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Abstract

Iron-based superconductors (FeSCs) are a class set of high-temperature supercon-

ductor (HTS) based on different crystal structure and pairing symmetry from the Cu-

based HTS. The world’s physicists, chemists and scientists initiated a substantial re-

search in studying the mechanisms and details of this new class of HTS. The first goal

of studying the FeSCs was to hope that more experimental and theoretical explanation

to the origin of superconductivity of similar scenario as in Cu-based HTS. Up to recent

years, the underlying mechanism for both the magnetism and superconductivity came

to reliable models. However, through out my literature studies, there are still debates

in several aspects.

I constructed phenomenological model with tight-binding approach for the itinerant

picture of electrons, and mean-field self-consistent calculation to study the interacting

picture of this model. Point-group-symmetries analysis was also applied to investigate

the structure of the model. A proper set of model parameters with correct minimal

symmetry analysis well describes the Fermi surface evolution, phase diagram and local

density of state (LDOS).

To conclude, from chapter 2. to chapter 5., all of my calculated results were

nicely compared to experiments and DFT calculations and give deeper understanding

to this field. I gave predictions in chapter 6. that new topological phases could exist

in the tetragonal crystal structure.

vi



Contents

Acknowledgements iv

Abstract vi

Contents vii

1 Introduction 1
1.1 Experiments and LDA calculations . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Microscopic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fermi surface evolution and BAFM in AxFe2−ySe2 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Model and Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Electronic structure in the paramagnetic state . . . . . . . . . . . . . . . . 13
2.4 Electronic structure of random vacancy lattice . . . . . . . . . . . . . . . 15
2.5 Magnetic structure in the AFM state . . . . . . . . . . . . . . . . . . . . . 19
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Calculated Phase diagram of doped BaFe2As2 superconductor in a C4-
symmetry breaking model 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Multi-orbital mean-field Hamiltonian . . . . . . . . . . . . . . . . . . . . . 27
3.4 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Evolution of the Fermi surface topology in doped 122 iron pnictides 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Model and formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 FS topology and Dirac cones for the undoped case . . . . . . . . . . . . . 35
4.4 Evolution of FS and spectral function with hole/electron doping . . . . . 37
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Disorder effects in multiorbital s±-wave superconductors: Implications
for Zn-doped BaFe2As2 compounds 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



Contents viii

5.2 Model and formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Single impurity effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Disorder effects in the superconducting order parameter . . . . . . . . . . 51
5.5 Total density of states and superfluid density . . . . . . . . . . . . . . . . 52
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Emergent topological orbital phases in tetragonal t2g systems 58
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 The model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Topological Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Mirror topological invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Treatment of the vacancy impurity problem 67

B Details of the D2d symmetry and comparisons to Zhang’s model 70
B.1 The D2d invariant symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.2 Comparisions of H1 and H2 under the same parameter set . . . . . . . . . 71

C Unfolding transformation of the tight-binding model 75
C.1 Description of the orbital twist argument . . . . . . . . . . . . . . . . . . 75
C.2 Mapping onto the 1-Fe per unit cell Hamiltonian . . . . . . . . . . . . . . 77

D Supplementary material for Chapter 6. 80
D.1 Mean-field formalism and calculation . . . . . . . . . . . . . . . . . . . . . 80
D.2 Ground state with exchange interaction . . . . . . . . . . . . . . . . . . . 82
D.3 The Hamiltonian in momentum representation . . . . . . . . . . . . . . . 83
D.4 Two types of C4v structure . . . . . . . . . . . . . . . . . . . . . . . . . . 83
D.5 Topological defects as the generator of Berry flux . . . . . . . . . . . . . . 85
D.6 The Berry connection and counting of Chern number . . . . . . . . . . . . 85
D.7 Symmetry analysis of the time and mirror invariance . . . . . . . . . . . . 86

D.7.1 Intrinsic inversion symmetry and TR symmetry violation of spin-
less Ĥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.7.2 Parity or mirror invariance of spinless Ĥ . . . . . . . . . . . . . . . 87
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D.7.4 Even and odd parity subspaces of phase II of spinful Ĥs . . . . . . 87
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Chapter 1

Introduction

1.1 Experiments and LDA calculations

In 2006 [1], LaOFeAs was the first described iron-pnictide (FeAs) structure that is super-

conducting, Tc = 3.5 K. It was not much attractive until the breakthrough as Kamihara

and co-authors reported a hight temperature superconductor (HTS) with Tc = 26 K

[2] in 2008 and the highest Tc was found to be 55 K in SmO1−xFxFeAs; Table. (D.1)

listed these Fe-based HTS compounds with their Tc. Lots of experiments and theoretical

research have been initiated since these discoveries.

The iron-based SC (FeSC) is a 2D-layered crystal structure with component of

FeX (X=As, Se, P, Te, etc...) structure and other layers with different chemical com-

pounds. It has five different types: (i) 11-FeSe, (ii) 111-LiFeAs, (iii) 122-SrFe2As2, (iv)

1111-LaFeAsO and (v) 32522-Sr3Sc2O5Fe2As2 [3], as shown in Fig. 1.1(a). Many Fe-

based HTS accompanied with co-linear antiferromagnetic (C-AFM) order as shown in

Fig. 1.1(b). The C-AFM is also called spin-density-wave (SDW). All of these five struc-

tures share the same layered structure based on a planar layer of iron atoms with anion-

atoms (As, Se, P, Te, etc...) tetrahedrally joined, these anion-atoms are above(upper) /

below(lower) the Fe plane which is different from the Cu-O based HTS (cuprates) that

the Cu-O atoms are in the same plane. Now, we can realize that these upper / lower

anion-atoms play important roles that affect the orbital orientation, kinetic energy and

pairing symmetries.

Table 1.1: Fe-based SCs.

Year Compound Tc Reference

2006 LaOFeAs 3.5 K [1]
2008 LaO1−xFxFeAs 26 K [4]
2008 CeO1−xFxFeAs 41 K [2]
2008 SmO1−xFxFeAs 55 K [5]
· · · · · · · · · · · ·
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Figure 1.1: Crystal and magnetic structure of layered FeSCs, from Ref. [3].

Among these (i-v) structures, doped 122-BaFe2As2 is one ideal material for both

experimental and theoretical studies for the basic understanding of electronic structure,

magnetic structure and pairing symmetries. Because it appeared to have almost all of

the features of the generic phase diagram: 1. by electron doping, BaFe2−xCoxAs2, 2.

by hole doping, Ba1−xKxFe2As2, 3. by iso-valence doping, BaFe2As2−xPx and 4. by

applied pressure, as shown in Fig. 1.2. The phase diagram of the FeSCs is very similar to

several other unconventional superconductors such as cuprates. Observed from the phase

diagram, the undoped (parent) BaFe2As2 is non-superconducting and having C-AFM

under Neel temperature.

Body-centered-tetragonal (BCT) structure with 2-Fe per unit cell each layer is used

for describing / coordinating the crystal structure BaFe2As2 to enclose the above and
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below anion atoms. The LDA calculated electronic structure shows cylindrical shaped

Fermi-surface around Γ and M points. In which, the Γ point possess hole-pocket and

the M point possess electron-pocket [6]. When one considers the SDW magnetic phase,

the 2-Fe per unit cell is no longer enough to describe the entire system and one must

consider 4-Fe per unit cell with a shrinked Brillouin zone and the Fermi surface of the

undoped BaFe2As2 with SDW order will be folded into tiny pockets for kz = 0 which

became a bad metal. If we dive into more physical detail, we learn some orbital physics

of the Fe-atom with its five outer shell d-orbitals. The d-orbitals are generally divided

into two groups: 1. eg group for dx2−y2 , dz2−r2 orbitals and 2. t2g group for dxy, dxz,

dyz orbitals. In particular, the energies of the t2g group are closer to the Fermi-surface

and if we extract the partial density of state (PDOS) from Ref. [6] we can learn that t2g

orbitals are dominate, most importantly that dxz and dyz orbitals are highly degenerated

in energy.

Lee and co-workers published one research article incorporated with orbital order

and strong magnetic anisotropy for CaFe2As2 in LDA calculation [7]. They also con-

cluded that the most important orbitals for FeSCs are dxz and dyz and the SDW order

can be generated with Hubbard interaction, U, and Hund’s coupling, Jh, terms. More

specifically, the Hund’s coupling is for describing the inter-orbital and inter-spin inter-

actions between dxz and dyz orbitals. Therefore, this became a simple minimal picture

to describe the low energy physics of the emerging SDW magnetism. It was generally

known that it is very hard to deal with superconductivity with ab-initio calculations,

such as LDA or GGA, due to large matrix of Hamiltonian to be solved with Bogoliubov

de Gennes equation and the computer efficiencies go down when the size of the matrix

equations goes up. Therefore, there are many issues left to phenomenological model

such as SC pairing symmetry, random impurity and magnetic vortices state.

1.2 Microscopic Models

In the literature of past few years, many phenomenological models have been proposed to

investigate the band structure, Fermi surface, the SDW order and SC pairing symmetry

for FeSCs, ranging from eight orbitals model (five Fe-3d with three As-4p orbitals) [8],

five orbitals model (five Fe-3d orbitals) [9], three orbitals model (dxy, dxz and dyz) [10, 11]

and down to minimal two orbital model (dxz, dyz) [12–15] or simple two bands model [16–

18]. These phenomenological models were invented for different reasons and was used for

different calculations. They have several features in common but few of them may have

discrepancies. Nevertheless, S± symmetry was generally acknowledged as an essential

pairing mechanism among others [18]. We will focus on two-orbital models (with S±

3



Figure 1.2: Doping (a) and pressure (b) dependence of BaFe2As2, from Ref. [3].
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Figure 1.3: (a) Fermi surface of 1-Fe unitcell BZ and (b) folded Fermi surface of 2-Fe
unitcell BZ given in S. Raghu’s model, from Ref. [12].

Figure 1.4: (a) band structure of 1-Fe unitcell BZ, (b) folded band structure of 2-Fe
unitcell BZ, (c) the 3D E(k) plot and (d) DOS calculation of S. Raghu’s model, from

Ref. [12].

pairing symmetry) for their simplicity and usefulness for phase diagram calculation and

large real-space lattice constructions.

The first effective two-orbital model was given by S. Raghu and co-authors [12].

For LDA calculations and experiments, Raghu’s model gave nice 2D Fermi surface for

half-filling Fermi energy, Fig. 1.3. It can well describe the SDW order and S± pairing

symmetry with additional interaction terms. However, if one compares the entire band

structure and density of state calculation of Raghu’s model as shown in Fig. 1.4, one can

find that it is different from LDA calculations for dxz and dyz orbitals [3]. One can easily

find that the DOS, Fig. 1.4, will immediately encounter with a cliff in lower Fermi level.

5



Figure 1.5: (a) 2D real space map of SDW order, (b) temperature dependence of SC
and SDW order with the doping density δ = 0.09, (c) magnitude of SC and magnetic
order as a function of the doping at zero temperature and (d) the calculated phase

diagram, from Ref. [19].

Further more, in higher Fermi level the system will go across a Van Hove singularity.

These features not seen in LDA calculations and in a physical understanding that the

cliff means the hole doped phase diagram of superconductivity should not exist due to

insufficient density of state in the hole doped side for effective electron pairing. One

important feature was missed in Raghu’s model that these upper / lower anion atoms

was not taken into consideration which might give a different symmetry in this D2d /

C4v crystal structure. More detailed discussions of the D2d / C4v symmetries are placed

in the Appendix.

In 2009, D. Zhang provided a new model which considered the effect of upper /

lower anion atoms [13]. He considered that the upper / lower anion atoms may mediate

different values for the next near neighbor hopping terms. Zhang’s model has nice

Fermi surface evolution in the electron doped side and it was successfully applied to

calculate the electron doped phase diagram in rigid band approximation by Zhou and co-

authors [19]. Similar to Lee’s LDA calculation [7], T. Zhou applied the on-site Hubbard

interaction, U , the Hund’s coupling, Jh, and an effective pairing interaction, V , to

Zhang’s model. The effective Hamiltonian reads,

H = Ht +Hint +H∆ (1.1)

6



Here Ht is the hopping terms from Zhang’s model, Hint includes the Hubbard and

Hund’s interactions and H∆ is the effective pairing interaction. This effective Hamil-

tonian can well describe the electron doped phase diagram for BaFe2As2 as shown in

Fig. 1.5. It was a great improvement from Raghu’s model, however, the hole-doped part

was missing and was not able to be discussed in Zhang’s effective two orbital model.

In this regard, I will present a new model [15] in chapter 3 to show how we modify

and construct a reliable model based on crystal and orbital symmetry. So far, our new

model greatly improved the phase diagram calculation and was nicely compared to many

experiments and LDA calculations. It was the first microscopic model that achieved so

many succesfull calculations among many others.

1.3 Overview of Chapters

Before I close this chapter, let me brifely introduce the following chapters. In chapter

2., I will introduce a generalized calculation method based on Zhang’s model [13] to

deal with Fermi surface evolutions when disorder effects break translational symmetry

[20]. However, Zhang’s model [13] used in chapter 2. is only applicable to the electron-

doped phase diagram of the 122-BaFe2As2 compounds, the hole-doped part was not

able to be applied by Zhang’s model. Therefore, in chapter 3., a new model [15] based

on symmetry analysis of the FeAs layer was developed. This new model is capable

to study the phase diagram of the hole-doped part of BaFe2As2. In chapter 4., the

Fermi surface evolution was investigated of doped BaFe2As2 when spin-density-wave

(SDW) was incorporated. In chapter 5., the new model is extended to investigate the

Zn-doping effect of BaFe2As2. In the last chapter, chapter 6., I extend my study to

topological insulators based on the new model [15]. Based on symmetry analysis, we will

discuss the possibility of new type of Chern and mirror-Z2 topological insulator which

we predict that the new kind of topological insulator could be realized in some FeSCs

or other compounds which has similar crystal structure and orbital order.
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Chapter 2

Fermi surface evolution and

BAFM in AxFe2−ySe2

2.1 Introduction

In this chapter, I will investigate a newly found iron-selenide superconductor AxFe2−ySe2

(A =K, Rb, Cs, Tl, Tl/K, Tl/Rb) [21–24]. This new class of compounds provides a

chance to understand the underlying physics when randomness comes to play an impor-

tant role in condensed matter theory. It has several special features: (i) Superconduc-

tivity (for x ∼ 1 and y ∼ 0.12−0.3) emerges in proximity to an insulating phase [23, 25]

(for x ∼ 0.8 and y ≥ 0.4), instead of a poor metal as in other iron-based parent com-

pounds. For the iron deficient compounds with y ≥ 0.4, there is mounting evidence

for the existence of iron vacancy ordered superstructures stabilized with a stripe-like

antiferromagetic (AFM) state [26–29]. This raises the interest in the possibility of the

insulating phase being driven by the Mott localization [30, 31] due to the reduction in

kinetic energy [29] and lack of translational symmetry. More over, the compounds with

x ∼ 0.8 and y ∼ 0.4 are of special interest for the formation of a peculiar vacancy order

(so called
√

5×
√

5 superstructure) and it reveals a block-spin antiferromagnetic (BAFM)

state [32–35]. (ii) The end member of the series AFe2Se2 (x = 1 and y = 0) is highly

electron doped (0.5 electron/Fe) in compare to other Fe-based SCs (such as LaOFeAs,

BaFe2Se2, FeSe etc.). Band structure calculations [36–40] for these end compounds show

only electron pockets that are primarily located around the M point of the Brillouin

zone (BZ) as defined for a simple tetragonal structure. With the band structure cal-

culations, a series of angle-resolved photoemission spectroscopy (ARPES) experiments

has been performed on AxFe2−ySe2 [41–45]. A common feature is the presence of elec-

tron pockets around the M point in the Brillouin zone and a marked absence or near

absence of a hole pocket at the Γ point. With regard to electron pockets, the FeSe-122

family is similar to the isostructural FeAs-122 family, while they differ with respect to
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the hole pocket, which is considered to be essential for certain interband pairing models

of superconductivity.

These unique features raise the hope to gain new insights into the mechanism of

iron-based superconductivity by studying the FeSe-122 family. However, special care

must be taken in the interpretation of these results due to the complicated real-space

structure of highly iron deficient compounds. The real-space structure for different Fe

compositions (0 ≤ y ≤ 0.4) is quite intricate and resembles more that of an alloy than of

a lightly doped crystal. For example, although both AFe2Se2 (y = 0) and A0.8Fe1.6Se2

(y = 0.4) compounds have perfect lattice periodicity in the iron layer, the lattice struc-

ture for compounds with 0 ≤ y ≤ 0.4 can be thought of as a superposition of both

lattices, which forms either a random-vacancy lattice or phase-separated lattice with

vacancy stripe order. More generally, a serious problem of iron vacancy is introducing

random-disorder scattering centers in the iron layer and destroy the translational peri-

odicity, thus rendering the wave vectors of the Bloch wave functions as ‘bad’ quantum

numbers to describe electron motion. Therefore, when interpreting the electronic struc-

ture as measured by ARPES, which probes the momentum space, a real-space electronic

structure approach must be developed to account for the strong disorder.

In this chapter, we present a systematic study of (i) the evolution of the normal-

state electronic structure with random vacancy doping based on a new technique of

real-space construction and (ii) the magnetic structure of the FeSe-245 (“
√

5 ×
√

5”)

structure for fixed hopping term in the t-J model. In (i), the ARPES measurement of

the Fermi surface topology was adequately extracted from the spectral function with a

tight-binding lattice model with random vacancy order at the Fe sites. We find that

the electronic band structure and Fermi surface topology has been dramatically affected

by the Fe vacancies which break the lattice periodicity. The evolution in the band

dispersion results in a noticeable reconstruction of the Fermi surface (the technical detail

is provided in the Appendix A). Therefore, as a consequence, for intermediate iron

vacancy concentrations, the realized stable electronic structure is a compromise between

the solutions for y = 0 (perfect lattice) and y = 0.4 (stripe ordered lattice), resulting in

a competition between vacancy random disorder and vacancy stripe order. Based on the

parameterized hopping model with modified parameters, the constructed mean-field t-J

lattice model gives rise to a checker-board block-spin structure for K0.8Fe1.6Se2, which

is in good agreement with neutron scattering experiments and ab-initio calculations.

However, a detailed feature of this calculated magnetism reveals a defeciency in the

original Zhang’s model [46].

The outline of this chapter is as follows. In Sec. 2.2 we formulate a tight-binding

t-J model Hamiltonian and introduce within the mean-field approach the Bogoliubov-de

Gennes (BdG) equations. In Sec. 2.3 we discuss the Bloch wave function formulation

of multiorbital electron hopping to obtain a single set of model parameters for the

9



Figure 2.1: (Color online) Different cuts (unit cells) of the real-space lattice of FeSe-
122 (a) and corresponding unit cells (same color map) in the Brillouin zone (b). The
arrows indicate the block-spin AFM structure. For unit cells with cuts “-b-” and “-c-”
the Se atoms in the layers above and below are shown. In the vacancy-ordered state

(y = 0.4) vacancies phase-separate to form stripes.

kinetic energy part of the Hamiltonian by comparing the electronic structure and Fermi

surfaces of KxFe2Se2 with a perfect lattice structure. In Sec. 2.4 we discuss the electronic

structure of a random vacancy lattice by introducing an auxiliary impurity scattering

approach in the unitarity limit. In the case of the supercell calculations, the results

are in good agreement with the Bloch wave function method. In Sec. 2.5 we present

our calculations of the magnetic structure, which agree well with the neutron scattering

measurements. The summary is given in Sec. 2.6.

2.2 Model and Formalism

In this chapter, we adopt Zhang’s model [46] for the tight-binding Hamiltonian which

successfully describes the electronic structure and phase diagram calculations of the

FeAs-122 superconductors. Zhang [46] suggested that the upper and lower As atoms

mediate different hopping terms between iron atoms in the iron layer. Since this tight-

binding model was introduced, several successful studies have been performed [19] to

describe ARPES [47, 48], magnetic structures [49, 50], phase diagrams [51], and vortex

core and spin susceptibility in RPA calculations [52, 53].

Figure 2.1 shows the schematics of various lattice configurations with real-space

unit cells used in this chapter for AxFe2−ySe2. Recognizing the crystallographic similar-

ities between the isostructural FeSe-122 and FeAs-122 compounds and that the electron

10



Figure 2.2: (Color online) Schematic pictures of the effective t-J Hamiltonian. (a)
The effective tight-binding model, where t1 is the nearest-neighbor (nn) hopping, t2 (t3)
are the next-nearest-neighbor (nnn) intra-orbital hopping terms due to up (down) Se
atoms and t4 is the nnn interorbital hopping. (b) The effective exchange interactions,
where J1 and J2 are the nn and nnn interactions inside each block, while J ′1 and J ′2

are the nn and nnn interactions between blocks.

pocket at the M point is not only a common but also main feature in the heavily

electron-doped region, 0 ≤ y ≤ 0.4, we use the same tight-binding model for the elec-

tron hopping as in Refs. [13, 19]. We account for the reported electronic band structure

of the perfect lattice of KxFe2Se2,[41] shown in Fig. 2.2(a), by proposing a modified set

of hopping parameters (t1, t2, t3, t4) = (1, 1,−2, 0.08). This modification of parameters

is due to lattice distortions caused by vacancies surrounding Fe atoms. In principle, the

hopping parameters for the 122 and 245 structure should differ. However, we simplify

our approach by keeping the same parameters for all vacancy dopings, because it catches

the essential physical picture and describes well the Fermi surface topology of both 122

and 245 structures.

In our approach, we use for simplicity the same hopping parameters for K0.8Fe1.6Se2

as for all other KxFe2−ySe2 compounds. The unit cell of K0.8Fe1.6Se2 is modified to a
√

10 ×
√

10 area, see Fig. 2.1(a) with cut “-c-” for the unit cell, due to the periodic

vacancy order along stripes at the doping concentration y = 0.4. In this real-space unit

cell there are a total of 10 sites, namely, 8 iron atoms and 2 vacancies. We start with

an effective lattice model for K0.8Fe1.6Se2 by including the hopping Ht and exchange

interaction HJ terms [54].

