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ABSTRACT 

Inhabitants in the Mekong River Basin (MRB) floodplain, mainly inside 

Cambodia and Vietnam, have been extensively relying on resources from the river as 

their major food and income source by developing floodplain agriculture and freshwater 

fishery. However, despite the potential impact of increasing extents of climate and 

anthropogenic changes on the MR hydrology, which can particularly influence the 

livelihoods of people in the downstream MRB floodplain, there is no publicly and 

routinely issued water level forecast inside the Mekong Delta (MD), neither inundation 

extent forecast for the whole MRB floodplain. This may be because of (1) the concerns 

of heavy computational burden and limited accuracy of conventional approaches due to 

the complex hydraulic conditions and flat terrain in the region, and (2) less effective 

data exchange between countries due to geopolitical barriers. This dissertation 

introduces a question:  How can we build skillful, computationally efficient, and 

sustainable water level and inundation extent forecasting systems for the MRB, 

specifically for the downstream floodplain? 

To answer the question, we have proposed: Chapter 3 - A freely accessible, 

computationally efficient daily water level forecasting system for the MR, which 

particularly addresses the challenges in the MD region; Chapter 4 - A satellite imagery-

based inundation extent forecasting framework, called Forecasting Inundation Extents 

using Rotated empirical orthogonal function analysis (FIER), with the Tonle Sap Lake 

Floodplain as a test bed. It allows quick and continuous estimation of inundation extents 

of any time with available hydrological data and also addresses the concerns of heavy 

computational burden and extreme overestimation issues in the conventional inundation 
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forecasting approaches. In Chapter 5, we further implemented FIER to the whole MRB 

floodplain, where conventional inundation extent forecasting approaches are quite 

challenging to be applied. The FIER pseudo-forecasted inundation extents were then 

applied to spatially predict flood hazard levels and rice paddies at risk which can serve 

as references for local stakeholders to do more efficient decision making for better flood 

damage containment. The systems we developed utilize remote sensing data and are 

based on computationally efficient methods and can be easily implemented on cloud-

based platform with enhanced scalability and accessibility. 
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1. INTRODUCTION 

 Statement of Problem 

The Mekong River (MR) is the twelfth-longest river in the world and the largest 

river in Southeast Asia and flows through six countries (China, Lao PDR, Myanmar, 

Thailand, Cambodia, and Vietnam). The importance of the MR on a regional and global 

scale is more than apparent from multiple aspects. Inhabitants in the MR Basin (MRB) 

have been extensively relying on resources from the river as their major food and 

income source through floodplain agriculture and freshwater fishery (Mekong River 

Commission, MRC, 2011), which also contribute to the global food supply. 

In recent years, the extent of land-use change and the amount of water 

infrastructure has rapidly increased, which together with climate change-induced 

rainfall intensification, influences the MR hydrology by altering the amount of river 

flow and the extents of seasonal inundation. This can pose an impact on agricultural, 

and ecological systems especially in the downstream areas of MRB like the Cambodian 

Floodplain (CF) and Mekong Delta (MD), impacting the livelihoods of millions of 

people (Pokhrel et al., 2018; Shin et al., 2020; Try et al., 2020a, 2020b). Hence, flood 

forecasting in these areas is urgently needed.  

Among all hydrology properties, water level is an indicator for flood warning. 

The Regional Flood Management and Mitigation Center (RFMMC) of the MRC has 

been regularly issuing water level forecasting at 22 gauges using a hydrological model 

(Pagano, 2014). However, the forecasting is only regularly issued down to the very 

upper part of MD near the Cambodia-Vietnam national border. Another critical quantity 
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for flood warning is inundation extent, which directly reflects the distribution of 

floodwater in space, and thus, is very important for establishing a fast response plan and 

disaster mitigation (Liu et al., 2017; Smith, 1997). Yet, to the best of our knowledge, 

there is currently no publicly available information about forecasted inundation extents 

issued by the MRC to the best of our knowledge. In fact, the complex hydraulic 

conditions in the MRB floodplain, especially in the MD, have posed challenges to water 

level forecasting, as a complicated model structure and heavy computational burden are 

required (Pagano, 2014). For inundation extent forecasting, conventional hydrodynamic 

modeling can be computationally impractical in fast and frequent operations due to a 

heavy computational loading, influencing the forecasting lead time (Liu et al., 2018; 

Zheng et al., 2018a, 2018b). The GIS-based strategy could provide extremely 

overestimated results over the low relief areas (Johnson et al., 2019) like the MRB 

floodplain despite being computationally efficient. On the other hand, in transboundary 

river basins like the MRB, even if international data-sharing agreements exist among 

the member countries, the process can still be complex in practice (Du et al., 2020; 

Gerlak et al., 2011), which is another challenge in flood forecasting in the downstream 

areas. In fact, even though the MRC sets a successful example in regulating 

transboundary water resources as well as coordinating the relationship between member 

countries, the data exchange procedure is still not very effective (Anh, 2021) 

Therefore, computationally efficient water level and inundation extent 

forecasting systems that utilize remotely sensed measurements without geopolitical 

restrictions are necessary to address the needs of downstream countries like Cambodia 

and Vietnam, toward an independent and sustainable capacity for early risk assessment, 
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decision-making, and fast response. Previous studies using remote sensing techniques 

to measure water levels and inundation extents are reviewed below, with a focus on 

radar satellite altimetry and Synthetic Aperture Radar (SAR). 

 

 Measuring Inland Water from Space 

 Satellite Altimetry for Inland Water  

Satellite altimetry was initially designed to provide accurate water level 

observations over oceans, as the shape of returning waveform is simple, allowing easy 

definition of signal time-of-flight and the resulting satellite range. Its application on 

inland water bodies is more complicated as the shape of the returning waveform is more 

likely to be influenced by river bank topography, lakeshore, or coastline, making the 

definition of time-of-flight and satellite range a challenging task. Fortunately, the 

difficulty has been mitigated by “waveform retracking” techniques, allowing retrieval 

of water levels of inland water bodies such as rivers and lakes or coastal sea levels with 

improved accuracy. This also opens the door for applying satellite altimetry to 

hydrology studies. Direct application examples are the retrieval of water levels over 

various types of inland water bodies (Biancamaria et al., 2017; Boergens et al., 2019; 

Da Silva et al., 2012; Lee et al., 2011; Sulistioadi et al., 2015; Tourian et al., 2016). 

Since satellite altimetry is a profiling tool providing one-dimensional along-track 

observations, many studies have combined altimetry-derived water levels with other 

satellite-based measurements for a wider range of applications. These include 

calibration of hydrodynamic model (Jiang et al., 2019), estimation of lake and reservoir 
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water volumes (Busker et al., 2019; Zhou et al., 2016), river discharges (Kim et al., 

2019a, 2019b; Paris et al., 2016; Tarpanelli et al., 2019; Tourian et al., 2017) and 

bathymetry (Brêda et al., 2019). In the MRB, Frappart et al. (2006) combined satellite 

altimetry-derived water levels with inundation extents derived from satellite images for 

analysis of water volume changes over downstream floodplain areas including the CF 

and MD. More recently, Frappart et al. (2018) used long-term altimetry-derived Tonle 

Sap Lake (TSL) levels along with inundation extents from satellite imagery to study the 

connection between El Niño and Southern Oscillation (ENSO) and TSL Floodplain 

(TSLF) water volume changes. For the MR level estimation, a recent work by Pham et 

al. (2018) derived daily MR levels at the upstream of MRB by fitting regression models 

between satellite-observed land surface temperatures and altimetry-derived river levels. 

However, it focused on the upstream areas of MRB and did not address the challenges 

in the downstream areas. For water level forecasting, recent studies have applied 

satellite altimetry data for computationally efficient regression analysis-based water 

level forecasting in the Ganges-Brahmaputra-Meghna River Basin, a transboundary 

river basin (Biancamaria et al., 2011; Hossain et al., 2014a, 2014b). However, such 

application of satellite altimetry toward a low computational cost daily water level 

forecasting in the MRB, addressing the complex hydraulic conditions in its downstream 

areas is yet to be investigated.  
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 SAR Observations for Inland Water Detection 

SAR is considered the most useful sensor for detecting flooded areas under cloud 

cover (Yan et al., 2015). Its use of active microwave electromagnetic pulses allows it to 

penetrate clouds and be independent of illumination and atmospheric conditions. Thus, 

it can provide surface observations without spatial gaps both day and night under all 

weather conditions (Martinis et al., 2015; Pierdicca et al., 2013). Its application for 

depicting inundation extents began with the First ERS Thematic Working Group 

Meeting on Flood Monitoring in 1995, where numerous investigators presented 

inundation maps by using C-band ERS-1 SAR images (Smith, 1997). Studies such as 

Henry et al. (2006) used ENVISAT Advanced SAR (ASAR) to delineate the Elbe River 

flood of August 2002, while Bouvet et al. (2009) used ENVISAT ASAR data for rice 

crop monitoring over the MD. More recent studies have used inundation extents derived 

from SAR imagery for hydrological/hydraulic model calibration (Hostache et al., 2018; 

Wood et al., 2016). Other studies used SAR imagery with high resolution of up to 1 m 

and short revisit time, such as COSMO-SkyMed and TerraSAR, for urban flood 

mapping (Mason et al., 2010; Pierdicca et al., 2013). However, due to either the high 

cost of SAR imagery or its infrequent image acquisition (Markert et al., 2018), frequent, 

rapid, and publicly accessible flood mapping has not been realized until the launch of 

the European Space Agency (ESA)’s Sentinel-1 in 2014. Sentinel-1 has promoted the 

use of SAR imagery as it features consistent image acquisition, free accessibility, and 

shorter revisit time (12 days) compared to earlier launched SAR satellites, such as ERS-

1/-2, ENVISAT, and ALOS. This allows continuous monitoring of ground features and 

their changes over time (Tsyganskaya et al., 2018a; White et al., 2014). Recently, 
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several studies have shown the ability of Sentinel-1 imagery to provide rapid and 

frequent areal flood mapping (Amitrano et al., 2018; Bioresita et al., 2018; Li et al., 

2018; Twele et al., 2016). In the MRB, Pham-Duc et al. (2017) used Sentinel-1 SAR 

images for surface water detection and monitoring in Cambodia and the MD through 

neural network classification with Landsat-8 imagery as training targets. Dinh et al. 

(2019) used time series of Sentinel-1 images along with other optical imagery for a 

higher temporal resolution inundation mapping in the MD. Markert et al. (2020) used 

Sentinel-1 imagery for inundation mapping in Cambodia by utilizing Google Earth 

Engine. Tuan et al. (2021) used Sentinel-1 imagery along with ALOS-2 imagery toward 

a better inundation mapping in the MD.  However, despite the rapid development and 

growing use of SAR imagery for inundation extent detection, there is a lack of 

investigations using SAR imagery toward cloud-free inundation extent forecasting. 

 

 Motivation and Objectives 

This research aims to explore new approaches for flood forecasting, specifically 

for water level and areal inundation. The motivation is to address: (1) The challenges in 

conventional approaches, such as the heavy computational load for hydrological and 

hydrodynamic modeling for water level and inundation extent forecasting as well as the 

extreme overestimation when implementing non-modeling GIS-based inundation 

forecasting approaches in flat-terrain areas like the MRB floodplain; (2) Potential 

practical complex data-sharing process between the upstream and downstream countries 

in the MRB due to geopolitical barriers, which can hinder the operation of flood 

forecasting in the downstream.  



 

7 

The objective of this dissertation is to answer the research question: How can 

we build skillful, computationally efficient, and sustainable flood forecasting systems 

of the MR water levels and inundation extents for the MRB, specifically for downstream 

areas? Therefore, we propose novel computationally efficient water level and 

inundation extent forecasting approaches utilizing remotely sensed observations to 

mitigate geopolitical restrictions and help stakeholders in the downstream countries of 

MRB, including Cambodia and Vietnam, build independent and sustainable capacity of 

early risk assessment, more efficient decision-making and fast response for flood 

damage mitigation. 

 

 Contributions 

To fulfill the objectives listed above, we integrated multiple remote sensing data 

sources (satellite altimetry and SAR) and hydrological modeling for building novel 

flood forecasting systems. Detail contributions of this dissertation include: 

• Proposing a freely accessible, computationally efficient daily water level forecasting 

system for the MR, which particularly addresses the challenges in the MD region, 

where there is no routinely issued forecasting from the MRC (Chang et al., 2019):  

➢ First, daily upstream MR levels at cross-sections of satellite altimetry ground 

tracks and the MR, called Virtual Stations (VSs), were reconstructed through  

rating curves generated between the model-estimated discharges and altimetry-

derived MR levels. Daily altimetry-derived TSL levels at VS were reconstructed 

by interpolation. 
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➢ Second, computationally efficient forecasting models for downstream water 

levels were built by linear regression analysis considering temporal shifts 

between the upstream reconstructed MR water levels and downstream in-situ 

water levels. Influences of altimetry-derived daily TSL levels and sinusoid 

model-simulated tidal fluctuations were additionally considered as inputs for the 

forecasting from Phnom Penh to the MD.  

• Proposing a satellite imagery-based inundation extent forecasting framework, called 

Forecasting Inundation Extents using Rotated empirical orthogonal function 

analysis (FIER), with the TSLF as a test bed (Chang et al., 2020). The framework 

allows quick and continuous estimation of inundation extents at any time with 

available hydrological data, and also addresses the concerns of heavy computational 

burden and extreme overestimation in conventional inundation forecasting 

approaches:  

➢ First, spatiotemporal patterns in multi-temporal Sentinel-1 SAR image stacks, 

covering the TSLF, were extracted by Rotated Empirical Orthogonal Function 

(REOF) analysis. The temporal patterns of SAR images were then coupled with 

altimetry-derived TSL levels to build regression models.  

➢ Second, the temporal patterns of SAR images can then be estimated by feeding 

altimetry-derived TSL levels into the generated regression models. The 

estimated temporal patterns can then be combined with the spatial patterns to 

synthesize SAR-like images at the time of input altimetry-derived TSL levels. 

To demonstrate the forecasting capacity of FIER, a TSL level forecasting system 

using ENSO index was also proposed. 
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➢ Finally, inundation extents were estimated by applying unsupervised K-means 

clustering with the aid of a Digital Elevation Model (DEM). 

• Implementing FIER for the whole MRB floodplain, where the application of 

conventional inundation extent forecasting approaches is challenging. Applications 

of the continuous FIER-forecasted inundation extents in the spatial prediction of 

flood hazard levels and rice paddies at risk are also demonstrated. Such applications 

are extremely crucial for the MRB floodplain which is heavily populated with highly 

rice-dependent food intake and economy: 

➢ FIER of MRB floodplain was built by coupling spatiotemporal patterns of multi-

temporal Sentinel-1 SAR imagery with gauges of in-situ water levels distributed 

over the floodplain. 

➢ By integrating FIER with the water level forecasting system that we developed 

(Chang et al., 2019), we obtained inundation extent forecasting over the MRB 

floodplain where conventional approaches have difficulties to be applied. 

➢ The FIER pseudo-forecasted inundation extents are used to generate 

corresponding inundation depths, which are commonly used for flood risk 

assessment. FIER’s capacity for quickly estimating inundation extents is 

advantageous when practically performing continuous areal inundation forecast, 

allowing instantaneous spatial prediction of flood hazard levels and flood risk 

for rice cultivation.  
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 Document Structure 

The outline of this dissertation is shown as follows: 

Chapter 2 reviews satellite radar altimetry and SAR imaging techniques; 

Chapter 3 presents a feasibility study for daily water level forecasting system for the 

MRB. The chapter is based on the work presented in Chang et al. (2019); Chapter 4 

introduces a novel framework, named FIER, toward inundation extent hindcast and 

forecast by using the TSLF as a test bed; Chapter 5 presents the work of expanding the 

implementation of FIER to the whole MRB floodplain, encompassing TSLF, CF as well 

as MD, by integrating with the daily water level forecasting system presented in Chapter 

3. Applications of the FIER pseudo-forecasted inundation extents are also 

demonstrated. Finally, Chapter 6 provides conclusions and future work.  
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2. BACKGROUND 

 Satellite Altimetry 

 History of Satellite Altimetry Missions 

Satellite altimetry techniques started to emerge in 1960s following the 

development of artificial satellites. The Williamstown Symposium in 1969 revealed a 

plan for showing the feasibility of applying a single satellite equipped with a suitably 

designed radar altimeter in near-earth orbit for the observation of physical sea surface 

(Kaula, 1970).  

On May 14th, 1973, Skylab 1, the very first National Aeronautics and Space 

Administration (NASA) space station, was launched for experimental purposes but due 

to limited accuracy, was far from practical use. The first altimetry mission that was 

really applied to inland hydrology studies was Topex/Poseidon (T/P) launched in 1992 

under the cooporation of NASA and Centre National d'Études Spatiales (CNES). T/P 

was followed by the Jason series of altimetry missions including Jason-1, Jason-2, and 

the on-going Jason-3, launched in 2002, 2008 and 2016 respectively. T/P and the Jason-

series of missions follow the same orbit and together have provided about 30 years of 

observations. The other major group of satellite altimetry missions which also provides 

measurements for inland hydrology studies consists of the European Remote Sensing-2 

(ERS-2), ENVIronmental SATellite (ENVISAT), and Satellite with ARgos and ALtiKa 

(SARAL). ERS-2 and ENVISAT, launched in 1995 and 2002, were led by the ESA and 

were followed by SARAL, launched in 2013, by the Indian Space Agency. These 

missions also share the same orbit and collect long-term measurements. More recently, 
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ESA has launched Sentinel-3A/-3B in 2016 and 2018, respectively. Both are equipped 

with a SAR radar altimeter with decimeter level accuracy. The Sentinel-3A/-3B 

satellites are on-air but with different orbits, resulting in denser ground tracks and more 

comprehensive measurements over inland water bodies. Other satellite altimetry 

missions such as Jason-CS/Sentinel-6, and Surface Water and Ocean Topography 

(SWOT) missions are to be launched in the near future (Calmant et al., 2016). In this 

study, measurements collected by Jason-1/-2/-3 satellite altimetry missions were used, 

with a conventional altimetry technique known as Low Resolution Mode. The 

fundamental of this mode is explained in the following sections. 

 

 Principle of Satellite Altimetry Measurements 

The principle of satellite altimetry measurements consists of two major 

components, satellite range (𝑅), that is the distance from the satellite to the reflective 

surface, and satellite altitude with respect to the reference ellipsoid (ℎ𝑠𝑎𝑡). The altimeter 

emits a radar pulse and receives an echo from the reflective surface and records the 

corresponding two-way travel time (∆𝑡). By dividing ∆𝑡 by 2 and multiplying it with 

the speed of light in free space (𝑐 = 2.997925×108 m/s), 𝑅 can be determined (Calmant 

et al., 2016) 

𝑅 = 𝑐 ∙
∆𝑡

2
. (2.1) 

The height of the reflective surface with respect to the reference ellipsoid can be 

determined by subtracting R from ℎ𝑠𝑎𝑡 with correction terms (Calmant et al., 2016) 
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𝐻 = ℎ𝑠𝑎𝑡 − (𝑅 + 𝐶𝑝 + 𝐶𝑔) (2.2) 

where 𝐶𝑝  is propagation error corrections, and 𝐶𝑔  is a geophysical correction. 𝐶𝑝 

includes dry and wet tropospheric correction and ionospheric correction. In inland 

hydrology studies, 𝐶𝑔  includes solid earth tide and pole tide correction. Figure 2.1 

shows an illustration of the principle of satellite altimetry. 

 

Figure 2.1 Illustration of the principle of satellite altimetry for inland hydrology studies (AVISO+,     

https://www.aviso.altimetry.fr/en/applications/hydrology-and-land.html). 

 

 Waveform and Retracking Methods 

The definition of two-way travel time (∆𝑡) is the core of the satellite altimetry 

technique. To determine it, the altimeter onboard the satellite records the amplitude of 

radar pulse echoes as a function of gates (bins). The evolution of the recorded amplitude 

is called a “waveform”. Since a gate (bin) corresponds to a time width, called bin width, 

the waveform is actually equivalent to the recorded amplitude as a function of time. 

Figure 2.2 is an illustration of the evolution of radar pulse transmission, illuminated area, 

and the corresponding waveform. Once the front edge of the radar pulse hits the 
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reflective surface, the amplitude of the echo starts to rise (Figure 2.2(b)) and then 

increases proportionally until it reaches the peak when the rear edge of the radar pulse 

hits the reflective surface (Figure 2.2(c)), which results in the “leading edge” of the 

waveform. Afterward, the amplitude of the echo starts to decay (Figure 2.2(d)), resulting 

in the “trailing edge” of the waveform. Hence, there should be a jump in the waveform 

between the epoch that the leading and trailing edge hit the reflective surface. In the 

ideal case, such as over the surface of oceans or open water bodies, the recorded time at 

the mid-point of this jump, called the Leading Edge Point (LEP), represents ∆𝑡, which 

can be accurately estimated by the on-board tracker. However, the definition of LEP by 

the on-board tracker does not necessarily work for inland hydrology studies as inland 

water bodies, such as rivers or lakes, typically have a small spatial scale. Since the 

illuminated area of the altimeter radar pulse on the Earth surface, called footprint, is 

kilometer-level wide, the recorded waveform may be interfered by not only inland water 

bodies but also the complex surrounding land topography. Therefore, the definition of 

LEP (and resulting ∆𝑡) requires an additional correction called a retracking correction. 

 

Figure 2.2 Illustration of the evolution of emitted radar pulse, illuminated area, and recorded waveform 

(AVISO+, https://www.aviso.altimetry.fr/en/techniques/altimetry/principle/pulses-and-

waveforms.html). 

(a) (b) (c) (d) 
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Since the non-ocean surfaces have different characteristics, different retracking 

methods have been developed to address these differences, such as threshold retracker 

(Davis, 1997), Offset Center Of Gravity (OCOG) retracker (Wingham et al., 1986). The 

ICE-1 retracker (Bamber, 1994) was developed based on the OCOG retracker, using 

25% of amplitude derived from OCOG for determining ∆𝑡, while ICE retracker in Jason 

Geophysical Data Record (GDR) uses 30% of the amplitude derived from OCOG to 

define ∆𝑡. Since ICE retracker is the only retracker adopted in this study, only its details 

are described as below. 

