The stability of an evaporating liquid surface
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A linearized stability analysis is carried out for an evaporating liquid surface with a view of
understanding some observations with highly superheated liquids. The analytical results of this
study depend on the unperturbed temperature near the liquid surface. The absence of this data
renders a comparison with experiment impossible. However, on the basis of several different
assumptions for this temperature distribution, instabilities of the interface of a rapidly
evaporating liquid are found for a range of wavenumbers of the surface wave perturbation. At
large evaporating mass flow rates the instability is very strong with growth times of a millisecond
or less. A discussion of the physical mechanism leading to the instability is given.

I. INTRODUCTION

The safety of light-water cooled nuclear power plants
has increased interest in the effects that take place when wa-
ter at high temperature and pressure is suddenly exposed to a
very low pressure. Such a situation would conceivably occur
in the so-called loss-of-coolant accident in which there is a
break in the boundary of the nuclear system. Such a break
would expose water at a temperature near 600 °F and at a
pressure of the order of 2200 psi to the low ambient contain-
ment pressure. The simplest experimental condition in
which these effects can be studied, usually referred to as
“Standard Problem No. 1,” is that of a long straight pipe
filled with high-temperature, high-pressure water, one end
of which is suddenly exposed to atmospheric pressure by
bursting a diaphragm (see, ¢.g., Edwards and O’Brien') or by
fast-opening devices (see, e.g., Lienhard er al.%). In this kind
of experiment one observes violent boiling of the liquid oc-
curring at and below the free surface and on the walls of the
pipe, which causes the liquid to be ejected from the pipe.

An experiment of similar nature with water and other
liquids was performed on a smaller scale by Fauske and
Grolmes® who quickly exposed superheated liquids to a
large low-pressure volume. Because of the smaller scale and
the cleanliness of the apparatus, boiling (either in the bulk of
the liquid or at the walls of the container) was not observed in
these experiments. Rather, Fauske and Grolmes observed
that above a certain superheat characteristic of the system
the liquid free surface quickly broke up with the ejection of a
large number of droplets. This droplet ejection gives a mass
flux many orders of magnitude greater than that characteris-
tic of ordinary evaporation. Fauske and Grolmes also noted
that during the ejection process the pressure in the liquid
away from the interface was much greater than that in the
low-pressure reservoir to which the liquid was exposed.

These observations can be understood by supposing
that the interface between the evaporating liquid and the
vapor becomes unstable with a consequent ejection of drops
which leaves fresh liquid surface behind, which in its turn
becomes unstable. It is this possibility that we propose to
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investigate in the present paper by considering the stability
of the surface of a superheated liquid undergoing fast evapo-
ration. It is probable that such an instability would play a
role also in the experiments on Standard Problem No. 1 pre-
viously referred to, although the presence of internal boiling
in them complicates the analysis substantially. A possibility
mentioned by Hooper and Luk* is that the surface instability
evolves into a crater which closes off, becoming a bubble,
which then bursts upon growth, thus shedding droplets.
This hypothesis would explain the large number of surface
bubbles observed in these circumstances.

It has been known for some time in the chemical engi-
neering literature that an evaporating liquid surface can de-
velop ripples and corrugations which enhance the evapora-
tion process.”™’ These studies, however, did not indicate the
ejection of droplets from the interface. Most likely the reason
for this is the lower range of superheats which has been ex-
amined. The formation of droplets has not been unequivo-
cally observed, but is strongly suggested by indirect evidence
in the experiments of Shepherd and Sturtevant® who ob-
served the rapid evaporation of drops in a host liquid near
the superheat limit.

Of the available analyses of the stability of an evaporat-
ing surface, one® does not appear to exhibit the correct be-
havior in the inviscid limit and, due to other assumptions, is
of limited validity. The other theoretical studies do not deve-
lop values of the growth rates of instabilities as will be done
in the present study. Rather, they are concerned with the
conditions of marginal stability under the assumption that
they would correspond to a time independence of the pertur-
bation. It will be shown below that this assumption may not
be verified in the situation of present concern.

A familiar source of perturbation of an interface are
flows induced by surface tension gradients. These Maran-
goni effects are characterized by a time scale much slower
than that of interest here, as will be obvious from the results
to be obtained, and therefore will not be considered. Clearly,
since surface tension forces tend to inhibit the formation of
droplets, the stresses of concern in the present problem are
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much higher than those caused by surface tension and sur-
face tension variations.

Il. MATHEMATICAL FORMULATION

The situation we envisage here is that of a liquid of infi-
nite extent undergoing steady evaporation frem its plane in-
terface. The question to be addressed is that of the stability of
this process when the interface is perturbed. To set up a
mathematical model for this situation we take the liquid and
its vapor to be incompressible inviscid fluids of unlimited
extent. A priori the effects of compressibility in the vapor
may be of some significance not because of flow velocities,
which are small, but because of density variations associated
with temperature changes. A discussion of this point is de-
ferred until the end of this section.

The neglect of viscosity eliminates one of the destabiliz-
ing mechanisms which is thought to be operative at very
short wavelengths.'®!' However, it is not expected to affect
significantly phenomena occurring at longer wavelengths,
except for a slight damping of the surface perturbation
which can be accounted for approximately, as will be seen in
Sec. VIIA. It is sometimes stated (see, e.g., Ref. 12, Sec. II)
that the motion of a frictionless fluid is also necessarily adia-
batic. This is certainly true in principle, and especially for a
gas for which the Prandtl number is close to 1. However, in
setting up an approximate mathematical model, the guiding
principle should not be the relative magnitudes of the ther-
mal diffusivity and kinematic viscosity, but rather the mag-
nitude of the terms which involve these parameters relative
to other terms in the energy and momentum equations. If an
analysis of the orders of magnitude of these terms is carried
out, it is found that treating a fluid as inviscid but heat con-
ducting is justified in many cases, including the present one.

We shall append subscripts / and v to quantities pertain-
ing to the liquid and the vapor phase, respectively. No sub-
scripts appear in equations and expressions valid for both
fluids. Perturbations will be denoted by a prime, and surface
quantities by the subscript s.

For incompressible, inviscid fluids the conservation
equations for mass, momentum, and energy are

Vu=0, (1)
i“-+u-Vu=———1—Vp+g, (2)
at P

% +wVT =DVT, (3)

Hereu, p,and T denote the velocity, pressure, and tempera-
ture fields, p is the density, D is the thermal diffusivity, and g
is the acceleration of gravity. The vertical coordinate z is
taken to be directed from the liquid into the vapor against
gravity. It is convenient to use a frame of reference in which
the unperturbed interface is the plane z = 0. In this frame the
liquid is moving toward the free surface at a velocity W,. If
this velocity is not constant in time, the frame is noninertial
and the magnitude of g can be adjusted to account for this
effect if so desired.

