal contained in vector 

KEY and the word count on KEY, KEYCNT, into the literal table 

if the literal table does not already contain a duplicate.

Subroutine LTABLE uses a hash technique to enter KEY 

into the literal table. A discussion of literal table opera­

tion is given in Chapter IV in the discussion on data tables. 
। 
i 

A. 26 Subroutine MACDEF

Subroutine J4ACDEF processes macro definitions and stores 

them into the macro definition table.

The calling sequence is:

CALL MACDEF (CARD, LABEL, LABCNT, OPCODE, OPCNT, OPRAND, 
i

OPRCNT)

Subroutine MACDEF enters the macro name passed to it in 

vector LABEL into the operation table. Stored with LABEL is 

a flag identifying the content of LABEL as a macro name and 

the index to the definition of the macro in the macro defini­

tion table. The operand field passed to subroutine MACDEF in 

OPRAND, is scanned for dummy arguments. Dummy arguments are . 

stored. The source line is stored in the macro definition 

table. The succeeding lines of the macro definition are read. 

Each line is parsed to isolate the content of the label field, 

operation code field and operand field. Each field is in 

turn checked for a match with each dummy argument. If a dummy 

argument is found in the label field, operation code field or 
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operand field, its identity and the field it is located in is 

noted. The macro definition line is then stored in the macro 

definition table along with the identity and location of any 

dummy argument. Processing of the macro definition lines is 

terminated when the "END" directive is identified on the 

macro definition. 
I

Calling arguments for subroutine MACDEF not identified 

yet are vector OPCODE, LABCNT, OPCCNT, and OPRCNT. Vector 

OPCODE passes the content of the opcode field to subroutine 

MACDEF. LABCNT, OPCCNT and OPRCNT are respectively the count 

of characters in vectors LABEL, OPCODE and OPRAND.
I*

A. 27 Function MACLIN

Function MACLIN reads the next line out of the macro 

definition table, substitutes macro calling arguments for 

dummy arguments, and reassembles the packed label, operation 

code, and operand into an assembler instruction line.

The calling sequence is:

MACLIN (CODE)

Function MACLIN reads the next line of macro definition 

code from the macro definition table. If the line contains 

dummy arguments, the appropriate call argument is substituted 

for it from the correspondence table. The packed macro defini­

tion line is reassembled to its original form and placed in 

vector CODE as a return argument. Function MACLIN is set to 

"I" and a return is made.
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If the next line rest'd from the macro definition table 

was an "END" directive, and the macro pushdown stack is 

empty, function MACLIN is set to "0" and a return is made.

If the next line read from the macro definition table 

was an "END" directive and the macro pushdown stack is not 

empty, the correspondence table and macro definition table 

index is pulled off the pushdown stack. The macro definition 

table index from the pushdown stack is used to read the next 

line from the macro definition table. Using the correspondence 

table just pulled off the pushdown stack, call arguments are 

substituted for dummy arguments in the macro definition line.
I

The packed macro definition line is reassembled to its origi­

nal form and placed in vector CODE as a return argument. 

Function MACLIN is set to "1".

A. 28 Subroutine MACLK

Subroutine MACLK reads a line of macro definition from 

the macro definition table.

The calling sequence is:

CALL MACLK (MACIND, LINE)

Subroutine MACLK reads a line of macro definition.from 

the macro definition table starting at the index passed to 

the subroutine in MACIND. The macro definition line is returned 

in vector LINE.

The size of the macro definition table may be changed by 

changing the dimension on vector MDEF in subroutine MACLK and 
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subroutine MACTAB. Subroutine MACTAB enters macro definition 

lines into the macro definition table.

A.29 Subroutine MACOPC

Subroutine MACOPC processes a call on a macro.

The calling sequence is:

CALL MACOPC (LABEL, LABCNT, OPCODE, OPCCNT, OPRAND, 

OPRCNT, MACIX)

Subroutine MACOPC scans the label field and operand 

field passed to it in vector LABEL, and vector OPRAND for 

calling arguments and builds a correspondence table. The 

index to the macro in the macro definition table is passed 

in MACIX. If a macro was being expanded at the time this 

macro call occurred, the previous macro's correspondence 

table and index to the next line of that macro in the macro 

definition table are both pushed onto the macro pushdown 

stack.