For OCOG retracker, the algorithm determines the Center Of Gravity (COG) 

position, and the corresponding width and amplitude (Wingham et al., 1986) 

𝐶𝑂𝐺 = ∑ 𝑖𝑃2(𝑖) 

64−𝑛𝑎

𝑖=1+𝑛𝑎

∑ 𝑃2(𝑖)

64−𝑛𝑎

𝑖=1+𝑛𝑎

⁄ , (2.3) 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = √ ∑ 𝑖𝑃4(𝑖) 

64−𝑛𝑎

𝑖=1+𝑛𝑎

∑ 𝑃2(𝑖)

64−𝑛𝑎

𝑖=1+𝑛𝑎

⁄ , (2.4) 

and 𝑊𝑖𝑑𝑡ℎ = (∑ 𝑃2(𝑖) 
64−𝑛𝑎
𝑖=1+𝑛𝑎

)
2

∑ 𝑃4(𝑖)64−𝑛𝑎
𝑖=1+𝑛𝑎

⁄  (2.5) 

where 𝑃(i) is the value of the i-th bin from waveform samples and 𝑛𝑎 is the number of 

bins. Figure 2.3 is a schematic plot of the OCOG retracker. LEP of the OCOG retracker 

is defined as 

𝐿𝐸𝑃 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −
1

2
∙ 𝑊𝑖𝑑𝑡ℎ (2.6) 

where 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is the corresponding bin of the COG. 
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Figure 2.3 Schematic plot of the structure of OCOG retracker (Lee, 2008). 

 

For the ICE retracker, LEP is defined as the first bin whose corresponding 

recorded amplitude exceeds 30% of the amplitude of COG. It is different from the 

definition of OCOG retracker. The retracking correction (∆𝑅) is then determined by 

∆𝑅 = (𝐿𝐸𝑃 − Tracking bin) ∙ 𝑐 ∙
𝜏

2
. (2.7) 

Tracking bin is the bin defined by the on-board tracker, while 𝜏 is bin width, which are 

31 and 3.125 ns respectively, in the case of Jason series of satellite altimetry missions. 

Thus Equation 2.2 is rephrased as follows after waveform retracking process, which is 

more accurate for inland hydrology studies 

𝐻 = ℎ𝑠𝑎𝑡 − (𝑅 + 𝐶𝑝 + 𝐶𝑔 + ∆𝑅). (2.8) 
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 SAR Imaging 

 The RAR System 

To explain the process of Synthetic Aperture Radar (SAR) imaging, we begin 

with a brief review of conventional Real Aperture Radar (RAR) systems. Radar is an 

abbreviation of Radio Detection And Ranging which was developed from the 1930s to 

1940s for detecting ships and aircraft. In the 1950s, by mounting it on the side of an 

aircraft and performing “side-look” towards the ground, its application for Earth surface 

mapping was first discovered. The technique is called Side-Looking Airborne Radar 

(SLAR), which is an implementation of the RAR system (Stewart and Larson, 1999). 

In a RAR system, the illuminated area (swath) is defined by antenna size (𝑊: antenna 

width, 𝐿: antenna length). Then the widths of swath in range (𝑆𝑟) and azimuth (𝑆𝑎) 

directions can be determined as (van Zyl and Kim, 2011) 

𝑆𝑟 ≈
𝜆ℎ

𝑊 cos2𝜃𝑖
 and  (2.9) 

𝑆𝑎 ≈
𝜆ℎ

𝐿 cos𝜃𝑖
 (2.10) 

where 𝜆  is the radar wavelength, ℎ  is the altitude of sensor and 𝜃𝑖  is the range-

dependent incidence angle at the center of the swath. 
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Figure 2.4 Illustration of the geometry of a RAR system. 

 

In the range (cross-track) direction, two objects can be discriminated if the 

leading edge of the pulse returned from the farther object is received later than the 

trailing edge of the pulse returned from the closer object. Thus, the ground range 

resolution (𝜌𝑟) is 

𝜌𝑟 =
𝑐𝜏

2 sin𝜃𝑖
. (2.11) 

In the azimuth direction, ground azimuth resolution (𝜌𝑎) is given by the smallest 

separation between two objects that can be detected (Moreira et al., 2013), which in the 

RAR system is equal to the width of the swath in azimuth direction  
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𝜌𝑎 = 𝑟 ∙ Θ𝑎 ≈
𝜆ℎ

𝐿 cos𝜃𝑖
 (2.12) 

where 𝑟 is the slant range from sensor to target and Θ𝑎 is the angular beam width in the 

azimuth direction. Therefore, in the RAR system, ground azimuth resolution can be 

enhanced by either applying electromagnetic waves with a shorter wavelength, lowering 

sensor altitude, lengthening the antenna, or increasing the look angle. However, for a 

satellite-borne system, sensor altitude is always high, while the wavelength cannot be 

too short due to the atmospheric transmission. Moreover, the expansion of look angle 

and antenna length are also limited by the physical size of satellites. Such limitation in 

azimuth resolution is the major drawback of the RAR system and is the main motivation 

for the advent of the SAR system. 

 

 The SAR System and Processing 

In 1951, Carl Wiley of the Goodyear Aircraft Corporation first noted that 

Doppler frequency analysis of signals from a moving coherent radar can be used to 

improve azimuth resolution. He noticed that two targets at different along-track 

locations will have different angles relative to the aircraft velocity vector, resulting in 

Doppler frequencies, which can be further adopted to distinguish targets through 

frequency analysis (Stewart and Larson, 1999; van Zyl and Kim, 2011). The technique 

is called SAR. The essence of the SAR processing algorithm is that it compresses the 

energy of the return signal, which is generally distributed on an image along the range 

and azimuth directions, to enhance the resolution in both directions. The received raw 

data is a two-dimensional matrix of complex numbers. In order to fulfill high range and 
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azimuth resolution from raw data, the Range-Doppler Algorithm (RDA) is applied. The 

RDA consists of several steps: (1) range compression, (2) azimuth Fast Fourier 

Transform (FFT), (3) Range Cell Migration Correction (RCMC), and (4) azimuth 

compression (Curlander and McDonough, 1991). First, the return signals are processed 

with matched filtering. Second, the range-compressed signals are transformed to the 

range-doppler domain using an azimuth FFT. Next, since the slant range from the 

satellite to a target varies along the azimuth direction, return signal energy from the 

same target may be distributed over different range cells along the azimuth direction, 

resulting in a quadratic shape of signal distribution called RCM. Hence, RCMC is 

applied to ensure these return signal energies are aligned parallel to the azimuth 

direction so that all return signal energy from the same target can be captured in the 

following azimuth compression process, which generates the Single-Look Complex 

(SLC) image.  

To explain SAR processing, let us start with the range compression process. As 

described in the previous section, the ground range resolution (𝜌𝑟) is 

𝜌𝑟 =
𝑐𝜏

2 𝑠𝑖𝑛𝜃
 (2.13) 

where 𝑐 is the speed of light and 𝜏 is the effective time length of the radar pulse. Hence, 

the range resolution depends on the effective time length of the radar pulse. The shorter 

the pulse, the higher the range resolution. However, in order to keep Signal-to-Noise 

Ratio (SNR) high to retain the quality of the return signal, the peak power of the pulse 

needs to be strong enough; this is often done by increasing the pulse time length. To 

achieve a high range resolution without the use of a short pulse, a Linear Frequency-
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Modulated (LFM) pulse, also called a “chirp”, is adopted. The chirp is then compressed 

to synthesize an effectively short pulse which enhances the range resolution. The 

process is called pulse compression or range compression as the process is done along 

the range direction. In fact, the range compression process is applied in both RAR and 

SAR systems. The difference between them is that the RAR system only applies range 

compression, while the SAR system applies compression in both range and azimuth 

directions. 

The transmitted LFM pulse in the time domain 𝑔𝑡(𝑡) can be expressed as 

𝑔𝑡(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒𝑗𝜋𝑘𝑟𝑡2

 (2.14) 

where 𝑟𝑒𝑐𝑡 is a rectangular function, 𝑡 is the time variable (seconds), 𝑇 is transmitted 

pulse duration (seconds) and 𝑘𝑟 is the LFM rate (Hz). The phase of the pulse can be 

computed as 

𝜙𝑝(𝑡) = 𝜋𝑘𝑟𝑡2. (2.15) 

The instantaneous frequency of the pulse is the derivative of phase with respect to time, 

it is given as 

𝑓𝑝(𝑡) =
1

2𝜋

𝑑𝜙𝑝(𝑡)

𝑑𝑡
=

1

2𝜋
2𝜋𝑘𝑟𝑡 = 𝑘𝑟𝑡 (2.16) 

which is a linear function of time 𝑡 with slope 𝑘𝑟, and is the reason that it is called LFM 

pulse. Equation 2.16 also indicates that the transmitted pulse has a bandwidth 𝐵𝑝 of 
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𝐵𝑝 = |𝑘𝑟| ∙ 𝑇. (2.17) 

The return pulse which is received time 𝑡0 later is then represented as 

𝑔𝑟(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡 − 𝑡0

𝑇
) 𝑒𝑗𝜋𝑘𝑟(𝑡−𝑡0)2

. (2.18) 

The range compression process is realized by applying a matched filter to the received 

return LFM pulse, in which the matched filter kernel ℎ(𝑡) is the time-reversed, complex 

conjugate of the transmitted LFM pulse 

ℎ(𝑡) = 𝑔∗(−𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒−𝑗𝜋𝑘𝑟(−𝑡)2

= 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
) 𝑒−𝑗𝜋𝑘𝑟𝑡2

. (2.19) 

In the time domain, matched filtering process (pulse compression) is the 

convolution of the received return pulse and matched filter, which in the case of range 

compression is written as 

𝑔𝑟𝑐(𝑡) = 𝑔𝑟(𝑡) ⊗ ℎ(𝑡) = 𝑇 sinc{𝑘𝑟𝑇(𝑡 − 𝑡0)} (2.20) 

where ⊗ is the convolution operator. After pulse compression, the pulse width has been 

shortened to 1/Br. Then, we obtain the ground range resolution (𝜌𝑟) (Curlander and 

McDonough, 1991) as 

𝜌𝑟 =
𝑐

2 𝐵r 𝑠𝑖𝑛𝜃
. (2.21) 

To explain the Doppler effect in the SAR context, we can think about the change 

of frequency of the received pulse from a point target as the satellite is flying in the 

azimuth direction. If the slant range from the antenna to the point target is decreasing, 
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the frequency of the received signal increases. On the other hand, if the slant range from 

the antenna to the point target is increasing, the frequency of the received signal 

decreases. This frequency, governed by the relative speed of the sensor and the target, 

is called SAR Doppler frequency.  

Let us make the slant range 𝑟 between the sensor and the target a function of 

time 𝑡𝑠 along the azimuth direction 

𝑟(𝑡𝑠) = √𝑟0
2 + 𝑣2𝑡𝑠

2 (2.22) 

where 𝑟0 is the slant range between the sensor and the target along the perpendicular of 

the sensor flight line and 𝑣 is the satellite velocity. Then the phase of the radar signal 

𝜙𝑠 would be 

𝜙𝑠(𝑡𝑠) = −
4𝜋𝑟(𝑡𝑠)

𝜆
= −

4𝜋

𝜆
√𝑟0

2 + 𝑣2𝑡𝑠
2 ≈ −

4𝜋𝑟0

𝜆
−

2𝜋𝑣2

𝑟0𝜆
𝑡𝑠

2. (2.23) 

The instantaneous frequency of the signal then can be derived as 

𝑓𝑠(𝑡𝑠) =
1

2𝜋

𝑑𝜙𝑠(𝑡𝑠)

𝑑𝑡
= −

2𝑣2

𝑟0𝜆
𝑡𝑠 = 𝑘𝑠 ∙ 𝑡𝑠. (2.24) 

Therefore, the radar signal in azimuth direction is also an LFM signal (chirp) with slope 

𝑘𝑠 = −
2𝑣2

𝑟0𝜆
. To determine the bandwidth of this LFM signal in the azimuth direction, 

the total illuminated time (𝑇𝑡𝑜𝑡) that the target will be in the antenna beam needs to be 

defined first, and can be represented as 
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𝑇𝑡𝑜𝑡 =
𝜆𝑟0

𝐿𝑣
. (2.25) 

By substituting the right side of Equation 2.17 with 𝑘𝑠 and 𝑇𝑡𝑜𝑡 we obtain the 

bandwidth of this LFM signal in the azimuth direction, called Doppler bandwidth, as 

𝐵𝐷 = |𝑘𝑠| ∙ 𝑇 =
2𝑣2

𝑟0𝜆
∙

𝜆𝑟0

𝐿𝑣
=

2𝑣

𝐿
. (2.26) 

This shows that if the radar signal is compressed in the azimuth direction (azimuth 

compression) using a matched filter similar to the case of range compression, the 

resulting signal will have a width in time of 1/𝐵𝐷. Since the sensor is moving with 

velocity 𝑣, it leads to an azimuth resolution of 

𝜌𝑎 =
𝑣

𝐵𝐷
=

𝐿

2
. (2.27) 

As Equation 2.27 shows, the azimuth resolution of SAR is finer when the 

antenna length decreases, which is opposite to RAR. This is a great advantage for the 

SAR system over conventional RAR, allowing realization of high-resolution satellite-

borne SAR system. However, there is a limitation that antenna size cannot be too short 

as it degrades the SNR. 
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3. A MODEL-AIDED SATELLITE-ALTIMETRY-BASED FLOOD 

FORECASTING SYSTEM FOR MEKONG RIVER 

 Introduction 

This chapter is based on the content of Chang et al. (2019). In recent years, 

several studies have indicated increases in annual and seasonal river discharges on the 

Mekong River (MR) under future climate change, which results in increased flood risks 

during the wet season on the Cambodian and Vietnamese floodplain (Hoang et al., 2016; 

Hoanh et al., 2010; Västilä et al., 2010). Robust and sustainable flood forecasting can 

be a great aid in decision-making for flood risk reduction and response, making the 

Mekong River Basin (MRB) more resilient when facing an uncertain future. The 

Regional Flood Management and Mitigation Center (RFMMC) affiliated with the 

Mekong River Commission (MRC) currently issues an up to 5-day lead time of daily 

water level forecasting at each of 22 locations from Chiang Saen to Tan Chau/Chau Doc 

during the wet season, which is from June to October (Pagano, 2014). The flood 

forecasting system adopted by the RFMMC uses the Unified River Basin Simulator 

(URBS) rainfall-runoff/runoff routing model and ISIS hydrodynamic model (Pagano, 

2014; Tospornsampan et al., 2009). The operation of the RFMMC’s forecasting system 

is based on the Deltares Flood Early Warning System (Delft-FEWS) platform, which 

links data and models in real time to perform daily forecasting (Werner et al., 2013). At 

the locations of each in-situ water level gauge, rainfall forecast is first provided by the 

Fifth Generation Mesoscale Model (MM5) (Cox et al., 1998) and then used as input to 

a URBS model for discharge estimation, which is then converted to forecasted water 
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level via a rating curve. The RFMMC also uses the ISIS hydrodynamic model for water 

level forecasts downstream from Stung Treng to the ocean (Pagano, 2014; 

Tospornsampan et al., 2009). However, the ISIS hydrodynamic model is 

computationally intensive and therefore is run only for retrospective analyses or when 

the demand arises (Pagano, 2014). The RFMMC also does not issue any forecasting in 

the Mekong Delta (MD) downstream from Tan Chau/Chau Doc. Considering the 

increasing vulnerability of the MD under future climate change, a sustainable flood 

forecasting system which can be operated on a routine basis with low computational 

cost is necessary.  

However, complex hydraulic conditions in the MD hinder such a flood 

forecasting system. The Tonle Sap Lake (TSL) has an effect on the MD and needs to be 

considered in addition to the flow from the MR (Figure 3.1) in order to perform flood 

forecasting. The existence of TSL leads to a unique flow reversal. The water flows from 

the lake to the Cambodian Floodplain (CF), the Bassac River, and the MD through the 

Tonle Sap River in September/October and flows back to the lake in May/June. This 

flow reversal poses a challenge from a modeling perspective, which necessitates the use 

of a high-resolution hydrodynamic model to physically mimic the flow reversal due to 

the hydrologic drivers and is often computationally expensive; which is also the reason 

why the RFMMC does not routinely operate it in the MD. Moreover, the ocean tide 

intrusion can reach up to Phnom Penh in the dry season (Pagano, 2014) and needs to be 

considered (Takagi et al., 2015).  

 To address this issue, we propose a model-aided altimeter-based river level 

forecasting system. It integrates Jason-2 altimetry derived water levels and discharge 
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estimations from the Variable Infiltration Capacity (VIC) hydrologic model (Hossain et 

al., 2017; Liang et al., 1994). Here, we present a feasibility study to demonstrate its 

forecasting skill in the MR, especially on the MD. A multivariate regression model and 

the sum of sinusoidal functions are employed to address the downstream river level 

changes due to different causes, considering multiple variables for a better 

representation (Maçaira et al., 2018) of water levels in the MD. The unique features of 

our flood forecasting system are: (1) an easy-to-set-up hydrologic model is implemented 

which circumvents the need to have frequent altimeter samplings upstream; (2) the 

forecasting approach in the delta is based on a computationally efficient regression 

analysis instead of complex hydrodynamic modeling; (3) it is freely accessible for 

stakeholders and users with tolerable computational cost; (4) it can be easily extended 

for other deltas and transboundary rivers in developing countries such as the Vietnamese 

Red River, Ganges-Brahmaputra-Meghna River, and Niger River. With upstream 

altimetry Virtual Stations (VSs), a hydrologic model such as the VIC model, and historic 

in-situ water levels (no updated in-situ water levels are needed) in the downstream, our 

system can be easily implemented as long as no major dams exist between the upstream 

VSs and the downstream in-situ stations. 

 

 Data 

 Jason-2 Altimetry Derived River Levels 

Jason-2, launched on June 20th, 2008, as the follow-up mission of Jason-1, 

operating under the cooperation of the National Aeronautics and Space Administration 
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(NASA), Centre National d'Etudes Spatiales (CNES), National Oceanic and 

Atmospheric Administration (NOAA) and EUropean organization for the exploitation 

of METeorological SATellites (EUMETSAT). It succeeds its predecessors including 

T/P and Jason-1 missions to continuously provide highly accurate altimetry data with a 

10-day repeat cycle. In this feasibility study, we used 20-Hz ICE-retracked ranges from 

the Jason-2 Geophysical Data Record (GDR) to extract river levels at VSs located in 

the MR mainstem and TSL. The locations of the VSs are shown in Figure 3.1. The Root 

Mean Square Error (RMSE) of altimetry-derived water levels over the MR mainstem 

and TSL were about 0.4 to 0.5 m, and 0.26 m respectively when compared with the 

nearest in-situ gauge data (See Figure 3.2.). For the JVS P001-02 over the TSL, the 

altimetry water levels have a RMSE since the TSL is a large inland water body where 

more robust radar altimetry measurements can be collected. 

  

(a) (b) 

  
Figure 3.1 Distribution of VSs (blue triangle) and in-situ gauges (red triangle) in (a) the middle reach  

of the MR and CF, and (b) the MD (within colored area) used in this study. 
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(a) (b) (c) 

   
Figure 3.2 Jason-2 derived water level time series and validation. (a) and (b) are results at Jason-2 VSs 

in the MR mainstem and (c) is for the TSL. 

 

 Modeled Discharges at Virtual Stations 

The river discharges at the locations of VSs are obtained by the VIC 

hydrological model (Liang et al., 1994) and a streamflow routing model (Lohmann et 

al., 1996). The VIC model is comprised of a three-layer soil column structure and 

considers land cover, soil type, and meteorological forcing data such as precipitation, 

temperature and wind speed to characterize the hydrological mechanism in the soil 

column of given ground cells to estimate runoffs and baseflows. The streamflow routing 

model (Lohmann et al., 1996) was then used to route surface runoff and baseflows 

estimated by the VIC model to the river channels based on the given flow direction map 

to simulate discharges. In our study, a 0.1-degree-resolution VIC model was set up in 

the MRB (Hossain et al., 2017) using the Global Land Cover Characterization (GLCC) 

land cover dataset and the Harmonized World Soil Database (HWSD) soil data 

(Siddique-E-Akbor et al., 2014). The monthly leaf area index and albedo were obtained 

from MODerate resolution Imaging Spectro-radiometer mission (MODIS) data. The 
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flow direction map was derived from the Shuttle Radar Topography Mission (SRTM) 

DEM over the MRB. Six sub-basin segments were selected for model calibration 

including Chiang Sean, Luang Prabang, Vientiane, Nakhon Phanom, Pakse, and 

Kampong Cham. The VIC model was calibrated using soil parameters including the 

variable infiltration curve parameter (binf), maximum velocity of baseflow (Dsmax), 

fraction of Dsmax (Ds), and soil moisture (Ws) where non-linear baseflow occurs. The 

cell impulse response function of the routing model was also calibrated (Hossain et al., 

2017). The current VIC model output downstream of Kampong Cham, where 

bidirectional flow due to TSL and a complex river network exists, turns out to be less 

reliable. However, the VIC model is only used to estimate water discharges at VSs in 

the upstream of Mekong in this study. The meteorological forcings such as maximum 

and minimum temperatures, wind speed and precipitation were obtained from 237 

weather station records archived as the Global Summary of the Day (GSOD) by the 

National Climatic Data Center (NCDC). The model was run at a daily time step to 

simulate the discharge from 2002 to 2015 at the locations of Jason-2 VSs. The output 

of year one (2002) was excluded to avoid spin-up error. The calibration period was set 

to be from 2003 to 2008. The validation period was from 2009 to 2013. The simulated 

water discharges at Nakhon Phanom and Khong Chiam, which are the nearest stations 

to JVS P179-01 and JVS P001-01, have Nash-Sutcliffe Efficiency (NSE) of 0.82 and 

0.86, respectively. For more details about the VIC model set up in the MRB, readers are 

referred to Hossain et al. (2017). Currently, this model runs operationally for nowcast 

forced with satellite precipitation at several locations along the MR (See 

http://depts.washington.edu/saswe). 

http://depts.washington.edu/saswe


 

31 

 In-situ Water Levels 

The in-situ water levels in the MR were provided by the Asian Disaster 

Preparedness Center (ADPC) and were used to build and test the feasibility of our 

model-aided altimetry-based forecasting system. In our study, the in-situ water level 

data collected at 6 locations in the middle reach of the MR, 3 locations in the CF, and 

13 locations in the MD were used (See Table 3.1.). Figure 3.1 shows the locations of all 

of the in-situ gauges used (a) in the middle reach of the MR and CF, and (b) in the MD 

toward the river mouth.  