Across the interface we must require conservation of
mass, normal momentum, and energy, which are expressed
byl3—15
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J=p/w, —vn=p,(u, —v)n, (4)
Jw, —w)n+p, —p, = — ¢V, (5)
J{L+1} [, —vpn]*>—1 [(w, —v}n]?}

+ (K,VT, —K,VT,;n =0. (6)

Here v is the velocity of the interface, n is the unit normal
directed into the vapor, § is the surface tension coefficient, L
is the latent heat, K is the thermal conductivity, and J is the
mass flux. The first two equations, aside from the surface
tension term, appear in an identical form in shock wave the-
ory (Ref. 12, Chap. IX). In the energy equation (6) a small
surface-entropy term has been neglected. Furthermore, the
kinetic energy terms in the curly brackets are usually much
smaller than L so that we have approximately

JL + (K,VT, —K,VT,)n=0. (7)

In this form the equation expresses the fact that the thermal
energy conducted to the interface from the liquid side is in
part conducted away into the vapor and in part used to effect
the change of phase. A similar equation is also encountered
in other branches of fluid mechanics as, for example, in thin-
flame theory (Ref. 12, Chap. XIV). A further condition
arises from the conservation of momentum tangential to the
interface. In general this condition is expressed by (see, e.g.,
Ref. 12, Chap. VII; Ref. 16, Chap. VII; Ref. 15)

JnX(@u, —w)+nX(t, —7,)n= —nXV, (8)
where 7 denotes the viscous stress tensor. The term in the
right-hand side is the tangential surface tension force caused
by surface temperature variations. That this effect can in-
duce fluid motion and perturb the plane interface is well-
known.'*"'® However, as already indicated in Sec. I, the as-
sociated flows do not exhibit the very violent features of the
surface disruptive phenomena of present concern. Further-
more, as will be seen from the numerical results to be pre-
sented below, they occur on a time scale much slower than
the one predicted by our stability analysis. In addition, it will
be seen in the following that usually the interface remains
relatively isothermal. For all these reasons we feel justified in
neglecting surface tension gradient effects as represented by
the term in the right-hand side of (8). Since we have also
neglected viscosity, the presence of a nonzero mass flux
across the interface Eq. (8) can only be satisfied by requiring

nx(uv —ll,)=0, (9)

i.e., continuity of the tangential velocity. The effect of this
condition is to induce a “refraction” of the streamlines at the
interface and to generate vorticity in the fluids. It may be
remarked that Eq. (9) is also well known in shock wave the-
ory and combustion phenomena.

Two additional boundary conditions are required to
close the system. The first one is the continuity of tempera-
ture at the interface,

T,=T,=T,. (10)

The second one is not so straightforward and warrants some
discussion.

One possibility to close the system is to use a relation
connecting the mass flux J at the interface to the local tem-
perature 7,,'°
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J=J(T). (11)

An explicit example of such a relation is given by the well-
known Hertz-Knudsen equation®®*!

J=a(RT,/20M )2 [p3(T,) —p, ] . (12)

Here R and M denote the universal gas constant and the
molecular weight of the vapor and the superscript e indicates
the equilibrium value along the saturation line. The param-
eter a is the accommodation coefficient for condensation
and evaporation which, for simple liquids, is close to 1.
When there is a net flux (i.e., J #0), transport theory indi-
cates that a numerical factor of order 2 should be introduced
in Eq. (12) to multiply the right-hand side.?"?*> This matter
appears to be somewhat controversial at present,”* but in any
case the value of @ can be adjusted to incorporate this correc-
tion. In the numerical examples to be shown below we shall
take @ = 1 and it will be seen that different values of this
quantity would have only very minor effects.

If T, and p, undergo small changes 7'; and p; the
variation J' in mass flux predicted by Eq. (12) is

RT 172 1 dpe
J'= - (p5 — )T —pi |
a(27TM) I:(ZTslpv pu) + dT) s pu]

For many liquid-vapor systems, including water, the nu-
merical value of dp; /dT in the temperature range of practi-
cal interest is such that the last term in this relation is negligi-
ble with respect to the second one. It is therefore reasonable
to retain the dependence of J on T, only, as indicated in Eq.
(11), consistently with the neglect of variations in the vapor
density.

If we had allowed the vapor to be compressible, an alter-
native procedure to the use of Eq. (11) would be to impose
thermodynamic equilibrium at the interface in the form

P, =p,(T), p,=pilTy). (13)
Since we have taken p, to be constant, we could use the first
of these relations dropping the second one. This procedure
has been followed in the literature as, for example, by
Hsieh.'* In the present study we shall follow the first ap-
proach, mainly, and in one example we shall compare those
results with the ones given by the second procedure. From
this comparison it will be seen that the two approaches do
not lead to large differences, a behavior which implies that
the effects of thermodynamic nonequilibrium are small.

In summary, the mathematical formulation of the prob-
lem at hand consists of the field equations (1}—(3), to be satis-
fied in the liquid and in the vapor, and of the boundary con-
ditions (4), (5), (9), (10), and (11) or the first of (13).

We wish to comment briefly on the effect of compress-
ibility in the continuity equation (1). The complete form of
this equation would be

g 15/
(_p_v—) _d.p_ + ( pv) iiI + pvv-uu =0’
ap /v d aT/, ar

where d /dt indicates the convective derivative. The first two
terms, which are absent from our Eq. (1), will affect both the
unperturbed situation of steady evaporation from a plane
interface and the development of the perturbation caused by
the interfacial wave. As for the first point, Plesset** has
shown that, in the conditions of present concern, all the
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fields are very nearly uniform near the evaporating surface
so that the equation is trivially satisfied either with or with-
out the first two terms. As far as the perturbation is con-
cerned, we may note that the ratio of the second to the first
term may be estimated to be of the order

(fie_) ar (ip_) ip_]"N(é&) T
ar/, dt \\adp/r dt —\ar/, p

which, for a perfect gas, equalspT '/ Tp'. As will be clear from
the following, for the type of low considered here, the source
of the perturbation is at the free surface, and the perturba-
tions themselves decay away from the interfacial region. It is
therefore reasonable to estimate the magnitude of 7'/p’ by
means of the Clausius—Clapeyron relation to find
(‘9_1’) I _RT
T/, p~ ML

The quantity on the right-hand side is usually small (e.g.,
equal to 0.076 for water at 100 °C), and hence density varia-
tions due to temperature variations are seen to be small in
comparison with those due to pressure perturbations, and
these are negligible here due to the assumed slow velocities.
It should be stressed that this estimate depends critically
upon the Clausius—Clapeyron equation which can be applied
in view of the fact that perturbations are generated at the
interface, and that conditions are not too different from ther-
modynamic equilibrium in its neighborhood.