H = Ht +HJ , (2.1)

where

Ht = −
∑
ijµνσ

tiµjνc
†
iµ,σcjν,σ − t0

∑
iµσ

c†iµ,σciµ,σ, (2.2)
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and
HJ = J1

∑
<ij>µν

~Siµ · ~Sjν + J2

∑
�ij�µν

~Siµ · ~Sjν

+ J ′1
∑

<ij>′µν

~Siµ · ~Sjν + J ′2
∑

�ij�′µν

~Siµ · ~Sjν .
(2.3)

The hopping parameters on the lattice are defined as

t<ij>,µ=ν tupper�ij�,µ=ν tlower�ij�,µ=ν t�ij�,µ 6=ν

t1 = 1 t2 = 1 t3 = −2 t4 = 0.08
(2.4)

where i (j) are site indices, and µ (ν) are orbital indices corresponding to dxz or dyz wave

function orbitals and t0 is the chemical potential. The expressions < ij > (� ij �)

and < ij >′ (� ij �′) denote intra- (inter)-block nearest-neighbor (nn) and next-

nearest-neighbor (nnn) hopping processes, whereas tupper (tlower) indicates the hopping

term crossing over the upper (lower) Se atom as shown in Fig. 2.2(a). In the FeSe-122

compound neutron diffraction studies are consistent with moments pointing along the

c axis.[32] Hence, we approximate the Heisenberg interaction to be of the Ising type,

where only the Sz component is involved

Sziµ =
1

2

∑
αα′

c†ασ
z
αα′cα′ , (2.5)

and the interaction term can be expressed in mean-field approximation by

SziµS
z
jν =

1

4
(〈niµ↑〉 − 〈niµ↓〉)(njν↑ − njν↓)

+
1

4
(〈njν↑〉 − 〈njν↓〉)(niν↑ − niν↓)

− 1

4
(〈niν↑〉 − 〈niν↓〉)(〈njν↑〉 − 〈njν↓〉).

(2.6)

In Fig. 2.2(b) the nn intra- (inter)-block exchange term J1 (J ′1) and nnn intra- (inter)-

block exchange term J2 (J ′2) are illustrated. The same type of effective model has also

been used to study the electronic properties in other iron-based compounds. [55–59]

As mentioned in Ref. [60], the double-occupancy constraint for fermions is implicitly

incorporated by the renormalization of the dispersion.

We can now construct the corresponding mean-field Bogoliubov-de Gennes (BdG)

matrix equation on a lattice:

∑
jν

(
Hiµjν↑ ∆iµjν

∆∗iµjν −Hiµjν↓

) (
unjν↑

vnjν↓

)
= En

(
uniµ↑

vniµ↓

)
. (2.7)
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Here the single-particle Hamiltonian Hiµjν,σ is expressed by

Hiµjνσ = −tiµjν +
σ

4

∑
δµ

[(Jδ + J ′δ)〈mi+δ,µ〉]δijδµν

−t0δijδµν ,
(2.8)

where σ correspond to ±1 for spin-up(down) index, δ is taken with ±x̂ (±ŷ) and ±x̂± ŷ,

which correspond to the nn and nnn real space shift; J (J ′) is for the intra (inter)

block interaction and the mean-field magnetization per site and per orbital is 〈miµ〉 =

µB(〈niµ↑〉 − 〈niµ↓〉). The quasiparticle energies En are measured with respect to the

chemical potential. We note that the single-particle Hamiltonian depends on spin- and

orbital-dependent electron density and pairings, which are given by

〈niµ↑〉 =
∑
n

|uniµ↑|2f(En) , (2.9)

〈niµ↓〉 =
∑
n

|vniµ↓|2[1− f(En)] , (2.10)

∆iµjν =
Viµjν

4

∑
n

(uniµ↑v
∗n
jν↓ + unjν↑v

∗n
iµ↓) tanh

En
2T

. (2.11)

Here we set the Boltzmann constant kB = 1. Finally, the BdG equation (2.7) must

be solved self-consistently with Eqns. (2.9)-(2.11). Since we consider only normal-state

properties in this chapter, we ignore the superconducting pairing term, Viµjν = 0, in the

BdG matrix equation. Note that we study only the hopping term Ht in Secs. III and

IV. Whereas in Sec. V we invoke both Ht and HJ terms for the 245 structure.

2.3 Electronic structure in the paramagnetic state

The most common way to construct the electronic band structure of ordered systems

is to use the Bloch wave function formulation in the enlarged
√

10 ×
√

10 unit cell

with 8 Fe atoms and 2 vacancies, the corresponding k-space Hamiltonian is a 16 × 16

matrix, Ht
16×16, which is straightforward but tedious to derive. Instead, we propose

another method based on the impurity problem solution that produces exactly the same

results and, moreover, provides physical insight into the breaking of the translational

symmetry. In this approach the vacancy is mapped onto an impurity with an adjustable

onsite scattering potential V0 that varies from 0 (no vacancy) to ∞ (strong scattering

center). Also the continuous tunability of the impurity potential provides an easy handle

on the evolution of the electronic structure with scattering strength. Please refer to the

Appendix A for more details on the implementation of the impurity problem calculation

employed in this chapter.
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Figure 2.3: (Color online) The electronic band structure for compounds (a)
K0.8Fe2Se2 (fill factor n = 2.4, t0 = 1.09 for high electron doping) and (b) K0.8Fe1.6Se2
(half-filling n = 2.0, t0 = 0.005) with (t1, t2, t3, t4) = (1, 1,−2, 0.08). The dashed blue
line is the location of the chemical potential. (c) Fermi surface of electron pockets
of K0.8Fe1.6Se2 located near the Γ point in k-space corresponding to the

√
10 ×

√
10

unit cell (blue square).a (d) Static spin susceptibility for the bare band structure of
K0.8Fe1.6Se2. The high intensity spots at scattering wave vectors Qv = π( 1

5 ,
3
5 ) and

Qm = π( 4
5 ,

2
5 ) are in agreement with neutron scattering experiments.

In Fig. 2.3(a) we show the electronic band structure of K0.8Fe2Se2 for our tight-

binding model parameterization using the
√

2 ×
√

2 unit cell (cut “-b-” in Fig. 2.1(a)).

The corresponding band structure of the vacancy ordered compound K0.8Fe1.6Se2 is

shown for comparison in Fig. 2.3(b). The evolution of the dispersion from the
√

2×
√

2

unit cell with four bands to the enlarged
√

10×
√

10 unit cell with 16 bands is nontrivial

and cannot be obtained by a simple rigid-band shift of the chemical potential. Indeed,

the Fermi surface topology for K0.8Fe1.6Se2 shows very tiny electron pockets located

near the Γ point, see Fig. 2.3(c), in contrast to K0.8Fe2Se2.
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In addition to the electronic dispersion, we calculate the static spin susceptibility

χ(q) for the bare band structure of itinerant electrons,

χ(q) =
∑
IJ

χIJ(q, iΩm → 0) , (2.12)

χIJ =
1

N
〈Tτ [SzI (q, τ)SzJ(−q, 0)]〉, (2.13)

where N is the total number of unit cells and SzI (q, τ) is the Fourier component corre-

sponding to the site and orbital index I in the unit cell. In this compact notation, the

orbital wave functions have the running super-indices I = (i, µ) and J = (j, ν). The

dynamic susceptibility is given by

χIJ(q, iΩm) = − T

4N

∑
Kα

∑
n

GJα,Iα(K, iωn)

×GIα,Jα(K + q, iωn + iΩm) , (2.14)

where the wave vector K is defined in the Brillouin zone corresponding to the
√

10×
√

10

unit cell, ωn = (2n + 1)πT and Ωm = 2mπT are the Matsubara frequencies of the

fermions and bosons. In standard notation the multiorbital lattice Green’s functions are

given by

GI↑,J↑(K, iωn) =
∑
n

unI↑(K) un∗J↑(K)

iωn − En(K)
, (2.15a)

GI↓,J↓(K, iωn) =
∑
n

v∗nI↓ (K) vnJ↓(K)

iωn + En(K)
. (2.15b)

In the calculation of the itinerant spin susceptibility the red spots in Fig. 2.3(d)

show high intensity around q = Qv and Qm in agreement with neutron scattering

experiments.[32] It follows from the Stoner criterion that the observed AFM state is

possibly formed from itinerant electrons of the paramagnetic state due to the bare band

structure, rather than the exchange interaction of localized spins. Hence, it is natu-

ral to expect that close to the magnetic instability a small driving force can break the

symmetry of the paramagnetic state and induce the long-range AFM state.

2.4 Electronic structure of random vacancy lattice

The distribution of Fe vacancy in doped FeSe-122 compounds is an open question. Ex-

cept for the perfect 245-structure, where a Fe-vacancy order can be formed, recent

experiments[61–63] indicate that the doped FeSe-122 compounds with Fe chemical con-

centration deviating from 1.6 or 1.5 are in favor of a nanoscale phase separation. Any of

these scenarios suggests that the periodic Bloch wave function formulation is no longer

valid for lattices with vacancy disorder in the intermediate doping region 0 < y < 0.4.
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Figure 2.4: (Color online) Schematic picture of a 20×20 lattice with random vacancies.
For this configuration the minimum size of a supercell is a 10× 10 square lattice. This
supercell contains the translational symmetries of both the

√
2 ×
√

2 and
√

5 ×
√

5
unit cells. The random lattice is constructed by randomly removing vacancies from the
ordered diagonal stripes of phase-separated vacancies. The phase separation pattern

along the direction (2,1,0) becomes clearer for larger superlattices.

Here, we describe the construction of a random vacancy lattice calculation (RLC). First,

we construct a 40 × 40 or larger real-space lattice for AxFe2Se2 with vacancies phase-

separated in stripes along the (2,1,0) direction as shown in Fig. 2.4. Second, we ran-

domly add iron atoms, i.e., remove vacancies, on the vacancy ordered stripes up to

the point that we match the vacancy occupation for compounds measured by ARPES.

Third, we construct the corresponding real-space Hamiltonian Ht with hopping terms

(t1, t2, t3, t4) = (1, 1,−2, 0.08). Finally, we exactly diagonalize the Hamiltonian and com-

pute its pairs of eigenvalues En and eigenvectors (uniµ↑, v
n
iµ↓) from which we calculate the

lattice Green’s functions.

When going beyond the dilute limit of random disorder, as for example in a heavily

doped alloy, the randomness of vacancies plays a crucial role for the electronic dispersion,

because the rigid-band shift appropriate in the dilute limit breaks down. Hence the

conventional approach of periodicity and the calculation of the electronic band structure

and Fermi surface fail. In order to solve this complicated problem, we calculate the

multiorbital real-space spectral function AIJ(ω) = − 1
π ImGIJ(iωn → ω + iΓ), which

depends on the multiorbital real-space Green’s function summed over all bands n,

GIJ(iωn) = GI↑,J↑(K = 0, iωn) +GI↓,J↓(K = 0, iωn) , (2.16)

where the general form of the spin-dependent Green’s functions on the right-hand side

of the above equation has been given in Eq. (2.15). Finally, the Fourier transform of
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Figure 2.5: (Color online) The calculated Fermi surface evolution from the Fourier
transformed real-space spectral function in the 1-Fe BZ. The alphabetical order in
each picture represents different vacancy concentrations: (a.n) Fe1.9, (b.n) Fe1.78, (c.n)
Fe1.72, (d.n) Fe1.7, while the numerical index n = 1 − 4 represents different values
of the chemical potential. The chemical potential varies from high to low as n in-

creases: (t
(1)
0 , t

(2)
0 , t

(3)
0 , t

(4)
0 ) = (0.5, 0.33,−0.7,−1.5). The calculations in panels (b.1),

(c.2) and (d.3) correspond to the compounds (Tl,K)Fe1.78Se2, Tl0.58Rb0.42Fe1.72Se2 and
K0.8Fe1.7Se2, respectively. In panel (a.4) we redraw the different unit cells of Fig. 2.1(b)

with 1× 1 (green),
√

2×
√

2 (red), and
√

10×
√

10 (blue).

AIJ(ω) to k-space for the one-iron per unit cell (1-Fe) gives the desired spectral function,

which is the one measured in ARPES experiments,

A(k, ω) =
∑
IJ

AIJ(ω) exp{−ik · (Ri −Rj)}. (2.17)

Here, i (j) are lattice indices for the location of each Fe atom in the 40 × 40 supercell

with orbital indices µ (ν) and super-indices I = (i, µ) and J = (j, ν). The double-sum is

a short-hand notation for
∑

IJ ≡
∑

ij

∑
µν δµν . Since we considered only the bare band

structure, we dropped for convenience the spin indices in this calculation.

Next we apply the RLC method to calculate for both doping variables x and y the

evolution of the spectral function and Fermi surface topology for compoundsAxFe2−ySe2.

For the hopping term, Ht, the variables x and y can be mapped onto electron filling factor

in the two-orbital model: 〈n〉 = [x+ 8(2− y)− 4]/[2− y]− 4, which is used in turn for
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Table 2.1: The FeSe-122 compounds for vacancy doping y. The Fermi surface topolo-
gies are compared to local density approximation (LDA) calculations[33, 65] or ARPES
measurements.[42–44] For the 122 structure (y=0), we focus only on the electron pocket
at the M point. For the 245 structure (y=0.4), we focus on the four tiny pockets sur-

rounding the Γ point according to the LDA calculation.

y compound referenced lattice electron pockets

0.00 K0.8Fe2Se2 LDA PLC M
0.22 (Tl,K)Fe1.78Se2 ARPES RLC M
0.28 Tl0.58Rb0.42Fe1.72Se2 ARPES RLC M & Γ
0.30 K0.8Fe1.7Se2 ARPES RLC M
0.40 K0.8Fe1.6Se2 LDA PLC Γ

the determination of the chemical potential, t0. Figure 2.5 shows the calculated Fermi

surface evolution for changing t0 and y values on random vacancy disorder lattices.

The panels 2.5(b.1), 2.5(c.2) and 2.5(d.3) correspond to electron densities reported in

experiments.[42–44] The lattices solved were large enough to self-average the vacancy

disorder, thus no further ensemble average of different random vacancy configurations

was required. The visualization of the evolution of the spectral function helps us to

understand when an electron pocket “appears” at the Γ point, namely for y ≥ 0.22, see

panels (b)-(d), as well as when it disappears for shifted chemical potentials t
(3)
0 = −0.7

and t
(4)
0 = −1.5 (rows 3 and 4). Our finding differs from that discussed in Ref. [64],

where it was claimed that the electron pocket at the Γ point of the FeSe-122 compound

originates from the BAFM structure. However, our results clearly demonstrate the

presence of an electron pocket at Γ in the absence of BAFM order and over a large

range of vacancy concentrations 0.22 ≤ y ≤ 0.4. Indeed Fig. 2.5 shows that the small

electron pocket at the Γ point originates from the same regions in the Brillouin zone as

for the vacancy stripe-ordered compound with Fe1.6 shown in Fig. 2.3. These calculations

demonstrate the power of the RLC method, when randomness (doping) strongly affects

the Fermi surface. This computational method is adequate to understand the evolution

of the electronic structure for intermediate doping levels in the range 0 ≤ y ≤ 0.4, where

the stable electronic structure is a compromise between the solution for the perfect lattice

with y = 0 and the stripe-ordered lattice with y = 0.4. Alternatively one can obtain these

results by diagonalizing large supercells with random lattice Hamiltonians. Of course

such a brute force approach is time consuming, especially when many calculations for

different random configurations are required as illustrated in the cartoon of Fig. 2.4.

We confirmed numerically our results by sampling many random vacancy configurations

of large supercells and found that the spectral functions are no different from the RLC

method presented here for fixed iron concentrations. In Table 2.1 we list results for

both periodic lattice calculations (PLC) and random vacancy lattice calculations (RLC)

performed for various vacancy concentrations y.
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Figure 2.6: (Color online) (a) Temperature dependence of the magnetization (as
defined in the main text) in the BAFM state. The temperature T is in units of t1.
The inset shows a small part of the lattice used in our mean-field calculation (20× 20
sites with 20% vacancies for the stripe-ordered 245 structure of K0.8Fe1.6Se2). (b) The
zero-temperature LDOS as a function of energy ω in units of t1. Shown are the two
block sublattices with net spin up (dashed red) and down (dashed blue) lines as well

as their sum (solid green). A gap of ∼ 0.4 t1 opens at the Fermi level ω = 0.

Very recently, Berljin et al. [66] used the approach of configuration-averaged spec-

tral functions, based on density functional theory calculations to describe the effect of

disordered vacancies in K0.8Fe1.6Se2, which is not considered here.

2.5 Magnetic structure in the AFM state

Now that we have fully developed the parameterization for the kinetic part Ht of the t-J

lattice model for random vacancy order with a single set of hopping parameters, we can

focus on the exchange interaction term HJ . We start with a mean-field calculation for

the magnetic state, using a set of rescaled exchange parameters extracted from the band

structure calculations. [33] We rescale the ab-initio exchange parameters by a global

factor to obtain (J1, J2, J
′
1, J
′
2) = (−3.44,−0.36,−1.16, 1.52)t1, which results in better
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agreement of the calculated Néel temperature with experiment. Within our low-energy

effective t-J model, this set of exchange parameters leads to a Néel temperature for

the block-spin AFM state, TN ≈ 1.4 t1 ≈ −0.407 J1, see Fig. 2.6(a). The stability of

the BAFM structure is also consistent with a recent study of the J1-J2-J3 Heisenberg

model where a stable plaquette order was found.[67] If we assume a hopping integral

t1 = 35 meV, we obtain TN = 569 K. Indeed this value is very close to the one observed

experimentally (TN = 559 K).[32] We argue that this quantitative result provides fur-

ther evidence for the dominance of the kinetic term over the exchange term in the t-J

Hamiltonian with incipient AFM order due to Fermi surface nesting. Furthermore, we

calculate the staggered magnetization as defined by

ms =
1

NL

∑
i

|mi| , (2.18)

and its deviation from the standard AFM state may be defined as

δm =
2

NL
|
∑
i

mi| . (2.19)

Here NL is the total number of Fe sites and mi =
∑

µ〈miµ〉 is the spin density on each

site i, where the summation index i runs over all lattice sites. In the BAFM state, the

system breaks the translational symmetry in the
√

5 ×
√

5 unit cell and gives rise to a

larger periodicity with a
√

10 ×
√

10 unit cell. The result for the magnetization as a

function of temperature is shown in Fig. 2.6(a), which is in qualitative agreement with

the neutron scattering experiments, except for a smaller magnetic moment as observed

experimentally per iron site (3.3µB). [32] The reason for this discrepancy follows from

our phenomenological two-orbital model, which has only 2 electrons per Fe site. There-

fore, the maximum total moment on each site is 2µB. Whereas all 5 electrons of the

Fe atom seem to participate in the moment formation. Notably our result shows an

antiferrimagnetic state at finite temperatures for T > 0.3t1, where δm 6= 0, that is, the

magnetization for the up and down spin blocks are slightly different leading to a net ferri

magnetization. This difference is related to the fact that in the present model an asym-

metry for the intra-orbital next-nearest-neighbor hopping integrals t2 vs. t3 has been

introduced due to the selenium atoms below and above the iron layer. We confirmed

numerically that for |t2| = |t3| a purely antiferromagnetic state exists. It is interesting

to note that this type of difference in kinetic hopping terms also manifests itself in the

magnetization between the two spin blocks of the bipartite sublattices. The existence

of antiferrimagnetism could be identified by weak satellite peaks at the ferromagnetic

propagating wave vector Q = 0 in elastic neutron scattering of K0.8Fe1.6Se2 for temper-

atures 0.3t1 < T < TN . Therefore using the same arguments one should also expect an

asymmetry in the AFM split satellite peaks of the nuclear magnetic resonance (NMR)
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spectrum. The observation of antiferrimagnetism could serve as an important evidence

for different Fe 3d-electron hopping integrals mediated by Se atoms buckling on both

sides of the Fe layer in the bulk system.

Finally, we calculate the local density of states (LDOS) given by

ρi(ω) =
∑
nµ

[|uniµ↑|2δ(En − ω) + |vniµ↓|2δ(En + ω)], (2.20)

where the delta-function δ(x) is approximated as δ(x) ≈ Γ/π(x2 + Γ2) with the intrinsic

quasiparticle broadening parameter Γ. In our calculation, we choose Γ = 0.002 but note

that the result does not change qualitatively for small changes of Γ. For the LDOS

calculations we use an 80× 80 sites supercell. Figure 2.6(b) shows the zero-temperature

LDOS in the BAFM phase on two block sublattices. We note that the LDOS on each

site of a chosen block is the same. As a consequence of the exchange interaction a clear

gap of size ∼ 0.4t1 opens at the Fermi energy ω = 0, which is in qualitative agreement

with ab-initio band structure calculations for the BAFM state. [33]

2.6 Conclusion

In summary, we systematically addressed within an effective two-orbital model the effects

of the iron vacancy on the normal-state electronic structure and magnetic properties in

the AxFe2−ySe2 compounds. We determined a suitable choice of hopping parameters

for Fe 3d-electrons by comparing the Fermi surface topology of ARPES data. From the

determined hopping parameters we calculated the evolution of the electronic structure

and mapped out the Fermi surface topology for arbitrary Fe vacancy concentration based

on a random vacancy disorder model. After the kinetic part of the t-J Hamiltonian was

parameterized we focused on the special case of A0.8Fe1.6Se2, where the Fe atoms form

the
√

5×
√

5 vacancy order. Here we studied the magnetic properties by including the

exchange interactions with relative strengths extracted from ab-initio calculations. Our

mean-field solution of the t-J Hamiltonian reproduced the block-spin antiferromagnetic

(BAFM) state, in good agreement with neutron scattering experiments and ab-initio

calculations. Finally, we found that the magnitude of the magnetization on the two-

block bipartite sublattices is at a small variance for temperatures 0.3t1 < T < TN ,

which made the magnetic structure become more or less an antiferrimagnetic one in finite

temperature. This feature is unique to our model with different Se-mediated hopping

strengths (below and above the Fe layer) on the two block spin sublattices, which can be

tested by future refined neutron scattering and nuclear magnetic resonance experiments

in the corresponding temperature range. The signature of the ferrimagnetic can be

easily understand by the symmetry analysis under the
√

5 ×
√

5 structure where can

easily found that one sub-block contains up-Se atom and the other sub-block contains
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down-Se atom. The breaking of up / down Se atom symmetry can easily bring us the

understanding of the antiferrimagnetic state. The next chapter will have more complete

symmetry and orbital analysis in regard the iron-based SCs for microscopic models.
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Chapter 3

Calculated Phase diagram of

doped BaFe2As2 superconductor

in a C4-symmetry breaking model

3.1 Introduction

In chapter 2., I introduced a new method to study the Fermi surface evolution in

AxFe2−ySe2 compound with Zhang’s model. Specifically, Zhang’s model [13] was the

first one which could reproduce the phase diagram of the electron doped BaFe2As2

among many other microscopic models [9, 14, 19, 64, 65, 68–71]. However, the model

failed to give account of the hole-doped (h-doped) part of the phase diagram when doping

on the Ba site. A deeper insight could be found in the last part of chapter 2. that the

calculated antiferrimaghetic order is due to the hopping terms setting in Zhang’s model.

