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ABSTRACT

Presented herein is an analysis of the effects of 

intersymbol interference on the performance of digital 

communication systems operating over channels corrupted by 

Rayleigh fast-fading and additive Gaussian noise. The results 

are applicable to systems employing coherent detection 

schemes.

For mean signa1-to-noise ratios of 15 dB or less, and 

for typical pulse shapes with reasonably well synchronized 

sampling, intersymbol interference is shown to contribute no 

significant amount to the total probability of bit-error 

over the Rayleigh fast-fading channels. (The fraction of bit 

error rate due to intersymbol interference is less than 0.2 

of the total bit-error probability for most cases) As the 

mean signa1 -to-noise ratio is increased to higher levels, 

the effects of intersymbol interference on the performance 

of the digital communication systems become more significant. 

For mean signa1-to-noise ratios of 25 dB or more, the 

incremental bit-error probability caused by intersymbol 

interference begins to play a dominant part of the total bit­

error probability over the bit-error rate due to additive 

noise alone. For mean signa1-to-noise ratios of 45 dB or 

more, the total bit-error probability is almost entirely due 

to intersymbol interference. An irreducible error rate is 

created thereafter due to the severity of intersymbol 

interference. Such results are different from those obtained 

in the absence of fading, in which case the bit-error 



probability at signa1-to-noise ratios in excess of 15 dB is 

almost entirely due to intersymbol interference. They also 

contrast sharply with those obtained in Rayleigh slow-fading 

channels where the incremental bit-error probability caused 

by intersymbol interference is seen to be limited to some 

small fractional part of the total bit-error probability as 

the mean signa1 -to-noise ratio is increased to higher levels.
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CHAPTER I

I NTRODUCTION

The performance of a digital communication system is 

commonly specified in terms of its bit-error probability for 

a given signa1 -to-noise ratio. A number of useful techniques 

have been developed to determine this performance index for 

transmission over channels s ubj ec t to intersymbol interference 

and additive Gaussian noise [1], [2], [3]- The channel models 

used in these developments are all assumed to be time­

invariant; i.e. channel attenuation of the transmitted signal 

is invariant with time.

Now the mere fact that a radio transmitter emits a high 

frequency signal of constant amplitude in no way assures that 

the signal observed at some distant receiving antenna is of 

the same steady nature. In practice, the envelop of the 

received signal is invariably seen to fluctuate in an 

irregular fashion and may well go through several maxima and 

minima in a matter of seconds. These fluctuations have been 

recorded and studied by a number of investigators [A], [5], 

[6], [?]. For observations extending over a period of fifteen 

minutes or less, the variations in envelope size tend to 

follow a Rayleigh distribution, as predicted in the theory 

for multipath channels [8, pp. 527"532].

Some researchers have evaluated the influences of fading 

on the bit-error probabilities of binary data transmission 

systems [9], [10], [11], [12]. But they all assumed a specific

1
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transmission mode or detector during the derivations. In 

addition, none took the effects of intersymbol interference 

into considerations.

Vanelli and Shehadeh [13] applied one of the channel 

models for time-variant systems to evaluate the effects of 

intersymbol interference on Rayleigh fading channels. They 

assumed that the fading rate is so slow that fluctuations over 

several bits may be ignored. This slow fading assumption is 

removed in this thesis which derives a more general integral 

expression for the bit-error probability of a Rayleigh fast­

fading channel with intersymbol interference and additive 

Gaussian noise. Then, numerical integration is used to 

evaluate this integral expression. The amount of digital 

computer time required is modest.

The development is based on a generalized variation of 

the binary baseband channel model. In this model, the entire 

channel response is represented by a single linear filter 

with a Rayleigh distributed multiplicative perturbation 

introduced to account for the fast-fading. The input to the 

filter is an infinite sequence of equiprobable binary 

impulses. Filtered Gaussian noise is added at the filter 

output and decisions at the receiver are based on sampled 

values of this sum. This model is described in detail in 

Chapter III.

The sampled value of the total distortion introduced 

by this channel given the fading effect on a specific bit is 

the random variable which is the sum of the additive noise 
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plus intersymbol interference observed at each sampling 

instant. The bit-error probability conditional on the value 

of the multiplier for that bit can readily be expressed in 

terms of the probability density function of this random 

variable. The density function is the Fourier transform of 

the characteristic function. If the noise and intersymbol 

interference are statistically independent, then the 

characteristic function of the total distortion is the 

product of the characteristic functions of these constituents. 

This conditional bit-error probability is finally averaged 

over the ensemble of values of the multiplicative Rayleigh 

random variable. The result is a formidable looking double­

integral expression for the bit-error probability.

The approach used herein is to eliminate one integral 

by interchanging the order of integration and integrating 

over fading. Then it is shown that the remaining integral 

is remarkably easy to evaluate using the simple trapezoidal 

integration rule.

In Chapters III and IV, the techniques for computing 

total bit-error probability are derived in detail for the 

Rayleigh fast-fading channel. Numerical results are obtained 

and it is seen that the performance degradation due to 

intersymbol interference on the fading channel becomes very 

significant and plays a dominant role when the signal-to- 

noise ratio is increased to higher levels. For a fixed ratio of 

signal to noise there is an irreducible asymptotic probability 

of error (even at large values of signa1-to-noise ratio, the



Il 
bit-error probability can not be reduced below the asymptotic 

value) beyond which the system performance can not be improved 

no matter how large the signa1-to-noise ratio becomes. These 

results are discussed in Chapter IV.

Details of the digital computer programs developed to 

obtain the numerical results are provided in the Appendices.



CHAPTER I I

CHARACTERIZATION AND MODELING

FOR LINEAR TIME-VARIANT CHANNELS [14]

Definition and Characterization 

of Linear Time-Variant Channels

A time-variant channel is one whose input-output 

relationship is not invariant under translations in time. If, 

in addition, the superposition principle holds for the 

channel, it is defined as a linear time-variant channel. The 

most commonly used method of characterizing such a linear 

time-variant channel is the impulse response of the channel.

The impulse response of a linear time-variant channel 

is defined as h^(t,r), the output measured at time t in 

response to a unit impulse applied at time t. For a physical 

realizable channel, h^(t,r) is zero for t<T .

Since the input x(t) can be regarded as being composed 

of weighted impulses,

t

x (t) = x (t ) 6 (t —t ) dr , (1 )

we can write the output y(t) by virtue of linearity of the channel, 

t

y (t) = x (t ) h j (t ,t ) dr (2)

which, for a realizable channel, can also be written as

5
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y (t) = x(t ) h (t ,t )dx
1

(3)

because h (t,r) = 0 for t<r .
1 

Note that in a time-invariant system, h (t,T) would be 
1

a function of (t -t) only, and not of t or T separately.

Other Forms for the Impulse Response

In the function h (t,r) the realizability condition is 
1

that the response be identically zero for t<r. This constraint 

involves both t and t, and therefore is often inconvenient 

to use. In the alternate forms of impulse response now to 

be described, the realizability condition involves only one 

variable.