{ll. THE UNPERTURBED STATE

In the unperturbed state the liquid—vapor interface,
which is located at z = 0, is plane and evaporation is taking
place with the liquid approaching the interface from the re-
gion z <0 with velocity W, and the vapor leaving it with
velocity W,. It is known>*?* that in the presence of any ap-
preciable evaporative flux the temperature gradient in the
vapor is very nearly zero, so that the pertinent form of the
mass and energy relations (4) and (7) at the interface is

J:plWl =vavi (14)
L] =K,G,, (15)

where G, denotes the negative of the undisturbed liquid tem-
perature gradient at the interface.

The method of solution which will be adopted here is
that of the separation of the time variable, or normal-mode
analysis. In order for this method to be mathematically exact
the unperturbed state must be independent of time. How-
ever, the steady solution of the energy equation {3) in the
liquid satisfying T= T, anddT /dz = — G, atz = Ois given
by

T; = Ts + (D[G[/Wg) [1 - exp(W;Z/Dl)] . (16)

Letting z— — < and using (15), we obtain from this equa-
tion

r,—-T,=L/c,, (17)
where c,; is the liquid specific heat, independent of the evap-
oration rate. [This relation expresses the fact that, for each
liquid layer, the latent heat required for evaporation is en-
tirely supplied by aloss ¢, (T, — T) of the liquid enthalpy.]
The value of L /c,, for most liquids is quite large (e.g., of the
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order of 600 K for water far from the critical point}, and the
subcooling indicated by (17) is quite unrealistic. The implica-
tion is that a steady temperature distribution in an evaporat-
ing quiescent unbounded liquid is not a physical possibility.
The evaporation rate of such a liquid exposed to a pressure
lower than saturation is bound to decrease in time, at least
until possible boundary effects, such as heat flux from the
bottom of the container, begin to make themselves felt.

In the presence of such a time-developing unperturbed
base state the normal-mode analysis to be carried out below
retains only an approximate validity to the extent that the
predicted time scale for the development of the surface insta-
bility is much shorter than that for the evolution of the un-
perturbed state. A similar approximation has been followed
for many years in other areas such as natural convection
research (see, e.g., Ref. 26). The full time-dependent problem
here appears to require a numerical treatment already for the
unperturbed state since W;, which enters in the energy equa-
tion, depends on the solution to this equation through the
boundary conditions. Such an analysis would be premature
without a preliminary understanding of the physical mecha-
nisms underlying the instability of present concern which is
the principal objective of the present study. These consider-
ations motivate our choice of carrying out this analysis with
the assumption that an unperturbed temperature profile in
the liquid, possibly depending parametrically on time,
T,(z,t), is given. A time variation of the surface gradient and
hence, by (15), of the evaporation rate entails a similar vari-
ation of the velocity fields W, and W,. Again, we shall treat
them as constants in space and time thus assuming in effect
that any such variations are sufficiently slow.

The last aspect of the unperturbed state that remains to
be specified is the pressure field in the liquid and in the vapor.
With the neglect of inertial effects due to time dependence of
the mass flux, we have the hydrostatic relations
Pv=Psv —pP.8Z, (18)
where g = |g|. Although we shall not consider explicitly the
Rayleigh~Taylor unstable configuration in which the liquid
lies above the vapor we may remark that our results apply
also to this case if the sign of g is reversed.

Itis of interest to observe that the pressure acting on the
liquid at the interface, P,,, exceeds that in the vapor, P,,, by
an amount specified by the momentum boundary condition

(5),

P =P, -pgz,

Psl =Psv +J2(1/pv - l/pl) (19)

This effect is caused by the expansion of the fluid particles
undergoing the transition from the liquid to the vapor state
so as to “push back” on the liquid. Note that this effect does
not change sign for condensation. In this case the increase in
liquid pressure arises because the vapor is very nearly
stopped at the interface. Our results are not directly applica-
ble to this case, however, due to the neglect of the tempera-
ture gradient in the vapor which is important for condensa-
tion.

IV. THE PERTURBATION PROBLEM
A perturbation is now introduced in the system in the
form of a surface wave with wavenumber k given by
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z = 7g{xp,t ) with
n=altlf(xy). (20)
For our purposes the function f(x,y) need not be specified
further than requiring it to be a solution of
3 >’ 2)
T+ 2L 4 k) f=o, 21)
(8x2 W f (
bounded at infinity in the (x,y) plane. Upon subtraction of
the unperturbed component and linearization, the field
equations (1)—(3) require that the perturbation fields, denoted
by a prime, satisfy

Vou' =0, (22)

oy o’ 1

M ywo_ Ly, (23)
at dz P p

o’ + W T + u'<VT =DV’T'. (24)
at 9z

The boundary conditions (4), (5), (7), (9), (10), {11} can be put
in the form

. , 617) ( . 371)

J' = A/ _an), 25
pl(wl ar Po |\ W, ot (25)

Pi=p,+2AW, —W)J' + [(p,—p.)g+Ek*)m, (26)

aT: aZT,) aT!

L'+ K | =+ )k, —=2 =0, 27
+ ’( 2 1z oz @7)

nX(u, —w)=0, (28)

T,=T,=T;,, (29)

7 =29 1. (30)
aT,

Equation (29) must be imposed at z = 7, whereas the remain-
ing four have been written in a form allowing them to be
imposed on z = 0 to first order in 7. In Eq. (25), v’ indicates
the z component of the perturbation velocity u’.

A consideration of the momentum boundary condition
(26) is particularly illuminating. In the absence of a mass flux
the normal pressure pattern of surface waves prevails, with
p; positive under the (liquid) crests and negative under the
(liquid) troughs and vice versa for p;. This pressure distribu-
tion generates the motion of the liquid from the crests to the
troughs and of the vapor in the opposite direction. If the
system is unstable, this pressure must be reversed and p; has
to become negative under the crests so as to make them grow.
Since the last term in (26) is obviously positive for a crest, this
result can only be obtained if the second term becomes nega-
tive through a decrease of the flux on the crests (i.e., J' <0
when 7> 0). The physical mechanism at work in this case
can be illustrated with reference to Fig. 1. The reduced evap-
oration rate on the crests has the effect of partially relieving
the vapor back pressure on the liquid. The converse takes
place at the troughs where the pressure is increased due to
the greater evaporation. The incoming liquid streamlines are
then deflected as shown, and more liquid goes to feed the
growing crests. A priori an instability could also occur if p;
were large and negative. That the instability be driven by
phenomena occurring in the vapor would be rather surpris-
ing, and indeed we have found no evidence of this occurrence
in the numerical results.
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FIG. 1. Qualitative illustration of the mechanism causing the surface insta-
bility, seen from a frame of reference in which the undisturbed evaporating
surface is at rest. The evaporating mass flux is increased at the (liquid)
troughs and decreased at the (liquid) crests. As a consequence the “back-
push” of the departing vapor on the liquid is greater at the troughs than at
the crests. The associated pressure gradient drives the liquid towards the
crests causing their growth and the amplification of the surface deforma-
tion.