Other calling arguments of subroutine MACOPC are OPCODE 

OPCCNT, LABCNT, and OPRCNT. Vector OPCODE contains the con­

tent of the operation code field. LABCNT, OPCCNT, and OPRCNT 

are the character count in vectors"LABEL, OPCODE, and OPRAND.

A. 30 Subroutine MACTAB

Subroutine MACTAB stores lines of macro definition in 

the macro definition table.
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The calling sequence' is:

CALL MACTAB (CARD, LABEL, LABCNT, OPCODE, OPCCNT, OPRAND, 

OPRCNT)

Subroutine MACTAB stores in the macro definition table 

the content of the label field, operation code field, and 

operand field passed to MACTAB in vectors LABEL, OPCODE, and 

OPRAND. LABCNT, OPCCNT and OPRCNT are the count on the num­

ber of characters in vectors LABEL, OPCODE, and OPRAND, re­

spectively. Stored in the macro definition table with the 

macro definition line are indexes identifying any dummy argu­

ments and their location in the line. Indexes indicating the
i 

original positions of the operatiori code and operand in the 

macro definition line are stored to allow the macro definition 

to be re-assembled to its original form. Also stored in the 

macro definition table with the macro definition line are the 

count on the number of characters in LABEL, OPCODE, and OPERAND.

To change the size of the macro definition table, the 

dimension of vector MDEF is changed in subroutine MACTAB and 

subroutine MACLK.

A. 31 Function OCTAL

Function OCTAL scans the operand field for an octal 

constant. The octal constant is converted to its binary form 

and returned



The calling sequence is:

OCTAL (FIELD, FLDCNT, OCTNUM, OCNT, PTR)
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Function OCTAL scans vector FIELD, starting with the 

character pointed to by pointer, PTR, for an octal constant. 

An octal constant is defined to consist of an octal number 

inside two quote marks and preceded by a "0U (i.e., 0* 12 

octal digits or less*). The octal number inside the quote 

marks is converted from its hollerith representation to its 

binary representation and stored in vector OCTNUM as a return 

argument. 0CNT is the number of words of OCTNUM required to 

hold the octal constant value. PTR is returned pointing to 
i the first character to the right of the octal constant. 

Function OCTAL is set to "1".

If no octal constant is found, function OCTAL is set to 

"0" and the point is reset to its original value.

A. 32 Subroutine OPLOOK

Subroutine OPLOOK probes the operation table for operation 

codes.

The calling sequence is:

CALL OPLOOK (KEY, KEYCNT, FOUND, TYPE, MACIND, OPCNUM,

MASK)

Subroutine OPLOOK probes the operation table for the 

operation code passed to it in vector KEY. If KEY is found, 

FOUND is set to logical TRUE, otherwise FOUND is set to
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logical FALSE. The type ntunber of the operation code is 

returned in TYPE. If the type of operation code is a macro 

call, the index to the definition of the macro in the macro 

definition table is returned in MACIND. If the operation code 

type is a machine operation code, its numeric value is re­

turned in OPCNUM. The numeric operation code mask is returned 

in MASK. i

Subroutine OPLOOK uses hashing techniques to probe the 

operation table. A discussion of the operation of the opera­

tion table is presented in Chapter IV in the discussion on 

data tables. (
I

To change the size of the operation table, vector FSL 

in subroutine OPLOOK and subroutine ENTROP must be changed.

A.3 3 Function OPEND

Function OPRND scans the operand field of a machine 

instruction for a machine operand. A machine operand is 

defined to be an expression, an octal constant, a symbol, a 

decimal integer or a location counter symbol (a dollar sign). . 

A constant or an expression involving only constants is con­

verted to its equivalent binary and'returned. When a symbol 

appears in the operand field alone, the symbol’s address 

(or value if the symbol vzas defined in an EQU directive) is 

obtained from the symbol table and returned as the symbol’s value.
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If the symbol appears in an expression, the value obtained 

from the symbol table is added or subtracted from the decimal 

integer appearing in the expression with the symbol, and re­

turned as the expression’s value. If a dollar sign is found, 

the current location counter value is returned.

The calling sequence is:

OPRND (OPRAND, OPRCNT, OPRVAL, VALCNT, RELABS, PTR)

Function OPRND scans vector OPRAND, starting at the 

character pointed at by pointer PTR, for an expression an 

octal constant, a symbol, a decimal integer, or a dollar sign. 