In this chapter, I aim to gain insights from Zhang’s model and construct a new model

which could escape these potential issues (missing h-doped part and antiferrimagnetism)

from Zhang’s model. Very recently, Hu and co-workers [14] proposed a Hamiltonian

with S4 symmetry to clarify the local symmetry breaking of the underlying electronic

structure through orbital ordering in the Fe-122 family. Both models by Zhang [13] and

Hu [14] share a very important ingredient, that is, the breaking of the C4 symmetry.

So far both models have been applied only to the e-doped region of the phase diagram

[19, 70]. Although both models give a qualitative picture of competing order in the

system, caution must be taken when the evolution of the low-energy quasiparticle states

and Fermi surface topology are considered. These can impose even stricter constraints

on a given model: (i) e-doping: The disappearance of the hole pockets at the Γ point

of the Brillouin zone (BZ) is the key feature of e-doped compounds BaFe2−xCoxAs2

[48, 51, 72–74]. (ii) h-doping: The nested large electron pockets around the M point

of the BZ evolve into a set of four small clover-like hole pockets for the end member
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Figure 3.1: (color online) (a)3D schematic picture of the Fe dxz and dyz orbital
overlap through the As atoms. In panel (a), the red (blue) lobes represent the dxz (dyz)
orbitals. The black (white) spheres represent the Fe atoms on the A (B) sublattice and
the yellow spheres represent the upper (lower) As atoms located above (below) the Fe
plane. This configuration shows a 2×2 (4-Fe) unit cell within the solid thick lines. The
shaded region is the 2-Fe unit cell. The 2-Fe unit cell is used in panel (b) to construct
the tight-binding model, where the As atoms are not shown. In panel (b), the solid
black line stands for nearest-neighbor (1NN) intra- (t1) and inter-orbital (t5) hopping.
The solid (dashed) red and blue lines stand for second-nearest-neighbor (2NN) intra-
orbital hopping t2 (t3). The difference between red and blue lines stands for dxz and
dyz, while t4 is isotropic 2NN intra-orbital hopping. The dotted black line stands for

the third-nearest-neighbor (3NN) hopping t6.

KFe2As2, which is identified as a Dirac cone [75–77]. A very similar feature is also found

in several density functional theory (DFT) calculations [65, 68, 71, 78, 79]. Note that

this is an intrinsic feature of the bare band structure and is not related to emergent

spin-density wave order [80, 81].

Aided by experiments and DFT calculations, we develop a minimal tight-binding

model with improved normal-state band structure parametrization to account for con-

ditions (i) and (ii). The crystal structure of BaFe2As2 (ThCr2Si2 type structure) and

its electronic structure are now well understood and the relevant orbitals for atomic

bonding have been identified [82]. Within a quantum-chemical framework of bonding

one realizes that the upper (lower) anion atom mediates the overlap between the Fe 3dxz

(3dyz) orbital with the 4p orbitals of the As atom. A schematic picture of the overlap

between these orbitals is shown in Fig. 3.1(a). The challenge in the study of supercon-

ductivity in the Fe-based 122 family is how to simultaneously satisfy the observations

(i) and (ii).
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Figure 3.2: (color online) The electronic band structure of model Hamiltonians Ht
1 (a)

and Ht
2 (b) along high-symmetry directions in the BZ. The insets show the significant

difference between Ht
1 and Ht

2 near the M point. The horizontal line in (a) and (b)
indicates the Fermi level Ef for half filling (n = 2.0). Panel (c) shows the Fermi surfaces
for model Ht

1 for n = 2.23 (blue, µ=-0.76), n = 2.0 (green, µ=-1.244), n = 1.8 (cyan,
µ=-1.65), n = 1.5 (red, µ=-2.25). Panel (d) shows the FSs of model Ht

2 for different
doping levels n = 2.38 (blue, µ=-0.055), n = 2.0 (green, µ=-0.89), n = 1.8 (cyan,

µ=-1.25), n = 1.5 (red, µ=-1.745).

In this chapter, we show that in order to model the low energy bands, we need

to consider one more key condition beyond those already proposed by Zhang, which is

critical for the second-nearest neighbor (2NN) hopping terms. I: A 90◦ relative orbital

rotation is introduced between the A and B sublattices of the Fe atoms (t2 6= t3), see

Fig. 3.1(b). II: On the same sublattice, we propose an additional 90◦ rotation between

the dxz and dyz intra-orbital hopping, which is in agreement with the LDA calculations

of Refs. [9, 83]. III: An isotropic inter-orbital hopping term t4 is introduced. The

combined effects of conditions I and II reduce the symmetry to D2d.

3.2 Theory

The original set of four hopping parameters, t1−4, in Zhang’s model accounted only for

conditions I and III. In our new model, we include the symmetry condition II and

thus extend the set to six hopping parameters t1−6 [84, 85]. For the calculations we

choose the 2-Fe unit cell, as described in Fig. 3.1(a), to construct the basis function ψ =
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(cA1, cA2, cB1, cB2)T and its Fourier transform ciMα = 1√
N

∑
k cMα(k)× exp

(
iRiM · k

)
for the normal state k-space. The kinetic energy is then given by the minimal hopping

Hamiltonian Ht =
∑

k ψ
†(k)Wk ψ(k) in the 2-Fe unit cell of the 1st BZ, −π < kx(ky) <

π, where M=(A,B) and RiM is the position of the Fe atoms in the A (B) sublattice,

α=(1,2) stands for dxz / dyz orbitals, and

Wk =


ξA1 − µ ξ12 ξt ξc

ξ12 ξA2 − µ ξc ξt

ξt ξc ξB1 − µ ξ12

ξc ξt ξ12 ξB2 − µ

 . (3.1)

First, we compare Zhang’s minimal model Ht
1, which satisfies only conditions I and

III, with our extended model Ht
2, which satisfies conditions I through III [86]:

Ht
1 : ξA1 = ξA2 = ξH , ξB1 = ξB2 = ξV ,

with t1−6 = (−1,−0.4, 2,−0.04, 0, 0).

Ht
2 : ξA1 = ξB2 = ξH , ξA2 = ξB1 = ξV ,

with t1−6 = (−1, 0.08, 1.35,−0.12, 0.09, 0.25).

(3.2)

Here, we defined the dispersion functions: ξH = 2t2 cos(kx)+2t3 cos(ky)+4t6 cos(kx) cos(ky),

ξV = 2t3 cos(kx) + 2t2 cos(ky) + 4t6 cos(kx) cos(ky), ξ12 = 2t4 cos(kx) + 2t4 cos(ky), ξt =

4t1 cos(kx/2) cos(ky/2), ξc = 4t5 cos(kx/2) cos(ky/2). Fig. 3.1(b) shows the schematic

picture of Ht
2. The key difference between both models is the orientation of orbitals,

which is identical for the A and B sublattices in Zhang’s model, while here the combina-

tion of conditions I and II results in a 90◦ relative orbital rotation (twist) between both

sublattices (see Appendix B. for more details of the symmetry and Appendix C. for the

twist argument). The parameters for Ht
1 are taken from Ref. [19]. In the case of Ht

2,

we determine the hopping parameters by comparing the calculated FS topologies to the

angle-resolved photoemission (ARPES) experiments [75] for electron fill factors n = 2.0

(half filling), n = 1.8 (optimal h-doping) and n = 1.5 (KFe2As2). The dispersions also

agree qualitatively with many LDA calculations for both e- and h-doped compounds

[65, 68, 71, 78, 79], thus the model is not restricted to BaFe2As2. In Fig. 3.2(a) and (b)

we plot the band dispersion for Ht
1 and Ht

2, respectively. Note the significant difference

between the electronic dispersions of these Hamiltonians, which is seen in the insets of

Fig. 3.2(a) and (b), where we enlarge the relevant area around the M point in the BZ.

In the case of (b) a linear dispersion (Dirac cone) can be found for model Ht
2, while none

exists for model Ht
1 in (a). As will become clearer, this key difference between Zhang’s

Ht
1 model and the new Ht

2 model is a direct consequence of condition II.
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3.3 Multi-orbital mean-field Hamiltonian

In the next step, we construct the minimal mean-field Hamiltonian in the weak-coupling

regime. Since the C-AFM will enlarge the real-space unit cell, we need to choose the

4-Fe unit cell configuration as shown in Fig. 3.1(a), with the real-space Hamiltonian,

H = Ht+H∆ +H int. Here Ht is the hopping term, H∆ is the 2NN intra-orbital pairing

interaction and H int is the interaction term, which includes the Coulomb interaction U

and Hund’s coupling JH . We note that the effect of Coulomb interaction dominant on

these two low-energy orbitals has been discussed for antiferromagnetism [7, 19]. Here,

the hopping Hamiltonian Ht is expressed by

Ht =
∑
iαjα′σ

(tiαjα′c†iασcjα′σ + h.c)− µ
∑
iασ

c†iασciασ, (3.3)

where i and j are site indices of each Fe site, α=(1,2) is the orbital index, σ = (↑, ↓)
is the spin index and µ is the chemical potential. The detail of these hopping terms

is giving in Fig. 3.1(b). The second term in H is the mean-field superconducting (SC)

pairing Hamiltonian,

H∆ =
∑
ijασ

(∆ijαc
†
iασciασ̄ + h.c). (3.4)

The third term in H is the on-site Coulomb interaction Hamiltonian including Hund’s

coupling. Following Ref. [87] we write,

H int =U
∑
iασ 6=σ̄

〈niασ̄〉niασ

+U ′
∑

i,α 6=α′,σ 6=σ̄
〈niασ̄〉niα′σ

+(U ′ − JH)
∑

i,α 6=α′,σ

〈niασ〉niα′σ,

(3.5)

where niασ = c†iασciασ and U ′=U − 2JH . After performing the Bogoliubov transforma-

tion of the electrons onto particle-hole excitations with ciασ = uniασγn + σ vn∗iασγ
†
n, the

corresponding Bogoliubov-de Gennes (BdG) Hamiltonian can be written in matrix form

and solved self-consistently,

∑
jα′

[
Hiαjα′↑ ∆ijα′

∆∗ijα′ −Hiαjα′↓

] [
unjα′↑

vnjα′↓

]
= En

[
uniα↑

vniα↓

]
, (3.6)

with particle-like (uniα↑) and hole-like (vniα↓) wave functions.
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The self-consistent mean-field equations for the SC order parameter and spin-up

and spin-down occupations are given by

∆ijα =
Vij
4

∑
n

(uniα↑v
n∗
jα↓ + unjα↑v

n∗
iα↓) tanh

(
En

2kBT

)
, (3.7)

where

〈niα↑〉 =
∑
n

|uniα↑|2f(En), (3.8)

and

〈niα↓〉 =
∑
n

|vniα↓|2[1− f(En)]. (3.9)

For simplicity, we consider second-nearest-neighbor (2NN) intra-orbital pairing only with

pairing potential Vij=V. To facilitate the discussion of physical observables and generat-

ing of the phase diagram, we define the staggered lattice magnetization and the s-wave

and d-wave projections of the order parameter on the lattice:

mi =
1

4

∑
α

(〈niα↑〉 − 〈niα↓〉), (3.10)

∆s =
1

8N

∑
i,δ,α

∆i,i+δ,α, (3.11)

∆d =
1

8N
|
∑
i,δ,α

εx εy ∆i,i+δ,α|. (3.12)

The neighbors of site i are reached by δ = (x̂ + ŷ, x̂ − ŷ,−x̂ + ŷ,−x̂ − ŷ), with εx =

δ · x̂, εy = δ · ŷ; N is the number of Fe sites in the real-space lattice. We note that the x

(y) axis is aligned with the short Fe-Fe bond direction.

3.4 Model results

We calculate the phase diagram for both Hamiltonians Hi=H
t
i +H int+H∆ with i = 1, 2

to investigate the stability of the reported C-AFM, SC, and coexisting C-AFM/SC

phases as a function of doping parameter. The evolution with doping is described by

the same set of hopping, interaction, and pairing parameters for each model across the

entire doping range. For model H1 we use (U, JH , V ) = (3.4, 1.3, 1.2) from Zhou and

co-workers [19], while for H2 a new set of parameters (U, JH , V ) = (3.2, 0.6, 1.05) is used

[86] (see Appendix B. for a detail comparison of the phase diagrams under the same

parameter set).

Figure 3.3(a) shows the C-AFM and SC order parameters at nearly zero temperature

(T = 10−4) for models H1 (top) and H2 (bottom). We confirm that the phase diagram

of e-doped compounds is equally well described by both Hamiltonians in agreement with
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Figure 3.3: (color online) The phase diagrams of the C-AFM (mi) and SC (∆s)
order parameters of models H1 (top) and H2 (bottom) at zero temperature (T = 10−4)
are shown in panel (a). Panel (b): Temperature (in units of |t1|) dependence of the
calculated order parameters of model H2. The suppression of mi is visible in the
coexistence region with ∆s at filling n = 1.9. Panel (c): The ratio of the SC order
parameters ∆d/∆s for 2NN pairing is shown for H2. The d-wave admixture is of order

8% over the entire h-doping regime (n = 1.5− 2.0).

experiments [51, 72–74, 88]. However, the situation is markedly different on the h-doped

side. Here only H2 is capable of describing experiments [76, 77] by correctly accounting

for the e-h asymmetry and the existence of a strong SC phase at low electron filling (1.6 <

n < 1.85). In Fig. 3.3(b) the finite temperature self-consistent calculations of the C-AFM

and SC order parameters are shown for H2 at h-doping values n = 1.5, 1.6, 1.7, 1.8, 1.9

and 2.0 (half filling). We also find that in the coexistence C-AFM/SC phase both

orders compete for phase space. The competition leads to a marked suppression of

mi, when ∆s nucleates at a lower temperature, see Fig. 3.3(b) for fill factor n = 1.9.

From the self-consistent calculations of the phase diagram, we extract the maximum
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gaps: C-AFM gap mi/TN ≈ 0.116/0.211 = 0.549 at n = 2.0, and the SC gaps for e-

doping ∆exp
s /Tc ≈ 0.11/0.049 = 2.23 at n = 2.1, and h-doping ∆exp

s /Tc ≈ 0.14/0.066 =

2.16 at n = 1.8 and ∆exp
s /Tc ≈ 0.033/0.015 = 2.21 at n = 1.5. Here we introduced

∆exp
s ≡ 4 ∆s as the experimentally determined tunneling gap. The SC gap ratios are in

reasonable agreement with experimental reports for various doping values, ranging from

values associated with weak- to strong-coupling pairing, 1.5 ≤ ∆exp/Tc ≤ 3.8 [89–92].

Figure 3.3(c) shows the ratio between ∆d and ∆s, which is roughly 8% over the entire

h-doping region. Although the s± gap symmetry is the most widely accepted pairing

symmetry for Fe-122 based SCs [93, 94], we always find a small admixture of d-wave

symmetry in our self-consistent mean-field calculations. This was also observed in recent

heat conduction experiments [95]. For a lattice model with D2d symmetry both s- and

d-wave belong to the same representation and are allowed to mix. This admixture is also

found in Zhang’s model, H1, however, there the C4 symmetry breaking is only due to

condition I, while for model H2 it is related to condition I and the 2NN hopping terms

of condition II.

The pairing symmetry can be discussed more systematically by how it affects the

spectral function observed in ARPES experiments. Since we are interested in the entire

doping range of the phase diagram, we focus only on the H2 model. The discussion

can be further simplified by neglecting the coexistence region of C-AFM/SC. In that

case, we can downfold the BdG Hamiltonian from the 4-Fe unit cell onto the 2-Fe unit

cell configuration, see Fig. 3.1(a). The order parameters ∆s and ∆d were previously

defined on the lattice. Their Fourier transforms in the BZ of the 2-Fe unit cell are

∆s(k) = 2 ∆s [cos(kx) + cos(ky)] and ∆d(k) = 2 ∆d [cos(kx)− cos(ky)]. We can further

decompose them into sublattice (A,B) and orbital (1,2) contributions:

∆A1(k) = ∆B2(k) = ∆s(k) + ∆d(k),

∆A2(k) = ∆B1(k) = ∆s(k)−∆d(k).
(3.13)

Note these expressions are a consequence of the twofold D2d symmetry, thus giving

rise to the sx2+y2±dx2−y2-wave gap. The corresponding downfolded k-space BdG Hamil-

tonian attains the eigenvalues and eigenvectors for the spectral function of each orbital

and sublattice,

Aiα(k, ω) =
8∑

n=1

|uniα↑(k)|2δ(ω − Enk ) + |vniα↓(k)|2δ(ω + Enk ), (3.14)

where the total spectral function, measured in ARPES, is given by the sum A(k, ω) =∑
i,αAiα(k, ω). An obvious question is what is the evolution of the spectral function

with doping and how is it affected by the order parameters ∆s and ∆d for filling

factors n = 2.1, 1.8 and 1.5. In Fig. 3.4 the total spectral function and its partial
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Figure 3.4: (color online) Spectral functions at zero temperature at the Fermi level
for fill factors n = 2.1 (a), n = 1.8 (b), and n = 1.5 (c). In each panel the total weight
of the spectral function is shown in the left column, while the right column shows
the corresponding partial spectral functions for each orbital and sublattice. The total
spectrum is the sum of all four partial spectra. Panel (c): The two arrows mark the
peaks of the electronic hot spots responsible for the octet gap structure. The dashed

line shows the nodes of ∆s(k) = 0.
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weights are shown. The reduced D2d symmetry is obvious from plots of spectral weights

AA1, AA2, AB1 and AB2. By construction of the model, the 90◦ rotational symmetry

breaking (twist) is revealed by the distinction between AA1(B2) and AA2(B1) (right pan-

els in Fig. 3.4). Unfortunately, ARPES experiments cannot differentiate between them.

However, one can compare the total spectral functions (left panels of Fig. 3.4) with

ARPES experiments. The spectral weights are very small for n = 2.1 and n = 1.8,

indicating that quasiparticles are gapped. The hole pockets around the Γ point exhibit

an isotropic gap for n = 2.1, while an anisotropic gap with fourfold modulation is found

for n = 1.8. On the other hand, for n = 1.5 (corresponding to KFe2As2), we observe

eight quasiparticle hot spots at the corners of the large hole Fermi surface centered at Γ,

as well as four small pockets near the M point. We believe that the hot spots indicate

either the existence of nodal octet structure or highly anisotropic gap.

The pairing symmetry in KFe2As2 has been a recent topic of hot debate. The exis-

tence of only hole pockets has motivated earlier theoretical proposals of d-wave pairing

symmetries with gap nodes [96, 97]. This would imply a change in the superconducting

symmetry from s- to d-wave pairing as hole doping is increased. So far there is some

experimental evidence for gap nodes [95, 98–100]. However, more recent angle-resolved

photoemission spectroscopy unveiled that KFe2As2 is a nodal s-wave superconductor

with octet-line node structure on the large hole pockets at kz = π [101]. Our model cal-

culations are consistent with an octet nodal structure on the zone-centered hole pocket

at kz = 0. However, the eight electronic hot spots at the corners of the large hole Fermi

surface in the spectral function do not rule out a highly anisotropic gap. Future ARPES

measurements at kz = 0 may resolve the current disagreement about the location of hot

spots vs. nodal points between our results and experiments.

3.5 Summary

We have shown how the C4 symmetry breaking, involving the As atoms below and

above the Fe layer, leads to a natural extension of Zhang’s minimal model for the Fe-122

superconductors. The new tight-binding model is in better agreement with experiments

and density functional theory calculations over the entire doping range. Within the

weak-coupling theory of superconductivity, the calculated phase diagram reproduces

qualitatively the e-h doping asymmetry reported in many experiments and the gap-

over-Tc ratios. In addition, we always find a small d-wave admixture of roughly 8% to a

dominant s-wave SC order parameter. This admixture can give rise to quasiparticles in

the spectral function resembling nodal excitations at electronic hot spots in the spectral

function of KFe2As2. Finally, the new minimal model is computationally more efficient

than similar five-band models for studying disorder effects in real space around impurities

or magnetic vortices.
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Chapter 4

Evolution of the Fermi surface

topology in doped 122 iron

pnictides

4.1 Introduction

So far, we’ve investigated the entire phase diagram in chapter 3., however, these

Fermi surface evolution was only able compare to LDA calculations and experiments

in normal state. One can observe that, by doping either electrons or holes into the

parent compound, the SDW order becomes weakened and the superconductivity (SC)

emerges. Both phases appear to coexist with each other in some doping regimes [51, 72–

74, 76, 77, 88, 102], even though controversy still remains about their coexistence [103].

Due to the nature of SDW order which enlarge the real space translational symmetry, the

k-space BZ should be folded under the SDW phase. Therefore, it would be interesting

to monitor the Fermi surface evolution under the SDW order and compare these calcu-

lated Fermi surfaces with experiments. This study could help gain insights that how the

Fermi surfaces evolution give a stable s± pairing symmetry in theories [78, 104, 105] as

well as in many experiments [106–108].