We define

h (z,t) = response measured at time t = t + z to 
2

a unit impulse applied at time t

h (y,t) = response measured at time t to a unit 
3 

impulse applied at time t - y 

where

t : variable corresponding to instant of observation 

of response,

t : variable corresponding to instant of application 

of impulse excitation,

z : variable corresponding to elapsed time since 

application of input,

y : variable corresponding to age of input.
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The notation of h (z,t) can be said to emphasize the 
2 

"impulse response" character of the quantity described, z

measuring "elapsed time" since the application of the

impulse. The h (y,t) notation emphasizes the "weight function" 
3

character, y measuring the "antiquity" or "age" of the

input. The realizability conditions are zero response for

z < 0 and y < 0 respectively. Of course, h (t,T), h (z,t) 
1 2

and h (y,t) must all be related. The rules governing 
3 

transformation from one form to another are derived from

the relations z = t - t = y between the time-domain variables 

z, t, t, and y.

Separable Time-Variant Systems

A general time-variant system is given in Figure 1.

The received waveform can be written as

CO

r(t) = h (t ,t ) s (t ) dr + n (t) . (4)
-co 1

where h (t,x) is the combination of transmitter, transmission 
1

medium, receiver front-end and detector. For a sampling 

instant of y, the zeroth sampled value of the filter output 

plus noise is

r = r(y) = h (y,T)s(T)dT + n(y). 
0 loo 1

(5)

While some knowledge of the multipath autocovariance
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Figure 1. Model of the General Time-Variant Digital System
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profile can be obtained from (4) [151, one cannot derive 

useful general expressions concerning performance without 

further simplification of the channel model, h (t,x).

Two elementary forms of linear time-variant filters are 

of special interest because of their simplicity and usefulness 

in constructing more complicated linear time-variant filters.

These models are shown in Figure 2. In the first model 

(Type I) the input x(t) is passed through the linear time­

invariant filter f(t) and then multiplied by the function 

g(t) to give the output y(t). In the second model (Type II) 

the input is first multiplied by g(t) and then passed through 

the time-invariant filter f(t).

The impulse response of the Type I model is given by 

hi (t,T ) = f (t-T )g(t) 

o r

h (z ,t ) = f (z) g (t +z) (6)
2 

o r

h3 (y,t) = f(y)g(t)

Notice that these three expressions are of the form

impulse response =

time elapsed since i , instant at which x 
'application of input^output is observed'" 

Similarly the impulse response of the Type II model can be 

expressed in the generic form

impulse response =

/instant at whichx-, time elapsed since x 
^'input is applied' 'application of input7’



1 0

Figure 2. Two Elementary Time-Variant Models

(b)

(a) Type I ; (b) Type II.
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which, in particular, becomes

h 1 (t ,t ) = g (t ) f (t -t ) 

o r

h2 (z ,t ) = g (t ) f (z) (7)

or

h^ (y , t) = g(t-y)f(y)

Because of the form of Eqs. (6) and (7) for h^(y,t) and 

h2(z,T), these will be called separable time-variant systems.

Which model we should use for this study depends 

heavily on the constraints imposed on the channel. If we 

assume the channel be linear, it can be described conveniently 

by the impulse response functions. Additional constraints on 

the channel can now be represented as constraints on these 

functions.

Two basic assumptions made for the time-variant channel 

are

1. it is a Rayleigh-fading channel,

2. the multiplication factor g(t) is a piecewise 

constant function of bit location kT.

The second assumption implies that g(t) is a function of the 

instant at which input is applied. Thus the channel is modeled 

as a Type II system. Further details of the model are discussed 

in Chapter III.



CHAPTER I I I

MATHEMATICAL MODEL OF

THE COMMUNICATION CHANNEL

A simplified block diagram of a typical digital 

communication system is shown in Figure 3- Such a system 

may employ amplitude-shift keying (ASK), frequency-shift 

keying (FSK) or phase-shift keying (PSK). In addition, a 

number of detectors are available for each of these modes.

The intent of this study is not to evaluate any specific 

transmission mode or detector, but rather to deal in general 

with the effects of intersymbol interference on digital 

communication over fast-fading channels. For this purpose, 

it is sufficient to model the typical system as shown in 

Figure 4; i.e. a variation of the familiar binary baseband 

channel .

Signal Source

The system input is modeled as an infinite sequence of 

unit amplitude impulses,

s(t) = E m, 6 (t - kT) 
k=-=o k

(8)

where 6(t - w) is the unit impulse occurring at time t = w.

The binary inputs, m^, are generated with bit rate 1/T and 

are assumed to be equiprobable and statistically independent.

That is

12
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Esti mate 
of Message

Input

Binary 
Message

Figure 3. Typical Digital Communication System



1 4

k=-oo
mk Sample at t = {kT + y}"

Figure 4. Model of the Typical Digital Communication System
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Pr(mk = 1) = Pr(mk = ~0 = 0.5,

Pr(mk| mj) = pr(mk) . (9)

Channel Impulse Response

The transmitter, transmission medium, receiver front­

end and detector are all modeled by a single time-invariant 

linear filter with square-integrab1e impulse response, h(t). 

It is further assumed that h(t) is normalized such that 

h(0) = 1. (10)

It is important to note that inclusion of the detector 

in the linear filter limits the scope of the model to include 

only coherent detection schemes. Noncoherent detectors 

involve non-linear operations which cannot be represented by 

a linear filter.

Two specific impulse responses are considered in the 

examples of the next two chapters. The first of these is the 

Gaussian pulse. This is the limiting shape of a filter 

composed of passive elements. As the number of elements 

becomes large, the impulse response very closely approximates 

the Gaussian shape. It is also the limiting case of maximally 

flat time-delay approximation as the order increases. For the 

cases considered herein, the Gaussian pulse is defined by 

h(t) = exp[- (8t / 5T)2]. (11)

The other impulse response modeled is that of a fourth­

order Chebyshev filter which provides the proper passband 

ripple and drops very abruptly outside the band. This is an 

approximation to the impulse response of an ideal bandlimited 
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filter. For the purposes of this study, the Chebyshev pulse 

is defined by the expression

h(t) = 0.4023 cos(2.839 t/T - 0.7553)exp(-0.458? t/T)

+ 0.7163 cos(1.176 t/T - 0.1602)exp(- 1.107 t/T). (12)

The reasons to choose these filters are

1. their resemblance to typical impulse responses of linear 

filters,

2. the results of performance of time-invariant systems and 

Rayleigh slow-fading channels using these pulses are 

readily obtained and easily compared with those of this 

study .

Intersymbol Interference

The signal overlap into adjacent time slots may, if 

too strong, result in an erroneous decision. This phenomenon 

of pulse overlap and the resultant difficulty with receiver 

decisions is termed intersymbol interference.

It is assumed that pulses separated from the main pulse 

by an interval in excess of KT are greatly attenuated and do 

not contribute significantly to the intersymbol interference 

of the main pulse. This is a necessary and reasonable 

assumption for any practical communication channel [16, pp. 

349-366].