The operand field is evaluated and its value is returned in 

vector OPRVAL. VALCNT is the count on the number of words of 

OPRVAL used to store the operand field value. OPRCNT is the 

count of characters in vector OPRAND. PTR is returned point­

ing' to the first character to the right of the expression, 

octal constant, symbol, decimal integer or dollar sign.

Argument RELABS is set to "2" if the value returned for 

the operand field is an address. RELABS is set to "1" for a 

constant value. RELABS is provided to make the assembler code 

usable as input to a relocatable loader. RELABS is not used 

as the program is presently set up.

A.34 Subroutine OUT

Subroutine OUT assembles a numeric machine instruction 

and prints it out along with the source line.



170

The calling sequence'' is:

CALL OUT (NUMOPC, MASK, RELABS, OPRVAL, CNT, LINE) 

Subroutine OUT takes the numeric operation code in 

NUMOPC, and the value of the operand field contained in OPRVAL 

and combines them into a single numeric machine instruction. 

In combining NUMOPC and OPRVAL, the upper bits of OPRVAL are 

masked off using MASK to eliminate any bits from overlapping 

into the numeric operation code. The masked off OPRVAL and 

NUMOPC are "anded" together to form, the complete numeric 

machine instruction. The source line number, location counter 

value, numeric machine instructionrand source line, LINE, are
l

printed out. The location counter is increment one.

If the numeric operation code is zero, as with a data 

directive, the content of vector OPRVAL is printed out along 

with the location counter. The source line, LINE, is printed 

out with OPRVAL(1). CNT specifies the number of words of 

OPRVAL to be printed out.

The numeric machine instruction is also copied into the 

copy file for punching the paper tape.

RELABS specifies if the content of OPRVAL is a relative 

address or an absolute value. RELABS is provided to make the 

assembler code usable as input to a relocatable loader. RELABS 

is not used as the program is presently set up. Absolute, 

loading is used. RELABS is equal to "1" if OPRVAL is an 
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absolute value, and "2" i& OPRVAL is a relative address.

A.35 Subroutine PULLAS

Subroutine PULLAS pulls information off the macro 

pushdown stack.

The calling sequence is:

CALL PULLAS (MACIND, CNT, ARGSIZ, ARG, ARGERR) 

Subroutine PULLAS pulls off top of the macro pushdown 

stack the index, MACIND, to the next line of the macro in 

the macro definition table, the count, CNT, on the number of 

calling arguments in correspondence table, a vector ARGSIZ, 

containing the count of the characters in each calling argu­

ment store in the correspondence table ARG. ARGERR is a flag 

stored with the correspondence table, which is set to "1" 

when the number of calling arguments in the macro call is 

less than the number of dummy arguments in the macro definition.

A.36 Subroutine PUSHAS

Subroutine PUSHAS pushes information onto the macro 

pushdown stack.

The calling sequence is:

CALL PUSHAS (MACIND, CNT, ARGSIZ, ARG, ARGERR)

The calling arguments of subroutine PUSHAS are discussed 

in subroutine PULLAS.
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A.37 Subroutine READ *

Subroutine READ reads the next source line from the 

input file, or if the macro switch is set to "1", the next 

source line is read from the macro definition table.

The calling sequence is:

CALL READ (CARD)

Subroutine READ returns the next source line from the 

input file or macro definition table in vector CARD.

A.38 Subroutine READE

Subroutine READE reads a packed assembly language 

instruction line off the copy file, unpacks it and returns 
I 

the unpacked line in vector CARD.

The calling sequence is:

CALL READE (CARD)

A.39 Subroutine RES

Subroutine RES processes the "RES" directive.

The calling sequence is:

CALL RES (LINE, LABEL, OPRAND, LABCNT, OPRCNT, METHOD)

Subroutine RES processes the "RES" directive in accordance 

with the requirements of Pass I if METHOD = 1, and in accordance 

with the requirements of Pass II if METHOD =2. A description 

of the processing of the "RES" directive is presented in 

Chapter IV.



173

Vector LIME contains- the source line. LABCNT and OPRCNT 

give the character count of the label field and operand field 

stored in vector LABEL and vector OPRAND.

