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Abstract 

Considering that unprotected assets and infrastructures in the Maritime industry 

are vulnerable to attacks, we present models and methodologies for protecting these 

maritime resources from malicious or terrorist attacks. Using risk-based analysis, we use 

conditional probabilities to establish relationships between consequences, vulnerabilities 

and threat incidences of maritime events.  

In the first part of this dissertation, we address safety/security of maritime assets. 

We consider vessel routing and scheduling in LNG vessels as a hazardous cargo, and 

present a risk-based methodology in the choice of alternate vessel routes between a 

liquefaction terminal and receiving depot(s). While derivations are presented for the 

quantification of each constituent of the risk-based model, actual historical data of 

terrorist/piracy attacks made available by a national consortium on the study of terrorism 

are used in the analysis approach. With a multivehicle routing model, we test our 

methodology and present results using a practical test case involving delivery of LNG.  

In the second part of this dissertation, we address safety/security of maritime 

infrastructures and use underwater sonars for threat detection. Models and algorithms are 

developed for providing surveillance to maritime infrastructures such as ports, harbors, 

jetties, etc. The methodologies in these models include a quantitative risk analysis 

approach, a network fortification approach, a greedy-based heuristic approach, and a 

robust optimization approach. The network fortification approach considers the ability of 

an intending ‘attacker’ to possess information related to resource limitations and 

protection procedure of a ‘defender’. Consequently, the ‘attacker’ attempts to use this 
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information to evade detection, thus compromising safety and security of maritime 

infrastructures. In developing greedy-based algorithms to solve large scale problems in 

our placement methodology, we exploit the principle of submodularity to propose 

efficient solution algorithms with some theoretical guarantees.  Lastly, we developed a 

robust formulation for our placement methodology to address uncertainties related to 

some modeling parameters. To illustrate that the new sonar placement methodologies 

developed help to improve protection coverage plans for maritime infrastructures, we use 

practical case studies to provide safety and security to ports. In addition, we provide 

analytical and experimental results on each of these studies. 
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Chapter 1  

Introduction 

1.1 Background 

Global economic success is heavily dependent on the maritime industry since 

over 90% of the world’s international trade takes place by sea (IMO, 2014). Specifically, 

the US economy is largely dependent on the maritime sector as 95% of its foreign trade is 

moved by ships (United States Department of Transportation Maritime Administration, 

2007). Consequently, the integrity of maritime assets and sustained surveillance of 

maritime infrastructures is a critical requirement of ensuring safety and security, thus 

assuring the industry’s continued success. 

Regrettably, the scourge of terrorism and incidences of arson attacks have 

threatened the continued success of the maritime industry. To address these threats, an 

increase in the protection of maritime assets (vessels and their cargoes) and sustained 

surveillance of marine infrastructures (ports, harbors, waterways, high-risk sea routes, 

etc.) is an important requirement of ensuring safety and security.  

Maritime infrastructures have been extensively used in the transportation of 

hazardous consignments such as chemicals, petroleum and liquefied natural gas LNG 

cargoes. Unfortunately, the hazardous nature of these cargoes means they are attractive 

targets to attacks. In addition, the construction and use of high-volume transportation 

vessels due to their economies of scale benefits not only makes them targets of attacks, 
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but their dependence on non-conventional energy source such as nuclear-powered plants 

for propulsion also makes them more vulnerable to these attacks. 

Due to the nature of the maritime environment, terrorist and arsonist attacks may 

be aerial-borne, water-borne, or even land-borne because maritime assets and 

infrastructures, at one point or another are always in contact with at least two of these 

media. However, in order to avoid detection, such threats have increasingly become 

waterborne. Both acoustic and non-acoustic methods have been employed in the 

surveillance of maritime resources against underwater threats. A few of the established 

non-acoustic methods include the use of magnetic signatures, optical signatures, electric 

field signatures, thermal detection, and hydrodynamic changes. However, none of these 

methods are known to be as effective as the acoustic methods (Waite 2002). As a viable 

alternative, acoustic sensors possess several advantages in the detection of these water-

borne threats; For example, sound waves attenuate less in water and the devices can also 

be placed deeper underwater. Hence, their use in underwater threat detection for 

surveillance is desirable.  

1.2 Problem Descriptions 

For the purpose of this dissertation, Maritime assets refer to shipping vessels and 

their cargoes; and Maritime infrastructures refers to structures that provide service to the 

maritime industry such as ports, harbors, waterways, voyage routes, straits, jetties, 

receiving terminals, etc. 
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Figure 1.1: Maritime Assets and Infrastructures- LNG Port, Jetty, and Tug boats during     
                   loading operations of an LNG vessel (BAM Clough Joint Venture, 2000) 

 

1.2.1 Protection of Maritime Assets   

The appropriate choice of a voyage route can be argued to influence the safety 

and security of ocean-going vessels and their contents. While the choice of an alternative 

voyage route is mainly dependent on travel distance, consideration should also be 

accorded to historical safety records of these alternate routes. With specific reference to 

LNG vessels as a hazardous cargo, the first problem area addressed in this dissertation 

deals with the incorporation of a risk-based methodology in planning the timely delivery 

of LNG cargoes. Given a fleet of LNG vessels with different capacities and different 

restrictions, it is required to transport LNG to and from several ports (customers with 

facilities at receiving ports), satisfying the known supply/demand of each port at minimal 

shipment cost and minimal expected risk cost (due to likelihood of piracy, terrorist or 
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arson attacks). In addition, policy related and operational constraints need to be taken into 

consideration. Different policies and operational constraints are expected to depend on 

type of demand (Contract/Spot demands), vessel types, destination ports (countries), etc. 

  

Figure 1.2: Maritime Assets- Two types (Membrane and Moss) of LNG Vessels    

                   on voyage routes (Oil and Gas people, 2014) 

 

1.2.2 Protection of Maritime Infrastructures 

One of the ways of protecting critical infrastructures is the use of sensors for 

surveillance purposes. Within the context of risk analysis and under budget limitations, 

the second problem in this dissertation proposes optimization models, algorithms and 

methodologies to efficiently determine the number and regional locations to allocate 

different sonar types of different sonar coverage orientations and ranges such that 

detection probabilities is optimized based on the criticality (regional importance) attached 

to these regions in a multi-period deployment scheme. 

 



 
 

Figure 1.3: LNG Infrastructures: Loading platforms (Gate terminal B.V, 2014) 
 

1.3 Contributions 

This dissertation contributes to the literature by proposal of new optimization 

models, methodologies and algorithms for risk-based optimal vessel routing and optimal 

placement of underwater sonars in a maritime environment to detect underwater threats. 

Within the context of protecting assets and infrastructures, the risk-based methodology 

essentially attempts to highlight how potential threats and vulnerabilities influence 

expected consequences. Mitigation of these consequences is a major purpose of the 

methodology. Our modeling approach in this dissertation makes use of the quantitative 

approach in risk analysis. 

1.3.1 Protection of Maritime Assets: Risk-based LNG vessel scheduling 

and routing 

To incorporate the concept of quantitative risk analysis in the alternate choice of 

LNG vessel routes, we present a risk-based vessel routing scheme in the LNG 
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transportation network. While acknowledging that the lofty safety records of the LNG 

business emphasized by its successful transportation of over 66,000 loaded voyages and 

six billion m3 of LNG without any major loss of LNG cargo (Hightower and 

Albuquerque, 2012) cannot be overlooked, the possibility of a large displacement vessel 

or missile (either accidental or intentional) at high speeds that may result in penetration of 

the cargo containment system should also not be totally ignored. To the best of our 

knowledge, no similar work currently exists in literature that provides an optimization 

model on LNG transportation using a risk-based approach. 

1.3.2 Protection of Maritime Infrastructures- Sonar Placement 

Problems (SPP) 

For protecting maritime infrastructures, we address the optimal placement of 

sonars for providing surveillance to maritime infrastructures against impending 

underwater threats. While literature on the use of terrestrial sensors for surveillance is 

rich and extensive, its underwater counterparts have not been well addressed (Heidemann 

et al., 2012). 

Based on the specific placement problem being considered, SPP is usually 

addressed under the following distinct problem areas: Point Coverage, Barrier Coverage 

and Area Coverage. Point Coverage essentially deals with providing sensor coverage to 

specific infrastructures; Barrier coverage is involved with ensuring sensor coverage is 

provided to routes leading to an infrastructure, and Area Coverage deals with providing 

sensor coverage to an entire region. Although earlier works broadly consider the SPP in 

general terms, latter works are often dedicated to these distinct problems. In this study, 
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two approaches are used for the SPP. Both approaches are mixed integer linear 

optimization formulations. In addition to risk analysis, our approaches include a 

fortification approach, a procedure for solving large problems and a methodology for 

incorporating uncertainty considerations in the sonar placement problem.  

The study in the first approach contributes to the literature by proposing a new 

mathematical model for placing underwater sonars in a maritime environment to monitor 

potential underwater threats. The model integrates both static and mobile sensors in a 

deployment methodology within a multi-period deployment scheme using a hexagonal-

grid based placement methodology.  Unlike terrestrial sensors, sonars are quite 

expensive. Thus, this placement methodology is to be achieved under strict budgetary 

limitations. To the best of our knowledge, no work exists in literature that proposes the 

use of hexagonal-grid based methodology in the placement of sensors within a maritime 

environment. In addition, we extended the work by proposing greedy-based algorithms 

and also studied uncertainty considerations under a robust optimization approach in the 

sonar placement problem. 

Another approach we studied in this dissertation is a trilevel ‘Defender-Attacker-

Defender’ model, referred to as a ‘Fortification model’. The model is suitable for the 

defense planning of critical infrastructures and involves three levels of interactions 

between a ‘Defender(s)’ and an ‘Attacker’. The ‘Defender’ initially deploys resources to 

mitigate potential damage or disruption and the ‘Attacker’ in turn responds to the initial 

deployment within the limits of his resources. Thereafter, a ‘Defender’ (which could be 

the original agent responsible for the initial deployment or another agent with similar 

goal) counteracts the attacker’s response in order to mitigate overall system damage or 
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disruption.   The Fortification approach considers the expected actions of an intelligent 

‘attacker’ with access to existing protection capabilities and who attempts to use this 

information to evade detection. Due to the relative easy access (legal or otherwise; 

publicly available or otherwise) to information in modern times, it is imperative to 

consider the perceived reaction of a resolute attacker familiar with a protector’s resource 

capabilities. Currently, literature indicates the fortification concept is yet to be applied in 

sonar placement problems.  

 

  

 
Figure 1.4: Sentinel Intruder Detection Sonar system (SIDSS), a compact       

                         underwater surveillance sonar used by the US Navy (Maritime    
                         Journal, 2009)  

 
 

8 
 



1.4 List of Publications 

Journal Publications 

• T. Biobaku and G. Lim (2016), “A greedy-based approach for detecting 

underwater threats under a limited budget,” working paper. 

• T. Biobaku and G. Lim (2016), “Underwater sonar placement problem under 

uncertainty considerations,” working paper. 

• T. Biobaku and G. Lim (2016), “A fortification approach for detecting underwater 

threats under limited budget,” (submitted to Reliability Engineering and System 

Safety). 

• T. Biobaku, G. Lim, S. Bora, J. Cho, and H. Parsaei (2016). An optimal sonar 

placement approach for detecting underwater threats under budget limitations. 

Journal of Transportation Security, 9(1-2), 17-34. 

• T. Biobaku, G. Lim, S. Bora, J. Cho, and H. Parsaei (2015), “Literature survey on 

underwater threat detection,” Transactions on Maritime Science, 4(01), 14-22.  

• J. Cho, G. Lim, T. Biobaku, S. Bora, and H. Parsaei (2015), “Planning for LNG 

Inventory Routing under Dust Storm,” (submitted to European Journal of 

Operational Research). 

• J. Cho, G. Lim, T. Biobaku, S. Bora, and H. Parsaei (2014), “Liquefied Natural 

Gas Ship Route Planning Model Considering Market Trend Change,” 

Transactions on Maritime Science, 3(02), 119-130. DOI: 

10.7225/toms.v03.n02.003. 

9 
 



• S. Bora, G. Lim, T. Biobaku and S. J. Cho, H. Parsaei. Models and Computational 

Algorithms for Maritime Risk Analysis: A review," (submitted to Annals of 

Operations Research). 

Conference Proceedings and Presentations 

• J. Cho, G. Lim, T. Biobaku, and S. Kim, "Safety and Security Management with 

Unmanned Aerial Vehicle (UAV) in Oil and Gas Industry,” Procedia 

Manufacturing 3, 1343-1349., DOI: 10.1016/j.promfg.2015.07.290  

• T. Biobaku, G. Lim, J. Cho, S. Bora, H. Parsaei, and S. Kim. "Liquefied Natural 

Gas Ship Route Planning: A Risk Analysis Approach." Procedia Manufacturing 3 

(2015): 1319-1326. DOI: 10.1016/j.promfg.2015.07.282 

• J. Cho, G. Lim, T. Biobaku, and H. Parsaei, “Use of Unmanned Aerial Vehicle 

(UAV) for risk monitoring in oil and gas industry,” in IIE Annual Conference, 

Nashville, 2015. 

• T. Biobaku, G. Lim, J. Cho, H. Parsaei, and S. Kim, “Optimal Sonar Deployment 

in a Maritime Environment: A Fortification Approach,” in INFORMS Annual 

Conference, Philadelphia, 2015. 

• S. Bora, G. Lim, T. Biobaku, J. Cho and H. Parsaei, “Case Studies on Maritime 

Incidents: A Review,” in IIE Annual Conference, Nashville, 2015.  

• T. Biobaku, G. Lim, J. Cho, H. Parsaei, and S. Kim, “Optimal Sonar Deployment 

in a Maritime Environment: A Fortification Approach,” in INFORMS Annual 

Conference, Philadelphia, 2015. 

10 
 



• T. Biobaku, G. Lim, J. Cho, H. Parsaei, and S. Kim, “Optimal Voyage Planning 

of Liquefied Natural Gas Vessels: A Risk-Analysis Perspective,” in UH Industrial 

Engineering Conference & Exhibition, 2015. 

Poster Presentations 

• T. Biobaku, G. Lim, J. Cho, S. Bora, and H. Parsaei, “Sonar Placement for 

Maritime Surveillance - A Fortification Approach,” in University of Houston - 

Graduate Research and Scholarship Projects (GRaSP) Day, Houston, TX, 2015. 

• J. Cho, G. Lim, T. Biobaku, S. Bora, and H. Parsaei, “Global LNG supply chain 

under Shamal disruptions,” in University of Houston - Graduate Research and 

Scholarship Projects (GRaSP) Day, Houston, 2014. 

• T. Biobaku, G. Lim, J. Cho, S. Bora, and H. Parsaei, “Underwater Sonar 

Placement for Maritime Surveillance,” in University of Houston - Graduate 

Research and Scholarship Projects (GRaSP) Day, Houston, TX, 2014. 

• S. Bora, G. Lim, T. Biobaku, J. Cho, H. Parsaei, “Assessing Supply Chain 

Resiliency,” in 3rd TAMUQ Annual Research and Industry Forum, Doha, Qatar, 

2014. 

• T. Biobaku, G. Lim, S. Bora, J. Cho, H. Parsaei, “Underwater Sonar Placement 

with Static and Mobile Sensors, “in 3rd TAMUQ Annual Research and Industry 

Forum, April 7, Doha, Qatar, 2014. 

• J. Cho, G. Lim, T. Biobaku, S. Bora, H. Parsaei , “Liquefied Natural Gas (LNG) 

inventory routing problem under weather disruptions: a case study of dust storm 

in Persian Gulf,” in Proceedings of THC-IT-2014 Conference and Exhibition, 

August 1 2014, Houston, TX, USA. 

11 
 

http://e2map.egr.uh.edu/sites/e2map/files/files/publications/01.%20%5BPOSTER%5D%20v2%20CHO%20JAEYOUNG%2010212014.pdf
http://e2map.egr.uh.edu/sites/e2map/files/files/publications/01.%20%5BPOSTER%5D%20v2%20CHO%20JAEYOUNG%2010212014.pdf


• T. Biobaku, G. Lim, S. Bora, S. Ahmadi, H. Parsaei, “Sonar Placement and 

Deployment in a Maritime Environment,” in Qatar Foundation Annual Research, 

Doha, Qatar, 2013.  

1.5 Dissertation Overview 

This dissertation is organized as follows. In Chapter 2, we present a 

comprehensive review of underwater threat detection.  Risk-based analysis, Sensor 

placement and Interdiction/Fortification methodologies are reviewed as techniques for 

evaluating vulnerabilities and consequently providing protection to critical maritime 

assets and infrastructures.  In Chapter 3, a new risk-based framework is presented for 

optimally planning the voyage of LNG vessels (maritime assets) between liquefaction 

plants and regasification terminals. While Chapter 4 presents an optimal risk-based 

placement methodology to protect LNG ports, harbors, etc. (maritime infrastructures) 

from underwater-borne attacks, Chapter 5 presents a fortification modeling approach in 

the placement methodology presented in Chapter 4 and discusses an algorithm 

implemented to solve the placement problem using the approach. In Chapter 6, we 

present greedy-based algorithms for solving the SPP problem and Chapter 7 addresses the 

issue of data uncertainty in the SPP by studying a robust optimization approach. Finally, 

Chapter 8 concludes the dissertation with an overview of the studies in Chapters 3-7 and 

discusses future work related to the extension of the models, algorithms and 

methodologies studied. 
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Chapter 2  

Literature Review 

2.1 Underwater Threat Detection  

World trade is heavily dependent on maritime transportation (Organisation for 

Economic Co-operation and Development, OECD, 2003). This dependence indicates why 

global distribution of economic goods is done mostly via oceans, seas, estuaries and other 

maritime waterways. The unique position the maritime industry holds in the world 

economy (without even addressing its importance in military warfare) accentuates the 

need to protect its infrastructural resources from threats and disasters. Apart from the 

scourge of terrorism in the current global economy, the age-old threats of piracy, arson 

attacks and unfortunate accidents are incidences the maritime industry must also contend 

with. Similar to the use of terrestrial sensors in the identification and classification of 

land-based threats and targets, underwater sensors are used in the maritime domain for 

the same purpose.   

In a review presented by Biobaku et al. (2015), Sensor placement and deployment 

within underwater/maritime framework was identified as an area requiring more 

contributions. There is an indication of the preponderance of acoustic sensors as a 

dominating sensing technology; however, discussions in Biobaku et al. (2015) also 

emphasized that in practical implementations of maritime surveillance systems, the 

combination of various technologies contributing their individual and unique benefits, 
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rather than the use of a specific sensing technology, is the reality in most practical 

surveillance systems.  

2.2 Susceptibility of Critical Assets and Infrastructures - A Risk 

Analysis Approach 

In the US, the department of Homeland Security (DHS) has primary responsibility 

for maintaining and preserving homeland security through its agencies/directorates (such 

as United States Customs and Border Protection – CBP, Transportation Security 

Administration – TSA, National Protection and Programs Directorate – NPPD, etc.). As a 

prominent component of the Homeland Security Act of 2002 (as amended) that 

established the cabinet department, DHS is vested with the responsibility of developing a 

comprehensive plan for securing the nation’s critical infrastructures (composed of 

Physical, Cyber, and Human elements). In discharging this responsibility, DHS, amongst 

other endeavors, developed a critical infrastructure risk management framework whose 

overall objective is to provide recommendations that maximize the protection of assets 

and infrastructures.  The risk methodology helps to focus on the threats/hazards with the 

highest impacts, and adopt procedures that are designed to prevent or mitigate the effects 

of these incidents. 

The critical infrastructure risk management framework supports a decision-

making process that critical infrastructure partners collaboratively undertake to inform 

the selection of risk management actions (NIPP, 2013). It also compliments efforts in 

conducting industry-specific and/or geography-specific Threat and Hazard Identification 

and Risk Assessment (THIRA) process. 
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Figure 2.1: DHS Risk Management Framework (NIPP, 2013). 

The risk management framework is flexible and a major feature inherent in the 

methodology is in the constant sharing of information across its components to identify 

voids in security and resilience efforts. Our work in this dissertation addresses the 

“Assess and Analyze Risks” component of the framework, where critical infrastructural 

risks are assessed in terms of three components defined (NIPP, 2013) thus: Threat – 

Natural or man-made occurrence, individual, entity, or action that has or indicates the 

potential to harm life, information, operations, the environment, and/or property; 

Vulnerability – Physical feature or operational attribute that renders an entity open to 

exploitation or susceptible to a given hazard; Consequence – Effect of an event, incident, 

or occurrence.  

In the terminology of formal Risk analysis, Risk is taken as the expected 

consequence of incidents. Calculation of expected consequence is conditioned on the 

types of possible incidents (Ghafoori and Altiok, 2012) in equation (2.1). 

𝐸𝐸(𝐶𝐶) = �𝐸𝐸�𝐶𝐶�𝐼𝐼𝑗𝑗�𝑝𝑝
𝑗𝑗

�𝐼𝐼𝑗𝑗�, (2.1) 

where 𝐸𝐸�𝐶𝐶�𝐼𝐼𝑗𝑗� is the expected consequence given the occurrence of an incident j and 

𝑝𝑝(𝐼𝐼𝑗𝑗) is the probability that an incident of type j occurs. However, a successful intrusion 
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(attack) may or may not lead to an incident. Hence, equation (2.1) can be written as 

equation (2.2) (Willis, 2007; Ghafoori and Altiok, 2012). 

𝐸𝐸(𝐶𝐶) = 
��𝐸𝐸�𝐶𝐶�𝐼𝐼𝑗𝑗� × ��𝑝𝑝�𝐼𝐼𝑗𝑗�𝐴𝐴𝑘𝑘�𝑝𝑝

𝑘𝑘

(𝐴𝐴𝑘𝑘)��
𝑗𝑗

 , 
(2.2) 

where  𝑝𝑝�𝐼𝐼𝑗𝑗�𝐴𝐴𝑘𝑘� is the conditional probability of a successful attack/intrusion given that 

the attack has already occured and 𝑝𝑝(𝐴𝐴𝑘𝑘) is the occurrence probability of attack k.  

It is pertinent to note that the risk formula (Willis 2007; McGill et al. 2007; Ezell 

et al. 2010, Ghafoori and Altiok, 2012, etc.), in consonance with the DHS Risk 

Management Framework (NIPP, 2013), quantifies risk as, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶 × 𝑉𝑉 × 𝑇𝑇, (2.3) 

where 𝐸𝐸�𝐶𝐶�𝐼𝐼𝑗𝑗�, 𝑝𝑝�𝐼𝐼𝑗𝑗�𝐴𝐴𝑘𝑘�, and 𝑝𝑝(𝐴𝐴𝑘𝑘) in equation (2.2) are respectively referred to as: 

expected consequence of an incident C,  vulnerability of targeted assets/infrastructure V, 

and probability that an attack (activity) occurs T. While some existing works in literature 

are able to individually include all these components of E(C) in their risk-based 

formulations, others simply concentrate on either one or two of them (Ghafoori and 

Altiok 2012).  

2.3 Protection of Maritime Assets: Risk-based LNG Vessel 

Scheduling and Routing 

Similar to the maritime transportation of crude oil and other petroleum products, 

LNG transportation models often take into account the whole supply chain of the 
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commercial product. In this dissertation, we present only a brief review of recent works 

on LNG transportation models.  

2.3.1 LNG Transportation Models 

Grønhaug and Christiansen (2009) formulated the LNG inventory routing 

problem as a mixed integer program to satisfy monthly demand with sales activities and 

inventory level at the customer’s regasification terminal as major considerations. 

Andersson et al. (2010) proposed LNG supply chain optimization models to determine 

sailing schedules and vessel assignments to serve a single buyer on each voyage. Also, 

Grønhaug et al. (2010) proposed a branch-and-price method that involves the use of a 

dynamic programming algorithm to solve a sub-problem in the LNG inventory routing 

problem formulated. Afterwards, Rakke et al. (2011) developed an annual LNG delivery 

schedule with a diverse fleet of LNG carriers, taking into consideration only the 

traditional long-term LNG contracts but failed to consider the emerging trend of spot 

demands and short-term delivery contracts. Similarly, Stålhane et al. (2012) presented a 

heuristic to solve a large scale annual LNG inventory routing problem that considers 

amongst others, inventory, berth capacity at the loading port and a heterogeneous fleet of 

ships.  Simultaneously fulfilling the producer’s long-term contracts at minimum cost and 

maximizing the revenue from selling LNG in the spot market are major goals of the 

developed model. 

Bopp et al. (1996), Halvorsen-Weare and Fagerholt (2013), and Halvorsen-Weare 

et al. (2013) considered some uncertainties related to general vessel movements in their 

modeling approaches. However, none of these studies considered internal system 
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dynamics of LNG carriers as principal sources of the uncertainties but instead, focused 

only on external environmental impacts (Cho et al., 2014). To address this issue, 

Chatterjee and Dobrota et al. (2013), and recently, in Cho et al. (2014), we considered 

these internal dynamics. The effect of boil off gas (BOG) is a major uncertainty factor 

considered in these works. Particularly, Cho et al. (2014) proposed a deterministic LNG 

vehicle routing problem model. Thereafter, a stochastic extension of the model using 

Monte Carlo optimization techniques was presented. Notably, Chatterjee and Geist 

(1972) had earlier attempted to study the effect of this uncertainty; however, their work 

was specific to LNG storage tanks as opposed to LNG vessels.  

2.3.2 Risk-based Transportation of LNG Vessels 

Due to the nature of LNG cargo, LNG transportation should be treated as a 

hazardous material. To the best of our knowledge, studies considering hazmat 

transportation risk assessment and routing with specific reference to LNG vessels is non-

existent in literature. However, a brief review on a closely related cargo vessel (crude oil 

tankers) is provided in this section. 

Li et al. (1996) developed a model for transportation of oil that considered 

operational risk in a multimodal and multiproduct network with specific application to 

the Gulf of Mexico. A few years later, Iakovou et al. (1999) proposed a model to solve 

the strategic level routing problem of hazardous materials in marine waters over a multi-

commodity network with multiple origins; minimization of expected risk cost was 

considered in the developed model. Thereafter, an efficient two-phase solution approach 

was proposed and the methodology was illustrated through a single hazmat problem 
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followed by a large scale case study of the marine transportation system of oil products in 

the Gulf of Mexico. Likewise, Iakovou (2001) presented a strategic interactive multi-

objective network flow model that considered risk analysis and routing. This was also 

developed with specific reference to the Gulf of Mexico and permitted decision makers to 

customize model parameters to suit their needs.  

In addition, van Dorp and Merrick (2011) reviewed a methodology which 

integrated simulation of Maritime Transportation Systems (MTS) with incident data 

collection, expert judgment elicitation and a consequence model. The risk analysis and 

assessment presented were within the context of oil spillage concerns. To illustrate the 

effectiveness of this methodology, three risk intervention case studies were evaluated. Of 

recent, Siddiqui and Verma (2013) proposed an expected consequence approach for 

assessing oil-spill risk from intercontinental transportation of crude oil and made use of 

oil spill global data to estimate accident probabilities. 

2.4 Protection of Maritime Infrastructures - Sonar Placement 
Problems (SPP) 

2.4.1 Sonar Placement Problem: Offshoot of the Set-Covering Problem  

The problem of underwater sonar placement could be considered a variant of the classical 

Set-covering problem (SCP). The SCP is a NP-Hard problem in the strong sense (Garey 

and Johnson, 1979; Yelbay et al., 2012) and has found extensive use in a diverse range of 

applications. Scheduling, routing and telecommunications are some of the research areas 

in which various variants of the famous problem have been used. Introductory insights 

into SCP can be found in Yelbay et al. (2012) and Wang (2010). 
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2.4.2 Optimal Sensor Placement Problems 

Chakrabarty et al. (2002), Wang and Zhong (2006), Altinel et al. (2008) and 

others have addressed the problem of placing the least number of sensors to cover all 

targets as a model objective. Likewise, other constraints can be included to depict actual 

problem requirements. For example, in wireless network deployment, it is often required 

to limit the proximity between any two adjacent sensors within the network (Sen et al., 

2007). In essence, different modifications of the problem exist with modification of the 

objective function(s), the constraint(s), or both. 

There also exist sensor placement models (such as Lin and Chiu, 2005) that 

stipulate coverage of a target by at least k sensors. In a sensor network, if all targets are 

covered by at least one sensor, then the network is said to provide complete coverage for 

all targets (Wang, 2010). Using the grid approach (introduced in Section 2.5) to 

approximate area coverage allows modeling of various variants of the sensor placement 

problem. Optimization of sensor orientation angles to maximize sensor coverage, 

minimization of sensor deployment costs, and maximization of the number of covered 

targets with respect to a given number of sensors are some of these variants found in 

literature.  

2.4.3 Review of Selected Literature Related to Sensor Coverage and 

Grid Networks 

Without solely restricting the literature on sensor placement to the maritime 

sector, there exist vast amounts of literature directly or indirectly related to the problem. 

Irrespective of the problem domain or problem statement, these studies involve attaining 
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an efficient placement methodology to satisfy a given requirement (or requirements) in 

the presence of some inhibiting factors (ranging from connectivity, physical structures, 

economic considerations, etc.). 

Chakrabarty et al. (2002) presented an Integer Linear programming model to 

minimize the cost of sensors for complete coverage of a sensor field using a 3-D network 

grid to allocate sensors. Given a surveillance region and sensors of different types, the 

objective was to determine the placement and the types of sensors needed to be placed in 

the sensor field such that the desired coverage is achieved at minimum cost. Hence, the 

problem entailed placing sensors at grid points such that every grid is covered by a 

unique subset of these sensors. Although consideration was given to only two different 

types of sensors, the model could be easily extended to include more sensors. In addition, 

the study also proposed an alternate heuristic for solving large scale problems. Apart 

from its assumption of limitless budget (which may be applicable to generic sensors but 

not acoustic sonars due to prohibitively high costs), other identified model weaknesses in 

the work includes the assumptions that a sensor will always detect a target lying within 

its range and full coverage of all sensors. 

Lin and Chiu (2005) developed a model for the deployment of a set of sensors on 

a grid point to monitor the sensor field under the constraints of cost limitations to achieve 

complete coverage. Coverage is considered to be ‘full’ if distance between the particular 

grid point and a sensor is less than the sensor’s detection radius. Otherwise, coverage is 

assumed to be ineffective (a binary decision). For practical purposes, this may not be 

applicable. Even if a cell is covered by the smallest of margin, it could still be considered 

as covered by the sensor (though with a loss of detection probability). Modeled as a 
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combinatorial optimization problem, the formulation minimizes the maximum distance 

between grid points and sensor locations. An algorithm based on simulated annealing is 

also presented for large scale problems. Like Chakrabarty et al. (2002), an identified 

model weakness is that sensor detection is considered to be binary: either a sensor covers 

a grid/cell or not. To address issues in computational times, Ngatchou et al. (2006) 

present efficient greedy algorithms for the optimal placement of multi-static sensors with 

cost and coverage as principal objectives using particle swarm optimization. Also, to 

stimulate interest in the use of underwater sensors, Heidemann et al. (2006) summarized 

their ongoing research in underwater sensor networks, highlighting potential applications 

and research challenges. 

Using a Game Theory-based approach, Golen et al. (2007) proposed an 

underwater sensor field design placement. Given four different quadrants of water bodies 

with distinct underwater acoustics, the study derives the probability of visitation by a 

threat submarine based on a quadrant’s acoustics. Based on the derived probabilities, a 

number of sensors are placed in each area to maximize detection capabilities of the 

intruder. The paper approximates sensor detection probabilities using Koopman (1980)’s 

search equation (an exponential function depicting loss in sensor capabilities as distances 

increase) in its formulation. Introducing other constraints, the Linear Programing LP 

technique used is based on the Mini-max Theorem. To prove model validity, a series of 

Monte Carlo simulations are also presented. Assumptions of non-overlap of detection 

coverage and non-consideration of false alarm probability rates (probability of signal 

detection in the absence of no threat) are some of the identified model weaknesses. 
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Extending the problem described in Golen et al. (2007), Golen et al. (2010) takes 

into consideration the acoustics of the area of interest to account for transmission loss due 

to geometric spreading, absorption by sea, ambient noise influence, etc. Substantial 

reference is made to the model described in Golen et al. (2007), adopting the Game 

Theory approach used in the prior paper. Each player must choose an optimal strategy by 

solving two LPs. For practicality, the defender's optimal strategy is ignored while the 

attacker's is analyzed; for comparison purpose, two distinct models were proposed: 

SAFD (size aware field design) which considers only geographic size of each sensor 

when allocating sensors and RAFD (radius aware field design) which allocates sensors to 

each sector by only considering radius that a sensor can attain in each sector. 