We now proceed directly to show the solution of the
perturbed problem and the characteristic equation and to
discuss some illustrative results. Details of the solution pro-
cedure are provided in the Appendix.

V. SOLUTION

According to the normal mode procedure we postulate
for all perturbation quantities a time dependence propor-
tional to exp (o). With this assumption the field equations
can be solved in the manner detailed in the Appendix in
terms of surface amplitudes of the various fields which are to
be determined from the boundary conditions. The growth
rate o is then obtained as a condition of solvability of the
resulting linear homogeneous system.

The velocity field in the liquid is found to be irrotational
and derivable from a potential, u; = Vg,, with

]

(PI —pu)(o-z + 2kaU+k2u/IWv) - (Pl + pu)ﬂ)é a

@ = Pefx), (31)
where @, is a constant amplitude. The exponential time fac-
tor will be understood here and in the sequel. The velocity

field in the vapor is on the other hand rotational and is given
by

u, =4,K+VX(B,K) + Vo, , (32)

where K is a unit vector in the positive z direction and 4,,B,
are scalar functions of positions and time related to the vorti-
city field. It will be shown in the Appendix that, as a conse-
quence of the requirement of continuity of the tangential
velocity, one finds B, = 0. The z component of the velocity
u;, is then given by

w, = [k*Wi/(k*W. —0)]a, exp(—oz/W,) f
+k{[W,/lc—kW,)]a, —®,}e ¥ f, (33)

where a, and @, are constants, the first of which is the vorti-
city amplitude since the vorticity field in the vapor is given
by

o, =a, exp (—oz/W,)VX(Kf). (34)

We note that boundedness at infinity is reconcilable with the
last two equations if and only if Re 030, that is, only for
unstable (or neutrally stable) modes. Solutions in the stable
case have a different structure, with vorticity confined in the
liquid (see, for a similar situation, Ref. 12, p. 478). In the
liquid the pressure field is given by p; = IT,e**f, where

I, = —p/lo+kW)P,, (35)
whereas in the vapor we find p! = IT,e ~**f with
Hu =pu[(kWu_a)¢u+%aqu] . (36)

At this point the boundary conditions on mass, normal
momentum, and tangential velocity can be imposed to ex-
press @, , and «a, in terms of the wave amplitude a. The
result is

P, = , (37)
2kpl(0+ka)
o _ \Pi=PNo + b) — kWi W (1 —p. )P =) 38
’ dkpip, (o + kW) ’
_p—p P+ KWW, + (pr +p. V) 39
a, = — ka.l a, ( )
I

@%(\ 0%@ ole

<
>
o
[®]
=
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FIG. 2. Qualitative illustration of the vorticity pattern in the vapor over the
surface wave in the unstable case. The liquid motion is irrotational.
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f
where we have introduced the natural frequency of ordinary
surface waves, w,, given by

o} = [(p1 —p M p1 +p,)] gk + [$ /(i +p)] K.

(40)

It is interesting to note that a, /a is negative definite. From
the expression (34) of the vorticity field it can be inferred that
the vorticity distribution in the vapor above the wave has the
character sketched in Fig. 2, with the rotational velocity
component decreasing the velocity on crests and increasing
it on troughs. This result is in agreement with what can be
expected from a consideration of the term VpXVp of the
vorticity equation. At the interface (which we can view for a
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moment as a region of small but finite thickness across which
the density undergoes a rapid change) Vp is directed from the
vapor into the liquid and Vp from the crests to the troughs in
the unstable case.

Equations (37)—{39) enable us to compute other interest-
ing quantities such as the perturbations in the mass flux J’,

Ji— _ (pr +p,)o” + @)) + kJ [20 — Kk (W, — Wz)]

200+ kW,)
(41)
the pressure amplitudes,
II= — o+ kW) 2k (o + kW)
X [(pr —p,)O* + 2kW,0 + k*W,W,)
—(pr+pJg] a, (42)
o,= —[2kc+kW,)]"!
X{(p: — p,)o’ — kWi(p, —p,) 0

+ [(p1 po)as — kT (W, — W))]o

+ (P +p kW05

+k3I(W, —W)2W, —W)}a, (43)
and the vapor velocity at the interface

(p1 — p,)o” — KW, W,) + (p, + p, )%} 2
20,0+ kW,)

w;lz:O = -
(44)

We may note in passing that, setting J* = 0 as would be
appropriate for a thin flame on the surface of a liquid fuel, we
obtain for o the same characteristic equation as given by
Landau? in his classical analysis of the combustion problem
(see also Ref. 12, p. 478). The vorticity pattern of Fig. 2 is also
applicable to that problem.

The perturbed temperature fields in the liquid and in
the vapor have a rather complex form given in full in the
Appendix. Here we give only the expressions of the per-
turbed gradients at the interface in the liquid

nVT | =4,0+p,Ga— (kG,/W) 1,9, , (45)
and in the vapor
VT, = —u,6. (46)

Here @ denotes the (common) temperature perturbation at
the interface (nor at z = 0), and g, and u, stand for

AERR e
M= ZDI Dl ZDI: )

W 2 o 172 W
L= . k2 - 48
# [(200) 5D ] 2D, (48)

v

The last term in (45) accounts for the effect of the distortion
of the unperturbed temperature field caused by the liquid
motion as can be seen from the definition of 7, which is given
by

aT /dz
I, = —JQ exp [(k — d. 49
! P[( ,UI)Z]aT/dIO Z s (49)
where
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m WI ) 172
f e ———— + k2 + h—— . 50
Hi [( 2D, DI (50)

We may note that, using the definition of diffusivity in terms
of conductivity, density, and heat capacity, with the aid of
the boundary condition (15), the expression for I; can be
written

aJ
n={ etk —pie] Daz,

where

Ja(z) = (c,,/L)[ T, T)(z)]
is the local Jacob number. The magnitude of L /c,, tends to
make Ja small in most applications although the derivative
of this quantity is not necessarily small.