A.40 Subroutine SETUP

Subroutine SETUP enters operation codes and directive 

names with associated information into the operation table. 

A trigger is set to cause the operation table and macro defi­

nition table to be printed out by subroutine LITPRT at the 

completion of the assembly process.

The calling sequence is:

CALL SETUP ;
'I

A description of the use of subroutine SETUP in making 

updates to the operation table is given in the front of this 

appendix.

A.41 Function SYMBOL

Function SYMBOL scans the label field or operand field 

for a symbol. A symbol is defined to consist of no more than 

15 letters or digits, at least one of which is a letter.

The calling sequence is:

SYMBOL (FIELD, FLDCNT, SYMBL, SYMCNT, PTR)

Function SYMBOL scans the content of vector FIELD 

starting with the character pointed at by pointer PTR for a 

symbol. The symbol is returned in vector SYMBL and SYMCNT 
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gives the character count bf the symbol. If a symbol is 

found, function SYMBOL is set to "1" and PTR is returned point­

ing to the first character to the right of the symbol in vector 

FIELD.

If no symbol is found, function SYMBOL is set to "0", 

and PTR is reset to its original value.

FLDCNT is the count on characters in vector FIELD.

A.42 Subroutine SYMLK

Subroutine SYMLK probes the symbol table for a symbol 

and returns its value.
The calling sequence is: *

CALL SYMLK (KEY, KEYCKT, FOUND, VALUE)

Subroutine SYMLK probes the symbol table for the symbol 

passed to it in vector KEY. If KEY is found, FOUND is set to 

logical TRUE, otherwise FOUND is set to logical FALSE. The 

value of the symbol is returned in VALUE. KEYCNT is the sym­

bol character count in KEY.

Subroutine SYMLK uses hashing techniques to probe the 

symbol table. A discussion of the operation of the symbol 

table is presented in Chapter IV in the discussion on data 

table.

A.43 Subroutine UTOATH

Subroutine UTOATH takes a 18 bit binary numeric machine 

instruction and converts it to ASCII code usable by the Athena
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tape reader. *

The calling sequence is:

CALL UTOATH (INST, IVEC)

Subroutine UTOATH takes the 18 bit numeric machine code and 

converts it three bits at a time, starting with the three 

most significant bits, to ASCII code readable by the Athena 

tape reader. The Athena tape reader recognizes as octal 

numbers "0" through "7", the ASCII characters @, A, B, C, D, 

E, F, G.

A.44 Subroutine WRITEF

Subroutine WRITEF packs a 82 word assembly language
'I 

source line into 15 words and stores it on the copy file. 

The instruction line is packed to save file space.

The calling sequence is:

CALL WRITEF (CARD)

Subroutine WRITEF takes the 82 characters stored in 82 

words of vector CARD and packs them into 15 word (six charac­

ters to a word). The packed instruction line is then copied 

onto the copy file.
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ERROR MESSAGES

Error Number Error Message

1. Opcode not recognized

2. ' Illegal label; syntax error. 
Label contains a character 
other than a letter or digit 
or only digits.

3. Operand value is too large. 
Truncation possible.

4. Illegal decimal integer

5. The DATA directive below reserved 
more than 100 words 1

6. Operand missing

7. Label appears more than once in 
a label field

' 8. Improper operand

9. Label missing

10. Non-octal number (an 8 or 9) 
appears in octal number declaration

11. Octal number greater than 12 digits 
long.

12. Right quote mark missing.

13. Truncation of an integer number 
has taken place. Integer has more 
than 6 digits.

14. Symbol greater than 15 characters 
in length.
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Error Number ‘ Error Message

15. Bad literal

16. Location counter set to a value 
greater than 8192.

17. Exponent of floating number 
missing.

18. Exponent of floating number 
greater than 38.

19. Decimal point missing in floating­
point number.

20. Character string declaration con­
tains no characters betvzeen quote 
marks.

21. Character string contains more than 
24 characters.

22.
1

Coefficient of floating-point 
number missing.

23. Symbol in operand field has not 
appeared in the label field of a 
statement.

24. Capacity of macro definition stor­
age table has been exceeded. Too 
many macros have been defined or 
else an "END" statement has left 
off a macro definition.

25. An integer number must follow the 
"+" or sign in the expression

appearing in the operand field.