Table 3.1 The in-situ gauges used in this study. Data were collected at 6 locations in the middle reach 

of the MR, 3 locations in the CF, and 13 locations in the MD. 

The middle reach of the MR 
Nakhon Phanom / Mukdahan / Khong Chiam 

Pakse / Stung Treng / Kratie 

The CF Phnom Penh / Neak Luong / Koh Khel 

The MD 

Tan Chau / Chau Doc / Vam Nao 

Cho Moi / Long Xuyen / Can Tho 

My Thuan / Cho Lach / My Tho 

My Hoa / Hoa Binh / Tra Vinh / Dai Ngai 

 

 Methods 

To obtain daily water level forecasting, Hossain et al. (2014b) used Jason-2 

altimetry derived water levels with 10-day repeat cycle at upstream VSs to obtain daily 

forecasted downstream water discharges at downstream in situ gauges. As mentioned 

above, it requires a sufficient number of VSs to ensure that at least one of the VSs gets 

sampled in the upstream neighborhood for deriving expected water levels in the 

downstream (Hossain et al., 2014a). However, the MR is a north- to-south flowing river 

where only a few VSs can be found, hindering the direct implementation of this system.  
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Hence, we attempt to use the VIC hydrologic model, which can provide daily 

river discharges at VSs to fill the altimeter data temporal gap. At the model-building 

step, data from October 2008 to December 2010 were used (hereafter called  

“historical”). At each of the VSs in the upstream of the MR mainstem, a discharge-to-

level rating curve was built using historical VIC-derived discharges and Jason-2 

altimetry-derived water levels. The rating curve was then used to reconstruct historical 

daily water levels (See section 3.3.1). A relationship between upstream water levels at 

each of the VSs and downstream water levels at each of the in situ gauges was then built 

through a simple or multivariate linear regression, taking TSL water levels into account 

depending on the locations (See section 3.3.2). Tidal influence models were also added  

where necessary (See section 3.3.2). At the pseudo-forecasting step, data from 2011 

were used. By using the rating curves and models from the model-building step, pseudo-

forecasting was performed and validated to examine the skill of the system. The indices 

for the skill evaluation are described in section 3.3.3. 

 

 Daily Water Level Reconstruction at Virtual Stations 

The conventional water level-to-discharge rating curve follows a power law 

curve in the form of 

𝑄𝑉𝐼𝐶 = 𝐶 ∙ (ℎ𝐴𝑙𝑡. − 𝑎)𝑏 (3.1) 

where ℎ𝐴𝑙𝑡 is Jason-2 altimetry-derived water level, 𝑄𝑉𝐼𝐶 is discharge simulated from 

the VIC and streamflow routing model, and 𝐶 and b are coefficients to be estimated. 
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Equation 3.1 can be transformed into a linear form by taking the logarithm of 

both sides and then re-arranging as 

𝑙𝑜𝑔(ℎ𝐴𝑙𝑡. − 𝑎) =
1

𝑏
∙ 𝑙𝑜𝑔(𝑄𝑉𝐼𝐶) −

1

𝑏
∙ 𝑙𝑜𝑔(𝐶) = 𝐴 ∙ 𝑙𝑜𝑔(𝑄𝑉𝐼𝐶) + 𝐵 (3.2) 

which is a linear function where coefficients 𝐴 and 𝐵 can be estimated by least-squares, 

while 𝑎  can be directly solved by Johnson’s method (Rantz, 1982; World 

Meteorological Organization, 1980). The logarithm value of daily 𝑄𝑉𝐼𝐶 can then be used 

to reconstruct daily water levels ℎ𝑅𝑒𝑐. 

ℎ𝑅𝑒𝑐. = 𝑒[𝐴∙𝑙𝑜𝑔(𝑄𝑉𝐼𝐶)+𝐵] + 𝑎. (3.3) 

 In the TSL where water levels vary smoothly (See Figure 3.2(c).), the daily water 

levels were reconstructed by linearly interpolating 10-day repeat Jason-2 altimetry-

derived water levels. 

The rating curves and reconstructed water level time series are shown in Figure 

3.3 and Figure 3.4, respectively. In this study, data from October 2008 to December 

2010 were used to build the rating curves for historical daily water level reconstruction 

at the Jason-2 VSs (Figure 3.3, also see Figure 3.5(a) for flow chart.), and data from 

2011 were used for validation with in situ gauge data (Figure 3.4, also see Figure 3.6 

for flow chart.). As the bottom panel of Figure 3.3 shows, the reconstructed water levels 

in the middle reach of the MR have RMSEs of about 1 m with temporal correlation 

coefficients of 0.95. The RMSEs of reconstructed water levels at the VSs in the MR 

may depend on the accuracies of altimetry-derived water level itself and the VIC-

derived discharge. Furthermore, some “spikes” in the reconstructed water levels during 
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the dry season could result from errors of in situ precipitation records that are the input 

data for the VIC model. For the VS in TSL, the reconstructed water levels show a 

smaller RMSE of about 0.3 m with a temporal correlation of ~1 due to the fact that TSL 

is a large water body where a larger number of 20-Hz Jason-2 measurements are 

available. 

  
  

  
  

Figure 3.3 Rating curves in logarithmic scale (top panel) and original scale (bottom panel).  

 

   
(a) (b) (c) 

   
Figure 3.4 Reconstructed daily water levels at three VSs. JVS P179-01 and JVS P001-01 are located 

in the upstream MR mainstem, while JVS P001-02 is located in the TSL. 
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 Forecasting Models 

Considering that the hydraulic conditions of the MR are complex due to its large 

geographic coverage and various geographic features, we built two different forecasting 

models for (1) the middle reach of the MR, and (2) the CF and the MD. We used the 

reconstructed water levels at upstream VSs and downstream in situ water levels from 

October 2008 to December 2010 to build forecasting and tidal influence models (See 

Figure 3.5 for flow charts.). Data from 2011 were used to perform “pseudo forecasting” 

(See Figure 3.6 for flow chart.). The forecasted water levels were then validated with in 

situ observations. 

For each of the locations from Nakhon Phanom to Kratie (See Figure 3.1(a).), in 

the middle reach of the mainstem MR, the hydraulic condition is relatively simple 

(Pagano, 2014). Thus, we performed a simple linear regression analysis using the 

reconstructed daily water levels at upstream VSs and observed historical daily water 

levels at downstream in situ gauges, considering different lead times to build the 

forecasting model as 

ℎ𝐼𝑛𝑠𝑖𝑡𝑢(𝑡 + 𝑘) = 𝐸 ∙ ℎ𝑅𝑒𝑐.(𝑡) + 𝐹 (3.4) 

where ℎ𝐼𝑛𝑠𝑖𝑡𝑢(𝑡) is historic water levels at downstream in situ gauges at time t, ℎ𝑅𝑒𝑐.(𝑡) 

is the reconstructed water levels at upstream VSs at time t which were derived by 

Equation 3.3, k is the forecasting lead time (day) and E and F are coefficients to be 

estimated for this linear forecasting model. 

For each of the locations from Phnom Penh to the MD (See Figure 3.1(b).), river 

flows are dominated by water exchange between river channel and floodplain and flow 
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reversal due to TSL. Furthermore, ocean tides can also intrude up to Phnom Penh in the 

dry season (Pagano, 2014). Considering these multiple sources of water level changes, 

we propose a two-step method to build a forecasting model for the lower reach of the 

MR. The first step is to use reconstructed water levels at VSs in the upstream MR 

mainstem and TSL to perform multivariate linear regression analysis with downstream 

in situ water levels 

ℎ𝐼𝑛𝑠𝑖𝑡𝑢(𝑡 + 𝑘) = 𝐺 ∙ ℎ𝑅𝑒𝑐.
𝑀𝐾 (𝑡) + 𝐻 ∙ ℎ𝑅𝑒𝑐.

𝑇𝑆𝐿 (𝑡) + 𝐼 + 𝑣(𝑡 + 𝑘) (3.5) 

where ℎ𝑅𝑒𝑐.
𝑀𝐾 (𝑡) is the reconstructed daily water levels in the MR mainstem at time t 

derived by Equation 3.3, ℎ𝑅𝑒𝑐.
𝑇𝑆𝐿 (𝑡) is the reconstructed daily water levels in the TSL 

which were obtained by linearly interpolating Jason-2 altimetry water levels as section 

3.1 described, G, H, and I are coefficients to be estimated for this multivariate linear 

regression model, k is the forecasting lead time (day), and 𝑣(𝑡 + 𝑘) is the residual 

between modeled results and ℎ𝐼𝑛𝑠𝑖𝑡𝑢(𝑡 + 𝑘) . Since the model only considers the 

influence of the MR mainstem and TSL, we assume that 𝑣 here is dominated by ocean 

tide influence and hereafter rephrased as ℎ𝑇𝑖𝑑𝑒(𝑡) for the case of k=0. Next, we adopted 

a model of tidal influence as the sum of a 5-term sinusoidal function while considering 

dominant tidal frequencies including annual, semi-annual, monthly, fortnightly, and 

synodic fortnightly tides (See Table 3.2.) (Egbert and Ray, 2003; Zheng and Zhao, 

1984).  

ℎ𝑇𝑖𝑑𝑒(𝑡) = ∑ 𝑀𝑖 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝜔𝑖 ∙ 𝑡 + 𝑁𝑖)

5

𝑖=1

 (3.6) 
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where 𝜔 is the dominant tidal frequency (number of cycles per year), while 𝑀 and 𝑁 

are the magnitude and phase shift to be estimated, respectively. Once 𝑀  and 𝑁  are 

fitted, t can be updated as decimal year at the time we want to perform forecasting. 

Subsequently, the summation of modeled results given by Equation 3.5 and Equation 

3.6 provides us with forecasted water levels which consider influences from the MR 

mainstem, TSL, and ocean tide intrusion. 

Table 3.2 Dominant ocean tide frequencies. 

Name of Tide Period (Days) Frequency (1/year) 

Annual 365.26 1.00 

Semi-annual 182.62 2.00 

Monthly 27.55 13.26 

Fortnightly 14.77 24.73 

Synodic fortnightly 13.66 26.74 

 

 
 

(a) (b) 

  
Figure 3.5 Flowcharts of (a) building forecasting model considering water flow from the MR (and the 

TSL if necessary, depends on forecasting location), and (b) building tidal influence model. 

The reconstructed daily water levels at upstream VSs and reconstructed daily water levels 

at the TSL are the same as those in (a). 
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Figure 3.6 Flowchart of conducting water level forecast. 

 

 Model Evaluation Statistics 

To evaluate model capacity, several statistical indices including the mean 

absolute error (MAE), error of standard deviation (ESTD), correlation coefficient (Cor.) 

as well as Nash-Sutcliffe Efficiency (NSE) and achievement rate (AR) were adopted.  

The MAE is a measure of error which can be calculated by 

MAE=
∑ | 𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑓𝑐𝑡

 |𝑁
𝑖=1

𝑁
 (3.7) 

where 𝑁  is the total number of data points, with 𝑖 = 1~𝑁 . 𝑌𝑖
𝑜𝑏𝑠  is the in situ 

observations, and 𝑌𝑖
𝑓𝑐𝑡

 is the forecasting results. A MAE value of 0 indicates perfect 

forecasting. 

The ESTD is the standard deviation of differences between forecasting results 

and observations 

ESTD= √∑ (𝑒𝑖−�̅�)2𝑁
𝑖=1

𝑁
 (3.8) 
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where 𝑒𝑖 = 𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑓𝑐𝑡
, �̅� is the mean of 𝑒𝑖. 

The Cor. is a measure of temporal agreement between forecasting and 

observations 

Cor.=
∑ (𝑌𝑖

𝑓𝑐𝑡
−𝑌𝑓𝑐𝑡̅̅ ̅̅ ̅̅ )𝑁

𝑖=1 (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

√∑ (𝑌
𝑖
𝑓𝑐𝑡

−𝑌𝑓𝑐𝑡̅̅ ̅̅ ̅̅ )
2

𝑁
𝑖=1

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

2
𝑁
𝑖=1

 (3.9) 

where 𝑌𝑓𝑐𝑡̅̅ ̅̅ ̅̅  is the mean of forecasting, and 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the mean of the observations. 

The NSE is a normalized statistic which reflects the relative magnitude of the 

residual variance (noise) compared to the measured data variance (information) (Nash 

and Sutcliffe, 1970). It indicates how well the plot of observations versus forecasting 

results fits the 1:1 line and is commonly used to evaluate the performance of a 

forecasting model 

NSE= 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑓𝑐𝑡

)
2

𝑁
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

2
𝑁
𝑖=1

. (3.10) 

NSE ranges from -∞ to 1.0. An NSE of 1 indicates perfect forecasting skill, 0 means the 

forecasting skill is no better than adopting the average of observations as forecasting 

results, and a negative NSE means unacceptable skill (Moriasi et al., 2007). 

 The AR is the rate of days in the wet season that meets the satisfactory 

benchmark, in which we used absolute error (AE) 

AR=
𝑆

𝑁
 (3.11) 

where 𝑆 is the number of days in the wet season when the difference between forecasted 

water levels and in situ observations is smaller than or equal to the benchmark. 
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 Results and discussions 

 Cross-comparison with Current System 

For cross-comparison of our system with the system adopted by the RFMMC, 

we compared the results of 5-day forecasting, which is the longest forecasting lead time 

that the RFMMC performs during the wet season (June to October). The cross-

comparison was conducted at 6 locations in the middle reach of the MR (Nakhon 

Phanom, Mukdahan, Khong Chiam, Pakse, Stung Treng, and Kratie), 3 locations in the 

CF (Phnom Penh, Koh Khel, and Neak Luong), and 2 locations in the upstream of the 

MD (Tan Chau and Chau Doc). The MAE-based annual accuracy assessment in the 

RFMMC’s seasonal flood situation report, available at 

http://ffw.mrcmekong.org/report_seasonal.php, is used for comparison from 2011 to 

2013, year by year (RFMMC, 2011, 2012, 2013). The ESTDs of our forecasting results 

during the wet season from 2011 to 2015 were also compared with Pagano (2014)’s 

evaluation of performance of the RFMMC’s forecasting system using historical data 

from 2002 to 2012 for a long-term evaluation. Although the time spans of the long-term 

ESTDs are different, Pagano (2014)’s estimation is the only long-term accuracy 

assessment that we can find. Forecasting at the locations down to Khong Chiam was 

performed using JVS P179-01, while JVS P001-01 was used for forecasting at locations 

from Pakse. For forecasting at locations downstream of TSL, both JVS P001-01 and 

JVS P001-02 were used to represent different water sources from the MR mainstem and 

TSL, respectively. As Table 3.3 shows, in the middle reach of the MR, our forecasted 

river levels were, in general, less accurate than the RFMMC’s forecasts. We obtained 
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yearly MAEs of about 1 – 2.2 m and long-term ESTDs of about 0.8 – 1.5 m during the 

wet season, while the RFMMC’s yearly MAEs are about 0.4 – 0.7 m with long-term 

ESTDs of about 0.7 – 0.9 m. For the locations in the CF, the accuracy of our system 

improved. Yearly MAEs of our system are about 0.4 – 0.5 m and long-term ESTDs are 

about 0.5 m, while the RFMMC’s yearly MAEs are of about 0.2 – 0.25 m, with long-

term ESTDs of about 0.25 – 0.3 m. Overall, in the middle reach of the MR and the CF, 

the RFMMC’s forecasting showed slightly better accuracy than ours. Since our system 

uses VIC-derived discharges to build the rating curve with altimetry-derived water 

levels for reconstruction of daily water levels at VSs, both of their accuracies can be 

contributing factors of our forecasting skill. For example, the RFMMC’s forecasting 

system uses a calibrated set of 51 URBS models which cover over 2,244 sub-areas 

(740,000 km2) (Tospornsampan et al., 2009), while the VIC model we adopted was 

calibrated at only 6 sub-basins. In addition, the accuracy of altimetry-derived water 

levels can be up to ~ half of a meter as shown in Figure 3.2. On the other hand, our 

forecasting system only assumes that there is a linear relationship between upstream and 

downstream water levels but does not consider the impact of tributaries and direct 

rainfall in between. Therefore, it is expected that our forecasting skill can be further 

improved by fine-tuning the VIC model, by performing more advanced altimetry 

waveform retracking and by considering those additional contributions to the 

downstream water levels. 

However, it needs to be emphasized that our forecasting system uses freely 

accessible and publicly available satellite data and hydrologic model and is able to 

perform forecasting without updated in situ data. Our system is purely based on simple 
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regression analysis instead of a computationally expensive weather forecast and 

hydrodynamic model. For example, the RFMMC’s system uses MM5 to forecast 

rainfall as an input to the URBS models, which have a computational cost and skill set 

requirements, while our system does not. Features including strong affordability, easy-

to-set-up, and negligible computational cost make our system operationally sustainable 

and scalable, especially for developing countries. 

It is also worthwhile to mention that in Tan Chau and Chau Doc, which are close 

to the upstream boundary of the MD in Vietnam, our system showed yearly MAEs of 

about 0.2 – 0.3 m and long-term ESTDs of about 0.3 m, which are compatible with the 

RFMMC’s results. The smaller MAEs might be due to the lower amplitude of water 

levels in the MD, but it also reflects the fact that the sinusoidal model to represent the 

tidal influence was effective in the MD. Moreover, our system can provide forecasting 

further downstream of Tan Chau and Chau Doc inside the MD where the RFMMC 

currently does not provide any forecasting. After cross-comparison with the RFMMC’s 

report, we attempted to perform a “pseudo forecasting” considering 20 different 

forecasting lead times (from 1-day forecasting to 20-day forecasting) in each region, 

and then validated our forecasting results using in situ data. In the following section, the 

forecasting skill of our system will be discussed. 

Table 3.3 Cross-comparison with the RFMMC’s 5-day forecasting in the wet season. 

Location 

Name 

The RFMMC (Approximate) This Study 

MAEs (m) ESTDs (m) MAEs (m) ESTDs (m) 

2011 2012 2013 

Pagano (2014) 

2002-2012 

Wet season 

2011 2012 2013 
2011-2015 

Wet season 

Middle reach of the MR 

Nakhon 

Phanom 
0.78 0.55 0.60 0.83 1.58 1.04 1.07 1.13 

Mukdahan 0.80 0.60 0.66 0.83 1.67 1.04 0.91 1.09 
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Table 3.3 (Continued) 

Khong 

Chiam 
0.85 0.65 0.80 0.90 2.23 1.12 1.28 1.34 

Pakse 0.68 0.58 0.78 0.85 1.55 1.15 1.23 1.17 

Stung 

Treng 
0.55 0.43 0.65 0.68 1.03 0.82 0.95 0.85 

Kratie 0.75 0.70 0.88 0.87 1.56 1.61 1.54 1.47 

Average 

±STD 

0.74 

±0.11 

0.59 

±0.09 

0.73 

±0.11 

0.83 

±0.08 

1.60 

±0.38 

1.13 

±0.26 

1.16 

±0.24 

1.18 

±0.21 

CF 

Phnom 

Penh 
0.23 0.25 0.25 0.33 0.55 0.44 0.47 0.62 

Neak 

Luong 
0.15 0.20 0.18 0.25 0.34 0.32 0.32 0.44 

Koh 

Khel 
0.15 0.18 0.16 0.24 0.71 0.36 0.45 0.56 

Average 

±STD 

0.18 

±0.05 

0.21 

±0.04 

0.20 

±0.05 

0.27 

±0.05 

0.53 

±0.19 

0.37 

±0.06 

0.41 

±0.08 

0.54 

±0.09 

MD 

Chau 

Doc 
0.18 0.25 0.25 0.30 0.27 0.16 0.21 0.29 

Tan 

Chau 
0.15 0.20 0.20 0.25 0.25 0.20 0.21 0.31 

Average 

±STD 

0.17 

±0.02 

0.23 

±0.04 

0.23 

±0.04 

0.28 

±0.04 

0.26 

±0.01 

0.18 

±0.03 

0.21 

±0.00 

0.30 

±0.01 

STD: Standard deviation 

 

 Flood Forecasting in the Middle Reach of the MR and CF 

In the middle reach of the MR and the CF, in situ data are available until 2015, 

and were used to validate our forecasting results. Figure 3.7 shows the MAEs and NSEs 

of our system during the wet season from 2011 to 2015. Up to 20-day lead time  

forecasting was performed. Forecasting at Nakhom Phanom, Mukdahan, and Khong 

Chiam was performed by using reconstructed water levels at JVS P179-01. We can see 

that the MAEs of 1-day forecasting at Nakhom Phanom and Mukdahan are ~ 0.9 m then 

gradually increase with lead time, while initially about 1.2 m at Khong Chiam. The 

relatively higher MAEs at Khong Chiam might be due to its longer distance from JVS 

P179-01, which is ~ 477 km compared to the 141 km and 248 km for Nakhom Phanom 
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and Mukdahan, respectively. Since our forecasting is based on a linear relationship 

between upstream VS water levels and downstream in situ water levels, hydrologic or 

hydraulic condition changes between upstream VSs and downstream in situ stations due 

to geographic remoteness can influence forecasting skill. On the other hand, Khong 

Chiam is close to the confluence of the Mun River and MR which might be another 

reason why forecasting at Khong Chiam has higher MAEs compared to that at Nakhom 

Phanom and Mukdahan. The NSEs of forecasting at these locations start from about 0.8 

for 1-day forecasting and gradually decrease, but can still maintain at 0.7 up to about 5-

day lead time.   