For our study, the most relevant portion of Yates et al. (2011) is its first segment 

where consideration is given to the optimal placement of sensors whose goal is to detect 

vehicles on transportation networks posing potential threats to regional infrastructures. 

With a restriction to a single sensor type, the formulation adopts the zero-sum game 

approach and attempts to decrease the attack probability of an aggressor by monitoring 

and protecting the possible assault routes. The paper divides the network into a set of 

possible attacker entry points (origins), possible attacker targets (destinations) and 

intermediate nodes, and separates the defender sensor location problem from the 

network-based attacker shortest path problems. 

Recently, Ghafoori and Altiok (2012) proposed an optimization model to keep 

ports and waterways under surveillance against threats from divers, torpedoes or 

explosives mounted on the hull of vessels. The proposed mixed linear integer 

programming model incorporates the feature of multiple sonar coverage and range-
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dependent detection probability and strictly aims to mitigate the effects of a terrorist 

attack without considering other threat factors (e.g., natural conditions like inclement 

weather or visibility). As a realistic scenario for the model, the New York Harbor is 

presented as a test case. Also, a greedy heuristic approach which attains near-optimal 

solutions for large scale scenarios is presented; and numerical results are provided to 

show the accuracy and speed of the heuristic algorithm. 

Other relevant works related to sensor placement for surveillance include: 

Meguerdichian et al. (2001),  Dhillon et al. (2002), Clouqueur et al. (2003), Shakkottai et 

al. (2003), Dhillon and Chakrabarty (2003), etc., and others related to general sensor 

placements include: Esseghir et al. (2005), Mhatre et al. (2005), Krause et al. (2006), 

Armaou et al. (2006), Schoellhammer et al. (2006)  Ibrahim et al. (2007), Altinel et al. 

(2008), Pashko et al. (2008), Lee and Kulesz (2008), Li et al. (2010), Wilhelm and Gokce 

(2010), Castelo et al. (2010), Yates et al. (2011), etc.  

2.4.4 Heuristics: Case for the use of Approximation Algorithms 

With small case problems (those with limited number of decision variables), a full 

enumerative search of all placement combinations is easily carried out and can be 

executed in a relative short period of time using widely available optimization tools such 

as CPLEX, Gurobi, etc., ensuring that a global optimum is always obtained. However, 

total enumerations to be considered increases considerably as the complexity of the 

problem increases. The computational complexity for exhaustive search increases 

exponentially with the number of available sites (Wang, 2010). This exponential increase 

in the solution space indicates large scale problems cannot be solved with exact 

24 
 



formulations (the execution time increases with an increase in the solution space). Like 

most integer programming (IP) problems, compromise is made between obtaining exact 

optimal solutions and arriving at a solution within a reasonable time frame. Hence, 

approximation algorithms (heuristics) are used in large scale and practical problems. 

Some of the heuristics known to have been implemented in sensor placement 

literature are listed as follows. 

Greedy Algorithm: Perhaps the greedy set algorithm is the most widely used heuristic in 

classical set cover problems. However, their myopic nature may easily yield solutions far 

from optimality (Yelbay et al., 2012). Greedy algorithms build up a solution sequentially, 

choosing the next solution space that offers the most obvious and immediate benefit. A 

greedy algorithm makes a locally optimal choice in the hope that this choice will lead to a 

global optimal solution (Cormen et al., 2009). While the algorithm is not guaranteed to 

always produce optimal solutions, it is a powerful, works quite adequately for a wide 

range of problems, and is also known to be computationally efficient for large scale 

problems. 

A greedy algorithm terminates if a predefined optimal threshold has been 

achieved or the maximal allowable stages have been performed (Wang, 2010). 

Modifications of the greedy set cover algorithms exist in literature for solving different 

sensor problem formulations. Dhillon et al. (2002), and Zou and Chakrabarty (2004) are 

some of these. More recently, Ghafoori and Altiok (2012) used the greedy algorithm to 

solve an underwater sonar placement problem.  
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Simulated Annealing: As a generic probabilistic metaheuristic, Simulated Annealing 

provides an acceptable estimation of the global optimal solution for problems with a large 

search space. It is often used when the search space is discrete like sensor placement 

within well-defined discrete regions. The algorithm traces its root to metallurgy where a 

technique (Annealing) is used to describe controlled heating and cooling of a material to 

increase the size of its crystals, thus reducing its defects. 

Simulated annealing has been applied in solving different sensor placements in 

Lin and Chiu (2005). Lin and Chiu (2005) formulated the sensor placement problem as a 

min-max mathematical optimization model where the accuracy of discrimination is the 

required objective. Thereafter, the simulated annealing-based algorithm is developed to 

solve the optimization problem. The cooling schedule of their algorithm initially assumes 

the deployment of sensors at all grid points. Afterwards, individual attempts are made to 

remove sensors if the cost constraint is not met. If a cost constraint is met, the procedure 

will be to attempt moving a sensor to another randomly chosen position. With the latter, 

the stopping criterion is also introduced and modified to improve efficiency. The 

experimental results presented indicate the proposed algorithm can efficiently obtain a 

high-quality and scalable solution.   

Genetic Algorithm: Initially proposed by Holland (1975), Genetic Algorithm (GA) 

mimics the process of natural selection. As an evolutionary algorithm, it generates 

solutions to optimization problems using techniques inspired by natural evolution 

principles such as inheritance, mutation, selection, and crossover, etc. Seo et al. (2008), 

Wu et al. (2007), and Zhao et al. (2007) used genetic algorithm heuristics in the sensor 

network problems they addressed. Seo et al. (2008) proposed a hybrid steady state GA to 
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find high-quality solutions of the wireless surveillance sensor deployment and applied it 

to a practical surveillance case study. The proposed genetic algorithm introduces two-

dimensional geographic crossovers and mutations as unique features of its proposal. In 

contributing to the node optimal design of heterogeneous Sensor Networks, Zhao et al. 

(2007) proposed a GA solution of integer planning based on the grid network model. 

Their method addresses the issue of maximizing energy saving efficiencies of a sensor 

network under multiple deployments.  

ABC Algorithm: Initially developed by Karaboga (2005), the Artificial Bee Colony 

(ABC) is a relatively recent meta-heuristic technique based on the intelligent food search 

of honey bees. Based on Karaboga (2005) and later related works, for the purpose of food 

location, bees are classified as: ‘employed’ (Bees currently exploiting food sources and 

responsible for bringing food back to the hive and sharing food locations with other 

bees), ‘on-lookers’ (those awaiting arrival of the former to get information about food 

location) and ‘scouts’ (Bees exploring new food sources). The following, amongst others 

hold according to bee behaviors: 

1. Probability of food-location choice made by ‘onlookers’ is dependent on the 

intensity/quality of the ‘dance’ performed by an ‘employed’ bee. 

2. Continued role changes among the bees, e.g., when an ‘employed’ bee has fully 

exploited a food choice, it could transform into either an 'on-looker’ or a ‘scout’. 

The natural behaviors of these bees as summarized above (with some 

modifications) constitute the basic algorithmic steps of ABC. The iterative algorithm 

initiates by associating each ‘employed’ bee with a randomly generated food source 
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(solution).  Each ‘employed’ bee determines a new food source in the neighborhood of its 

currently associated food source and computes the food quantity of this new source. If 

this metric is higher than that of its currently associated food source, then this ‘employed’ 

bee moves to the new food source abandoning the old one, otherwise, it continues with 

the old one. After the completion of this process by all employed bees, information about 

their food sources is shared with the ‘onlookers’. 

Sundar and Singh (2012) developed a hybrid heuristic, combining ABC with a local 

greedy search technique proposed by Ren et al. (2010) to solve a variant of the SCP. In 

comparison with other population methods considered in their work, the hybrid heuristic 

outperforms all (with the only exception being a single population method). However, 

their results indicate the hybrid heuristic is slower than some other population-based 

methods considered. 

2.5 Sensor Deployment: Grid-based Placement 

Random and grid-based methods are placement methodologies identified in 

literature. In deployment operations where the environment is unknown, random 

placement is often the only choice and sensors may be randomly distributed with the aid 

of say, aircrafts or vessels. The alternative is to deploy sensors on a predetermined sensor 

field with well-defined boundaries. The field is generally divided into grids and sensors 

are carefully deployed at the grid points. This approach is called grid-based placement 

(Lin and Chiu, 2005). Dividing a region of interest into cells on a grid basis enables 

depiction of the significance/importance of each cell by parameter values. Thus, sensor 

coverage for a cell is prioritized based on the individual cell parameter values. 
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Unlike most sensor network problems, especially in the wireless network domain 

which often deals with ‘full’ coverage (i.e., all grids are required to be covered by at least 

n number of sensors), underwater sonar deployment usually deals with ‘partial’ coverage 

with preference given to sub regions within the network grid considered to be more 

important compared to other sub regions. 

The most common grid used in sensor deployment is the conventional square 

(rectilinear) grid system. However, it is known from literature that a triangular 

coordinates system (triangular grid or its derivatives such as the hexagonal grids) in 

sensor placement will offer a more efficient way of area coverage (Nagy 2003a, Nagy 

2003b, Nagy 2004, and Nagy and Strand 2008). The optimal tessellation using regular 

triangles with side length equal to √3Rs (where Rs is the radius of the sensor sensing 

disk) achieves the minimum sensor density for complete area coverage (Wang, 2010). 

Indeed, other regular polygons can also be used in sensor grid deployment.  

Nagy (2003a) described a family of n-plane triangular grids (Hexagonal, 

Triangular and 3-planes triangular grids), showed geometric interpretation of both the 

hexagonal and triangular grids and proved both could be considered as sets of points in 

3D digital space. Hexagonal and triangular grids are described as first and second 

members of a family of triangular grids (n-plane triangular grids). In addition, the 

neighborhood structures of the duals of the n-plane graphs are described. Nagy (2003b) 

presented a suitable method for the formulation of neighborhood sequences in a 

triangular grid. Algorithms were presented to find the shortest distance between two 

arbitrary points. The study further analyzed certain properties of the triangular and 
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hexagonal grids in 2D digital space, defining distances based on neighborhood relations 

that could be introduced in these grids. 

Also, Nagy (2004) analyzed the 3-plane triangular grid and its dual from the basis 

of their neighboring conditions; and thereafter, extends this analysis to n-plane grids. 

Other grid systems such as ‘circular’ three-plane grids and the higher dimensional 

triangular grids are also analyzed. Nagy et al. (2008) dealt mainly with 3D graphs. 

Amongst others, it showed how non-standard 3D models could be embedded in 4D 

digital space and how a triangular grid could be described using 3D digital space. 

Unlike wireless network problems, where placement problems indicates either coverage 

of a unique grid point (considered the trivial case where every grid point should be 

occupied by a sensor) or placement of a sensor in a grid such that it is able to cover itself 

and some of its neighboring grid points with the use of the least number of sensors 

(considered as non-trivial), the placement problem in sonar deployment entails the latter 

but without the requirement of the coverage of all regions. This is due to the very high 

cost of sonars as specialized classes of sensors. In addition to the complexities involved 

in the non-trivial case of wireless network deployment, sonar placement entails selective 

deployment of the sonars (sensors) to cover sub-regions within the region of interest 

based on the level of importance attached to these sub-regions.  

2.6 Interdiction and Fortification Models - Protection of vital 

Infrastructures 

Ghafoori and Altiok (2012) provided a compendium of works related to the 

defense of critical infrastructures and argued that the studies were in response to security 

challenges as a result of terrorist attacks, especially after the 9/11 incident. Some of these 
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studies include Leung et al. (2004), Berry et al. (2005), Brown et al. (2005), Brown et al. 

(2006), Golen et al. (2007), Simonoff et al. (2007), Golen et al. (2010) Yates et al. 

(2011), etc. A component of a critical infrastructure is said to be vulnerable to attack 

unless it is specifically hardened or defended (Brown et al., 2006). Hence, Vulnerability 

analysis should consider the ‘intelligence’ of an adversary, its ability to discern 

information about a protected infrastructure and consequent use of this knowledge to 

compromise existing security measures. Making informed plans based on this reponse 

will assist in reducing vulnerability. Of course, hardening infrastructure from attack can 

be inherently expensive; however, understanding the nature of the most catastrophic 

attacks can improve a system’s robustness for a given budget (Brown et al., 2006). 

2.6.1 Attacker-Defender (A-D) and Defender Attacker-Defender (D-A-

D) Models  

According to Alguacil et al. (2014), A-D (Interdiction) models characterize a 

decision-making problem that involves two different agents –‘Attacker’ and a 

‘Defender’. The Attacker determines the set of out-of-service system components with 

the goal of maximizing the system damage subject to limited disruptive resources. The 

Defender (or system operator) reacts against the actions of the attacker to minimize harm 

done to the system. 

However, defending those components that are identified as critical by an A-D 

model does not necessarily provide the best protection against a system disruption 

(Brown et al., 2006). D-A-D (Fortification) models help to assuage limitations inherent in 

A-D models. In essence, the D-A-D model produces a superior protection plan because it 
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considers an additional level of interaction between the defender and the attacker, and 

thereafter selects the optimal strategy to thwart the attacker’s efforts (Brown et al., 2006). 

Essentially, it involves three agents acting sequentially: (i) a system planner who 

identifies the system components to be defended in order to minimize the damage, (ii) a 

disruptive agent who determines the most-damaging set of out-of-service components, 

and (iii) the system operator who responds to any disruptive action by means of some 

counteractive measures to minimize the overall damage (Brown et al. , 2006, Bier et al., 

2007, Delgadillo et al., 2011,Yao et al., 2007, Yuan et al., 2014, and Alguacil et al., 

2014).  

2.6.2 Selected Literature Overview 

To provide an optimal solution to a protection plan, Brown et al. (2005) proposed 

to extend a bi-level A-D model to a tri-level D-A-D model. Later, Brown et al. (2006) 

described and presented three different general models (A-D, D-A, and D-A-D models). 

Detailed description of the application of each model was presented under a case study 

application. In addition, applications to supply chain networks, military and diplomatic 

exercise were also discussed.  

Literature indicates interdiction and fortification models have found more 

extensive applications in optimal allocation of resources in power grid networks. Prior to 

Brown et al. (2005), Salmeron et al. (2004) formulated a power grid interdiction problem 

as a max–min bi-level program (A-D model), and used Benders decomposition to solve 

it. Motto et al. (2005) transformed the model described in Salmeron et al. (2004) into an 

equivalent single level MIP by dualization of the lower level program and subsequently 
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solved the problem using a commercial solver.  Yao et al. (2007) described a 

decomposition approach by iteratively solving smaller bi-level sub-problems of a 

proposed D-A-D model. Taking inspiration from Brown et al. (2006), the D-A-D model 

was formulated for defense planning of a power grid system. A drawback of Yao et al. 

(2007) is that it is computationally time consuming (Alguacil et al., 2014). In addition, 

Bier et al. (2007) proposed yet another heuristic iterative approach to determine the 

optimal defense of power system components using D-A-D techniques. To address the 

computational inefficiency observed in Yao et al. (2007), Delgadillo et al. (2011) 

developed another algorithm to solve this tri-level programming problem.  

Most recently, Yuan et al. (2014) proposed a new approach using Column-and-

Constraint Generation algorithm to find the optimal protection plan for a power grid 

system within an acceptable computational time. In addition, a case study of interdiction 

strategy based on the algorithm was carried out on a power grid network against terrorist 

attacks. Similarly, Alguacil et al. (2014) presented a new optimization-based two-stage 

approach for a D-A-D model aimed at attaining optimal allocation of defensive resources 

in an electric power grid so that its vulnerability against multiple contingencies is 

mitigated. 
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Chapter 3  

Optimal Voyage Planning of Liquefied Natural Gas (LNG) 

Vessels: A Risk-Analysis Approach 

3.1 Introduction  

The global Liquefied Natural Gas (LNG) trade is expected to grow due to readily 

available supplies of gas worldwide and the renewed enforcement of a global climate 

regime (Kumar et al., 2011). Recent advances in technologies such as hydraulic fracking 

have made it easier to access oil and gas deposits that were hitherto difficult to explore. 

Interestingly, the success of a recent nuclear negotiation involving Iran, a country known 

to have very large oil and gas reserves, is expected to lead to political rapprochement and 

a consequent increase in global oil and gas supplies. It may interest readers to know that 

while a framework deal of the nuclear agreement was announced in April 2015, a 

comprehensive long term nuclear agreement was declared in July 2015. 

The LNG industry’s existing safety performance, especially in handling and 

transportation between regional markets is a factor contributing to the growth of LNG 

trade that needs to be sustained. Since LNG is usually transported over long distances 

across maritime infrastructures to their final destinations, safety along these sea routes is 

of paramount importance.  As most of the confirmed gas reserves are located far away 

from their demand markets, usually between continents, it is apparent that maritime 

transportation will continue to play a pivotal role in the LNG trade.  
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Although historical records strongly indicate the involvement of LNG carriers in 

accidents to be negligible in comparison to other types of vessels (Vanem et al., 2008), 

the consequent economic and catastrophic losses that may occur when a single vessel is 

involved in an accident needs to be accorded great attention. Despite the industry-wide 

practice of equipping LNG vessels with special double hulls as well as different 

protective layers in their cargo containment systems, the worst case scenario of a 

successful breach in any of the vessel’s tanks is enough motivation for a risk analysis-

based approach for the vessel’s voyage. In this chapter, we apply a risk-based 

methodology to the LNG routing problem we presented in Cho et al. (2014). 

3.2 Methodology- Risk-based LNG routing 

The details of the LNG Vehicle Routing Problem we proposed in Cho et al. 

(2014) are provided in appendix I and highlights of the risk-based model re-formulation 

are presented in Section 3.2.1.  

Based on our adopted methodology, LNG spillage is identified as a consequence 

due to the following compelling reasons: 

1. Compared to other indices such as ship damage and fatality (related to human 

lives), spillage can be easily quantified and its economic effects can be readily 

computed with widely available data. 

2. Liquefied Natural Gas (LNG) spillage, through the compromise of vessel cargo 

containment can be attributed to other vessel accident scenarios such as 

Collisions, Groundings and Contacts. In fact, Vanem et al. (2008) identifies the 
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culpability of these three generic scenarios in about 90% of total risk related to 

LNG carriers. 

Since risk information for rare events inherently suffers from sparseness of 

accident data, expert judgment is often used in developing frequency data for risk 

analysis (Mosleh et al., 1988, Li et al., 2014, etc.). However, experts’ biases and 

individual experiences may affect the integrity of information recommended. Moreover, 

the information at their disposal will usually be solely based on their past experiences and 

may be inadequate in predicting the occurrence of future incidents. In the alternative, we 

propose the use and integration of data available from the transport of a closely related 

cargo vessel (Oil Tanker vessels) in our methodology. 

In recognition of the past reliance on LNG imports by the US economy as well 

the future expansion of US LNG exports, the US Department of Energy (DOE) has 

funded several studies related to the large scale spillage of LNG. As a part of these 

studies, Spillage as a result of accidental or intentional breach of LNG cargo tanks has 

been studied in Hightower et al. (2013). Some parameters required as inputs in our 

methodology can be readily obtained from this study. 

3.2.1 LNG Spillage -Risk Estimation Mathematical Model and 

Assessment 

In addition to the indices included in Cho et al. (2014), we add the index  rt ∈ RT 

as defined in this section. 

 

36 
 



Sets, Indices, Variables, and Parameters: 

𝑅𝑅𝑅𝑅 Set of alternative routes from 𝑖𝑖 to 𝑗𝑗 

𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅 Index of alternative routes 

Hence, 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1  as defined in Cho et al. (2014) and provided in appendix I is re-

defined as: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑟𝑟𝑟𝑟
1  Binary variable to represent whether the arc from 𝑖𝑖, 𝑖𝑖 ∈ 𝑉𝑉 to  𝑗𝑗, 𝑗𝑗 ∈ 𝑉𝑉\{𝑖𝑖} by  

 vessel type k using route 𝑟𝑟𝑟𝑟; 

All other variables remain as defined in Cho et al. (2014). In addition to 

parameters defined in Cho et al. (2014), the following parameters are included:  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗,𝑟𝑟𝑟𝑟 (Normalized) Estimated travel time from i to j: = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

using route 𝑟𝑟𝑟𝑟;  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟 (Normalized) Aggregated Risk consequence on alternative route 𝑟𝑟𝑟𝑟  

λ Risk tolerance (between 0 and 1) 

Objective Functions and Constraints: 

The objective function (aggregated cost) is redefined in equation (3.1), 

min

⎝

⎜
⎛

(1 − 𝜆𝜆) � � �(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗,𝑟𝑟𝑟𝑟
𝑘𝑘∈𝐾𝐾

× 𝐷𝐷𝐷𝐷𝐶𝐶𝑘𝑘 × 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑟𝑟𝑟𝑟
1 )

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅

+𝜆𝜆 � � �(𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟
𝑘𝑘∈𝐾𝐾

× 𝐷𝐷𝐷𝐷𝐶𝐶𝑘𝑘 × 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑟𝑟𝑟𝑟
1 )

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅 ⎠

⎟
⎞

. 

(3.1) 

37 
 



All constraints presented in Cho et al. (2014) still remain applicable, albeit with 

the new indexing and variable declarations taken into consideration. For example, 

equation (2) in Cho et al. (2014) becomes equation (3.2), 

� �𝑥𝑥𝑠𝑠,𝑠𝑠+|𝑆𝑆|(𝑡𝑡−1),𝑘𝑘,𝑟𝑟𝑟𝑟
1 = 0,

𝑘𝑘∈𝐾𝐾𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅

 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇\{1}. (3.2) 

Likewise, equation (16) in the same study becomes equation (3.3), 

𝑦𝑦𝑖𝑖,𝑗𝑗 ≥ 𝛼𝛼𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟,𝑟𝑟𝑟𝑟
1 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑟𝑟 ⊆ 𝐾𝐾, 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅. (3.3) 

In addition, we include equations (3.4) as new constraints in our re-formulation, 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑟𝑟𝑟𝑟
1 = 1,

𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅

 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝐾𝐾. (3.4) 

Equations (3.4) ensure only a single route is chosen for any voyage. 

Risk Assessment: In accordance with the terminologies adopted in the Risk literature and 

our specific problem, the first two conditional probabilities in equation (2.2) of Chapter 2 

are ‘The expected consequence given the occurrence of a spill incident j’ and 

‘Conditional probability of a spill occurrence given that the breach (in the LNG cargo 

containment system) has already occurred’ respectively, and the last term is the 

‘Probability of a breach occurrence’.  

Risk on a route 𝑟𝑟𝑟𝑟 can be computed as equation (3.5), 

𝑅𝑅𝑟𝑟𝑟𝑟 = � 𝐶𝐶𝑟𝑟𝑟𝑟𝑤𝑤 × 𝑉𝑉𝑟𝑟𝑟𝑟𝑤𝑤 × 𝑇𝑇𝑟𝑟𝑟𝑟𝑤𝑤 ,
𝑤𝑤∈𝑊𝑊

   (3.5) 

It should be noted that since neither of the risk component in equation (2.2) is 

strictly a function of the same index (𝑗𝑗 and 𝑘𝑘 in equation 2.2), an index 𝑤𝑤 of set 𝑊𝑊 is 

introduced to indicate this. In reality, the risk components on a route segments are non-

38 
 



homogenous. Therefore, we use segments to represent route subdivisions where a route is 

made of segments or zones 𝑙𝑙, 𝑙𝑙 + 1, … … , 𝑞𝑞. Hence, risk on a segment 𝑙𝑙 is given in 

equation (3.6), 

𝑅𝑅𝑟𝑟𝑟𝑟,𝑙𝑙 = � 𝐶𝐶𝑟𝑟𝑟𝑟,𝑙𝑙
𝑤𝑤 × 𝑉𝑉𝑟𝑟𝑟𝑟,𝑙𝑙

𝑤𝑤 × 𝑇𝑇𝑟𝑟𝑟𝑟,𝑙𝑙
𝑤𝑤  .

𝑤𝑤∈𝑊𝑊

   (3.6) 

For ease of notation, we drop subscript 𝑟𝑟𝑟𝑟 and the expected consequence for 

segment 𝑙𝑙 + 1 is given in equation (3.7), 

𝑅𝑅𝑟𝑟𝑟𝑟,𝑙𝑙+1 = � �(1 − 𝑇𝑇𝑙𝑙𝑤𝑤2) � 𝐶𝐶𝑙𝑙+1𝑤𝑤 × 𝑉𝑉𝑙𝑙+1𝑤𝑤 × 𝑇𝑇𝑙𝑙+1𝑤𝑤

𝑤𝑤∈𝑊𝑊

�  ,
𝑤𝑤2∈𝑊𝑊2

   (3.7) 

where 𝑊𝑊2 represents the set of activities (breaches) that do not result into LNG spillage. 

Likewise, the expected consequence on segment 𝑙𝑙 + 2 is given in equation (3.8), 

𝑅𝑅𝑟𝑟𝑟𝑟,𝑙𝑙+2 = � �(1 − 𝑇𝑇𝑙𝑙+1𝑤𝑤2) � 𝐶𝐶𝑙𝑙+2𝑤𝑤 × 𝑉𝑉𝑙𝑙+2𝑤𝑤 × 𝑇𝑇𝑙𝑙+2𝑤𝑤

𝑤𝑤∈𝑊𝑊

�  .
𝑤𝑤2∈𝑊𝑊2

  (3.8) 

Thus, total expected consequence on route 𝑟𝑟𝑟𝑟 with a total number of 𝑞𝑞 segments is 

then shown in equation (3.9a and 3.9b), 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 + � � � �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 � (1 − 𝑇𝑇𝑙𝑙−1𝑤𝑤2)
𝑙𝑙∈𝐾𝐾\{𝑙𝑙>1,𝑙𝑙≤𝑘𝑘}

�
𝑤𝑤2∈𝑊𝑊2

� and 
𝑘𝑘∈𝐾𝐾\{𝑘𝑘≠1}

  (3.9a) 

=  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 + � � � �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘�(1 − 𝑇𝑇𝑙𝑙−1𝑤𝑤2)
𝑘𝑘

𝑙𝑙=2

�
𝑤𝑤2∈𝑊𝑊2

� .
 𝑞𝑞

𝑘𝑘= 2
  (3.9b) 

Based on studies in Hightower et al. (2013), spill events considered are: 

‘Small/No spill m’, ‘Medium spills M’, and ‘Large spills L’. Since the consequence of 

low breach size typically falls within current spill detection and safety systems on 
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existing LNG ships in active service (Hightower et al., 2013), we reasonably assume an 

LNG vessel continues to travel except when a medium or large breach occurs (implying 

the occurrence of a small breach doesn’t terminate the voyage).  

Therefore, spill risk on route 𝑟𝑟𝑟𝑟 is,  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑀𝑀𝑉𝑉𝑀𝑀𝑇𝑇𝑀𝑀 + 𝐶𝐶𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐿𝐿 , (3.10) 

and spill risk on a segment 𝑙𝑙 is 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙 = 𝐶𝐶𝑟𝑟𝑟𝑟,𝑙𝑙
𝑀𝑀 𝑉𝑉𝑟𝑟𝑟𝑟,𝑙𝑙

𝑀𝑀 𝑇𝑇𝑟𝑟𝑟𝑟,𝑙𝑙
𝑀𝑀 +  𝐶𝐶𝑟𝑟𝑟𝑟,𝑙𝑙

𝐿𝐿 𝑉𝑉𝑟𝑟𝑟𝑟,𝑙𝑙
𝐿𝐿 𝑇𝑇𝑟𝑟𝑟𝑟,𝑙𝑙

𝐿𝐿  .  (3.11) 

Hence, Expected consequence for segment 𝑙𝑙 + 1 (we drop subscript 𝑟𝑟𝑟𝑟 for ease of 

writing) is on route 𝑟𝑟𝑟𝑟 is, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙+1 = (1 − 𝑇𝑇𝑙𝑙𝐿𝐿)(𝐶𝐶𝑙𝑙+1𝑀𝑀 𝑉𝑉𝑙𝑙+1𝑀𝑀 𝑇𝑇𝑙𝑙+1𝑀𝑀 +  𝐶𝐶𝑙𝑙+1𝐿𝐿 𝑉𝑉𝑙𝑙+1𝐿𝐿 𝑇𝑇𝑙𝑙+1𝐿𝐿 )   

 + (1 − 𝑇𝑇𝑙𝑙𝑀𝑀)(𝐶𝐶𝑙𝑙+1𝑀𝑀 𝑉𝑉𝑙𝑙+1𝑀𝑀 𝑇𝑇𝑙𝑙+1𝑀𝑀 +  𝐶𝐶𝑙𝑙+1𝐿𝐿 𝑉𝑉𝑙𝑙+1𝐿𝐿 𝑇𝑇𝑙𝑙+1𝐿𝐿 ) and (3.12a) 

 = (2 − 𝑇𝑇𝑙𝑙𝐿𝐿 − 𝑇𝑇𝑙𝑙𝑀𝑀)(𝐶𝐶𝑙𝑙+1𝑀𝑀 𝑉𝑉𝑙𝑙+1𝑀𝑀 𝑇𝑇𝑙𝑙+1𝑀𝑀 +  𝐶𝐶𝑙𝑙+1𝐿𝐿 𝑉𝑉𝑙𝑙+1𝐿𝐿 𝑇𝑇𝑙𝑙+1𝐿𝐿 ) . (3.12b) 

Likewise, expected consequence for segment 𝑙𝑙 + 2 is given in equation (3.13), 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙+2 = (2 − 𝑇𝑇𝑙𝑙+1𝐿𝐿 − 𝑇𝑇𝑙𝑙+1𝑀𝑀 )(𝐶𝐶𝑙𝑙+2𝑀𝑀 𝑉𝑉𝑙𝑙+2𝑀𝑀 𝑇𝑇𝑙𝑙+2𝑀𝑀 +  𝐶𝐶𝑙𝑙+2𝐿𝐿 𝑉𝑉𝑙𝑙+2𝐿𝐿 𝑇𝑇𝑙𝑙+2𝐿𝐿 ) ,  (3.13) 

and total Expected consequence on route 𝑟𝑟𝑟𝑟 with a total number of 𝑞𝑞 segments is 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟 = 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 + � �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 ∗��2−𝑇𝑇𝑙𝑙−1𝐿𝐿 − 𝑇𝑇𝑙𝑙−1𝑀𝑀 �

𝑘𝑘

𝑙𝑙=2

� .
𝑞𝑞

𝑘𝑘=2
 

 

(3.14) 
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 3.2.2 LNG Spillage - Expected Consequence of a spill event 

Apart from loss of cargo, the incident of LNG spillage can lead to pool fires, 

damage to vessel steel structures partly caused by cryogenic LNG flow, large fires, 

human casualty, etc. (Hightower et al., 2013). While all these are identified as possible 

consequences of LNG spillage, only the loss of cargo consequence can be readily 

ascertained without extensive use of complex estimation models or large scale expensive 

experimental procedures. LNG Spill size volume as a function of breach volume 

extracted from experimental results presented in Hightower et al. (2013) is shown in 

Table 3.1. 

Table 3.1: Spill size volume as a function of breach volume (Hightower et al.,  
                    2013) 
 
Spill Size LNG Flow Rate   Volume Rate Loss 

per time t 

Small 0.001X > < 0.001Xt 

Medium ~ 0.167X ~ 0.167Xt 

Large Spill X Xt 

where X is the volume of LNG cargo 

 

Using the loss of cargo criterion, all that is needed is the volume of cargo as well 

as its current market price (or price previously agreed to in the contractual agreements). 

Hence, for our purpose, we consider the expected consequence of LNG spillage as the 
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cost per billion cubic meters (bcm) cost of cargo spill (to include cargo loss, contract 

penalty –if any, regulatory environmental fee–if any, etc.).  It should be noted that 

different quantitative models have been developed for the cost involved in cleaning crude 

oil spills (e.g., Etkin, 2000, Psarros et al., 2011, etc.). However, unlike Oil spills, there is 

no need for environmental clean-up of LNG spills because the liquid will quickly 

evaporate, thus making the environmental cleaning of LNG spills unnecessary.   

3.2.3 LNG Spillage - Vulnerability of LNG Vessels 

The probability of a successful breach on a vessel (and by extension, its tanks) 

cannot be easily ascertained. The double-hull feature and other features on the vessel 

suggest minimal intrusion in the case of small collisions. However, deliberate attacks on 

vessels, severe unexpected inclement weather, Groundings or Collisions with very large 

vessels, etc. are scenarios expected to result into high probabilities of successful 

breaches. 