26. Error in macro definition; possibly 
an END statement missing.

27. The symbol appearing in the operand 
field of the DEF directive below 
cannot be entered into the define 
symbol (program linking) table. 
The define symbol table is filled 
to capacity already.
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Error Number ♦ Error Message

28. Need to provide more words for 
data in the operand field of the 
"DATA" directive below.

29. Only one word of storage required 
for literal appearing in the 
operand field of the "DATA" 
directive below.

30. DATA directive is not properly 
suffixed with an integer number.

31. Illegal argument in operand field. 
The operand field of a LOG direc­
tive must contain an integer or 
octal constant.

32. Dummy arguments count in macro 
definition is greater than count 
of calling arguments.

33. Dummy arguments count in macro 
definition does not equal the 
calling arguments count.

34. Argument list too long; greater 
than 20 in length.

35. A character not recognized in a 
character string declaration.

36. Insufficient space allowed for 
insertion of calling arguments 
into macro definition line. 
Truncation resulted at Column 72.

37. Truncation of contents of address 
field of numeric machine instruction 
has occurred.

38. Symbol in operand field of DEF 
directive below has not been de­
fined. The symbol must appear in 
the label field of a statement to 
be defined.
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Error Number , Error Message

39. Dummy argument too long.

40. Macro calls are nested more than 
20 deep.
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ATHENA CHARACTER CODES

Athena Flexowriter 
Symbol

Athena Internal
Code (Octal)

A 61
B ■ 62

C 63
D 64
E 65
F 66
G 1 67

'1
70H

I 71
J 41
K 42
L 43
M 44
N 45

0 46
P 47
Q 50
R 51
S 22
T 23
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space

Athena Flexowriter 
Symbol

, Athena Internal
Code (Octal)

U 24

V 25

W 26
X 27
Y 30
Z 1 31

0 00
1 01
2 02
3 ( 03

4 04
5 05
6 06
7 07
8 10
9 11

1 _ 
t 40

; ,& 60

= f _ 53
f 33
• .73
• 1 / 21

14
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OFF

Athena Flexowriter 
Symbol

♦ Athena Internal
Code COctal)

Stop Code 13

Lower Case 72

Upper Case 74

Carriage Return 20

Tab 36

FC ON 56
0N1-0N2 54

37
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D.1 Floating Add Macro

FA MACRO LAB,L1,L2,L3,L4,L5,L6,L7,A1,A2,B1,B2,C1,C2
LAB LA A2

SA TEMP 2
SB B2
SA TEMPI
BLZ LI
B L2LI LCA TEMPI
SA TEMPI
LA B2 ।
SA TEMP2 iCX 0
CA 0LA Bl
SA TEMP 3LA AlB L3L2 LA AlSA TEMP 3CX 0 1CA 0 'iRS 23LA BlL3 LIR TEMPIINDEX
RS 0AD TEMP 3LIRI -23L4 INC
LS 1OJ L5BIZ L6B L4

L5 RSL 7
SA Cl
CX -16
CA 1
SIR TEMPI
SB TEMPI
AD TEMP 2
SA C2
B L7

L6 CX 0
CA 0
SA Cl
SA C2

L7 EQU $
END
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D.2 Floating Multiply Macro

FM MACRO LAB,L1,L2,L3,L4,A1,A2,B1,B2,C1,C2
LAB LA Al

MP Bl
LIRI -47

LI INC
LS 1
OJ L2
BIZ L3
B LI

L2 RSL 7
SA Cl
CS -35
CA 1
SIR TEMPI
SB TEMPI
AD A2
AD B2
SA C2
B L4

L3 CX 0 i
CA 0 'l
SA Cl 1
SA C2

L4 EQU $
END
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D. 3 Floating Divide Macro,

FD MACRC) LAB,L1,L2,L3,L4,A1,A2,B1fB2,C1,C2
LAB LA 81

RS 6
SA TEMPI
CX 0
CA 0
RS 23
LA Al
RS 18
DV TEMPI
LS 31 ;OJ $+i '
SA TEMPI
LIRI -24

LI INC
LS 1
OJ L2
BIZ L3
B LI

L2 RSL 7 i'SA C1
CX -18 1
CA 1
SIR TEMPI
SB TEMPI
AD A2
SB B2
SA C2
B L4

L3 CX 0
CA 0
SA Cl
SA C2

L4 EQU $
END
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LITERAL
CODE

OCTAL
CODE

PROGRAM CONTROL
REGISTER INSTRUCTION DESCRIPTION

AC 15- 001 101 XXX XXX XXX XXX Transmit rightmost 12 bits of instruction word 
to the X register at bit positions X^2-23* 
quantity of X to the accumulator.