Fading

Fading is defined as the noise which can multiply the 

signal. It is represented by the multiplicative perturbation, 

g(t). It is assumed that g(t) is positive for all t and constant 

over each individual bit period; i.e.

gk = g(kT) > 0, k = 0, +1, +2, ... +K. (13)
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For radio channels subject to purely random multipath 

interference, the instantaneous amplitude of the received 

signal can be shown in theory to follow a Rayleigh distri­

bution [6], [?]. Experimental measurements also strongly 

support this result [4], [5]. Consequently, the Rayleigh 

fading channel is taken as a reasonable model for the purposes 

of this study. Then g(t) is described statistically by the 

densi ty function

P (B ) =0, B < °
gk K k

k = -K, ... K 
26k

- (—)exp(-Bk2 /vk2),Bk> 0 (|1|)

yk

where is the root-mean-squared (RMS) amplitude of g^(t), 

Pk2 - E[g 2(t) 1 .

The operator E denotes the expected value of a random variable. 

It is convenient to consider only the particular case:

ass ume

Pk = 1 k = -K, ... K. (15).

On this assumption, (14) becomes

Pgk<Bk) - 0, Bk < 0

k = -K, ... K.

= 2Bk exp(-B^), 6k > 0 (16)

For a time-invariant channel, 

gk = 1 k = -K, ... K. (1?)

For a Rayleigh slow-fading channel,
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9k : 90 k = -K, . . . K. (18)

For the fast-fading channel modeled herein, represents a 

piecewise constant function; i.e. g(t) is regarded to be 

effectively constant during the course of each signal pulse, 

although varying over a long succession of such pulses.

Additive Gaussian Noise

Additive noise due to the channel is modeled by the 

Gaussian random waveform, n(t), introduced at the filter 

output. This is equivalent to assuming a Gaussian noise 

process for the channel because the receiver is modeled as 

a linear operation and the output of such an operation is 

Gaussian if and only if its input is Gaussian [17, pp. ^7^- 

476]. It is assumed that the noise is zero mean with equal 

variance a2 for each bit interval. Thus n

E[n(t)J = 0

E [n2(t) ] = a2 (19)

and the density function of the random variable obtained by 

sampling n(t) is

Pn (gk) = 1exp ek * 2°n^ k = ~K’ K*
k

(20)

Decision Element

As illustrated in Figure U, the decision element operates 

on the random variable r^, which corresponds to message m^, 

and which is the k*"^1 sampled value of the filter output plus 
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noise, r(t). The output of the decision element is an 

estimate, m, , of m. . ’ k ’ k

For most systems the probability of error for a single 

message element is sufficient to characterize the system 

performance. Hence considering the k = 0 sample, the sampled 

output at t = y may be written 

K
rn = n(y) + £ m.g(kT)h(Y - kT). (21)

k=-K

The summation in (21) is limited to 2K+1 terms on the previous 

assumption that pulses separated from the zeroth pulse by 

an interval in excess of KT are greatly attenuated and do not 

contribute significantly to the intersymbol interference. 

The behavior of g(kT) has been assumed to be piecewise 

constant.

In order to simplify the notation, R will be used in 

place of Tq, h|< in place of h(y - kT), g^ in place of g(kT) 

and n in place of n(y). Then (21) can be written

K
R - N 4- mogoho + E' (22)

k=- K 

where the prime on the summation indicates that the term k=0 

is to be excluded from the sum. In (22), N is the sampled 

value of the noise, the middle term is the channel response 

to the main pulse to be detected and the last term is the 

intersymbol interference. Define

K 
2=2' mkgkhk. (23)
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Then (22) can be wri tten as

R = N + mogoho + Z. (24)

The total interference is therefore

X = N + Z. (25)

This is the sampled value of the total distortion mentioned 

previously. Then (24) can be written as

R = mogoho + X. (26)

For uncorrelated inputs the optimum decision element 

is a fixed level threshold detector set at the mean of the 

additive noise. This follows from the well-known result for 

channels without intersymbol interference [8, pp. 214-219]. 

Since with an uncorrelated input sequence as assumed in (9), 

the intersymbol interference will itself be symmetrically 

distributed about zero, there is no loss of generality to 

assume

h0 > 0. (2?)

The decision logic for the zeroth message is then

Ro > 0 —+ m0 = 1 ,

Ro < 0  > m0 = -1 . (28)

Decision error occurs if Rq is negative while mg=1, or if Rq 

is non-negative while mg=-l.

The Conditional Bit - Error Probability

The probability of error given the value of g0 can
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then be expressed in terms of the relative amplitude of hg 

and X. Thus, making use of (9) and the fact that n(t) is 

symmetric about a zero mean yields

P[e|90=e0] = P[ele0]

= Pr(R>0|m0=-l)Pr(m0=-l) 

+Pr(R<O|mo=l)Pr(mo=l)

= Pr(X>L Bghg I mQ=-1 ) Pr (m0=-1 ) 

+Pr(X<-Boho|m0=l)Pr(m0=l)

= 0.5 Pr(1xl>Boho). (29)

Note that Pr(lxl-@QhQ) = 0 and so this case is excluded.

In terms of P^(g), the density function of the random

variable X, equation (29) may be written as

P[e|90=B0] =-y- -
■oho

p (B)dB.

-Vo

(30)

The density function of a random variable is the Fourier 

transform of its characteristic function [17, P- 155]- For 

the example considered herein, it will be shown that M (x), 

the characteristic function of X, is an even function. Thus

pY(8) = J- M (X) 
X Zir J X cos(Xg)dX

and (30) becomes ,< h 00
• 00

r[elg0=B0J » ------ 1^— Mx(A)cos(XB)dAdB.

-B0h0

Interchanging the order of integration, and integrating over g

yields
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P[e|90=%]=^-----------— --------------------LMx(x)dX
D 

(31)

where the range of integration has been reduced since the

integrand is an even function of X. This provides P[e|Bq1 in 

terms of the characteristic function of the total distortion

X.

The characteristic function of the additive Gaussian 

noise alone is also an even function, (31) may be written as

p f I a 1 — 5in(^00)M/A\,A
l>[e|60l - --- -----------— ---------j----------- MN(x)dX

00 V

+J sh1P_^J10).[Mn(a)-Mx(a) ]dA (32) 

i)
The first two terms in this equation are independent of the 

intersymbol interference. On the other hand, in the absence 

of intersymbol interference, Z = 0 and X = N, thus M^(x) is 

equivalent to M^(x) and the third term vanishes. So it is clear 

m gg caused by additive

sin(. ■xoh°)MN(x)dX, (33) 

)

i gg due to intersymbol

-[Mn(x)-Mx(x) ]dx (34)

that the probability of error gi 

Gaussian noise alone is

Pg [e I Bg] = -2 —

the probability of bit error giv 

interference alone is

0

and

P[e| %] = Pg[e| Bgl + Pz[e| Bgl • (35)

As will be seen in the next chapter, these expressions 
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are not so formidable as they might seem at first glance.

Signal - to - Noise Ratio

For a specific fading channel, the mean signa1 -to-noise 

ratio, p, refered to herein is defined as the ratio of the 

mean sampled signal power to the RMS noise power. For the 

purpose of this definition, it is assumed that the signal 

sample is taken at the optimum sampling instant,y = 0. Thus

p = h2(0)p2/p2.