We propose estimation of this probability thus: 

1. Identify an acceptable division of alternate sea routes between origin ports and 

regasification terminals using division of world oceans (navigated by the LNG 

vessels) into 31 zones as done in Li et al. (2014). In the alternative, the approach 

adopted in Siddiqui and Verma (2013) where route divisions are determined by 

lines of longitude and latitudes will also suffice. 

2. Depending on the events under consideration, a database of events is obtained and 

its contents analyzed. The database (related to piracy attacks) we use in our study 
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is that made available by the National Consortium for the Study of Terrorism and 

Responses to Terrorism, START (2013). 

3. For each segment in the route, a corresponding probability is computed based on a 

utility function. Events having the highest frequency are assigned a vulnerability 

of 1 or a probability close to 1. 

3.2.4 LNG Spillage- Probability of breach occurrence 

Ideally and in accordance with accepted risk methodologies, this probability 

should be obtained from historic safety data in LNG shipping and is usually computed as 

incident frequency per ship year (e.g., in Papanikolaou, 2006). Without access to such 

recent data, we use data presented in Vanem et al. (2008) and identify the ‘failure of 

cargo containment system’ as a specific accident category related to LNG spillage. 

Amongst other reasons, the category is chosen from intuition. Moreover, the referenced 

study clearly identified it as an incident that could have resulted from other categories 

such as Groundings, Collisions and Contacts.  

Hence, 𝑇𝑇𝑙𝑙𝑖𝑖from equation (3.14) can then be estimated in equation (3.15),  

Tli  = 𝛼𝛼𝑖𝑖 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠ℎ𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦      and (3.15) 

 =                     𝛼𝛼𝑖𝑖 × 0.0095 , (3.16) 

where 𝑖𝑖 ∈ (𝑀𝑀, 𝐿𝐿). Again, due to lack of historic data on LNG vessel spills, we make use 

of oil tanker spill statistics compiled by the International Tanker Owners Pollution 

Federation, ITOPF (2013) to approximate αi. While we acknowledge that the two 

spillages are quite different, we rationalize that spill category based on volume of oil 
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spillage as reported by ITOPF is similar to the LNG spill types we have adopted and that 

the proportions of these categories in both spill situations are analogous because liquid 

natural gas handling is more like handling oil (Shukri et el., 2004). 

Table 3.2: Comparison- LNG Spill Types (Hightower et al., 2013) versus  
                        ITOPF oil spill sizes (ITOPF, 2013). 
 

LNG Spill types Oil Spill Size equivalents  

Small Spill <7 tonnes (<50 bbls) 

Medium Spill 7–700 tonnes (50–5,000 bbls) 

Large Spill 700 tonnes (>5,000 bbls) 

 

The ITOPF data includes the type of oil spilled, the spill amount, the cause, 

location of the incident, and the vessel involved. Although the actual amount spilled is 

also recorded, the spill size categorized is as shown in Table 3.2.  

With about 10,000 incidents, the vast majority of all incidents (81%) fall under 

the smallest category i.e. <7 tonnes (ITOPF, 2013). In the absence of specific LNG spill 

data for the failure of cargo containment system, we use available data on oil spills 

related to historical spillage from 1970-2013 and approximate αi based on data in Table 

3.3.  

We approximate αi for both the medium and large spills by aggregating the spill 

incidences. We implicitly assume that the reported incidents as categorized are indicative 

of their contribution to the total reported number of incidents. 
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Table 3.3: Available oil Tanker Spill Statistics (ITOPF, 2013) 

 OIL SPILLS 

Spill Year Number of spills 

 7-700 tonnes > 700 tonnes 

1970-1979 543 245 

1980-1989 360 94 

1990-1999 281 77 

2000-2009 147 35 

2010-2013 20 8 

Total 1351 459 

Total Reported incidents=10000 

 

3.3 Computational Study- Case Study Results  

Here, we present results using a modification of the test case we described in Cho 

et al. (2014). While the liquefaction plant is a country in the Middle East, required depots 

to be served are located in North America, Europe, and South America. Data presented in 

Cho et al. (2014) such as the specification of LNG tankers, customer demands in each 

time periods and other parameters are maintained. Where applicable, data presented for 

Hence, 𝛼𝛼𝑀𝑀 = 0.1351,𝛼𝛼𝐿𝐿 = 0.0459. . 
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the first three customer demands in the terminals are maintained to coincide with the 

three customers identified. However, distance (in Nautical miles Nm) and computed raw 

risk data (based on section 3.2) in this case study are shown in Tables 3.4 and 3.5. In 

addition, uncertainties as a result of boil off gas BOG introduced in Cho et al. (2014) are 

excluded in the implementation presented in this section. 

Table 3.4: Distance (Nautical miles Nm) between depot and liquefaction terminals 

 

 

 

 

 

 

 

 

 

 Readers should note that in this case study, only a single route option is available 

for voyage between Terminals 3 and 4. This means that there is no alternative (and 

navigable) vessel route choice between the two terminals that can accommodate the LNG 

vessels. 

 

 

  Terminal 2 Terminal 3 Terminal 4 

Depot Route 1 9789 5028 8376 

 Route 2 12597 10165 9540 

Terminal 2 Route 1  4781 5663 

 Route 2  5259 6229 

Terminal 3 Route 1   4512 

 Route 2   - 
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Table 3.5: Raw risk data between depot and liquefaction terminals 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model is implemented in GAMS and solved using CPLEX. All MIPs are 

solved within a relative tolerance of 3% duality gap, and all computational runs are 

made on a 3.00 GHz Intel Xeon machine with 400 GB of memory, running CPLEX 

version. 

Results obtained for the case study is summarized below: 

1. Irrespective of decision maker preference, choice of route between ‘the depot and 

terminal 3’, ‘terminal 2 and terminal 3’, ‘terminal 3 and terminal 4’ are always the 

same, given that such a voyage is included in the optimal delivery plan. While 

only a single route option exists in the latter voyage (terminal 3 and terminal 4), 

  Terminal 2 Terminal 3 Terminal 4 

Depot Route 1 0.000453 0.000294 0.000423 

 Route 2 0.000324 0.000384 0.000268 

Terminal 2 Route 1  0.000048 0.000050 

 Route 2  0.000095 0.000019 

Terminal 3 Route 1   0.000108 

 Route 2   - 
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distance and risk considerations favor a particular alternate route in the former 

voyages. 

2. For all other voyages (apart from those identified above), choice of the alternate 

routes is dependent on the decision maker’s preference. Again, this is applicable if 

the particular voyage is included in the optimal delivery plan returned by the 

model. Figure 3.1 shows a sample optimized 6 month delivery schedule/routing 

plan from day D+1 to day D+192. In addition, alternate choice of voyage route is 

indicated. 

3. Figure 3.2 indicates that the appropriate choice of λ for the case study lies 

between 0.4 and 0.6. Neglecting either of the two constituents in the objective 

function doesn’t give the least aggregated cost.  

 

Figure 3.1: Sample Delivery Schedule 
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Figure 3.2: Objective function versus decision maker’s preference 

 

3.4 Conclusion 

In this chapter, we identified LNG vessels (and their cargoes) as vital maritime 

assets that should be protected, and presented a framework for risk-based transportation 

of LNG vessels. The framework considers alternate voyage routes in determining an 

optimal cargo delivery schedule between liquefaction and re-gasification terminals. Due 

to lack of data as a result of the current lofty safety records in the LNG transportation 

industry, some parameters were estimated from Crude oil, another petrochemical energy 

resource. Afterwards, we integrated the described risk methodology into the model we 

described in Cho et al. (2014) and used our methodology to solve a realistic sample case 

study.  
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Chapter 4  

Optimal Deployment of Underwater Sonar System  

4.1 Introduction 

The sonar placement problem described in this chapter efficiently determines the 

regional locations to allocate different types of sonars such that overall detection 

probabilities is optimized in a multi-period deployment scheme, taking criticality 

(regional importance) into considerations under a maritime environment. 

Of the three SPP problems identified in literature (see Chapter 1), we address the 

Area coverage problem due to the emerging trend that terrorism, piracy and arson attacks 

have evolved into targeting areas of interests or regions rather than specific targets in the 

hope of having better odds at accomplishing their heinous goals. The coverage problem 

entails a sonar is able to provide coverage to its region of placement as well as 

surrounding regions within the limits of its coverage (in terms of detection ranges and 

orientations). However, due to Acoustics theory, degradation exists in these detection 

probabilities as we recede away from the point of placement. This degradation is known 

to be non-linear in nature. Some existing studies, especially in the terrestrial domain have 

modeled the gradual degradation in sensor strength using exponential functions with 

parameters determined from the specific sensor characteristics and deployment 

environments. While these parameters are not only difficult to estimate, the approach also 

increases the complexity of the problems, introducing non-linearity to model multiple-

detection based on sonar range. As such, our methodology entails a division of a sonar 
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influence into three distinct regions: primary (point of sonar placement), secondary and 

tertiary regions. Our opinion is that rather than assigning a function to the detection 

probabilities in these regions, experts’ opinion should be solicited. 

Our study contributes to the literature of maritime security by proposing a new 

multi-objective mathematical model for placing underwater sonars to identify potential 

underwater threats. Using hexagonal grid-based system, the model integrates both static 

and mobile sensors in a placement methodology within a multi-period deployment 

scheme.  In comparison to their terrestrial equivalents, underwater sonars are known to be 

quite expensive. For example, Borowski et al. (2008) reports the cost associated with a 

certain diver detection system based on sonar technology used by the United States coast 

guards to be approximately $300,000 for each system. Thus, our placement methodology 

is to be achieved under strict budgetary limitations.  

4.2 Formulation 

In this section, a formal definition of our sonar placement formulation for 

surveillance of maritime infrastructures is presented.  

4.2.1 Model Parameters, Indices and Sets 

The relative importance assigned to a section of the AOI (Area of Interest), cell 

(𝑖𝑖, 𝑘𝑘) at period t is reflected by its criticality index ℎ𝑖𝑖𝑖𝑖𝑖𝑖. Expert judgments and aid of a 

utility function may be used in this regard. While unit costs of static and mobile sonars 

are denoted by ca and cb respectively, B is the available budget and the maximum 

number of coverage permitted for a cell is denoted by 𝑐𝑐̅. Detection probabilities for static 
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sonar type 𝑎𝑎 and mobile sonar type 𝑏𝑏 are denoted by pa
z and pb

z
 respectively, where z is 

an index for a sonar’s coverage strength. z ϵ {p- primary coverage, q - secondary 

coverage, t- tertiary coverage}. 

Finally, sets 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧 R represents the set of cells in the neighborhood of cell (𝑖𝑖, 𝑘𝑘) 

[which has static sonar of type 𝑎𝑎 placed in it] that can be covered by cell (𝑖𝑖,𝑘𝑘) with 

detection probability 𝑝𝑝𝑎𝑎𝑧𝑧. 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧 P

 is a similar set representing the mobile sensors. Also, 

the set of cells in the neighborhood of cell (𝑖𝑖,𝑘𝑘) within hop distance 𝑑𝑑 is denoted 

by 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑑𝑑 is an index describing these hop movements. The mobile sonars at 

period 𝑡𝑡 may relocate to any member of this set in the next period 𝑡𝑡 + 1. 

4.2.2 Decision Variables 

Binary variables 𝑋𝑋𝑖𝑖,𝑘𝑘𝑎𝑎  equal 1 if a static sonar of type 𝑎𝑎 is located in cell (𝑖𝑖,𝑘𝑘) and 

binary variables 𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡 equals 1 if a mobile sonar of type 𝑏𝑏 is  located in cell (𝑖𝑖,𝑘𝑘) at period 

𝑡𝑡 . Otherwise, these variables will equal 0. Similarly, 𝑌𝑌𝑖𝑖,𝑘𝑘,𝑑𝑑
𝑏𝑏,𝑡𝑡  is a dependent variable that 

equals 1 if mobile sonar of type 𝑏𝑏 is located in a cell (𝑖𝑖,𝑘𝑘) at period 𝑡𝑡 and within ‘𝑑𝑑’ hop 

movements when it moves from time 𝑡𝑡 − 1; and equals 0 otherwise. This relationship 

exists between 𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡 and 𝑌𝑌𝑖𝑖,𝑘𝑘,𝑑𝑑

𝑏𝑏,𝑡𝑡 : ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡 =  𝑑𝑑 𝑌𝑌𝑖𝑖𝑖𝑖

𝑏𝑏,𝑡𝑡. Finally, 𝑊𝑊𝑖𝑖,𝑘𝑘
𝑎𝑎,𝑎𝑎𝑧𝑧and 𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡are integer 

variables representing the number of times a cell (𝑖𝑖,𝑘𝑘) is covered by static sonar type 𝑎𝑎 

with coverage strength 𝑎𝑎𝑧𝑧; and the number of times a cell (𝑖𝑖,𝑘𝑘) is covered by mobile 

sonar type 𝑏𝑏 with coverage strength 𝑏𝑏𝑧𝑧 at period 𝑡𝑡 respectively. 
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4.2.3 Mathematical Model 

We formally define our sonar placement model in this sub-section. The multi-

objective model is formulated as shown in the following equations: 

max
𝑄𝑄∈(𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄)

���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 +  ���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 , 
(4.1) 

max 
𝑊𝑊

|𝑇𝑇| ∗����𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧

𝑎𝑎𝑧𝑧𝑎𝑎𝑘𝑘𝑖𝑖

+  �����𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 ,

𝑡𝑡𝑏𝑏𝑧𝑧𝑏𝑏𝑘𝑘𝑖𝑖

(4.2) 

Subject to:  

�𝑐𝑐𝑎𝑎.��𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖 𝑎𝑎

+  �𝑐𝑐𝑏𝑏 .��𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖 𝑏𝑏

≤ 𝐵𝐵    ∀ 𝑡𝑡 , (4.3) 

� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+  �𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧       ∀𝑖𝑖,𝑘𝑘,𝑎𝑎𝑧𝑧 , (4.4) 

� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡      ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡, 𝑏𝑏𝑧𝑧 , (4.5) 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏𝑎𝑎

≤  𝑐𝑐̅     ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡,𝑎𝑎𝑧𝑧 , 𝑏𝑏𝑧𝑧 , (4.6) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

+ �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≤ 1     ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , (4.7) 

𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖

𝑏𝑏,𝑡𝑡+1 + � 𝑌𝑌𝑓𝑓ℎ𝑑𝑑
𝑏𝑏,𝑡𝑡+1

(𝑓𝑓,ℎ) ∈ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

,    ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏,𝑑𝑑, 𝑡𝑡 , (4.8) 

�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡+1 ≤ 1  ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 , 

𝑑𝑑

(4.9) 

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡 =

𝑖𝑖,𝑘𝑘

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡+1

𝑖𝑖,𝑘𝑘

 ∀ 𝑏𝑏, 𝑡𝑡 , (4.10) 

53 



���𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

≥ 𝑆𝑆𝑆𝑆 ∗ ����𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

+ ���𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖𝑎𝑎

�    ∀𝑡𝑡 , 
(4.11) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧)

𝑎𝑎𝑧𝑧
∀ 𝑖𝑖,𝑘𝑘,𝑎𝑎 , (4.12) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 ln(1 − 𝑝𝑝𝑏𝑏𝑧𝑧)

𝑏𝑏𝑧𝑧
∀ 𝑖𝑖, 𝑘𝑘, 𝑏𝑏, 𝑡𝑡 ,   (4.13) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎 ,𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡𝜖𝜖 𝐵𝐵;  𝑊𝑊𝑖𝑖𝑖𝑖

𝑎𝑎,𝑎𝑎𝑧𝑧 ,𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡𝜖𝜖 𝐼𝐼+ ;𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 .                 (4.14) 

Constraints (4.3) are budgetary constraints indicating available budget for sonars 

at each period 𝑡𝑡. Constraints (4.4) and (4.5) depict cell sonar coverage: For a cell (𝑖𝑖,𝑘𝑘) to 

be covered by detection strength 𝑎𝑎𝑧𝑧, a static sonar should exist to cover itself (primary 

coverage) and those in its neighborhood (secondary and tertiary coverages). Similar 

argument exists for each mobile sonar at period 𝑡𝑡. Constraints (4.6) show limitation in the 

total number of sonars covering a cell at any period t. Given that sonar detection 

probabilities are generally high (usually >=0.95), it is reasonable to limit the total number 

of sonars covering a cell to a small integer, similar to the approach in Ghafoori and 

Altiok (2012). An alternate approach may be to limit the total detection probabilities 

attained by a cell (𝑖𝑖,𝑘𝑘) to a certain detection probability. Constraints (4.7) provide 

limitation in the total number of sonars allocated to a cell at period 𝑡𝑡. Limiting the 

number of sonar allotted to a cell (𝑖𝑖,𝑘𝑘) under budget limitation to unity is well 

documented in literature. Constraints (4.8, 4.9, 4.10 & 4.11) portray sonar mobility: 

Constraints (4.8) - movement between successive periods, Constraints (4.9) - choice of a 

single hop distance d chosen if sonar movement occurs across periods, Constraints (4.10) 

- preservation of the total number of mobile sonar type deployed in each period and 

54 
 



Constraint (4.11) - sonar density. In the sensor literature, there exist different derivations 

for sensor density, depending on the SPP problem under consideration (e.g. in Wang et 

al. (2008), a derivation for the k-coverage problem is provided). Motivations behind 

constraints (4.12 & 4.13) are also presented afterwards. Finally, constraints (4.14) state 

the bounds and logical restrictions on the decision variables. 

4.2.4 Objective Function (4.1): Derivation and Implied Constraints 

For static sonars, the objective function can be modeled in equation (4.1), 

max 
𝑊𝑊

���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ �1 −�(1 −
𝑎𝑎𝑧𝑧

𝑝𝑝𝑎𝑎𝑧𝑧 ∗ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧)�   and 

(4.1a) 

= min
𝑊𝑊

���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ ��(1 −
𝑎𝑎𝑧𝑧

𝑝𝑝𝑎𝑎𝑧𝑧 ∗ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧)�. 

(4.1b) 

It should be noted that equation (4.1b) is analogous to the minimization of 

expected consequence (risk measure of interest) in risk analysis parlance. In risk analysis 

terminology, ℎ𝑖𝑖𝑖𝑖𝑖𝑖 depicts consequence level and ∏ (1 −𝑎𝑎𝑧𝑧 𝑝𝑝𝑎𝑎𝑧𝑧 ∗ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧) indicates the 

vulnerability of an infrastructure. In addition, equation (4.1b) suggests that our model 

implicitly assumes uniformity in threat probabilities for the infrastructures. We refer 

interested readers to Ghafoori and Altiok (2012) and Willis (2007) for a detailed 

presentation of how expected consequence and its constituents (consequence level, asset 

vulnerability and threat probabilities) are addressed in the risk analysis literature. Also 

Chapter 2 of this dissertation provides a summarized insight to these constituents. 

Equating (4.1b) to an exponential function as shown in Hsieh (2003) gives: 
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𝑒𝑒−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �(1 −
𝑎𝑎𝑧𝑧

𝑝𝑝𝑎𝑎𝑧𝑧 ∗ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧). (4.1c) 

The objective equation becomes, 

min
𝑊𝑊

���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ 𝑒𝑒−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖   and (4.1d) 

== max 
𝑊𝑊

���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 .    (4.1e) 

And constraints (4.1f ´) and  (4.1f ´´ ) need to be added to complete the 

linearization: 

𝑒𝑒−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �(1 −
𝑎𝑎𝑧𝑧

𝑝𝑝𝑎𝑎𝑧𝑧 ∗ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧)    ∀ 𝑖𝑖,𝑘𝑘,𝑎𝑎 and  (4.1f ´) 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 ≥ 0       ∀ 𝑖𝑖,𝑘𝑘 . (4.1f´´ ) 

However, constraint (4.1𝑓𝑓′′) can be linearized by taking its natural log, 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = � ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧)𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧

𝑎𝑎𝑧𝑧
∀ 𝑖𝑖, 𝑘𝑘,𝑎𝑎 and   (4.1g) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧)

𝑎𝑎𝑧𝑧
∀ 𝑖𝑖, 𝑘𝑘,𝑎𝑎  . (4.1h ) 

Equations (4.1h) are constraints (4.12) as presented earlier in Section 4.2.3. 

Similar derivations apply for the mobile sonars. 

4.3 Numerical Experiments 

This section presents experiments to highlight performance of the model. We also 

use the experiments to show the desirability of our proposed grid system. 
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4.3.1 Description of a test case 

Due to inaccessibility of specific data as well as implied security concerns, we 

had no access to required marine data to solve a real world case study. However, we were 

privileged to have access to incomplete data of port operations in a busy port (We are 

unable to name the specific port in this dissertation due to security and confidentiality 

concerns). Descriptions of the test case in this chapter and data used in our experiments 

are to a large extent, based on actual (though incomplete/partial) real world data. Though 

semi-hypothetical, the example case study which involves sonar deployment in a sea 

route network traversed by ocean-going vessels in a port shows the applicability of the 

methodology. We consider a maritime environment involving routes of different types of 

vessels where the choice of route is determined by the cargo (The cargo we consider are 

LNG, Oil, Steel, Agricultural produce, and Motor vehicles). 

We discretize regions into grids and assign criticality indices to all the grids. The 

criticality is based on the type of sea route as well as the number of sea routes passing 

through a cell. For example, cells or grids with vessels more vulnerable to attack such as 

LNG vessels are considered to be more important. Criticality indices are assigned based 

on this importance. Of course, criticality can also be influenced by the existence of 

important infrastructures or the fact that some routes may be located in close proximity to 

port entrances. In addition, this criticality changes with time. Considering criticalities of 

vessel routes based on seasonality, we use twelve discrete periods to depict monthly 

change in vessel routes (as a result of tidal movements, seasonal changes, weather 

condition, etc.). 
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4.3.2 Sonar Types and Coverage 

For simplicity, detection ranges of the sonars chosen are limited to coincide with 

their coverage regions (primary/secondary/tertiary) and these regions are taken to be unit 

grids. Types of sonars considered (with different costs and coverage) include Omni-

directional (360° coverage range) sonars with coverage strength of two grid units 

(primary and secondary detections), 180° Coverage sonars with coverage strength of 

three grid units (primary, secondary and tertiary detections): either upper hemisphere or 

lower hemisphere coverage range; and 90° Coverage sonars with coverage strength of 

three grid units (primary, secondary and tertiary detections): either 1st, 2nd, 3rd or 4th 

quadrant coverage range. 

 

 

(a) Omni-directional Range 

 

(b) 180° Coverage Range 

 

(c) 360° Coverage Ranges 
Figure 4.1: Sonar Types used in test case 
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Also, the sonar density is taken to be a minimum of 50%. This restriction can be 

modified to suit various density coverage requirements based on the coverage problem 

being solved or it can be relaxed without having much influence on deployment 

solutions. It should be noted that the choice of model parameters and budget constraints 

are major determinants of this influence. 

Table 4.1: Experiment Setting 

 

Table 4.1 show major parameters used in the sample problem. It should be noted 

that a different set of parameters (Biobaku et al., 2014) designed to be easily solved, 

though with some impractical parameter choice values, was used in confirming model 

validity/verification. For sonar mobility, we restrict the movements of our mobile sonars 

to a maximum of three hops. This restriction takes into consideration that energy 

requirements to achieve relocation is limited. Similar to what obtains in the sensor 

 

Type  

Coverage 

Orientation 

Coverage 

Range 

Cost 

(103 $) 

Detection Probabilities 

Primary Secondary Tertiary 

Type 1 360° 2 Grid 

Units 

18.00 0.99 0.78 N/A 

Type 2 180° 3 Grid 

Units 

15.00 0.99 0.65 0.45 

Type 3 90° 3 Grid 

Units 

12.00 0.99 0.50 0.35 

The costs shown are for the static sonars and mobile sonars are assumed to cost twice 

as much as their static equivalents 
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coverage literature; we define a ‘hop’ as a movement from point of deployment in period 

𝑡𝑡 to a new position in period 𝑡𝑡 + 1 across neighboring regions. Hence, mobile sonars at 

period 𝑡𝑡 can be re-positioned to neighboring regions within 1st, 2nd or 3rd hop(s) of their 

point of deployment at period t+1.  

4.3.3 Experimental Setup 

We designed experiments using two distinct experimental settings to capture 

extremities in possible allocations. Whereas an initial experimental set (referenced in 

Section 4.3.2) used for model validation/verification was designed to be easily solved, its 

parameter values are not completely practical. Conversely, the experimental set presented 

in this dissertation provides a more compelling attempt at practicality in its choice of 

parameter values but does not readily help in confirming model validity/verification. A 

discussion by which these parameters are estimated is beyond the scope of this 

dissertation. 

Prior to implementing the model to include both types of sonars as well as multi-

periodicity, we carry out experiments using only static sonars in a single period and 

optimize using only the first objective function. This simple approach permits us to 

establish the preference of the hexagonal grid without the complexity of the hybrid 

combinations of mobile and static sonars in a multi-periodic environment.  Hence, the 

problem configurations used in this chapter are: 

Problem Configuration Type #1 (SSP): Using only static sonars in a single period 

deployment scheme while optimizing using only the first objective function. 
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Problem Configuration Type #2 (SMMP): Using both static and mobile sonars in 

a multi-period deployment scheme while optimizing using both objective functions. 

All models are implemented in GAMS and solved using CPLEX. All MIPs are 

solved within a relative tolerance of 3% duality gap, and all computational runs are made 

on a 3.00 GHz Intel Xeon machine with 400 GB of memory, running CPLEX version. 

4.4 Numerical Results 

This section presents results showing model features proposed. Thereafter, 

sensitivity analysis is provided on model parameter 𝑐𝑐̅. 

4.4.1 Numerical Results-SSP 

As highlighted in Section 4.3, we restrict our optimization to only objective 

function (1) for this configuration. As a performance measure, numerical results are 

compared when deploying sonars with both the conventional and the proposed grid 

system.  

Figure 4.2 shows the objective functions using the two grid systems. It should be 

noted that an unusual behavior of the solver solution time is noticed for each grid system. 

This is due to the branching rules the CPLEX solver uses in its implementation. This 

phenomenon is well documented in literature. For example, Ghafoori and Altiok (2012) 

reports similar behavior. 
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Figure 4.2: SSP: Objective Function (1) vs Budget Availability- Cartesian 

                          and Hexagonal Grids 

 

4.4.2 Numerical Results-SMMP 

Since we place more importance on objective (4.1) in comparison to objective 

(4.2), we use the lexicographic multi-objective approach in our solution methodology. In 
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contrast to the latter objective, the former objective incorporates criticality, a concept 

widely adopted in risk management methodology. Hence, our solution approach places 

more emphasis on objective (4.1). 

Lexicographic Optimization for two objective functions 

Given an optimization problem with two objective functions such that objective 

function, f1 is accorded more priority in comparison to objective function 𝑓𝑓2: 

𝑀𝑀𝑀𝑀𝑥𝑥  [𝑓𝑓1,   𝑓𝑓2] 

𝑠𝑠. 𝑡𝑡: 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏, 𝑥𝑥 ≥  0       

The lexicographic multi-optimization can be carried out in two stages: 

Stage 1: 

𝑀𝑀𝑀𝑀𝑀𝑀  𝑓𝑓1 

𝑠𝑠. 𝑡𝑡: 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏, 𝑥𝑥 ≥  0 

Stage 2: 

𝑀𝑀𝑀𝑀𝑀𝑀  𝑓𝑓2 − 𝛼𝛼 ∗ 𝛽𝛽 

𝑠𝑠. 𝑡𝑡: 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏,𝑓𝑓1 ≥ 𝑧𝑧1∗ −  𝛽𝛽, 𝑥𝑥 ≥  0 

where, 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are parameter weight and deviation variable respectively; and 

𝑧𝑧1∗ = max 𝑓𝑓1 is the optimal objective function from stage 1. 

The choice of an appropriate 𝛼𝛼 can be determined by rule of thumb or by 

experimentation. For our purpose, we determine an appropriate value by using different 
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values of 𝛼𝛼 and then comparing the values of the objective function 𝑓𝑓1 obtained from 

both the multi-optimization and single optimization instances. A slight deviation from 

these values indicates an appropriate choice of 𝛼𝛼. This approach is adopted since we 

consider (4.1) to be the objective function of higher priority. Clearly, other approaches at 

choosing a value of 𝛼𝛼 will be applicable. 

4.4.3 Discussion: Objective functions vs. budget availability 

Figure 4.3 shows the objective functions in SMMP for some budgetary limitations 

using our chosen choice of 𝛼𝛼. Based on our highlighted approach in the choice of an 

appropriate value for 𝛼𝛼 in the multi-optimization scheme, choosing α ≥1 gives objective 

function (4.1) close to that obtained in the single optimization scheme. Specifically, we 

find α = 1 to be appropriate for our purpose.  

While objective (4.1) is expectedly monotonically non-decreasing as available 

budget increases, objective (4.2) is not due to the adopted multi-optimization 

methodology. In the case of (4.1), even if an incremental increase in budget is not enough 

to procure additional sonars, the worst case is that an existing optimal solution before a 

budget increase is still maintained after the increment. In contrast, the new optimal value 

of objective function (4.2) after the budget increment may in fact be degraded if the 

budget increment permits purchase of more sonars that can improve the value of 

objective (4.1) at the expense of Objective function (4.2). Of course, it is expected that 

with ‘enough’ budget, this behavior in the value of objective function (4.2) will become 

non-existent. Figure 4.3 clearly indicates this expectation. 
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Figure 4.3: SMMP: Objective Functions vs Budget Availability 

 

4.4.4 Sensitivity Analysis 

We carry out sensitivity analysis based on one of the identified constraints: 

maximum number of coverage allowed per region in each time period. Although we 

present results using a specific value for this parameter in prior sections above, sensitivity 

analysis permits us to visualize the compromise between obtaining best possible 
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objective value functions and providing adequate coverage (based on literature definition 

and our definition) to sub-regions within the AOI. 

 

Figure 4.4a: Sensitivity Analysis: Objective Function (1) 

As noted in Section 4.1, unlike terrestrial coverage problems, our coverage 

problem deals with partial coverage. Despite this, we are interested in how our 

deployment strategy performs. Hence, we introduce the ‘pn-coverage’ analysis in our 

discussions.  
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Figure 4.4b: Sensitivity Analysis: Coverage 

Definition 4.1: For SMMP, we formally define the ‘pn-coverage’ as the percentage of 

the AOI that is covered by at least n-sonars across the entire deployment periods. 

Figure 4.5 shows the ‘pn-coverage’ attained for some chosen parameter values of 

the maximum number of coverage allowed per region. Since the ‘p1-coverage’ case is 

trivial (its percentages are expected to be high irrespective of the chosen parametric 

values), only both the ‘p2- and p3-coverages’ cases are shown. 
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As shown in Figure 4.4a and Figure 4.4b, increasing the maximum cover per grid 

tends to bring a desirable increase in both objective function (4.1) and the coverage. 

However, Figure 4.5a and Figure 4.5b also indicate that doing this erodes the 

performance of pn-coverage as we have defined it. Restricting maximum cover per 

period to 3 seems to provide a more consistent coverage per budget availability. This is 

more apparent at lower to medium budget availability. 

 

Figure 4.5a: Sensitivity Analysis: p2- Coverage 
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Figure 4.5b: Sensitivity Analysis: p3-Coverage 

4.5 Discussions and Conclusions 

In this chapter, we presented an optimization model with a hybrid combination of 

static and mobile sonars. We implemented the model to solve a semi-hypothetical, yet 

practical problem in the maritime domain (relying on partial/incomplete data due to 

security and confidentiality concerns) within a multi-period placement methodology. The 
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desirability of having a hybrid deployment of both static and mobile sensor in any generic 

sensor deployment has already been established in literature. As such, we have restricted 

ourselves to the observation that our sonar placement methodology not only improves the 

objective functions but also permits other regions in the area of interest which may never 

have been covered by sonars due to budgetary constraints to be eligible for coverage at 

other periods. To illustrate this observation, we introduced the ‘pn-coverage’ criteria in 

the chapter. The placement methodology we adopted increases the possibility that all 

regions within the AOI are covered at some period. For our test case problem, this 

ensures minimization of un-covered regions for exploitation by terrorists, smugglers, 

arsonist, etc., even on a limited budget.  