In chapter 3., I improved the original model in Ref. [13] to give a unified description

of the entire phase diagram covering both the electron- and hole-doped regimes. This is

so far the only phenomenological 2-by-2-orbital model (2 Fe sites with 2 orbitals each),

in which the resultant low-energy electronic dispersion agrees qualitatively well with

density functional theory calculations of the electronic structure in the local density

approximation (LDA) of the entire Brillouin zone (BZ) of the 122 compounds [9, 65,

78, 83, 109]. Notably, the obtained phase diagram also agrees with the experimentally

observed electron- and hole-doped phase diagrams [51, 72–74, 76, 77, 88]. In this chapter,

I keep using this new model to test further its validity by studying the FS topology of
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the hole-doped and electron-doped compounds. At the same time I also compare the

model results with experiments and with previous theoretical studies [17, 19, 81, 110].

4.2 Model and formalism

We write the model Hamiltonian as [15]

H = Ht +Hint +H∆, (4.1)

where Ht and Hint are the single electron hopping and on-site electron-electron interac-

tion terms, respectively. The kinetic energy term can be written asHt =
∑

iµjνσ(tiµjνc
†
iµσcjνσ+

h.c.)−t0
∑

iµσ c
†
iµσciµσ, and the electron-electron interaction term can be expressed in the

mean-field approximation by Hint = U
∑

i,µ,σ 6=σ̄〈niµσ̄〉niµσ + U
′∑

i,µ6=ν,σ 6=σ̄〈niµσ̄〉niνσ +

(U
′−JH)

∑
i,µ 6=ν,σ〈niµσ〉niνσ, where i, j are lattice site indices; µ, ν = 1, 2 are the orbital

indices for dxz and dyz orbitals; t0 is the chemical potential, which is determined by the

electron filling per site n with niµσ = c†iµσciνσ and U
′

= U − 2JH . At the mean field

level, the pairing term is given by H∆ =
∑

iµjνσ(∆iµjνc
†
iµσcjνσ̄ + h.c.). Since this is a

phenomenological Hamiltonian and dispersions are fit to low-energy LDA calculations

or ARPES measurements, our classification in terms of dxz and dyz orbitals should not

be taken literal, but rather as a convenient way to differentiate between the symmetries

of the effective low-energy orbitals.

The Hamiltonian in Eq. (4.1) is solved self-consistently through the multiorbital

Bogoliubov-de Gennes equations in matrix notation,

∑
jν

(
Hiµjν↑ ∆iµjν

∆∗iµjν −H∗iµjν↓

)(
unjν↑

vnjν↓

)
= En

(
uniµ↑

vniµ↓

)
, (4.2)

in combination with the self-consistency equations for the electron density,

niµ =
∑
n

|uiµ↑|2f(En) +
∑
n

|viµ↓|2[1− f(En)], (4.3)

and the SC order parameter,

∆iµjν =
Viµjν

4

∑
n

(uniµ↑v
n∗
jν↓ + unjν↑v

n∗
iµ↑)tanh(

En
2kBT

). (4.4)

Here f(E) is the Fermi-Dirac distribution function with Boltzmann constant kB, Viµjν

is the NNN pairing strength, with Viµjµ = V , when j = i± x̂′ ± ŷ′ and zero otherwise.

Throughout this work, we will use the six hopping parameters

t1−6 = (−1, 0.08, 1.35,−0.12, 0.09, 0.25) (4.5)
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Figure 4.1: (Color online) The phase diagram at zero temperature. The collinear
SDW order parameter (black line with squares) and the SC order parameter (red line
with triangles) are shown. Inset: The schematic lattice structure of the Fe layer in the
SDW state is plotted. Solid dots and circles denote nonequivalent Fe ions in different
sublattices. Black and blue dashed squares denote the 2-Fe unit cell in the paramagnetic

state and 4-Fe unit cell in the SDW state, respectively.

and the three many-body interaction parameters (U, JH , V ) = (3.2, 0.6, 1.05) from Ref. [15].

All energies are measured in units of |t1|. Before we give a detailed discussion about the

effects of doping, we present the phase diagram of Tai’s model in Fig. 4.1. In these calcu-

lations, the collinear SDW order parameter is defined as m(i) = (−1)ix′ 1
4

∑
µ(niµ↑−niµ↓),

and the bulk SC order parameter is defined as the average over the lattice, ∆ =
1

8N

∑
i,δ̂,µ ∆i,i+δ̂,µ.

4.3 FS topology and Dirac cones for the undoped case

For the undoped case, the FS in the normal state contains two hole pockets around the

Γ = (0, 0) point and two electron pockets around the M = (π, π) point (Fig. 4.2(a)).

Since the SDW order will enlarge the real-space unit cell, we choose the 4-Fe unit cell

configuration as denoted by the blue dashed squares in the inset of Fig. 4.1, from which

we can see that the antiferromagnetic order is along the x′ axis and the ferromagnetic

order is along the y′ axis. We plot the zero-temperature magnetic FS of the undoped

parent compound, obtained from our self-consistent calculation, in Fig. 4.2(b). Four

small FS pockets appear in the magnetic Brillouin zone (MBZ) along the high-symmetry

Γ−M line, consistent with experiments [111, 112]. We note that the pockets outside the

MBZ are just replicas of those inside due to band folding in the SDW state. To reveal

the nature of these FS pockets, we make a one-dimensional (1D) cut in Fig. 4.2(c) for

the band structures along X ′x−Γ′−X ′y. We can see that two of the colored FS pockets

(red) are electron-type and located around (kx, ky) = ±(0.287π, 0.287π), while the other

two (green) are hole-type and located around (kx, ky) = ±(0.244π, 0.244π). Along the
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Figure 4.2: (Color online) (a) The normal state FS at half filling. (b) The ungapped
magnetic FS at half-filling. The dash lines indicate the MBZ boundary in the SDW
state. (c) The band structure along two directions X

′

x−Γ
′

and Γ
′−X ′

y. Inset: Enlarged
view of the Dirac cones.

line X ′x − Γ′, we predict the existence of two Dirac cones (one electron doped and the

other hole doped). Indeed this is captured by recent ARPES experiments [80] and is

in good agreement with magneto-resistance measurements [113]. In retrospect, these

calculations allow us to justify why the present two-orbital model agrees so well with

experiments. This is because the density of states due to the dxy orbital is practically

zero at the Fermi energy in the presence of the SDW order [6] and thus may be neglected.

Similar features for the parent compound have also been obtained by a different two-

orbital model [81].
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4.4 Evolution of FS and spectral function with hole/elec-

tron doping

The doping effect is expected to have an intimate impact on the FS with SDW order.

In underdoped samples, where the SC and SDW orders coexist, earlier work [17] in-

vestigated the effect of the SDW strength on the FS topology by keeping the chemical

potential (or doping level) fixed. The FS with the SDW in the undoped case has also

been shown to sensitively depend on the strength of the onsite Coulomb interaction [110].

Therefore, it is necessary to choose a set of interaction parameters able to fit the phase

diagram of the compounds for both electron- and hole-doped cases (see Fig. 1), and then

to examine how the FS is changed as the doping level varies. It appears that this issue

has only been studied for the electron-doped case[19] based on the model of Ref. [12]. In

the following, we first study the FS topology of the hole-doped case by setting the SC

order parameter ∆ = 0 to better illustrate the impact of the SDW. The effect of the SC is

mainly to open a gap on parts of the FS pockets, where the SDW gap closes. Concretely,

in the optimally doped state, it can be predicted that ∆(k) = 2∆(cos(kx) + cos(ky)) in

the BZ of the 2-Fe unit cell. In the coexistence region of SDW and SC, the reconstructed

FSs are formed by mixing electron and hole bands but the SDW wave retains the gapped

nature of the s±-wave SC although the gap equation appears in a mathematically dif-

ferent way [17, 18]. According to our numerical calculation, the SDW gap is mainly

affected by the doping that destroying the nesting between the Fermi surfaces, not by

the presence of the SC. Further, the FS measured in the ARPES experiments for doped

SC samples [47, 48, 114] usually did not exhibit the SC gaps.

When the iron pnictides are lightly hole-doped, i.e., away from half filling, the size of

the hole pockets is enlarged, while that of the electron pockets is reduced. The electron

pockets will then vanish completely at a small doping value as shown in Fig. 4.3(a). By

further increasing doping, two new hole pockets appear in the same location where the

electron pockets vanished (Fig. 4.3(b)-(c)). This can be easily seen from the inset of

Fig. 4.2(c) by shifting the chemical potential downward. It is also worthwhile to point

out that the band structure with the SDW depends strongly on the magnitude of the

SDW order. When the doping level δn ≡2-n> 0.1, an additional pair of ungapped FS

pockets appears in the diagonal kx = −ky direction (Fig. 4.3(d)). The size of all these

hole pockets is enlarged proportional to doping and then the FSs become closed around

the Γ point (two blue squares in Fig. 4.3(g)). Meanwhile, the magenta FS pockets

are still located along the kx = ky direction and stay gapped along the orthogonal

direction, kx = −ky. When the system is even further doped, all the FSs become closed

around the Γ point and symmetric along kx = ky and kx = −ky directions as the

SDW order becomes increasingly small (Fig. 4.3(f)). So far we are not aware of any

ARPES experiments in the hole-doped region with SDW. Hence, our results will guide
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Figure 4.3: (Color online) The doping evolution of the FS at the zero temperature
on the hole-doped side of the phase diagram. The SC order is artificially set to zero
in order to illustrate the effect of the SDW. In panels (a)-(f), the green and magenta
lines indicate the ungapped hole-type FS and the black dash lines indicate the MBZ
boundary. The royal curves in (g)-(i) show the paramagnetic state FSs due to the

totally depression of the SDW order.

the search and interpretation of future experiments of the FS topology with SDW phase

in the very underdoped regime. In this regime, the SDW gap is large while the SC

gap is comparatively small. If the ARPES experiment observes small gaps in certain

k space-region while large gaps are detected in other part of the k space then the FS

where the SC resides on could be easily determined. If one neglects the smaller SC gap,

the FS with SDW as a function of doping should be experimentally obtained, and the

results should be used to compare with our theoretical predictions. However near the

optimal doped sample where the gaps of the SDW and SC are of the same magnitude,

it would be hard for our theory to fit the experiments except in the regime where the

SC gap is much larger than the SDW gap.

For samples with n ≤ 1.86, or δn ≥ 0.14, the SDW order disappears and thus no

more band folding. We show the corresponding FSs in the 2-Fe BZ at n = 1.8, n = 1.7

and n = 1.5 in Figs. 4.3(g)-(i), respectively. The four electronic pockets at the zone

corner M shrink, while the hole pockets at Γ expand a little with increasing doping.

It should be noticed that for extremely hole-doped samples, the small electron pockets
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Figure 4.4: (Color online) Similar to Fig. 3, but for the electron-doped side. The red
and blue lines in panels (a)-(f) indicate the ungapped electronic FS.

near the M points no longer touch the BZ boundary, which is consistent with available

ARPES experiments [75, 115], and so far has not yet been explained by other two-orbital

models. In addition, Fig. 4.3(g) shows nearly degenerate hole-like FSs at the Γ point,

while experiments indicate two well separated hole like FSs [75, 80, 115–118]. This is

an intrinsic shortcoming of the two-orbital model, because the outer hole pocket (β FS

sheet), which is missing in the present calculation, has a major dxy orbital component

according to orbital-sensitive ARPES results [119]. On the other side, the LDA calcula-

tions [7, 120, 121] have shown that, although heavily hybridized, the main character of

the bands that determine the FS are dxz and dyz orbitals, with small contributions of dxy

at the hole pockets and at most the elongated portions of the electron pockets. This fact

may qualitatively justify the proposal of the two-orbital model as the phenomenological,

minimum orbital model for the 122 pnictides to capture the SDW and SC order.

In order to check the validity of the two-orbital model employed in the present

work, we also examine the FS evolution with electron doping. The results are shown

in Fig. 4.4. In the lightly doped regime, the hole pockets are gradually getting smaller

and finally disappear. With further increased doping, two electron pockets appear (see

Figs. 4.4(a) and (b)). This behavior is mirrored for hole doping and can be seen from

the inset of Fig. 4.2(c) by moving the chemical potential upward. However, in the
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intermediate doping regime around n = 2.03, two new electron FS arcs also appear

along the diagonal kx = −ky direction, see Fig. 4.4(c). This is quite different from the

two-band result in Fig. 2 of Ref. [16], there the magnetic FS pockets are always along

the kx = ky direction. Recently, ARPES experiments [114] were performed on strongly

underdoped BaFe2−xCoxAs2 samples in which the electronic structure of the detwinned

crystal was observed. It can be seen that the anisotropic features in Fig. 4.4(c) and

4.4(d) are qualitatively comparable to the experimental observations as shown in Fig. 1

of Ref. [114], if the crystal orientation across the twin boundaries is considered. When

the doping increases, the size of the electron FS pockets and arcs are enlarged, and

eventually become large closed FSs around Γ, while the other pair of ungapped FS

pockets remains along the Γ-M line (Figs. 4.4(e)). When the system is further doped,

the inner blue electron pockets are also closed around the Γ point (Fig. 4.4(f)).

For n > 2.11, the SDW order is totally suppressed, and the FS is then presented

in the 2-Fe BZ, as shown in Fig. 4.4(g)-(i). It can be seen that in the heavily electron-

doped sample, the hole-like FSs around the Γ point become very small. First the inner

one disappears, and finally both hole FSs disappear while the electron FS pockets at

the zone corner become enlarged. A key finding of this work is that all these model

results are consistent with ARPES experiments [47, 48]. In addition, the shape of the

FS pockets around the M point are round, while those obtained in previous work were

more square [19].

For a direct comparison to future experimental studies with varying doping levels,

we calculate the spectral function A(k, ω) =
∑

i,µAi,µ(k, ω), and integrate from ω =

−0.1 to 0.1, which is proportional to the photoemission intensity measured in ARPES

experiments. The local and orbital-resolved spectral function is defined as

Ai,µ(k, ω) =
∑
n

[|uiµ↑(k)|2δ(En(k)− ω) +

|viµ↓(k)|2δ(En(k) + ω)]. (4.6)

Our calculated spectral functions are shown in Fig. 4.5. It is known that when the

sample is undoped or in the lightly hole- or electron-doped regimes, the spectral intensity

is strong along the diagonal direction kx = ky direction, but very weak along the other

diagonal direction, kx = −ky [111, 112]. When the electron or hole doping is increased,

the intensity along kx = −ky becomes enhanced (Figs. 4.5(b), 4.5(d), and 4.5(e)), with

obvious anisotropic characteristics induced by the existence of the SDW order. In the

paramagnetic phase, as seen from Figs. 4.5(a) and 4.5(f), the FSs become symmetric

along the kx = ky and kx = −ky directions.
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Figure 4.5: (Color online) The spectra function A(k, ω) integrated from ω = −0.1 to
0.1 at different doping levels: (a) n = 1.85, (b) n = 1.9, (c) n = 1.95, (d) n = 2.04, (e)

n = 2.07, and (f) n = 2.11.

4.5 Summary

In summary, we have studied for the first time systematically the FS evolution of the 122

parent compound as functions of hole- and electron-doping. At zero doping, there exist

equal-sized electron-doped and hole-doped Dirac cones along the Γ-M direction (kx =

ky) in the BZ, i.e., the direction of the antiferromagnetic order. This is in good agreement

with experiments. When the 122 parent compound is lightly doped, the effect of hole-

doping is mainly to reduce the size of the Dirac cone-like pockets, while the SDW gap

closes up along the antiferromagnetic nesting direction. With further doping, additional

parts of FSs becomes ungapped along the orthogonal direction, kx = −ky. Then the

SDW order is completely suppressed and the complete two-dimensional FSs appear

in the heavily hole-doped sample. We noticed that the FSs obtained for the heavily

hole-doped regime seem not to agree well with ARPES experiments, this is because

the contribution from the dxy orbital is not adequately captured in the present study.

However, our results with the SDW order can be used to guide future experiments on
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the evolution of the Fermi surface topology in very underdoped samples of Fe-pnictides,

where the dxy orbital is greatly suppressed. On the other hand, we have also investigated

the FS evolution as a function of electron doping. All of our theoretical findings in this

case are in qualitative agreement with experiments from under-doped to over-doped

regime. This conclusion implies that the present model suits better for the electron-

doped case than for the hole-doped case. Finally we believe that the low energy physics

of the 122 pnictides is originating mainly from the dxz and dyz orbitals, and further

works are needed to support the validity of the present model.
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Chapter 5

Disorder effects in multiorbital

s±-wave superconductors:

Implications for Zn-doped

BaFe2As2 compounds

5.1 Introduction

Our calculations in chapter 4. partly indicated that the generic phase diagram of the

iron-based superconductors (Fe-SCs) suggests the close proximity [49] of the supercon-

ductivity (SC) to the SDW order. This should be contrasted with high-temperature

cuprates, of which the SC originates from an AFM Mott insulator phase and can be

quickly suppressed by substitution with other 3d-transition-metal atoms into the CuO2

plane. Instead, the SC in the Fe-SCs can be induced when Fe atoms are partially re-

placed by 3d-transition-metal atoms like Ni and Co [122–129]. Moreover, in the case of

the electron- and hole-doped 122 family like Ba(Fe1−xCox)2As2 or Ba1−xKxFe2As2, the

coexistence of the SDW and SC in a narrow doping region is reported by both exper-

iments [122, 130] and theoretical calculations [81, 131]. It has been argued that owing

to their multiorbital nature and variable correlation effects, the superconducting pair-

ing symmetry may not be universal in the Fe-SCs [93, 132, 133]. This certainly poses

a great challenge to relating the symmetry of the order parameter and the canonical

doping phase diagram across different crystallographic iron-pnictide families. Therefore,

detailed measurements of the bulk transport and superconducting properties will remain

useful for determining the superconducting pairing symmetry in the Fe-SCs.

While superconductivity can be induced in the 122 family by substitution of Fe with

Co or Ni (and many other 3d transition metals [134–137]) in the FeAs layer, the role

of these electron dopants is still controversial [138–142]. It is hotly debated whether
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such substitution is dominated by the doping effect of extra charge carriers or impurity

scattering or a combination thereof [143]. In general, the study of disorder effects in

superconductors is promising in addressing the pairing symmetry, as it has been applied

successfully to the understanding of high-Tc cuprate superconductivity [144]. There-

fore, it is natural that the study of impurity scattering effects in Fe-SCs attracted much

attention immediately after their discovery. Of particular interest is the case of Zn

doping, [145–147] because it does not induce SC, while it is expected to give rise to non-

magnetic, strong potential scattering in the unitary limit. For the Zn-doped 122-type

iron pnictides, the early results showed that Zn impurities hardly affect the supercon-

ductivity of hole-doped Ba0.5K0.5Fe2As2 [148]. However, more recent measurements of

the magnetic susceptibility and resistivity [149, 150] on high-quality single-crystalline

Ba(Fe1−x−yZnxCoy)2As2 compounds, suggested that the electron doped superconduc-

tivity is almost fully suppressed above a concentration of roughly 8% Zn, regardless

of whether the sample is under, optimally or over doped. This discrepancy with ear-

lier experiments is possibly due to the technical difficulty in substituting Zn for Fe

atoms. Further measurements [151] on the hole doped Ba0.5K0.5(Fe1−xZnx)2As2 com-

pound also showed that the superconductivity is suppressed by Zn impurities. These

interesting results have presented a challenge to theoretically identify the pairing sym-

metry in Fe-SCs. So far, the sign-reversal s±-wave pairing symmetry has been supported

by many experiments including neutron scattering [106], angle-resolved photoemission

spectroscopy [117], and scanning tunneling spectroscopy [108], and is also consistent with

the competition picture between magnetism and superconductivity [103]. However, it

has also been shown earlier [138] that because of the sign reversal of superconducting gap

function across electron and hole bands, the s±-wave pairing state is very fragile against

impurities while the non-sign-reversal s++-wave pairing symmetry should be a compet-

itive candidate for Fe-SCs. The recent experiment [150] showed that the suppression in

the superconducting transition temperature is much slower than that predicated by the

theory for the s±-wave pairing state [138]. More recently, the effect of Zn-doping induced

disorder in Fe-SCs with both s±- and s++-wave pairing symmetries [147] has been inves-

tigated by solving the BdG equation for a two-orbital model [12] including both on-site

(favoring s++-wave pairing symmetry) and next nearest neighbor (NNN) inter-site (fa-

voring s±-wave pairing symmetry) pairing interaction. The zero-temperature real-space

BdG calculations [147] indicated that the disorder could suppress the NNN pairing or-

der parameter with negligible effect on the on-site pairing order parameter, suggesting a

possibility of disorder induced pairing symmetry change from s±- to s++-wave. As such,

depending on the strength of the on-site pairing interaction, this interesting proposal

may provide a flexibility to explain various experimental data [145–147].