Making use of assumptions (10) and (15) yields

P = 1 (36)

Or, as it is customarily expressed in decibels,

p = -20 log10(an) dB. (37)



CHAPTER IV

NUMERICAL DETERMINATION OF BIT-ERROR PROBABILITY

FOR THE RAYLEIGH FAST-FADING CHANNEL

For Rayleigh fast-fading channels,

R = r0,

N = n ,

K
Z = E 1 m. g . h.

। k k k

(38)

Characteristic Function of the Additive Noise

The random variable n is a sample from the Gaussian 

process n(t). Thus it is a Gaussian random variable with 

density function as in (20) and has the familiar Gaussian 

characteristic function [17, pp. 159~l60],

Mn(X) = exp(-X2a/2). (39)

Note that M.,(x) is an even function of X. N

Characteristic Function of the Intersymbol Interference

The density function of the intersymbol interference is 

rather difficult to determine. However, the characteristic 

function of the intersymbol interference given gn, M7।  (X)
u z|90-B0 

can be obtained as follows.

The definition of the characteristic function of a

random variable X is

Mx(v) = E[ej vX] = fx(X)ej vXdX, (40)

24
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where is the probability density function of X.

It is also known that the characteristic function of 

a sum of independent random variables is equal to the product 

of their individual characteristic functions [ 17 , pp. 213“214]. 

Now define

Zk " mk9khk'

Lk " mkhk.

Then (38) becomes

K K
Z = E ' Z, = E ' g. L.

k-K k k-K k k

and 

K K
m7|r (x) = m7(x) = n' M (x) = n1 m . (41)
Zl60 z k=-K Zk k=-K gkLk

Note that Z is independent of 9q.

With reference to assumptions in (9)» the density 

function of the random variable is clearly

PL (g) = O.56(g+hk) + O.56(B-hk). (42)
K

With reference to (16), the density function of random 

variable g k is

p (Bk) - 0, B < 0
3 k

k = -K, . . . K.

= 2Bk exp(-B£) , Bk >_ 0

The density function of Zk is the joint density function
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of and the density function of g^; i.e.

PLk9k"

It is evident that L. assumes only two values : h. or -h,. k k k

Once it is determined, becomes a constant multiple of g^.

Thus

PZ (wk}
Zk K

Wk
exp (-t-z) 

nk
w. > 0. k—

(43)

Note that it is an even function of w^. Evidently

P (w ) > 0 ,
Zk K

pz.(wk,dwk ■ '•
-co

(44)

The expected value of any function of Z^ can be defined

in terms of this density function [17, pp. 138-139). Thus

(45)

The above follows

This integral can be evaluated by referring to a table

E [exp(jXwk)]m7 (X) 
k

2

because (w|<) ■s an even function of w^. 
zk

“k

exp(jXwk)Pz (wk)dwk
L k

wk 
exp(------)exp(j Xwk)dwk

hk

“k
exP(~h 2 cosXwkdwk. 

k
Wk

i)

of definite integrals [18, p. 175), yielding
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MZ (A) z (2n + l) 1 (Xhk) n- (Z16)

1)

k n = 0

Combining this result with (M) provides the expression

K
M (X) = n1 M7 ,Xx 

k=-K 4kl 1

* K = . Tri7TTT(lhk)2n-

Note this is also an even function of x*

Characteristic Function of the Total Distortion

There is no statistical relation between N and Z; N and Z 

are statistically independent. Consequently the characteristic 

function of the random variable X = N + Z must be

MX(X) = MN(X) MZ(X)

9 K oo
= exp(-X a2 /2)n* Z (- 1 ) n1 z A, x2n (^8)

n k=-K n = 0 (2n+l ) 1 Uhk?

Thus M^Cx) is also an even function ofX . As noted earlier, 

this is a necessary condition for (31) to hold.

Integral Equation for the Conditional

Bit-Error Probability

Equation (31) can be written in terms of the 

characteristic function of N and Z,

Dr I oi 1 1 f s i n (A ^0 ^0) r 1 ” (-1)%!/... \2n-. , ^2 2n\AX
Ptolao-y-zV ---------X-----------[”_.K ;.o(2n*l)l(>hk) %2/2>di

(^9)
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for the Rayleigh fast-fading channel.

The integral in (49) can be evaluated by expanding the 

integrand in a power series [2], [3]. The computational 

efficiency of this sort of approach relies on the existence 

of recurrence relations for successive terms in the expansions. 

Such an approach is not satisfactory for this study because 

the known recurrence relations for the series expansions no 

longer apply.

The Small Difference Problem

The most straightforward approach to evaluating (49) 

using a high-speed digital computer is to use a numerical 

scheme of some sort. If this is to be accomplished, one must 

overcome the problem that in (49), P[e|Pq] is expressed as a 

small difference between two relatively large numbers. The 

slightest error in evaluating the integral drastically 

affects the result for P[e|Rq].

Fortunately, the problem described above can be 

circumvented by using the equivalent expression (33), (34) 

and (35) in place of (31)- Then

Pa^ISo1 = I " 7 1 Sin ' XX"9 0)exp(-X2a2 /2)dX (50)

1)

K 
[ 1 -n1 

k=-K

‘s i n (X60h0)

X

Pz[e| Bq]=1
Tf

0

= ji^Tn"(lhk,2niexp("x2an/2)di- 

n = 0

(51)

With regard to (50), reference to a table of definite 

integrals [19,P-4951, yields the relation
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_3— s i n^ay) cxp (yjy = er f (a/2)

0 
where erf(w) is the error function, defined by

0< erf(w)

w
2 

exp(-£ )d£<

Substituting in (50) as follow

gives the resu1t

y = an/2

a ^ohO,/2 * an

P0^elP0^ = 0,5 [1-erf(Boho / on/2)]

= 0.5 erfc(Boho / an/D , (52)

where erfc(w) = 1 - erf(w) is the complementary error 

function. Combining (51) and (52) yields

or iD i 1 r /60h0x 1 fsin(AB0h0)
P[e Bnl = y erfc(7-------) + ~ -------—i------- -

1 U Z O rr- IT An /2 
t)

[1-n* Z /Onllli(Xh.)2n]exp(-X2q2 /2)dX. 
k=-K n=0VZn U' K n

(53)

Integral Equation for the Total Bit-Error Probability

The above expression for bit-error rate in (53) is 

derived on condition that g^ is known. Actually g^ is a 

random variable of Rayleigh distribution. To obtain the 

total bit-error rate of the fading channel, it is appropriate 

to average the conditional bit-error rate over the ensemble 

of values of g„. Thus, 3 o
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f "eo2 *

2 2B0e 5 --n-™exp ( - X 2a 2/2) d Xd R .
ir X r n 0

p = 230e P0[e|%]dB0
0

“ -%2
= gQe erfc (BqKq //~Tan)dg0. (54)

0

It is convenient to define

Y - 902 /a2,

y = E [y] = E[g 2] /a 2 = 1 /a 2.
0 U n n

Note that the RMS amplitude of g0(t) is assumed to be 1.