In addition, from our results, we lay claim to the following: Hexagonal grids 

generally outperform the conventional Cartesian grids; our approach of a multi-objective 

optimization rather than single-optimization technique is appropriate; sensitivity analysis 

suggests the desirability of restricting maximum cover per grid to a small integer (say, 3 

as shown in Section 4.4).  
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Chapter 5 

A fortification approach to the underwater sonar placement 

problem 

5.1 Introduction 

A tri-level defender–attacker–defender model involves three agents acting 

sequentially (See Chapter 1). In a fortification model we propose for the Sonar placement 

problem, the top level corresponds to the defender's decision on allocating defensive 

resources (sonars) to protect maritime infrastructures before any attack is initiated. The 

middle-lower level is a typical bi-level interdiction problem. The middle level decisions 

are made by the ‘attacker’, who attempts to maximize the overall probability of non-

detection by deploying its resources to unprotected (or inadequately protected) part of the 

maritime area of interest. Afterwards, actions of the ‘attacker’ are appraised, and the 

‘defender’ reacts to that disruption by solving an optimal sonar placement problem to 

minimize the overall probability of non-detection. Figure 5.1 shows the interraction 

between the agents. 

Compared to a Game-theoretic based approach where only two level of 

interactions are considered in a strategic planning framework, the D-A-D model produces 

a superior protection plan because it considers an additional third level of interaction 

between the defender and the attacker, and thereafter selects the optimal strategy to 

thwart the attacker’s efforts based on the optimal strategic plan adopted by the latter. 
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Figure 5.1- D-A-D (Fortification) framework-Underwater Protection 

5.2 Problem Formulation 

This section presents the mathematical formulation of a ‘Defender-Attacker-

Defender’ model used for the underwater sonar placement problem. Based on the model 

introduced in Chapter 4, the formulation describes interactions between the protector of 

the maritime infrastructures, ‘Defender’ and an intelligent ‘Attacker’ who attempts to 

frustrate the effort(s) of the defender. 

The optimal sonar placement problem in the lower level is the MIP problem 

presented in Chapter 4 where sonar placement is influenced by coverage requirements 

and budget limitations. However, in order to properly analyze/investigate interactions 

between ‘Attacker’ and ‘Defender’, the resource availability in terms of budget limitation 

is now in terms of cardinality i.e. resource availabilities are dictated in terms of integer 

parameters. The approach enables the model to be generic enough because the defender 

resources for evading intrusion could be torpedoes, submarines, or even swimmers. It 
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would have been difficult to provide practical/realistic dollar equivalents to these 

resources without losing generality in the model. Also, due to insights from the results 

obtained in Chapter 4, the objective function in the tri-level model is based on the first 

objective function, as introduced in Section 4.2.4 of Chapter 4.  

In this chapter, 𝒙𝒙� denotes a fixed decision variable 𝒙𝒙 and other model declarations 

follow standard notations. The new nomenclature introduced is shown in Section 5.2.1. 

For those not shown, the same nomenclature introduced in Chapter 4 remains applicable. 

5.2.1 Nomenclature   

Sets and Indices 

𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 Set that contains a point of attack 𝑖𝑖,𝑘𝑘 and other cells in its 

neighborhood affected by the attack/intrusion. 

𝐺𝐺𝑋𝑋,𝑌𝑌 Set that contains binary variables 𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎  and 𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏  

Parameters 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 Cardinality budget for the Attacker 

B Cardinality budget for the Defender 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Level at which attacker’s intrusion is felt: Point of attack and 

neighbors to this point of attack. 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Depicts the extent of destruction depending on proximity to 

point of attack 𝑖𝑖, 𝑘𝑘 and is expressed as a probability, with the 

point of attack having the highest probability. 

𝑀𝑀 Big M- A relatively very large number. 

Decision Variables 

𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡        Binary attack decision: 1 if grid 𝑖𝑖,𝑘𝑘 is attacked at period 𝑡𝑡,  
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 and 0 otherwise. 

5.2.2 Tri-level Model (𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕) 

The defender-attacker-defender model is presented in this section. The 

mathematical model is described by the following equations: 

(Model 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕) 

Min
𝑋𝑋,𝑌𝑌

Max
𝑉𝑉

Min
𝑊𝑊,𝑄𝑄

−���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ (𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖) , 

 

(5.1) 

Subject to: 

�𝑐𝑐𝑎𝑎.��𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖 𝑎𝑎

+ �𝑐𝑐𝑏𝑏 .��𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖 𝑏𝑏

≤ 𝐵𝐵    ∀ 𝑡𝑡 , (5.2) 

� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+  �𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧       ∀𝑖𝑖, 𝑘𝑘,𝑎𝑎𝑧𝑧 ,    (5.3) 

� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡      ∀𝑖𝑖, 𝑘𝑘, 𝑡𝑡, 𝑏𝑏𝑧𝑧 , (5.4) 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏,𝑏𝑏𝑧𝑧𝑎𝑎,𝑎𝑎𝑧𝑧
≤  𝑐𝑐̅     ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 ,                           (5.5) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

+ �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≤ 1     ∀ 𝑖𝑖, 𝑘𝑘, 𝑡𝑡 ,   (5.6) 

𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖

𝑏𝑏,𝑡𝑡+1 + � 𝑌𝑌𝑓𝑓ℎ𝑑𝑑
𝑏𝑏,𝑡𝑡+1

(𝑓𝑓,ℎ) ∈ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

,    ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏,𝑑𝑑, 𝑡𝑡 ,            (5.7) 

�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡+1 ≤ 1                ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 ,                        

𝑑𝑑

 (5.8) 

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡 =

𝑖𝑖,𝑘𝑘

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡+1         

𝑖𝑖,𝑘𝑘

 ∀ 𝑏𝑏, 𝑡𝑡 , (5.9) 
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���𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

≥ 𝑆𝑆𝑆𝑆 ∗ ����𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

+ ���𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖𝑎𝑎

�    ∀𝑡𝑡 , 
(5.10) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧)

𝑎𝑎𝑧𝑧
∀ 𝑖𝑖,𝑘𝑘,𝑎𝑎 , (5.11) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧 ln(1 − 𝑝𝑝𝑏𝑏𝑧𝑧)

𝑏𝑏𝑧𝑧
∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 ,   (5.12) 

�𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      ≤
𝑖𝑖,𝑘𝑘

 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚                       ∀ 𝑡𝑡 ,    (5.13) 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏,𝑏𝑏𝑧𝑧𝑎𝑎,𝑎𝑎𝑧𝑧
≤ 𝑀𝑀(1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡     )                ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡 ,                             (5.14) 

� 𝑉𝑉𝑓𝑓ℎ𝑡𝑡      
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑍𝑍𝑍𝑍𝑍𝑍

≥  𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎      ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,               (5.15) 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = � 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ln(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 ,         (5.16) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎 ,𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      𝜖𝜖 𝐵𝐵,  𝑊𝑊𝑖𝑖𝑖𝑖

𝑎𝑎,𝑎𝑎𝑧𝑧 ,𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧 ,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜖𝜖 𝐼𝐼+ ,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0 . 

(5.17) 

As in Chapter 4, we assume if an infrastructure is defended by sonar, then it 

becomes invulnerable to destruction. Objective function (5.1) and constraints (5.2-5.12) 

are as described in Chapter 4. In addition, Constraints (5.13) depicts limitation in attacker 

resources during period 𝑡𝑡. While equations (5.14) implies the ‘Attacker’ only attempts to 

intrude on sections of the AOI that are left unprotected (The assumption is that the 

‘attacker’ has ‘intelligence’ about the resources available to the defender and is also 

aware of the initial protection procedure), equations (5.15) and (5.16) are coverage 

equations related to the extent of damage to a point of attack and its neighboring areas. 

Their derivations are similar to that developed for coverage of detection probabilities as 
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presented in Section 4.2.4 of Chapter 4. And finally, Constraints (5.17) indicate the type 

of decision variables. 

Combining equations (5.5) and (5.14), 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏,𝑏𝑏𝑧𝑧𝑎𝑎,𝑎𝑎𝑧𝑧
≤  𝑐𝑐̅    ≤ 𝑀𝑀(1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡    )                 ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡 .                 

Hence, constraints (5.5) can be dropped from the model and 𝑀𝑀 in constraints 

(5.14) can be set to 𝑐𝑐̅. Whenever a sub-section of the AOI is protected, binary variable 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  is 0 and 𝑐𝑐̅ is thus a tighter bound under this scenario.  

The entire model is a mixed-integer linear tri-level programming problem. Like in 

most tri-level problems of this nature, the presence of binary decision variables in the 

middle level does not permit reduction to an equivalent single-level problem (Brown et 

al., 2006 and Alguacil et al., 2014). In the interactions between the ‘Attacker’ and the 

‘Defender’, the former tries to minimize the overall probability of non-detection by 

manipulating decision variables in the first and third levels, while the latter attempts to 

maximize the overall probability of non-detection by controlling decision variables in the 

second level. To solve the problem, a decomposition-based approach is proposed and is 

fully discussed in Section 5.3.  

5.3 A decomposition procedure of the tri-level sonar placement 

problem 

To solve 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕, we propose to decompose the problem into sub-problems and 

then solve using standard techniques. Without loss of generality, we further assume in 

our model that only a single grid is affected in the advent of a successful intrusion. 
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Hence, constraints (5.15) can be dropped and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 in constraints (5.16) is 

replaced by 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖. Constraints (5.16) are then rewritten as constraints (5.16a). 

5.3.1 Bi-level optimization equivalent of the tri-level sonar placement 

problem (Model 𝑴𝑴𝑨𝑨𝑨𝑨−𝒃𝒃𝒃𝒃) 

For the Attacker sub-problem (Model 𝑀𝑀𝐴𝐴𝐴𝐴−𝑏𝑏𝑏𝑏), we re-formulate the problem 

based on Model  𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕 by fixing the protection variables 𝑋𝑋 and 𝑌𝑌. Hence, Model 

𝑀𝑀𝐴𝐴𝐴𝐴−𝑏𝑏𝑏𝑏 is a bi-level Attacker-Defender model where 𝑋𝑋 and 𝑌𝑌 variables are treated as 

parameters. The model is shown in the following equations: 

(Model 𝑴𝑴𝑨𝑨𝑨𝑨−𝒃𝒃𝒃𝒃) 

Max
𝑉𝑉

Min
𝑊𝑊,𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄

−���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ (𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖) ,   (5.1a) 

Subject to: 

� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎�����
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+  �𝑋𝑋𝚤𝚤𝚤𝚤𝑎𝑎����
𝑎𝑎

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧       ∀𝑖𝑖,𝑘𝑘,𝑎𝑎𝑧𝑧 , (5.3a) 

� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏�����
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝚤𝚤𝚤𝚤𝑏𝑏𝑏𝑏�����
𝑏𝑏

≥  𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡      ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡, 𝑏𝑏𝑧𝑧 ,          (5.4a) 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏,𝑏𝑏𝑧𝑧𝑎𝑎,𝑎𝑎𝑧𝑧
≤ 𝑐𝑐̅(1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡       )                ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡 ,                            (5.14a) 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡       ln(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)∀ 𝑖𝑖, 𝑘𝑘, 𝑡𝑡 ,         (5.16a) 

Constraints (11), (12), (13) from Model  𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕, and  
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 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ,𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧𝜖𝜖 𝐼𝐼+ ,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0. (5.17a) 

5.3.2 Single level optimization equivalent to the tri-level sonar 

placement problem (Model 𝑴𝑴𝑫𝑫−𝒔𝒔) 

Using standard reformulation, we convert Model 𝑀𝑀𝐴𝐴𝐴𝐴−𝑏𝑏𝑏𝑏to an equivalent integer 

programming problem by using an attack plan 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖. For fixed attack and defense plans, 

we have model  𝑀𝑀𝐷𝐷−𝑠𝑠 , where the variables 𝑋𝑋,𝑌𝑌 and 𝑉𝑉 are treated as parameters.  

(Model 𝑴𝑴𝑫𝑫−𝒔𝒔) 

Min
𝑊𝑊,𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄

�−���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ (𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖)� , 
(5.1b) 

Subject to: 

Constraints (5.3𝑎𝑎, 5.4𝑎𝑎, 5.11,5.12,5.14𝑎𝑎 &5.16𝑎𝑎) from Models 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡  

and  𝑀𝑀𝐴𝐴𝐴𝐴−𝑏𝑏𝑏𝑏, 

 

 𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ,𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧𝜖𝜖 𝐼𝐼+ ,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0,  𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0. (5.17b) 

5.3.3 A dual formulation of model  𝑴𝑴𝑫𝑫−𝒔𝒔 (Model 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) 

To iteratively solve the sonar placement problem, we desire to obtain a sub-

problem. Using the LP relaxation of 𝑴𝑴𝑫𝑫−𝒔𝒔, we transform the relaxed model to a 

maximization problem (model 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) by taking its primal dual and thereafter 

transform attack parameters back to decision variables. In line with standard 

decomposition procedures (e.g. Benders’ decomposition), model 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 is referred to 

as a sub-problem of our tri-level model. Since the feasible region of the LP relaxation in a 
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standard IP optimization problem is often larger than the feasible region of the IP, the 

optimal value of the former latter is no better than the optimal value of the former.  In 

fact, the objective function values of a feasible IP solution and the optimal LP solution, 

respectively, yields a pair of upper and lower bounds (Yelbay et al. 2015). For a 

minimization problem like model 𝑴𝑴𝑫𝑫−𝒔𝒔 , the optimal objective value of the LP relaxation 

is no higher than that of the original problem (Readers should note this is due to the 

negative sign in the objective function of model 𝑴𝑴𝑫𝑫−𝒔𝒔).  

To formulate model 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, we define the dual variables below: 

µ𝑖𝑖𝑖𝑖𝑎𝑎
𝑧𝑧
 Dual Variables corresponding constraints (5.3a) in the LP relaxed model of  𝑀𝑀𝐷𝐷−𝑠𝑠 

Π𝑖𝑖𝑖𝑖𝑏𝑏
𝑧𝑧

 Dual Variables corresponding constraints (5.4a) in the LP relaxed model of  𝑀𝑀𝐷𝐷−𝑠𝑠 

Ψ𝑖𝑖𝑖𝑖𝑎𝑎  Dual Variables corresponding constraints (5.11) in the LP relaxed model of  𝑀𝑀𝐷𝐷−𝑠𝑠 

Ω𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 Dual Variables corresponding constraints (5.12) in the LP relaxed model of  𝑀𝑀𝐷𝐷−𝑠𝑠 

γ𝑖𝑖𝑖𝑖𝑡𝑡  Dual Variables corresponding constraints (5.14) in the LP relaxed model of  𝑀𝑀𝐷𝐷−𝑠𝑠 

τ𝑖𝑖𝑖𝑖𝑡𝑡  Dual Variables corresponding constraints (5.16a) in the LP relaxed model of 

 𝑀𝑀𝐷𝐷−𝑠𝑠 

Afterwards, we carry out the following: 

1. Re-transform attack parameters 𝑉𝑉�  back to decision variables 𝑉𝑉 

2. Include attacker cardinality constraints (constraints 5.13) 

Model  𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 (A dual formulation of model 𝑀𝑀𝐷𝐷−𝑠𝑠) is formulated in the 

following equations: 
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 ( 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) 

Max
V,µ,Π,Ψ,Ω,γ,τ

−����µ𝑖𝑖𝑖𝑖𝑎𝑎
𝑧𝑧
�� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎�����

(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+  �𝑋𝑋𝚤𝚤𝚤𝚤𝑎𝑎����
𝑎𝑎

�
𝑎𝑎𝑧𝑧𝑘𝑘𝑖𝑖

�     

− �����Π𝑖𝑖𝑖𝑖𝑏𝑏
𝑧𝑧𝑡𝑡 �� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏�����

(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝚤𝚤𝚤𝚤𝑏𝑏𝑏𝑏�����
𝑏𝑏

�
𝑡𝑡𝑏𝑏𝑧𝑧𝑘𝑘𝑖𝑖

�      

+ ���Ψ𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎𝑘𝑘𝑖𝑖

0 +  ����Ω𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑡𝑡𝑏𝑏𝑘𝑘𝑖𝑖

0 

−���γ𝑖𝑖𝑖𝑖𝑡𝑡 × 𝑀𝑀(1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡     )
𝑡𝑡𝑘𝑘𝑖𝑖

+ ���τ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

× 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡   ln(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) , and 

(5.18) 

= Max
V,µ,Π,Ψ,Ω,γ,τ

−����µ𝑖𝑖𝑖𝑖𝑎𝑎
𝑧𝑧
�� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎�����

(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+  �𝑋𝑋𝚤𝚤𝚤𝚤𝑎𝑎����
𝑎𝑎

�
𝑎𝑎𝑧𝑧𝑘𝑘𝑖𝑖

�     

− �����Π𝑖𝑖𝑖𝑖𝑏𝑏
𝑧𝑧𝑡𝑡 �� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏�����

(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝚤𝚤𝚤𝚤𝑏𝑏𝑏𝑏�����
𝑏𝑏

�
𝑡𝑡𝑏𝑏𝑧𝑧𝑘𝑘𝑖𝑖

�      

−���γ𝑖𝑖𝑖𝑖𝑡𝑡 × 𝑀𝑀(1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      )
𝑡𝑡𝑘𝑘𝑖𝑖

+ ���τ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

× 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡   ln(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). 

(5.18a) 

Subject to:  

−µ𝑖𝑖𝑖𝑖𝑎𝑎
𝑧𝑧

 −Ψ𝑖𝑖𝑖𝑖 ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧) − γ𝑖𝑖𝑖𝑖𝑡𝑡 ≤  0 ∀ 𝑖𝑖, 𝑘𝑘,𝑎𝑎,𝑎𝑎𝑧𝑧 , 𝑡𝑡 , (5.19) 

−Π𝑖𝑖𝑖𝑖𝑏𝑏
𝑧𝑧𝑡𝑡  − Ω𝑖𝑖𝑖𝑖𝑡𝑡  ln(1 − 𝑝𝑝𝑏𝑏𝑧𝑧) −γ𝑖𝑖𝑖𝑖𝑡𝑡  ≤  0  ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑏𝑏𝑧𝑧 , 𝑡𝑡 , (5.20) 

−Ψ𝑖𝑖𝑖𝑖 ≤ −ℎ𝑖𝑖𝑖𝑖𝑖𝑖  ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , (5.21) 

−Ω𝑖𝑖𝑖𝑖 
𝑡𝑡 ≤ −ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , (5.22) 
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τ𝑖𝑖𝑖𝑖𝑡𝑡 ≥    −ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , (5.23) 

�𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      ≤ 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚   
𝑖𝑖𝑖𝑖

∀ 𝑡𝑡 , (5.13) 

µ𝑖𝑖𝑖𝑖𝑎𝑎
𝑧𝑧
≥ 0,Π𝑖𝑖𝑖𝑖𝑏𝑏

𝑧𝑧𝑡𝑡 ≥ 0, Ψ𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,Ω𝑖𝑖𝑖𝑖𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, τ𝑖𝑖𝑖𝑖𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, γ𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 0 . (5.24) 

To establish linearized equivalence of non-linear terms in the objective function 

of 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, we consider two optimization models, 𝑫𝑫𝟏𝟏 and 𝑫𝑫𝟐𝟐: 

𝑫𝑫𝟏𝟏: min{𝑓𝑓1(𝑥𝑥,𝑦𝑦)|(𝑥𝑥,𝑦𝑦)𝜖𝜖 𝑆𝑆1}, 

 where 𝑆𝑆1 = {(𝑥𝑥,𝑦𝑦)|ℎ1(𝑥𝑥,𝑦𝑦) ≤ 𝑏𝑏1,𝑔𝑔1(𝑥𝑥,𝑦𝑦) = 𝑏𝑏2, 𝑥𝑥 𝜖𝜖 ℬ𝑛𝑛,𝑦𝑦 𝜖𝜖 ℤ+𝑛𝑛} 

 𝑫𝑫𝟐𝟐: min{𝑓𝑓2(𝑥𝑥,𝑦𝑦)|(𝑥𝑥,𝑦𝑦)𝜖𝜖 𝑆𝑆2}, 

 where 𝑆𝑆2 = {(𝑥𝑥,𝑦𝑦)|ℎ2(𝑥𝑥,𝑦𝑦) ≤ 𝑑𝑑1,𝑔𝑔2(𝑥𝑥,𝑦𝑦) = 𝑑𝑑2, 𝑥𝑥 𝜖𝜖 ℬ𝑛𝑛,𝑦𝑦 𝜖𝜖 ℤ+𝑛𝑛} 

Definition 5.1 (Baharnemati, 2011) Two optimization models, 𝑫𝑫𝟏𝟏 and 𝑫𝑫𝟐𝟐, are 

considered equivalent if they have the same objective function, i.e., 𝑓𝑓1(𝑥𝑥,𝑦𝑦) = 𝑓𝑓2(𝑥𝑥,𝑦𝑦) 

and the feasible solutions of the models have one-to-one correspondence, i.e., for each 

(𝑥𝑥,𝑦𝑦)𝜖𝜖 𝑆𝑆1  there is only one (𝑥𝑥′,𝑦𝑦′)𝜖𝜖 𝑆𝑆2 and vice versa.  

Proposition 5.1 Given that 𝛽𝛽 is a binary variable and 𝛼𝛼 is a positive integer variable 

with an upper bound 𝛼𝛼�. Then, the non-linear term, 𝛼𝛼𝛼𝛼 can be linearized by defining a 

new positive real variable, 𝜌𝜌 = 𝛼𝛼𝛼𝛼 and introducing the following constraints: 

𝜌𝜌 ≤ 𝛼𝛼𝛼𝛼 ,  

𝜌𝜌 ≤ 𝛼𝛼 ,  

𝜌𝜌 ≥ 𝛼𝛼 + 𝛼𝛼�(𝛽𝛽 − 1) ,  

Proof. See Glover (1975) and Adams et al. (2004) for details. 
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Corollary 5.1.  An equivalent linear MIP formulation to Model  𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 is obtainable by 

replacing the non-linear components of the objective function (18a) i.e. (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡    ) × γ𝑖𝑖𝑖𝑖𝑡𝑡  

and 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡  × τ𝑖𝑖𝑖𝑖𝑡𝑡  with continuous variables 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡1 and 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 respectively, and subsequently 

introducing constraints (25-28) to the model formulation as additional constraints: 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡1 ≤ γ𝚤𝚤𝚤𝚤𝑡𝑡  �����× (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      ) , (5.25a) 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡1 ≤ γ𝑖𝑖𝑖𝑖 ,
𝑡𝑡  (5.26a) 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡1 ≥ γ𝑖𝑖𝑖𝑖𝑡𝑡 − �𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  × γ𝚤𝚤𝚤𝚤𝑡𝑡  ������, (5.27a) 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡1 ≥ 0 , (5.28a) 

min �0, τ𝑖𝑖𝑖𝑖𝑡𝑡 � ≤ 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 ≤ τ𝚤𝚤𝚤𝚤𝑡𝑡  �����, (5.25b) 

τ𝑖𝑖𝑖𝑖𝑡𝑡 × 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡       ≤ 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 ≤ τ𝚤𝚤𝚤𝚤𝑡𝑡  ����� × 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡     , (5.26b) 

τ𝑖𝑖𝑖𝑖𝑡𝑡 − (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      ) × τ𝚤𝚤𝚤𝚤𝑡𝑡  ����� ≤ 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 ≤ τ𝑖𝑖𝑖𝑖𝑡𝑡 − (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡      ) × τ𝑖𝑖𝑖𝑖𝑡𝑡  , (5.27b) 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 ≤ τ𝑖𝑖𝑖𝑖𝑡𝑡 − (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡       ) × τ𝚤𝚤𝚤𝚤𝑡𝑡  ����� . (5.28b) 

With γ𝑖𝑖𝑖𝑖𝑡𝑡  bounded below by 0 and above by γ𝚤𝚤𝚤𝚤𝑡𝑡  �����𝑖𝑖. 𝑒𝑒, [0, γ𝚤𝚤𝚤𝚤𝑡𝑡  �����]  , where in the 

absence of further information, the upper bound γ𝚤𝚤𝚤𝚤𝑡𝑡  ����� can be reasonable set to 𝑀𝑀 (Big-M, a 

considerably large number). Hence, the term γ𝑖𝑖𝑖𝑖𝑡𝑡 × (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡  ) in the objective function 

can be replaced by 𝜁𝜁𝑖𝑖𝑖𝑖1𝑡𝑡 and Constraints (25a-28a) are added to complete the linearization 

of (1 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡     ) × γ𝑖𝑖𝑖𝑖𝑡𝑡 . Here, τ𝑖𝑖𝑖𝑖𝑡𝑡  is a free dual variable and it is thus not bounded by 0, but 

by [τ𝑖𝑖𝑖𝑖𝑡𝑡 , τ𝚤𝚤𝚤𝚤𝑡𝑡  �����]. Again, without access to more information, these bounds can be set to [-M, 

+M]. Non-linear components, 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 × τ𝑖𝑖𝑖𝑖𝑡𝑡  in the objective function can then be replaced by 

𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2  and Constraints (25b-28b) are added to complete the linearization of 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 × τ𝑖𝑖𝑖𝑖𝑡𝑡 .  
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Constraints (25-28) help to linearize the non-linear terms in equation (18a). For 

example, Constraints (26b) ensures that if 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 0, then 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 is forced to be 0 as well. 

Likewise, Constraints (27b) enforce that if 𝑉𝑉𝑖𝑖𝑘𝑘𝑘𝑘 = 1, then 𝜁𝜁𝑖𝑖𝑖𝑖𝑡𝑡2 has to be equal to τ𝑖𝑖𝑖𝑖𝑡𝑡 . 

Although Constraints (25b and 28b) may be redundant under some instances, they ensure 

feasibility is attained in all situations. An instance that shows their usefulness is when the 

lower bound τ𝑖𝑖𝑖𝑖𝑡𝑡  happens to be non-positive.  

5.3.4 Master problem formulation of the tri-level sonar placement 

problem (Model 𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴) 

To complete the decomposition procedure, we follow general decomposition 

procedures (e.g. Benders, 2005, Alguacil et al., 2014, etc.) by formulating a master 

problem. We introduce model 𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴, which is a lower bound on our tri-level model, 

includes a subset of possible attacks and keeps track of the attack positions returned by 

the sub-problem (model  𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒍𝒍) at each iteration 𝑗𝑗. The model is shown below: 

 (Model 𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴) 

min
𝑋𝑋𝑋𝑋∈(𝑋𝑋,𝑌𝑌),𝑊𝑊𝑊𝑊,𝑄𝑄𝑄𝑄∈(𝑄𝑄𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄𝑄𝑄)

𝜍𝜍  ,                              (5.29) 

Subject to: 

𝜍𝜍 ≥ −���ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ �𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�      ∀ 𝑗𝑗 , (5.30) 

�𝑐𝑐𝑎𝑎.��𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖 𝑎𝑎

+  �𝑐𝑐𝑏𝑏 .��𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖 𝑏𝑏

≤ 𝐵𝐵    ∀ 𝑡𝑡 , (5.2) 
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� � 𝑋𝑋𝑓𝑓ℎ𝑎𝑎
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑧𝑧𝑎𝑎

+ �𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

≥  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧       ∀𝑖𝑖,𝑘𝑘,𝑎𝑎𝑧𝑧 , 𝑗𝑗 ,   (5.3b) 

� � 𝑌𝑌𝑓𝑓ℎ𝑏𝑏𝑏𝑏
(𝑓𝑓,ℎ) ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑧𝑧𝑏𝑏

+  �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≥  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡      ∀𝑖𝑖,𝑘𝑘, 𝑡𝑡, 𝑏𝑏𝑧𝑧 , 𝑗𝑗 ,  (5.4b) 

�𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 + �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡

𝑏𝑏,𝑏𝑏𝑧𝑧𝑎𝑎,𝑎𝑎𝑧𝑧
≤  𝑐𝑐̅     ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , 𝑗𝑗 ,  (5.5a) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑎𝑎

+ �𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑏𝑏

≤ 1     ∀ 𝑖𝑖,𝑘𝑘, 𝑡𝑡 ,   (5.6) 

𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖

𝑏𝑏,𝑡𝑡+1 + � 𝑌𝑌𝑓𝑓ℎ𝑑𝑑
𝑏𝑏,𝑡𝑡+1

(𝑓𝑓,ℎ) ∈ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

,    ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏,𝑑𝑑, 𝑡𝑡 ,             (5.7) 

�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡+1 ≤ 1                ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 ,                        

𝑑𝑑

 (5.8) 

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡 =

𝑖𝑖,𝑘𝑘

�𝑌𝑌𝑖𝑖,𝑘𝑘
𝑏𝑏,𝑡𝑡+1         

𝑖𝑖,𝑘𝑘

 ∀ 𝑏𝑏, 𝑡𝑡 , (5.9) 

���𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

≥ 𝑆𝑆𝑆𝑆 ∗ ����𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖𝑏𝑏

+ ���𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘𝑖𝑖𝑎𝑎

�    ∀𝑡𝑡 , 
(5.10) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 ln(1 − 𝑝𝑝𝑎𝑎𝑧𝑧)

𝑎𝑎𝑧𝑧
∀ 𝑖𝑖, 𝑘𝑘,𝑎𝑎 , (5.11) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧 ln(1 − 𝑝𝑝𝑏𝑏𝑧𝑧)

𝑏𝑏𝑧𝑧
∀ 𝑖𝑖, 𝑘𝑘, 𝑏𝑏, 𝑡𝑡 ,   (5.12) 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ln(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)∀ 𝑖𝑖, 𝑘𝑘, 𝑡𝑡, 𝑗𝑗 ,         (5.16a) 

𝜍𝜍 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;𝑋𝑋𝑖𝑖𝑖𝑖𝑎𝑎 ,𝑌𝑌𝑖𝑖𝑖𝑖
𝑏𝑏,𝑡𝑡𝜖𝜖 𝐵𝐵;  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎,𝑎𝑎𝑧𝑧 ,𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧𝜖𝜖 𝐼𝐼+ ;𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖,𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , (5.17) 

where: 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎,𝑎𝑎𝑧𝑧 Number of times a cell 𝑖𝑖,𝑘𝑘 is covered by static sonar type 𝑎𝑎 

with coverage strength 𝑎𝑎𝑧𝑧at iteration 𝑗𝑗 
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𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧 Number of times a cell 𝑖𝑖,𝑘𝑘 is covered by mobile sonar type 𝑏𝑏 

with coverage strength 𝑏𝑏𝑧𝑧  during time 𝑡𝑡 at iteration 𝑗𝑗 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 Linearization variable 𝑄𝑄𝑄𝑄 at iteration 𝑗𝑗 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Linearization variable 𝑄𝑄𝑄𝑄 during time 𝑡𝑡 at iteration 𝑗𝑗 

𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Linearization variable 𝑄𝑄𝑄𝑄 during time 𝑡𝑡 at iteration 𝑗𝑗 

The objective function (5.29) represents non-detection probability as a result of 

the worst-case actions undertaken by the attacker and the cut constraints (5.30) give a 

bound on the worst-case objective with respect to an attack plan from the attacker. Other 

constraints are as presented in  𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕, with the added intuition (where necessary as 

indicated by iteration 𝑗𝑗) that the constraints are for each attack plan 𝑗𝑗.  

Proposition 5.2. The tri-level programming model (model 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕) is equivalent to the 

single optimization model described in Model 𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴. 

Proof.  The tri-level program of model 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕 is equivalent to the model below: 

min
𝑊𝑊𝑗𝑗,𝑄𝑄𝑄𝑄𝑗𝑗,𝑄𝑄𝑄𝑄𝑗𝑗

𝜍𝜍 ,                                

Subject to: 

𝜍𝜍 ≥ max
𝑉𝑉

min
𝑊𝑊,𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄

���−ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

× �𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�      ∀ 𝑗𝑗 ,  

Constraints (5.2-5.17) from model  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡.  

 We observe that the attacker decision set 𝑽𝑽 is a finite discrete set that comprises 

of all attack decisions. Also, 𝑊𝑊 and 𝑄𝑄 are dependent variables that depend on the values 

attained by finite discrete sets 𝑿𝑿 and 𝒀𝒀, which in turn describe all defensive decisions. 
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Moreover, removal of the minimization function in the first constraint set has no effects 

on optimality. Thus, by enumeration, the model shown above is equivalent to 

model 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕. This completes the proof. 