Forecasting starting from Pakse was performed by using reconstructed water 

levels at JVS P001-01. The MAEs of 1-day forecasting are 0.9 m and 0.8 m at Pakse 

and Stung Treng, respectively, while it is 1.4 m at Kratie. They increase with longer 

lead time. Kratie is 373 km away from JVS P001-01, which is more distant than 44 km 

and 240 km for Pakse and Stung Treng. This may be the reason why the MAEs at Kratie 

are relatively higher. On the other hand, Kratie is the location where the hydraulic 

condition changes from mainstream channel river flow to one where significant water 

exchange occurs between the river and floodplains. This fact may influence forecasting 

skill as well. At the locations in the CF downstream from Phnom Penh, the reconstructed 

water levels of TSL in addition to JVS P001-01 were used in order to consider the 

influence of reverse flow. At Phnom Penh and Koh Khel, the MAEs of 1-day forecasting 

are about 0.4 m while it is about 0.3 m at Neak Luong. They also increase with longer 

lead times. The NSEs of forecasting start from about 0.9 to 0.95 for 1-day forecasting 
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and gradually decrease with longer lead times but can still maintain NSEs higher than 

0.75 to 0.8 for up to 20-day lead time. 

Since the change of the MAEs within 20 days of forecasting can be decimeters 

to around one-meter, it can be misleading to evaluate our forecasting skill if we calculate 

the yearly averages and STDs of the MAEs and NSEs from 20 different days of 

forecasting. Thus, as shown in Figure 3.8, we computed yearly averages and STDs of 

the MAEs and NSEs for 1-day to 5-day forecasts. At Nakhom Phanom, Mukdahan, and 

Khong Chiam, the average MAEs in 2011 are higher than other years with the lowest 

average NSEs. At Pakse, Stung Treng, and Kratie, the average NSEs in 2012 are lower 

than other years. At Phnom Penh, the average MAEs in 2011, 2014 and 2015 are higher. 

At Neak Luong and Koh Khel, the average MAEs are higher in 2014 and 2011, 

respectively. The higher MAEs in 2011 might be due to the strike of two tropical storms 

- Haima and Nokten, followed by the influence of southwest monsoons and the 

intertropical convergence zone (ITCZ). This led to two flood events with amplitudes 

over 4 m at stations from Nakhom Phanom to Pakse, and another flood event with 

amplitudes over 2 m at Stung Treng and over 3.5 m at Kratie (RFMMC, 2011). The 

average NSEs are all above 0.8 and some of them are higher than 0.95 with no 

significant differences. The variation of the average NSEs between years is less than 

0.15. Figure 3.9 shows the correlation coefficients of our forecasting results with in situ 

observations. Generally speaking, the correlation coefficients of our forecasting results 

with in situ water levels are about 0.9 at the locations in the middle reach of the MR and 

gradually decrease to about 0.6 – 0.7 with longer lead times. They become larger than 

0.95 at those in the CF in the case of 1-day forecasting, then gradually decrease to 0.9 
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as lead time extends. Figure 3.10 shows the time-series of 5-day forecasting and in situ 

water levels. Table 3.4 shows averages for years (2011-2015) of ARs for our forecasting 

system based on the benchmarks from RFMMC (RFMMC, 2011, 2012, 2013). It can 

be seen that in the middle reach of the MR, most ARs range around 10 – 30%, except 

for Khong Chiam and Kratie which range 5 – 25% and 5 – 17%, respectively. The lower 

ARs at these two locations are probably due to the fact that Khong Chiam is close to the 

confluence of the Mun River and MR, and the complicated hydraulic condition at 

Kratie. At Phnom Penh, Neak Luong, and Koh Khel in the CF, the values range 12 – 

30%, 20 – 40%, and 18 – 33%, respectively. Therefore, although our system generally 

provides higher MAEs than the satisfactory benchmarks of RFMMC. Based on Figure 

3.8, it can still provide satisfactory forecasting during the wet season. 

 Figure 3.11 shows the ARs corresponding to 1-day to 20-day forecasting at 6 

locations in the middle reach of the MR and 3 locations in the CF. The benchmarks in 

the two regions are different (0.80 m/1.00 m/1.20 m in the middle reach of the MR, and 

0.30 m/0.40 m/0.50 m in the CF) since they have different levels of forecasting skills. 

Generally, the ARs decrease with longer lead times. The MAEs also have such pattern 

as Figure 3.7 shows. During the wet season of 2011 to 2015, the ARs of the 0.8 m 

benchmark are about 50 – 70% at Nakhom Phanom, 55 – 70% and 55 – 65% at 

Mukdahan and Khong Chiam, respectively, and are 50 – 66% at Pakse, 70 – 78% at 

Stung Treng. At Kratie, 55 – 60% of days meet the 1 m benchmark. At Phnom Penh, 45 

– 62% of days during the period meet the 0.4 m benchmark and 55 – 66% and 50 – 66% 

of days can meet the 0.3 m benchmark at Neak Luong, and Koh Khel, respectively. 
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Figure 3.7 The MAEs and NSEs of our system at 6 locations in the middle reach of the MR and 3 

locations in the CF. 

 

    
    

    
    

 

   

    
Figure 3.8 The yearly averages and STDs of MAEs and NSEs of 1-day to 5-day forecasting at 6 

locations in the middle reach of the MR and 3 locations in the CF. 
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Table 3.4 Average of years (2011 - 2015) of ARs (%) of our forecasting system at locations from the 

middle reach of MR, and CF upstream of MD, and the corresponding RFMMC satisfactory 

benchmarks (cm). 

Location Name 
Lead time (day) 

1 2 3 4 5 

Middle reach of the MR 

Nakhom Phanom 11.37 31.44 17.65 31.37 28.63 

Mukdahan 10.06 21.18 17.91 33.99 32.68 

Khong Chiam 5.10 14.77 15.42 26.67 24.70 

Pakse 9.02 17.25 15.16 28.23 26.67 

Stung Treng 9.41 19.61 18.82 35.69 33.33 

Kratie 5.75 11.64 11.24 18.04 16.73 

RFMMC 

satisfactory 

benchmark (cm) 

10 25 25 50 50 

CF 

Phnom Penh 15.30 13.60 12.03 29.80 29.93 

Neak Luong 20.26 20.52 20.39 42.48 42.09 

RFMMC 

satisfactory 

benchmark (cm) 

10 10 10 25 25 

Koh Khel 17.65 18.04 17.78 17.39 33.46 

RFMMC 

satisfactory 

benchmark (cm) 

10 10 10 10 25 

 

    
    

    
    

 

   

    
Figure 3.9 The correlation coefficients of our forecasted water levels with in situ observations at 6 

locations in the middle reach of the MR and 3 locations in the CF. 
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Figure 3.10 Time-series of the 5-day forecasted and in situ water levels at 6 locations in the middle 

reach of the MR and 3 locations in the CF. 

 

    
    

    
    

 

   

    
Figure 3.11 The ARs of our forecasting at 6 locations in the middle reach of the MR and 3 locations 

in the CF. Different lines indicate the ARs in the case of different benchmarks. Note that 

the benchmarks are different in two regions since they have different levels of forecasting 

skills). 
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 Flood Forecasting in the MD 

In the MD, in situ data at Tan Chau and Chau Doc span until 2015, while it spans 

until 2012 at the other 11 locations. Pseudo forecasting with 20 different days of 

forecasting lead times during the wet season from 2011 to 2015 and 2011 to 2012 was 

performed at Tan Chau/Chau Doc and the other 11 locations in the MD, respectively 

(See Figure 3.1(b) for their locations in the MD.). Figure 3.12 shows the change of the 

MAEs and NSEs of our forecasted water levels with respect to 1-day to 20-day lead 

times. From Chau Doc to Can Tho, the MAEs generally increases with longer lead time. 

Starting from My Thuan, the MAEs decrease with an increase of lead time until they 

reach a minimum at about 15- to 17-day lead time, perhaps because there are stronger 

fortnightly and synodic fortnightly tidal influences on the water levels at these locations. 

At Chau Doc and Tan Chau, the differences between the maximum and minimum of the 

MAEs within the 1- to 20-day lead times are about 10 cm. At Vam Nao and Cho Moi, 

they are about 0.04 m, and it is about 0.02 m at Long Xuyen. From Can Tho/My Thuan 

to the river mouth, they are mostly less than 0.01 – 0.02 m. In summary, at locations 

from Can Tho/My Thuan to the river mouth, the forecasted river levels have less than 

or about 0.10 m of MAEs even with longer than 10-day lead time. The average NSEs 

range from 0.8 to 0.95, which are also promising, and with less than or about 0.1 of 

variations within 1- to 20-day lead times.  
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Figure 3.12 The MAEs and NSEs of our system at 13 locations in the MD. 

 

Figure 3.13 shows the yearly averages and STDs of the MAEs, and NSEs from 

20 different days of forecasting lead time. The average MAEs range from 0.2 to about 

0.4 m at Chau Doc and Tan Chau. At Vam Nao and Cho Moi, they range from 0.15 – 

0.20 m while they range from 0.12 – 0.14 m at Long Xuyen. The average MAEs then 

decrease to mostly less than 0.10 m at the locations downstream from Can Tho/My 

Thuan approaching the river mouth. Note that at Chau Doc and Tan Chau, the average 

MAEs are 0.3 m and 0.4 m in 2011 and 2015, respectively, which are relatively higher 

than the other years, with the lowest average NSEs in 2015. Moreover, at Vam Nao and 

Cho Moi, the average MAE in 2011 are about 0.07 m higher than that in 2012, while 

there are only 0.01 – 0.02 m of differences between the two years at the other locations 
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toward the river mouth. The higher MAEs in 2011 may be due to the strike of tropical 

storm Haima and Nokten. According to the RFMMC’s seasonal flood situation report 

of 2011 (RFMMC, 2011), from the end of September to early November of 2011, water 

levels at Tan Chau and Chau Doc were recorded to be 3 – 4 m higher than flood levels 

as the result of flood water inflows from the upper and middle reaches of the MR. This 

resulted in extreme peak water levels at Vam Nao and Cho Moi as well and impacted 

the MAEs. Figure 3.14 shows the correlation coefficients of our forecasting results with 

in situ observations, indicating excellent temporal agreement with in situ water levels. 

The correlation coefficients are at or higher than 0.9.  

    

    

    

 

   

    
Figure 3.13 Yearly averages and STDs of the MAEs and NSEs of 1-day to 20-day forecasting at 13 

locations in the MD. 
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Figure 3.14 The correlation coefficients of our forecasted water levels with in situ observations at 13 

locations in the MD. 

 

Figure 3.15 shows the time series of in situ and 10-day forecasted water levels. 

As marked in the red box of Figure 3.15 from Chau Doc to Cho Moi, a significant jump 

of water levels from the end of September to early November can be clearly observed. 

However, such extreme peaks did not occur at locations further downstream to the river 

mouth. Therefore, the forecasting skills at locations closer to the river mouth remain 

consistent. On the other hand, at Chau Doc and Tan Chau, the green boxes mark a period 

of June 2015 when the water level oscillations with a 14-day period were extremely 

strong. These strong water level oscillations may have resulted from a severe drought 

in 2015 (United Nations Country Team, 2016) caused by ENSO which may have 
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significantly intensified the tidal influence, leading to higher MAEs and lower NSEs in 

2015 as Figure 3.13 shows. The tidal influence model built for this study are not able to 

accomodate the influence of ENSO on water levels, which has 3 – 6 years of period, 

since we used only less than three years of data to build the model. However, it can be 

addressed with longer time spans of data in the future, which would enable us to 

assimilate long-period ENSO signals into our tidal model. 

 

    

    

    

   

 

    
Figure 3.15 The 10-day forecasted (orange) and in situ (blue) water levels from 2011 to 2015 at Chau 

Doc/Tan Chau and from 2011 to 2012 at the other 11 locations in the MD. The extreme 

peak water levels (in red boxes) at Chau Doc, Tan Chau, Vam Nao and Cho Moi in 2011 

wet season and the strong oscillations (green boxes) at Chau Doc and Tan Chau in June 

2015 can be clearly seen in the plots right next to full time series. 
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Figure 3.16 shows the ARs in the MD with respect to 1-day to 20-day lead times. 

We calculated the ARs using 0.10 m, 0.15 m, and 0.20 m of AEs as the benchmark. It 

can be seen that at Chau Doc and Tan Chau, about 60 % of days meet the 0.20 m 

benchmark during 2011 to 2015 wet season. For Vam Nao and Cho Moi, about 60% of 

days during 2011 to 2012 wet season meet the 0.15 m benchmark and about 75 - 80% 

in the case of the 0.20 m benchmark. At Long Xuyen, about 66% of days reach the 0.15 

m benchmark and about 81% of days in the case of the 0.20 m benchmark. At the 

locations downstream from Can Tho/My Thuan, there are about 55 - 70%, 75 - 85%, 

and 90 - 93% of days that meet the 0.10 m, 0.15 m, and 0.20 m benchmarks, 

respectively. As Figure 3.16 shows, the ARs become higher when performing 

forecasting closer to the river mouth. The patterns shown in Figure 3.12, 3.13 and 3.16 

indicate that the forecasted river levels become more accurate near the river mouth. As 

the tidal effects on water levels in the coastal region become dominant and consistent 

compared to the upper MD (Dang et al., 2018), it is expected that the ocean tide model 

we proposed becomes more effective near the river mouth. As the acceptable accuracy 

of forecasting is 15 cm in the MD (Dr. Duong Du Bui, NAWAPI, personal 

communication), our system can provide promising forecasting for about 50 – 80% of 

days during wet season. 
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Figure 3.16 The ARs of our forecasting at 13 locations in the MD. Different lines indicate the AR in 

the case of different benchmarks. 

 

 Conclusions and Perspectives 

This study proposed a model-aided altimetry-based flood forecasting system for 

the MR, including the MR mainstem, CF and MD. The system integrates satellite 

altimetry, the VIC hydrological model and the tidal influence models. It is freely 

accessible, easy-to-set-up and has negligible computational cost, making it 

operationally sustainable and scalable to other places, especially for developing 

countries. Currently, the VIC hydrological model has already been set up in the 

Vietnamese Red River Basin (Hiep et al., 2018), Indus River Basin, Ganges River Basin, 

Brahmaputra River Basin, and Mangla River Basin 



 

57 

(http://depts.washington.edu/saswe/datavis_Timeseries.html). With VIC-derived 

discharges, altimetry-derived water levels and historic in situ data, our forecasting 

system can be easily implemented.  

Although the cross-comparison with the MRC’s forecasting shows that the 

forecasting skill of our system in the region outside of the MD still has room for 

improvement, our forecasting system is promising inside the MD which has complex 

hydraulic conditions. We have performed a 10-day or longer lead time of “pseudo-

forecasting” at 13 locations in the MD starting from Tan Chau/Chau Doc which are the 

last downstream locations where the MRC provides forecasting. We obtained a 

promising forecasting skill, although due to the strike of tropical storms and strong water 

level oscillation in June 2015, the peak in situ water levels at Chau Doc to Cho Moi in 

2011 were not captured in our forecasting results (See Chau Doc to Cho Moi in Figure 

3.15.). Our system would be relatively easy and computationally inexpensive to be 

implemented by end-users and stakeholders in Cambodia and Vietnam. Johnston and 

Kummu (2012) summarized the MRC reports and estimated the cost of developing 

basin-scale models for the MRC to be about USD 20 million. Banks et al. (2014) also 

pointed out that the base price of a full-featured ISIS model starts at $7,680 per year for 

a single-user license with an annual support and maintenance fee starting from $1,350. 

Considering the expense of model building and maintenance, our freely available 

forecasting system could be operated as a complementary system to the RFMMC’s 

forecasting, especially in the MD. 

In our feasibility study, we linearly interpolated Jason-2 derived 10-day repeat 

TSL water levels and used them as “nowcast” for TSL daily water levels. However, 
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such interpolation cannot be done in real operational mode. Therefore, for operational 

purpose, up to 10 days of forecasted water levels in the TSL need to be obtained until 

the next revisit of the altimetry satellite. They may be obtained by time-series analysis 

methods such as autoregressive–moving-average model (ARMA) or autoregressive 

integrated moving average model (ARIMA). Alternatively, the smooth and seasonaly 

dominant pattern of TSL water level changes are well represented by a Fourier series 

with known dominant frequencies by performing the Fourier analysis on historical TSL 

water levels.  

For future studies, we would work on enhancing the forecasting skill and 

extending the lead time of our forecasting system with the aid of weather-based flow 

forecasting upstream. Sikder and Hossain (2018) proposed an operationally feasible 

method called bias-correction to obtain quantitative precipitation forecasting up to 15 

days, and currently provides up to 7 days of weather-based VIC-derived water discharge 

forecasting with promising accuracy (Readers are referred to  

http://depts.washington.edu/saswe/datavis_Timeseries.html). Since our forecasting 

system uses VIC-derived discharges to reconstruct daily water levels at upstream VSs, 

the use of forecasted VIC-derived water discharges can give us “forecasted” 

reconstructed daily water levels, which then can be used to perform forecast with 

extended lead times. For example, if the 7-day VIC-derived water discharge forecasting 

at an upstream VS is obtained, the 7-day forecasted water level can be reconstructed by 

using the discharge-to-level rating curve. This reconstructed water level forecasting 

with 7-day lead time can then be put into the forecasting model with 10-day lead time, 

for example, to forecast 17-day-later downstream water levels at the locations of 
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downstream in situ gauges. Although the accuracy of these “forecasted” water 

discharges are not as good as “nowcasted” water discharges as Sikder and Hossain 

(2018) indicated 0.77 – 0.57 of Cor. with 34 – 40% of normalized RMSEs (NRMSEs) 

with 1 to 7 days of lead times, compared with 0.86 of Cor. and 24.9% of NRMSE of 

nowcasted water discharges at Kampong Cham in the MR, it is expected that the 

capacity of the forecasting system proposed in this study still has potential to be 

improved with extended lead times. In addition, our system can be easily updated from 

year to year to keep up with climatic and anthropogenic structural and morphological 

changes, which are gradually altering the response of downstream water levels to the 

upstream discharges. 

Local rainfall events at the forecasting locations also need to be addressed in the 

future as it may be an error source for our forecasting, since currently our system is only 

based on the linear relationship between upstream and downstream water levels.  

Moreover, it is expected that the ENSO-induced strong water level oscillations in the 

MD can be addressed if data with longer time spans are available in the future to build 

more comprehensive tidal influence models. 
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4. HINDCAST AND FORECAST OF DAILY INUNDATION 

EXTENTS USING SATELLITE SAR AND ALTIMETRY DATA 

WITH ROTATED EMPIRICAL ORTHOGONAL FUNCTION 

ANALYSIS: CASE STUDY IN TONLE SAP LAKE 

FLOODPLAIN 

 Introduction 

This chapter is based on the content of Chang et al. (2020). Tonle Sap Lake 

(TSL) is the largest natural freshwater lake in Southeast Asia. The lake is well known 

for its unique seasonally reversed flow. In the wet season, the Mekong River (MR) level 

continuously rises and eventually exceeds the TSL water level. Consequently, water 

flows across the floodplain toward the lake. In the dry season, water flows from the lake 

and floodplains down the Tonle Sap River toward the sea, as the MR level recedes 

(Campbell et al., 2009). Such flow reversal cannot be found anywhere else in the world 

and has a significant impact on the surrounding TSL Floodplain (TSLF) ecosystem, 

making it one of the most productive ecosystems in the world (Lamberts, 2006) and 

extremely important for Cambodia for food security and economy (Kummu et al., 

2006). In recent years, several studies have pointed out that climate change and water 

infrastructure development would pose stress on flood pulse and intensity of TSL 

(Kummu and Sarkkula, 2008; Pokhrel et al., 2018) and consequently impact the 

ecosystem and productivity of agriculture and aquaculture in the TSLF ecosystem 

(Kummu and Sarkkula, 2008; Lamberts and Koponen, 2008; Lauri et al., 2012; Lutz et 

al., 2014; Pokhrel et al., 2018; Västilä et al., 2010). Simulations by Västilä et al. (2010)  
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also show an increase of the average and maximum water levels and flood duration may 

cause more severe damages to roads, buildings, and other infrastructure located on the 

floodplain as well as other flood-related impacts such as destruction of rice crops, rise 

of hygiene problems and more human victims particularly those living close to the TSL 

(Keskinen, 2006; Nuorteva et al., 2010). Therefore, to have a better understanding of 

the dynamics of TSLF inundation extents and the ability to forecast future inundation 

extents are of great importance and urgently needed. They can also be helpful by 

providing more information for assessing the change of fish catches and potential 

flooding damages as well as corresponding relief services (Schumann and Moller, 

2015). 

For the purpose of detecting flooded areas, Synthetic Aperture Radar (SAR) is 

considered the most useful sensor (Yan et al., 2015) with the capacity to provide surface 

observations without spatial gaps both day and night under all weather conditions thanks 

to its use of active microwave signals. However, there is still no study using SAR 

imagery to perform daily, gap-free areal inundation extent mapping. The use of SAR 

imagery for performing forecasting of areal inundation extents has never been 

investigated before either, despite its increasing importance for improving first response 

and water resource management. In this study, to address the need of forecasting high 

temporal frequency areal inundation extents, we propose a daily areal inundation 

estimation framework based on synthesized SAR intensity imagery. The framework 

first applies Rotated Empirical Orthogonal Function (REOF) analysis (Kaiser, 1958; 

Lorenz, 1956), which has been shown to improve physical interpretability over 

conventional EOF analysis (A Hannachi et al., 2006; Hannachi et al., 2007; Lian and 
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Chen, 2012), on multi-temporal SAR intensity images to extract their spatiotemporal 

patterns. The extracted spatiotemporal patterns were then associated with satellite 

altimetry-derived water levels. Next, satellite altimetry-derived water levels were used 

as input to synthesize SAR intensity images, where the synthesized SAR intensity 

images are of the same date as the input satellite altimetry-derived water levels. In other 

words, SAR intensity at any time can be synthesized if satellite altimetry-derived water 

levels are available. Finally, corresponding inundation extents were estimated from the 

use of both synthesized SAR intensity imagery and the Multi-Error-Removed 

Improved-Terrain Digital Elevation Model (MERIT DEM) (Yamazaki et al., 2017) thru 

an unsupervised K-means clustering algorithm (Arthur and Vassilvitskii, 2007; Lloyd, 

1982). Note that even though EOF analysis (Lorenz, 1956) has been widely used in 

climate sciences for coupling different fields, reconstruction and prediction (Bracher et 

al., 2015; Church et al., 2004; Imani et al., 2017; Taylor et al., 2013; Yosef et al., 2017), 

this is the first study applying EOF analysis to SAR imagery for SAR intensity synthesis 

and depicting areal inundation extents by integrating with satellite altimetry data, to the 

best of our knowledge. Such application of satellite altimetry is also not reported in the 

literature.  