Substituting into (54) yields

P = —-— —-— exp (-—) e r f c (h _ y/2)dY-
e0 2 Yo Yo 0

0
Reference to a table of definite integral [19, p. 649] gives

? = 4- (1 - ------------ ------------- ) • (55)
eo 2 v---------------------

1 + 2 a 2/ h ? 
n 0

whichAnother approach will lead to the same result i s

shown below.

(56)P

o

-%2
eo

2e0e

Substituting (50) into (56) gives

— Q 2 > R h
Pe0 = Poe ° [I " 7 j510' x° 0)exp(-X2o2/2)dX]dP0 

0 0

7 -e2 71 1 0o P0 /ARnhnx
(57)
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Interchanging the order

a table of integrals [20, p. 236] yields

(58)

definite integrals [20, p. 230]Again, reference to a

gives the resu1t

1 (59)2.
2

of integration, and integrating over 

P 
eo

0 
table of

n' 0

Bq using a reference to

Pe0 " exp(-h^X2/4 - o2X2/2)dX.
ho

2/r

This is the average bit-error rate due to additive Gaussian 

noise alone.

The same method also applies to calculating the bit-

(60)

(60) givesSubsti tut i ng

0

(61)exp(- X

integrating overI nterchanging the order of integration and

integrals [20, p .

2 
ir Y.

n = 0

f

K 
n1 
k=-K

2%2

 o 2%

p
ez

Xe0h0)
p
ez

p
ez

/2)dBQdX.

error rate due to intersymbol interference,

(-1)n!( , x2n 
(2n + l ) !

0
(51) into

 o 2“ A
2 BqC P^ [ e | Bq ] d Bq .

2B0e

3q using reference to a table of definite

s i n
X

236] yields the relation

P 
eZ

h0

2 /-

K 00 / 1 \ n । q
[ 1 - H 1 Z / 2n+ ] ) i ( x h k n] exp (-h 2X 2/l<-a 2X 2/2) dX.

k=-K n=0 ' ' *

0
(62)
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Combining (59) and (62) yields

K “ ( 1 in I 9[1- n' X n- (xh.)2n]exp(-h^X2/4-a2X2/2)dX.
k=-K n=0 (2n+l)! k 0 n

(63)

This last equation is much better suited for numerical 

integration because the integrand is now everywhere much 

smaller relative to Pe and because Pe is now expressed as 

the sum of two small positive terms. In fact, the "small 

difference of two relatively large quantities" has been 

moved into the integrand of (63).

Truncat ion Error

In order to make numerical integration practical, the 

infinite integral in (63) must converge in such a fashion 

that it can be truncated at some relatively small upper

limit without introducing excessive error. Call this limit

A and let the truncation error be designated E^.. Then

exp(-h2X2 /^- a2X2/2)dX, (6M

and

Of K n
ET " W l' ' k^-K n-0 ^l(Ahk)2"]exp(-b2A2/.-„2x2/2)dx.

A n ‘ (65)
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In order to obtain an easily evaluated upper bound for

E^., observe that the series in the bracket can be represented 

by a closed-form expression [21, p. 85],

2 —-———— (Ah, )2n = —exp (-h.2A 2/4) erf i (Ah, /2)
n=0 (2n+l)! k Ahk k k

(66)

where erfi(x) is the error function with imaginary argument;i.e.

x

erf i (x)

Substituting (63) into (60)

t2 
= e d t.

0
yields

Pe - T<’ - ' ।

’/|+2%2 /h0

hn f K 9
+------ r 1 _ IE1 — - exp (-h 2X 2/4) e r f i ( Xh,/2) ] exp (-h 2X 2A

2VtT 1 k=-K Xhk k k °
0

- an2X2/2)dX.

Substituting x = Xh^ gives the result

(67)

X
t2

e d t) ] exp (- h 2X 2/4 - a^X 2/2) dX .

(68)

The factor inside the parenthesis is in the fami1iar.form of

Dawson Integral divided by x. Reference to a table of Dawson



34

Integral [22], [23] yields the relations,

Thus
0

(69)

■I A 2
Ey <_ ------ exp(-h2A2/4 - a2A/2)dX , (70)

2 VtT

which can be expressed in terms of the complementary error

function by substituting n (6?) as follows ,

y = V "
h 2/4 + a 2/2 

u n

Then the result is

%________ e r f c (A / )

T - U ]--------------------- h0/,, + an /2 '
h4 + a 2/ 2 

0 n

(71)

Since erfc(w) is well tabulated. E^. can be upper-bounded 

easily enough from (71). Or conversely, if a maximum 

tolerable truncation error is known, then a minimum value 

can be found for the upper limit of integration, A.

Although the closed-form expression (66) looks easier 

to evaluate, it will be necessary to approximate the function 

e r f i (x) by a power series expansion which leaves the expression 

for bit-error probability no simpler than (64). The computer 

time required to execute the calculation is expected to be 

the same. Thus, (64) is used to calculate the result.
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The formula for integration between 0 and A using the 

elementary trapezoidal rule is

A j
f(y)dy : —[f(0) +f(A)] + A S f(j A) (72)

2 j = l

u 0where

A = A/J.

If A and J are made to tend to infinity in such a

manner that A remains fixed, (72) becomes [24]

f(y)dy = y f(0) + A E f(jA) + cT (73)
j = 1

0

where

e  = -2 E F (2 j it / A) ,
j = l

an d

F (w) = f(y)cos(wy)dy .

0

If f(y) is an even function such that the error term becomes 

negligibly small, the trapezoidal integration rule may be 

used with arbitrarily small errors [25].

Determination of Terms Used in the Series Expansion

The series in the bracket of (65) for calculating P 
eZ 

decreases very rapidly as n increases.

Convergence tests were run using different values of 

n (n = 1 to n = 10). The results show that n = 3 provides 

in excess of seven significant digits accuracy for P for 
eZ 

both Gaussian and Chebyshev pulses.
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Magnitude of Integration Error

A direct evaluation of the Fourier coefficients in (73) 

is difficult, if not impossible. Therefore, in order to 

determine a suitable value for A in the trapezoidal integration 

rule, the digital computer program was modified to allow 

calculation of P for a given data point using a range of 
z 

values for A.

Convergence tests were run using this modified program.

The results are presented in Table 1 for the Gaussian pulse 

with K = 2, Y = 0 to 0.4T, and with signa1-to-noise ratios 

ranging from 0 dB to 35 dB. Similar data are shown in Table 

2 for the Chebyshev pulse with K = 20, Y = 0 to 0.2T and with 

the same range of signa1-to-noise ratios. In all cases, A 

was varied between 0.6 and 3-0 in steps of 0.2. The upper 

limit of integration, A, was selected to keep less than 

-1 410 for all data points.

Interpretation of data in Tables 1 and 2 shows that a 

choice of = 1.2 assures convergence to within 0.02 of the 

correct values for P at all signa1 -to-noise ratios. The 
z 

worst cases are seen to occur at very low signa1-to-noise 

ratios which are probably not of much practical interest. In 

the middle range of signa1-to-noise ratios, A = ],2 typically 

provides in excess of six significant digit accuracy.