5.4 A solution algorithm for solving the tri-level sonar placement 

problem (ASPP-d) 

Using a decomposition procedure similar to column-and-constraint generation 

(C&CG), the models presented in the prior sections are used in an algorithm to achieve 

optimal placement of sonars, taking into consideration the expected actions of an 

‘intelligent’ attacker or adversary. The algorithm is implemented at two levels, i.e., a 

master problem and a sub-problem and is shown below:  

Step 0: Initialization 
Set 𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 = −∞ and 𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 = +∞.  
Set attack plan vector 𝐕𝐕� = 𝟎𝟎 
Set iteration index, 𝑗𝑗 =1 

While 𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 −  𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 >  𝜀𝜀 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 
            Step 1 
             Solve Model 𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴 
                       Update 𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 = 𝜍𝜍 
                       Update defense vectors 𝐗𝐗𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =  𝐗𝐗�,𝐘𝐘𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =  𝐘𝐘�  
            Step 2: 
            Solve Model  𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 for µ,Π,Φ,Ψ,Ω, τ, V and assign 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 as its   
            objective function 
                      Update attack vectors 𝐕𝐕𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 
                      Update 𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 = min (𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 
            Step 3: 
            Set 𝑗𝑗=𝑗𝑗 + 1 
 

where, 

𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 Solution to DAD Model-Upper bound 
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𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 Solution to DAD Model-Lower bound 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Present defense deployment plan X 

𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Present defense deployment plan Y 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Attacker’s response to the present 

deployment plan 

𝜀𝜀 Tolerance for the DAD model 

 While the master problem gives a lower bound to the tri-level problem, the sub-

problem returns an upper bound and provides the worst intrusion/attack plan for a given 

set of protection decisions. Theoretically, an optimal solution is attained when the duality 

gap is within a small threshold value 𝜀𝜀 > 0. 

Proposition 5.3. Algorithm ASPP-d converges to the optimal value of tri-level Model 

 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕 in 𝑂𝑂(𝑞𝑞′) iterations, where 𝑞𝑞′ is the number of elements in sets 𝑿𝑿 and 𝒀𝒀.    

Proof.  At optimality, 𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢.  Let 𝒖𝒖 represent the set of all dual variables in 

Model  𝑴𝑴𝟒𝟒. Let (𝑋𝑋∗,𝑌𝑌∗) and (𝑉𝑉∗, 𝑢𝑢∗) be the optimal values of Model  𝑴𝑴𝑫𝑫−𝑴𝑴𝑴𝑴 and Model 

 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 respectively obtained in iteration 𝑗𝑗 + 1.  

 Step 3 of the algorithm indicates that: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢 ≤���−ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑘𝑘𝑖𝑖

∗ (𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖). 

 Since initial decision variables of the ‘Defender’ are determined in Step 2 from 

sets 𝑿𝑿 and 𝒀𝒀. These are consequently used as parameters in the optimization problem of 

model 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, this indicates that optimal solution (𝑋𝑋∗,𝑌𝑌∗) are determined prior to 

iteration 𝑗𝑗 + 1 (perhaps at iteration 𝑗𝑗, 𝑗𝑗 − 1, 𝑗𝑗 − 2,……). Hence, the number of iterations 
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before attaining convergence with the algorithm is dependent on the cardinality of the 

union of sets 𝑿𝑿 and 𝒀𝒀, assuming the set is finite. It should be noted that the number of 

operations executed by loops in the algorithm is the sum of the individual loop 

efficiencies. Hence, the efficiency is 𝑞𝑞′ + 𝑞𝑞′′+, i.e. 𝑂𝑂(𝑞𝑞′), where 𝑞𝑞′′ is the number of 

elements in the set of dual variables and 𝑞𝑞′ is as defined in the proposition. This is 

because, unlike an alternate procedure such as the Benders decomposition approach, the 

loops in algorithm ASPP-d are not nested. This completes the proof. 

5.5 Theoretical Insights and Discussions on Models  𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕 and 

 𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

5.5.1 Theoretical Insights and Discussions-  𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕 

Based on the solution concept of multi-level programming in Bard (1998) and 

Zhang et al. (2010), we give definitions to sets in reference to 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕, which will assist 

in developing a theoretical basis for an optimal solution of the tri-level model. In the 

following definitions, (𝑥𝑥𝜖𝜖 𝑿𝑿,𝑦𝑦 𝜖𝜖  𝒀𝒀) , and (𝑥𝑥′𝜖𝜖 𝑿𝑿′,𝑦𝑦′𝜖𝜖  𝒀𝒀′) indicate the Defender’s top 

and bottom level decision variables, respectively; and 𝑧𝑧 𝜖𝜖 𝒁𝒁 indicates the Attacker mid-

level decision variables. In addition, function 𝐹𝐹 refers to the objective function of 

model 𝑴𝑴𝑫𝑫𝑫𝑫𝑫𝑫−𝒕𝒕𝒕𝒕𝒕𝒕. 

Definition 5.2 

1. Feasible region of  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡 

𝑆𝑆 = {(𝑞𝑞, 𝑧𝑧, 𝑟𝑟)|𝑞𝑞𝜖𝜖 𝑿𝑿 ∪  𝒀𝒀, 𝑧𝑧 ∈ 𝒁𝒁, 𝑟𝑟𝜖𝜖 𝑿𝑿′ ∪  𝒀𝒀′ ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (5.2 − 5.17)} 
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2. Attacker’s (Mid-level Decisions) feasible region for each fixed defense plan 

𝑞𝑞𝑞𝑞 𝑿𝑿 ∪  𝒀𝒀 

𝑆𝑆(𝑞𝑞) = {𝑧𝑧, 𝑟𝑟 𝜖𝜖 𝒁𝒁 × (𝑿𝑿′ ∪  𝒀𝒀′) |𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (5.2 − 5.17)} 

3. Defender’s (Bottom-level Decisions) feasible set for each fixed defense plan (Top-

level Decisions) 𝑞𝑞𝑞𝑞 𝑿𝑿 ∪  𝒀𝒀 and attack plan 𝑧𝑧 𝜖𝜖 𝒁𝒁 

𝑆𝑆(𝑞𝑞, 𝑧𝑧) = {𝑟𝑟𝜖𝜖 𝑿𝑿′ ∪  𝒀𝒀′|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (5.2 − 5.17)} 

4. Reaction set (Rational) of the Defender: Bottom-level Decisions 

𝑃𝑃(𝑞𝑞, 𝑧𝑧) = {𝑟𝑟|𝑟𝑟𝜖𝜖 argmin 𝐹𝐹[(𝑞𝑞�, 𝑧𝑧̅, 𝑟𝑟)|𝑟𝑟 𝜖𝜖 𝑆𝑆(𝑞𝑞, 𝑧𝑧)]} 

5. Reaction set (Rational) of the Attacker: Middle-level Decisions 

𝑃𝑃(𝑞𝑞) = {(𝑧𝑧, 𝑟𝑟)|(𝑧𝑧, 𝑟𝑟) ∈ argmin [𝐹𝐹(𝑞𝑞�, 𝑧𝑧, 𝑟𝑟)|(𝑧𝑧, 𝑟𝑟) 𝜖𝜖 𝑆𝑆(𝑞𝑞), 𝑟𝑟𝜖𝜖 𝑃𝑃(𝑞𝑞�, 𝑧𝑧)} 

6. Inducible Region IR (This represents the set over which the Defender may 

optimize the objective function of Model 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡) 

𝐼𝐼𝐼𝐼 =  {(𝑞𝑞, 𝑧𝑧, 𝑟𝑟)|(𝑝𝑝, 𝑧𝑧, 𝑟𝑟)𝜖𝜖 𝑆𝑆; (𝑧𝑧, 𝑟𝑟) 𝜖𝜖 𝑃𝑃(𝑞𝑞)} 

It should be noted that prior sections of this chapter make no distinction between 𝑿𝑿 ∪ 𝒀𝒀 

and 𝑿𝑿′ ∪ 𝒀𝒀′ because the sets are controlled by the same agent (i.e. the ‘Defender’). 

Remark 5.1  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡 is equivalent to the optimization problem: 

min{𝐹𝐹(𝑞𝑞, 𝑧𝑧, 𝑟𝑟)|(𝑞𝑞, 𝑧𝑧, 𝑟𝑟) 𝜖𝜖 𝐼𝐼𝐼𝐼} 

Proposition 5.4.  Given that set 𝑆𝑆 is non-empty and compact, and that set 𝐼𝐼𝐼𝐼 is non-

empty, then an optimal solution to 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡 exists. 
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Proof. The assumptions that both 𝑆𝑆 and 𝐼𝐼𝐼𝐼 are non-empty indicates that 𝑃𝑃 (𝑞𝑞∗) ≠ ∅  and 

that there exists at least an optimal 𝑞𝑞∗ 𝜖𝜖 𝑿𝑿 ∪ 𝒀𝒀. We further assume a sequence of decision 

variables  {(𝑞𝑞𝑚𝑚, 𝑧𝑧𝑚𝑚, 𝑟𝑟𝑚𝑚)}𝑚𝑚=1
∞ as a subset of 𝐼𝐼𝐼𝐼 converges to an optimal 

solution(𝑞𝑞∗, 𝑧𝑧∗, 𝑟𝑟∗). From parametric-optimization (𝑧𝑧∗, 𝑟𝑟∗) 𝜖𝜖 𝑃𝑃 (𝑞𝑞∗). Thus, 𝐼𝐼𝐼𝐼 is also 

closed. In addition, 𝐼𝐼𝐼𝐼 is also bounded because 𝐼𝐼𝐼𝐼 𝜖𝜖 𝑆𝑆.  Since 𝐼𝐼𝐼𝐼 is non-empty,  𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝑡𝑡𝑡𝑡 

involves minimization of a continuous/integer function over a compact non-empty set, 

showing that an optimal solution exists for the model. This completes the proof. 

5.5.2 Theoretical Insights and Discussions-  𝑴𝑴𝑨𝑨−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

Consider a large scale mixed integer linear programming (MILP) problem: 

min
𝑥𝑥,𝑦𝑦

{𝑓𝑓(𝑥𝑥,𝑦𝑦)|𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 ≥ 𝑏𝑏, 𝑥𝑥𝑥𝑥𝑅𝑅+𝑛𝑛,𝑦𝑦𝑦𝑦𝑍𝑍+𝑚𝑚}, (MILP1) 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦) represents the model’s objective function; and 𝐴𝐴𝜖𝜖𝑅𝑅𝑗𝑗∗𝑛𝑛 and 𝐵𝐵𝜖𝜖𝑅𝑅𝑗𝑗∗𝑚𝑚 

respectively represent coefficient matrices for 𝑥𝑥𝑥𝑥𝑅𝑅+𝑛𝑛 and 𝑦𝑦𝑦𝑦𝑍𝑍+𝑚𝑚 per constraint 𝑗𝑗; and 𝑏𝑏𝜖𝜖𝑅𝑅𝑗𝑗 

is a vector for constraint 𝑗𝑗. Also, we assume all data are rational and that all variables are 

non-empty and finite. 

L-P based approaches for solving MIPs such as Branch and Bound, and Branch 

and Cut, attempt to arrive at an optimal solution by solving several sub-problems of 

(MILP1) and then choosing the best solution, 𝑓𝑓(𝑥𝑥 ∗,𝑦𝑦 ∗)  from a solution pool of the sub-

problems. The problem is said to be infeasible if all the generated sub problems of 

(MILP1) are infeasible. Unlike an L-P problem, it is difficult to develop a standard dual 

problem for MILP with properties similar to those observed in the LP case. Generally, 

such dual problems are neither strong nor computationally tractable (Guzelsoy and 
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Ralphs, 2007). However, Proposition 5.5 and Remark 5.2 show how duality can be used 

to solve the decomposition problem in our tri-level problem. In order to present 

Proposition 5.5, we introduce the following definitions: 

Definition 5.3  

1. Let 𝝅𝝅𝒊𝒊 be a set of decision variables corresponding to primal constraints and the 

extra integer constraints ( ≤ and/or ≥) introduced in each sub-problem 

(branching) 𝑖𝑖of set 𝑮𝑮. 

2. Let 𝝅𝝅𝒊𝒊′ be a set of decision variables corresponding to primal constraints and the 

extra integer constraints ( ≤ and/or ≥) introduced in each sub-problem 

(branching) 𝑖𝑖′ of set 𝑮𝑮′ ⊆  𝑮𝑮. 

i. 𝑮𝑮′ is a subset of 𝑮𝑮, 𝑮𝑮′ ⊆  𝑮𝑮. 

ii. 𝑮𝑮′ is a set of the duals of sub-problems, 𝑔𝑔𝑖𝑖′ whose corresponding primal 

sub-problems return integer solutions for 𝒚𝒚.  

3. Let 𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) be the dual feasible function for sub-problem 𝑖𝑖 in (MILP1) and 

𝑮𝑮 be a set of such dual feasible function. Also, let 𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′) be the corresponding 

dual function of 𝑖𝑖′. 

Proposition 5.5  Given definition 5.3, the dual constraint equation of sub-problem 𝑖𝑖  is: 

𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  ∀ 𝑔𝑔𝑖𝑖 ∈ 𝑮𝑮 

Then, dual feasible solution 𝜋𝜋 for (MILP1) is obtained by solving the model: 

max
𝜋𝜋𝑖𝑖

{𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′)|𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∀ 𝑥𝑥𝑥𝑥𝑥𝑥 ∀ 𝑦𝑦𝑦𝑦𝑍𝑍+∀ 𝑔𝑔𝑖𝑖 ∈ 𝑮𝑮} 
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And the optimal dual feasible solution for (MILP1) is obtained by solving the 

model, 

max
𝑖𝑖′

�max
𝜋𝜋𝑖𝑖′

𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′) �𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦)∀ 𝑥𝑥𝑥𝑥𝑥𝑥 ∀ 𝑦𝑦𝑦𝑦𝑍𝑍+∀ 𝑔𝑔𝑖𝑖′ ∈ 𝑮𝑮′�. 

Proof. From Duality Theory, 𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′) ≤ 𝐻𝐻𝑖𝑖(𝜋𝜋𝑖𝑖) ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∀ 𝑖𝑖, 𝑖𝑖′ and 𝑔𝑔𝑖𝑖′(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤

𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∀ 𝑔𝑔𝑖𝑖 ∈ 𝑮𝑮,𝑔𝑔𝑖𝑖′ ∈ 𝑮𝑮′,𝑮𝑮′ ⊆  𝑮𝑮. Also, from generation of sub-

problems, 

𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑔𝑔𝑖𝑖′(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≤ 𝑔𝑔(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ∀ 𝑔𝑔𝑖𝑖 ∈ 𝑮𝑮,𝑔𝑔𝑖𝑖′ ∈ 𝑮𝑮′,𝑮𝑮′ ⊆  𝑮𝑮. Then, 

𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥ 𝑔𝑔(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵) ≥  𝑔𝑔𝑖𝑖′(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵)  ≥ 𝑔𝑔𝑖𝑖(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵)  ∀ 𝑔𝑔𝑖𝑖 ∈ 𝑮𝑮,𝑔𝑔𝑖𝑖′ ∈ 𝑮𝑮′,𝑮𝑮′ ⊆  𝑮𝑮. 

Thus, 𝑔𝑔 is the dual feasible constraint function for (MILP1) with an equivalent objective 

function 𝐻𝐻𝑖𝑖(𝜋𝜋𝑖𝑖). Clearly, Strong duality suggests that at optimality, the dual feasible 

solution of sub-problem 𝑖𝑖 corresponds to its primal equivalent. However, to obtain a valid 

solution to (MILP1), the corresponding primal solution must return integrality in the 𝒚𝒚 

variables. This completes the proof.   

Remark 5.2 Let 𝑦𝑦𝑟𝑟𝜖𝜖 𝑅𝑅 be a relaxation of 𝑦𝑦 𝜖𝜖 𝑍𝑍. Then, the relationship between the 

optimal solutions of (MILP1) and its LP relaxation is:𝑓𝑓(𝑥𝑥∗,𝑦𝑦∗) ≤ 𝑓𝑓(𝑥𝑥∗,𝑦𝑦𝑟𝑟∗). This 

relationship holds because the optimal value of the LP relaxation is no smaller than that 

of (MILP1). Thus feasible solutions to the dual of the LP relaxation correspond to upper 

bounds in (MILP1). At optimality,𝑓𝑓(𝑥𝑥 ∗,𝑦𝑦′ ∗) = 𝐻𝐻(𝜋𝜋𝑟𝑟∗) where 𝜋𝜋𝑟𝑟∗ is the optimal set of 

decision variables corresponding to primal constraints in the LP relaxation of (MILP1).  
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From proposition 5.5, 

 𝐻𝐻(𝜋𝜋∗) = max𝑖𝑖′ max𝜋𝜋𝑖𝑖′ 𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′), 

Hence, 

𝐻𝐻(𝜋𝜋𝑟𝑟∗)  ≥ max
𝑖𝑖′

max
𝜋𝜋𝑖𝑖′

𝐻𝐻𝑖𝑖′(𝜋𝜋𝑖𝑖′). 

Thus, in general, the dual solution of the LP relaxation gives only an upper bound 

on the dual solution of the MIP i.e., bounds using LP relaxation may not be as tight as 

desired. As a caveat, due to this observation, convergence of ASPP-d as discussed in 

Section 5.3 is not expected to be as fast as desired since Model 𝑀𝑀𝐴𝐴−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is not an LP. 

5.6 Computational Results 

Using ASPP-d, computational results presented in this section are based on data 

introduced in Chapter 4. All models are implemented in GAMS and solved using CPLEX 

(GAMS 2013). All MIPs are solved within a relative tolerance of 3% duality gap and all 

computational runs are made on a Linux server equipped with dual 3.00 GHz AMD 

processors (24 cores) and 256 GB memory running on Ubuntu 64bit operating system.  

Table 5.1 shows results of the objective functions when we set 𝑐𝑐̅ = 3 in equations 

(5). In the non-collaborative interaction between the ‘Attacker’ and the ‘Defender’, the 

table indicates that, with no resources available to neither the attacker nor the defender, 

the objective value will always be 0. Under this situation, there is no effect on the 

objective function. The observation is expected and serves to validate solution results. 

The table also indicates that as more resources become available to the ‘Defender’, the 

objective function tends to become monotonically non-increasing (readers should note 
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the negative signs in the objective functions and that the ‘Defender’ is interested in 

minimizing overall non-detection probabilities). In contrast, as more resources become 

available to the ‘Attacker’, the objective function tends to become monotonically non-

decreasing (readers should note the negative signs in the objective functions and that the 

Attacker’s interest is in maximizing overall non-detection probabilities). All these are in 

agreement with expected model behavior in the interface relationships between the 

‘Defender’ and the ‘Attacker’.  

Table 5.1: Objective Function: Resources available to Defender vs Resources 

                      available to Attacker 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 B 

  0 1 2 3 4 5 

0  -503.69 -811.572 -1103.29 -1379.37 -2269.68 

1 317.757 -110.867 -394.6 -698.411 -969.377 -1534.9 

2 635.13 273.946 -33.531 -313.707 -583.673 -1379.37 

3 948.665 620.609 310.652 54.702 -20.728 -103.21 

4 1257.211 952.09 624.941 386.46 161.681 -66.168 

5 1567.58 1237.89 919.86 713.688 503.91 -299.77 

 

Figures 5.2-5.5 show objective values for different values of parameter 𝑐𝑐̅ . As 

indicated in the figures, without any resources (sonars) available to the ‘Defender’, the 

objective function remains unchanged irrespective of the value of parameter 𝑐𝑐̅ when 

“Attacker’ resources remains the same. This is because only the latter's influence is 

active in the objective function when the former has no resources (sonars) at its disposal. 
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The figures indicates that optimum value is often attained when constraints (5.5) 

is relaxed. Specifically, with medium to large resource availability (3-5 units) to the 

‘Defender’, optimal values are observed when constraints (5.5) are relaxed. In some 

instances, optimal values are the same under both scenarios (i.e., when 𝑐𝑐̅ = 3  and when 

constraints (5.5) is relaxed) but never worse. This observation is due to the fact that 

constraints (5.5) restrict the solution space of the non-convex set. Since partial coverage 

entails that coverage in the entire AOI is related to the criticalities of sub-regions in the 

AOI, it is expected that with medium to large budget scenarios and relaxation of 

constraints (5.5), coverage will have a bias for sub-regions of the AOI with higher 

criticalities, thus improving the objective functions. However, when no resource is 

available to the ‘Attacker’, there is no difference in the optimal values when 𝑐𝑐̅ = 3  and 

when constraints (5.5) are relaxed. 

Conversely, with low (0-2 units) resources available to the ‘Defender’, the 

optimal value is indistinguishable between when 𝑐𝑐̅ = 3  and when constraints (5.5) are 

relaxed. This is because with less budgetary resources available to the ‘Defender’, 

multiple sonar coverage of the subsections of the AOI with higher criticalities is 

negligible due to low budgets, even when constraints (5) are relaxed.  

All of the above observations suggest the model provides the ‘best’ optimal 

values whenever Constraints (5) are relaxed as the Defender’s allotted budget increases. 

However, the fundamental plan in the placement study under review in the sonar 

placement problem is ‘Partial Coverage’, where due to high costs of underwater sonars, 

procuring ‘enough’ sonars to cover the entire AOI is neither economical nor practicable. 

In addition, the performance of the model in terms of the concepts of ‘pn-coverage’ 
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introduced in Chapter 4 accentuates the need and importance of constraints (5.5). 

Although improvements (ranging from marginal to significant) in the objective function 

of the model is observed when constraints (5.5) is relaxed under medium to large 

resource availability (3-5 units) to the ‘Defender’ , the portion of the AOI that is 

effectively covered by sonars (as represented by the pn-Coverage benchmark) is 

adversely affected. Hence, the need to maintain the multiple coverage restriction imposed 

by constraints (5.5) is also justified for the Tri-level programming approach in this 

chapter. 

Essentially, we observe the same trend (in objective functions) for different values 

of 𝑐𝑐̅ in constraints (5.5) and when the constraints are relaxed. In the majority of all the 

cases (with different resource limitations to each agent), the only difference is the 

magnitude of these objective functions. The only exception observed in the trend is when 

five units of resources are available to the ‘Defender’ and none is available to the 

‘Attacker’ when 𝑐𝑐̅ in constraints (5.5) is set to one unit. The reason behind this exception 

is that, though the ‘Defender’ has adequate resources available to it, the restriction 

imposed on the solution space by 𝑐𝑐̅ = 1 in constraints (5.5) ensures that the objective 

function remains un-changed compared to when it had less than one resource available to 

it (i.e. when it had four units of resources available). 
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Figure 5.2: Objective Functions: Resources available to Defender vs 
                              Resources available to Attacker (𝑐𝑐̅=1) 
 

 

Figure 5.3: Objective Functions: Resources available to Defender vs 
                              Resources available to Attacker (𝑐𝑐̅=2) 
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Figure 5.4: Objective Functions: Resources available to Defender vs 
                              Resources available to Attacker (𝑐𝑐̅=3) 
 

 

Figure 5.5: Objective Functions: Resources available to Defender vs  
                      Resources available to Attacker (𝑐𝑐̅=No restriction (NR) i.e. 

                              equation (5.5) is relaxed) 
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defensive resources and the gain in vulnerability mitigation. From the figures (though 

with few outliers), we infer that for limited sonar resources to the ‘Defender’ (1-2 units), 

‘p1-Coverage’ values correspond to equivalent optimal objective values in all cases (i.e. 

as optimal objective values improve, ‘p1-Coverage’ also increases). However, with the 

availability of more resources to the ‘Defender’ (3-5 units), ‘p1-Coverage’ values do not 

necessarily correspond to equivalent optimal objective values. The reason behind this is 

that multiple coverage of subsections of the AOIs with higher criticalities improve the 

objective functions but have no effects on the equivalent ‘p1-Coverage’ value. Also, with 

limited sonar resources (1-2 units) available to the ‘Defender’, relaxation of Constraints 

(5.5) or active use of the constraints only has marginal differences in ‘p1-Coverage’ 

values. On the contrary, with availability of more resources (3-5 units), ‘p1-Coverage’ 

values reduce significantly when Constraints (5.5) are relaxed in comparison to when the 

constraints active. 

 Similar explanations given in the observation related to optimal objective values 

also hold true. In general, as more resources become available to the ‘Defender’, setting 

𝑐𝑐 = 3 gives little or no improvement in ‘p1-Coverage’ when Constraints (5) are active. 

However, this choice of parameter value is not outperformed by any other choice. Most 

of the defense benefit is achieved with a maximum of three or four resources (sonars). 

Larger defense investments produce progressively lower incremental vulnerability 

reductions. Results for ‘p2-Coverage’ and ‘p3-Coverage’ also follow similar trends, 

although with comparatively lower values, including 0 for the latter (i.e. no portion of the 

AOI is covered by at least three sonars across the entire deployment periods).  
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Figure 5.6: ‘p1-Coverage’: Resources available to Defender vs Resources 
                          available to Attacker (𝑐𝑐̅=3) 
 

 

Figure 5.7: ‘p1-Coverage’: Resources available to Defender vs Resources        
                          available to Attacker (𝑐𝑐̅=No restriction, NR) 
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Results for ‘p2-Coverage’ and ‘p3-Coverage’ do not convey additional inferences 

different from those presented for the ‘p1-Coverage’ case and are thus, not shown in this 

section. 

5.7 Conclusions 

In this chapter, we presented a tri-level optimization model and an algorithm to 

solve the sonar placement problem where optimal partial coverage is desired. Partial 

coverage is due to limitations imposed by budget limitations. Typically, a game-theoretic 

approach is often adopted in a problem of this nature where competing rational agents 

with conflicting interests are the decision makers. In comparison to the game theoretic 

approach, where only two levels of interface relationships (whether collaborative or non-

collaborative) are considered in a strategic planning framework, our fortification model 

produces a superior protection plan because it considers an additional third level of non-

collaborative relationship between the ‘Defender’ and the ’Attacker’, and thereafter 

selects the optimal strategy to thwart the attacker’s efforts based on the optimal strategic 

plan adopted by the latter. Using practical data, we implemented the algorithm to solve 

the tri-level problem. In contrast to other approaches such as the traditional Benders-dual 

algorithm, which requires the sub-problem to be an LP problem, our algorithm is 

indifferent to such limitations. Although non-traditional methods using heuristics have 

been proposed to address this issue with the Benders approach, there are no guarantees 

the sub problem can be solved to integer optimality.  

We emphasize that though protection is desirable, its desirability in terms of 

reducing vulnerability of the AOI should be dependent on the maximum resource 
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capability of the ‘Attacker’. With small attack budgets, benefits of providing protection 

are often minimal and investment in providing protection may be regarded as 

unnecessary. However, with increased resource availabilities to the attacker(s) and a 

consequent ability to intrude in the AOI, the significance of investing in protection 

resources becomes apparent. As such, decision-makers (system planners) can adopt a 

protection plan after reviewing costs and inherent benefits associated with the protection 

plan. 
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Chapter 6 

Algorithms for the Sonar Placement Problem  

6.1 Introduction 

Computational complexity of the generic sensor placement problem has been 

proven to be NP-hard (See Chapter 2). To address the computational challenges posed by 

coverage problems, efficient algorithms to solve the Sonar placement problem (SPP) 

need to be developed to ensure that near-optimal solutions can be found quickly. This is 

especially relevant when decisions have to be made in real-time situations.  

In this chapter, we propose simple and efficient algorithms (based on greedy 

approach) for placing sonars to satisfy coverage requirements within budgetary 

limitations. Essentially, the greedy technique is based on the principle of identifying 

optimal local solutions at each step of an algorithm with the expectation that the global 

(or near global) optimum of the objective function is attained at the end of the procedure. 

6.2 Greedy-based Algorithms for the Sonar Placement Problem  

In this section, we describe procedures of the three greedy-based algorithms we 

have developed to arrive at fast (even if sub-optimal) solutions. The algorithms exploit 

the structure of the SPP to arrive at efficient solutions.  

Starting from an empty set and choosing from among eligible candidate 

placement positions, the greedy policy iteratively selects the sonar type- placement 

position pair that maximizes the expected overall increase in value of the measure metric 
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( 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
), conditioned on the observed states of sonar type- placement positions it had 

already selected in prior iterations, thus increasing the expected total marginal benefit of 

the measure metric. In essence, at each iteration, the greedy policy tries to increase the 

expected objective value (mirrored by the equivalent measure 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
), given its current 

observations.  

Sonar type- placement position pairs continue to be selected within coverage 

limitations until available budget is expended. If solving the SPP using mixed integer 

programming proves to be intractable, our greedy-based algorithms can be used to find a 

good initial solution. Afterwards, we can improve on this solution using any local search 

technique.  

Pseudocodes of the greedy-based algorithms are described in Figures 6.1- 6.3. 

The algorithms we presented are simple and fast computational heuristics for underwater 

sensor placement. Our algorithms start with a null solution, i.e., an empty sequence. They 

evaluate all N candidate placement positions/sites across the entire deployment periods 

but only choose a deployment period 𝑡𝑡 whose function 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
 maximizes detection 

probabilities of the entre AOI. To break a tie (if any), we simply choose deployment 

period/deployment position chronologically. Thereafter, an MIP is used to determine 

relocations across the other periods.  
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Step 0: Sets, parameters and variables: Initialization 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)  = 𝑛𝑛𝑛𝑛,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)  = ∅, ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖,𝑘𝑘, 𝑡𝑡) = 0; 

 
Step 1:  
Compute un-expended budget 𝑏𝑏(𝑒𝑒) ≥ 0 for all combinations 𝑒𝑒 of available sonars: 
 

𝑏𝑏(𝑒𝑒) = 𝐵𝐵 −�𝑑𝑑𝑚𝑚𝑟𝑟𝑚𝑚𝑒𝑒
𝑚𝑚

∀ 𝑟𝑟𝑚𝑚𝑒𝑒 ∈ 𝑅𝑅𝑚𝑚𝑒𝑒  

where 𝑑𝑑𝑚𝑚 is the dollar cost of available sonar 𝑚𝑚 and 𝑟𝑟𝑚𝑚𝑒𝑒  is the number of sonar 𝑚𝑚 in any 
combination 𝑒𝑒 of sonar types. 
 
Step 2: (Choose combination of 𝑒𝑒 that gives the least 𝑏𝑏(𝑒𝑒)). 

Let 

𝐴𝐴𝑢𝑢∗ = ��𝐴𝐴𝑒𝑒∗
𝑠𝑠

𝑒𝑒=1

� ⊆ 𝑅𝑅𝑚𝑚𝑒𝑒  

such that ∃ 𝑟𝑟𝑚𝑚𝑒𝑒
∗ ∈  𝐴𝐴𝑒𝑒∗ ∶  𝑏𝑏(𝑒𝑒∗) = min𝑒𝑒 𝑏𝑏(𝑒𝑒)   

Step 3: 
 𝑟𝑟𝑚𝑚𝑒𝑒

∗ ∈  𝐴𝐴𝑒𝑒∗;   𝑚𝑚 ∈ 𝑀𝑀 = 1,2, … . 𝑛𝑛; 𝑒𝑒∗ = 1,2, … 𝑠𝑠  
 While |𝐴𝐴𝑒𝑒∗| > 0 

∀ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘) ≠ 𝑦𝑦𝑦𝑦𝑦𝑦;  && 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖,𝑘𝑘, 𝑡𝑡) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
i. Compute overall risk reduction if sonar type 𝑚𝑚 is   

      placed in (𝑖𝑖,𝑘𝑘) at time 𝑡𝑡 for combination 𝑒𝑒∗.         
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚 = −ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ln(1 − 𝑝𝑝𝑚𝑚) − � ℎ𝑖𝑖𝑖𝑖𝑖𝑖ln (1 − 𝑝𝑝𝑚𝑚𝑙𝑙 )

(𝑖𝑖′,𝑘𝑘′,𝑡𝑡′)∈𝑁𝑁𝑙𝑙(𝑖𝑖,𝑘𝑘,𝑡𝑡)

 

ii. Rank eligible 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖,𝑘𝑘, 𝑡𝑡) for sonar type 𝑚𝑚 
in descending order as an ordered list using criteria 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
. 

iii. Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡) =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ∗,𝑘𝑘 ∗
, 𝑡𝑡 ∗)𝑚𝑚 ∪ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡), where 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ∗,𝑘𝑘 ∗, 𝑡𝑡 ∗)𝑚𝑚 is at the top of the 

ordered list for sonar type 𝑚𝑚 using criteria 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
 .Set 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖 ∗,𝑘𝑘 ∗) = 𝑦𝑦𝑦𝑦𝑦𝑦. 
iv. Update 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖,𝑘𝑘, 𝑡𝑡) +

1 for  (𝑖𝑖 ∗,𝑘𝑘 ∗, 𝑡𝑡 ∗) and (𝑖𝑖′,𝑘𝑘′, 𝑡𝑡′) ∈  𝑁𝑁𝑙𝑙(𝑖𝑖 ∗,𝑘𝑘 ∗, 𝑡𝑡 ∗) 
v. Remove 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ∗, 𝑘𝑘 ∗, 𝑡𝑡 ∗)𝑚𝑚 from the top of 

the ordered list 
   𝑟𝑟𝑚𝑚𝑒𝑒

∗ = 𝑟𝑟𝑚𝑚𝑒𝑒
∗ − 1;  

                |𝐴𝐴𝑒𝑒∗| = |𝐴𝐴𝑒𝑒∗| − 1 
               End While 
Step 4: For static sonars, placement remains un-changed irrespective of deployment 
period 𝑡𝑡.For mobile sonars, we use a simple MIP to determine relocation of the sonars. 