AD 064 000 110 100 dCC CCC CCC Add to contents of accumulator the quantity in 
magnetic core storage and place results in 
accumulator. Check for overflow.

B 20- 010 00D DDD DDD DDD DDD Unconditional Branch. Same as UJ.

BIZ 30- 011 00D DDD DDD DDD DDD Branch (Jump) if contents of index register is 
Zero. Same as JIZ.

BL 22- 010 01D DDD DDD DDD DDD Branch if less than. Same as BLZ and SJ.

BLZ 22- 010 01D DDD DDD DDD DDD Branch if less than zero. The same as BL and SJ.

BNE 24- 010 10D DDD DDD DDD DDD Branch if not equal. Identical to BNEZ and ZJ.

BNEZ 24- 010 10D DDD DDD DDD DDD Branch if not equal to zero. Branches if the 
quantity in the accumulator is not zero. Identi­
cal to BNE and ZJ.

CA 14- 001 100 XXX XXX XXX XXX Transmit the rightmost 12 bits of instruction word 
to the X register at bit positions X12-23- Clear 
the accumulator and add the quantity in X to the 
accumulator.

CJ 36-,37-. 011 11D 000 000 000 000 Coefficient Jump. Jump to a drum group sector in 
drum groups zero, one, or two for an octal code 
of "36" or drum groups four, five, and six for an 
octal code of "37": the specific sector being 
determined by the TARGET pushbutton selected.



LITERAL
CODE

OCTAL
CODE

PROGRAM CONTROL
REGISTER . INSTRUCTION DESCRIPTION

' CX 12- 001 010 XXX XXX XXX XXX Transmit the rightmost 12 bits of instruction 
word to the X register at bit positions Xoo-11-

DA 417 100 001 111 000 000 ppp Same as DD.

OPTIONS:
PPP = 010 Same as TYPED.
PPP = Oil Same as TYPEOL.

DD 017 000 001 111 000 000 ppp Transmit data from a designated source to a 
designated display destination.

OPTIONS:
PPP = 000 Same as TYPEOS.
PPP = 001 Same as TYPEA.
PPP = 010 Same as PRTD.
PPP = Oil Same as PRTO.
PPP = 100 Spaces digital printer.

DV 112 001 001 010 dCC CCC CCC Divide the contents of AQ by a quantity in mag­
netic core storage and place quotient in Q and 
the absolute value of the remainder in the
accumulator.

INC 024002 000 010 100 000 000 010 Increment the index register (IR).

INDEX 024001 000 010 100 000 000 001 Index the following instruction.

INDEXI 024003 000 010 100 000 000 Oil Index the following instruction, then increment 
the IR.
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LITERAL 
CODE

OCTAL PROGRAM CONTROL
CODE REGISTER INSTRUCTION DESCRIPTION

JIZ 30- 011 00D DDD DDD DDD DDD Same as BIZ.

LA 060 000 110 000 dCC CCC CCC Load Accumulator. Clears the accumulator and
adds the quantity in magnetic core storage.

LCA 062 000 110 010 dCC CCC CCC Load Complement into Accumulator. Clears the
accumulator and subtracts the quantity in mag­
netic core storage.

LIR 026 000 010 110 dCC CCC CCC Load Index Register from core storage.

LIRI 52- 101 01X XXX XXX XXX XXX Load Index Register Immediate.

LIRX 426 100 010 110 ddd ddd ddd Load Index Register from Exchange (X) Register.

LS 104 001 000 100 000 0XX XXX Left Shift the quantity AQ by K places (0<K<31) .
Check for overflovz during shifting.

LV 026 000 010 110 dCC CCC CCC Same as LIR.

MP 110 001 001 000 dCC CCC CCC Multiply the contents in the accumulator by the
quantity in magnetic core storage and place the 
result in AQ.

MS 32- 011 01S SSS Manual Stop selective in maintenance condition
or in standby condition for pre-guidance opera­
tions only.