The Bit-Error Probabilities 
for the Rayleigh Fast-Fading Channel

In order to systematically determine P , P and P 
e e0 ez
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Table 1. Convergence of Numerical Integration for the

Rayleigh Fast-Fading Channel, Gaussian Pulse

Step 
size,

A

Calculated value for P with e
z

dB

Y = 0

p = 30 dBp = 0 dB p = 15

3.0 2.2046 x 10-5 1.7264 x 10"3 1.9845 x 1o"3

2.8 4.2839 x 10-5 1.9217 x 10"3 2.1738 x 10-3

2.6 7.7193 x IO-5 2.0737 x 10"3 2.3146 x 10~3

2.4 1.2867 x 10"4
2.1759 x 10"3 2.4041 x IO-3

2.2 1.9781 x 10-2* 2.3830 x 10"3 2.4502 x IO-3

2.0 2.7942 x IO-4
2.2555 x 10"3 2.4678 x IO-3

1.8 3.6129 x IO-4 2.2621 x 10"3 2.4723 x IO-3

1 .6 4.2701 x 10-4 2.2631 x 10~3 2.4729 x IO-3

1 .4 4.6484 x 10 2.2632 x 10"3 2.4729 x IO-3

1 . 2 4.7762 x IO-2* 2.2632 x 10"3 2.4729 x IO-3

1 . 0 4.7937 x IO-2* 2.2632 x 10"3 2.4729 x IO"3

oo 
o -4

4.7942 x 10 2.2632 x IO-3 2.4729 x IO"3

0.6
-4

4.7942 x 10 2.2632 x IO-3 2.4729 x IO"3
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Table 1. (concluded)

Step 
size,

A

Calculated value for P e

dB

with
z

Y = 0.41

p = 30 dBP = 0 dB P 15

3.0 5.9103 x 10"2* 4.6148 X io"2 5.2967
-2 x 10

2.8 9.9616 x IO”2* 4.9619 X
1 o~2 5.8522 -2 x 10

2.6 1.5717 x 10"3 4.9737 X
IO"2 5.8494

-2 
x 10

2.4 2.3161 x 10"3 4.9601 X
IO"2 5.8123

-2 
x 10

2.2 3. 1 787 x 1 0"3 4.9058 X
io"2 5.7111

-2 
x 10

2.0 4.0515 x 10"3 4.7758 X
10-2 5.5002 -2 x 10

1.8 4.7888 x 10~3 4.9665 X
io’2 5.8248 -2 x 10

1. 6 5.2699 x 10"3 4.8995 X
10-2 5.7039

-2 x 10

1 .4 5.4816 x 10"3 4.9620 X 10-2 5.8167
-2 x 10

1 .2 5.5310 x 1O-3 4.8485 X io"2 5-6224 x IO-2

1 . 0 5.5350 x IO"3 4.8645 X 10-2 5.6493 x IO-2

0.8 5.5350 x 10~3 4.9339 X io’2 5.7663
-2 x 10

0.6 5.5350 x IO"3 4.8937 X 10-2 5.6985
-2 x 10



Table 2. Convergence of Numerical Integration for the

Rayleigh Fast-Fading Channel, Chebyshev Pulse

39

Step 
size,

A

Ca1culated va1

p = 0 dB

ue for P with y = 0

P = 15

z

dB P = 30 dB

3.0 1.0100 x 10"5 7.9099 X
io"4 9.0926 -4 x 10

2.8 1.9612 x IO-5 8.7988 X
io"4 9.9536 x 10~4

2.6 3.5316 x 10~5 9.4896 X
io"4 1.0592 x 10"3

2.4 5.8833 x 10-5 9-9528 X
io"4 1.0998 x IO*3

2.2 9-0394 x IO-5 1.0207 X 10"3 1.1206 x IO"3

2.0 1 .2762 x 1 0-Zt
1.0313 X IO-3 1.1286 x IO"3

1.8 1 . 6494 x 1 O-21 1.0342 X
io"3 1.1305 x IO"3

1 .6 1.948? x IO"2* 1.0347 X io~3 1.1308 x IO"3

1 .4 - 42.1207 x 10 1.0347 X io"3 1.1308 x IO-3

1 . 2 2.1788 x 1 O-2* 1.0347 X io"3 1.1308 x IO"3

1 . 0 2.1867 x 1O-4 1.0347 X 10~3 1.1308 x 10~3

0.8 2.1 869 x 1 O'4 1.0347 X io"3 1.1308 x IO"3

0.6 2.1869 x IO-4 1.0347 X io"3 1.1308 x IO"3
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Table 2. (concluded)

Step 
size,

A

Calculated

P = 0 dB

value for P e 
z

with Y = 0.2T

P = 15 dB P = 30 dB

3.0 2.0882 x IO"4 1.6399 x 10 -2 1.8878
-2 

x 10

2.8 3.9419 x 10"4 1.7789 x 10 -2 2.0174
-2 

x 10

2.6 6.9142 x 10-2* 1.8791 x 10 -2
2.1059

-2 x 10

2.4 1.1243 x IO-3 1.9405 x 10 -2 2.1567
-2 

x 10

2.2 1 . 6893 x 1O-3 1.9707 x 10 -2
2.1797

-2 
x 10

2.0 2.3372 x 1O-3 1.9817 x 10 -2 2.1873
-2 x 10

1.8 2.9671 x 10~3 1.9842 x 10
-2 2.1888

-2 x 10

1.6 3.4545 x IO-3 1.9845 x 10 -2 2.1890
-2 

x 10

1 .4 2.7222 x IO-3 1.9846 x 10 -2 2.1890
-2 

x 10

1 . 2 3.8070 x IO-3 1.9846 x 10 -2 2.1890
-2 x 10

1 . 0 3.8177 x IO-3 1 . 9846 x 10 -2 2.1890
-2 x 10

o 00 3.8179 x IO"3 1.9846 x 10 -2 2.1890
-2 

x 10

0.6 3.8179 x IO-3 1.9846 x 10 -2 2.1890
-2 x 10
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for the Rayleigh fast-fading channel, the digital computer 

program is written to allow the user to specify the pulse 

shape and a range of sampling instants and signa1-to-noise 

ratios. Details of this final version of the program are 

given in Appendix Bl.

Plots of P and P versus signa1-to-noise ratio, as 
z

obtained using the program, are shown in Figures 5 - 9 for

the Gaussian pulse. Curves for sampling instants of 0, 0.1T, 

0.2T, 0.3T and 0.4T are shown individually. Five pulses were 

used in the approximation of h(t) for these curves; i.e.

K = 2. For the Gaussian pulse, use of K greater than 2 affected 

the calculated values for P only after the eighth significant 
ez

digit. This was determined by running convergence tests for 

K.

The curves for Figures 5 ~ 9 were drawn from a total of

70 points. Execution time to compute P , P and P for all 
e0 ez e

these points was 15-A seconds using A = 0.6. The limit of

-1 4integration. A, was selected to hold E^. below 10 for all 

cases.

Performance with the Chebyshev pulse was also evaluated.

Plots of P and P versus signa1-to-noise ratio are shown in e e z
Figures 10 - 14 for this case. Curves for sampling instants 

of 0, 0.05T, 0.1T, 0.15T and 0.2T are shown individually. 