Equations (41), (45), and (46} can now be substituted
into the energy boundary condition (27) to express the per-
turbed surface temperature in terms of the surface elevation
a. The result may be written in the form

L

= Sy(o)a, (51)
2o+ kW, )K, p + K, 1)

where
Sio)= [ p(1+1)+p,(1 =L))o
+2% [J+p(W, - W) ] o
+ (U =I)[(ps +p 0} — kT (W, — W))]

82
L ) .52
0
V1. THE CHARACTERISTIC EQUATION

M+ G,

The characteristic equation for the determination of o
can be obtained by observing that another relation between
@ and a can be derived from the last boundary condition (30)
which involves the surface temperature variation and the
perturbed mass flow, Eq. (41). In this way, requiring the two
expressions for @ to coincide, we obtain the characteristic
equation in the form

— 2o+ kW,,)J(

Sy(o) — S3(0) =0, (53)
where
S _ Kl/'tl +Kv ,ltu
= —— V1%
LaJ/aT,
X{(pr +p o + @))+ KJ [20 —k(W, - W)]],
(54)

and S, is given by (52). The coeflicient multiplying the curly
brackets in this expression is usually rather small because the
latent heat L is a large quantity. For example, using the esti-
mates p,~W,/D, and 8J /3T, ~a(RT,/27M )"'? dp¢/dT
and assuming K, u, <K, u,, for water at 100°C we find
K, u,(L 3J /3T,)~4x 1073 W,, approximately, where W,
is in cm/sec. Hence it is seen that a good approximation to
the characteristic equation (53) is given by

S,(0)~0, (55)

which, as is clear from (51), is the result that one would get
substituting for the last boundary condition relating surface
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temperature and mass flux the simpler requirement of zero
variation of the surface temperature,

T:=0. {56)
The nature of the roots of the characteristic equation is
therefore really determined by the function S,, with S, pro-
viding only a small correction to the values given from the
approximation (55). This remark also shows that the actual
value of 47 /dT,, and in particular the effect of the accom-
modation coefficient, can only have a limited influence on
the numerical values of ¢.

The form of the function S, is different if the thermody-
namic equilibrium approximation expressed by the first of
(13) is used to close the system. In this case Eq. (30) would be
replaced by

, _ dp;
pu - de

From this equation we can again obtain an expression for ®
in terms of @ using (43). Equating this result to (51), we obtain
a characteristic equation of the same form as (53), where now
the function S, is given by

kip, +K, 1,
2L dp%/dT,

+ 20 [k (W, — W) —(p; +p. )05 /k —p, 8]

— W) p1 +p,) — KT (W, — W)

X(2W, — W,) — 2kgJ } . (58)

T +p.8n- (57)

§;= {(pr —p.)J2W, + W )0

One readily finds that the order of magnitude of this function
is also small compared with that of S,.

We should recall that, due to the assumption Re 00
made in obtaining S;, only roots of (53) having a positive real
part are acceptable.

Vil. RESULTS

In order toillustrate numerically the theoretical results,
we need to make a definite choice for the unperturbed tem-
perature distribution in the evaporating liquid. This tem-
perature distribution enters into the characteristic equation
through the integral J; and through the ratio of the second to
the first spatial derivative at the interface. We shall consider
three different examples which are representative of the pos-
sible cases. It will be seen that, although the quantitative
predictions do depend on this unperturbed temperature dis-
tribution, the qualitative ones do not. In all the computa-
tions the physical properties of water at 100 °C have been
used.

A. Approximation by integration by parts

Upon integration by parts, the expression (49) for I,
may be written

W, [1 1
= +
D)fk — p7) Gilk — pi)

T J" 1 &0 ]
S I (R )|

I;

{59)
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The process can be continued to obtain an asymptotic expan-
sion of /; in inverse powers of (k — ). For sufficiently large
values of k we can evaluate /, approximately by dropping the
integral term in this expression. The same result would be
obtained by assuming a parabolic temperature distribution
in the liquid near the free surface. This procedure is often
followed in heat transfer problems treated by the integral
method (see, e.g., Ref. 28). In order to estimate the ratio of
the second to the first spatial derivative we note that, from
the unperturbed energy equation in the liquid, we obtain

T,
1 T, _ _W_,(l 1 9T ) 60)
) D, 0

G, a2 WG, o
If the surface temperature does not change with time the
value of the term in parentheses is 1. For a transient, how-
ever, dT /dt <0, and this term is greater than 1. To account
for these transient effects in an approximate way we intro-
duce a parameter [ defined by
1 T, w,

G, ale b’

and we shall present results for /= 1 (steady case)and f = 2.
(A comment on the choice of this particular value will be
made in Sec. VII C for a specific case.) With this definition
we have

L=[W/Dik —u)] (1= f[W/Dik—ui)]}.  (62)

(61)

We show in Fig. 3 the growth rate o of the instability as
a function of the wavenumber k for a vapor velocity W,
= 10° cm/sec, corresponding to a mass flow rate J = 0.564
g/cm? sec. This value is large, but lower than the estimates of
Shepherd and Sturtevant.® The mass fluxes in the experi-
ment by Fauske and Grolmes® can also be estimated to be of
this order. The existence of a fastest growing wavelength is
obvious from the figure. As k—0, o is found to tend to a well-
defined positive value. This feature is a consequence of the
approximation made in (59), which is not expected to be
good for small k. For k greater than the maximum, o de-
creases more and more rapidly until the roots of the charac-
teristic equation become complex. This change is indicated
by the discontinuity in slope of the continuous lines in Fig. 3,
which represent the real part of the root, and by the simulta-
neous appearance of the dashed lines which show the imagi-
nary part. Further increase of the wavenumber eventually
leads to a change in sign of the real part which indicates
stability. As indicated above, the present theory is not appli-
cable beyond this point.
Surface transient cooling, as described by the parameter
/, is seen to increase the instability. For larger mass fluxes,
however, we found an increase in o for small k but a decrease
for large k. The dash-and-dot lines in Fig. 3 have been ob-
tained by approximating the characteristic equation (53) by
S, = 0. As was remarked earlier, this approximation is equi-
valent to the assumption that the temperature of the liquid—
vapor interface does not change due to the presence of the
surface wave. The approximate results are very close to the
exact ones for the cases of the figure, but the difference in-
creases with increasing vapor velocity as could be expected.
In Fig. 4, curve a, the growth rate o,, of the fastest
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FIG. 3. The growth rate of the instability o{sec ') is shown as a function of
the wavenumber & (cm ~*) for the parabolic temperature distribution of Sec.
VII A. The solid lines are the real part of o and the dashed lines the imagi-
nary part. The dash-and-dot lines are obtained from the approximation (55)
which neglects surface temperature variations. The lower set of curves is for
the value f= 1 of the parameter defined in (61), the upper set for f= 2. The
undisturbed vapor velocity is W, = 10° cm/sec, corresponding to a mass
flux J=0.564 g/cm? sec.

growing wavelength is shown as a function of the vapor ve-
locity W, for the case f= 1. The growth rate is very small
for W, < 150 cm/sec, but increases very rapidly and o, '~1
msec at W, ~700 cm/sec, which corresponds to a mass flux
J=~0.40 g/cm? sec. The wavenumber k,, corresponding to
the fastest growing wavelength is shown in Fig. 5 as a func-
tion of W, (continuous line). The dashed line in this figure
shows the value of k at which the growth rate o becomes
complex, and the dash-and-dot line the value at which Re o
becomes negative (we have not computed this curve for W,
< 100 cm/sec). For the reasons already explained the rapid
decrease of k,, with W, renders these results unrealistic for
small velocities.