Figure 6.1: Pseudocode for the algorithmic steps in g-SPP1   
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+ 

Step 0: Do Step 0 in g-SPP1 
Step 1:  
Set 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐵𝐵;      

a. Do (i) and (ii) in Step 3 of g-SPP1. However here, the overall risk reduction 
and ranking criteria are not only for any combination 𝑒𝑒∗ but for all sonar 
type 𝑚𝑚. 

b. While  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≥ 𝑑𝑑𝑚𝑚 
∀ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑘𝑘) ≠ 𝑦𝑦𝑦𝑦𝑦𝑦;  && 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

i. Do (iii-v) of Step 3 of g-SPP1 with the myopic greed 

routine using criteria 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
.  

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑑𝑑𝑚𝑚∗ 
End While 

Step 2: Do Step 4 in g-SPP1 
Figure 6.2: Pseudocode for the algorithmic steps in g-SPP2 

Step 0: Do Step 0 in g-SPP1 
Step 1: 

a. Do step 1 (a) in g-SPP2 
b. Find 𝑑𝑑𝑚𝑚∗ ,where 𝑑𝑑𝑚𝑚∗  is the cost corresponding to the sonar type 𝑚𝑚 ∗ at the top 

of the ordered list  
c. Let 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝐵𝐵

𝑑𝑑𝑚𝑚∗
� 

While 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0  && 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘) ≠ 𝑦𝑦𝑦𝑦𝑦𝑦; && 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖,𝑘𝑘, 𝑡𝑡) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
i. Do (i-v) of Step 3 in g-SPP1 with the myopic greed routine using 

criteria 
𝑣𝑣𝑖𝑖,𝑘𝑘
𝑚𝑚

𝑑𝑑𝑚𝑚
. (When 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  � 𝐵𝐵

𝑑𝑑𝑚𝑚∗
�, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ∗,𝑘𝑘 ∗, 𝑡𝑡 ∗)𝑚𝑚 

corresponding to 𝑚𝑚 ∗ is chosen. Else, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ∗,𝑘𝑘 ∗, 𝑡𝑡 ∗)𝑚𝑚 is 
chosen from the ordered list without recourse to the corresponding 
sonar type 𝑚𝑚.) 

            𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1 
End While 
Set 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)𝑚𝑚 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) 

d. If ∃𝑚𝑚′∈𝑀𝑀′: 𝐵𝐵 − � 𝐵𝐵
𝑑𝑑𝑚𝑚∗
� ≥ 𝑑𝑑𝑚𝑚′   //If there exists any sonar type 𝑚𝑚′that can be 

procured with //the un-expended budget  
        While |𝑀𝑀′| > 0 && 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑘𝑘) ≠ 𝑦𝑦𝑦𝑦𝑦𝑦; && 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

i. Repeat (b) and (c-i) using 𝑚𝑚′  
 |𝑀𝑀′| = |𝑀𝑀′| − 1 
           End While 

Set 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)𝑚𝑚′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡) 
Set 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)𝑚𝑚 ∪ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡)𝑚𝑚′ 
Step 2:   Do Step 4 in g-SPP1 

Figure 6.3: Pseudocode for the algorithmic steps in g-SPP3  
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where, 

𝑏𝑏(𝑒𝑒) 

 

Un-expended budget for combination 𝑐𝑐 of available 

sonar type (with different cost, detection coverage, etc.) 

𝐵𝐵 Available budget for the entire deployment 

𝑑𝑑𝑚𝑚 Cost of available sonar 𝑚𝑚 

𝑛𝑛𝑚𝑚𝑒𝑒  Number of sonar-type 𝑚𝑚 in any combination 𝑐𝑐 of sonars 

𝐴𝐴𝑒𝑒∗ Set that contains sonar combination 𝑒𝑒 with minimum 

𝑏𝑏(𝑒𝑒∗) i.e. 𝐴𝐴𝑒𝑒 ∶  𝑏𝑏(𝑒𝑒∗) = min𝑒𝑒 𝑏𝑏(𝑒𝑒) (Each element of a 

combination 𝑐𝑐 includes both sonar type 𝑚𝑚  and 

number/quantity  𝑛𝑛 to be deployed) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘, 𝑡𝑡) Sonar placement location(𝑖𝑖,𝑘𝑘, 𝑡𝑡). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)  Holder for tracking (𝑖𝑖,𝑘𝑘) of  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖,𝑘𝑘, 𝑡𝑡) Characterizes the number of times a candidate location 

(𝑖𝑖, 𝑘𝑘, 𝑡𝑡)  is covered by sonars 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 A parameter (integer) that restricts the total number of 

times a location (𝑖𝑖,𝑘𝑘, 𝑡𝑡), is covered by sonars 

𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚  

 

𝑁𝑁𝑙𝑙(𝑖𝑖,𝑘𝑘, 𝑡𝑡) 

Overall risk reduction if sonar type 𝑚𝑚 is placed in 

placement location(𝑖𝑖, 𝑘𝑘, 𝑡𝑡) 

Set containing (𝑖𝑖′,𝑘𝑘′, 𝑡𝑡′) in the neighborhood of (𝑖𝑖,𝑘𝑘, 𝑡𝑡) 

that are also covered by sonar placed in(𝑖𝑖,𝑘𝑘, 𝑡𝑡). 

 

The algorithmic steps 3-4 of g-SPP1 and all steps in g-SPP2 and g-SPP3 are 

quite self-explanatory and easy to follow. Hence, we provide an illustrative example to 
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explain procedures in steps 1-2 of g-SPP1. Suppose, we have three different sonar 

types with a total budget of $100 (in millions) for deployment as shown in Table 6.1.  

Table 6.1: Illustrative example for steps 1-2 in g-SPP1 

Budget =$100 

Sonar Types Type 1 Type 2 Type 3 

Cost 13 31 47 

 

In this example, the number of sonar type 𝑛𝑛𝑖𝑖 deployed is bounded by a 

mathematical inequality (13𝑛𝑛1 + 31𝑛𝑛2 + 47𝑛𝑛3 ≤ 100). However, a deployment 

strategy may also involve non-deployment of a sonar type 𝑖𝑖, leading to an extra 

consideration in sonar-type combinations. Thus, the total number of possible 

combinations of sonar-type considered is �1 + �100
13
��× �1 + �100

31
��× �1 + �100

47
�� =

66.Table 6.2 shows the optimal sonar type-combinations that gives the least un-

expended budget in this example. The table indicates that four units of type 1, none of 

type 2 and one of type 3 gives the minimum un-expended budget of $1(in millions). 

Table 6.2: Optimal sonar type combination for illustrative example of Table 6.1 

Sonar Types Type 1 Type 2 Type 3 

Optimal 𝑛𝑛 4 0 1 

 Un-expended Budget=$1 

 

6.3 Discussions and Analysis on the algorithms 

Of the three algorithms, g-SPP-1 attempts to identify the combination(s) of 

sonar types from among several deployment strategies that gives the least unused 
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budget for any budget allocation i.e. before getting into the iterative placement 

procedure, it appraises the total budget for sonar placement, searches among all 

possible combinations of sonars that exhaust the budget and then chooses the 

combination that leaves the least unused budget. The premise behind this is that under 

the assumption of uniform detection probabilities of sonars, the optimal deployment of 

sonars involving candidate placement positions with uniform characteristics 

(criticalities) under strict budget limitation is synonymous with maximizing the number 

of the sonar types deployed (hence, minimizing left-over budget). Of course, the 

procedure cannot guarantee optimality; however, it gives a good starting solution. 

We refer to both g-SPP-2 and g-SPP-3 as “myopic greedy’ algorithms because 

neither of these two algorithms attempts to identify a dominant set that in any way tries 

to ensure optimality might be attained. Rather, they ‘greedily’ allocate sonar type- 

placement position pair with greatest metric that doesn’t violate coverage conditions 

until allocated budget is expended. However, the algorithms are useful because they 

are quite fast and in some instances, numerical results (See Section 6.4) indicates little 

loss in optimality in comparison to results returned by g-SPP-1 and CPLEX. 

The difference between g-SPP-2 and g-SPP-3 is that while the former (like g-

SPP-1) iteratively identifies the sonar type-placement position pair with most favorable 

metric, the latter continues to use the same sonar type in the first iteration (until its 

availability is exhausted). Table 6.3 summarizes the algorithm(s). In Table 6.3, we 

identify the major procedures in the algorithms, highlighting major differences among 

the algorithms. Any similarity in procedure (algorithmic steps) is avoided in the 

summary provided. 
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Table 6.3: Descriptions of the greedy-based algorithms 

Algorithms Description 

g-SPP-1     Minimize least un-expended budget and allocate sonar types based on 

this, taking into consideration benefit/sonar price index. 

   Once a placement is made, the chosen subsection of the AOI (at a 

particular period) and others which it covers (if coverage limit is met) 

becomes ineligible for placement in the next iteration. 

g-SPP-2    In each iteration, identify sonar type with highest benefit /sonar price 

index and place this identified sonar type in subsection of the AOI (at a 

particular period) corresponding to highest benefit /sonar price index. 

Like g-SPP-1, once a placement is made, the chosen subsection of the 

AOI and others which it covers (if coverage limit is met) becomes 

ineligible for placement in the next iteration. 

g-SPP-3     Same as g-SPP-2 but once maximum benefit /sonar price is identified 

in the first iteration, the same sonar type is allotted till all budget is 

expended for this particular sonar type. Any un-spent budget (if adequate 

for more procurement) is allotted to the sonar type with the second 

highest cost/sonar price index. 

 

It should be noted that Steps 1-2 of g-SPP1can be easily modeled as a simple 

optimization problem thus, 
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min
𝑒𝑒
�𝑏𝑏(𝑒𝑒)��𝑑𝑑𝑚𝑚𝑛𝑛𝑚𝑚𝑒𝑒

𝑚𝑚

≤ 𝐵𝐵  ∀ 𝑛𝑛𝑚𝑚𝑒𝑒 ∈ 𝑁𝑁𝑚𝑚𝑒𝑒 �. 

Hence, in practice, a simple MIP (using Branch and Bound techniques) or 

dynamic programming approach (with memory) would efficiently replace the 

enumerative search in the step. While the enumerative approach will not be scalable as 

problem size increases, the dynamic programming approach doesn’t suffer from such 

limitations. However, due to the nature of the problem in this dissertation (where we 

study partial sonar coverage as a result of budget limitation), this issue does not arise. 

Although a dynamic programming approach (without memory) will suffice for this 

chapter, the approach with memory will be useful if any modification is required to 

identify any “next best” solution (See Chapter 7).  

In addition, we could have more than one combination of sonar selections that 

gives least 𝑏𝑏(𝑒𝑒) and, in practice, 𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚  can be computed during pre-processing 

operations. It should also be noted in step 2 of g-SPP1 that set 𝐴𝐴𝑢𝑢∗ contains 

combination 𝑒𝑒 of sonars that leaves least budget unused. Whenever min𝑒𝑒 𝑏𝑏(𝑒𝑒) exists 

for only a single combination of 𝑒𝑒, ∑ 𝑒𝑒∗𝑠𝑠
𝑒𝑒∗=1 = 1; Else,∑ 𝑒𝑒∗𝑠𝑠

𝑒𝑒∗=1 = 𝑠𝑠. 

6.3.1 Properties of Risk Measure  �
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
� 

The risk measure introduced in the algorithms essentially mirrors the objective 

function of the SPP model, with the added property that we have a measure for each 

candidate placement position corresponding to a sonar type. The risk measure is non-

negative (
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
 ≥ 0) and we generally aim to maximize the measure. The risk measure is 

also non-decreasing. This means that for subsets 𝐴𝐴 ⊆ 𝐵𝐵 ⊆ 𝑆𝑆, it is always true that 
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𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
(𝐴𝐴) ≤

𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
(𝐵𝐵) i.e. as more sonars are placed, our overall risk measure improves or 

at worst remains unchanged. Hence, the optimization of underwater sonar placements 

for detecting underwater intrusion is considered a submodular optimization. As 

explained, the algorithms initialize with an empty placement and proceeds iteratively. 

At each iteration round, they select the sonar-candidate location that contributes most 

to reduction in the overall risk measure (picks the most profitable subset of elements in 

from the not-yet-selected elements) and adds it to the current set. 

6.3.2 Computational Complexity 

 The analysis we present in this section is for mobile sonars and readily applies 

to the static sonars too (with slight modifications). However, the last step (Step 4 in g-

SPP1, Step 2 in g-SPP2 and g-SPP3) is omitted in this analysis. 

Suppose: 𝐵𝐵 Available Budget 

 𝑞𝑞 Available mobile sonar types to select from 

 𝑛𝑛 Total number of mobile sonar types selected after placement 

methodology 

 𝑚𝑚𝑖𝑖 Number of mobile sonar 𝑖𝑖 selected in the placement methodology 

 𝑁𝑁 Total number of candidate placement positions in the AOI across 

the whole periods 

 𝑝𝑝 Average Procurement cost of mobile sonars 

Assuming a sonar type 𝑖𝑖 is selected at least once, then for steps 1-2 in g-SPP-1, 

the number of possible selections before entire budget is expended (or becomes 

insufficient for additional sonar) is approximately: 𝑛𝑛 = ∑ 𝑚𝑚𝑖𝑖
𝑞𝑞
𝑖𝑖 = �𝐵𝐵

𝑝𝑝
�. From Murty 
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(1981) and Ghafoori and Altiok (2012), the number of possible solutions to the 

problem of this approximate solution above is: 𝐶𝐶𝑞𝑞−1
𝑞𝑞+𝑛𝑛−1 (A total number of 𝐶𝐶𝑞𝑞−1

𝑞𝑞+𝑛𝑛−1 

additional evaluations have to be carried out in Step 1). Hence for g-SPP-1 (in 

comparison to the other algorithms), there is an obvious increase in computational 

time. 

For the placement mechanism (Steps 3 for g-SPP-1, Step 1 for g-SPP-2 and g-

SPP-3), since 𝑁𝑁 number of candidate placement positions and 𝑞𝑞  number of sonars are 

available to choose from, we have 𝑁𝑁 × 𝑞𝑞 different combinations of placement positions 

and sonar types. In addition, the total number of iterations before the budget is 

expended is 𝑛𝑛 (𝑛𝑛 ≤ 𝑞𝑞). Thus we have a total of 𝑁𝑁 × 𝑞𝑞 × 𝑛𝑛 in the entire iterations. For 

each possible selection, there exists approximately 𝑃𝑃𝑛𝑛
𝑁𝑁

∏ m𝑖𝑖!
𝑞𝑞
𝑖𝑖=1

�  different placement 

schemes.  Hence, giving the number of different possibilities in the feasible set as: 

𝐶𝐶𝑞𝑞−1
𝑞𝑞+𝑛𝑛−1 × 𝑃𝑃𝑛𝑛𝑁𝑁

∏ m𝑖𝑖!
𝑞𝑞
𝑖𝑖=1

� ; and the time to find the solution is of order 𝑂𝑂(𝑁𝑁𝑞𝑞). With the 

exception of Steps 1-2 in g-SPP-1, the same analysis applies for g-SPP-2  and g-SPP-3  

i.e. the number of different possibilities in the feasible set is: 𝑃𝑃𝑛𝑛
𝑁𝑁

∏ m𝑖𝑖!
𝑞𝑞
𝑖𝑖=1

� . Each 

algorithm is also of order 𝑂𝑂(𝑁𝑁𝑞𝑞) because the running time of each algorithm is 

proportional to the number of candidate placement locations 𝑁𝑁, and the number of 

sensors to be placed 𝑞𝑞. 

From our analysis, it is evident that the region(s) considered in each of the three 

algorithms is much lesser than the feasible region of the optimization problem in the 

SPP, ensuring desirability of the algorithms for large scale problems within acceptable 
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levels of accuracies.  Of course, the greedy-based algorithms do not guarantee that, 

upon termination, a maximum cover will be found for optimality (See experimental 

results in Section 6.4). However, results can be used to establish acceptable bounds for 

the placement problem. Based on some specified assumptions, we introduce below 

some theoretical insights that govern the performance of the greedy-based algorithms. 

Let: 

𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 Number of covered placement positions by the optimal solution to 

the SPP 

𝑝𝑝𝑖𝑖 Number of newly covered elements at the 𝑖𝑖 𝑡𝑡ℎ iteration (using the 

algorithms)  

𝑞𝑞𝑖𝑖 Total number of covered elements up to the 𝑖𝑖 𝑡𝑡ℎ iteration (using 

the algorithms), 𝑞𝑞𝑖𝑖 = ∑ 𝑝𝑝𝑗𝑗𝑖𝑖
𝑗𝑗=1   

𝑟𝑟𝑖𝑖 Number of uncovered elements after the 𝑖𝑖 𝑡𝑡ℎ iteration, (using the 

algorithms)  𝑟𝑟𝑖𝑖 = 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑞𝑞𝑖𝑖 

𝑘𝑘 Total number of iterations (using the algorithms)  

 Thus, at initialization, 𝑝𝑝0 = 𝑞𝑞0 = 0 and 𝑟𝑟0 = 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂. 

Proposition 6.1: Assuming uniform sonar costs and detection probabilities, the number 

of uncovered placement positions at the 𝑖𝑖 𝑡𝑡ℎ iteration is at most equal to 𝑘𝑘 of the number 

of newly covered placement positions at the (𝑖𝑖 + 1) 𝑡𝑡ℎ iteration , i.e.,𝑟𝑟𝑖𝑖 ≤ 𝑘𝑘(𝑝𝑝𝑖𝑖+1) 

Proof: Optimal solution covers 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 elements at 𝑘𝑘 iterations. In essence, at each 

iteration, there should be some sets in a universal set 𝑈𝑈 whose size is at least equal to the 

1
𝑘𝑘
 of the remaining uncovered elements, i.e., 𝑟𝑟𝑖𝑖

𝑘𝑘
 . If this assertion is false, it will be 

impossible to cover 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 many placement positions at the end of the iterations in 𝑘𝑘 steps. 
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On the contrary, a greedy-based algorithm (such as g-SPP-1  g-SPP-2 and g-SPP-3) at 

each step of the algorithm selects a set that covers the most number of eligible uncovered 

placement positions that are eligible for selection, choosing at least the 1
𝑘𝑘
 of the remaining 

uncovered placement positions (𝑝𝑝𝑖𝑖+1 ≥
𝑟𝑟𝑖𝑖
𝑘𝑘

 ). This completes the proof. 

Proposition 6.2: Assuming uniform sonar costs and detection probabilities, the number 

of un-covered placement positions at the (𝑖𝑖 + 1) 𝑡𝑡ℎ iteration is at most�1 − 1
𝑘𝑘
�
𝑖𝑖+1

 of the 

number of covered placement positions by the optimal solution to the SPP i.e. 

𝑟𝑟𝑖𝑖+1 ≤ �1 −
1
𝑘𝑘
�
𝑖𝑖+1

× 𝐾𝐾𝑂𝑂𝑃𝑃𝑃𝑃 . 

Proof: We prove this proposition using induction.  

For 𝑖𝑖 = 0, 

𝑟𝑟1 ≤ �1 −
1
𝑘𝑘
� × 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂, 

𝑟𝑟1 ≤ 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 −
1
𝑘𝑘
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂. 

From 𝑟𝑟1 = 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑞𝑞1 , 

𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑞𝑞1 ≤ 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 −
1
𝑘𝑘
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂,  

−𝑞𝑞1 ≤ −
1
𝑘𝑘
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 , 

𝑞𝑞1 ≥
1
𝑘𝑘
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 , 
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From 𝑞𝑞1 = 𝑝𝑝1 , 

𝑝𝑝1 ≥
1
𝑘𝑘
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂. 

and rom 𝑟𝑟0 = 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂, 

𝑝𝑝1 ≥
1
𝑘𝑘
𝑟𝑟0.   

The above relationship is also true from proposition 6.1. 

To prove by induction, we assume 𝑟𝑟𝑖𝑖 ≤ �1 − 1
𝑘𝑘
�
𝑖𝑖

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂  is true, and then show that 

𝑟𝑟𝑖𝑖+1 ≤ �1 − 1
𝑘𝑘
�
𝑖𝑖+1

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂  is also true. 

From 𝑟𝑟𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 − ∑ 𝑝𝑝𝐼𝐼
𝐽𝐽=1 , 

𝑟𝑟𝑖𝑖+1 ≤ 𝑟𝑟𝑖𝑖 − 𝑝𝑝𝑖𝑖+1. 

From Proposition 6.1, 

𝑟𝑟𝑖𝑖+1 ≤ 𝑟𝑟𝑖𝑖 −
𝑟𝑟𝑖𝑖
𝑘𝑘

 , 

𝑟𝑟𝑖𝑖+1 ≤ 𝑟𝑟𝑖𝑖 �1 −
1
𝑘𝑘
�. 

From inductive hypothesis, 

𝑟𝑟𝑖𝑖+1 ≤ �1 − 1
𝑘𝑘
�
𝑖𝑖

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂  �1 − 1
𝑘𝑘
�,  

𝑟𝑟𝑖𝑖+1 ≤ �1 −
1
𝑘𝑘
�
𝑖𝑖+1

𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 . 

116 
 



This completes the proof. 

Proposition 6.3: Assuming that a deployment involves the use of sonars with uniform 

costs, each of the greedy-based algorithms (g-SPP-1, g-SPP-2, and g-SPP-3) presented 

can achieve an approximation ratio of (1 − 1/𝑒𝑒) for the sonar placement problem. 

Proof: We prove this proposition with the aid of Proposition 6.2 and ‘Submodularity’, 

a widely discussed concept in combinatorial optimization and a key structure of our 

original placement model formulations. Submodularity conveys an intuitive diminishing 

returns property and guarantees why the greedy-based algorithm finds a nearly optimal 

solution. 

For any sets 𝐴𝐴 and 𝐵𝐵 such that 𝐴𝐴 ⊆ 𝐵𝐵, a set function 𝐹𝐹 is said to be submodular 

(Nemhauser et al., 1978) if 𝐹𝐹(𝐴𝐴 ∪ {𝑘𝑘}) − 𝐹𝐹(𝐴𝐴) ≥ 𝐹𝐹(𝐵𝐵 ∪ {𝑘𝑘}) − 𝐹𝐹(𝐵𝐵). Also, a set 

function 𝐹𝐹 is said to be non-decreasing if 𝐴𝐴 ⊆ 𝐵𝐵 implies that 𝐹𝐹(𝐴𝐴) ≤   𝐹𝐹(𝐵𝐵), for all sets 

𝐴𝐴 and 𝐵𝐵. 

Consider the combinatorial optimization problem: 𝑋𝑋∗ = arg max|𝑋𝑋|≤𝐾𝐾 𝐹𝐹(𝑋𝑋). From 

Nemhauser et al. (1978), given that 𝐹𝐹(𝑋𝑋) is a non-decreasing submodular function and 

that 𝐹𝐹(∅) = 0.  For any 𝐾𝐾 ≥ 1, then the following relationship: 𝐹𝐹�𝑂𝑂𝑂𝑂𝑂𝑂ℎ(𝐾𝐾)� ≥

�1 − 1 𝑒𝑒� �𝐹𝐹�𝑂𝑂𝑂𝑂𝑂𝑂∗(𝐾𝐾)� always hold, 

where: 

𝑂𝑂𝑂𝑂𝑂𝑂∗(𝐾𝐾) Optimal Solution to combinatorial optimization problem 

𝑂𝑂𝑂𝑂𝑂𝑂ℎ(𝐾𝐾) Optimal Solution to combinatorial optimization problem 
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obtained by greedy-based algorithm 

(Since results presented in Biobaku et al., 2015 clearly indicates the assumptions for 

non-decreasing objective function holds in our Sonar placement model, we omit their 

proofs). 

Also, from Proposition 6.2,  𝑟𝑟𝑖𝑖 ≤ �1 − 1
𝑖𝑖
�
𝑖𝑖

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 . 

Given that 𝑟𝑟𝑖𝑖 = 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑞𝑞𝑖𝑖, we have, 

𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑞𝑞𝑖𝑖 ≤ �1 −
1
𝑖𝑖
�
𝑖𝑖

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 , 

𝑞𝑞𝑖𝑖 ≥ 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 − �1 −
1
𝑖𝑖
�
𝑖𝑖

× 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 . 

From series convergence, �1 − 1
𝑖𝑖
�
𝑖𝑖
≈ 1

𝑒𝑒
 , then, 

𝑞𝑞𝑖𝑖 ≥ 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 −
𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂
𝑒𝑒

, 

𝑞𝑞𝑖𝑖 ≥ 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 �1 − 1
𝑒𝑒
�.  

Hence, our greedy-based algorithms can achieve at least an approximation ratio of 

�1 − 1 𝑒𝑒� � with uniform sonar costs. Based on this proposition, we claim that the greedy-

based algorithms can achieve the best performance guarantee that is possible under the 

stated assumption. This completes the proof. 

In comparison with other solution methods (MIP, or other meta algorithms 

search), the algorithms can be easily implemented in large-scale systems due to their low 
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computation complexities. Moreover, in a planning horizon when budget is expected to 

change, other solution approaches (especially those based on fixed multi-stage planning 

algorithms) are most likely to be subject to substantial performance loss when any of 

these model parameters change. On the contrary, the greedy-based algorithms we have 

presented will always achieve an approximation ratio of (1 − 1/𝑒𝑒) for any given budget 

if sonar costs are uniform. 

It should be noted that when different sonar costs are involved, our algorithms do 

not guarantee the theoretical qualities enumerated above. However, slightly more 

complex algorithms that combine the greedy algorithm with partial enumeration, also 

achieves 1 − 1/𝑒𝑒 approximation guarantees by exploiting submodularity. See Sviridenko 

(2004), and Krause and Guestrin (2005). 

6.4 Numerical Results 

After analyzing the computational complexity of the algorithms, we present 

numerical results and runtimes of the algorithms in comparison to solutions obtained 

from a commercial solver (CPLEX) for some problem sizes.  All proposed MIP models 

and algorithms are implemented in GAMS and solved using CPLEX (GAMS 2013). A 

relative tolerance of 3% duality gap is used as a stopping criterion for CPLEX, and all 

computational runs are made on a Linux server equipped with dual 3.00 GHz AMD 

processors (256 GB memory). Computational results presented in this section are based 

on data introduced in Chapter 4. However, only mobile sonars are used in the 

deployment. 
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We used different problem sizes in comparing solutions of our algorithms 

(representative problem sizes that are small enough to be solved exactly using CPLEX). 

In practice, increasing the AOI via adjusting the number of grid size (thus increasing the 

problem size) is open to interpretation. Firstly, increasing the AOI could be considered as 

further dividing subsections of the AOI into smaller sections in order to address non-

homogeneity of these subsections. In the alternate, increasing the AOI could simply 

imply a physical increase in the AOI as a result of covering a larger region for 

surveillance operations. We adopt the latter interpretation in our discussions in this 

section.  

Numerical experiments indicate that with a sparse distribution of sonars in any 

AOI, the results of the algorithms are very close to those obtained from the solver. Due to 

the high cost of sonar deployment, budget limitations in real world applications are 

expected to result into sparse distributions of the sonars within the AOI. This observation 

lays credence to the applicability of our algorithms in solving real world/practical 

problems. For applications requiring non-sparse distribution of the sonars, the algorithms 

will be of great help in establishing good bounds (upper/lower bounds, depending on the 

optimization goal). With increased budget allocations, the execution time of the CPLEX 

solver increases exponentially, making it impracticable to obtain solutions within 

acceptable time limits. It should be noted that for the 25X25 grid case, CPLEX search for 

optimality exceeds 3600 seconds for most budget considerations (Similarly for the 50x50 

case, search for optimality exceeds 7200 seconds for most budget considerations). In 

addition to showing the solution times for each algorithm, figures 6.5, 6.7, and 6.9 also 

shows the overall time if all the algorithms are combined.  
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Figure 6.4: (Equivalent) objective functions vs. available budget-5x5 grid size 

 
Figure 6.5: Solution time (seconds) vs. available budget-5x5 grid size 
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Figure 6.6: (Equivalent) objective functions vs. available budget-25x25 grid size 

 

Figure 6.7: Solution time vs. available budget-25x25 grid size 
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Figure 6.8: (Equivalent) objective functions vs. available budget-50x50 grid size 

 

Figure 6.9: Solution time vs. available budget-50x50 grid size  
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-  

Figure 6.10: Changes (%) in optimality for selected budget availabilities 

Figure 6.10 compares results of our algorithms with optimal solutions returned by 

CPLEX (from Figures 6.4, 6.6 and 6.8, we consider the ‘best’ solutions returned by our 

algorithms) for some selected budgetary allocations. Also, Table 6.4 summarizes results 

of this figure, showing maximum, average and minimum (for only non-zero budget 

allocations) changes in optimality. Both figure and table suggests that our algorithm 

returns ‘better’ solutions as problem size increases. 

Table 6.4: (Maximum, Average and Minimum) Changes in optimality for grid sizes  

Grid Size (Placement node size) 5x5 25x25 50x50 

Maximum Change in optimality (%) 8.4 7.2 6.7 

Average Change in optimality (%) 4.8 4.4 3.9 

Minimum Change in optimality (%) 2.5 2.4 2.1 
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Overall, our results show that with increased AOIs, our algorithms give solutions 

closer to the CPLEX solution. This is because, the increase in the size of the AOI results 

into a sparse distribution of sonars in the AOI, irrespective of budget allocations. This in 

turn, leads to less effects of multiple sonar coverage on the objective function. In 

practice, this observation lends credence to the effectiveness of our algorithms because 

surveillance using underwater sonars involves sparse distribution of sensors due to the 

inhibiting costs of sonar coverage systems and the vast expanse of marine waterways that 

needs to be protected. 

6.5 Conclusion 

In this chapter, we developed evaluation procedures that exploit submodularity to 

significantly reduce the number of sonar-placement location pair locations that need to be 

checked in attaining an optimal solution to the SPP introduced in Chapter 4, thus 

speeding up computation time. Under certain assumptions, we provided approximation 

algorithms that are within (1 − 1/𝑒𝑒) of the optimal global solution. 

Our empirical experiments indicate that each of the simple greedy-based 

algorithms we proposed for optimizing partial coverage provides coverage performance 

that is very close to the optimal solution in problems that are small enough to be solved 

exactly (tractable problems) and far outperforms CPLEX solutions in terms of solution 

time. By extension, comparable performance (even if sub-optimal) is expected in larger 

problems. For the case study solved, each of the algorithms outperforms the CPLEX 

solution in terms of scalability. When grid size is increased beyond 50x50, CPLEX 

solutions are non-tractable, failing to generate a global optimal solution. In contrast, our 

algorithms (g- SPP-1, SPP-2 and g-SPP-3) have been successfully tested up to 100x100 
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grid sizes but these results are not shown in Section 6.4 because non-tractability of 

solutions returned by CPLEX does not permit comparisons of solution quality and 

solution times. 

In comparing all the algorithms, it is evident that g-SPP-1 consistently yields 

better solution than the other two algorithms (g-SPP-2 and g-SPP-3). However, g-SPP-2 

and g-SPP-3 outperforms the former in terms of execution times. Depending on the 

problem parameters, solution quality and solution time varies for g-SPP-2 and g-SPP-3.   
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Chapter 7 

Sonar Placement problem under Uncertainty considerations  

7.1 Introduction 

In prior chapters of this dissertation, we assume, like most optimization problems 

that associated data related to the Sonar placement problem (SPP) are exact. However, 

this assumption could be misleading and may lead decision makers to make inappropriate 

decisions. Errors as a result of not incorporating uncertainties could have significant 

effects on validity of optimal solutions. Hence, uncertainty considerations in model 

formulations could help to guarantee that a decision made as a result of any solution 

(from modelling approach) will be reasonably appropriate and relevant in reality. In our 

case, uncertainty can arise as a result of human errors, measuring errors, changes in 

sensing environments, etc. 