Forty-one pulses were used in the approximation of h(t) for 

these curves; i.e. k = 20. This is determined by running 

convergence tests for K. For this pulse shape, the use of more 

pulses affects the values calculated for Pe only after about
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Figure 6. Performance of Rayleigh Fast-Fading Channel:

Gaussian Pulse, y = 0.1T
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Figure ?. Performance of Rayleigh Fast-Fading Channel:

Gaussian Pulse, y = 0.2T
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Figure 8. Performance of Rayleigh Fast-Fading Channel:

Gaussian Pulse, y = 0.3T
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Figure 9. Performance of Rayleigh Fast-Fading Channel:

Gaussian Pulse, y = O.^T
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Figure 10. Performance of Rayleigh Fast-Fading Channel:

Chebyshev Pulse, y = 0
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Figure 11. Performance of Rayleigh Fast-Fading Channel:

Chebyshev Pulse, y = 0.05T
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Figure 12. Performance of Rayleigh Fast-Fading Channel:

Chebyshev Pulse, y = 0.1T
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Figure 13- Performance of Rayleigh Fast-Fading Channel:

Chebyshev Pulse, y = 0.15T



1 51

B it-Error

Probability

1 o"3

0 5 10 15 20 25 30 35

Mean Signa 1 - to-Noise Ratio in dB

Figure 14. Performance of Rayleigh Fast-Fading Channel:
Chebyshev Pulse, y = 0.2T
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the seventh significant digits.

This set of curves was also drawn from a total of 70 data 

points. The execution time was longer, being 17»691 seconds, 

due primarily to the large value of K. The limit of integration 

-1 4was again chosen to hold at less than 10 and a step size 

of 0.6 was used.

Further, it should be noted that the larger sampling 

instants of 0.2T to 0.4T for the Gaussian pulses and 0.1T to 

0.2T for the Chebyshev represent operationally poor situations 

that are not usually encountered in practice.

Asymptotic Behavior of P 
z

In order to study the behavior of P , the series expansion 
z

in (62) is approximated by the sum of the first two terms ;i.e.

n = 0 and n = 1. P is then calculated with the Gaussian e z
pulse shape, K = 1 and y = 0. Reference to a table of definite

integrals [20, p. 236] yields the relation

, h
Pe 2 2.5x1 0-4 ------------- . (74)

Z (h2/4 + 0n2/2)

This expression is not very accurate for practical calculation,

but it gives a clear relation between P and o2. Combining 
e nz

(36) and (74) yields

z

3/2i.e. P increases with p where p is the signa1-to-no 1 se 
z

ratio. This effect will cancel out the inversely decreasing 
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effect of P with p when the signa1-to-noise ratio increases 
eo

to higher level. It is important to note that there is a 

maximum value for P at a2 = 0,
e n ’z

Pe : 2 X 10"3/h2. (76)
z max

Physically this denotes the situation where the signal-to- 

noise ratio is increased to infinity.

The expression in (?6) also designates an irreducible 

error due to intersymbol interference; i.e. an asymptotic 

probability of error beyond which the system performance can 

not be improved no matter how large the mean signa1-to-noise 

ratio becomes.

Note P in Figures 5 ~ 1follows the predicted behavior 
z

closely; i.e. increases with signa1 -to-noise ratio to a level 

(about 25 dB) where an irreducible error is created.

Overall Effects of Intersymbol Interference 

on Total Bit-Error Probability

It is anticipated that the effects of intersymbol 

interference on the Rayleigh fast-fading channels will be more 

significant than those of slow-fading channels. With regard 

to Figures 5 ~ 1^, when the mean signa1 -to-noise ratio is 

below 15 dB, the effects of intersymbol interference are not 

significant enough to degrade the system performance; but 

note that for mean signa1 -to-noise ratios in excess of 15 dB, 

the fraction of Pe /Pe increases very rapidly, as also seen
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in Table 3; and for mean signa1-to-noise ratios in excess of 

25 dB, Pe /P approaches 1; i.e. the total bit-error 
z 

probability is almost entirely due to intersymbol interference.

An irreducible error rate is also observed beyond this level. 

This is well known as the bottoming effect or asymptotic effect 

[26], [27]. Normally, this effect will occur when the signal- 

to-noise ratio is 40 dB or more. For Rayleigh fast-fading 

channels with additive Gaussian noise and intersymbol inter­

ference, this effect occurs even at lower levels of signal- 

to-noise ratio (25 dB or more) to worsen the performance of 

the system.

Convergence tests run for various K also show that the 

assumption one only has to take account of the preceding and 

following waveforms in calculating probability of error due 

to intersymbol interference for a particular symbol waveform 

might not be valid for some pulses.

While reliable communications over fading channels 

requires large mean signa1-to-noise ratios or diversity 

techniques, or both, the data in Table 3 indicates that 

intersymbol interference becomes a serious problem in Rayleigh 

fast-fading channels and application of equalization techniques 

should also be used to combat the system degradation due to 

intersymbol interference.
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Table 3. Asymptotic Behavior of Pe / P

with y = 0

x. Pulse

SNR

P (d B)

Shape Gaussian

Pulse,

K = 2

Chebyshev

Pulse,

K = 20

0 2.2636 x 10~3 1.0338 x 10"3

15 1.3035 x 10-1 - 9
6.4136 x 10

25 5.9684 x 10-1 4. 1659 x IO-1

35 9.4002 x IO-1 8.7756 x 10-1

45 9-9367 x 10"1 9.8626 x IO-1

55 9.9940 x 10-1 9.9859 x IO-1

65 9-9996 x 10-1 9.9998 x IO-1

Irreducible B i t -

Error Probability
2.4803 x 10"3 1.1342 x 10"3



CHAPTER V

CONCLUSI ON

A very straightforward method has been developed to 

compute the probability of bit-error for digital communication 

systems employing coherent detection in the presence of 

additive Gaussian' noise and intersymbol interference. The 

method is based on the trapezoidal integration rule, and it 

is applied to Rayleigh fast-fading channel.

By using the above-mentioned computing scheme, the 

effects of intersymbol interference on typical systems 

operating over a Rayleigh fast-fading channels are shown to 

be very significant in most signa1-to-noise ratio levels. As 

the mean signa1 -to-noise ratio is increased, thereby reducing 

the total bit-error probability, P , the ratio P /P 
ez e 

increases very rapidly. This behavior is observed in all 

examples considered herein and empirically derived values for 

the fraction are tabulated in Chapter IV.

The most important observation of this study is the 

existence of an irreducible asymptotic bit-error rate due 

to the severity of intersymbol interference. The dependence 

of the irreducible error with parameters of intersymbol 

interference has not been considered, and this could be the 

subject of further study.

For Rayleigh fast-fading channels, it seems necessary to 

employ equalization techniques to combat the severe effects 

of intersymbol interference. The improved performance of

56
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systems utilizing both diversity and equalization is also a 

very interesting subject of further study.

Numerical results of this study have been compared, 

where possible, to similar data published by other authors 

[2], [3], [26], [27]. No point of disagreement was found. 