It is now possible to estimate the error introduced by
the neglect of viscous effects. As was already remarked, we
expect that at not too short wavelengths the only effect of
viscosity would be a damping of the interfacial wave. Since
vorticity is confined to the vapor, which has a much smaller

2000|

G, .S

1000}

L

1000

0 500 W, ,cm/s
FIG. 4. The growth rate ofsec ") of the fastest growing wave is shown as a
function of the undisturbed vapor velocity W, (cm/sec) for the parabolic
temperature distribution of Sec. VII A with f= 1 {curve a) and for the ex-
ponential distribution of Sec. VII B (curve b). The dashed line is the result
given by the approximation (68) in the latter case.

1597 Phys. Fluids, Vol. 27, No. 7, July 1984

/

T / ]
/
k,em™ | 4 ]
/ e

/ S

I /

/ L’
50|. y, P 4
4 7
R Y L 4
/ e
- s Ky .
/ .
L s 7 i
s
Y
- e ///
il
[¢] == 1 i L Y i L . i

0 500 W, ,cm/s 1000

FIG. 5. The wavenumber k,,(cm ™) corresponding to the fastest growing
wave is shown as a function of the undisturbed vapor velocity W, {cm/sec)
for the parabolic temperature distribution of Sec. VII A (solid line). The
dashed line shows the value of k at which o becomes complex, and the dash-
and-dot line the value at which Re o vanishes.

viscosity than the liquid, we may estimate this rate of damp-
ing by means of the usual theory of irrotational waves which,
for small kinematic viscosities, leads to a value 2vk 2.2° For
W, = 10° cm/sec the maximum of ¢ occurs for k~35.5
cm™'. With v = 2.9X 10~3 cm?/sec, which is the kinematic
viscosity of water at 100 °C, we then find 2vk 2~7.4 sec™!
which is totally negligible compared with the fastest growth
rate 0,,~~2150 sec ™! predicted for this case.

B. Steady case

As a second example we take the steady temperature
distribution (16). For the reasons already indicated in Sec.
II1 this distribution does not correspond to conditions readi-
ly encountered in nature far from the critical point. How-
ever, it is the only case in which our normal mode technique
is exact, and the same distribution has been used in the past
for the analysis of the same problem.® Furthermore, it is
clear from the form (49) of 7, that this quantity is influenced
essentially by the temperature distribution near the inter-
face. Hence, even if we cannot trust the steady distribution
(16) all the way to z— — oo, We can use it to represent a thin
superficial boundary layer.

In this case the integral 7, has the value

I, =W,/Dik +pu,), (63)

whereas the second derivative at the interface is given by (61)
with f=1.

Figure 6 shows the growth rate o as a function of the
wavenumber for W, = 1000, 1500, and 1900 cm/sec. The
corresponding mass fluxes are 0.564, 0.822, and 1.02 g/cm?®
sec. The very rapid growth of the instability with W, is ap-
parent from this figure, as well as from Fig. 4, curve b, where
the maximum growth rate is shown as a function of #,. The
large influence that the temperature profile has on the insta-
bility is apparent upon comparing Fig. 3 with Fig. 6 and
curves a and b of Fig. 4. Qualitatively the two temperature
profiles differ most markedly in the rate of change of the
liquid temperature as the free surface is approached, with the
previous one giving a more gradual transition as compared
to the present exponential one which provides a more rapid
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FIG. 6. The growth rate of the instability o{sec ') is shown as a function of
the wavenumber & (cm™*) for the exponential temperature distribution of
Sec. VII B. The solid lines are the real part of o and the dashed lines the
imaginary part. The three sets of curves are for W, = 1000, 1500, and 1900
cm/sec.

temperature drop. The thinner boundary layer results in a
narrower range of unstable wavenumbers and in smaller
growth rates. For the present purposes these two distribu-
tions may be expected to be representative of the range of
temperature distributions that can be encountered in prac-
tice. In this case also, the growth rate o turns complex and
eventually Re o becomes negative with increasing k. The
imaginary part of o is indicated by the dashed lines in Fig. 6.

The scale of Fig. 6 makes it impossible to show the de-
tailed behavior of o for small k. It should be observed, how-
ever, that in this case o becomes positive for a finite value of
k, which decreases as W, increases. This is the only case
which we have found in which o is real and goes through
zero at the onset of instability. The approach of Palmer'® is
justified only in this situation.

Figure 7 shows as functions of W, the value of the wave-
number corresponding to the fastest growing wavelength
(middle continuous line), the values of k at which the growth
rate of the instability becomes complex (upper continuous

k,ecm™

50

500 1000 W, cm/s 1500
FIG. 7. The wavenumber &,,(cm ') corresponding to the fastest growing
wave is shown as a function of the undisturbed vapor velocity W, (cm/sec)
for the exponential temperature distribution of Sec. VII B {middle solid
line). The upper solid curve marks the values of k at which o becomes com-
plex and the lower solid line the smail k instability boundary at which o = 0.
The dashed lines correspond to the approximations (67) and (69). Note the
existence of a threshold value of the vapor velocity in this case.
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line), and the lower instability boundary (lowest continuous
line). Upon comparison with Fig. 5 this figure clearly shows
the reduced instability range of the steeper exponential pro-
file. The existence of a threshold at W, ~530 cm/sec is also
apparent from this figure.

For the temperature profile considered here an acciden-
tal simplification of the form of S, takes place, since it is
readily seen that, with (63), Eq. (52) can be written as

S =1 =L)[(p; +p)o* +w3) —k*T3W, — W))] .
(64)

If now the characteristic equation is approximated by
S, =0, we find

o={[BW, =W/ p:+p,)} T —a}}?,  (65)
or, neglecting for simplicity p, relative to p,,
o~[3(p,/p Wik —}]"?. (66)

This particularly simple form enables one to obtain an ex-
plicit expression for the fastest growing wavenumber %, :

JW, JW,\? 172
b= 4 | (Z) - 22E]7, 67)
& & 3
and for the corresponding growth rate
ou = [kulkua W, W, —§g)]l/2~ (68)

The dashed lines in Figs. 7 and 4 show these two relations. It
is clear that, as in the previous case, the relation S| = 0 gives
a good approximation to the complete characteristic equa-
tion. It is also clear from (65) that, for a given W, a minimum
and a maximum value of k exist for which Re o> 0. This
range of unstable wavenumbers is given by k,<k<k,, where

2
k,,2=3JW” L [(3JWU) _ p,gJ' (69)
% 2% ¢

The value of k, given by this formula is shown by the upper
dashed line in Fig. 7. The value of k, cannot be distinguished
from the value given by the complete equation (lowest con-
tinuous curve) on the scale of the figure. It is also evident
from (69) that a minimum value of the vapor velocity exists
for which there is a range of unstable wavenumbers. This
value is a threshold for the instability and is given by

172 1/4
W, =(3 5’1) (ig) . (70)
3 Py P

For water at 100 °C this relation gives W, ,, = 527 cm/sec.