Despite the benefits of uncertainty considerations in any optimization problem, 

some practical considerations have limited their use. Generally, we expect an increase in 

problem complexities related not only to the mathematical formulations but also to the 

algorithms that may be proposed to solve such problems. Also, identifying suitable 

probability distributions to address uncertainties have proved to be difficult in any 

practical application.  

 Several methods and approaches have been adopted to address uncertainties in 

optimization problems. An obvious approach is to replace parameter values subject to 

variability with their average values. While this approach could be valid for the specific 
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data instance, its results are subject to sub-optimality. Another approach is the use of 

Sensitivity Analysis for a ‘what-if’ analysis on problem optimality and feasibility when 

input data are subject to changes. Though useful, the approach doesn’t help to control 

variability in the modelling approach.  

 Perhaps, the three most promising methodologies in addressing uncertainties in 

modelling and formulation are Chance-Constraint programming (C-CP), Stochastic 

Programming (SP), and Robust Optimization (RO). The last two framework 

methodologies have been identified as the two principal methods used to address data 

uncertainty in literature (Bertsimas and Sim, 2003; Poss, 2013; and Pessoa et al., 2015). 

In C-CP (often considered a technique under SP), constraints with at least one 

random coefficient are modeled as probabilistic functions. The probability distributions 

of uncertain coefficients are assumed to be known and the constraints are required to be 

met with a minimum probability. Although particular cases of C-CP models are often 

easy to solve but their reformulations often results into non-linear formulations (Birge 

and Louveaux, 2011) and thus approximate solution techniques are often sought.  

Stochastic Programming (SP) assumes that parameter variability has an accurate 

probabilistic description for computing statistical features (Bertsimas et al. 2011). It uses 

probability distributions to replace model parameters subject to variability and thereafter 

attempts to optimize an expectation with each scenario balanced by an occurrence 

probability (Birge and Louveaux, 2011). In a nutshell, stochastic optimization tries to 

find the optimal nominal design parameters such that under the impact of parameter 

variations around some nominal values, the objective function is optimized in an average 

sense, ensuring that constraints are satisfied with a specified probabilistic guarantee. 
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Literature often credit Dantzig (1965) as the pioneer of SP. Amongst other drawbacks, a 

major pitfall of SP is the determination of an inherent distribution function that 

characterizes an uncertain parameter.  

Compared to SP, the RO is a more recent attempt at addressing uncertainties. In 

general, the approach attempts to compute feasible solutions for a whole range of 

scenarios of the uncertain parameters i.e., rather than finding the solution robust to 

stochastic uncertainty in a probabilistic sense, it constructs a solution that is feasible for 

any realization of parameter variation. RO is very useful in practice, since it is tailored to 

the information at hand, and it leads to computationally tractable formulations (Gorissen 

et al., 2015).Several RO methodologies have been proposed in literature. In this 

dissertation, we focus on the methodology proposed by Bertsimas and Sim (2004), where 

data is assumed to belong to some set without a specific probability distribution. 

Although other approaches such as El Ghaoui et al. (1998) and Ben-Tal and Nemirovski 

(2000) exist, the output models from such approaches are computationally more complex. 

Among several interesting features, the robust framework of Bertsimas and Sim (2004) 

has the advantage of preserving the original problem’s linearity property.  

The RO methodology is well equipped to address variability (uncertainty) in 

optimization problems. The methodology ensures feasibility of all possible scenarios of 

the data within a given uncertainty set. Computing uncertainty sets for robust linear 

constraints requires less information on the parameters and, as long as these sets are 

defined by a conic system of constraints, the resulting optimization problems are 

essentially of the same computational complexity as their deterministic counterparts 

(Ben-Tal et al., 2009, Poss et al., 2013, and Pessoa et al., 2015). As such, the RO 
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methodology becomes most relevant when we only have limited information with less 

detailed structure, such as bounds on the magnitude of the uncertain quantities. 

In this Chapter, we propose and present a robust optimization methodology for 

the uncertain Sonar placement problem (SPP) and develop solution methods to solve the 

resulting model. Although, several data in the SPP could be subject to uncertainty, we 

address uncertainties related to sonar costs and detection probabilities. The RO approach 

used in this Chapter produces model formulations of the same type as the original model 

by maintaining linearity of the original model. 

7.2 Robust Optimization- Bertsimas and Sim’s (2004) formulation 

In this chapter, we say that solution to a problem instance is ‘‘robust” if it is 

insensitive to data variations but within a certain data range. By acceptable standards, the 

robust solution of an optimization problem is feasible for different scenarios of the data; 

hence its solution is not necessarily optimal for any one of them. We base our model 

development on the RO approach proposed by Bertsimas and Sim (2004) where the 

concept of ‘budget of uncertainty’ was first introduced. Their model establishes a 

probabilistic guarantee for robust design that can be computed a priori, that is, as a 

function of the structure and size of uncertainty set. In general, RO presumes that the 

values attained by the uncertain parameters are merely described by a set (often finite or 

convex), without assuming the knowledge of specific probability weights (Pessoa et al., 

2015). 

In relation to our work, ‘the budget of uncertainty ‘can be described as the 

number of sonar placement parameters that are allowed to have variations. If we can 
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establish a valid relationship between placement optimality and uncertainty set, we may 

achieve robust designs that are close to the results by stochastic modeling while avoiding 

complicated stochastic computations. In practice, for an uncertain mixed integer 

programming (MIP) problem with interval data, solving robust counterparts for budgeted 

uncertainty sets is much easier than finding the minmax regret solution (Feizollahi and 

Feyzollahi, 2015) of Stochastic optimization. 

The underlying idea of uncertainty budgeting is to provide a guaranteed model 

performance by manipulating the size of the uncertainty set associated with the particular 

model parameter. The idea essentially addresses the issue of the lack of information 

(valid or adequate) on probabilistic descriptions of parameters subject to uncertainty by 

seeking a probabilistic guarantee for the robust solution, providing a level of flexibility in 

trade-off between robustness and model performance. An important premise behind this 

flexibility is that it is unlikely all uncertain data can attain their worst case values. 

Depending on how conservative a decision maker or modeler is, the level of 

conservativeness (ranging from the most optimistic nominal equivalent with data 

certainties to the most pessimistic robust solution where worst case scenarios are 

expected of uncertain modeling elements) can be controlled. 

Consider a standard nominal linear programming problem: 

 

 

 

Maximize 𝑐𝑐′𝑥𝑥 , 

Subject to 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 , 

 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 . 
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Bertsimas and Sim (2004) assume that data uncertainty only affects elements of 

matrix A and introduced the following parameters and sets: 

𝐽𝐽𝑖𝑖 Set of coefficients in row i (of the matrix 𝐴𝐴) that are subject to uncertainty. 

𝑎𝑎�𝑖𝑖𝑖𝑖 Symmetric and bounded random variable of 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 with values in range 

[𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎�𝑖𝑖𝑖𝑖,𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎�𝑖𝑖𝑖𝑖],  

Γ𝑖𝑖 Parameter (not necessarily integer) that takes values in the interval  [0, |𝐽𝐽𝑖𝑖|] 

Our interests lie in studying situations whereby exact values of 𝑎𝑎𝑖𝑖𝑖𝑖 are unknown 

but are characterized by a symmetric and random variable 𝑎𝑎�𝑖𝑖𝑖𝑖 that belongs to a known 

interval [𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎�𝑖𝑖𝑖𝑖,𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎�𝑖𝑖𝑖𝑖] where 𝑎𝑎𝑖𝑖𝑖𝑖 represents the variable’s nominal value. For each 

uncertain parameter 𝑎𝑎�𝑖𝑖𝑖𝑖, another random variable 𝜂𝜂𝑖𝑖𝑖𝑖 = �𝑎𝑎�𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖�/𝑎𝑎�𝑖𝑖𝑖𝑖 which obeys an 

unknown but symmetric distribution and takes values in [−1 1] is also defined. Also, at 

most Γ𝑖𝑖  coefficients can change from their nominal value �𝑎𝑎�𝑖𝑖𝑖𝑖� to any arbitrary value 

within the interval and this parameter denotes the level of guarantee with respect to data 

uncertainty we desire in our robust model. 

In practice, it is unlikely that all  𝑎𝑎𝑖𝑖𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 will change, thus the aim of the robust 

framework is to protect against all cases such that up to ⌊Γ𝑖𝑖⌋ of these coefficients are 

permitted to change. The methodology has the property that if this assumption holds, then 

the robust solution will be feasible deterministically, and moreover, even if more than 

⌊Γ𝑖𝑖⌋  change, then the robust solution will still be feasible with very high probability 

(Bertsimas and Sim, 2004). 

With the above assumptions and using strong duality, a robust optimization 

equivalent linear formulation of the nominal model is given thus: 
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where 𝑝𝑝𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑗𝑗 and 𝑧𝑧𝑖𝑖 are variables (including dual variables) introduced during the 

transformation process. We refer readers interested in the specifics of the transformation 

to Bertsimas and Sim (2004), where probability bounds are also derived on constraint 

violations. Although uncertainty is not considered in the objective function, it can easily 

be re-modelled as a constraint by introducing an auxiliary variable (See Ben-Tal et al., 

2009).  

7.3 Robust formulation of the Sonar Placement Problem (r-SPP). 

To enable us carry out some analysis on robust formulation of the sonar 

placement problem, we introduce optimization models with optimal values 𝑧𝑧𝑁𝑁𝑁𝑁, 𝑧𝑧𝑅𝑅𝑅𝑅 , 

and 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The function 𝑧𝑧𝑁𝑁𝑁𝑁 is the optimal objective function of the nominal SPP in 

Chapter 4 and 𝑧𝑧𝑅𝑅𝑅𝑅 is its corresponding optimal objective function under uncertainties due 

to cost and detection probabilities of sonars. Also, 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the problem’s objective 

maximize 𝑐𝑐′𝑥𝑥, 

Subject to �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑧𝑧𝑖𝑖Γ𝑖𝑖 + �𝑝𝑝𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐽𝐽𝑖𝑖𝑗𝑗

≤ 𝑏𝑏𝑖𝑖           ∀ 𝑖𝑖 , 

 𝑧𝑧𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎�𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗                                     ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖, 

 −𝑦𝑦𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗                                        ∀ 𝑗𝑗 , 

 𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗                                            ∀ 𝑗𝑗 , 

 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0                                                    ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖, 

 𝑦𝑦𝑗𝑗 ≥ 0                                                     ∀ 𝑗𝑗 ,  

 𝑧𝑧𝑖𝑖 ≥ 0                                                     ∀ 𝑖𝑖 , 
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function using the robust formulation of Bertsimas and Sim (2004) introduced in Section 

7.2. Readers should note that SPP in Chapter 4 can be easily re-formulated as a 

maximization problem as done in Chapter 5. For ease of analysis (in the model 

corresponding to 𝑧𝑧𝑁𝑁𝑁𝑁) , we only introduce a decision variable 𝑥𝑥, an objective function 

and the model constraint subject to uncertainty. Variables and parameters in the models 

are as in standard optimization formulations. The model corresponding to 𝑧𝑧𝑅𝑅𝑅𝑅 is 

considered a worst case scenario and is described in Soyster (1973). This is because it 

strictly mandates all constraints related to uncertainty to be feasible without any 

violation. In the model corresponding to 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, if Γ is large (the number of uncertain 

parameters in a constraint involving an uncertain parameter), the entire variation in all 

parameters might be achieved, and this is equivalent to the worst case scenario described 

by Soyster (1973). If it is small, simultaneous large variations in many parameters are 

excluded.  

(𝑧𝑧𝑁𝑁𝑁𝑁) max�𝑐𝑐′𝒙𝒙�𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏 ∀ 𝑗𝑗,𝑥𝑥𝑗𝑗 ≥ 0 ∀ 𝑗𝑗. � . 

(𝑧𝑧𝑅𝑅𝑅𝑅) 
max�𝑐𝑐′𝒙𝒙�

�𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑗𝑗 + �𝑎𝑎�𝑠𝑠𝑠𝑠𝑦𝑦𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑠𝑠𝑗𝑗

≤ 𝑏𝑏𝑠𝑠 ∀ 𝑠𝑠;−𝑦𝑦𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗 ∀ 𝑗𝑗;

𝑥𝑥𝑗𝑗 ≥ 0 ∀ 𝑗𝑗;  𝑦𝑦𝑗𝑗 ≥ 0 ∀ 𝑗𝑗.
�. 

(𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 

max

⎝

⎜
⎜
⎜
⎛
𝑐𝑐′𝒙𝒙

�

�
�𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑗𝑗 + 𝑧𝑧𝑠𝑠Γ𝑠𝑠 + �𝑝𝑝𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑠𝑠𝑗𝑗
≤ 𝑏𝑏𝑠𝑠 ∀ 𝑠𝑠;

𝑧𝑧𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑠𝑠 ≥ 𝑎𝑎�𝑠𝑠𝑠𝑠𝑦𝑦𝑗𝑗 ∀ 𝑠𝑠, 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠; 
 −𝑦𝑦𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗 ∀ 𝑗𝑗 ;𝑥𝑥𝑗𝑗 ≥ 0 ∀ 𝑗𝑗;𝑝𝑝𝑠𝑠𝑠𝑠 ≥ 0 ∀ 𝑠𝑠, 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠;

𝑦𝑦𝑗𝑗 ≥ 0 ∀ 𝑗𝑗; 𝑧𝑧𝑠𝑠 ≥ 0 ∀ 𝑠𝑠. ⎠

⎟
⎟
⎟
⎞

. 

 

As highlighted in Section 7. 2, the justification for Bertsimas and Sim’s (2004) 

approach is that worst case scenarios are very unlikely and even if more than ⌊𝛤𝛤⌋change, 
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then the robust solution will be feasible with very high probability. Since the robust 

transformation only introduces linear constraints, the approach is applicable to MIP. This 

is because the integrality constraints are still preserved after transformation. 

Proposition 7.1 Consider the sonar placement problem SPP with uncertain budget and 

detection probabilities, the robust counterpart of the problem deploying only mobile 

sonars is formulated by introducing new variables 𝑣𝑣, 𝑞𝑞, 𝑟𝑟; replacing constraints (4.3) and 

(4.13) in Model 4.1 with constraints (7.1) and (7.4) respectively; and introducing new 

constraints (7.2-7.3) and (7.5-7.7): 

�𝑐𝑐𝑏𝑏 .��𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏

𝑘𝑘𝑖𝑖 𝑏𝑏

+ 𝑣𝑣1𝑡𝑡 × Γ1𝑡𝑡 + � 𝑞𝑞1𝑠𝑠𝑠𝑠
𝑠𝑠∈ 𝐽𝐽𝑡𝑡

≤ 𝐵𝐵𝑡𝑡    ∀ 𝑡𝑡 , (7.1) 

𝑣𝑣1𝑡𝑡 + 𝑞𝑞1𝑠𝑠𝑠𝑠 ≥ 𝑐̂𝑐𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑟𝑟1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∀ 𝑠𝑠 ∈  𝐽𝐽𝑡𝑡, 𝑡𝑡 ,  (7.2) 

−𝑟𝑟1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 ≤ 𝑟𝑟1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∀ 𝑏𝑏, 𝑖𝑖,𝑘𝑘, 𝑡𝑡 , (7.3) 

−𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 −�𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 ln(1 − 𝑝𝑝𝑏𝑏𝑧𝑧)

𝑏𝑏𝑧𝑧
+ 𝑣𝑣2  𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 × Γ2𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 

+ � 𝑞𝑞2 𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑠𝑠,𝑡𝑡
𝑠𝑠∈ 𝐽𝐽𝑡𝑡

≥ 0    ∀ 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 , 

(7.4) 

𝑣𝑣2 𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 + 𝑞𝑞2  𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑠𝑠,𝑡𝑡 ≥ 𝑟𝑟2𝑏𝑏𝑏𝑏𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖ln(1 − 𝑝̂𝑝𝑏𝑏𝑧𝑧)           ∀ 𝑏𝑏𝑧𝑧 , 𝑠𝑠 ∈  𝐽𝐽𝑡𝑡, 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑡𝑡 , (7.5) 

−𝑟𝑟2𝑏𝑏𝑏𝑏𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 ≤ 𝑟𝑟2𝑏𝑏𝑏𝑏𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖  ∀ 𝑏𝑏, 𝑖𝑖, 𝑘𝑘, 𝑡𝑡 , (7.6) 

𝑞𝑞1𝑠𝑠𝑠𝑠 , 𝑟𝑟1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑣𝑣1𝑡𝑡 ≥ 0; 𝑞𝑞2 𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑠𝑠,𝑡𝑡, 𝑟𝑟2𝑏𝑏𝑏𝑏𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑣𝑣2 𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀ 𝑠𝑠 ∈  𝐽𝐽𝑡𝑡 , 𝑖𝑖,𝑘𝑘, 𝑏𝑏, 𝑏𝑏𝑧𝑧 , 𝑡𝑡 . (7.7) 

where, 

Γ1 Robust parameter for sonar cost 

Γ2 Robust parameter for sonar detection probability 
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𝑐̂𝑐𝑏𝑏 Nominal sonar cost parameter 

𝑝̂𝑝𝑏𝑏𝑧𝑧 Nominal detection probability parameter 

Proof: (See Bertsimas and Sim, 2004)  

It should be noted that for the cost parameter 𝑐̃𝑐𝑏𝑏 subject to uncertainty, we use the 

interval range [𝑐𝑐𝑏𝑏 − 𝑐̂𝑐𝑏𝑏 , 𝑐𝑐𝑏𝑏 + 𝑐̂𝑐𝑏𝑏] as presented in Section 7.2. However, for the detection 

probability parameter, 𝑝𝑝�𝑏𝑏𝑧𝑧 subject to uncertainty, the interval range [𝑝𝑝𝑏𝑏𝑧𝑧 − 𝑝̂𝑝𝑏𝑏𝑧𝑧 ,𝑝𝑝𝑏𝑏𝑧𝑧] is 

used to avoid infeasibilities (possibility of having 𝑝𝑝�𝑏𝑏𝑧𝑧 > 1). In practical applications, this 

means we assume detection probabilities in manufacturers’ specifications to be upper 

sensing limits. Moreover, as indicated in Chapter 4, we expect detection probabilities to 

be less than 100%. In addition, the equality sign in the nominal formulation (See 

constraints 4.13 in Chapter 4) is changed to an inequality to avoid infeasibilities. It should 

also be noted that similar introduction of new variables and replacement of constraints 

are applicable when static sonars are considered in the deployment. 

Proposition 7.2 For every realization of 𝛤𝛤1 and 𝛤𝛤2, 

𝑧𝑧𝑅𝑅𝑅𝑅 ≤ 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛤𝛤1,𝛤𝛤2) ≤ 𝑧𝑧𝑁𝑁𝑁𝑁 

Proof: The robust formulation of the nominal formulation becomes redundant whenever 

these two conditions occur simultaneously: 

1. Γ1 coincides with the cardinality of the random set representing cost of sonars  

2. Γ2 coincides with the cardinality of the random set representing detection 

probability coefficients. 

From above, it is evident that 𝑧𝑧𝑅𝑅𝑅𝑅 ≤ 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛤𝛤1,𝛤𝛤2) . It should be noted that if 

𝛤𝛤1 = 𝛤𝛤2 = 0 (for all constraints affected by uncertainty), 𝑧𝑧𝑁𝑁𝑁𝑁 = 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛤𝛤1,𝛤𝛤2). Likewise, 
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uncertainty considerations in the theory of robust formulation indicates that 𝑧𝑧𝑅𝑅𝑅𝑅 ≤ 𝑧𝑧𝑁𝑁𝑁𝑁 .  

Hence, it follows that  𝑧𝑧𝑅𝑅𝑅𝑅 ≤ 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛤𝛤1,𝛤𝛤2) ≤ 𝑧𝑧𝑁𝑁𝑁𝑁. This completes the proof. 

Proposition 7.3 As 𝛤𝛤1 and/or 𝛤𝛤2 increase, the optimal value of function 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛤𝛤1,𝛤𝛤2) is 

monotonically non-increasing. 

Proof: Select 𝛤𝛤1′𝑡𝑡,𝛤𝛤2
′
𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡,𝛤𝛤1

′′
𝑡𝑡,𝛤𝛤2

′′
𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 such that 𝛤𝛤1′𝑡𝑡 ≤ 𝛤𝛤1′′𝑡𝑡 and 𝛤𝛤2′𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 ≤ 𝛤𝛤2′′𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 

For any sonar deployment, the feasible region of the robust formulation using 𝛤𝛤1′𝑡𝑡 and 

𝛤𝛤2′𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡is no smaller than using 𝛤𝛤2′𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡 and 𝛤𝛤2′′𝑖𝑖,𝑘𝑘,𝑏𝑏,𝑡𝑡. Thus, as 𝛤𝛤1  and/or 𝛤𝛤2 increases in 

component values, the function  zRFBS(𝛤𝛤1,𝛤𝛤2) is non-increasing. This completes the 

proof. 

Proposition 7.4 In any deployment scheme involving both static and mobile sonars, the 

minimum number of sonars deployed under any period 𝑡𝑡 is� 𝐵𝐵
𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏(𝑐𝑐𝑏𝑏+𝑐𝑐̂𝑏𝑏)�, and its 

maximum number is � 𝐵𝐵
𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎(𝑐𝑐𝑎𝑎−𝑐𝑐𝑎̂𝑎)� (See Chapter 4 for description of model variables and 

parameters). 

Proof: For any sonar placement (optimal or otherwise) in grid (𝑖𝑖,𝑘𝑘) during deployment 

period 𝑡𝑡 involving both static and mobile sonars, 

𝑐𝑐𝑎𝑎.𝑋𝑋𝑟𝑟𝑎𝑎 ≤ 𝑐𝑐𝑏𝑏 .𝑌𝑌𝑠𝑠𝑏𝑏𝑏𝑏   ∀ 𝑟𝑟 ∈ (𝑖𝑖,𝑘𝑘), 𝑠𝑠 ∈ (𝑖𝑖,𝑘𝑘)\𝑟𝑟, 𝑡𝑡,𝑎𝑎, 𝑏𝑏 

For any budget allocation under uncertainty, the minimum number of sonars is 

deployed in the worst case scenario (i.e. with optimization model corresponding to 𝑧𝑧𝑅𝑅𝑅𝑅, 

or with optimization model corresponding to 𝑧𝑧𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 when 𝛤𝛤 is considerably large) and 

due to different sonar sensing specifications, minimum cost of the different sonar types 
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(Static and Mobile) are min𝑎𝑎 𝑐̃𝑐𝑎𝑎 and min𝑏𝑏 𝑐̃𝑐𝑏𝑏 respectively, where 𝑐̃𝑐 indicates random 

parameter 𝑐𝑐 subject to uncertainty and we assume that (𝑐̃𝑐𝑏𝑏 = 𝑐𝑐𝑏𝑏 + 𝑐̂𝑐𝑏𝑏) > (𝑐̃𝑐𝑎𝑎 = 𝑐𝑐𝑎𝑎 + 𝑐̂𝑐𝑎𝑎) 

and (𝑐̃𝑐𝑏𝑏 = 𝑐𝑐𝑏𝑏 − 𝑐̂𝑐𝑏𝑏) > (𝑐̃𝑐𝑎𝑎 = 𝑐𝑐𝑎𝑎 − 𝑐̂𝑐𝑎𝑎) under all possible scenarios. It should be noted that 

𝐵𝐵 × � 𝐵𝐵
min𝑏𝑏(𝑐𝑐𝑏𝑏+𝑐𝑐̂𝑏𝑏) − � 𝐵𝐵

min𝑏𝑏(𝑐𝑐𝑏𝑏+𝑐𝑐̂𝑏𝑏)�� < (𝑐𝑐𝑏𝑏 + 𝑐̂𝑐𝑏𝑏) ∀ 𝑏𝑏 and 

𝐵𝐵 × � 𝐵𝐵
min𝑎𝑎(𝑐𝑐𝑎𝑎−𝑐𝑐𝑎̂𝑎) − � 𝐵𝐵

min𝑎𝑎(𝑐𝑐𝑎𝑎−𝑐𝑐𝑎̂𝑎)�� < (𝑐𝑐𝑎𝑎 − 𝑐̂𝑐𝑎𝑎) ∀ 𝑎𝑎 , where  𝐵𝐵 × � 𝐵𝐵
min𝑏𝑏(𝑐𝑐𝑏𝑏+𝑐𝑐̂𝑏𝑏) −

� 𝐵𝐵
min𝑏𝑏(𝑐𝑐𝑏𝑏+𝑐𝑐̂𝑏𝑏)�� and 𝐵𝐵 × � 𝐵𝐵

min𝑎𝑎(𝑐𝑐𝑎𝑎−𝑐𝑐𝑎̂𝑎) − � 𝐵𝐵
min𝑎𝑎(𝑐𝑐𝑎𝑎−𝑐𝑐𝑎̂𝑎)�� are portions of the budget left un-

utilized because these dollar equivalents are not enough to procure additional sonars. This 

completes the proof. 

Proposition 7.5 Consider fixed robust parameters 𝛤𝛤1 and 𝛤𝛤2  for any solution 𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌) 

that deploys only mobile sonars and let 𝜂𝜂1 and 𝜂𝜂2 represent the symmetric random 

variable introduced in Section 7.2 for sonar cost and detection probabilities respectively. 

Then, for integer-valued  𝛤𝛤1 and 𝛤𝛤2, a worst-case scenario for 𝑌𝑌 can be found when 

 𝜂𝜂1 = 1 for the largest values of 2𝑐̂𝑐𝑏𝑏𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 and 𝜂𝜂2 = −1 for the largest value of 𝑝̂𝑝𝑏𝑏𝑧𝑧 ×

𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡. For other values of 𝑐̃𝑐𝑏𝑏 and 𝑝𝑝�𝑏𝑏𝑧𝑧 in this scenario,𝜂𝜂1 = 𝜂𝜂2 = 0.  

Proof:  We note that while interval length of uncertainty range in 𝑐̃𝑐𝑏𝑏 is2𝑐̂𝑐𝑏𝑏, its equivalent 

in p�bz is𝑝̂𝑝𝑏𝑏𝑧𝑧. Since  𝑊𝑊𝑖𝑖𝑖𝑖
𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 ≥ 𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 ≥ 0 (Remember 𝑌𝑌𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 is binary and 𝑊𝑊𝑖𝑖𝑖𝑖

𝑏𝑏,𝑏𝑏𝑧𝑧,𝑡𝑡 is an 

integer) for all realizations (scenarios) of the robust solution. Then 𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌) is a non-

decreasing function of the uncertainty sets 𝑐̃𝑐𝑏𝑏 and 𝑝𝑝�𝑏𝑏𝑧𝑧 for given protection levels Γ1 and 

Γ2 i.e. 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐̃𝑏𝑏,𝑝𝑝�𝑏𝑏𝑧𝑧(𝑌𝑌) ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐̂𝑏𝑏,𝑝𝑝�𝑏𝑏𝑧𝑧(𝑌𝑌). Hence, there exists an extreme point of 𝜂𝜂1𝑌𝑌 and 𝜂𝜂2𝑌𝑌  

such that ∑ 𝜂𝜂1𝑌𝑌𝐽𝐽 = Γ1 , ∑ 𝜂𝜂2𝑌𝑌𝐽𝐽 = Γ2 , and 𝜂𝜂1𝑌𝑌 and 𝜂𝜂2𝑌𝑌 make up the worst case scenario for 𝑌𝑌 

that optimizes value of 𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)  over protection levels Γ1 and Γ2. For integer values of 
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protection levels, ⌊Γ⌋ = Γ; Hence, for other 𝜂𝜂1𝑌𝑌 and 𝜂𝜂2𝑌𝑌, we have values attaining 0.  This 

completes the proof. 

7.4 Modification of g-SPP (Chapter 6) for uncertainty considerations 

Our goal in this section is to propose an approach to address data uncertainty in 

the algorithms introduced in Chapter 6. We aim to adapt the greedy –based algorithms in 

a very natural way to take robustness into account. Experimental results from Chapter 6 

indicate that solutions for g-SPP3 are often dominated by g-SPP1 and g-SPP2. Hence, 

we exclude developing an equivalent robust version of the former algorithm and present 

robust adaptations of the latter algorithms in Sections 7.4.1-7.4.2. 

7.4.1 Robust adaptation of g-SPP1 

Recall from Section 6.2 of Chapter 6 that 𝑑𝑑𝑚𝑚 is the dollar cost of available sonar 

𝑚𝑚 and 𝑟𝑟𝑚𝑚𝑐𝑐  is the number of sonar 𝑚𝑚 in any combination 𝑒𝑒 of sonar types. Since we now 

deal with uncertain 𝑑𝑑�𝑚𝑚, with values in the range [𝑑𝑑𝑚𝑚 − 𝑑̂𝑑𝑚𝑚, 𝑑𝑑𝑚𝑚 + 𝑑̂𝑑𝑚𝑚], we have a 

situation whereby any combination 𝑒𝑒 of sonar types that gives the minimum un-expended 

budget might become infeasible. To address this issue, we note that � 𝐵𝐵
�𝑑𝑑𝑚𝑚−𝑑𝑑�𝑚𝑚�

� >

� 𝐵𝐵
�𝑑𝑑𝑚𝑚+𝑑𝑑�𝑚𝑚�

� ,∀ 𝑑̂𝑑𝑚𝑚 > 0. Since value of 𝑟𝑟𝑚𝑚𝑒𝑒  for any sonar type is bounded by 𝑟𝑟𝑚𝑚𝑒𝑒 ≤

� 𝐵𝐵
�𝑑𝑑𝑚𝑚−𝑑𝑑�𝑚𝑚�

� and 𝑟𝑟𝑚𝑚𝑒𝑒 ≤ � 𝐵𝐵
�𝑑𝑑𝑚𝑚+𝑑𝑑�𝑚𝑚�

� for the most optimistic and pessimistic scenario 

respectively. Thus, 0 ≤ 𝑟𝑟𝑚𝑚𝑒𝑒 ≤ � 𝐵𝐵
�𝑑𝑑𝑚𝑚+𝑑𝑑�𝑚𝑚�

� ≤ � 𝐵𝐵
�𝑑𝑑𝑚𝑚−𝑑𝑑�𝑚𝑚�

� i.e. the number of sonars to be 

deployed in any combination ranges from 0 (none) to� 𝐵𝐵
�𝑑𝑑𝑚𝑚−𝑑𝑑�𝑚𝑚�

�. 
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In the robust counterpart of the algorithm, we need to check feasibility of these 

combinations. Thus, we slightly modify Step 1 of the algorithm (See Chapter 6). After 

computing un-expended budget for each combination and sorting in decreasing order 

according to this metric, we then iteratively select the combination at the top of this list 

that doesn’t violate any of the constraints in the robust model. We represent the set of 

these combinations as 𝐺𝐺 and the combination at the top of the list as 𝑔𝑔’ and assign 

𝑟𝑟1: = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘,𝑡𝑡)∈𝑔𝑔’  as the solution of this procedure. Figure 7.1 shows the 

pseudocode used to accomplish this procedure. 

While |𝐺𝐺| > 0 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑔𝑔’ ≔ first combination in ordered list 𝐺𝐺;  
Set 𝐴𝐴𝑒𝑒∗ ≔ 𝐴𝐴𝑒𝑒∗ ∪ 𝑔𝑔′ and do Step 3 in g-SPP1 
 If 𝑔𝑔’ is not feasible in robust model then 

𝐺𝐺: = 𝐺𝐺\𝑔𝑔’; 𝐴𝐴𝑒𝑒∗ = ∅; 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
 Else: 
  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡         …………..Combination 𝑔𝑔’ is chosen 
End While 

Figure 7.1: Pseudocode for robust adaptation of Step 3 in g-SPP1 

In addition, it is possible that for some combinations 𝑒𝑒 that are infeasible with the 

robust model, a subset of the sonars in the combination can still be feasible. Thus, we 

establish a procedure that also ranks the sonars making up the combination and then 

replace (if possible) the last few sonar(s) in the list with alternate sonars such that 

feasibility is ensured. Thus we carry out the following steps if 𝑔𝑔′ is infeasible: 

i. Check metric 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
 and rank sonar type(s) that constitutes elements in 𝑔𝑔′(including 

the number) based on metric 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
.  

ii. Deploy eligible sonar-Placement pair using metric, ensuring only sonars in 

ordered list of 𝑔𝑔′are eligible for selection.  
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iii. After deployment of each sonars in this list, check for robust feasibility. Stop and 

exclude currently eligible sonar whenever feasibility is violated. Let set 𝐴𝐴 

represent sonar type-Placement position pair obtainable from this procedure 

iv. Now consider the original ordered list of metric 
𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑑𝑑𝑚𝑚
 and attempt to allocate sonar-

Placement pair (Check for robust feasibility in each attempt. If feasibility fails, 

discard sonar-Placement position pair under consideration and move to next pair 

on the list. Continue until nominal budget is expended or none of the pair is robust 

feasible. Return set 𝐴𝐴′ as the sonar type-Placement position pair obtainable from 

this procedure 

v. Set allocation 𝐴𝐴 = 𝐴𝐴 ∪ 𝐴𝐴′. This placement is robust feasible. Return 𝑟𝑟2 =

∑ 𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘,𝑡𝑡)∈𝐴𝐴  

vi. Afterwards, we chose the best solution from 𝑟𝑟1: = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑚𝑚

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘,𝑡𝑡)∈𝑔𝑔’  and 

𝑟𝑟2 = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)∈𝐴𝐴  

Figure 7.2 shows the pseudocode used in a robust adaptation of all steps in g-SPP, 

including the above procedure. 