Here, the framework was applied to TSLF for daily hindcasting and forecasting 

of areal inundations by using multi-temporal Sentinel-1A imagery and daily Jason series 

altimetry-derived TSL levels. The daily hindcasting and forecasting are fulfilled by 

using daily linear-interpolated historical and El Niño/Southern Oscillation (ENSO) 

index-forecasted altimetry-derived TSL levels. The estimated inundation extents were 

cross-compared with reference datasets including inundation maps derived from 8-day 
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composite MODerate resolution Imaging Spectro-radiometer mission (MODIS) 

products as well as Sentinel-1 images. The proposed framework has the following 

features: (1) Synthesis of SAR intensity image and estimation of areal inundation 

extents at any time as long as the water level data is available; (2) The framework is 

fully remote sensing-based in which a computationally expensive model is not required; 

(3) Since the framework exploits SAR imagery, the resulting estimated inundation 

extents are free from cloud cover with no spatial gap; (4) The framework has the 

potential to be applied to the floodplains of other major river basins such as the Amazon 

River Basin and Congo River Basins.  

 

 Data 

 Sentinel-1 SAR Data 

Sentinel-1 is a two-satellite-constellation mission (Sentinel-1A/-1B), equipped 

with C-band (5.405 GHz) SAR, under the Copernicus Earth observation program at 

ESA. The first satellite, Sentinel-1A, was launched on April 3rd, 2014, while Sentinel-

1B was launched on April 25th, 2016. Both satellites feature free accessibility and a 12 

day revisit time, which have expanded the use of SAR imagery in the study of 

environmental change (Markert et al., 2018; Tsyganskaya et al., 2018a; White et al., 

2014). Sentinel-1A VV-polarization images in the Ground Range Detection High-

resolution (GRDH) product were downloaded from the Alaska Satellite Facility (ASF). 

In order to have image scenes covering the whole TSL and surrounding floodplain area, 

two frames, frame 552 and 547 of path 91, acquired on the same date were used. The 
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two frames on each acquisition date were mosaicked into one single scene (See Figure 

4.1). 

In this study, Sentinel-1A data were used solely for building the framework. This 

is to avoid the influence of potential systematic differences between backscattering 

intensities acquired by two satellites (Sentinel-1A/-1B) on the REOF analysis, which 

would affect coupling the extracted temporal patterns with altimetry data, and thus the 

estimated inundation extents (For detail of the framework, see Section 4.3.1). The 

purpose was to minimize the influence of signals not related to natural phenomena. Time 

span of images used for building the framework are from April 3rd, 2016 to December 

31st, 2018, giving us 78 images in total after mosaic. Sentinel-1A images with temporal 

coverage from January 6th to July 29th, 2019, and Sentinel-1B images from January 12th 

to July 23th, 2019, were used as reference datasets, in addition to MODIS imagery for 

cross-comparison purposes, giving us 54 images in total after mosaic. Since our 

proposed framework exploits Sentinel-1 SAR imagery, using Sentinel-1A/-1B imagery 

for cross-comparison avoids the influence of inherent inconsistency between radar and 

optical imagery in cross-comparison results. The cross-comparison using Sentinel-1 

imagery as a reference dataset was conducted in the forecasting case with time span 

starting from January 2019 because the earlier Sentinel-1 images were all acquired 

within the time span of imagery used for building the framework and may affect cross-

comparison independence to some degree. 

Mosaicked images were pre-processed (multi-looked, radiometric terrain 

corrected, and geocoded) and co-registered with respect to the image acquired on April 

3rd, 2016, which is the image with the earliest acquisition date. Note that in this study 
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we multi-looked the images to 500 m of spatial resolution to fit the MODIS reference 

dataset. The pre-processing procedure including image mosaic was performed using the 

GAMMA software (Werner et al., 2000). 

 
Figure 4.1 Frames of Sentinle-1 GRDH intensity images used in this study. The image acquired on 

April 3rd, 2016 was used as an example. 

 

 MODIS Surface Reflectance Data and Yearly Water Mask 

The MODIS spectro-radiometer onboard the Terra and Aqua satellites, launched 

in 1999 and 2002 respectively, acquires Earth surface radiances in 36 spectral bands. 

(https://modis.gsfc.nasa.gov/). MODIS is the only dataset that has long temporal 

coverage starting from 2000 and has high temporal resolution as well as high spectral 

resolution (36 bands). We would like to investigate the ability of the proposed 

framework with as much reference data as possible for more robust cross-comparison 

results. Therefore, MODIS data was used as reference despite its relatively coarse 
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spatial resolution. In fact, MODIS data has been used for monitoring and long-term 

analysis of inundation extents in many previous studies due to its high temporal 

resolution (Frappart et al., 2018; Gumma et al., 2014; Huang et al., 2014; Islam et al., 

2010; Normandin et al., 2018; Sakamoto et al., 2009, 2007) in spite of the cloud cover 

issues (Huang et al., 2014, 2013). 

In this study, tile H28V07 of MODIS products MOD09A1 and MOD44W were 

downloaded from the United States Geological Survey (USGS) Earthexplorer website 

(https://earthexplorer.usgs.gov/). MOD09A1 is surface reflectance data derived from 

the Terra satellite raw radiance measurements. It includes surface spectral reflectance 

for band 1 to band 7 at 500 m spatial resolution with atmospheric conditions, including 

gasses, aerosols, and Rayleigh scattering, corrected. For each pixel, the best surface 

reflectance data during an 8-day period was selected based on cloud cover and solar 

zenith. Here, MOD09A1 images from over a decade (2003 to 2015) and January to July 

in 2019 at 500 m spatial resolution were used as the cross-comparison reference dataset.  

MOD44W is a 250 m resolution water mask product which was available from 

2000 to 2015. Since 2015 is the year with the minimum inundation extent for the TSLF 

area in the last two decades (Frappart et al., 2018), the MOD44W water mask in 2015 

was adopted as a permanent water body mask when building the framework. This is to 

avoid the influence of surface roughness change-induced intensity variation over 

permanent water body on the REOF analysis results (See Section 4.3.1 for detail). 
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 MERIT DEM 

MERIT DEM (Yamazaki et al., 2017) is a global DEM with respect to the Earth 

Gravitational Model 1996 (EGM96) with 3 arc-second spatial resolution (about 90 m at 

the equator). The baseline DEMs include 3 arc-second spatial resolution Shuttle Radar 

Topography Mission DEM (SRTM3 DEM) and the Advanced land observing satellite 

World 3D-30 m DEM (AW3D-30m DEM), in the region of 60o S to 60o N and 60o N to 

90o N, respectively. The unobserved gaps in both SRTM3 and AW3D-30 m DEMs are 

filled with the Viewfinder Panoramas DEM. The NASA Ice, Cloud, and land Elevation 

Satellite (ICESat) laser altimetry global land surface elevation data (GLAH14) is used 

as the reference ground elevation for DEM bias estimation. DEM errors due to forest 

canopy are estimated with the use of the University of Maryland Landsat forest cover 

data (Hansen et al., 2013) and NASA global forest height data (Simard et al., 2011). For 

more details, please refer to Yamazaki et al. (2017). In this study, the DEM was multi-

looked to spatial resolutions of 500 m as preprocessed Sentinel-1A GRDH images. 

 

 Jason Altimetry-derived and In-situ Water Levels at TSL 

In this study, we used TSL water levels from two data sources, including Jason 

series satellite altimetry and the in-situ gauge at Kampong Luong. Jason series altimetry 

are the successors of Topex/Poseidon (T/P). The satellite series consists of Jason-1, 

Jason-2 and Jason-3, launched on December 7th, 2001, June 20th, 2008, and January 

17th, 2016, respectively. The series of missions are under the cooperation of NASA and 

Centre National d'Etudes Spatiales (CNES), with additional partnership from the 
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National Oceanic and Atmospheric Administration (NOAA), and the EUropean 

organization for the exploitation of METeorological SATellites (EUMETSAT) for 

Jason-2 and Jason-3. As the series of satellites maintain the same orbit configuration as 

T/P, they continuously provide highly accurate altimetry data with an ~ 10-day repeat 

cycle and allow long-term inland water level monitoring. In this study, we used 20-Hz 

ICE-retracked ranges from the Geophysical Data Record (GDR) E and D for Jason-1 

and Jason-2/-3 respectively, to extract water levels at a Virtual Station (VS) on TSL. 

Outliers in each cycle of measurements were removed (Okeowo et al., 2017). Biases 

between water level time series of different Jason missions were calculated based on the 

difference of mean water level time series during the overlapping period between 

missions and were aligned with those of Jason-1. The concatenated Jason-1/-2/-3 water 

levels consist of Jason-1 data from cycle 1 to cycle 238, Jason-2 data from cycle 1 to 

cycle 280, and Jason-3 data from cycle 1 to cycle 106 and are with respect to the World 

Geodetic System 1984 (WGS84) ellipsoid. In situ water levels at Kampong Luong with 

respect to local zero gauge up to 2016 were provided by the Asian Disaster Preparedness 

Center (ADPC) and were treated as in situ water levels of TSL. Locations of the Jason 

satellites ground track, the VS and in situ gauge are shown in Figure 4.2(a). Figure 

4.2(b) shows the time series of altimetry-derived and in situ water levels at TSL up to 

2016. The bias between altimetry-derived and in situ water levels is 14.53 m. Shifting 

the altimetry-derived time series toward the in situ time series allows us to obtain 

accuracy (root mean square error, RMSE) of Jason-1/-2/-3 concatenated altimetry-

derive TSL water levels of 0.43 m with a high temporal correlation of 0.99. In situ TSL 

levels from January to July of 2019 were also used for validating forecasting results. 
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(a) (b) 

Figure 4.2 (a) Geographical locations of Jason altimetry satellite ground track passing through the 

TSL and the corresponding VS and in situ gauge at Kampong Luong, (b) Jason-1/-2/-3 

concatenated altimetry-derived water levels at the TSL and comparison with in situ data. 

 

 ENSO Index – MEI 

The second version of Multivariate ENSO Index (MEI) (Wolter and Timlin, 

2011, 1998, 1993) used in this study was processed, organized, and distributed by the 

Physical Sciences Division of NOAA Earth System Research Laboratory (ESRL) 

(https://www.esrl.noaa.gov/psd/enso/mei/). It uses 5 variables, including sea level 

pressure, sea surface temperature, surface zonal and meridional winds and outgoing 

longwave radiation to generate time series of ENSO conditions since 1979. The sea 

surface temperature, sea level pressure, and surface winds are obtained from the high-

quality Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015). The outgoing 

longwave radiations are obtained from the NOAA Climate Data Record (CDR) monthly 

outgoing longwave radiation product version 2.2-1. All of the data fields are interpolated 
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to 2.5o grid size. Standardized anomalies of each field are then computed with respect 

to the period from 1980 – 2018. MEI is then calculated as the leading principal 

component time series of the EOF for the standardized anomalies of 5 combined 

variables within the region from 30oS – 30oN, 100oE – 70oW, excluding the Atlantic 

Ocean and land with latitudinal weighting. Positive MEIs represent El Niño events, 

while negative MEIs represent La Niña events. 

 

 Methods 

 REOF-based Daily Inundation Extent Estimation Framework 

 REOF Analysis 

The REOF analysis starts from conventional EOF analysis (Lorenz, 1956). 

Consider 𝑋 is an array of input data which is p-dimensional time series data with n 

observations 

 𝑋𝑛×𝑝 = [

𝑥1,1 𝑥1,2 ⋯
𝑥2,1 𝑥2,2 ⋯

⋮ ⋮ ⋱
  

𝑥1,𝑝

𝑥2,𝑝

⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯  𝑥𝑛,𝑝

]. (4.1) 

We can take 𝑋 as an aggregation of 𝑛 maps, each map has 𝑝 pixels; therefore, each row 

of 𝑋 is a map at an acquisition time, while each column is a time series of values of a 

pixel from 𝑛 maps. Since the essence of EOF analysis is to find the variables that can 

effectively represent the variability of 𝑋, a covariance matrix of 𝑋 needs to be formed 

first. In this study, we attempt to retrieve the temporal variability of 𝑋; therefore, a 

temporal anomaly array 𝑋′ is first calculated by subtracting the temporal average array 

�̅� from 𝑋 
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 𝑋′𝑛×𝑝 = 𝑋𝑛×𝑝 − �̅�𝑛×𝑝 (4.2) 

where each column of �̅� is a column vector whose elements have the same value as the 

average value of elements in the corresponding column in 𝑋.  

Then a 𝑝-by-𝑝 covariance matrix 𝐶 of the input data 𝑋 can be obtained by 

 𝑅𝑝×𝑝 = 𝑋′𝑇
𝑝×𝑛𝑋′𝑛×𝑝. (4.3) 

The covariance matrix 𝑅 here describes the temporal variability of 𝑋 as its derivation 

adopts temporal anomalies of 𝑋. Then an 𝑝-by-𝑝 array 𝑈 whose column vectors are 

eigenvectors of 𝑅 and a 𝑝-by-𝑝 diagonal array Λ whose elements are the corresponding 

eigenvalues λ can be calculated by solving the eigenvalue problem 

 𝑅𝑝×𝑝𝑈𝑝×𝑝 = 𝑈𝑝×𝑝Λ𝑝×𝑝. (4.4) 

Each eigenvector is a unit vector in 𝑝-dimensional space, pointing to the direction where 

𝑋 has significant variances. Each column 𝑗 of 𝑈, where 𝑗 can be from 1 to 𝑝, is also 

called a mode of an eigenvector which can be plotted as a map, representing the pattern 

of spatial variability of 𝑋, that is Spatial Mode (SM). The eigenvector array 𝑈 is an 

orthogonal array, that is 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼, meaning that eigenvectors are uncorrelated 

(orthogonal) to each other over space.  

How each mode of SM evolves in time can be determined by projecting 𝑋 onto 

it 

 𝑍𝑛×𝑝 = 𝑋𝑛×𝑝𝑈𝑝×𝑝 (4.5) 

where each column of 𝑍  is a 𝑛 -dimensional vector representing the time series of 

evolution of the corresponding SM, that is Temporal Principal Component (TPC), 

which is uncorrelated (orthogonal) in time. Each row of 𝑍 represents a time epoch, while 

each column corresponds to a mode of SM. The explained variance of each mode is the 



 

72 

variances of the columns of 𝑍 . Columns of 𝑈  and 𝑍 , which are SMs and TPCs, 

respectively, are sorted by their corresponding explained variances. Hereafter, the sorted 

𝑈 and 𝑍 are simply called 𝑈′ and 𝑍′. Therefore, the first column of 𝑈′ and 𝑍′ is the SM 

that explains the maximum extent of variability in 𝑋 (called mode-1), while the second-

column one explains the second most variability (called mode-2), and so forth. By using 

𝑍′ and 𝑈′, input data at a specific acquisition time, noted as 𝑋(𝑡) can be synthesized 

through linear combination as follows if 𝑘 = 𝑝: 

 𝑋(𝑡) = ∑ 𝑧′𝑡,𝑗 ∙ 𝑢′𝑗

𝑘

𝑗=1

+ �̅�;  𝑡 = 1, 2, ⋯ , 𝑛 (4.6) 

where 𝑧′𝑡,𝑗 is a scalar that is the element of the mode-𝑗 TPC at time epoch 𝑡 and 𝑢′𝑗 is 

the mode-𝑗 SM. The process is called synthesis. If 𝑘 = 𝑚 < 𝑝, it is called truncated 

synthesis, which is often the primary motivation when applying EOF analysis (Wilks, 

2011). Since these modes of SMs and TPCs from conventional EOF are orthogonal to 

each other, difficulty can occur if interested in physically interpreting SMs and the 

corresponding TPCs as natural phenomena which are rarely mutually independent. 

REOF analysis, on the other hand, is able to relieve the orthogonality constraint of EOF 

and improves the physical interpretability of SMs and TPCs (Hannachi et al., 2007, 

2006; Lian and Chen, 2012). Since we are associating TPCs with altimetry-derived 

water levels, which is a way of physical interpretation (will be explained later in Section 

4.3.1.2), REOF analysis is applied. Other advantages of REOF analysis such as the 

ability to avoid unphysical dipole-like patterns from EOF analysis and simplification of 

spatial structures while retaining robust patterns have been mentioned by several 

previous studies (Cheng et al., 1995; Dommenget and Latif, 2002; A. Hannachi et al., 
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2006; Houghton and Tourre, 1992). REOF analysis is based on rotation of SMs with a 

linear transformation of a truncated 𝑚 subset of 𝑈′: 

 �̃�𝑝×𝑚 = 𝑈′𝑝×𝑚𝑇𝑚×𝑚 (4.7) 

where �̃� is an array whose column vectors are modes of Rotated SMs (RSMs) and 𝑇 is 

a rotation matrix. The number of modes to be truncated, 𝑚, is arbitrary and is typically  

the number of leading EOF modes selected based on some truncation criteria (Wilks, 

2011). Here, the “rule of thumb” of North et al. (1982) was used to select significant 

modes for truncation. The differences between the eigenvalue of a mode and its adjacent 

mode need to be at least the sampling error for a mode to be significant. The sampling 

errors of the eigenvalues were first calculated by: 

 δλ = λ√
2

𝑁
 (4.8) 

where δλ is sampling error of a specific eigenvalue λ and 𝑁 is the number of samples 

which is the number of observations. The rule of thumb results in 𝑚 = 4, accounting 

for 72.7% of the total explained variances (See Figure 4.3). 

 

Mode 
Eigenvalue  

(× 𝟏𝟎𝟔) 

Sampling error  

(× 𝟏𝟎𝟔) 

1 12.68 2.03 

2 5.94 0.95 

3 1.40 0.22 

4 0.93 0.15 

Figure 4.3 Eigenvalues and corresponding sampling errors calculated by the rule of thumb of North et 

al. (1982) and cumulative percentages of explained variances of significant modes in the 

cases of using 500 m spatial resolutions of Sentinel-1A GRDH images as input. 

 



 

74 

Varimax orthogonal rotation (Kaiser, 1958), the most commonly used rotating 

approach (Richman, 1986), was then applied to rotate 𝑈′ , which is determined by 

choosing the elements of 𝑇 that maximizes the condition: 

 

∑ [
1

𝑝
∑ 𝑢𝑗,𝑘

∗ 4

𝑝

𝑗=1

− (
1

𝑝
∑ 𝑢𝑗,𝑘

∗ 2

𝑝

𝑗=1

)

2

]

𝑚

𝑘=1

, 

𝑢𝑗,𝑘
∗ =

�̃�𝑗,𝑘

√∑ �̃�𝑗,𝑘
2𝑚

𝑘=1

 

(4.9) 

where �̃�𝑗,𝑘 is element of �̃� at 𝑗-th row and 𝑘-th column and 𝑢𝑗,𝑘
∗  is row-normalized �̃�𝑗,𝑘. 

By replacing 𝑈 in Equation (4.5) with �̃�′, array �̃�′ whose column vectors are Rotated 

TPCs (RTPCs) can be obtained. The varimax rotation was calculated using the National 

Center for Atmospheric Research (NCAR) Common Language (NCL) (NCL, 2019). 

Since REOF analysis redistributes the variance represented by the results from 

conventional EOF, columns of �̃�′  and �̃�′  were reordered based on the explained 

variance of each mode, that is the variance of columns of �̃�′. The reordered �̃�′ and �̃�′ is 

then noted as �̃�′′ and �̃�′′ with each column representing a mode of RSM and RTPC, 

respectively. By plotting RSMs as maps and RTPCs as time series, spatiotemporal 

patterns of ㄍ input multi-temporal stack of Sentinel-1 GRDH intensity images can be 

seen. Since we performed REOF analysis up to mode 4, we have 4 such time series of 

RTPCs and corresponding RSMs. Data synthesis can be fulfilled by replacing 𝑧′𝑡,𝑗 and 

𝑢′𝑗 from Equation (4.6) with their counterparts in �̃�′′ and �̃�′′. Therefore, by estimating 

historical or future �̃�′′, we are able to hindcast historical data or perform forecasting. 

This will be covered in the next section. 
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In this study, areas within the Tonle Sap Watershed (TSW) with elevations 

below 23 m were taken as the study area (Frappart et al., 2018). Considering that the 

change of surface roughness over the water bodies can increase the intensities of SAR 

images and alter the REOF analysis results, only pixels within the study area excluding 

those over the permanent water bodies were adopted as input data 𝑋 (See Figure 4.4). 

This is to ensure the spatiotemporal patterns retrieved by the analysis are really from 

the surrounding floodplain. The extraction of pixels was conducted using the TSW 

boundary shapefile provided by Open Development Cambodia 

(http://www.opendevelopmentcambodia.net/maps/downloads/), MERIT DEM and the 

MOD44W water mask from 2015. The resulting RSMs and RTPCs are shown in Figure 

4.5. 