We note that, in Ref. [147], because the tuning of impurity concentration in the
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truly disordered system was actually mimicked by a tuning of the NNN pairing inter-

action in an impurity-free system, a direct comparison of superconducting transition

temperature change with impurity concentration between theory and experiment is im-

possible. Due to this interpretation gap, there are still several open questions. In this

chapter, we will study the disorder effects of the Zn impurity on the superconducting

properties of 122-type iron-based superconductors. In particular, we aim to address the

question of how the superconducting transition temperature is completely suppressed

at 8% of Zn doping in 122-type compounds [149–151]. To fulfill this goal, we start

with an improved minimal two-orbital model for Fe-SCs [15]. As in Ref. [147], we

solve the BdG equations self-consistently in real space to study the impurity-induced

disorder effect, from which the superconducting order parameter, superconducting tran-

sition temperature, superfluid stiffness are calculated. We point out that with the sole

s±-wave pairing symmetry, the superconducting transition temperature can be sup-

pressed at an impurity concentration as high as about 10%, which agrees well with

the experiments on the Ba(Fe1−x−yZnxCoy)2As2 compounds [150]. This result is in

striking contrast with an earlier prediction that the superconductivity is suppressed

already at only 1% of impurity concentration [138]. The root cause for this differ-

ence is given as follows: Firstly, first-principles electronic structure calculations suggest

that substitution of the nonmagnetic Zn atom in the iron-based 122 superconductors,

pushes the Zn-3d impurity level considerably far below the Fe-3d level, namely by about

∼ 8− 10 eV. [143, 152, 153] Hence, Zn substitution should be regarded as a strongly lo-

calized defect in the strong scattering (unitary) limit. Such strong potential scattering is

supported by more recent angle-resolved photoemission spectroscopy measurements on

Ba(Fe1−xZnx)2As2 [154, 155]. Secondly, as shown later by our calculations, the super-

conducting coherence length can be very short, which is consistent with the experimental

observation that Fe-SCs are extremely type-II superconductors with Ginzburg-Landau

parameter as large as 250 [127, 156]. In such a case, the applicability of the conven-

tional approach based on the Abrikosov-Gorkov (AG) pair-breaking theory in dilute

alloys [157], which assumes a spatially uniform suppression of the impurity-averaged

order parameter and Green’s functions, is in question. The failure of the AG theory to

address consistently the superconducting and transport properties in high-temperature

cuprate and some heavy-fermion superconductors with short coherence length is well

documented [158, 159]. Therefore, in order to go beyond the applicability of the early

theoretical studies and to reveal the interesting physics of highly disordered or dirty

high-temperature iron-based superconductors, we shall study the nonmagnetic impurity-

induced disorder effects in the unitary limit of multiorbital superconductors by solving

the lattice BdG equation. This approach has proven to be quite successful in providing

a consistent picture for the suppression of superconducting transition temperature and

superfluid density in the inhomogeneous high-temperature cuprate and plutonium-based

45



heavy-fermion superconductors [158–160]. In this chapter, we emphasize the key role of

strong electronic inhomogeneity induced by Zn substitution and how it could be probed

in the 122 iron pnictides.

The remainder of this chapter is organized as follows: In Sec. 5.2 we introduce

the model Hamiltonian and the formalism. To set the stage for the highly disordered

materials, the single impurity problem is briefly revisited in Sec. 5.3. The disorder effects

of the strong scattering limit on the superconducting order parameter are discussed in

Sec. 5.4. In Sec. 5.5, disorder effects on the local density of states and the superfluid

density or magnetic penetration depth are discussed. Finally, a brief summary is given

in Sec. 5.6.

5.2 Model and formalism

The multiorbital nature of iron-based superconductivity requires the construction of

physically-reliable and computationally-efficient, effective-low-energy, multiorbital mod-

els. In particular, a simple two-orbital model was first constructed by Raghu and co-

workers [12]. The Fermi surface topology resulting from this model captured well the

shape reported by angle-resolved photoemission spectroscopy [117]. However, it has

some weaknesses in other aspects of the electronic band dispersion. For example, too

much imbalance of Fermi velocities on the electron and hole bands has been revealed

in the study of the local electronic structure around a single impurity of an s±-wave

superconductor [161]. Several groups [9, 10, 162] have pointed out that one needs at

least three orbitals to accurately reproduce the electronic band structure calculated in

the density functional theory within the local density approximation (LDA). However,

it has also been shown [12, 110] that the other Fe-3dxz and Fe-3dyz orbitals play an

important role in the low-energy physics of these materials. On the other hand, it has

been argued that the canonical minimal model of the 122-type iron pnictides requires

only two irons (2-Fe) with two orbitals, dxz and dyz, per unit cell to account for the

effects of the upper and lower As atoms with respect to the two-dimensional plane of

the Fe square lattice [13, 14]. It is worthy to mention that these 2-by-2-orbital models

have successfully described the behavior of the collinear AFM and its competition with

the superconducting order in the electron-doped part of the phase diagram. In chapter

3., I improved the model original proposed in Ref. [13] to give a unified description of

the entire phase diagram covering both the electron- and hole-doped regimes[15]. To our

knowledge, this is the only 2-by-2-orbital model so far, in which the resultant low-energy

electronic energy dispersion agrees well with LDA electronic structure calculations in the

entire Brillouin zone of 122-type iron compounds.

Here, we start with the improved 2-by-2-orbital model of Ref. [15]. Interestingly, we

wish to point out that this model of 2-by-2 orbitals per unit cell can be mapped exactly
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onto two decoupled one-site two-orbital models by recognizing a unitary rotation of

orbitals between both Fe sublattices. The technical details of this mapping are given in

the Appendix C. We write the complete Hamiltonian for the two-dimensional Fe-square

lattice as

H = H0 +HI +Hpair +Himp . (5.1)

Here H0 is the tight-binding Hamiltonian of the normal-state band structure describing

hopping between Fe-3dxz and Fe-3dyz orbitals. The lattice Hamiltonian in the real space

(see also Appendix C.) is given by

H0 =
∑
ijαβσ

tαβij d
†
iασdjβσ −

∑
iασ

µd†iασdiασ , (5.2)

where d†iασ creates an electron with spin σ in the effective orbitals α = 1 and 2 on the i-th

lattice site. We choose the nonvanishing hopping matrix elements as tαα±x̂ = tαα±ŷ = 0.09,

tαᾱ±x̂ = tαᾱ±ŷ = −1, t11
±(x̂+ŷ) = t22

±(x̂−ŷ) = 1.35, t11
±(x̂−ŷ) = t22

±(x̂+ŷ) = 0.08, tαᾱ±(x̂±ŷ) = −0.12,

tαα±2x̂ = tαα±2ŷ = 0.25. The chemical potential µ is adjusted to give a fixed filling factor.

The local electronic correlations include the on-site Hubbard repulsion of electrons

and Hund’s rule coupling of spins. They are described by the term HI, which at the

mean-field level takes the form

HMF
I = U

∑
iασ

〈n̂iασ̄〉n̂iασ + U ′
∑

iα 6=βσ
〈n̂iασ̄〉n̂iβσ

+(U ′ − JH)
∑

iα 6=βσ
〈n̂iασ〉n̂iβσ . (5.3)

with the on-site Hubbard potential U , the inter-orbital Coulomb repulsion U ′, and the

Hund’s rule coupling JH . The orbital rotation symmetry imposes the constraint U =

U ′+ 2JH . In Eq. (5.1), the term Hpair contains the effective pairing interaction between

two electrons on the NNN site. In mean-field theory this can be written as

Hpair =
∑
ijα

(∆α
ijd
†
iα↑d

†
jα↓ + H.c.)δi±x̂±ŷ,j . (5.4)

As has been widely discussed in the literature, this NNN-pairing interaction ultimately

leads to the proposed s±-wave symmetry of iron pnictides [9, 78, 105, 163, 164]. Finally,

the last term Himp in Eq. (5.1) describes the scattering potential due to the randomly

distributed impurities. We model the disorder term by a local intra-orbital scattering

potential

Himp =
∑
Iασ

{Wd†IασdIασ + δt[d†I+(−)x̂ασdI+(−)x̂±ŷᾱσ

+d†I+(−)ŷασdI+(−)ŷ±x̂ᾱσ + H.c.]} . (5.5)
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Here, the impurity means that an Fe atom at lattice site I is substituted by Zn atom.

Therefore, the on-site energy of the impurity atom is changed and acts as a nonmagnetic

potential scattering center which scrambles the crystal momentum. As represented by

the first term on the rhs of Eq.. (5.5), we consider only intra-orbital scattering. This

simplification is justified by our numerical calculations, which show that inter-orbital

scattering processes are irrelevant in the unitary limit. In Eq. (5.5) we explicitly consider

the difference in covalent radii of the Zn atom compared to the Fe atom, which is

captured by the second term proportional to δt. Therefore, the substitution introduces

an additional change in the hopping parameters among the nearest-neighbor Fe sites

of the impurity site. In the case of the Zn substitution, in addition to electron doping

which can be tuned by the chemical potential, the induced local impurity potential is

expected to be much stronger than for other transition metals like Co and Ni. Note

that when the impurity potential on the Zn site is very large, the effect caused by a

small change in the Fe-Zn hopping integrals is negligible. Hence, the surrounding Fe-Fe

bond disorder is the second most important term next to the strength of the impurity

potential.

We then diagonalize the mean-field Hamiltonian H of Eq. (5.1) by solving the BdG

equation self-consistently:

∑
jβ

(
Hαβij↑ ∆α

ijδα,β

∆α∗
ji δα,β −Hβαji↓

)(
unjβ

vnjβ

)
= En

(
uniα

vniα

)
, (5.6)

whereHαβijσ = t̃αβij +(U〈n̂iασ̄〉+U ′
∑

γ 6=ασ′〈n̂iγσ′〉−JH
∑

γ 6=α〈n̂iγσ〉+WδI,i−µ)δα,βδi,j is the

single-particle Hamiltonian and t̃ includes the effect of the local change in the hopping

parameter between Fe sites neighboring he impurities, 〈n̂iα↑〉 =
∑

n |uniα|2f(En), 〈n̂iα↓〉 =∑
n |vniα|2[1 − f(En)], and ∆α

ij = (V/2)
∑

n{uniαvn∗jα [1 − f(En)] − vn∗iα unjαf(En)}δi±x̂±ŷ,j.
Here V is the pairing strength and f(E) is the Fermi-Dirac distribution function. The

local superconducting order parameter and charge density at site i are defined as

∆i =
1

4

∑
jα

∆α
ijδi±x̂±ŷ,j , (5.7a)

ni =
∑
ασ

〈niασ〉 , (5.7b)

respectively. Throughout this work, the numerical calculations are performed on a

28 × 28 square lattice with the periodic boundary condition. A 48 × 48 supercell is

taken to calculate the density of states. The interaction parameter values are fixed

at (U, JH , V ) = (3.2, 0.6, 1.05) [15]; while the electron filling is chosen to be 2.13 in

the pristine system, which corresponds to the optimal electron doping regime. For the

impurity scattering, we fix the impurity scattering strength W = −20 and δt = −0.2.
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This value of W is reasonable given by the Zn core level located ∼ 8 eV below the Fermi

level and is very close to the strong scattering (unitary) limit. Note we have checked

several values of impurity scattering strength W . The results are insensitive to the

precise value for W < −8. This might also be relevant to the impurity effect from Co

and Ni substitution in LaFeAsO [153]. Specifically, for W = −0.5 the superconducting

transition temperature is hardly affected by impurities up to nimp = 25.5% [122–124].

5.3 Single impurity effects

Before we proceed with the complex disorder configuration, the single impurity effect on

superconducting phase is studied. In the absence of impurities, our two-orbital model

naturally captures the relation between SDW and SC phases and recovers the whole

phase diagram with doping evolution. Henceforth, we shall restrict our calculations

within this set of interaction parameters. With a single impurity in the unitary limit,

we find that impurity scattering induces strong charge inhomogeneity and significantly

suppresses the superconducting order parameter around the impurity site as illustrated

in Fig. 5.1. In particular, we revisit the effects of a single Zn impurity on supercon-

ductivity in Ba(Fe1−x−yCoyZnx)2As2 with y > 0.1, where there is no SDW. Note that

localization of electrons on the impurity site is taken into account through the modified

hopping coefficients of surrounding Fe atoms as presented in Eq. (5.5).

To gain deeper physical insights into scattering effects around a single impurity, we

consider the 2D spatial cross-correlation functions of the superconducting order param-

eter and charge density defined by

CX(i) =

∑
j[(X(i + j)− 〈X〉)(X(j)− 〈X〉)]∑

j[X(j)− 〈X〉]2
(5.8)

where X = n and |∆|, and the mean 〈X〉 = (1/N)
∑

jX(j) with N the number of lattice

sites. The cross-correlation function is normalized to give −1 ≤ CX ≤ 1. The results

for the 2D cross-correlation functions are plotted in Fig. 5.1(c) through 5.1(e), where

the fourfold symmetry and rapid screening over a few lattice sites becomes obvious. A

quantitative analysis is possible when plotting CX as a function of distance from the im-

purity site. In Fig. 5.1(e) we define a typical spatial correlation length ξX by measuring

the impurity-induced fluctuations of X as the distance where CX drops from unity to

1/e. It is straightforward to read off from Fig. 5.1(e) that the additional local charge on

Zn is well-screened within a lattice distance, ξn ∼ 1. Indeed, it is over screened, resulting

in Friedel-type oscillations, which are clearly visible in the correlation function. Such a

short screening length is mainly due to the strong local Coulomb repulsion U , which acts

on the charge sector. In contrast, the superconducting correlation function has a more

profound oscillating tail with a short coherence length ξ∆ ∼ 2. Based on these quite
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Figure 5.1: (Color online) Single impurity effects at zero temperature. The intensity
plots of the local charge density (a) and superconducting order parameters (b). The
arrows represent the argument of the complex superconducting order. The 2D cross-
correlation functions of charge (c) and modulus of order parameter (d). For quantitative

analysis the same correlation functions vs. distance |i| in (e).

short correlation lengths, we expect that the Zn-doped Ba-112 iron-based superconduc-

tor will be a good candidate for the Swiss-cheese model [165], where the holes of the

Swiss-cheese correspond to the holes punched into the superconducting texture by the

Zn impurity, while the effect on the bulk value of the superconducting order parameter

is almost negligible after a few lattice sites away from the defect. Hence we antici-

pate that the s±-pairing gap is easily destabilized by strong impurity scattering similar

to the high-Tc cuprate [165], Sr2RuO4 [166], UPt3 [167], and PuCoGa5 superconduc-

tors [168]. Indeed, this result is in agreement with available experimental observations

in Ba(Fe1−x−yZnxCoy)2As2, which has a relatively low Neel temperature TN ∼ 135 K

and no trace of superconductivity for y = 0 and x = 0.08, 0.25 [154, 155]. On the

other hand, when Co doping induces superconductivity, doping by several percent of Zn

50



rapidly suppresses it.

5.4 Disorder effects in the superconducting order param-

eter
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Figure 5.2: (Color online) Disorder effects at zero temperature. (a) The averaged
superconducting order parameter 〈∆〉 = |∆|eiφ as a funtion of nimp. The data is aver-
aged over 5 disorder configurations. The error bars on the data points represents the
statistical deviation. The solid line is fitted to guide the eye. Intensity plot of local su-
perconducting order parameters for a typical impurity configuration with concentration
nimp = 1.28% (b) and nimp = 5.10% (c). The arrows and open green circles represent
the argument of complex superconducting order parameter and the impurity position

respectively.

We next turn to the question of how superconductivity is affected by increasing the

impurity concentration. For this purpose, the evolution of the disorder-configuration-

averaged superconducting order parameter 〈∆〉 (at zero temperature) as a function of

the impurity concentration nimp is considered.

As for the case of the single impurity study, we focus on the compound

Ba(Fe1−x−yZnxCoy)2As2, with y > 0.1 (5.9)
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when the SDW phase is suppressed. Again we are primarily interested in the local

suppression of the superconductivity due to Zn substitution and the combined effects of

charge localization and strong impurity scattering. For that purpose we make the follow-

ing simplifications: (1) doping with Co adds mainly charge to the itinerant electrons that

is captured by a shift of the chemical potential, and (2) scattering is in the weak limit

compared to Zn. Hence, the local scattering effect of Co impurities is neglected. The re-

sults of the suppression of the lattice-averaged order parameter are plotted in Fig. 5.2(a).

We find that the averaged modulus of the order parameter 〈|∆|〉 decays nearly linearly

with increasing impurity concentration and eventually vanishes at a critical concentra-

tion of nimp ≈ 10− 11%. Considering the superconducting transition temperature Tc is

usually over estimated at the mean-field level (more on this later in Sec. 5.5), our results

are in good agreement with recent measurements in Ba(Fe1−x−yZnxCoy)2As2 [150].

To provide an intuitive picture of disorder effects in highly disordered superconduc-

tors with increasing impurity concentration, we present a study of the evolution of the

local superconducting order parameter for two particular realizations of disorder configu-

rations. The spatially resolved order parameter ∆i is shown in colormaps in Figs. 5.2(b)

and (c) for nimp = 1.28% and 5.10%, respectively. The images reveal that the order

parameter is locally suppressed at the impurity sites, and the impurities behave indi-

vidually when the impurity concentration is small as shown in Fig. 5.2(b). Of great

interest is that the interference of the local order parameter at each impurity site devel-

ops gradually with increasing impurity concentration nimp, as one can clearly observe

from Fig. 5.2(c), where islands form. The crude estimation on the threshold length of

interference is given by ξ∆ as illustrated in the previous Fig. 5.1(e). Also a considerable

portion of sites has vanishing order parameter amplitude in the highly disordered limit.

These correlated sites form islands and break the system into several superconducting

puddles as illustrated in Fig. 5.2(c). Consequently, the local order parameter becomes

highly inhomogeneous in Fig. 5.2(a). We propose, as in the case of high-temperature

cuprate superconductors [144], that the novel electronic inhomogeneity should also be

detected by measuring the local density of states using the atomic resolution scanning

tunneling microscopy.

5.5 Total density of states and superfluid density

To gain further insight into the disorder effects in the unitary limit of highly disordered

superconductors, we calculate several observables such as the total density of states

(DOS), the superfluid density, and the magnetic penetration depth λ. The site-averaged
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Figure 5.3: (Color online) Total density of states for various sets of impurity con-
centrations nimp = 1.28, 2.55, 3.83% at very low temperature T = 0.002� Tc.

DOS at finite temperature is defined by

N(ω) = − 1

N

∑
iαn

[|uniα|2f ′(ω − En) + |vniα|2f ′(ω + En)], (5.10)

where f ′(E) is the derivative of the Fermi-Dirac distribution function with respect to

the Fermi energy. For better visualization in Fig. 5.3, the DOS is calculated at finite

temperature T = 0.002 � Tc. Note that in the pristine system two BCS coherence

peaks are exhibited at the energies ω = ±0.1, which corresponds to the single parti-

cle excitation gap. With increasing impurity concentration, the coherence peaks are

gradually suppressed. Eventually above nimp = 3.83%, the DOS is filled in and gapless

superconductivity emerges.

In experiments, the magnitude of the superconducting transition temperature Tc

is usually less sensitive to defects since it is related to the spatial average of the order

parameter, which is a local correlation function. On the other side, the magnitude of the

penetration depth λ measures the stiffness of the superconducting phase coherence in

the superconductor, which is a nonlocal response function. Therefore, this quantity can

provide deep insight into the nature of the superconducting pairing symmetry through

its temperature dependence and residual value because these are extremely sensitive to

defects. So far, measurements of the magnetic penetration depth in Fe-SCs have given

controversial results. For example, in 122-type iron pnictides, the superfluid density

exhibits an exponential temperature behavior in the cleanest hole-doped compounds,

Ba1−xKxFe2As2[169], while a power-law behavior is seen in Ba(Fe1−xCox)2As2[130, 170–

175]. Very recently, one research studied the temperature dependence of the superfluid

density of clean 122-type iron pnictides at various electron-doping levels and found that

the low-temperature power-law dependence of the deviation ∆λ(T ) = λ(T )−λ(0) varies

53



with an exponent greater than 3 [176].

In our multiorbital lattice BdG calculations, we follow the standard linear response

approach of Refs. [177] and [178] to investigate disorder effects on the superfluid density.

In the presence of a weak vector potential Aη(r, t) along the direction η, the hopping

term is modified by the Peierls phase factors ei
∫
Aη(r,t)dr (We set e = ~ = c = 1). Hence,

the change in the tight-binding Hamiltonian in the Meissner state is

H′0 =
∑
iδαβσ

tαβii+δd
†
iασdi+δ

×[−iAη(i, t)δη −
1

2
(Aη(i, t)δη)2] +O(A3

η) (5.11)

where δη projects δ onto the direction η in units of the lattice constant. The charge

current density operator consists of the usual paramagnetic and diamagnetic parts,

ĵη(i, t) = − ∂H′0
∂Aη(i, t)

= ĵPη (i, t) + ĵDη (i, t), (5.12)

with

{ĵPη (i, t), ĵDη (i, t)} =
∑
δαβσ

tαβii+δd
†
iδσdi+δβσδη{i,Aηδη}. (5.13)

In the interaction representation, the kernel function K of the charge current satisfies

〈ĵη(i, t)〉 = −
∑
i′

∫
dt′K(i, i′, t− t′)Aη(i′, t′) (5.14)

to leading order in the vector potential Aη, where, the static kernel at ω = 0 is expressed

by

K(i, i′, ω = 0) = −
∑
nm

Γnmi Γmni′
f(Em)− f(En)

Em − En

−
∑
δαβn

tαβii+δ[u
n∗
iαu

n
i+δβf(En) + vniαv

n∗
i+δβf(−En)]δ2

ηδi,i′ .

(5.15)

Here, the auxiliary functions are Γnmi =
∑

δαβ t
αβ
ii+δ(u

n∗
iαu

m
i+δβ − vmiαv

n∗
i+δβ)δη. Fourier

transform with respect to the individual coordinates i and i′ then defines the spatially

averaged kernel function K̄(q, ω = 0) = (1/N)
∑

i,i′ e
−iq·(i−i′)K(i, i′, ω = 0), which gives

the bulk superfluid density ρ̄s = K̄(q → 0, ω = 0). We also define the local superfluid

density as

ρs(i) = K(i, i;ω = 0) (5.16)

to investigate the local suppression of the superfluid density. As shown in Fig. 5.4(a),

we find that the local superfluid density is dramatically suppressed at impurity sites.
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As illustrated in Fig. 5.4(b), the bulk superfluid density ρ̄s decreases drastically to

zero, much faster than Tc, as expected with increasing impurity concentration nimp

in the Swiss-cheese scenario for a short coherence superconductor. This different rate

of suppression is further corroborated by the Uemura plot as shown in Fig. 5.4(c),

suggesting the break-down of the AG theory. We note that the loss of phase coherence

is related to the vanishingly small superfluid density near the critical concentration of

impurities [179], implying the importance of spatial disorder induced fluctuations [180,

181]. As manifested in Fig. 5.2(c), a Bose system consisting of localized Cooper pairs is

gradually formed in the highly disordered limit due to the loss of phase coherence between

the superconducting puddles. Unfortunately, the physically interesting region, where the

superfluid density is vanishing small, is not captured within the BdG framework due to

the neglect of phase fluctuations. In the present mean-field theory the phases of the

order parameter at different sites are completely aligned with the ground state as shown

in Fig. 5.2(b) and (c). For details on the consequences of quantum phase fluctuations

on the order parameter in the inhomogeneous BdG state using a quantum XY model

see Ref. [182].