OC 114 001 001 100 dCC CCC CCC If an overflow has occurred since the last OC,
OJ, or WC instruction, store this information.

OJ 26- 010 11D DDD DDD DDD DDD Overflow Jump.

PRTD 017002 000 001 111 000 000 010 Prints 32 least significant bits at AQ in deci­
mal form on digital printer (sign and 7 digits).
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LITERAL 
CODE

OCTAL 
CODE

PROGRAM CONTROL 
REGISTER . INSTRUCTION DESCRIPTION

PRTO 017003 000 001 111 000 000 011 Prints contents of Al in octal form on digital 
printer (8 digits).

RL 66- 110 11D DDD DDD DDD DDD Transmit twelve bits of drum word to lower twelve 
bits of Al.

RS 106 001 000 110 000 OXX XXX Right Shift the quantity AQ by K places (0<K^31q). 
Algebraic sign in A23 is retained and transferred 
to A22.

RSL 506 101 000 110 000 OXX XXX Right Shift the quantity AQ by K places (0-K^31q). 
Complement of algebraic sign is retained (zeros 
shifted in from the left if negative, ones if 
positive)'

RU 70- 111 00D DDD DDD DDD DDD Transmit twelve bits of drum word to upper twelve 
bits of Al.

RW 76- ' 111 11D DDD DDD DDD DDD Transmit drum word to lower 18 bits of Al.

SA 004 000 000 100 dCC CCC CCC Store the contents of the accumulator in magnetic 
core storage.

SB 066 000 110 110 dCC CCC CCC Subtract from the contents of the accumulator the 
quantity in magnetic core storage and place the 
results in the accumulator. Check for overflow.

SI 006 000 000 110 dCC CCC CCC Store the input data in magnetic core storage.

SIR 404 100 000 100 dCC CCC CCC Store contents of index register in core storage.

SJ 22- 010 01D DDD DDD DDD DDD Sign Jump. Same as BLZ and BL.



LITERAL
CODE

OCTAL
CODE

PROGRAM CONTROL
REGISTER INSTRUCTION DESCRIPTION

TD 024 000 010 100 000 000 Oil Transmit the lower twelve bits of the PCR to the 
Discrete Register.

OPTIONS:
II = 00 No effect.
II = 01 Same as INDEX.
II = 10 Same as INC.
II = 11 Same as INDEXI.

TJ 30- 011 00D DDD DDD DDD DDD Test Jump; selective in maintenance condition only.

TP 060 000 110 000 dCC CCC CCC Same as LA.

TQ 102 001 000 010 000 OXX XXX Left Shift the quantity in AQ in K places (0^K^37g). 
After shifting place algebraic sign from A24 to A23.

TN 062 000 110 010 dCC CCC CCC Same as LCA.

TYPEA 017001 000 001 111 000 000 001 Types 18 least significant bits of Al in alphanumeric 
form on flexowriter (3 characters).

TYPED 417002 100 001 111 000 000 010 Types on the flexowriter the contents of the accumu­
lator (bits 8-0) and Q register (bits 23-0) in BCD 
form (sign and 7 digits).

TYPEOL 417003 100 001 111 000 000 on Types on flexowriter the content of the accumulator 
in octal form (8 digits).

TYPEOS 017000 000 001 111 000 000 000 Types 18 least significant bits of Al in octal form 
on flexowriter (6 digits).



LITERAL OCTAL PROGRAM CONTROL
CODE CODE REGISTER . INSTRUCTION DESCRIPTION

UJ 20- 010 00D DDD DDD DDD DDD Unconditional Jump. Same as B.

wc 000 000 000 000 Wait for computation cycle sync.

WL 60- 110 00D DDD DDD DDD DDD Transmit lower twelve bits of Al to drum storage.

WP 34- Oil 10D DDD DDD DDD DDD Wait for Partial Cycle Sync.

wu 64- 110 10D DDD DDD DDD DDD Transmit upper twelve bits of Al to drum storage.

VW 62- 110 01D DDD DDD DDD DDD Transmit lower 18 bits of Al to <drum storage.

ZJ 24- 010 10D DDD DDD DDD DDD Non-Zero Jump. Same as BNEZ and BNE.

CODE :
d Don11 care
C Core address
P Print mode
I Index control
X Constant
D Drum address
S Identification

VO 
<J1