 

    
(a) (b) (c) (d) 

 
Figure 4.4 (a) to (c) are examples of Sentinel-1A GRDH images within the TSW with MERIT DEM 

elevation below 23 m at different acquisition times. (d) is an example of images with 

permanent water bodies masked out. 
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26.77% 21.54% 14.91% 9.52% 

Figure 4.5 Mode-1 to mode-4 RSMs (top), corresponding RTPCs, and percentages of explained 

variance (bottom) of input multi-temporal stack of Sentinel-1 GRDH intensity images at 

500 m spatial resolution. 

 

 Synthesis of SAR Intensity Images 

Following the synthesis formula in Equation (4.6), Sentinel-1 GRDH intensity 

images, either historical or forecasted ones, can be generated by multiplying RSMs with 

corresponding RTPCs at past or future time. To achieve this, estimating temporally 

varying RTPCs at the given time is required. Here, we coupled the resulting RTPCs 

with TSL water levels based on polynomial regression. We applied a 1-degree (linear) 

polynomial model in the case of mode-1 and mode-2. For mode-3 and mode-4, 2-degree 

(quadratic) polynomial models were adopted. The choice of polynomial degree for 

different modes can be justified by the corresponding RSMs. As Figure 4.5 shows, 

RSMs for mode-1 and mode-2 have strong negative signals in the area around TSL, 

while mode-3 and mode-4 RSMs are distributed in the area farther from TSL. Therefore, 

RTPCs for mode-1 and mode-2 quickly respond to changes in TSL water levels, leading 

to a linear pattern in the scatter plots. RTPCs of mode-3 and mode-4, on the other hand, 

would only respond when TSL water surface rises to a certain level. The data 
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distribution in the scatter plot reflects this fact (See Figure 4.6). There is relatively flat 

and dense data distribution in the scatter plot when TSL water level is lower. Once the 

TSL water level reaches a certain level, the data distribution shows a rising slope. The 

fitted polynomial models are shown in Figure 4.6 as well. With the given TSL water 

levels at a specific time epoch the modes of RTPCs can be estimated. Then the data at 

a given time can be synthesized by using Equation (4.6). 

  

  
Figure 4.6 Polynomial regression models between altimetry-derived water levels w.r.t. WGS84 

ellipsoid at TSL and the mode-1 to mode-4 RTPCs of Sentinel-1 GRDH intensity images 

at 500 m spatial resolution. 
 

As the error of the REOF-based synthesized SAR intensity can influence the 

estimation of inundation extents, we analyzed the difference between the synthesized 

and original SAR intensity. SAR images adopted for REOF analysis were used for 

comparison. The sign of both synthesized and original SAR intensity for each pixel was 

first investigated. Figure 4.7 shows the time series of the percentages of pixels whose 

original and synthesized intensities are both negative, which are nearly 100%, of each 

SAR image. This means that when differences between synthesized and original SAR 
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intensities (subtracting original ones from synthesized ones) are large positive values, 

the original SAR intensities would be much smaller than the synthesized ones. For 

example, the red circles in Figure 4.8(c) mark areas with large positive difference 

values. These areas match with areas where the original intensities are much smaller 

than the synthesized ones and may be a source of underestimated inundation extents, 

leading to omission errors. These areas have relatively higher elevations. Since the 

synthesis of SAR intensity is based on coupling temporal patterns of SAR intensity 

variations with TSL levels, the SAR intensity variations over areas with elevations 

higher than TSL levels may not be synthesized accurately as they are not necessarily 

caused by TSL level variations. Another example shows that there are large positive 

difference values in the areas around the boundary of TSLF (Figure 4.9(c)). The original 

intensities in these areas are much smaller than the synthesized ones as well and may 

lead to underestimation in our inundation extents. Since the areas are along the boundary 

of TSLF, the intensity variations are possibly related to TSL levels. Hence, the large 

positive differences in these areas may be caused by discrepancies between real 

temporal patterns and the altimetry-estimated ones. 

On the other hand, if the differences are small negative values, the synthesized 

SAR intensities would be much smaller than the original ones, which may result in 

overestimated inundation extents and lead to commission errors. This can be seen in the 

red circles in Figure 4.10(c) which are along the boundary of TSL. As these areas are 

along the boundary of TSL, the intensity variations are also possibly related to TSL 

levels. The differences in these areas may also be due to errors of our altimetry-

estimated temporal patterns. For a related discussion about framework skills, omission 
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and commission errors of result and the influence of high-elevation inundation extent, 

please refer to Section 4.4. Finally, since pixels over permanent water bodies have been 

excluded before REOF analysis based on MOD44W water mask of 2015, long-term 

temporal averages of intensities over these permanent water body pixels were calculated 

and applied to the synthesized data to obtain a complete scene, which then can be used 

to estimate inundation extents. Note that for Sentinel-1 images used as reference 

datasets for cross-comparing with our estimated inundation extents, intensities over 

permanent water body pixels were also replaced with long-term temporal averages. This 

is because intensities over permanent water body can be enhanced by surface roughness 

change, which influences the estimation of inundation extents.  

 

 

(a) 

Figure 4.7 Percentages of pixels of each SAR image whose original and synthesized intensity are both 

negative. 
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(a) (b) (c) 

Figure 4.8 Example of (a) original SAR intensity, (b) synthesized SAR intensity, and (c) difference 

by subtracting (a) from (b) where there are large positive difference values in high-

elevation areas (red circles in (c)). 

 

   

(a) (b) (c) 

Figure 4.9 Example of (a) original SAR intensity, (b) synthesized SAR intensity, and (c) difference 

by subtracting (a) from (b) where there are large positive difference values in the areas 

around the boundary of TSLF (red circles in (c)). 

 

   

(a) (b) (c) 

Figure 4.10 Example of (a) original SAR intensity, (b) synthesized SAR intensity, and (c) difference 

by subtracting (a) from (b). Red circles mark areas where there are really small negative 

difference values in (c). 
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 K-means Clustering Inundation Extent Classification 

 After successfully synthesizing SAR intensity images, the K-means clustering 

algorithm (Lloyd, 1982) was adopted to classify pixels from synthesized intensity maps 

into inundated and non-inundated classes with the aid of MERIT DEM. K-means 

clustering is one of the most frequently used clustering techniques, can be easily 

implemented, provides relatively high-quality clusters with low computational effort 

(Chang et al., 2018; Lin et al., 2013; Tsyganskaya et al., 2018b) and has been applied 

on SAR images in recent studies for change detection (Celik, 2009; Zheng et al., 2014) 

and water pixel segmentation (Ruzza et al., 2019). The advantage of the K-means 

algorithm is that it is an unsupervised method that does not require additional training 

data as “ground truth.” The only necessary input to the algorithm is the user-predefined 

number of classes 𝐾 . In this study, the number of classes is 𝐾 = 2 , representing 

inundated and non-inundated clusters. The algorithm first randomly selects 𝐾 points as 

initial “centroids”. Each centroid corresponds to a class. Data are then assigned to the 

class whose centroid is the nearest based on squared Euclidean distance until the sum 

of squared distance from data to the centroid of each class has been minimized  

 𝑚𝑖𝑛 ∑ ‖𝑦 − 𝜇𝑖‖
2

𝑦∈𝐺𝑖

 (4.10) 

where 𝐺𝑖 is the class 𝑖, 𝑦 is the data which belongs to class 𝑖 and 𝜇𝑖 is the centroid of 

class 𝑖. The mean of data assigned to the same class is then taken as the new centroid. 

The algorithm iteratively updates centroids and data may be assigned to from one class 

to another until centroids stay unchanged. We used the “K-means” function in 

MATLAB® software R2017b. The software implements K-means++ algorithm (Arthur 
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and Vassilvitskii, 2007) to initialize the centroid and has been shownto have improved 

running time, robustness, and quality of the final solution over Lloyd’s classical K-

means method (Lloyd, 1982). The number of times to repeat clustering using new initial 

cluster centroid positions was set to be 20 (See supplementary data) to find a lower local 

minima and ensure the quality of the clustering results. For each of the 20 initial cluster 

centroid positions, the K-means clustering algorithm iterates up to 100 times to satisfy 

Equation (4.10). The final solution is the one among the 20 initializations that results in 

the minimum total sum of the distance between data points and centroids. Figure 4.11 

is an illustration of how data were clustered by K-means algorithm where the x-axis is 

the normalized MERIT DEM and the y-axis is the normalized synthesized SAR 

intensities. Figure 4.12 shows a comprehensive flowchart of the proposed REOF-based 

daily inundation extent estimation framework. For Sentinel-1 images used as reference 

datasets for cross-comparison, inundated extents were directly estimated by the K-

means algorithm with the same settings. 

  

(a) (b) 

Figure 4.11 Illustration of how data were clustered into non-inundated (blue) and inundated (red) 

clusters by K-means algorithm. (a) is an example in the dry season while (b) is in the wet 

season. 
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Figure 4.12 Flowchart of the proposed REOF-based daily inundation extent estimation framework. 

(*Altimetry-derived TSL levels were used to build regression models with RTPCs. 

#Altimetry-derived TSL levels were used for estimated RTPCs.) 

 

 Long-term Forecasting of TSL Levels Using ENSO Index 

Inspired by Frappart et al. (2018) and Räsänen and Kummu (2013), that both 

point out a negative correlation between MRB’s flood pulse and El Niño and La Niña 

events, linear regression models between MEIs (Wolter and Timlin, 2011, 1998, 1993) 

and TSL levels were built for forecasting TSL levels with months of lead time. Similar 
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work has been done by Fok et al. (2018) in which water levels in the MD were predicted. 

We performed regression analysis between Jason-2/-3-derived daily TSL levels from 

2009 to 2018 and monthly MEIs. First, for each required forecasted TSL level (hereafter 

called forecasting date) the corresponding month was used as a reference month. We 

then used years of MEIs from each of the past 12 months with respect to the reference 

month to build linear regression models with years of TSL levels of the forecasting 

dates. For example, if we would like to forecast TSL level on June 1st, June would be 

the reference month. Therefore, MEIs of June to December of the previous year and 

January to May of the current year were used. Since we were building the regression 

model using Jason-2/-3 daily TSL levels from 2009 to 2018, for each month within June 

to December, MEIs from previous years from 2008 to 2017 were used. For each month 

from January to May, MEIs of current years from 2009 to 2018 were used. Figure 4.13 

shows an illustration of the approach. Hence, there would be 10 MEIs and 10 Jason-2/-

3-derived daily TSL levels for each forecasting date for linear regression analysis. After 

performing the linear regression analysis, MEIs of the month with the highest adjusted 

R2 with Jason-2/-3-derived daily TSL level on the forecasting dates was used as input 

to the regression models to forecast TSL levels with months of lead time. 
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Figure 4.13 Illustration of the data used to build regression models between MEIs and TSL levels. 

 

 MODIS-derived Inundation Maps for Cross-comparison 

In this study, MODIS-derived inundation maps were used as one of the reference 

datasets for cross-comparing with our estimated inundation extents. The approach was 

originally proposed by Sakamoto et al. (2007) in studying change of inundation extents 

in the Lower Mekong. Normandin et al. (2018) simplified the approach and applied it 

over the Mackenzie Delta. The approach uses thresholdings on indices including the 

Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), and Difference 

Value between EVI and LSWI (DVEL), derived from 8-day composite MODIS images 

of surface reflectance to classify pixels into classes of non-flooded, mixture and flooded 

or permanent water body. Frappart et al. (2018) also applied it for long-term MODIS-

based inundation mapping and analysis over the TSL area, additionally considering a 

SRTM DEM and altimetry-derived water levels in TSL to judge whether a mixture class 

pixel is inundated or not. 
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According to Sakamoto et al. (2007), in order to implement the approach, EVI, 

LSWI, and DVEL are first calculated. The EVI (Huete et al., 1997) and LSWI (Xiao et 

al., 2002) are defined as 

 

EVI = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅

𝜌𝑁𝐼𝑅 + 6 × 𝜌𝑅 − 7.5 × 𝜌𝐵 + 1
, 

LSWI =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅
 

(4.11) 

where 𝜌𝑁𝐼𝑅 is the Near Infra-Red (NIR) surface reflectance (841-875 nm, band 2), 𝜌𝑅 

is the surface reflectance in the red (621-670 nm, band 1), 𝜌𝐵 is the surface reflectance 

in the blue (459-479 nm, band 3), and 𝜌𝑆𝑊𝐼𝑅 is the surface reflectance of the Short-

Wave Infra-Red (SWIR) (1628-1652 nm, band 6). DVEL is defined by subtracting 

LSWI from EVI. The pixels with 𝜌𝐵 ≥ 0.2 were identified as cloud-covered and were 

excluded. Remaining pixels were then classified into two major classes including (1) 

non-flooded (EVI > 0.3 or EVI ≤ 0.3 but DVEL > 0.05) and (2) water-related pixels 

(EVI ≤ 0.3 and DVEL ≤ 0.05 or EVI ≤ 0.05 and LSWI ≤ 0). The water-related class 

is comprised of 3 sub-classes including flooded pixels when EVI ≤ 0.1, mixture pixels 

when 0.1 < EVI ≤ 0.3, and permanent water bodies if the number of a pixel being 

classified as either flooded or mixture pixel exceeds two-thirds of the total number of 

MODIS images. Note that before calculating these indices, we conducted quality control 

upon all used bands with the reflectance band quality layer within each MOD09A1 

image. Only those pixels with the highest quality in all the above-mentioned bands were 

kept for cross-comparison use. This was to ensure the derived reference dataset had the 

best quality. 
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To generate the final MODIS-based inundation maps, we used MERIT DEM 

and in situ water levels of TSL at Kampong Luong provided by the ADPC as auxiliary 

data. We assumed that TSL surface is parallel to the geoid surface. Hence, the TSL 

levels with respect to the geoid would be the same everywhere. As the datum of the 

MERIT DEM is EGM96 geoid, in situ water levels of TSL at Kampong Luong with 

respect to EGM96 geoid were generated and used as in situ water levels for TSL. This 

was achieved by calculating the means of the Jason-1/-2/-3 altimetry-derived water 

levels with respect to the EGM96 geoid and the in situ water levels at TSL with respect 

to local zero gauge, where the latter were then shifted toward the former by the 

difference between their means, which is 2.92 m. Figure 4.14 shows the offsets between 

datums of TSL water levels including WGS84 ellipsoid, local zero gauge of in situ water 

levels at Kampong Luong, and the EGM96 geoid. Finally, a pixel was considered as 

inundated if it was classified as (1) flooded pixel or, (2) mixture pixel with elevation 

lower than in situ TSL water level on that date or (3) the pixel is a permanent water 

body. Figure 4.15 shows the flowchart that summarizes the whole procedure for 

generation of MODIS-based inundation maps. 
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WGS84 Ellipsoid 
 

14.53 m 

17.45 m 

(Based on average location of 

Jason-1 cycles of data) 

 

 

 

 

Zero Gauge of 

Kampong Luong 

2.92 m  

EGM96 Geoid 
 

Figure 4.14 Offsets between datums of TSL water levels, which include the WGS84 ellipsoid, local 

zero gauge of in situ TSL water level data at Kampong Luong, and the EGM96 geoid. 

 

 
Figure 4.15 Flowchart for generation of MODIS-derived inundation extents (* Time span of data 

could be different depending on the time of estimated inundation extents to be validated). 
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 Framework Skill Evaluation Statistics 

 Evaluation of framework skill was based on a 2 × 2 confusion matrix (Kohavi, 

R., Provost, 1998) which displays the absolute counts of combinations of framework 

estimated and observed event pairs. As Figure 4.16 shows, 𝑎 and 𝑑 are the counts of 

observed flood and non-flood events that the framework correctly estimates, 

representing hits and correct negative, respectively. Contrarily, 𝑏 and 𝑐 are the counts 

of events that are misestimated, representing false alarms and misses, respectively. In 

this study, these statistics were based on the number of pixels by comparing estimated 

inundation maps with MODIS-derived ones.  

Confusion Matrix 
MODIS-derived Marginal 

Total Inundation Non-inundation 

Framework-

estimated 

Inundation 
𝑎 

(Hits) 

𝑏 

(false alarms) 
𝑎 + 𝑏 

Non-inundation 
𝑐 

(missed) 

𝑑 

(correct negative) 
𝑐 + 𝑑 

Marginal 

Total 
𝑎 + 𝑐 𝑏 + 𝑑 

Total = 

𝑎 + 𝑏 + 𝑐 + 𝑑 

Figure 4.16 A 2 × 2 confusion matrix, which displays the number of pixels that is hit, false alarm, miss, 

or correct negative. 
 

We used overall accuracy, critical success index (CSI), omission error and 

commission error as evaluation indices. The overall accuracy is the percentage of pixels 

which were estimated correctly by our framework over the total number of pixels: 

 Overall accuracy =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 × 100(%). (4.12) 

The range of overall accuracy is from 0% to 100%, indicating zero skill to perfect skill.  

CSI (Gilbert, 1884), also called threat score, is the number of correctly estimated 

inundated pixels over the number of pixels which are either real or framework-estimated 

inundated  
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 CSI =
𝑎

𝑎 + 𝑏 + 𝑐
× 100(%). (4.13) 

CSI accounts for both false alarms and misses and is considered to be more complete. 

It avoids possible bias in the analysis results caused by correct negative (𝑑) (Wing et 

al., 2017). Its value ranges from 0% to 100% where 0% means there is no match between 

observed and framework estimation, while 100% means perfect framework skill. CSI is 

frequently used as a standard validation measure (World Meteorological Organization, 

2017). 

Omission error represents the percentage of pixels which are actually inundated 

but are not captured by our framework over the total number of actually inundated pixels 

and can be determined by 

 
𝑐

𝑎 + 𝑐
× 100(%). (4.14) 

Its value also ranges from 0% to 100% with 0% being perfect skill. It indicates the extent 

of missed pixels. 

Commission error, on the other hand, is the percentage of framework-estimated 

inundated pixels which are actually non-inundated over the total number of framework-

estimated inundated pixels which can be calculated as 

 
𝑏

𝑎 + 𝑏
× 100(%). (4.15) 

Its value also ranges from 0% to 100% with 0% being perfect skill. It indicates the extent 

of false alarm pixels. 
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 Results and Discussions 

 Evaluation and Analysis of Framework Skills Using Long-term Historical 

Data 

Since 2003 is the first complete year of Jason-1 observations and 2015 is the last 

complete year before the acquisition time of Sentinel-1 GRDH used to build the 

proposed framework, we cross-compared the inundation extents in the TSLF estimated 

by our framework from 2003 to 2015 to provide a long-term evaluation of framework 

skill. The spatial resolution of our estimation is 500 m in order to fit the resolution of 

the MODIS inundation maps derived from the MOD09A1 8-day composite product. 

For each MOD09A1 image, we first counted the number of pixels within an 8-day 

period using day-of-year layer in the product. The dates, which have the greatest number 

of pixels in MOD09A1 images within corresponding 8-day periods, were considered as 

cross-comparison dates. The inundation extents estimated by our framework on the 

cross-comparison dates were evaluated against the corresponding MOD09A1-derived 

inundation maps. This mitigated the influence of date differences between our daily 

estimated inundation extents and those derived from 8-day composite MOD09A1 

images. We adopted CSI, omission error and commission error and overall accuracy as 

evaluation indices of our framework skill. The evaluation results are listed in Table 4.1 

from a climatological monthly perspective to see the performance of our framework 

skill in each month by a “hydrological year”, starting from May to April of next year 

(Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., Richey, J., Sarkkula, 

2015; Kummu and Sarkkula, 2008). Note that since the number of valid pixels in each 
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of the MOD09A1 images are different due to cloud cover and missing data, the 

climatological monthly averages and standard deviations (STDs) of CSIs, overall 

accuracies, omission errors, and commission errors here are weighted average and 

STDs, considering the total number of valid pixels of each MOD09A1 image. CSIs 

indicate that among pixels which were inundated either in MODIS images or estimated 

by our framework, 70% to 91% of pixels were both really inundated and successfully 

captured by our framework. CSIs are from 85% to 91% in the relatively dry period of 

February to June, and are about 75% to 80% in July, September, October, November, 

and January, but are relatively low, about 70% in August and December. Omission 

errors indicate that there are about 10% to 26% of pixels, which were inundated as 

MODIS images show, missed in our framework estimation. Commission errors indicate 

that 1% to 10% of our framework-estimated inundated pixels were actually not 

inundated in the MODIS images. The overall accuracies of our framework indicate that 

90% to 99% of pixels, considering both inundated and non-inundated, are correctly 

classified. 

We further analyzed the connection between variation of our framework skills 

over all months and the corresponding altimetry-derived TSL levels. Table 4.1 lists the 

climatological monthly variation of altimetry-derived TSL levels with corresponding 

RMSEs, which are 0.3 m to 0.7 m. Figure 4.17(a) shows the climatological monthly 

variation of CSIs, and RMSEs of altimetry-derived TSL levels and the corresponding 

fitted linear regression model in Figure 4.17(b), where we can see there is no correlation 

between CSIs, and RMSEs of altimetry-derived TSL levels with adjusted R2 of -0.09 in 

the fitted linear regression model. This indicates that the skills of our inundation extent 



 

93 

estimation framework have no significant connection with such level of errors of 

altimetry-derived TSL levels. However, interestingly, when pairing CSIs with TSL 

levels, as in Figure 4.18(a-2), we found a relationship with a convex quadratic shape 

between CSIs and TSL levels. The fitted convex quadratic curve between them has an 

adjusted R2 of 0.86. Such quadratic connection indicates that the relationship between 

CSIs and TSL levels changes depends on altimetry-derived TSL levels. As Figure 

4.18(a-2) shows, when altimetry-derived TSL levels (with respect to WGS84 ellipsoid) 

are lower than about -9 m, there is a negative correlation between CSIs and TSL levels. 