Finally, we also calculated the temperature dependence of the deviation ∆λ(T ) of

the magnetic penetration depth in the presence of disorder, which is related to the

bulk superfluid density λ2 ∝ 1/ρ̄s. In the clean limit, ∆λ(T ) is expected to vary ex-

ponentially at low temperatures due to a gapped DOS, as shown in Fig. 5.5. The

exponential decay is consistent with a fully gapped pairing state. At the impurity con-

centration nimp = 3.83%, the temperature dependence of ∆λ(T ) shows a T 2 power law.

Hence we expect that for intermediate impurity concentrations the temperature behav-

ior will resemble that of a power law with exponent greater than two. Interestingly,

the T 2 variation of ∆λ(T ) is observed experimentally in Ba1−xKxFe2As2 [169, 183], and

Ca0.5Na0.5Fe2As2 single crystals [184], possibly due to the doping-induced disorder. Our

calculation showcases that the temperature dependence of the penetration depth in an

s±-wave pairing superconductor can be very sensitive to the impurity scattering. De-

pending on the impurity concentration, it may enable us to explain various power-law

behaviors in Fe-SCs [130, 170–175].

5.6 Summary

To summarize, by solving the lattice BdG equations self-consistently, we have studied

disorder effects on superconducting and transport properties of disordered superconduc-

tors with s± pairing symmetry. In the unitary limit, the impurity scattering strength

is so large that the potential scattering term cannot be treated as a perturbation in the

framework of pair breaking by Abrikosov and Gorkov. The detailed numerical calcu-

lations demonstrate that a single nonmagnetic impurity can depress superconductivity
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Figure 5.4: (Color online) (a) The normalized intensity (unitless) of local super-
fluid density ρs(i) with nimp = 3.83% at zero temperature. The open black circles
indicate the impurity locations. (b) The zero-temperature bulk superfluid density ρ̄s
and superconducting transition temperature Tc as a function of impurity concentration
nimp. The data is averaged over five randomly distributed impurity configurations. (c)
The Uemura plot of the superfluid density in short-coherence superconductors. The
variables Tc0 and ρ̄s0 are obtained from a pristine system. For comparison, we also
plot results of the one-band AG calculations for d-wave pairing symmetry [159] and the

two-band AG calculations for the s±-wave symmetry [185].

significantly at the local scale. With increasing impurity concentration the impurity

scattering potential induces a spatial redistribution of the amplitudes of local Cooper

pairs in the form of superconducting puddles, giving rise to significant spatially elec-

tronic inhomogeneity. Calculations of the local density of states, the superfluid density,

as well as the magnetic penetration depth further reinforce this picture, demonstrating

again that the superconducting phase is not stable against strong impurity scattering as

expected in the Swiss cheese scenario.

Our results shed new light on the understanding of recent experiments in Co- and

Zn-substituted BaFe2As2 samples [150]. In these samples the superconductivity is com-

pletely suppressed when the concentration of Zn impurities nimp is above 8%. The

available angle-resolved photoemission spectrocopy experiments indicate that the sub-

stitution by Zn atoms not only provides additional electrons into the Fe lattice, but also

creates strong local scattering potentials because the Zn-3d orbitals are well-below the
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Figure 5.5: (Color online) Temperature dependence of the deviation of the magnetic
penetration depth ∆λ in the clean limit (open black square) and for a dirty system with
impurity concentration nimp = 3.83% (solid blue circle). The data is averaged over five
randomly selected disorder configurations. Inset: Replotted data to emphasize the

exponential low-temperature behavior of the clean system.

Fermi level [154, 155]. All these observations are consistent with our numerical results.

Furthermore, our calculations show that superconductivity is hardly affected by weak

intraorbital scattering with scattering potential W = −0.5 (corresponding to Co and

Ni) or by interorbital scattering in the unitary limit. We anticipate that the emergent

electronic inhomogeneity in the strong scattering limit, due to local screening effects,

will be probed in future scanning tunneling microscope and scanning Meissner force

microscope experiments [186].
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Chapter 6

Emergent topological orbital

phases in tetragonal t2g systems

6.1 Introduction

Previous chapters (2. to 5.) were all related with magnetic and superconducting orders,

however, devated from these orders, I found that it is possible to have topological orders

in the iron-based t2g system based on the new model [15]. In this chapter, I will give

more insights with the topological index and symmetry analysis based on the new model

in chapter 3..

The class of topological insulators (TIs) is characterized by topological properties

in the electronic wave function with the emergence of protected edge or surface states.

In fact, the integer quantum Hall insulator is the first known TI, which was character-

ized by the topological Chern number [187] under the condition of broken time-reversal

(TR) symmetry due to external magnetic fields. Haldane showed that such a Chern

insulator can be realized on a honeycomb lattice with opposite spontaneous internal

magnetic fields between two different sub-lattices, even in the absence of external mag-

netic fields [188]. By promoting Haldane’s model to the class of Hamiltonians with spin

degrees of freedom that respect the TR symmetry in the presence of strong spin-orbit

coupling, the quantum-spin Hall insulator, characterized by a nontrivial Z2 topological

invariant, was proposed [189, 190]. Later this idea was generalized to Z2 TIs in three

dimensions (3D). Some of the non-trivial topological properties that usually accompany

TIs are the odd number of Dirac cones of these edge or surface states in the Brillouin

zone. Experimentally, the quantum spin Hall insulator was realized in the quasi-two-

dimensional sub-bands of the HgTe/CdTe quantum well structures [191], following the

theoretical proposal by Bernevig and collaborators [192] based on strong spin-orbit cou-

pling (SOC) due to the heavy tellurium atom. In addition, the Z2 TI in 3D was real-

ized shortly thereafter in the doped Bi1−xSbx alloy [193] and other bismuth-based and
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tellurium-based compounds [194, 195].

The quest for topological phases in multi-orbital systems is ongoing in cold-atom

gases and photonic crystals [196, 197]. However, there are very few studies on multi-

orbital systems in real materials beyond those with the honeycomb lattice. Recently,

the topological Kondo insulator in rare-earth materials due to the hybridization of an

itinerant band with a localized band with different inversion parity, attracts much atten-

tion [198]. Here we propose a new possibility for realizing non-trivial topological phases

through Coulomb interactions in tetragonal systems with the t2g symmetry caused by

crystal-field splitting. The modest Coulomb interaction prevails in compounds with tran-

sition metal elements, even though the hybridization of two degenerate bands is identical

in the parity under spatial inversion symmetries. We show that non-trivial topological

phases can be induced by generating spontaneous orbital currents in an effective, low-

energy two-orbital (dxz and dyz orbitals) model, which leads to the anomalous-orbital-

hall (AOH) effect. The nature of these orbital currents is different from the loop or

current flux phases that were employed to describe the pseudo-gap phase in the copper-

oxide superconductors [199–203], which have different orbital degrees of freedom and

crystal symmetries. Indeed, the AOH effect offers a new realization of the topological

Mott insulator [204–207]. In that respect our model may help in the search for novel

topological phases in transition-metal oxides and other compounds with active dxz and

dyz orbital degrees of freedom. However, there are two possible mean-field ground state

configurations of these orbitals, which respect the C4v symmetry of one transition-metal

atom per unit cell (For details see the Appendix D.). The first configuration of type

I [196, 197, 208], which is frequently discussed in literatures, is the dxz/yz orbital lock-

ing of the nearest neighbor (NN) chemical bond direction. The second configuration of

type II is the dxz/yz orbital locking of the next-nearest neighbor (NNN) chemical bond

direction. Type II configuration proposed in this work is responsible for the generation

of spontaneous orbital currents in mean-field ground states, which leads to topologically

nontrivial phases.

For transition metals with crystal-field splitting caused by a tetragonal lattice dis-

tortion, the dxz and dyz are the only two relevant orbital degrees of freedom of the

t2g orbital manifold at low energy. We begin our study with an effective two-orbital

model [15, 209, 210] and calculate the inter-orbital Coulomb interaction with mean-field

theories. Based on these mean-field solutions, the inter-orbital Coulomb interaction

generates spontaneous orbital current flux. This new orbital order gap out the Dirac

dispersion in the bulk bands and generates two edge bands with the linear dispersion

following one-dimensional version of two Dirac cones when spinless (or spin polarized)

fermions are considered. We further extend the model to the Hamiltonian with spin de-

grees of freedom and discuss two uniquely distinguishable phases: Phase (I): The orbital

currents are parallel to the ↑ / ↓ spin with doubled Chern number, C = ±4. Phase (II):
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Figure 6.1: (color online) (a) The schematics of the orbital current order (λAOH).
The coordinates x and y are in the 1-Fe per unit cell. (b) and (c) The electronic band
structure and Fermi surfaces at half-filling without interaction terms. (d) The calculated
phase diagram based on the Chern number C with λAOH = 1 and −5 < λ0,1 < 5. (e),(f)
and (g) The evolution of the corresponding band structure from TI to metal to trivial
band-gap insulator for different values of λ0 at λ1 = 0 along the orange line cut in (d).

Note that both the λ0 and λ1 term break the C4v symmetry.

The orbital currents are anti-parallel to the ↑ / ↓ spin with vanishing Chern number,

C = 0. We see that Phase (I) and the spinless Hamiltonian are a realization of the

Chern insulator, while Phase (II) leads to the Z2 classification of the TI. Without the

introduction of additional terms, our mean-field calculation shows the states of Phases

(I) and (II) are equal in energy. Of course this degeneracy can be lifted, once the on-site

intra-orbital spin-exchange interaction is considered, then Phase (II) can be considered

as the better mean-field ground state at low temperature.

6.2 The model Hamiltonian

Let us introduce the model Hamiltonian for spinless fermions to facilitate our discussions.

The spinless Hamiltonian Ĥ together with two additional interaction terms, λ0 and λ1,
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Figure 6.2: (color online) (a) - (c) The electronic dispersion of the edge states (red
lines) for different interaction parameters, but fixed λAOH = 1. (a) λ0 = λ1 = λR = 0;
(b) λ1 = 2; (c) λR = 0.03. Note that any finite λR splits the Dirac cones. (d) - (f) The
corresponding vector plot of the complex Pfaffian function P(k). The bi-color code
represents small (orange) to large (blue) modulus |P(k)|. The red crosses mark the

positions of the vortex cores, i.e., P(k) = 0.

is given by

Ĥ =
∑
IJ,αβ

tαβIJ c
†
Iα cJβ + i λaAOH

∑
IJ,α6=β

εαβIJ c†IαcJβ

+λ0

∑
Iα

(−1)αc†IαcJα + i λ1

∑
I,α 6=β

(−1)α c†IαcIβ

−
∑
Iα

µ c†IαcIα,

(6.1)

where I, J are site indices, α, β are orbital indices. εαβIJ indicate the direction of each

inter-orbital current term shown in Fig. 6.1(a) and is given in Table. I of the Appendix

D. The first term with hopping parameter tαβIJ is the kinetic term of spinless fermions in

the lattice and the last term, µ, is the chemical potential. The AOH effect is described

by the complex hopping term between different orbitals for sites I and J with the

coupling constant λaAOH determined by spontaneously generated current through the

inter-orbital Coulomb interaction, the index a of λaAOH is preserved for future study

when spin degree of freedom is incoporated. The on-site orbital energy difference λ0

is responsible for the on-site orbital charge polarization, whereas the on-site complex

hopping with the coupling constant λ1 describes the on-site inter-orbital coherence.
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In the case of translational invariant crystal symmetry, we can Fourier transform

the spinless Hamiltonian to k-space and write it in 2×2 matrix form, Ĥ(k), with basis

functions ψk = (ckα, ckβ)T . We derive the expression Ĥ(k) = E0(k) + ~B(k) · ~τ , where

~B = (X,Y, Z) and ~τ = (τx, τy, τz) are the Pauli matrices. The detailed expressions for

the matrices X, Y and Z are given in the Appendix D. The 2×2 matrix Ĥ(k) can be

easily diagonalized. The analytic expression for the eigenvalues is E±(k) = E0(k)±B(k),

where B = | ~B|. The corresponding eigenvectors are

|+,k〉 = (Z +B,X + i Y )T /
√

2B2 + 2ZB,

|−,k〉 = (−X + i Y, Z +B)T /
√

2B2 + 2ZB.
(6.2)

We find that Dirac cones exist in the dispersion of the bulk material when all the

interaction-induced terms are turned off (λaAOH = λ0 = λ1 = 0). Their locations are

determined by B(k) = 0. They are protected by the C4v and TR symmetries of spinless

fermions with double degeneracy at each Dirac point.

6.3 Topological Phases

In Figs. 6.1(b) and 6.1(c) we show the dispersion of the electronic band structure of

the bulk material at half filling when λaAOH = λ0 = λ1 = 0. The Chern number C can

be calculated directly through the Berry curvature of the Hamiltonian Ĥ(k), which is

defined as C (λaAOH ;λ0;λ1;n) = 1
2π

∫
k∈BZ dkΩn(k), with integer band index n. The first

observation is that C (λaAOH ; 0; 0;n) = ±2 for any real λaAOH . The second observation is

that the sign of C depends on the sign of λaAOH , which determines the class of the Chern

insulator, sign( C ) = sign(λaAOH × (−1)n). Since the topological phase with C = ±2 is

robust against weak perturbations by symmetry breaking terms, we show its stability

region in the λ0-λ1 phase diagram in Fig. 6.1(d) for λaAOH = 1. Note that the TI phase

is interaction induced and therefore vanishes for λaAOH → 0. Following the orange line

cut in the phase diagram, we see the evolution of the bulk band-gap as it closes and

reopens with varying λ0, see Figs. 6.1(e) to 6.1(g). This leads to a sequence of phase

transitions from a topological Chern insulator to a metal (around λ0 = 2.5) and on to a

trivial band-gap insulator.

For practical purposes in real materials, we need to consider electrons as fermions

with spin degrees of freedom. Therefore, we promote the spinless two-band orbital model

to the spinful model with spins as Ĥs = Ĥ↑[ε↑] + Ĥ↓[ε↓], where the sign of the orbital

current direction is considered λaAOH = εa|λaAOH |, spin index a ∈ [↑, ↓]. A detailed

analysis of the Hamiltonian Ĥs reveals the following stable topological phases:

• Phase (I) ε↑ = ε↓ with Chern number C = ±4,

• Phase (II) ε↑ = − ε↓ with Chern number C = 0.
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For Phase I, we find that the Chern number ±4 is twice of the spinless case due to the

twofold degeneracy of spins. Here it has the same orbital current direction as discussed

before. For Phase II, we find that the Chern number classification scheme is insufficient

to capture the topological nontrivial insulator phase. To see whether Phase II is a

TI, we plot the edge states of the slab geometry in Fig. 6.2(a). The calculated edge

states along the (1,0,0) direction show two Dirac cones at kx=±π
2 . Furthermore, we

show in Fig. 6.2(b) that these edge states are robust against the perturbation λ1 = 2,

although the position of the Dirac cones is shifted away from kx = ±π
2 . One may

tend to claim that Phase II is a conventional Z2 quantum spin Hall insulator since the

time reversal symmetry is respected by the mean-field Hamiltonian for Phase II with

zero Chern number. However, it cannot be reconciled with the fact that the number

of pairs of degenerate edges states are even instead of odd. We claim that Phase II is

a topological mirror insulator protected by mirror symmetry as indicated by the even

mirror Chern number CM , which is equivalent to the spin Chern number for Phase II,

given by CM = (C↑ − C↓)/2 = [2− (−2)]/2 = 2 as opposed to the Z2 quantum spin Hall

insulator in Kane and Mele lattice model with odd mirror Chern number CM = 1 (in

the absence of spin-orbital couplings). In the following section, we propose a topological

invariant for the topological mirror insulator realized in Phase II.

It is noticed that we only consider the imaginary part of the intra-orbital current

order given by λaAOH term induced by off-site Coulomb interaction. In general, we

should include the real part. Since the real and spatial uniform term only causes the

renormalization of hopping terms, it does not affect the band topologies of the phases(see

Appendix D.). In addition, based on our current models, Phase (I) and Phase (II) are

degenerate to our numerical accuracy if we only consider the off-site Coulomb interaction.

However, if one include an additional on-site intra-orbital spin-exchange term, J , the

degeneracy between Phase (I) and Phase (II) is lifted and Phase (II) has lower energy

(see Appendix D.).

6.4 Mirror topological invariant

Based on symmetry of the mean-field Hamiltonian for Phase II, time reversal symmetry

is still respected. However, the number of Kramers’ pair at the edges are even instead

of odd. This indicates that Phase II is not adiabatically connected to the Z2 quantum

spin Hall Insulator protected by time reversal symmetry.

We notice that the spinful Hamiltonian Ĥs for Phase II satisfy the mirror symmetry

MĤs(kx, ky)M
−1 = Ĥs(−kx, ky) = Ĥs(kx,−ky) in which the mirror operator is given

by M = PT = (τxK)⊗ (−iσyK) in the basis we use in the manuscript (see Appendix

D. for detailed symmetry analysis). The operator K performs the complex conjugate

operation identical to the TR operation for spinless fermions. The operator P swap
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two orbitals and the operator, −iσy, is responsible for the spin flipping with the TR-

operation, T. Because of the mirror symmetry M in the mean-field Hamiltonian Ĥs, we

define two different space of the Bloch wavefunctions |un(k)〉 on the BZ, which differ by

their properties under mirror symmetry: an even subspace for which the space spanned

by |un(k)〉 is equivalent to M |un(k)〉 up to a phase vector, and an odd space, for which

they are orthogonal.

A mirror Pfaffian invariant analogous to the Z2 quantum spin Hall phase in Kane-

Mele model [189, 190] can be used to capture the band topology in Z2 quantum spin

Hall insulator. In our case, the mirror Pfaffian invariant is constructed to capture the

band topology of the topological mirror insulator we discuss as

P(k) = Pf
[
〈um(k)|M|un(k)〉

]
, (6.3)

where |um(k)〉, |un(k)〉 are two occupied orthogonal eigenstates of the Hamiltonian Ĥs(k).

For the k points at the ”even” space along the kx and ky axes, the commutation rela-

tion MĤs(k)M−1 = Ĥs(k) holds. Therefore, the two eigenstates |um(k)〉 = M|un(k)〉
and |um(k)〉 are degenerate. As a results, the absolute value of the Pfaffian P(k) =

Pf
[
〈um(k)|M|un(k)〉

]
at the kx axis and ky axis is given by |P(k)| = 1. For the k points

at the ”odd” space satisfying the anti-commutation relation MĤs(k)M−1 = −Ĥs(k),

M|ui(k)〉 turns into unoccupied eigenstate and is orthogonal to the eigenstate |uj(k)〉
with vanishing Pfaffian P(k) = 0.

In Fig. 6.2(d), we show the Pfaffian in the Brillouin Zone (BZ) for the topologi-

cal mirror insulator. There are four vortices well separated by the even space at kx

and ky axis. Let us examine the effects on the Paffian P(k) when an infinitesimal

mirror symmetry breaking interaction is adiabatically turned on. We introduce the

on-site Rashba spin-orbit interaction iλR
∑

Iασ(−1)α(−1)σc†IασcIασ̄. The correspond-

ing Hamiltonian ĥR(k) = λR τz ⊗ σy in momentum space breaks the mirror symmetry

([Ĥs + ĥR(k), M ] 6= 0). This will destroy the mirror topological phase even though the

interaction ĥR(k) is infinitesimal. As we expect, the four vortices disappear with the

infinitesimal Rashba spin-orbit interaction as shown in Fig. 6.2(f). As far as the edge

states are concerned, an infinitesimal λR will destroy the edge states and the gapless

edge states are gapped in Fig. 6.2(c).

A different scenario occurs when a finite interaction is turned on without breaking

the mirror symmetry. We consider the inter-orbital coherence interaction λ1. In mo-

mentum space, the interaction is given by the expression −iλ1τy which breaks the time

reversal symmetry T = −iσyK but preserve the mirror symmetry M. In this case, the

Paffian is plotted in Fig. 6.2(e). Here the locations of the pair of vortices in the upper BZ

half-plane are modified and move toward the pair in the lower half-plane compared to

Fig. 6.2(d) as the strength of λ1 increases. This trend continues until vortices disappear
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at a critical strength λ1c ≈ 2.5, which corresponds to the region of the phase boundary

in Fig. 6.1(d) for spinless fermions, before touching the even space of the Paffian, which

cannot accommodate vortices. This observation is consistent with the corresponding

degenerate states in edge states as displayed in Fig. 6.2(b). The locations of the degen-

eracies are the direct projection of the vortex positions in the BZ of Fig. 6.2(e) on the

edges.

As described above, the Pfaffian P(k) is a good indicator to tell whether a system

has a non-trivial band topology due to the mirror symmetry M. We can define the

mirror topological index by counting the number of vortex cores,

I =
1

2πi

∮
∂S4

dk · ∇k log[P(k) ] mod 2, (6.4)

where ∂S4 is the boundary of one quarter of the BZ. From the symmetry analysis of phase

II in the Appendix D., we know that the even subspace is sitting on C. Note that C is not

a single point, but rather paths which divide the BZ into four independent sections. Since

the M operator connects (kx, ky) to (±kx,∓ky) for phase II with Hamiltonian ĤII
s and

the Hamiltonian has intrinsic symmetry, ĤII
s (k) = ĤII

s (−k), the minimal irreducible

section becomes the quarter of the BZ. Hence, the odd/even number of vortices inside

a quarter of the BZ determines the nontrivial/trivial topology of the bands.

6.5 Conclusions

In conclusion, we have demonstrated a new path to realize non-trivial topological phases

by Coulomb interaction in compounds where t2g orbitals are the low energy manifold.