C. A transient temperature distribution

As was already observed, the present analysis can be
applied to a nonsteady unperturbed situation only by treat-
ing the unperturbed temperature distribution as parametri-
cally dependent on time. This procedure is justified when the
time scale for the development of the instability is much
shorter than that for the change in time of the unperturbed
state.

As an example of the results that can be obtained in the
transient case we consider the transient which leads to the
steady temperature distribution considered in Sec. VII B.
The unperturbed state is therefore specified as follows: a lig-
uid at uniform temperature T’ is at rest and occupies the
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region z<0; at time ¢t = 0 the liquid starts evaporating at a
fixed rate, and at the same time it starts moving towards the
interface at a velocity W, =J /p, so that the free surface
remains fixed at z = 0.

The unperturbed temperature distribution in the liquid
is readily obtained by means of the Laplace transform. In
particular the temperature gradient is found to be

3(87’, )
Jz

e |3+ (i 5) |
= —5 ex ——— -_ Zp,
P | 2p, 4D? ' D,

where .Z(...) denotes the transformed function and s is the
transformed variable conjugate to time. Inserting this
expression into the definition of 1;, Eq. (49), carrying out the
integration with respect to z, and inverting the transform, we
find

I =2(1 -8y Verf r—1/2

+ B {erfc(Br''Yexp [(B>— )r] - 1}), (T1)
where

2D1 WI )2 o 1/2}
= kt (=) +4°+—| |
=t @) g

and the dimensionless time
T=(W3i/4D,)¢t,

has been introduced. An explicit result for the second deriva-
tive of 7, can also be obtained which, upon comparison with
(61), shows that

f=3[1+erf ' + (w7)~ 2 exp ( — 7)]

in this case. It is readily verified that for 7— 0, (71) reduces
to(63) and f decreases monotonically from infinity to 1. The
value f= 2 is attained quite rapidly for 7~3.5 X 1072, after
which the decrease is much slower. For instance, for 7 = 0.1,
f=1480and for r =1, f= 1.025. The value f'= 2 used in
the first example is seen here to be representative of condi-
tions at the end of the very rapid initial transient,

100

k,cm™

FIG. 8. The growth rate of the instability o{sec~!) is shown as a function of
the wavenumber & (cm™') for the time-dependent case of Sec. VII C for
7=0.1 and 7= 0.5. The solid lines are the real part of o and the dashed
lines the imaginary part. The undisturbed vapor velocity has the value W,
= 1000 cm/sec.
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In Fig. 8 we show the growth rates obtained for this case
for 7= 0.1, 0.5 and in Fig. 9 those for r =1, 1.5 and 7—>
for W, = 1000 cm/sec. In these figures the real part of o is
shown by the continuous lines, whereas Im ¢ is indicated by
the dashed lines. A marked change in behavior is apparent
from these results. For small 7 (Fig. 8), o is complex for all
values of k, which corresponds to an oscillating surface wave
of growing amplitude; whereas, for increasing 7 a larger and
larger interval of wave numbers in which o is real appears.
The curve corresponding to steady conditions is approached
very rapidly. The maximum growth rate at first decreases
with increasing 7, and then starts to increase once the corre-
sponding value of o becomes real. The range of unstable
wavenumbers is seen to decrease with increasing time, and
the fastest growing wavelength remains in the range 15-35
cm ™' for all times. It may be noted that the present model, in
which time enters only parametrically, predicts instability
for all values of 7.

D. Thermodynamic equlibrium assumption

As was indicated in Sec. VI, the assumption that the
vapor pressure at the liquid surface coincides with that pre-
scribed by local thermodynamic equilibrium results in a dif-
ferent characteristic equation from the one used to obtain the
results discussed thus far. In Fig. 10 we show a comparison
between the results obtained by means of this assumption
with the previous ones. The case considered is that of Fig. 3
for f=1, i.e., the approximation (62) has been used for I,,

the relation (61) for 3°T /3z%, and W, = 1000 cm/sec. The
thermodynamic equilibrium results are shown by the curves
marked @ and those of Fig. 3 by the ones marked b. The
qualitative behavior is very similar although there is some
quantitative difference. These results confirm the fact that
surface temperature changes have only minor effects on the
instability studied here.

c,s”
W, =1000 cmy/s
500} ]
2 e
| 15 e
%
1
- T =1 l/ -
.
///
- /&’ 1.5 B
| /’/ -
ol -
0 50 -1 100

k,cm

FIG. 9. The growth rate of the instability o{sec ~') is shown as a function of
the wavenumber k (cm ') for the time-dependent case of Sec. VII C for
7= 1,7= 1.5, and 7 oo . These last results are the same as those shown in
Fig. 6. The solid lines are the real part of o and the dashed lines the imagi-
nary part. The undisturbed vapor velocity has the value W, = 1000 cm/sec.

A. Prosperetti and M. S. Plesset 1599



2000
W, = 1000 cmys
=t
g, s
1000 4
0 L L .
0 50 k,cm™ 100

FIG. 10. Comparison between the results obtained by imposing thermody-
namic equilibrium at the interface {curves a} with those of Fig. 3 {curves b).
The solid lines are the real part of the instability growth rate o and the
dashed lines are the imaginary part. The temperature distribution is the
parabolic one of Sec. VII A and the value of the undisturbed vapor velocity
is W, = 1000 cm/sec.

E. The effect of vapor vorticity

As afinal point it is of interest to inquire about the effect
of vorticity in the vapor on the stability of the interface. The
problem can be solved by the same procedure under the as-
sumption of irrotational motion in the vapor if the require-
ment of continuity of tangential velocity at the interface is
dropped. Rather than writing down the general result we
consider only the exponential steady profile of Sec. VII B
which leads to particularly simple expressions. In this case,
the term (1 — I,} can be factored out from .S, as in Eq. (64)
and the remaining expression equated to zerc to approxi-
mate the complete characteristic equation. The result is
(p1+p)o* —2kio + (p; +p, )0y — k*J (W, — W) =0,
from which, using the approximation p, <g,,

o=k W, + [k*(p,/p)W] —w5]'".