Conversely, the correlation changes are positive when TSL levels with respect to 

WGS84 ellipsoid exceed -9 m. Such TSL levels, which are in August and December, 

seems to be a turning point in the relationship between CSIs and altimetry-derived TSL 

levels. In August and December, CSIs are also the lowest. A similar pattern can be seen 

in the case of omission errors as well. When pairing omission errors with altimetry-

derived TSL levels, there is a concave quadratic relation with an adjusted R2 of 0.75 

between them with the same turning point at about -9 m of TSL level (with respect to 

WGS84 ellipsoid), as Figure 4.18(b-2) shows. This means that when TSL levels with 

respect to WGS84 ellipsoid are below -9 m, there is a positive correlation between 

omission errors and TSL levels that changes to a negative correlation when TSL levels 

with respect to WGS84 ellipsoid exceeds -9 m. These facts also imply a strong 

connection between CSIs and omission errors. As Figure 4.18(c-2) shows, CSIs are 

negatively correlated with omission errors, resulting in a fitted linear model with an 

adjusted R2 of 0.91. Commission errors, on the other hand, do not have an obvious 

quadratic shape of relation with altimetry-derived TSL levels. The relation between 
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commission errors and TSL levels is more like a uniformly positive correlation, 

resulting in a fitted linear model with an adjusted R2 of 0.88 shown in Figure 4.19(a-2). 

Furthermore, the connection of CSIs with commission errors is weaker than that with 

omission errors as the adjusted R2 of the fitted linear model between CSIs and 

commission errors is 0.67 as Figure 4.19(b-2) shows, which is lower than the adjusted 

R2 of the fitted linear model between CSIs and omission errors. This indicates that the 

impact of omission errors on the variation of CSIs is more dominant than commission 

errors considering the results over all months. 

Table 4.1 Climatological monthly averages and STDs of CSI, omission and commission error, overall 

accuracy, and statistics of altimetry-derived TSL levels including average level and RMSE. 

In-situ average TSL levels and STDs are shown as well.   

Month 
CSI 

(%) 

Omission 

Error 

(%) 

Commission 

Error 

(%) 

Overall 

Accuracy 

(%) 

Statistics of TSL Levels 

Altimetry-derived In-situ 

*Average 

Levels 

(m) 

RMSE 

(m) 

#Average  

Levels 

(m) 

May 
87.17 

±8.45 

11.93 

±8.64 

1.02 

±0.15 

98.14 

±2.28 

-13.63 

±0.27 
0.26 

0.81 

±0.21 

Jun. 
85.48 

±7.50 

13.40 

±7.66 

1.36 

±0.74 

97.78 

±1.66 

-12.97 

±0.60 
0.52 

1.17 

±0.53 

Jul. 
79.69 

±7.52 

16.13 

±6.98 

5.99 

±4.00 

96.29 

±2.03 

-11.43 

±0.97 
0.68 

2.55 

±1.02 

Aug. 
70.09 

±7.27 

24.59 

±9.05 

8.61 

±3.89 

90.83 

±3.76 

-9.29 

±1.10 
0.40 

4.94 

±1.27 

Sep. 
76.30 

±5.68 

16.33 

±7.68 

9.67 

±5.30 

88.77 

±2.86 

-7.62 

±1.01 
0.28 

6.97 

±1.10 

Oct. 
79.47 

±5.03 

14.33 

±6.61 

7.94 

±4.88 

89.04 

±2.23 

-6.82 

±1.06 
0.38 

7.86 

±1.16 

Nov. 
75.17 

±7.15 

18.12 

±9.51 

9.07 

±5.10 

90.07 

±2.02 

-7.76 

±1.19 
0.38 

6.96 

±1.24 

Dec. 
70.38 

±7.61 

26.26 

±8.16 

6.02 

±1.94 

91.68 

±3.17 

-9.46 

±1.20 
0.32 

5.28 

±1.16 

Jan. 
75.00 

±8.81 

22.24 

±8.63 

4.62 

±2.39 

95.22 

±2.78 

-10.99 

±0.92 
0.52 

3.81 

±0.96 

Feb. 
87.93 

±4.06 

10.68 

±3.64 

1.58 

±1.06 

98.53 

±0.75 

-12.45 

±0.69 
0.52 

2.34 

±0.79 

Mar. 
90.83 

±0.79 

8.12 

±0.86 

1.02 

±0.14 

98.95 

±0.21 

-13.31 

±0.36 
0.46 

1.47 

±0.50 
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Table 4.1 (Continued) 

Apr. 
91.07 

±0.58 

7.96 

±0.56 

1.01 

±0.20 

98.90 

±0.30 

-13.70 

±0.30 
0.36 

0.96 

±0.29 

*Altimetry-derived TSL water levels in this table are with respect to WGS84 ellipsoid. #In-situ TSL 

water levels are with respect to local zero gauge. 

 

 

  
(a) (b) 

Figure 4.17 (a) Climatological monthly variation of CSIs and RMSEs for altimetry-derived TSL 

levels. Corresponding scatter plots with fitted linear regression models are in (b). 

 

 

   
(a-1) (b-1) (c-1) 

   
(a-2) (b-2) (c-2) 

Figure 4.18 Climatological monthly variation of (a-1) CSIs and altimetry-derived TSL levels, (b-1) 

omission errors and altimetry-derived TSL levels, and (c-1) CSIs and omission errors. (a-

2) to (c-2) are corresponding scatter plots with fitted regression models. 
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(a-1) (b-1) 

  
(a-2) (b-2) 

Figure 4.19 Climatological monthly variation of (a-1) commission errors and altimetry-derived TSL 

levels, and (b-1) CSIs and commission errors. (a-2) to (b-2) are corresponding scatter 

plots with fitted regression models. 

 

The relationship between the variation of omission errors and TSL levels has a 

concave quadratic shape with the highest errors occuring when TSL levels with respect 

to the WGS84 ellipsoid are about -9 m in August and December. This “-9 m” turning 

point may correspond to the influence of specific vegetation around TSL on SAR 

backscatter characteristics. Since Sentinel-1 is a C-band SAR satellite, which has 

limited vegetation penetration depth, its radar backscatter may be dominated by volume 

scattering if TSL levels are not high enough. Consequently, intensities over some of the 

inundated areas may not be low enough for the K-means clustering algorithm to be able 

to distinguish them properly from non-inundated areas, leading to the positive 

correlation between omission errors and TSL levels. By contrast, when TSL rises above 

this level, water surface scattering may become dominant over most of the inundated 

areas, leading to intensities which are low enough for K-means clustering to recognize. 
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Thus, the connection between omission errors and TSL levels is a negative correlation. 

In fact, according to Van Trung et al. (2013), there is a rapid increase in areas which 

change from lowland shrubs to water surfaces in the TSLF when in-situ TSL levels with 

respect to local zero gauge is about 5 m, which agrees with the “-9 m” altimetry-derived 

TSL level with respect to WGS84 ellipsoid (See Table 4.1). Figure 4.10(b) in Van Trung 

et al. (2013) shows the land cover variation model in terms of flooded areal percentages 

and the variation of in-situ TSL levels during a flood pulse, where a “trough” can  clearly 

be seen in the variation  curve of flooded lowland area shrubs when in-situ TSL level 

exceeds about 5 m. Interestingly, the “trough” of variation of area of flooded lowland 

shrubs also crosses the curve of in-situ TSL level at the point when the latter is about 5 

m. This “trough” may result from the change of land cover from flooded lowland shrubs 

to fully inundated water surfaces as Van Trung et al. (2013) pointed out. Hence, this 

indicates that the flooded lowland shrubs start to completely submerge underwater when 

in-situ TSL level rises above 5 m, which corresponds to the altimetry-derived TSL level 

of -9 m. Lowland shrub is the dominant land cover type over the TSLF as Figure 3(a) 

of Sáenz et al. (2016) shows. Arias et al. (2012) also pointed out that shrubland is the 

dominant land cover type in the TSLF which are flooded 5 to 9 months in an average 

year. Hence, the relationship between the variation of area for flooded lowland shrubs 

and TSL level found by Van Trung et al. (2013) may also explain the connection 

between both CSIs and omission errors of our results with TSL levels. Furthermore, 

August and December also have peak rapidity for changes of TSL levels at rising stage 

and receding stage of flood pulse, respectively, as Figure 4.20 shows. This means that 

August and December are months when TSL levels experience the most significant 
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change, which also explains why these two months are when radar backscattering 

characteristic changes, leading to a reverse correlation between omission errors (thus 

CSIs), and TSL levels. On the other hand, omission errors have no connection with the 

RMSEs of altimetry-derived TSL levels, which means that such amount of errors in 

altimetry-derived TSL levels do not have a significant impact on the skill of estimating 

inundation extent (See Figure 4.21). 

 

 

Month 

Rapidity of 

Changes  

of TSL Levels  

(cm/day) 

Month 

Rapidity of 

Changes  

of TSL Levels  

(cm/day) 

May 1.28±2.73 Nov. -4.98±1.59 

Jun. 3.30±3.91 Dec. -5.81±1.48 

Jul. 6.01±3.82 Jan. -5.18±1.66 

Aug. 6.81±2.50 Feb. -4.23±2.15 

Sep. 4.57±2.51 Mar. -1.78±2.90 

Oct. -0.38±3.48 Apr. -0.48±3.34 

Figure 4.20 Climatological monthly variation of omission errors and rapidity of changes of altimetry-

derived TSL levels. 

 

  
(a) (b) 

Figure 4.21 (a) Climatological monthly variation of omission errors and RMSEs of altimetry-derived 

TSL levels. Corresponding scatter plots with fitted linear regression models are in (b). 

 

Furthermore, since the estimation of inundation extents of our framework is 

based on the relationship between TSL levels and SAR backscatter intensity changes, 

inundation caused by regional rainfall, river overflow in the areas with higher elevation 

cannot be captured and leads to some degree of omission errors as well. Figure 4.22 
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shows examples of inundation that occurred in areas higher than contemporary TSL 

levels in yellow (hereafter called high-elevation inundated pixels), while areas with 

elevations below contemporary TSL levels are in blue with the background in green. 

An evaluation of the framework skills excluding the influence of such high-elevation 

inundation, which could be unrelated to the TSL levels, was then performed. This was 

achieved by not removing the high-elevation inundated pixels (yellow pixels in Figure 

4.22), when calculating evaluation indices as described before. The climatological 

monthly average and STD of the updated framework skills and the original framework 

skill and differences between them (hereafter called change of skills) are listed in Table 

4.2 for comparison. When excluding high-elevation inundation, omission errors 

decrease by 1% to 8% with CSIs increase by up to 7%, while commission errors slightly 

increase up to 2%. The difference of CSIs is highly negatively correlated with the 

change of omission errors as there is a fitted linear regression model with an adjusted 

R2 of 0.90 between them as Figure 4.23 shows. The more the omission errors decrease, 

the better the CSIs, as can be seen in Figure 4.23(b). Change of commission errors, 

contrarily, has no connection with the changes in CSIs (Figure 4.24).  

 

    
Figure 4.22 Examples of inundation with elevations higher than contemporary TSL levels (yellow). 

Areas with elevations lower than TSL levels are shown in blue, while green is the 

background color. 
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Table 4.2 Climatological monthly averages and STDs of CSI, omission and commission error (OE, and 

CE, respectively) and overall accuracy (OA) with high-elevation inundated pixels being 

excluded. Change of framework skills are also listed. 

Mon. 
CSI 

(%) 

OE 

(%) 

CE 

(%) 

OA 

(%) 

Change of Skills 

CSI 

(%) 

OE 

(%) 

CE 

(%) 

OA 

(%) 

May 
91.29 

±0.45 

7.55 

±0.50 

1.02 

±0.15 

98.97 

±0.16 

4.12 

±8.54 

-4.38 

±8.60 

0.00 

±0.00 

0.84 

±2.28 

Jun. 
91.63 

±0.77 

7.14 

±0.54 

1.43 

±0.75 

98.94 

±0.24 

6.15 

±7.44 

-6.26 

±7.59 

0.07 

±0.25 

1.16 

±1.64 

Jul. 
86.35 

±5.48 

8.39 

±3.27 

6.32 

±4.28 

97.77 

±1.50 

6.66 

±5.68 

-7.74 

±6.13 

0.33 

±0.57 

1.48 

±1.25 

Aug. 
73.98 

±6.24 

18.78 

±7.39 

10.60 

±3.77 

92.66 

±2.85 

3.88 

±3.79 

-5.81 

±4.11 

1.99 

±1.18 

1.82 

±1.89 

Sep. 
78.00 

±5.30 

12.37 

±7.70 

11.76 

±5.76 

90.09 

±1.92 

1.71 

±2.45 

-3.96 

±3.51 

2.09 

±1.07 

1.32 

±1.77 

Oct. 
80.81 

±5.03 

11.31 

±6.39 

9.42 

±5.52 

90.19 

±1.31 

1.34 

±2.24 

-3.01 

±2.55 

1.48 

±1.03 

1.15 

±1.72 

Nov. 
75.03 

±7.17 

17.24 

±9.63 

10.36 

±5.08 

90.11 

±2.07 

-0.14 

±0.90 

-0.88 

±0.82 

1.29 

±0.79 

0.04 

±0.40 

Dec. 
70.24 

±7.61 

25.15 

±8.25 

7.87 

±2.30 

91.71 

±3.16 

-0.14 

±0.91 

-1.11 

±0.71 

1.85 

±0.93 

0.03 

±0.44 

Jan. 
75.00 

±7.17 

20.70 

±8.58 

6.00 

±3.14 

95.37 

±2.77 

0.57 

±0.79 

-1.54 

±0.79 

1.38 

±1.35 

0.15 

±0.36 

Feb. 
88.84 

±3.58 

9.57 

±3.11 

1.78 

±1.35 

98.66 

±0.62 

0.91 

±1.16 

-1.11 

±1.20 

0.21 

±0.46 

0.13 

±0.34 

Mar. 
91.15 

±0.50 

7.51 

±0.61 

1.04 

±0.20 

98.99 

±0.11 

0.32 

±0.75 

-0.61 

±0.76 

0.02 

±0.14 

0.03 

±0.18 

Apr. 
91.43 

±0.49 

7.57 

±0.49 

1.01 

±0.20 

98.94 

±0.24 

0.32 

±0.66 

-0.39 

±0.68 

0.00 

±0.00 

0.04 

±0.20 

 

  
(a) (b) 

Figure 4.23 Climatological monthly variations of difference of CSIs and difference of omission errors 

when excluding inundation with elevation higher than contemporary TSL levels (a). 

Corresponding scatter plot is in (b) 
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(a) (b) 

Figure 4.24 Climatological monthly variations of difference of CSIs and difference of commission 

errors when excluding inundation with elevation higher than contemporary TSL levels 

(a). Corresponding scatter plot is in (b) 

 

As Table 4.2 shows there are some of months with high climatological monthly 

STDs of skill change. Since STDs represent temporal variation, we then analyzed the 

temporal correlation between change of framework skills and the number of high-

elevation inundated pixels (listed in Table 4.3). In most months, both changes of CSI 

and overall accuracy have significantly strong positive temporal correlation, while the 

change of omission error has a significantly strong negative correlation with the number 

of high-elevation inundated pixels. This means that when there are more high-elevation 

inundated pixels, omission error will be reduced when these pixels are excluded, leading 

to improvement in CSI and overall accuracy. Changes in commission error, on the other 

hand, have a relatively moderate positive correlation with the number of high-elevation 

inundated pixels. This may be caused by the increase of “false alarm” pixels when 

excluding high-elevation inundated pixels, but the correlation is relatively weak 

compared with those of other skills. Temporal correlations in April and May are both 

“NaN” because there are no changes of commission error in these two months when 

excluding high-elevation inundated pixels, indicating that these pixels have no influence 

on commission errors in these two months (See Table 4.2). The analysis results indicate 

that the temporal variations and thus STDs of change of skills including CSI, omission 
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error, and overall accuracy are related to the temporal variation of the number of high-

elevation inundated pixels to some degree, while the change of commission error is not 

necessarily influenced by it.  

 

Table 4.3 Temporal correlation coefficients and corresponding P-values (in the bracket) of the number 

of high-elevation inundated pixels with the change of CSI, omission error, commission error, 

and overall accuracy. 

Month 

Correlation coefficient and P-value of number of high-elevation inundated pixels with 

change of  

CSI 
Omission 

Error 

Commission 

Error 

Overall 

Accuracy 

May 0.99 (0.00) -0.99 (0.00) NaN (NaN) 0.97 (0.00) 

Jun. 0.99 (0.00) -0.99 (0.00) 0.05 (0.74) 0.97 (0.00) 

Jul. 0.92 (0.00) -0.96 (0.00) 0.34 (0.01) 0.94 (0.00) 

Aug. 0.66 (0.00) -0.72 (0.00) 0.62 (0.00) 0.92 (0.00) 

Sep. 0.81 (0.00) -0.94 (0.00) 0.68 (0.00) 0.90 (0.00) 

Oct. 0.83 (0.00) -0.94 (0.00) 0.49 (0.00) 0.80 (0.00) 

Nov. 0.00 (0.97) -0.44 (0.00) 0.46 (0.00) 0.09 (0.56) 

Dec. -0.52 (0.00) 0.01 (0.93) 0.74 (0.00) -0.35 (0.02) 

Jan. -0.19 (0.18) -0.51 (0.00) 0.91 (0.00) 0.12 (0.42) 

Feb. 0.82 (0.00) -0.91 (0.00) 0.46 (0.00) 0.51 (0.00) 

Mar. 0.89 (0.00) -0.80 (0.00) 0.05 (0.72) 0.87 (0.00) 

Apr. 0.85 (0.00) -0.83 (0.00) NaN (NaN) 0.73 (0.00) 

 

In Table 4.4, the climatological monthly averages and STDs of the number of 

high-elevation inundated pixels and change of skills, together with the correlation 

coefficients and P-values between their STDs, are shown. The STD of the number of 

high-elevation inundated pixels were found to have a moderate to strong temporal 

correlation with STDs of change of CSI, omission error, and overall accuracy, while its 

temporal correlation with STD of change of commission error is weak. The analysis 

results supported what was inferred from Table 4.3. On the other hand, we found in 

Table 4.4 that there are STDs of the number of high-elevation inundated pixels larger 

than the corresponding averages in months including February to June. This means there 
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were large temporal variations of the number of such pixels for the period from 2003 to 

2015 in these months. Figure 4.25 shows a time series of the number of high-elevation 

inundated pixels for each different month where more abrupt peaks in February to June 

are observed. This may result from sudden heavy rainfalls near the acquisition dates of 

certain MODIS images, leading to large STDs in these months.  

Table 4.4 Climatological monthly averages and STDs of the number of high-elevation inundated 

pixels, and change of CSI, omission, commission error and overall accuracy. Correlation 

coefficients and corresponding P-values (in the bracket) between STDs are also listed. 

Month 

Number of  

High-elevation  

Inundated Pixels 

Change of Skills 

CSI 

(%) 

Omission 

Error 

(%) 

Commission 

Error 

(%) 

Overall 

Accuracy 

(%) 

May 
752.28 

±1796.20 

4.12 

±8.54 

-4.38 

±8.60 

0.00 

±0.00 

0.84 

±2.28 

Jun. 
914.49 

±1347.05 

6.15 

±7.44 

-6.26 

±7.59 

0.07 

±0.25 

1.16 

±1.64 

Jul. 
1240.79 

±1088.77 

6.66 

±5.68 

-7.74 

±6.13 

0.33 

±0.57 

1.48 

±1.25 

Aug. 
2191.74 

±1882.02 

3.88 

±3.79 

-5.81 

±4.11 

1.99 

±1.18 

1.82 

±1.89 

Sep. 
2432.74 

±2110.79 

1.71 

±2.45 

-3.96 

±3.51 

2.09 

±1.07 

1.32 

±1.77 

Oct. 
2176.02 

±1604.01 

1.34 

±2.24 

-3.01 

±2.55 

1.48 

±1.03 

1.15 

±1.72 

Nov. 
850.96 

±369.61 

-0.14 

±0.90 

-0.88 

±0.82 

1.29 

±0.79 

0.04 

±0.40 

Dec. 
884.77 

±488.59 

-0.14 

±0.91 

-1.11 

±0.71 

1.85 

±0.93 

0.03 

±0.44 

Jan. 
650.96 

±536.17 

0.57 

±0.79 

-1.54 

±0.79 

1.38 

±1.35 

0.15 

±0.36 

Feb. 
199.33 

±210.77 

0.91 

±1.16 

-1.11 

±1.20 

0.21 

±0.46 

0.13 

±0.34 

Mar. 
58.57 

±91.15 

0.32 

±0.75 

-0.61 

±0.76 

0.02 

±0.14 

0.03 

±0.18 

Apr. 
49.11 

±74.51 

0.32 

±0.66 

-0.39 

±0.68 

0.00 

±0.00 

0.04 

±0.20 

Correlation Coefficient  

between STDs 
0.64 (0.03) 0.70 (0.01) 0.29 (0.36) 0.96 (0.03) 
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Figure 4.25 Time series of the number of high-elevation inundated pixels for each month from 2003 

to 2015. 
 

Table 4.5 listed the climatological monthly average and STD of the number of 

high-elevation inundated pixels, together with elevation differences of such pixels with 

contemporary TSL levels as well as their extent of influence. Derivation of the extent 

of influence of high-elevation inundated pixels assumes that if the elevation differences 
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are larger, the inundation was more likely to be caused by factors such as regional 

rainfall or river overflow. Therefore, we weighted the climatological monthly average 

of the number of such inundated pixels with average elevation differences to provide a 

reference of the extents of influence of such high-elevation inundated pixels. We found 

that there is a significant negative correlation between changes of omission errors when 

excluding high-elevation inundated pixels and the extents of influence of high-elevation 

inundated pixels, leading to a fitted linear regression model with adjusted R2 of 0.91. 

The significant negative correlation indicates the stronger the influence of high-

elevation inundated pixels, the more the omission errors decrease when excluding them. 

On the other hand, change of commission errors has no connection with the extent of 

influence of high-elevation inundated pixels with negative adjusted R2. Change of CSIs 

has a significant positive correlation with the extent of influence of high-elevation 

inundated pixels, resulting in a fitted linear regression model with adjusted R2 of 0.78 

(See Figure 4.26(a-2) to Figure 4.26(c-2)). The strong positive correlation of change of 

CSIs with the extent of influence of high-elevation inundated pixels indicates that the 

stronger the influence of high-elevation inundated pixels, the more the CSIs increase 

when excluding them. It explains why there are different degrees of enhancement of our 

framework skills in different months, if high-elevation inundated pixels were not 

considered. 
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Table 4.5 Climatological monthly averages and STDs of the number of high-elevation inundated 

pixels, differences between elevations of such inundated pixels and contemporary TSL 

levels and their products, called extents of influence. 