Specifically, we focus on the compounds with the ground state orbital orientation re-

specting C4v symmetry with 45-degree intra-orbital orientation. Based on mean-field

theories, we identify two topological insulating phases induced by Coulomb repulsive

interaction. One phase is adiabatically connected to conventional quantum Hall insula-

tor with even Chern number. In addition, we identify an emergent topological mirror

insulator with mirror symmetry which is different from the Z2 topological insulators

proposed earlier [195, 211–214]. We propose a mirror topological invariant to capture

the band topology of the phase by counting the vortex number of mirror Pfaffian in a

quarter of BZ.

Finally, we suggest possible candidates for the emergent TCI phases in materials

with crystal field split t2g orbitals that are described by a simple two-orbital effective

Hamiltonian, which should be considered as an effective theory for the paramagnetic

phase even at finite temperature with normalized parameters.

When the system is a Chern insulator, the anomalous orbital Hall effect with finite

magnetic moments will occur due to orbital currents, yet without spin order. Based on

65



this work, we suggest to look for TCIs in the iron-pnictide based nonmagnetic insulators

with crystallographic 122 structure [82], where the Fermi surface is close to half-filling.

Due to the edges states, the material candidate should show electric conductivity even

at low temperature even though the bulk is insulating.

We suggest to focus on pnictides showing paramagnetic and bad metallic conduc-

tivity. Based on the experimental evidence, the Ni-based compound, BaNi2As2 with

very low superconducting temperature (Tc ≈ 0.6K), is likely such a candidate. It does

not show spin-density wave state when the d electron filling is almost fully filled within

our two-orbital model. By hole doping with K on the Ba site of BaNi2As2, the electron

filling can be reduced to close to half-filled. With compressional stress applied normal

to the NiAs layer, the lattice constant in the NiAs layer can be enlarged due to strain

responses (see Supplementary Material in Section I). In this regime, a paramagnetic

insulating state should be looked into. The BaFe2As2 at a temperature above Neel

temperature is also a possible area to look for the TCI phase. Other members of the

122 family may also be suitable for detecting the TCI phase but systematic studies are

needed to sort this out.

Similar to other TIs, when the topological edge states stacked along the layer growth

direction to form the surface states, the surface states can be verified through scanning

tunneling and angle-resolved photoemission spectroscopies. In addition, systematic mea-

surements of the Hall conductivity can distinguish the proposed TCI (phase II) from

the Chern insulator (phase I), which has the anomalous orbital Hall effect. Moreover,

the intrinsic inter-orbital current order should lead to magneto-optical Kerr or Faraday

rotation observable in experiments.
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Appendix A

Treatment of the vacancy

impurity problem

We treat the vacancy disorder as an impurity scattering problem, since one might

anticipate that a vacancy behaves like a strong impurity scatterer for a Bloch wave

function. Therefore, we put an on-site impurity energy εi on each vacancy site i = iv to

mimic vacancy disorder:

H = Hhop +Himp

=
∑
i,j

(−tij − µ δij) c†icj +
∑
i=iv

V0 c
†
ici,

(A.1)

E E E

high-symmetry k-space high-symmetry k-space high-symmetry k-space

Figure A.1: (Color online) The band structure plot in high symmetry axis (Γ→ X →
M → Γ) for V0 = 0 (a), V0 = 2.5 (b), V0 = 100 (c).
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We introduce a new index to describe the A1(2);B1(2) sub-atoms for unit cell cut “-b-”

in Fig. 1.1, ψ†i = (c†A1, c
†
A2, c

†
B1, c

†
B2)i, and linearize the fermionic operator, cAα(Bα),i =

(1/
√
N)
∑

k cAα(Bα),k× exp(ik ·Ri), to get the 4× 4 hopping matrix in k-space, Hhop =∑
k ψ
†
kMkψk,

Mk =


εA,k − µ εxy,k εT,k 0

εxy,k εA,k − µ 0 εT,k

εT,k 0 εB,k − µ εxy,k

0 εT,k εxy,k εB,k − µ

 (A.2)

We perform the same linear transformation for the impurity term Himp in the Hamil-

tonian. There are four independent vacancy ordering vectors as shown in the unit cell

cut “-b-” in Fig. 1.1 for Q1 = 2π(4/5, 2/5), Qn = nQ1, n = 1 · · · 4. The similar vacancy

ordering vectors were obtained in Ref. [69], in the notation of one Fe per unit cell.

By construction Himp enlarges the basis in the k-space,

ψk → ψ′k = (ψk, ψk+Q1 , ψk+Q2 , ψk+Q3 , ψk+Q4). (A.3)

In this formulation the diagonal scattering matrix V = I4×4 × V0 sits in the off-

diagonal positions to describe multiple scattering between all vacancy ordered states

with different Qn, Finally, the enlarged Hamiltonian becomes H =
∑

k ψ
′†
kWkψ

′
k with

Wk =



Mk V V V V

V Mk+Q1 V V V

V V Mk+Q2 V V

V V V Mk+Q3 V

V V V V Mk+Q4


(A.4)

Note that the impurity potential V0 not only leads to a reconstruction of the shape of

the band structure, it also creates a gap of 2V0 between high-energy bands and the low-

energy bands. Therefore, we need to shift it back to the origional place, Wk → W ′k =

Wk + I20×20 × V0.

Figure A.1 shows the calculated band structure for various values of the impurity

scattering strength V0. When V0 = 0, the band structure exhibits an entanglement of 20

bands, which down-folded simplifies to the band structure shown for the four bands in

the
√

2×
√

2 unit cell of Fig. 1.1(a). The more complicated plot in Fig. A.1(a) it is due

to the repeated plotting of different Qn’s in k-space of Mk. However, for finite values

of V0 (=2.5) a gap separates the upper four upper bands and 16 lower bands, shown

in Fig. A.1(b). Finally, when V0 approaches the unitarity limit. V0 = 100, as shown
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in Fig. A.1(c), the upper four bands are being pushed far above as four independent

flat bands, while the lower 16 bands form a simpler shape as the new periodicity with

vacancy stripe order sets in. The result for Fig. A.1(c) is stable for all of the values of

V0 that is greater than 100, which means the vacancy order is in the limit of V0 →∞.
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Appendix B

Details of the D2d symmetry and

comparisons to Zhang’s model

B.1 The D2d invariant symmetry

We now give the reason for our choice of the D2d symmetry of the point group

describing the crystal structure of BaFe2As2, which is used for the construction of the

kinetic Hamiltonian in Eq. (1). To begin with, we draw the three-dimensional (3D)

structure of the basic Fe-As building blocks of BaFe2As2 in Fig. B.1. The D2d symmetry

is generated by the group elements C4 and σh as shown in Fig. B.1(b,c). Close inspection

reveals the point group symmetry D2d, because combined fourfold rotation (C4) and

mirror reflection (σh) leave the crystal structure invariant.

However, the D2d symmetry is obvious only for the 3D crystal structure, while the

inclusion of the reflection operation σh is not obvious for the two-dimensional (2D) model

as shown by Fig. 1(a) in the main text. The question is how one can construct a D2d

hopping Hamiltonian on a 2D lattice. The solution is as follows: The As atoms mediate

the 2NN hopping (t3) through their p orbitals between the d orbitals of the Fe sites. As a

consequence the upper (lower) As atoms lead to effective hopping terms between the dxz

(dyz) orbitals, respectively. Finally, the σh operation of the upper/lower As atoms can

be mapped onto the exchange of the order of the dxz and dyz orbitals, see Fig. B.1(b).

This corresponds to exchanging the upper and lower panels of Fig. 1(b) in the main

text.
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Figure B.1: (color online) (a) Schematic picture of D2d point group symmetry of the
three-dimensional (3D) structure of the Fe-As building blocks. The colormap is: Fe
atoms on the A (black) and B (white) sublattice; the As atoms above (green/yellow)
and below (yellow/green). (b) Top view of panel (a); (c) application of symmetry
operation C4 or σh on panel (b); (d) orbital ordering and t3 hopping terms overlayed

onto panel (b); (e) the resulting σh operation of panel (d).

B.2 Comparisions of H1 and H2 under the same parameter

set

It is intersting to investigate that how those two models behave under the same pa-

rameter set as used in H2, t1−6=(-1,0.08,1.35,-0.12,0.09,0.25). In Fig. B.3, we show the

comparisons of H1 and H2 with the evolution of Fermisurface from extreme e-doped one

to extreme h-doped one. We can clearly indicated that with condition II introduced

for H2 the two conduction bands degenerated alone X-M direction. Additionaly, the

electron pocket of H2 around M points is always sandwiched in between the one of

H1. The area of the Fermi surface of the two models doesn’t have much difference in

e-doped side, Fig. B.3 (a-c). However, much difference shows up for the h-doped side

as shown in Fig. B.3 (d-h). Around M points, the the electron pocket of H2 shrunk a

lot as increase the h-doping and finally shrunk into a tiny Dirac point in Fig. B.3 (g).
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Finally, it changed to a hole pocket for H2. To compare, this electron pocket shrinking

for H2 is not seen in H1 and H1 always preserve finite size Fermi surface.

We further calculated the phase diagram for bothH1 andH2 under the same hopping

term and interaction parameters, (U,Jh,V)=(3.2,0.6,1.05). Again, both of H1 and H2

shows good abilities in e-doped side. But H1 behaved differently in the extreme h-doped

side. Base on previous Fermi surface analysis, we blame this problem for H1 as its Fermi

surface around M points does not shrunk and remain finite size area. Here a comment

for the extra condition II added on H2. The 90◦ rotation between degenerated dxz and

dyz orbitals as a twisting and it gives more degeneracies for H2 alone X-M directions.

The resulting effect is the electron pocket around M points shrunk its size and gives the

correct Fermi surface evolution.
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Figure B.2: (color online) The compared Fermi surface for model H1(red) and
H2(black) using the same set of parameters. For each subset, the left panel is the
band structure with the Fermi level indicated in the horizontal line, the right panel is
the correspond Fermi surface. The alphabetical order indicate the Fermi level from high
to low as µa−h = (0.0,-0.72,-0.92,-1.29,-1.38,-1.49,-1.6,-1.74). The correspond electron
occupation is setting right below the Fermi surface panel for n1 to H1 and n2 to H2.

73



Figure B.3: (color online) The calculation of phase diagram for both H1 and H2

under the same hopping and interaction parameters. The upper / lower panel is for
H1 / H2, the black(circle) / red(triangle) line shows the order parameters of AFM /

s±-pairing.
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Appendix C

Unfolding transformation of the

tight-binding model

Here we derive the unitary transformations for the rotation of orbitals between both

Fe sublattices to attain the exact mapping of the 2-by-2 orbital model onto the model

of two decoupled two-orbital Hamiltonians.

C.1 Description of the orbital twist argument

As proposed in Ref. [15], the tight-binding Hamiltonian of Eq. (5.1) in the 2-Fe unit cell

Brillouin zone (BZ) is given by H0 =
∑

k ψ
†(k)Wk ψ(k) with

Wk =


ξH − µ ξ12 ξt ξc

ξ12 ξV − µ ξc ξt

ξt ξc ξV − µ ξ12

ξc ξt ξ12 ξH − µ

 . (C.1)

Here the four-component field operator is defined as ψ=(dA1,dA2,dB1,dB2)T with A,

B labeling the sublattice and 1(2) labeling the orbital dyz(dxz). The dispersions are

given by ξH = 2t2 cos kx + 2t3 cos ky + 4t6 cos kx cos ky, ξ
V = 2t3 cos kx + 2t2 cos ky +

4t6 cos kx cos ky, ξ12 = 2t4(cos kx + cos ky), ξt = 4t1 cos kx2 cos
ky
2 , ξc = 4t5 cos kx2 cos

ky
2

with t1−6 = (−1, 0.08, 1.35,−0.12, 0.09, 0.25). In Eq. (C.1), the C4 symmetry of intra-

orbital hopping processes between sublattices A and B is broken. As we will show below,

there is a degree of freedom to write the Hamiltonian by rotating the local coordinate

on the sublattice A or B. The above C4 symmerty is recovered by a 90◦ rotation of dxz

and dyz orbitals on the sublattice B as illustrated in Fig. C.1(a). Specifically, we define
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Figure C.1: (Color online) Two choices of the basis (a), (b)[(c), (d)] with[without] a
90◦ rotation of the local coordinate system on sublattice B. Panels (a), (c) show the dxz
and dyz orbital symmetry and the overlap through As-px/y orbitals: the NNN intra-
(inter-) hopping terms t1 (t5) are indicated by the black (green) solid lines. Panels
(b), (d) illustrate the NNN intraorbital hopping terms for t2(t3) in solid (dashed) lines.

Note that the coordinates of (a) and (c) have a 45◦ rotation from (b) and (d).

a new basis under the unitary transformation φ = (d′A1, d
′
A2, d

′
B1, d

′
B2)T = Uψ with

U =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (C.2)

Namely, the unitary transformation U flips the orbitals dxz and dyz on the sublattice B.

The corresponding Hamiltonian has the form H0 =
∑

k φ
†(k)W′kφ(k) with

W′k = UWkU
† =


ξH − µ ξ12 ξc ξt

ξ12 ξV − µ ξt ξc

ξc ξt ξH − µ ξ12

ξt ξc ξ12 ξV − µ

 . (C.3)

76



C.2 Mapping onto the 1-Fe per unit cell Hamiltonian

Note that W′k in Eq. (C.3) has the same 2× 2 block matrix for sublattices A and B. By

the symmetry analysis, the entire Hamiltonian can be written in the basis φ = (d1, d2)T

of the 1-Fe unit cell . The resulting Hamiltonian H0=
∑

k φ
†
kMkφk takes the following

form

Mk =

(
ξ1 − µ ξ12

ξ21 ξ2 − µ

)
, (C.4)

where ξ1 = Ex + Et, ξ2 = Ey + Et and ξ12 = ξ21 = Ec. Each component is defined as

Et = 2t1[cos kx + cos ky] + 2t6[cos 2kx + cos 2ky],

Ex = 2(t2 + t3) cos kx cos ky + 2(t2 − t3) sin kx sin ky,

Ey = 2(t2 + t3) cos kx cos ky − 2(t2 − t3) sin kx sin ky,

Ec = 2t5[cos kx + cos ky] + 4t4 cos kx cos ky,

(C.5)

with a new set of hopping parameters t1−6 = (0.09, 0.08, 1.35,−0.12,−1, 0.25). Fig-

ure C.2(a) and (b) shows the band structure and Fermi surface with half electron filling

in the BZ corresponding to 1-Fe per unit cell and the Dirac dispersions can be observed

around X and Y points. The comparison between the 1-Fe band structure and 2-Fe band

structure is shown in Fig. C.2(c). The 1-Fe band structure can be nicely folded onto

the 2-Fe band structure. The folded Fermi surfaces are also presented in Fig. C.2(d).

The corresponding band dispersions in the reduced BZ are given by the block-structured

matrix

W′′k =

(
Mk 0

0 Mk+Q

)
, (C.6)

with the folding vector Q = (π, π).

We next prove that the W′′k is just a gauge transform from W′k. The explicit form

of band dispersions in 2-Fe unit cell is given by

{ξH , ξV } ={t2, t3} [eik·x̂ + e−ik·x̂] + {t3, t2} [eik·ŷ + e−ik·ŷ]

+t6 [eik·(x̂+ŷ) + e−ik·(x̂+ŷ) + eik·(x̂−ŷ) + e−ik·(x̂−ŷ)],

{ξt, ξc} ={t1, t5} [eik·(x̂+ŷ)/2 + e−ik·(x̂+ŷ)/2

+eik·(x̂−ŷ)/2 + e−ik·(x̂−ŷ)/2],

ξ12 =t4 [eik·x̂ + e−ik·x̂ + eik·ŷ + e−ik·ŷ].

(C.7)
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Figure C.2: (Color online) Calculated band structure (a) and Fermi surface (b) in
unfolded (1-Fe per unit cell) BZ. Here the Fermi energy is shifted to zero for 1/2
filling. (c) The folded band structure of the 1-Fe (green solid line) to 2-Fe per unit
cell band structure (dashed line), which is identical to that calculated directly from the
Hamiltonian before the gauge transformation. (d) The Fermi surfaces of the 2-Fe band
structure. (e) The transformation between the coordinates in the 1-Fe per unit cell

(solid lines) and 2-Fe per unit cell (dashed lines) systems.

By the help of the re-definition of (x̂, ŷ) → (x̂+ ŷ, x̂− ŷ), The band dispersions written

in 1-Fe unit cell basis have the from

{ξH , ξV } ={t2, t3} [eik·(x̂+ŷ) + e−ik·(x̂+ŷ)]

+{t3, t2} [eik·(x̂−ŷ) + e−ik·(x̂−ŷ)],

+t6 [eik·(2x̂) + e−ik·(2x̂) + eik·(2ŷ) + e−ik·(2ŷ)],

{ξt, ξc} ={t1, t5} [eik·x̂ + e−ik·x̂ + eik·ŷ + e−ik·ŷ],

ξ12 =t4 [eik·(x̂+ŷ) + e−ik·(x̂+ŷ) + eik·(x̂−ŷ) + e−ik·(x̂−ŷ)],

(C.8)

Then we shall consider W′k with the new elements of Eq. (C.8) and k running over the

BZ corresponding to 1-Fe per unit cell. Here, we rewrite W′k in the block matrix form

W′k =

(
A B
B A

)
(C.9)
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with

A =

(
ξH ξ12

ξ12 ξV

)
(C.10)

and

B =

(
ξc ξt

ξt ξc

)
. (C.11)

For the convenience of discussion, we have set the chemical potential µ to be zero. Here

we introduce a gauge transform η(k) = (d1k, d2k, d1k+Q, d2k+Q)T = Kψ(k) with

K =
1√
2

(
1 −1
−1 −1

)
, (C.12)

where 1 is a 2×2 identity. The gauge transform K satisfies K†K = 14×4. A little

algebra leads to

H0 =
∑
k

ψ†(k)K†KW′kK†Kψ(k)

=
∑
k

η†(k)KW′kK†η(k)
(C.13)

with

K†W′kK =

(
A + B 0

0 A− B

)
. (C.14)

Here A and B matrices follow A(k) = A(k + Q) and B(k) = −B(k + Q), respectively.

By carefully collecting terms in Eq. (C.14), we confirm that

K†W′kK =

(
Mk 0

0 Mk+Q

)
= W′′k. (C.15)

By combining these results for the unitary transformations U and K, we can map

the 2-by-2 onto the 1-by-2 Hamiltonian: W′′k = K†W′kK = K†UWkU
†K.
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Appendix D

Supplementary material for

Chapter 6.

D.1 Mean-field formalism and calculation

In this section we derive the meanfield form of the coulomb interaction. The Hamiltonian

we interest is in the form, Hs = H0 +HU +HV (the superscript, s, stands for spinful).

Here, we write down the form of in real-space,

H0 =
∑
ij,αβ,σ

(tαβij − µ δijδαβ)c†iα,σcjβ,σ,

HU =
∑
i,α,σ

U niα,σ niα,σ′ ,

HV =
∑

i 6=j,α6=β,σ
Vij,αβ niα,σ njβ,σ.

(D.1)

Where H0 is the hopping terms in present of 1-Fe / unitcell [15, 209], the non-zero terms

are depict as follows,

t1 = tαα±x̂ = tαα±ŷ = 0.09,

t2 = t11
±(x̂−ŷ) = t22

±(x̂+ŷ) = 0.08,

t3 = t11
±(x̂+ŷ) = t22

±(x̂−ŷ) = 1.35,

t4 = tαᾱ±(x̂±ŷ) = −0.12,

t5 = tαᾱ±x̂ = tαᾱ±ŷ = −1,

t6 = tαα±2x̂ = tαα±2ŷ = 0.25.

(D.2)

HU is the on-site intra orbital Hubbard interaction and HV is the inter-orbital (α 6= β)

Coulomb interaction between site i and j. Note that, we’ve also considered the intra

orbital Coulomb interaction (α = β) and we found no interesting phases can be found
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Figure D.1: (color online) (a) The mean-field calculated order parameters of HOH

term, where δt/λOH belong to the real/image part of it. (b),(c) and (d) is the k-space
band structure of 1-Fe/unitcell BZ under different strength of V1.

in our calculation. We treat HU and HV by mean-field expansion. For HU we have,

HU = U
∑

iα,σ 6=σ′

〈niασ〉niασ′ . (D.3)

HV has two ways for the mean-field decoupling, HV = HCDW +HOH , where,

HCDW =
∑

i 6=j,α6=β,σ
Vij 〈niασ〉njβσ

HOH = −
∑

i 6=j,α6=β,σ
Vij〈c†iα,σ cjβ,σ〉c

†
jβ,σ ciα,σ

(D.4)

Here we only calculate the nearest neighbor (V〈ij〉=V1). In a bulk (periodic 2D) calcula-

tion, the CDW term is not a preffered state and only HOH has stable solution with finite

value of V1. The Hubbard term, with U=3.2, does not contribute to a finite magnetism

to this system.
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Table D.1: The matrix elements of εαβij . It also preserve the translational symmetry
of 1-Fe / unitcell and the C4v point group symmetry.

i± x̂, dxz i± x̂, dyz i± ŷ, dxz i± ŷ, dyz
i, dxz 0 1 0 -1

i, dyz -1 0 1 0

Now, we define the meanfield calculated orbital current flux order from HOH ,

χijαβ,σ ≡ V1〈c†iα,σcjβ,σ〉 (D.5)

The meanfield calculated χ is a complex number with real and imaginary part,

δt = Reχ,

λσOH = εσ |Imχσ|, εσ ∈ ±1
(D.6)

The first term, δt, is always negative and homogeneous in real space. It will contribute

to H0 to its nearest neighbor inter-orbital hopping term t5 [209]. The second term,

λσOH , is the generator for the orbital-hall effect. Therefore we can use it to express the

orbital-current flux order, i Imχijαβ,σ = i λaOH ε
αβ
ij and HOH can be easily rewrite,

HOH = i λσOH
∑

ij,α6=β,σ
εαβij c†iα,σcjβ,σ, (D.7)

where εαβij is expressed in Table. D.1 and the real part of HOH has been absorbed into

the hopping terms. Fig. D.1(b) shows that the Fermi surface is shifted downward in

Γ/M points with the contribution of δt only. Once the image part λOH is involved, the

bulk Dirac cond will be destroied immediately as shown in Fig. D.1(c) and the shows

the gap. The gap is becomeing larger with larger value of λOH as shown in Fig. D.1(d).