Furthemore, the analylic expressions derived in Chapter III 

and IV for the bit-error probability caused only by additive 

Gaussian noise are in agreement with well-known results by 

many authors [151, [16].
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APPEND I X A

DIGITAL COMPUTER PROGRAM 

TO CALCULATE TOTAL BIT-ERROR PROBABILITY 

FOR THE RAYLEIGH FAST-FADING CHANNEL

This program evaluates equation (64) for the total bit­

error probability over a Rayleigh fast-fading channel using 

the trapezoidal integration method. The program is written 

in FORTRAN V for the Honeywell 66/60 digital computer. It 

will generate results for a range of sampling instants and 

signa1-to-noise ratios as specified by the user. A listing 

of the main program and all subprograms is given in Appendix 

Bl .

FORTRAN Variables and Constants

A tabulation of the variables and constants used in the 

programs is given in Appendix B2. The function of each quantity 

is stated, along with its FORTRAN name and the corresponding 

symbol used in the text of this report, where applicable.

Program inputs which must be supplied by the user are 

identified as such, and listed first in Appendix B2. These 

must be properly entered on cards according to the format 

specifications in the main program listing.

For each data point, the program prints out several of 

the variables in Appendix B2. These are identified as output 

data and are listed following the input data.

Program Operation

62
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The first function of the main program is to read the 

input data. Then a subroutine, HSET, is called to compute the 

complete set of impulse responses, h^, for a given sampling 

instant. The Gaussian and Chebyshev pulse shapes are programmed 

in function subroutine TIME, which is called by HSET.

At each sampling instant, Pe may be evaluated for several 

different signa1 -to-noise ratios. For each signa1-to-noise 

ratio, the main program computes P , the probability due to 
eo 

additive noise alone, from (56).

-1 4Then, based on the specified error limit (10 ), E^.,

the integration step size and the signa1 -to-noise ratio, the 

number of points needed to evaluate (62) is determined. 

Function VFUN is called to compute the value of the integrand 

in (62) at each point; n = 3 is used for the series expansion 

in the expression of Pe . From these values the bit-error 
z 

probability due to intersymbol interference, P , is deter- 
ez 

mined. P is computed as the sum of P and P and the e eQ ez 

output is pr inted.



Table Bl. Listing of Digital Computer Program for the 

Rayleigh Fast-Fading Channel

PRECISION VzTAUzTS,SlGN,H/HZEROzERRORzENOISE
PRECISION TAUIzDELTAUzSNRIzDELSNRzXzERFCONzERRISI
PRECISION DELTAzSNRzVFUNCzERFC
PRECISION PIzTWOPIzSQRTWOzSQRTPI

DOUBLE
DOUBLE 
double 
D0U3LE
COMMON/C1/TWOPIzSQRTPIzSQRTWO
COMMON/C3/HdOO) z H Z E R 0
PI=.31A15926535897324D1
TW0PI = P I *.2D1
SQRTPI=DSQRT(PI)
SQRTWO=DSQRT(.201)
DO 90 KKK=1,4
RE/\D(5z4O5)TAUIzDELTAUzSNRI,DELSNR
READ(5z4O5)ISzDELTAzERFCON
READ(5z404)MAXTzN1zN2zN3
T AU = TAU I-DELT AU
DO 1 K = 1 , M1
M-n
TAU=TAU+DELTAU
WRITE(6z994)
WRITE(6z997)TAUzTS,DELTA,ERFC0NzMAXT,N1,N2zN3 
CALL HSET(TAUzTSzMAXTzN3) 
UR I IE(6z999)
S N R = S N R I - D E L S N R 
DO 2 J=1,N2 
SNR=SNR+DELSNR
S I GN-.1 D2**(-SMR/.2D2)
X=ERFCON/DSQRT(.25D0*HZER0*HZER0+.5D0*SIGN*SIGN)
L=IDINT(X/DELTA)+2
ENOISE=.5DO-.5DO/DSQRT(.1D1+.2D1*SIGN*SIGN/HZERO/HZERO) 
ERR IS1 = .ODO 
V=.ODO 
DO 3 1=2zL 
V-V + DEL TA 
K 1 = I
ERRISI=ERRISI+VFUNC(VzSIGNzMAXTzKlzM) 

3 CONTINUE
ERRISI=DELTA*.2D1*ERRISI
ERROR = ENOISE+ERR IS I
URITE(Pz99«)SNRzEN0ISEzERRISIzERR0R
IF(ERROR.LT..1D-9)GO TO 1 

2 CONTINUE 
1 CONTINUE 

°0 CONTINUE
4 0 4 F 0 R M A I(4 I 5)
4 0 5 F 0 R M A T(4 D 2 0.10)
99 7 FOR 1 AT(1X,4d15.5,4 110//////) 
994 FORMAT(1 HI,1 OOH TAU

2 E R F C 0 N M A X T N1
998 FORMA I (1X,4D15.5)
999 FORMAT(1X,6OH SNR

2 ERROR/)
STOP 
END

TS DELTA
N 2 N 3 / )

E N 0 I S E E R R I S I



Table Bl. (continued)
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■ill' - '?.'!! J T '.t: I, C r T ( T A U, T 5 r ’'I AX I , 'I \ )
=)OU-U.F f'Hl C I J I •MJ , I s z T I ,1E , T 1 , T 2
f 1 ■; t1 I!. r i’ !-' F r I •; T hl 11 7 (- i; p , ||
C -i()N / c / H ( 1 (H’ ) , H7 F '.‘ J
'< 11' i.’- t i f i- ( r h ii, r s, i'5 )
r i = r 11
i •’- r All
!) 1 1 '< v- 1 r "I A X T
1 1 = I 1 -I S
I2=r?+TS

) =T I ME ( T 1 ,TS,N3) 
H(2*K)=T1ME(T2,TS/N3)

1 CONTINUE
RETURN
END



Table Bl. (continued)
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Table Bl. (cont i nued)
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Table Bl. (continued)
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Appendix B’2. Program Variables and Constants for the

Rayleigh Fast-Fading Channel

FORTRAN Function Description or corresponding symbol 
name usedin text

DELSNR Input Signa1-to-noise ratio increment 
dB , per pass

i n

DELTAU Sampling instant increment per pass

DELTA A

ERFCON Ey will be on the order of erfc(ERFCON)

MAXT K

N1 Number of sampling instants desired

N2 Number of signa1-to-noise ratios
desired

N3 Use 1 for Gaussian pulse, 2 
Chebyshev pu1se

for the

SNR 1 Initial signa1-to-noise ratio

TAU 1 Initial sampling instant

TS T

ENO ISE Output P
eo

ERR 1S1 P e z
ERROR P e

SNR P

TAU Y

FACTL 1 n 1 e rna 1 Function subprogram name

HSET Subroutine name

T 1 ME Function subprogram name

VFUNC Function subprogram name
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Appendix B2. (concluded)

FORTRAN Funct ion Description or corresponding symbol 
used in text

CHAR Internal MZ(X)

H hk

HZERO ho
1 .J.K.KI ,M Dummy integer variables

P 1 IT

S 1 GN a
n

SQRTP1 / IT

SQRTWO n
T t

TWOP 1 2tt

T1 ,T2 y - kT,y + kJ

V X

X,X1 ,X2,Y,Z Dummy real variables