The first term is always positive, but the predicted growth
rate, measured on the time scale wg ! is exceedingly small
and hence can be disregarded. The remaining term is then to
be compared with the previous result (66) obtained by means
of the analogous approximations. It is seen that the effect of
the vapor vorticity is to increase the coefficient of the first
term in the square root from 1 to 3. We conclude therefore
that vorticity does have a destabilizing effect, but that it can-
not account in full for the instability that we have described.
Furthermore, the fact that the presence of vorticity does not
add new terms to the characteristic equation but merely
changes the numerical value of a coefficient seems to imply
that the instability has its roots in other phenomena, the
effect of which is only amplified by the vapor vorticity. We
have already described the nature of these phenomena in
Sec. IV.

Viil. CONCLUSIONS

The theoretical results obtained in this study depend on
the unperturbed temperature distribution near the interface
which is not known. This circumstance has prevented us
from effecting 2 comparison with experiment. For the same
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reason it has not been possible to reach conclusions of gen-
eral validity. However, on the basis of several different tem-
perature distributions, it has been found that the surface of a
rapidly evaporating liquid can become unstable for a range
of wave numbers. At large mass fluxes the instability is quite
violent, with characteristic growth times of a millisecond or
less.

It has been found that in all the cases investigated the
results can be well approximated by assuming that the liquid
surface temperature is not affected by the perturbation. This
observation seems to imply that the most important element
in the development of the instability is the change in mass
flux caused by the change in temperature gradient at the
interface. When a surface wave is present, the flux from the
(liquid) crests where the thermal boundary layer is stretched,
decreases and that from the troughs, where the boundary
layer is compressed, increases. Since the vapor leaving the
surface pushes back on the liquid due to the increase in spe-
cific volume, the consequence is that the pressure in the lig-
uid is increased at the troughs relative to the crests, so that
the liquid is squeezed into the crests and causes their growth
(Fig. 2). A corresponding deepening of the troughs also takes
place at the same time. This mechanism is contrary to that
termed “fluid inertia” by Palmer,'® which requires the pres-
sure in the liquid troughs to decrease. We have not found
evidence of this behavior in any of the cases examined. Evi-
dence for Palmer’s “differential vapor recoil” mechanism
has also not been found, at least to the extent that it is caused
primarily by local surface temperature variations. The
“moving boundary” mechanism, if it exists, seems to be of
very minor importance. The mechanism that we have found
is similar in its action to the “differential vapor recoil’”” one,
but in its origin it is rather akin to the “moving boundary”
one and therefore it cannot be identified with either one of
them. The other two mechanisms described by Palmer de-
pend on viscosity and surface tension gradients, both of
which we have neglected in the present mathematical model.
It may also be noted that under conditions of marginal sta-
bility (i.e., when the real part of the growth rate vanishes) the
imaginary part does not necessarily vanish. Hence, applica-
bility of the principle of exchange stability on which the
work of Palmer is based should not be taken for granted in
the present problem.
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APPENDIX: SOLUTION OF THE PERTURBATION
PROBLEM

We outline here the method and the essential steps lead-
ing to the solution of the perturbation problem given in
Sec. V.
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Upon taking the curl of the momentum equation (23} we
find
a 7]
— + W—) o=0, Al
(6t dz (A1)
where o denotes the vorticity. This equation implies that @

depends on z and ¢ only through the combination — z/W. It
can be shown that o can be expressed as*

o=VX[4K + VX(BK]]. (A2)
Since @ = V X w’, this relation implies that
v =4AK+VX(BK)+ Vg, (A3)
where, from the equation of continuity, ¢ must satisfy
Vipg= — o4 . (A4)
oz

Upon substitution of (A3} into (23), in view of the depen-
dence of A4 and B on the variable t — z/ W, we find

. dp dp )

+p|—= + W="-]=0. A5
pe ( ar P (A3

The general solution of (A4) is readily determined to be
@= (Po(t)f—%f e %4 dz) e

+ (=1 [ adz)e, (a6)

from which, upon substitution into (A5) and use of the rela-
tion 94 /9t = — W 9A /dz, the following expression for the
pressure field is obtained:

7' =p{[(kWQ, — Qo) f— } WA(x.p,0,t)] e *
— [(Po + kWP, f— } WA (x,p,0.)] €4}, (A7)

where the dots denote time differentiation.

These results are general and do not involve any as-
sumption on the time dependence of the various quantities.
We now adapt them to the liquid field. For an exponential
time dependence (A1) gives

A, =a, f(x.y)exp[olt —z/W))] .

Since Re o> 0 in the unstable case, and since z <0 in the
liquid, it is necessary that a, = 0 for 4, to be bounded at
infinity. Similarly, one finds B, = O and, from the require-
ment of boundedness of ¢;,Q,; = 0. Thus, the motion in the
liquid is irrotational and (A6) and (A7) give, after a renaming
of the constants, Egs. (31) and (35) for ¢, and p}, respective-
ly.

For the vapor field we have

A4, =a, fixy)exp [olt —2/W,)], (A8)

whereas boundedness of @, for z— o requires that
PO,,(t)f=—l-J e~ "4, dz
2 Jo

or

POv =% [av/(k+a/Wv)] e”.

With these expressions it is readily seen that (33) and (36) are
obtained for the vapor field.
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Continuity of the tangential velocity requires that on
z=0,

o — @, =W, =W,

B, =8B,.
The first relation allows one to express «, in terms of ¢,,P,,

and a, while the second one implies B, = 0.
We turn now to the energy equations (24). Setting

T'=0(2)f(xy)e”, (A9)
the perturbed energy equation in the vapor becomes
d?e, dé,
D,—~ — W,— — (D ,k? 6,=0, (Al0
v A v, — Dk +0) (A10)

since the undisturbed temperature gradient vanishes in the
vapor. The solution of this equation bounded for z— oo is

6,=0e *y,, (All)

where u, is given by (48) and @ is the (total) temperature
perturbation at the interface. The presence of an unper-
turbed gradient renders the liquid energy equation more
complex, namely

d?6, dé, a7,

D — —W,— —(D,k? 6, =k, ——.
' P s (Dik*+0)6, 1€ En

(A12)

For general dT,/9z the solution of this equation bounded for
z— oo can be obtained by Lagrange’s method of variation of
constants and may be written

ez=(@+—1—,f e ** F(2)dz
H—p 7-=

"z
+——1—f e M F )z -aﬂ
B —pp Jo dz
'z
+____1_e#fzf e —puiz FI(Z’) dz: ,
Bl — —®
where u, and y; are given by (47) and (50) and we have set
F, = k®,D [ '3T,/3z e* for brevity. The remaining integra-
tion constant in (A 13) has been written in such a way that, if
due account is taken of the unperturbed temperature gradi-
ent, @ is the perturbation of the interface temperature. From
(A13) the expression (45) for the perturbed temperature gra-
dient at the interface is obtained, which completes the solu-
tion.
It may be noted that in the stable case Re o <0 and one
would find a, =0, a, 0 and the vorticity would be con-
fined to the liquid.

)
4]
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