7.4.2 Robust adaptation of g-SPP2 

In g-SPP2, we simply include a feasibility check for the robust problem when 

each additional sonar type-Placement position pair is chosen. Figure 7.3 shows the 

pseudocode used to accomplish this procedure. 
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r1=r2=0; 𝐴𝐴𝑒𝑒∗ = ∅; 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;---- 𝑐𝑐𝑠𝑠-Cost of sonar 𝑠𝑠 
While |𝐺𝐺| > 0 AND 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓; 
𝑔𝑔’ ≔ first combination 𝑒𝑒 in ordered list 𝐺𝐺;  
Do Step 3 in g-SPP1 
 If 𝑔𝑔’ is not feasible in robust model, then 

𝑔𝑔’(𝑖𝑖): =ordered sonar types in  𝑔𝑔’; 1 ≤ 𝑖𝑖 ≤ |𝑔𝑔’|;𝑔𝑔’(1): =First element 
(sonar) at the top of ordered list 𝑔𝑔’; 𝑖𝑖 = 1, 𝐴𝐴 = ∅ 
While 𝑖𝑖 ≤ |𝑔𝑔’|  

Do Step 3 in g-SPP1 using sonar𝑔𝑔’(𝑖𝑖). Identify the 𝑔𝑔’(𝑖𝑖)-
Placement position pair chosen, 𝐴𝐴(𝑖𝑖) and check for robust 
feasibility. 

  If feasible then 
   𝐴𝐴 = 𝐴𝐴 ∪ 𝐴𝐴(𝑖𝑖) 

    End If 
   𝑖𝑖 = 𝑖𝑖 + 1; 

End While  
Compute expended budget for 𝐴𝐴, 𝑏𝑏(𝐴𝐴) and set 𝑞𝑞 = 𝐵𝐵 − 𝑏𝑏(𝐴𝐴) 
Loop (sonar type 𝑠𝑠,  
  While 𝑞𝑞 ≥ 𝑐𝑐𝑠𝑠 , 
  Repeat Step 3 in g-SPP1 without recourse to𝑔𝑔’. Identify the sonar type-
Placement position pair chosen, 𝐴𝐴′and check for robust feasibility. 
 If feasible then 
   𝐴𝐴 = 𝐴𝐴 ∪ 𝐴𝐴′; 𝑞𝑞 = 𝑞𝑞 − 𝑐𝑐𝑠𝑠 

   End If 
                             End While 
                        End Loop. 

Return 𝑟𝑟2(𝑔𝑔′): = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟2,∑ 𝑣𝑣𝑖𝑖,𝑘𝑘𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)∈𝐴𝐴 ) and track its corresponding 
sonar-Placement Position pairs. 
Set 𝑟𝑟2: = max𝑔𝑔′ 𝑟𝑟2(𝑔𝑔′) and track its corresponding sonar-Placement 
Position pairs. 

 
              𝐺𝐺: = 𝐺𝐺\𝑔𝑔’;   
 Else: 
  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔’ 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)           
************(i.e. Combination 𝑔𝑔’ is chosen)********* 
  Return metric 𝑟𝑟1: = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)∈𝑔𝑔’  
 
            End If          
End While 
Return 𝑂𝑂𝑂𝑂𝑂𝑂1 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟1, 𝑟𝑟2) and track its corresponding sonar-Placement Position pairs. 
 

Figure 7.2: Pseudocode for robust adaptation of all steps in g-SPP1 
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𝐵𝐵 =  ∅ 
Do Step 4 (g-SPP2). Identify the sonar type-Placement position pair chosen (in each 
iteration), 𝐵𝐵′and check for robust feasibility. 

If feasible then 
𝐵𝐵 = 𝐵𝐵 ∪ 𝐵𝐵′ 

 Else: 
  𝐵𝐵 =  𝐵𝐵 ∪ ∅ 
Return 𝑂𝑂𝑂𝑂𝑂𝑂2 = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑘𝑘)∈𝐵𝐵  and track its corresponding sonar-Placement Position 
pairs. 

Figure 7.3: Pseudocode for robust adaptation of all steps in g-SPP2 

7.5 Numerical Results and Analysis  

In this section, we present numerical results and runtimes of the robust 

adaptations of the algorithms presented in Chapter 6.  Like prior chapters, models and 

algorithms are implemented in GAMS and solved using CPLEX (GAMS 2013). All 

MIPs are solved within a relative tolerance of 3% duality gap, and all computational runs 

are made on a Linux server equipped with dual 3.00 GHz AMD processors (256 GB 

memory). Computational results presented in this section are based on data introduced in 

Chapter 4.  Like Chapter 6, only mobile sonars are used in the deployment. 

In our numerical experiments, we used the same value of parameter Γ in all the 

affected robust constraints. Uncertainty was modeled assuming that both budget and 

detection probability parameters could vary within a maximum of 5%, 10%, and 15% of 

their nominal values. We also considered parameter Γ to take values between 0 (nominal 

case) and 200 (worst case) in the specific instance we consider for both sources of 

uncertainties. Under these assumptions, we determined the value of Γ using the 

theoretical bounds introduced in Bertsimas and Sim (2004). With a visual basic script 

embedded in a spreadsheet, we determined Γ to be 90. Choosing Γ𝑖𝑖 = 80  satisfies the 

theoretical bound when model parameters subject to uncertainty (budget and detection 
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probability parameters) are within a maximum of 5% and 10%. Likewise, Γ𝑖𝑖 = 90 

suffices to satisfy the theoretical bound when the parameters are within 15% of their 

nominal values. Similar trend is observed for other budget considerations. However, for 

convenience, we set Γ𝑖𝑖 = 90 in all of our experiments in the chapter. The theoretical 

bound used to determine our choice of Γ is presented in Appendix II. In comparison to 

the nominal problem, this model is larger. However, it is still a linear program.  

Of course, robust solutions are only guaranteed to be feasible when Γ attains its 

maximum value of 200, giving a possibility that for some scenarios the solution might be 

infeasible for other values of Γ between 0 and 200. However, the theoretical bound used 

to compute Γguarantees that the probability of a constraint violation is less than 1% 

(Bertsimas and Sim, 2004). Hence, for a large scale problem such as the one considered 

in this Chapter, feasibility analysis of robust solutions is unnecessary. Figures 7.4-7.9 

show numerical results and runtimes of the robust adaptations of the algorithms as we 

varied available budget for different problem sizes. Since the procedure adopted in the 

robust adaptation continually checks for feasibility, results are not necessarily monotonic 

non-decreasing.  

Our approach was tested to as much as 100x100 grid size and we show results 

only for 5x5, 25x25, and 50x50 grid problem sizes. The problem size has a large impact 

on solution run times and generally increases as problem size increases. Also, as problem 

size increases, objective function increases only slightly for all budget limitations. This is 

because same resources (sonars) are available for any problem size.  
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Figure 7.4: (Equivalent) objective functions vs. available budget-5x5 grid size 

 

Figure 7.5: Solution time vs. available budget-5x5 grid size 
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Figure 7.6: (Equivalent) objective functions vs. available budget-25x25 grid size 

 

Figure 7.7: Solution time vs. available budget-25x25 grid size 
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Figure 7.8: (Equivalent) objective functions vs. available budget-50x50 grid size 

 

Figure 7.9: Solution time vs. available budget-50x50 grid size 
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 Figures 7.10-7.12 compare results of our robust adaptation with deterministic 

optimal solutions returned by CPLEX for some selected budgetary allocations. Also, 

Table 7.1 summarizes these percentage deviations for all the variabilities, showing 

maximum, average and minimum (for only non-zero budget allocations) changes in 

optimality. As expected, changes from optimal values increase as uncertain parameters 

deviate from their nominal values. However, no specific claim can be made on behavior 

of deviations from CPLEX optimal values as problem size changes. A plausible reason 

for this is that since the robust adaptation regularly checks for feasibility before accepting 

a solution, inconsistent changes associated with optimal values should be expected. 

Results from the nominal case using our algorithms follow similar trend, albeit with 

better results. 

 

Figure 7.10: Robust adaptation solutions vs. CPLEX deterministic optimal solutions 
                     Changes (%) in optimality for selected budget availabilities (5x5 grids)  
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Figure 7.11: Robust-adaptation solutions vs. CPLEX deterministic optimal solutions 
                        Changes (%) in optimality for selected budget availabilities (25x25 grids)  

 

 

Figure 7.12: Robust-adaptation solutions vs. CPLEX deterministic optimal solutions 
                        Changes (%) in optimality for selected budget availabilities (50x50 grids)  
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Table 7.1: Summary of Changes in optimality for problem sizes 

Grid Size (Placement node size) 5x5 25x25 50x50 

Maximum Change in optimality (%) 43.9 46.4 37.2 

Average Change in optimality (%) 22.2 23.1 20.4 

Minimum Change in optimality (%) 5.7 4.9 10.4 

 

7.6 Conclusion 

 In this Chapter, we applied Γ -robustness to the sonar placement problem SPP 

with uncertain budget and detection probabilities. We proposed a MILP re-formulation of 

the SPP subject to parameterized levels of uncertainty using robust optimization.  This 

robust approach limits the number of uncertain coefficients by a robustness parameter Γ. 

The framework combines linear programming approach of Soyster (1973) and also 

provides the possibility to control the level of conservatism in the nature of the data 

subject to uncertainty. Robust optimization addresses a need to hedge against uncertainty, 

and these uncertainties are bound to be of importance in any practical application. 

Moreover, most of our model’s parameters are based on expert judgement (mostly 

manufacturer specifications) or incomplete source data and these data are subject to 

fluctuations during the years after deployment. 

Although the basic motivation of using the robust optimization approach we 

presented in this Chapter is the lack of statistical knowledge about uncertain parameters 

in the SPP model, the methodology is also applicable when the probability distributions 

of these parameters are also known because solving robust counterparts of the model is 
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almost always easier than solving its non-convex stochastic or chance-constrained 

equivalent. A sacrifice in over-conservatism of the optimal solutions can help to arrive at 

acceptable solutions without a precise knowledge of probability distributions. To suit 

decision makers’ preferences, this level of conservatism can also be adjusted as desired. 
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Chapter 8 

Summary and Future Work 

This dissertation focusses on ensuring the integrity of maritime assets and 

infrastructures.  In this chapter, we present a summary of the dissertation and suggest 

future studies to extend and improve the current methodologies, models, and results of 

the studies. 

To address protection of maritime assets, Chapter 3 of the dissertation 

concentrated on the development of a framework for risk-based shipping of LNG vessels. 

We found that unlike the maritime transportation of other hazard materials such as crude 

oil, the existing safety records of LNG vessels have been taken for granted and risk 

consideration in the transportation of LNG vessels are non-existent in literature. To the 

best of our knowledge, our methodology is the first in literature that focused on 

developing quantitative risk-based approach in the optimal scheduling of LNG vessels. 

Taking into consideration the disposition of a decision maker towards cost and risk 

measures, the methodology determines optimal cargo delivery schedules between 

liquefaction and re-gasification terminals. Results and discussions on a sample case study 

were also provided. 

Using surveillance measures, Chapters 4-7 addressed the protection of maritime 

infrastructures such as waterways, harbors, jetties, etc. In Chapter 4, we introduced the 

sonar placement problem (SPP), introduced an alternate grid system for sonar 

deployment, and formulated an MIP bi-objective optimization model to solve the 
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problem within a periodic deployment. Amongst others, we observed that our sonar 

placement methodology not only improves the objective functions but also permits other 

regions in the area of interest which may never have been covered by sonars (due to 

budgetary constraints) to be eligible for coverage at other periods.  

To address the influence of an opposing decision maker with counter-objectives 

to the desire of a decision maker (System Planners), we introduce in Chapter 5, a 

fortification methodology whereby interactions between these two agents affects the 

modeling of the SPP problem addressed in Chapter 4. Using a multi-level optimization 

approach, we presented a tri-level optimization model and an algorithm to solve the SPP 

where optimal partial coverage is desired. Typically, a game-theoretic approach is often 

adopted in a problem of this nature where competing rational agents with conflicting 

interests are the decision makers. In comparison to a game-theoretic based approach 

where only two levels of interface relationships (whether collaborative or non-

collaborative) are considered in a strategic planning framework, our fortification model 

produces a superior protection plan because it considers an additional third level of non-

collaborative relationship between the defender and the attacker, and thereafter selects 

the optimal strategy to thwart the attacker’s efforts based on the optimal strategic plan 

adopted by the latter. Using practical data, we implemented the algorithm to solve the tri-

level problem. In contrast to other approaches such as the traditional Benders-dual 

algorithm, which requires the sub-problem to be an LP problem, our algorithm is 

indifferent to such limitations. Although non-traditional methods using heuristics have 

been proposed to address this issue with the Benders approach, there are no guarantees 

the sub problem can be solved to integer optimality. We emphasize that though protection 
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is desirable, its desirability in terms of reducing vulnerability of the AOI should be 

dependent on the maximum resource capability of the ‘Attacker’. With small attack 

budgets, benefits of providing protection are often minimal and investment in providing 

protection may be regarded as un-necessary. However, with increased resource 

availabilities to the attacker(s) and a consequent ability to intrude in the AOI, the 

significance of investing in protection resources becomes apparent. As such, decision-

makers (System planners) can adopt a protection plan after reviewing cost and inherent 

benefits associated with the protection plan. Proposal of an alternate algorithm that will 

overcome the slow computation time we have observed and a consequent comparison of 

this proposal with results presented in this chapter will be an insightful extension of this 

study. 

Our work in Chapter 6 is in response to observed slow computation times in the 

previous chapters when problem sizes increase. Exploiting submodularity of the SPP 

model, we developed greedy-based algorithms that help to speed up computation time 

without significant impacts on solution quality. Although the greedy-based algorithms we 

presented in this chapter only obtain initial ‘good’ solutions before a local technique can 

be used to improve the solution, the modelling approach we have adopted best suits the 

prevailing situation in practical deployment due to limitations posed by available budget.  

As a future work, it will be interesting (using variants of meta heuristics such as 

Simulated annealing) to come up with a procedure whereby an exchange of sonar 

placement positions is attempted in each iteration round and this exchange is ‘approved’ 

if a positive change in the overall metric of measure is attained. Likewise, a parallel 

evolution approach (Genetic algorithm GA) that use binary codified hypothetical sonar 
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sets and a corresponding fitness function (similar to our metric measure in Chapter 7) to 

determine optimal placement using evolution techniques such as crossover mutations, 

natural selections, etc. can replace the placement procedures we introduced in the greedy 

algorithms of Chapter 6. An ideal fitness function will attempt to strike a balance 

between the sub-sections of the AOI that are covered and the number of deployed sonars. 

At each iterative stage of the evolution approach, a simultaneous adjustment of sonar 

placement locations and their orientations can be made to determine maximum partial 

coverage within budget and coverage limitations. The increased number of sonars and 

placement positions under a GA implies a higher computational cost, and hence a higher 

computing time. This inhibition will make it difficult to deal with large problem sizes. 

This is the premise behind our suggestion of a parallelization approach of the GA 

algorithm. For this purpose, OpenMP, a known API for shared-memory parallel 

programming will prove adequate. 

Chapters 4-6 of this dissertation assume that associated data related to the Sonar 

placement problem (SPP) are exact.  This idealistic assumption fails to consider the 

inherent uncertainties associated with some modelling parameters.  Chapter 7 of this 

dissertation addresses this issue and helps to guarantee that uncertainty considerations do 

not nullify optimization solutions. Using a robust formulation that maintains the linearity 

of the SPP model, we adopt a framework, where we introduce parameters and new 

decision variables that addresses uncertainties in two modelling parameters (sonar cost 

and detection probabilities). A major advantage of the modelling approach is that lack of 

statistical knowledge about these uncertain parameters does not affect the procedure. In 

addition, we incorporated the greedy algorithms developed in Chapter 6 to take this 

155 
 



robust approach into consideration in any sonar deployment. In our work in Chapter 6, 

we relied on a theoretical bound to compute the value(s) for a robust parameter. Our 

numerical experiments indicate that there are slight variations in the actual value of the 

parameter in comparison to the value computed using the theoretical bound. It will be 

worthwhile to investigate this observation and consequently modify the bounds using 

mathematical theoretical techniques. Perhaps, the most attractive feature of the robust 

methodology of Chapter 7 is that it maintains linearity in any LP/MIP model. However, a 

shortcoming of the approach is that the feasibility of the problem might be affected under 

some conditions. Further studies can also be done to evaluate the theoretical bounds of 

solutions along with theoretical bounds on infeasibilities imposed by the robust approach. 

Another possible extension to this work is to identify alternate robust approaches 

applicable to the SPP and consequently compare solutions to the robust approach we 

have presented in this dissertation.  
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Appendix I:  

Liquefied Natural Gas (LNG) Ship Route Planning Model (Cho et al., 

2014) 

This appendix presents a highlight of the LNG transportation model we developed 

in Cho et al. (2014). Although the study also included a stochastic extension, we only 

include the deterministic model developed in this appendix. 

The model generates shipping schedules to maximize revenue, meet customer 

demands, and maintain optimal LNG production and inventory level at the liquefaction 

terminal in each time period. All operating vessels must initiate a tour from a liquefaction 

terminal at the depot and complete the tour after unloading cargoes at their final 

destinations. 

All LNG carriers have their specific tank capacities, loading conditions and 

average vessel speeds. The tank capacity ranges from 140,000 billion cubic meter (bcm) 

to 216,000 bcm. The fleet of heterogeneous vessels can be divided into two groups 

depending on loading conditions: Type I (no partial tank filling allowed) and Type II 

(partial tank filling is allowed). Type I vessels are prohibited from partial loading, which 

means that the amount of LNG in a tank must be over a specific level (or empty tank) to 

avoid sloshing impact (Sloshing is situation whereby considerable liquid movement takes 

place in the containment system of the  LNG vessel, creating high impact pressure on the 

tank surface). These types of vessels can only serve individual customers unless the 

additional short-term or spot demand is very small. Type II vessels have no restriction on 

partial tank filling so that multiple customers can be served by an assigned LNG vessel 
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within the given tank capacity. We formulate the problem as a multi-vehicle routing 

model and also consider the Boil-off gas (BOG) rate (The BOG is gas generated by 

evaporation of the LNG cargo during maritime transport). In addition, we give a small 

buffer on the time window by allowing few deviations from the target delivery date to 

ensure flexibility of transportation.  

Mathematical formulations 

Indices and Sets: 

𝑆𝑆 Set of LNG terminals; 

T Set of time periods; 

𝐾𝐾 Set of LNG tankers; 

𝑠𝑠 ∈ 𝑆𝑆 Index of LNG terminal; 

𝑡𝑡 ∈ 𝑇𝑇 Index of time period; 

𝑘𝑘 ∈ 𝐾𝐾 Index of LNG tanker; 

𝐺𝐺(𝑉𝑉,𝐴𝐴)  Directed graph nodes 𝑉𝑉 = {1,2, … , |𝑆𝑆| = 𝑠𝑠 + 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑠𝑠)(𝑡𝑡 − 1)} as the set of 

terminals and 𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} as the set of arcs in the planning time 

horizon; 

ℎ ∈ 𝐻𝐻 Index of the origin (depot), where ℎ = 1 + |𝑆𝑆|(𝑡𝑡 − 1) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) ⋅ (𝑡𝑡 − 1) in 

the planning time horizon, 𝐻𝐻 ⊆ 𝑉𝑉; 

𝑟𝑟 ∈ 𝑅𝑅 Index of Type I LNG tanker, 𝑅𝑅 ⊆ 𝐾𝐾. 
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Data: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗 Estimated travel time from i to  j 

𝐷𝐷𝐷𝐷𝐶𝐶𝑘𝑘 Daily shipping cost of vessel type k; 

𝐷𝐷𝑗𝑗,𝑡𝑡 Demand at  j in time period t; 

𝑅𝑅𝑅𝑅𝑅𝑅 Unit revenue of LNG per billion cubic meters (bcm) ; 

𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 Expected target delivery date at  j; 

𝑉𝑉𝑉𝑉𝑘𝑘 Cargo capacity of vessel k; 

𝑉𝑉𝑉𝑉𝑘𝑘 Total number of vessel k; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 Unit storage cost in time period t; 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 Unit production cost in time period t; 

𝑇𝑇𝑇𝑇 Maximum number of terminals can be visited in a route; 

𝑀𝑀 Big-M; 

𝛼𝛼 Cargo filling limit ratio (%) of Type I LNG tankers; 

β Time window - number of acceptable days from target delivery date; 

𝜀𝜀 Boil-off rate (BOR) (%) [𝜀𝜀, 𝜀𝜀]; 

𝛿𝛿 Storage level at liquefaction terminal [𝛿𝛿, 𝛿𝛿]. 

Decision variables: 

𝑦𝑦𝑖𝑖,𝑗𝑗 Amount of LNG delivering from i to  j; 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1  �10

    if  vessel 𝑘𝑘 operates from terminal 𝑖𝑖 to terminal 𝑗𝑗
    otherwise

 

𝑥𝑥𝑡𝑡2 Production level in time period t; 

𝑥𝑥𝑡𝑡3 Inventory level in time period t; 
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𝑥𝑥𝑖𝑖4 Vessel arrival time (date) at 𝑖𝑖, and 𝑥𝑥14 = 0; 

𝑥𝑥𝑗𝑗5 Accumulated travel time (days) from initial supply terminal to 𝑗𝑗, and 

set departure time at the depot as 𝑥𝑥15 = 0; 

𝑢𝑢𝑖𝑖  Flow in the vessel after it visits i. 

Objective function:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

 

                   � 𝑅𝑅𝑅𝑅𝑅𝑅 ∙ (1 − 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗)𝑦𝑦𝑖𝑖,𝑗𝑗
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

   −�(𝑃𝑃𝑃𝑃𝑡𝑡
𝑡𝑡∈𝑇𝑇

𝑥𝑥𝑡𝑡2)  −�𝑆𝑆𝑆𝑆𝑡𝑡𝑥𝑥𝑡𝑡3
𝑡𝑡∈𝑇𝑇

− � �(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗
𝑘𝑘∈𝐾𝐾

𝐷𝐷𝐷𝐷𝐶𝐶𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1 ).

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 
(1) 

The objective function maximizes the overall revenue considering all potential 

cost factors in the supply chain. The first term of the objective maximizes profit by 

considering the cost of evaporated gas as a result of BOG, duration of shipping, and the 

amount of LNG in a cargo tank. The second and third term minimize production and 

storage costs respectively. These values are dependent not only on the production level 

and storage level, but also on the amount of BOG. The last term of the objective serves to 

minimize overall vessel operating cost based on daily shipping cost of each vessels and 

ship duration from a previous terminal to the next destination.  

Constraints: 

The model considers multiple time periods in a model. However, it is formulated 

as a single time period model by re-indexing the terminal index with time period index. 

Hence, index of terminals implies which specific terminal may be served at which time 
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period. Thus, we use constraints (2) and (3) to nullify the repeating indices of liquefaction 

terminals in the model. 

�𝑥𝑥𝑠𝑠,𝑠𝑠+|𝑆𝑆|(𝑡𝑡−1),𝑘𝑘
1 = 0,

𝑘𝑘∈𝐾𝐾

 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇\{1} and (2) 

�𝑥𝑥𝑠𝑠+|𝑆𝑆|(𝑡𝑡−1),𝑠𝑠,𝑘𝑘
1 = 0,

𝑘𝑘∈𝐾𝐾

 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇\{1}. (3) 

When a route decision is made, a vessel assignment also has to be determined 

simultaneously. Once a vessel is assigned, the vessel must complete the tour without 

being replaced by other vessels returning to the liquefaction terminal. Constraints (4) 

serve to enforce this requirement.  

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1 ≤�𝑥𝑥𝑗𝑗,𝑙𝑙,𝑘𝑘

1

𝑙𝑙∈𝑉𝑉

≤  𝑁𝑁 − (𝑁𝑁 − 1)𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1 ,  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾. (4) 

When a ship is assigned to a route, the amount of laden LNG cargo must be less 

than the tank capacity of the vessel (Constraints 5) and the number of operating vessels 

must also be less than the number of vessels in a fleet (Constraints 6). 

𝑦𝑦𝑖𝑖,𝑗𝑗 ≤ �𝑉𝑉𝑉𝑉𝑘𝑘
𝑘𝑘∈𝐾𝐾

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1 ,    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, and (5) 

��𝑥𝑥ℎ,𝑗𝑗,𝑘𝑘
1 ≤ 𝑉𝑉𝑉𝑉𝑘𝑘

ℎ⊆𝑉𝑉

,
𝑗𝑗∈𝑉𝑉

 ∀𝑘𝑘 ∈ 𝐾𝐾. (6) 

Constraints (7) ensure that all departed vessels must return to the original 

liquefaction terminal after completing a voyage. Constraints (8) and (9) establish the 

condition that a customer can receive a shipment by one designated vessel in each time 

period.  
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��𝑥𝑥ℎ,𝑗𝑗,𝑘𝑘
1

𝑘𝑘∈𝐾𝐾

= ��𝑥𝑥𝑖𝑖,ℎ,𝑘𝑘
1 ,

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑉𝑉𝑗𝑗∈𝑉𝑉

 ∀ℎ ⊆ 𝑉𝑉, (7) 

��𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1

𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝑉𝑉

= 1, ∀𝑖𝑖 ∈ 𝑉𝑉\{1}, and (8) 

��𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑉𝑉

= 1, ∀𝑗𝑗 ∈ 𝑉𝑉\{1}. (9) 

As stated above, all departed vessels from the depot must return to the origin, and 

should not terminate the tour while making any sub-tours. For each routing decision, we 

use sub-tour elimination constraints to filter any possible sub-tours in Constraints (10), 

𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 𝑇𝑇𝑇𝑇�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1

𝑘𝑘∈𝐾𝐾

≤ 𝑇𝑇𝑇𝑇 − 1, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. 
(10) 

Constraints (11) denote the relationship between the amount of LNG loading to a 

cargo tank and the demands in each time period. Particularly, as evaporated gas losses are 

expected during transportation, an additional amount of LNG is considered in the 

constraints.  

�(1 − 𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗)𝑦𝑦𝑖𝑖,𝑗𝑗
𝑖𝑖∈𝑉𝑉

−�𝐷𝐷𝑗𝑗,𝑡𝑡
𝑡𝑡∈𝑇𝑇

= �𝑦𝑦𝑗𝑗,𝑙𝑙,
𝑙𝑙∈𝑉𝑉

 ∀𝑗𝑗 ∈ 𝑉𝑉\{1}. (11) 

In practice, once a laden LNG vessel unloads all cargoes at regasification 

terminals, the returning vessel must be empty (excluding the minimum amount of LNG 

cargo for cooling purposes). Hence, Constraints (12) set the cargo level of laden LNG 

vessel returning to a liquefaction terminal as ‘0’, 

�𝑦𝑦𝑖𝑖,ℎ = 0,
𝑖𝑖∈𝑉𝑉

 ∀ℎ ∈ 𝐻𝐻. 
(12) 
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Based on LNG contract terms, specific amount of LNG cargoes have to be 

delivered to customers at the expected time. However, these contracts often include a 

grace period. Constraints (13) and (14) accumulate the sailing time of an operating vessel 

and constraints (15) set the time window from an expected delivery date on a target 

customer: 

𝑥𝑥𝑗𝑗5 ≥ 𝑥𝑥𝑖𝑖5 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗 − 𝑀𝑀(1 − 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
1 ) ,   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, (13) 

𝑥𝑥𝑖𝑖4 ≥ 𝑥𝑥𝑖𝑖5 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗 − 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖,1,𝑘𝑘
1 �, ∀𝑖𝑖 ∈\{1},𝑘𝑘 ∈ 𝐾𝐾, and (14) 

�𝑥𝑥𝑗𝑗5 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗� ≤ 0.5𝛽𝛽, ∀𝑗𝑗 ∈ 𝐴𝐴. (15) 

As type I LNG vessels have strict filling limits on cargo tanks during voyages, 

constraints (16) set this condition based on the allowed filling limit ratio (𝛼𝛼), 

𝑦𝑦𝑖𝑖,𝑗𝑗 ≥ 𝛼𝛼𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟
1 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑟𝑟 ⊆ 𝐾𝐾, (16) 

Planning inventories and production levels are determined by the demand level in 

each time period in constraint (17). Finally, safety stocks and maximum storage levels at 

the depot are set up in constraints (18), 

𝑥𝑥𝑡𝑡2 − 𝑥𝑥𝑡𝑡3 + 𝑥𝑥𝑡𝑡−13 =  �𝐷𝐷𝑗𝑗,𝑡𝑡,
𝑗𝑗∈𝑉𝑉

 ∀𝑡𝑡 ∈ 𝑇𝑇, (17) 

𝛿𝛿 ≤ 𝑥𝑥𝑡𝑡3 ≤ 𝛿𝛿, ∀𝑡𝑡 ∈ 𝑇𝑇. (18) 
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Appendix II:  

Theoretical Bound to determine robust parameter Γ (Bertsimas and 

Sim, 2004) 

 To determine robust parameter Γ used in Chapter 7, we use the theoretical bound 

proposed by Bertsimas and Sim (2004), 

𝐵𝐵(𝑛𝑛, Γ𝑖𝑖) ≤ (1 − 𝜇𝜇)𝐶𝐶(𝑛𝑛, ⌊𝑣𝑣⌋) + � 𝐶𝐶(𝑛𝑛, 𝑙𝑙).
𝑛𝑛

𝑙𝑙=⌊𝑣𝑣⌋+1

 

where, 

𝐶𝐶(𝑛𝑛, 𝑙𝑙) = 

⎩
⎪
⎨

⎪
⎧

1
2𝑛𝑛

, 𝑖𝑖𝑖𝑖 𝑙𝑙 = 0 𝑜𝑜𝑜𝑜 𝑙𝑙 = 𝑛𝑛,

1
√2𝜋𝜋

�
𝑛𝑛

(𝑛𝑛 − 𝑙𝑙)𝑙𝑙
. exp �𝑛𝑛 log �

𝑛𝑛
2(𝑛𝑛 − 𝑙𝑙)

� + 𝑙𝑙 log �
𝑛𝑛 − 𝑙𝑙
𝑙𝑙
�� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

𝐵𝐵(𝑛𝑛, Γ𝑖𝑖) = 1
2𝑛𝑛
�(1 − 𝜇𝜇) � �

𝑛𝑛
𝑙𝑙
� + 𝜇𝜇 � �

𝑛𝑛
𝑙𝑙
�

𝑛𝑛

𝑙𝑙=⌊𝑣𝑣⌋+1

𝑛𝑛

𝑙𝑙=⌊𝑣𝑣⌋

�, 

 = 1
2𝑛𝑛
�(1 − 𝜇𝜇) �

𝑛𝑛
⌊𝑣𝑣⌋

� + � �
𝑛𝑛
𝑙𝑙
�

𝑛𝑛

𝑙𝑙=⌊𝑣𝑣⌋+1

�, 

𝑛𝑛 = |𝐽𝐽𝑖𝑖|, 

𝑣𝑣 = (Γ𝑖𝑖 + 𝑛𝑛)
2� , 

𝜇𝜇  = 𝑣𝑣 − ⌊𝑣𝑣⌋. 

 

181 
 




	Taofeek Chap 1v3-07-05
	Taofeek Chap 2v4_07_05
	Taofeek Chap 3v3_07_05
	Taofeek Chap 4v3._05_07docx
	Taofeek Chap 5v7
	Taofeek Chap 6AfterProposalV3_07_05
	Taofeek Chap 7AfterProposalV3_07_05
	Taofeek Chap 8 v1_07_05
	FrontMatter_Final2.pdf
	FM2
	Front Matter 07-05
	FM1
	Acknowledgments1
	Acknowledgments2
	Abstract


	TOC