D.2 Ground state with exchange interaction

Without introduce more terms, we have two degenerated phases, ε↑ = ±ε↓, of HOH as

described in the main-text. Now we discuss one possiblility which can lift the degeneracy.

The on-site Hubbard interaction is usually contain a Hund’s coupling J [19]. However,

without loosing generality, this term is more complicated with more terms to be involved

which was discussed by K. Sano and co-authors [215]. Here we introduce only one more

term from K. Sano’s paper,

HJ = −J
∑
iα

(c†i,α,↑ci,α,↓ c
†
i,ᾱ,↓ci,ᾱ,↑ + h.c), (D.8)
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We mean-field decouple HJ terms,

HJ = λJ
∑
iα

(c†i,α,↑ci,α,↓ + c†i,ᾱ,↓ci,ᾱ,↑ + h.c), (D.9)

Where the mean-field order parameter, λJ , is defined, λJ = −J 〈c†i,α,σci,α,σ̄〉. Finally, if

we plugin Eq. D.9 into H by manuly giving small and real values of λJ and we found

that Phase (II) (ε↑ = −ε↓) is the preffered ground state (no matter how small λJ is).

D.3 The Hamiltonian in momentum representation

In this section we Fourier transform H into k-space with those mean-field calculated order

λOH and the manuly added terms λ0 and λ1 in 1-Fe / unit cell frame work. We firstly

focus on the spinless Hamiltonian, H[δt;λOH,0,1; εa] = 1
N

∑
k ψ
†
k Ĥ(δt;λOH,0,1; εa)ψk,

where ψk = (ck,1, ck,2)T and c1/c2 stands for anihilate electron on dxz/dyz orbital and

Ĥ = E0 + ~R · ~τ . Here ~R = (X,Y, Z) and ~τ is the Pauli matrix,

E0 =2 t1 [ cos(kx) + cos(ky) ] + 2 t6 [ cos(2kx) + cos(2ky) ]

+ 2 ts [ cos(kx) cos(ky) ]− µ,

X =4 t4 [ cos(kx) cos(ky) ] + 2 (t5 + δt) [ cos(kx) + cos(ky) ]

Y =2 εaλOH [cos(kx)− cos(ky)] + λ1,

Z =2 td [ sin(kx) sin(ky) ] + λ0.

(D.10)

More specifically,

Ĥ =

(
E0 + Z, X − iY
X + iY, E0 − Z

)
. (D.11)

Eq. D.11 has been used in the main-text for the calculation of Chern number.

Here we write down the spinful Hamiltonian with the Rashba spin-orbital coupling

term in a 4×4 matrix,

Ĥs(λOH,0,1,R) =

(
Ĥ(ε↑ = 1), iλRσz

−iλRσz, Ĥ(ε↓ = −1)

)
. (D.12)

Eq. D.12 has been used in the main-text for the calculation of Z2 properties.

D.4 Two types of C4v structure

As shown in Fig. D.2, the C4v symmetry could have two different types and the second

type can generate bulk Dirac cones in between Γ-X directions as in our model. We

focus on the k-dependent intra-orbital hopping energies for the C4v symmetry, Hxz,yz =
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Type I C4v Type II C4v

Figure D.2: (color online) Two types of C4v structure: I. Left panel, the orbital
orientation along the nearest neighbor (NN) bonding direction. II. Right panel, the
orbital orientation along the next nearest neighbor (NNN) bonding direction. The blue

/ red colors represent for dxz / dyz orbitals.

BXY BzY
X

(a) (b) (c)

Figure D.3: (color online) (a) Calculated Berry curvature of the simplified Hamilto-
nian, H̃(k). (b) / (c) are the B-field XY / Z component of, H̃(k).

∑
k[εxz(k) c†xz,kcxz,k + εxz(k) c†yz,kcyz,k + · · · ] with

εxz = −2 t cos(k · ~a1),

εyz = −2 t cos(k · ~a2),
(D.13)

where ~a1,2 are orthogonal to each other and they indicated the bonding direction of the

effective hopping term, t. If we choose ~a1 = (1, 0) and ~a2 = (0, 1) then this correspond

to the type I C4v structure [208]. While if we choose ~a1 = (1, 1) and ~a2 = (−1, 1) then

it becomes,

Ĥxz,yz = −2 t
(
I cos(kx) cos(ky) + τz sin(kx) sin(ky)

)
, (D.14)

which gives the form of τz term in our spinless Hamiltonian.
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D.5 Topological defects as the generator of Berry flux

The anomalous Hall effect of ±2 Chern number is a combined effect of X, Y and Z. The

Chern number can be easily calculated through the area integration of Berry curvature,

Ω(k)± = i
〈±|∂Ĥ(k)

∂kx
|∓〉〈∓|∂Ĥ(k)

∂ky
|±〉 − (kx ↔ ky)

(E± − E∓)2
. (D.15)

In viewing the symmetry of ~R, we know that the Dirac-cones can be re-defined by taking

any two component of it. Let us now consider the simplified Hamiltonian from Eq. D.10,

Ẽ0 =0

X̃ =tx
(
4 t4 [ cos(kx) cos(ky) ] + 2 t5 [ cos(kx) + cos(ky) ]

)
Ỹ =ty

(
2λOH [cos(kx)− cos(ky)]

)
,

Z̃ =tz
(
2 (t2 − t3)[ sin(kx) sin(ky) ]

)
.

(D.16)

In Eq. D.16, Ẽ0 can be regarded as a constant shift and has no contribution to the

topology. In the main-text, the four Dirac-cones was generate with tx,y,z = (1, 0, 1) and

Ỹ is regarded as perturbation to open the gap. Here if we choose tx,y,z = (1, 1, 0), the

Dirac-cones are setting on (±π
2 ,±

π
2 ) and (±π

2 ,∓
π
2 ). Now, we turn on tz in a small value,

the Dirac-degeneracy will be opened and the calculated Chern number is ±2 for each

band. The correspond Berry-curvature is showing in Fig. D.3 (a), four high intensity

spots can be found on the Dirac-cones. If we regard these four Dirac-cones as topological

defects of a B-field Hamiltonian acting on the pseudo-spin degree of freedom, B·~τ , where

B = (X̃, Ỹ , Z̃), we can map out the Bxy (in-plane) and Bz (out-plane) in Fig. D.3 (b)

and (c). Therefore, it is easy to know that each B-field winding around the Dirac-cone

gives π and hence we have Chern number = ±4π/2π = ±2.

D.6 The Berry connection and counting of Chern number

Here, we derive the analytic form of the Berry connection of the Berry phase (Chern

number), γ− = 2π C− =
∫
C d~k · A−(k), where,

A−(k) =i〈−, k| 5k |−, k〉

=(
X∂xY − Y ∂xX

2R2 + 2ZR
,
X∂yY − Y ∂yX

2R2 + 2ZR
).

(D.17)

Here, ∂x/y is the short hand of ∂kx/ky .

The calculated vector field of A−(k) is shown in Fig. D.4(a). We can find several

high symmetry points are zeros and two of them are the singularities. As shown in

Fig. D.4 the torous BZ has no boundary, the line integral around the edges has no
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Figure D.4: (color online) (a) The vector field of A−(k). (b) The contour integration
of (a).

contribution. The only contribution came from the contour integration which bypass

the singularities of A−(k) and each singularity contribute value of 2π which results the

±2 of Chern number. The evaluation of the line integral of singularities can be easily

obtained from the gauge smoothing process of A−(k).

D.7 Symmetry analysis of the time and mirror invariance

In this section, we discuss the symmetry classification of phases I and II of the spinful

Hamiltonian with spin degrees of freedom. A detailed account of the symmetry operators

used in the main text is given. The spinful Hamiltonian in k-space of fermions is defined

by Hs = φ†kĤs(k)φk, where φk = (ck,1↑, ck,2↑, ck,1↓, ck,2↓)
T . We re-write Ĥs as a direct

tensor product of Pauli matrices in the combined orbital pseudo-spin and spin spaces,

ĤI,II
s = X τx ⊗ I + Z τz ⊗ I + ĤI,II

AOH , where the orbital flux term, ĤI,II
AOH , of phases I

and II is either ĤI
AOH = Y τy⊗ I or ĤII

AOH = Y τy⊗σz. Here I is the 2× 2 unity matrix

in spin space.

D.7.1 Intrinsic inversion symmetry and TR symmetry violation of

spinless Ĥ

We start our symmetry analysis by noting that the quasi-2D Hamiltonian of spinless

fermions, Ĥ, in a tetragonal system has intrinsic inversion symmetry Ĥ(k) = Ĥ(−k).

This corresponds to a 180o rotation in the kx-ky plane. Moreover, for the spinless

Hamiltonian the time-reversal (TR) operator is given by the charge conjugation operator,
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T = K, and satisfies the relation

T Ĥ[λAOH ](k) T−1 =Ĥ[−λAOH ](−k)

=Ĥ[−λAOH ](k),
(D.18)

which tells us that the TR symmetry is violated, because it reverses the orbital current

direction from λAOH → −λAOH .

D.7.2 Parity or mirror invariance of spinless Ĥ

In addition to the inversion symmetry, the spinless quasi-2D Hamiltonian is invariant

under mirror reflections. The two mirror axes x and y obey the parity operation

P Ĥ(kx, ky) P−1 = Ĥ(±kx,∓ky), (D.19)

respectively, with P = τxK. This statement is universally true for our model Hamilto-

nians and applies also to phases I and II of the spinful Hamiltonian. Note that in 2D

the parity operation is a mirror reflection, which flips the sign of only one coordinate,

otherwise it would be a rotation.

D.7.3 Parity and mirror invariance of phase II of spinful Ĥs

The spinful Hamiltonian for fermions with spin degrees of freedom satisfies similar sym-

metry operations as before. However, now we need to pay attention to the fact that

the mirror and TR operators flip the spin of the fermion and must be defined in the

enlarged SU(2)⊗SU(2) space as M = τx⊗ (−iσy) and T = 1̂⊗ (−iσyK), where 1̂ is the

unity matrix in orbital space. Then, the generalized mirror symmetry M is equivalent

to the parity symmetry P of the spinless fermion. To summarize the key results of our

symmetry analysis, our spinful model Hamiltonian of phase II is invariant under each

of the TR- and mirror (parity) operations:

T ĤII
s (k) T−1 = ĤII

s (−k) = ĤII
s (k), (D.20)

M ĤII
s (kx, ky) M−1 = ĤII

s (±kx,∓ky). (D.21)

D.7.4 Even and odd parity subspaces of phase II of spinful Ĥs

For the spinful Hamiltonian, the Chern number is only meaningful for phase I. This can

be seen from its non-zero Chern number C[ĤI
s ] = −C[M ĤI

s M−1] = −C[T ĤI
s T−1] =

±4. Consequently, ĤI
s has two distinguishable degenerated states of C = ±4, which can

be mapped onto each other.

On the other side, phase II also has two distinguishable degenerated states, however,

these two states cannot be distinguished by the Chern number, because C[ĤII
s ] = 0.
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Thus, we need to further examine its symmetry properties to see whether it is topological

or not. A very direct and useful check is to see whether the system has a Z2-like invariant

index. This symmetry has been widely used in the search for 2D and 3D topological

insulators, because there exist general methods to calculate the Z2 topological invariant,

especially when the Hamiltonian exhibits inversion symmetry. In phase II, the operator

M commutes with the orbital-flux term ĤII
AOH and ĤII

s . The even parity subspace is

described along the contour, C ∈ {(Γ − M); (M − X)}, and gives the commutation

relation, M ĤII
s (C) M−1 = ĤII

s (C). Whereas the odd parity subspace is located at

the high-symmetry points for the parameters we choose, Λn ∈ {(±π
2 ,±

π
2 ); (±π

2 ,∓
π
2 )},

and gives the anti-commutation relation, M ĤII
s (Λn) M−1 = −ĤII

s (Λn). This ±-parity

symmetry motivated us to construct the Z2-like topological invariant in the main text

in order to test for the topological ground state with vanishing Chern number.
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S. L. BudÕko, P. C. Canfield, , and R. Prozorov. Phys. Rev. B, 79:100506(R),

2009.

99



[172] H. Kim, R. T. Gordon, M. A. Tanatar, J. Hua, U. Welp, W. K. Kwok, N. Ni, S. L.

Bud’ko, P. C. Canfield, A. B. Vorontsov, , and R. Prozorov. Phys. Rev. B, 82:

060518, 2010.

[173] J. Yong, S. Lee, J. Jiang, C. Bark, J. Weiss, E. Hellstrom, D. Larbalestier, C. Eom,

, and T. Lemberger. Phys. Rev. B, 83:104510, 2011.

[174] A. A. Barannik, N. T. Cherpak, N. Ni, M. A. Tanatar, S.A. Vitusevich, V. N.

Skresanov, P. C. Canfield, R. Prozorov, V.V. Glamazdin, , and K. I. Torokhtii.

Low Temp. Phys., 37:725, 2011.

[175] T. J. Williams, A. A. Aczel, E. Baggio-Saitovitch, S. L. Bud’ko, P. C. Canfield,

J. P. Carlo, T. Goko, J. Munevar, N. Ni, Y. J. Uemura, W. Yu, , and G. M. Luke.

Phys. Rev. B, 80:094501, 2009.

[176] Huaixiang Huang, Yi Gao, Jian-Xin Zhu, , and C. S. Ting. Phys. Rev. Lett., 109:

187007, 2012.

[177] D. J. Scalapino, S. R. White, , and S. C. Zhang. Phys. Rev. Lett., 68:2830, 1992.

[178] D. J. Scalapino, S. R. White, , and S. C. Zhang. Phys. Rev. B, 47:7995, 1993.

[179] Karim Bouadim, Yen Lee Loh, Mohit Randeria, and Nandini Trivedi. Nat. Phys.,

7:884, 2011.

[180] Amit Ghosal, Mohit Randeria, , and Nandini Trivedi. Phys. Rev. B, 65:014501,

2001.

[181] L. Benfatto, A. Toschi, , and S. Caprara. Phys. Rev. B, 69:184510, 2004.

[182] T. V. Ramakrishnan. Phys. Scr., T27:24, 1989.

[183] C. Martin, R. T. Gordon, M. A. Tanatar, H. Kim, N. Ni, S. L. Bud’ko, P. C.

Canfield, H. Luo, H. H. Wen, Z. Wang, A. B. Vorontsov, V. G. Kogan, , and

R. Prozorov. Phys. Rev. B, 80:020501(R), 2009.

[184] Jeehoon Kim, N. Haberkorn, M. J. Graf, I. Usov, F. Ronning, L. Civale,

E. Nazaretski, G. F. Chen, W. Yu, J. D. Thompson, , and R. Movshovich. Phys.

Rev. B, 86:144509, 2012.

[185] A. B. Vorontsov, M. G. Vavilov, , and A. V. Chubukov. Phys. Rev. B, 79:140507,

2009.

[186] J. H. Xu, J. H. Miller, Jr., , and C. S. Ting. Phys. Rev. B, 51:424, 1995.

[187] D. J. Thouless, M. Kohmoto, M. P. Nightingale, , and M. den Nijs. Phys. Rev.

Lett., 49:405, 1982.

100



[188] F. D. M. Haldane. Phys. Rev. Lett., 61:2015, 1988.

[189] C. Kane and E. Mele. Phys. Rev. Lett., 95:226801, 2005.

[190] C. Kane and E. Mele. Phys. Rev. Lett., 95:146802, 2005.

[191] M. Knig, S. Weidmann, C. Brune, A. Roth, H. Buhmann, L. Molenkamp, X.-L.

Qi, , and S. C. Zhang. Science, 318:766, 2007.

[192] B. A. Bernevig, T. L. Hughes, , and S. C. Zhang. Science, 314:1757, 2006.

[193] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, , and M. Z. Hasan.

Nature, 452:970, 2008.

[194] M. Z. Hasan, , and C. L. Kane. Rev. Mod. Phys., 82:3045, 2010.

[195] Y. Ando. Journal of the Phys. Soc. of Japan., 82:102001, 2013.

[196] K. Sun, W. Vincent Liu, A. Hemmerich, and S. Das Sarma. Nature Physics, 8:

67–70, 2012.

[197] Y. D. Chong, Xiao-Gang Wen, , and M. Solijacic. Phys. Rev. B, 77:235125, 2008.

[198] M. Dzero, K. Sun, V. Galitski, , and P. Coleman. Phys. Rev. Lett., 104:106408,

2010.

[199] . For the single-orbital models of the cuprates, the DDW state [200, 201] breaks

the 1-atom per unit cell translational symmetry. In contrast, in our study of the

2-orbital model of pnictides, the 1-Fe per unit cell is translationally invariant with

respect to the inter-orbital current flux order due to λAOH .

[200] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak. Phys. Rev. B, 63:

094503, 2000.

[201] J.-X. Zhu, W. Kim, C.S. Ting, and J.P. Carbotte. Phys. Rev. Lett., 87:197001,

2001.

[202] J.-X. Zhu. Phys. Rev. B, 66:104523, 2002.

[203] M. E. Simon and C. M. Varma. Phys. Rev. Lett., 89:247003, 2002.

[204] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang. Phys. Rev. Lett., 100:156401,

2008.

[205] K. Sugawara, T. Takahashi, Y. Kamihara, M. Hirano, and H. Hosono. Journal of

the Phys. Soc. of Japan., 77:063708, 2008.

[206] Bud’ko, P. C. Canfield, , and R. Prozorov. Phys. Rev. B, 82:134528, 2010.

101



[207] J.-Q. Meng, G.-D. Liu, X.-L. Dong, G. Wu, R.-H. Liu, X.-H. Chen, Z.-A. Ren,

W. Yi, G.-C. Che, G.-F. Chen, N.-L. Wang, G.-L. Wang, Y. Zhou, Y. Zhu, X.-Y.

Wang, Z.-X. Zhao, Z.-Y. Xu, C.-T. Chen, and X.-J. Zhou. Chinese Phys. Lett.,

25:3761, 2008.

[208] Guru Khalsa, Byounghak Lee, , and A. H. MacDonald. Phys. Rev. B, 88:041302,

2008.

[209] H. Chen, Y.-Y. Tai, C. S. Ting, M. J. Graf, Jianhui Dai, , and J.-X. Zhu. Phys.

Rev. B, 88:184509, 2013.

[210] . The original model of [15] assumed the 2-Fe per unit cell Hamiltonian. However,

Ref. [209] showed that a unitary transformation maps the 2-Fe onto 1-Fe per unit

cell Hamiltonian in the absence of the spin-density wave.

[211] X.-L. Qi, T. L. Hughes, , and S.-C. Zhang. Phys. Rev. B, 78:195424, 2008.

[212] X.-L. Qi and S.-C. Zhang. Rev. Mod. Phys., 83:1057, 2011.

[213] L. Fu and C. L. Kane. Phys. Rev. B, 76:045302, 2007.

[214] M. Z. Hasan and C. L. Kane. Rev. Mod. Phys., 82:3045, 2010.

[215] Kazuhiro Sano and Yoshiaki Ono. J. Phys. Soc. Jpn., 72:1847, 2003.

102


	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Experiments and LDA calculations
	1.2 Microscopic Models
	1.3 Overview of Chapters

	2 Fermi surface evolution and BAFM in AxFe2-ySe2
	2.1 Introduction
	2.2 Model and Formalism
	2.3 Electronic structure in the paramagnetic state
	2.4 Electronic structure of random vacancy lattice
	2.5 Magnetic structure in the AFM state
	2.6 Conclusion

	3 Calculated Phase diagram of doped BaFe2As2 superconductor in a C4-symmetry breaking model
	3.1 Introduction
	3.2 Theory
	3.3 Multi-orbital mean-field Hamiltonian
	3.4 Model results
	3.5 Summary

	4 Evolution of the Fermi surface topology in doped 122 iron pnictides
	4.1 Introduction
	4.2 Model and formalism
	4.3 FS topology and Dirac cones for the undoped case
	4.4 Evolution of FS and spectral function with hole/electron doping
	4.5 Summary

	5 Disorder effects in multiorbital s-wave superconductors: Implications for Zn-doped BaFe2As2 compounds
	5.1 Introduction
	5.2 Model and formalism
	5.3 Single impurity effects
	5.4 Disorder effects in the superconducting order parameter
	5.5 Total density of states and superfluid density
	5.6 Summary

	6 Emergent topological orbital phases in tetragonal t2g systems
	6.1 Introduction
	6.2 The model Hamiltonian
	6.3 Topological Phases
	6.4 Mirror topological invariant 
	6.5 Conclusions

	A Treatment of the vacancy impurity problem
	B Details of the D2d symmetry and comparisons to Zhang's model
	B.1 The D2d invariant symmetry
	B.2 Comparisions of H1 and H2 under the same parameter set

	C Unfolding transformation of the tight-binding model
	C.1 Description of the orbital twist argument
	C.2 Mapping onto the 1-Fe per unit cell Hamiltonian

	D Supplementary material for Chapter 6.
	D.1 Mean-field formalism and calculation
	D.2 Ground state with exchange interaction
	D.3 The Hamiltonian in momentum representation
	D.4 Two types of C4v structure
	D.5 Topological defects as the generator of Berry flux
	D.6 The Berry connection and counting of Chern number
	D.7 Symmetry analysis of the time and mirror invariance
	D.7.1 Intrinsic inversion symmetry and TR symmetry violation of spinless 
	D.7.2 Parity or mirror invariance of spinless 
	D.7.3 Parity and mirror invariance of phase II of spinful s
	D.7.4 Even and odd parity subspaces of phase II of spinful s


	Bibliography