Month 
Number of  

High-elevation Inundated Pixels 

Difference of  

Elevations (m) 

*Extent of  

Influence 

May 752.28±1796.20 9.79±3.56 7368.42 

Jun. 914.49±1347.05 9.32±3.55 8526.73 

Jul. 1240.79±1088.77 6.76±3.82 8388.84 

Aug. 2191.74±1882.02 3.68±3.32 8056.12 

Sep. 2432.74±2110.79 2.74±2.96 6671.90 

Oct. 2176.02±1604.01 2.30±2.47 5006.12 

Nov. 850.96±369.61 1.52±2.35 1293.16 

Dec. 884.77±488.59 1.41±2.38 1249.11 

Jan. 650.96±536.17 1.92±2.98 1249.39 

Feb. 199.33±210.77 3.54±4.13 706.61 

Mar. 58.57±91.15 6.80±4.58 398.49 

Apr. 49.11±74.51 8.09±3.09 397.29 

*The extent of influence was determined as the product of the average of number of high-elevation 

inundated pixels and corresponding average of elevation differences with TSL levels. 

 

   

(a-1) (b-1) (c-1) 

   
(a-2) (b-2) (c-2) 

Figure 4.26 Climatological monthly variations of difference of CSIs, omission errors, and commission 

errors with extents of influence of high-elevation inundated pixels with order of (a-1) to 

(c-1), respectively. Corresponding scatter plots with fitted linear regression models are in 

(a-2) to (c-2). 

 

In Figure 4.27 and 4.28, inundation maps on the 15th of each month in the 

hydrological years 2011 and 2015 (May to April of next year) were chosen to display 

the evolutions of inundation extents, as these two years were extreme scenarios for the 

maximum and minimum inundation extents, respectively (Frappart et al., 2018). 
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Distinct differences in inundation extents between these two hydrological years, 

especially from July to January, can be seen.  

 

    

    

    
Figure 4.27 Evolution of inundation extents for the hydrological year 2011 (May 2011 to April 2012). 

Inundation extents on the 15th of each month are shown. 

 

    

    

    
Figure 4.28 Evolution of inundation extents for the hydrological year 2015 (May 2015 to April 2016). 

Inundation extents on the 15th of each month are shown. 
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 Evaluation of Skills of Forecasted Inundation Extents 

In this section, the capacity of our framework to forecast daily inundation extents 

in the TSLF is demonstrated. The results were evaluated by cross-comparing with 

MODIS-derived and Sentinel-1-derived inundation maps. To forecast inundation 

extents, daily TSL levels were first forecasted using MEI based on the linear regression 

models between them. Due to the relatively poor accuracy of Jason-1 altimetry-derived 

water levels over inland water bodies (Ablain et al., 2010; Martin-Puig et al., 2016), 

only Jason-2/-3 altimetry-derived TSL levels were used to build the linear regression 

model with MEIs. The time span covers 2009 to 2018. Figure 4.29 shows correlation 

coefficients between altimetry-derived TSL levels for each date and each month of 

MEIs over the past 12 months. Strong negative correlations of up to -0.8 between the 

interannual variation of TSL levels on each date and MEIs is observed. Such negative 

correlation with months of lead time when flood pulses in the MRB respond to ENSO 

events indicate the connection between them, which has been shown and discussed in 

several previous studies (Fok et al., 2018; Frappart et al., 2018; Räsänen and Kummu, 

2013). Here, for each date that we intend to forecast TSL levels, the month of MEI 

which has the highest adjusted R2 for the linear regression models with TSL levels was 

selected as Figure 4.30(a) shows with corresponding lead time. The months of MEI in 

the past 12 months which have the highest adjusted R2 for linear regression models with 

each date of TSL levels are from May of the previous year to June of the current year, 

resulting in lead times with a range of 2 to 11 months. The lead times of forecasted 

altimetry-derived TSL levels are also the lead times of forecasted inundation extents. 



 

109 

Note that the lead time here does not consider the day of month since MEI is a monthly 

index.  

Figure 4.30(b) shows the highest adjusted R2 value for the linear regression 

model for each date and the corresponding p-value. The highest adjusted R2 values are 

from about 0.3 to 0.8 with p-values from 0 to 0.05. From late March to the mid of July, 

the highest adjusted R2 values have larger oscillations which may be because these 

months are in the dry period, hence the influence of ENSO events is not that consistent 

as in the wet period. Despite the lower highest adjusted R2 values within the period, the 

correlations are still significant, with 95% of confidence interval as p-values are only 

up to 0.05. We then forecasted the TSL levels in 2019. Figure 4.31(a) shows cross-

comparison of our forecasted TSL levels with in-situ data from January to July 2019. 

We can see that the overall RMSE of our forecasting is about 0.78 m with a high positive 

correlation of 0.9. Note that we were performing long-term forecasting with 2 to 11 

months of lead time. Figure 4.31(b) shows our forecasted TSL levels for all of 2019, 

with clear seasonal variation. The results demonstrate the possibility of forecasting TSL 

levels using the ENSO index. 
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Figure 4.29 Correlation coefficients between TSL levels of each date and monthly MEIs in the past 

12 months. 
 

 

  
(a) (b) 

Figure 4.30 (a) Months of MEIs which have the highest adjusted R2 for linear regression models with  

TSL levels on the date when forecasting is performed and the corresponding lead time. 

The highest adjusted R2 and p-value are shown in (b). 
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(a) (b) 

Figure 4.31 (a) MEI-forecasted TSL levels with months of lead time which were validated by in situ 

data up to July 2019, and (b) MEI-forecasted TSL levels for all of 2019. 

 

The forecasted TSL levels were then used as input to our REOF-based daily 

inundation extent estimation framework to forecast the inundation extents over the 

TSLF. The forecasted inundation extents were validated by MOD09A1-derived 

inundation maps based on CSI, omission error, commission error, and overall accuracy 

as we did in Section 4.1. To have an understanding of the framework skill without the 

influence of inherent inconsistency between radar and optical imagery, inundation 

extents directly derived from updated Sentinel-1A/-1B SAR imagery using the K-means 

algorithm were used as another reference dataset in addition to MODIS-derived 

inundation maps.  

Table 4.6 shows cross-comparison results of our forecasted inundation extents 

in 2019 from January to July using MODIS imagery as the reference dataset. Monthly 

average CSIs, omission errors, commission errors, and overall accuracies are from 80% 

to 91%, 7% to 11%, 1% to 10%, 97% to 99%, respectively, during the period from 

January to July. Table 4.7 shows monthly averages and STDs of CSI, omission and 

commission error, and overall accuracy of our forecasted inundation extent when 

excluding high-elevation inundated pixels and the difference compared with original 

skills. CSIs, omission errors, commission errors, and overall accuracy are from 81% to 
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92%, 6% to 7%, 1% to 13%, and 97% to 99%, respectively. The differences with 

original skill are mostly less than or around 1% except the omission error and 

commission error in January. 

Table 4.6 Climatological monthly averages and STDs of CSI, omission and commission error, and 

overall accuracy of our forecasting from January to July 2019.  

Month 
CSI 

(%) 

Omission 

Error 

(%) 

Commission 

Error 

(%) 

Overall 

Accuracy 

(%) 

Jan. 
80.25 

±2.59 

11.50 

±3.20 

10.50 

±1.50 

97.00 

±0.71 

Feb. 
90.28 

±0.96 

7.36 

±0.48 

2.72 

±0.96 

99.00 

±0.00 

Mar. 
91.53 

±0.50 

7.23 

±0.42 

1.00 

±0.00 

98.85 

±0.36 

Apr. 
91.30 

±0.46 

7.30 

±0.46 

1.00 

±0.00 

99.00 

±0.00 

May 
91.00 

±0.00 

7.70 

±0.46 

1.00 

±0.00 

98.81 

±0.39 

Jun. 
91.44 

±0.50 

7.55 

±0.50 

1.00 

±0.00 

98.81 

±0.39 

Jul. 
90.91 

±0.70 

7.43 

±1.30 

2.66 

±0.83 

99.00 

±0.00 

 

 
Table 4.7 Climatological monthly averages and STDs of CSI, omission and commission error (OE, 

and CE, respectively), and overall accuracy (OA) of our forecasting from January to July 

2019 with high-elevation inundated pixels excluded. Differences with original framework 

skills are also listed. 

Mon. 
CSI 

(%) 

OE 

(%) 

CE 

(%) 

OA 

(%) 

Change of Framework Skills 

CSI 

(%) 

OE 

(%) 

CE 

(%) 

OA 

(%) 

Jan. 
81.50 

±2.18 

7.00 

±1.58 

13.25 

±1.48 

97.25 

±0.43 

1.25 

±0.83 

-4.50 

±1.80 

2.75 

±0.83 

0.25 

±0.43 

Feb. 
90.91 

±0.79 

6.27 

±0.45 

3.44 

±1.23 

99.00 

±0.00 

0.63 

±0.48 

-1.09 

±0.79 

0.73 

±0.45 

0.00 

±0.00 

Mar. 
91.53 

±0.50 

7.00 

±0.00 

1.00 

±0.00 

98.85 

±0.36 

0.00 

±0.00 

-0.23 

±0.42 

0.00 

±0.00 

0.00 

±0.00 

Apr. 
91.30 

±0.46 

7.00 

±0.00 

1.00 

±0.00 

99.00 

±0.00 

0.00 

±0.00 

-0.30 

±0.46 

0.00 

±0.00 

0.00 

±0.00 

May 
91.19 

±0.34 

7.22 

±0.42 

1.00 

±0.00 

98.81 

±0.39 

0.19 

±0.39 

-0.48 

±0.50 

0.00 

±0.00 

0.00 

±0.00 

Jun. 
92.00 

±0.00 

7.25 

±0.43 

1.00 

±0.00 

98.81 

±0.39 

0.56 

±0.50 

-0.30 

±0.46 

0.00 

±0.00 

0.00 

±0.00 
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Table 4.7 (Continued) 

Jul. 
91.77 

±0.42 

6.04 

±0.71 

2.66 

±0.83 

99.00 

±0.00 

0.86 

±0.84 

-1.38 

±1.11 

0.00 

±0.00 

0.00 

±0.00 

 

For cross-comparison with Sentinel-1-derived inundation maps, climatological 

monthly averages of CSI, omission error and commission error and overall accuracy are 

listed in Table 4.8. Monthly average CSIs are from 84% to 98%, omission errors are 

from 0.5% to about 1%, commission errors are from 0.2% to 15%, and overall 

accuracies are from 98% to 100%. These statistics were compared with those obtained 

by cross-comparing with MODIS-derived inundation maps (For cross-comparison 

results with MODIS-derived inundation maps, please refer to Table 4.6). Results show 

that when cross-comparing with Sentinel-1-derived inundation maps, omission errors 

are much lower than with MODIS-derived ones, while commission errors are at the 

same level except for the higher value in January. These may lead to slightly higher 

CSIs and overall accuracies. The much lower omission errors may be due to the fact 

that Sentinel-1-derived inundation maps were used as the reference dataset for cross-

comparison. Since the framework we proposed is based on Sentinel-1 SAR imagery, 

both can be influenced by the limited vegetation-penetrating capacity of the C-band 

signal which would lead to a similar extent of underestimation, and thus omission errors 

for the inundation extents estimated by our framework were reduced. Vegetation-

penetrating capacity is also a main inherent difference between SAR imagery and 

optical imagery. By using Sentinel-1-derived inundation maps as the reference data for 

cross-comparison instead of MODIS-derived ones, the impact of such inherent 

difference on cross-comparison results was mitigated.  
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Table 4.8 Climatological monthly averages and STDs of CSI, omission and commission error, and 

overall accuracy of our forecasting from January to July 2019, which were obtained by 

cross-comparing with inundation extents directly estimated from updated Sentinel-1A/-1B 

SAR imagery with K-means clustering algorithm. 

Month 
CSI 

(%) 

Omission 

Error 

(%) 

Commission 

Error 

(%) 

Overall 

Accuracy 

(%) 

Jan. 
84.20 

±4.02 

1.00 

±0.00 

15.20 

±4.15 

97.80 

±0.84 

Feb. 
95.00 

±1.41 

1.00 

±0.00 

4.00 

±1.41 

99.50 

±0.58 

Mar. 
97.50 

±0.84 

1.17 

±0.41 

1.33 

±1.03 

100.00 

±0.00 

Apr. 
97.80 

±0.45 

1.20 

±0.45 

1.00 

±0.00 

100.00 

±0.00 

May 
98.00 

±0.71 

1.60 

±0.89 

0.20 

±0.45 

100.00 

±0.00 

Jun. 
97.80 

±0.84 

1.60 

±1.14 

0.20 

±0.45 

100.00 

±0.00 

Jul. 
96.25 

±0.96 

0.50 

±0.58 

3.00 

±1.41 

99.75 

±0.50 

 

By using MEI-forecasted altimetry-derived TSL levels (See Figure 4.31(b)) and 

the REOF-based inundation extent estimation framework, forecasted inundation extents 

from January 1st to December 31st, 2019 were estimated. Figure 4.32 shows the 

forecasted inundation extents on the 15th day of each month in 2019, displaying the 

evolution of inundation extent from long-term forecasting perspective with months of 

lead time. Considering the huge impact of inundation extent over the TSLF on local 

fishery, livelihoods and economy the long-term forecasted inundation extent with 

months of lead time has the potential to help stakeholders make plans for effective water 

resource management in advance. 
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Figure 4.32 Forecasted inundation extents on the 15th day of each month in 2019. 

 

 Conclusions 

In this study, we proposed an innovative REOF-based daily inundation extent 

estimation framework by exploiting multi-temporal stacks of Sentinel-1A SAR intensity 

images and Jason altimetry-derived water levels. The framework takes advantage of the 

physical interpretability of results for REOF analysis, the capacity of cloud penetration, 

weather and sunlight independence of SAR imagery, and the short revisit time and 

consistent data acquisition for Sentinel-1 and Jason altimetry satellites and has features 

including: (1) daily synthesis of SAR intensity images and estimation of areal 

inundation extents at any time as long as altimetry-derived water levels are available; 

(2) Fully remote sensing-based in which a computationally expensive model is not 

required; (3) Cloud-free daily inundation extents estimation. The framework has 

potential to be applied to the floodplains of other major river basins such as the Amazon 

and Congo River Basin. In this study, the framework was implemented for the TSLF. A 
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method capable of performing long-term TSL level forecasting with months of lead time 

was also proposed to fulfill the forecasting capacity of the proposed framework. 

We first hindcasted historical inundation extents from 2003 to 2015 with the use 

of historical altimetry-derived TSL levels. The skills of our framework were evaluated 

by cross-comparing hindcasted historical inundation extents with 8-day composite 

MODIS-derived inundation maps. The connection between framework skills and 

various possible factors, including input altimetry-derived water level and its RMSE 

were then analyzed. Based on the evaluation of long-term hindcasted historical 

inundation extents, climatological monthly average CSIs for our estimated inundation 

extents are from 70% to 91% and have a significant negative correlation with omission 

errors. Both CSIs and omission errors have no significant connection with the level of 

RMSEs of altimetry-derived TSL levels in this study. Interestingly, they have a 

significant connection with altimetry-derived TSL levels. Since Sentinel-1 is a C-band 

SAR satellite with limited vegetation-penetrating ability, its radar backscattering 

characteristics may change between surface backscattering or volume scattering and 

specular scattering depending on TSL levels. Therefore, the band of SAR 

electromagnetic radiation is important in the proposed framework and should be 

selected carefully by taking local vegetation type into account. The CSIs increase from 

75% to 91% when excluding high-elevation inundation. This is because our framework 

is based on connecting TSL levels with temporal variations of intensities in Sentinel-

1A imagery, High-elevation inundation, which may be caused by regional rainfall or 

upstream river overbank flooding but not necessarily caused by TSL level change, may 

not be well captured by our framework.  



 

117 

In the forecasting case, the forecasted TSL levels from January to July 2019 

were used as inputs to the proposed framework to estimate forecasted inundation 

extents. The skills of forecasted inundation extents were evaluated by MODIS-derived 

inundation maps as well as Sentinel-1-derived inundation maps. When using MODIS-

derived inundation maps as the reference dataset for cross-comparison, CSIs are from 

80% to 91% and increase to 81% to 92% when excluding high-elevation inundated 

pixels. On the other hand, when using Sentinel-1-derived inundation maps as the 

reference dataset for cross-comparison, CSIs are from 84% to 98%. The improvement 

of CSIs when cross-comparing with Sentinel-1-derived inundation maps is probably due 

to the reduction of omission error. Since our framework is based on Sentinel-1 SAR 

imagery, there is omission error caused by inherent differences between MODIS optical 

imagery and Sentinel-1 SAR imagery, as the latter can be influenced by limited 

vegetation penetration. When using Sentinel-1-derived inundation maps as the reference 

dataset, the influence of such inherent differences between data sources was mitigated. 

However, since only data from January to July of 2019 were used for forecasting and 

cross-comparison, more data is needed to have a comprehensive understanding of 

framework skill in the future. 

Considering potential future anthropogenic and climatic impacts on the 

hydrology of MRB and TSL, our daily forecasted inundation maps can make a great 

contribution to water resource management, socioeconomic impact evaluation, and 

decision-making purposes without dependence on measurements from upstream 

countries. Since our forecast inundation extents are based on forecasts of TSL levels, 

which currently only considers the influence of ENSO, further investigation is needed 
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to address the impact of anthropogenic factors, such as the construction of upstream 

dams, to have a more comprehensive understanding about how future TSL levels and 

TSLF inundation extents will evolve. 
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5. FORECASTING INUNDATION EXTENTS USING ROTATED 

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS IN 

MEKONG RIVER BASIN FLOODPLAIN 

 Introduction 

In the Mekong River Basin (MRB) floodplain, including the Tonle Sap Lake 

Floodplain (TSLF), the Cambodian Floodplain (CF) and Mekong Delta (MD), 

agriculture, especially rice cultivation, has been a major supporter of livelihoods for 

local inhabitants and is the foundation of the national economy and stabilizes not only 

regional but also global food supply  (Maitah et al., 2020; Matsubara et al., 2020; 

Okazumi et al., 2014; Triet et al., 2018). However, persistent flooding can be 

detrimental to agriculture, economy and human lives. In fact, rice paddies die after being 

submerged in water for days (Mekong River Commission, MRC, 2005). Extreme flood 

events can also be highly disastrous, leading to casualties and tremendous damages in 

rice paddies, infrastructures and economic loss (Center for Excellence in Disaster 

Management and Humanitarian Assistance, 2017). Therefore, it is vital to predict future 

inundation extents as it may help the authorities do a risk assessment and proactively 

mitigate damages. 

For flood inundation forecasting, hydrodynamic models based on solving one-

dimensional Saint-Venant equations or two-dimensional shallow water equations have 

been widely used to transform discharge outputs from rainfall-runoff models to 

distributed inundation extents. However, these models suffer from several sources of 

error (Bates et al., 2014), including model structural errors and uncertainties in: (1) the 
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model input data including the rainfall-runoff data to set the boundary and initial 

conditions, (2) input Digital Elevation Model (DEM) and channel bathymetry data, (3) 

friction coefficients to represent energy loss mechanisms, and (4) information about 

hydraulic structures in the reach. All these uncertainties in hydrodynamic model 

calibration, boundary conditions, and topographic data significantly influence flood 

inundation predictions (Teng et al., 2017; Bates et al., 2014). Furthermore, the required 

spatial parametric inputs may not always be available (Chen et al., 2019; Leandro et al., 

2014; Teng et al., 2017). In addition, they carry a heavy computational burden, 

especially for a high-resolution large-scale forecasting framework, that could affect 

forecast lead-time and accuracy.  

A non-modeling, terrain-based approach, such as Height Above Nearest 

Drainage (HAND), that employs a planar approximation has also been used (Nobre et 

al., 2016; Zheng et al., 2018a). The HAND approach normalizes topography according 

to local relative heights found along the drainage network. Then, a rating curve is used 

to transform streamflow forecasts to depths for a given river cell. Finally, flood 

inundation extents are determined by selecting surrounding land cells whose HAND 

values are less than the given water depth in the stream (Nobre et al., 2011; Teng et al., 

2017). The HAND approach requires significantly less computational power than 

hydrodynamic models and may work well on confined floodplains with steep valleys 

and straight river reaches (Bates and De Roo, 2000; Wing et al., 2019). However, a 

recent study by Johnson et al. (2019) demonstrated that the method overpredicts in 

regions of low relief. In addition, the HAND approach does not account for backwater 
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effects caused by infrastructure and coastal flooding. With flat terrain, especially over 

the CF and MD (Balica et al., 2014), the HAND approach may not be applicable.  

Recently, space-borne remote sensing, especially Synthetic Aperture Radar 

(SAR), has emerged as a powerful tool to depict areal inundation and its variation with 

repeated views over extensive spatial areas (e.g., Liu et al., 2017; Smith, 1997). 

However, the sole use of these observations cannot directly forecast response to future 

or changed conditions (Teng et al., 2017). Accordingly, the role of SAR-derived 

inundation extents in most areal inundation forecasting studies is mainly limited to the 

calibration of hydrodynamic models (Teng et al., 2017).  

Currently, there is no operational inundation forecasting system in the MRB, to 

the best of our knowledge. Most studies applied hydrodynamic models for scenario 

analysis, such as analyzing long-term impacts of future climate change or streamflow 

alteration, but do not provide a frequent and near real-time inundation extent forecasting 

(Shin et al., 2018; Try et al., 2020a, 2020b). Although the Region Flood Management 

and Mitigation Center (RFMMC) of MRC performs forecasts for Mekong River (MR) 

levels, there is a lack of publicly available information about forecasted inundation 

extents. 

Chang et al. (2020), using the TSLF as a test bed, proposed a satellite imagery-

based inundation forecasting framework that addresses the need for computationally 

efficient areal inundation estimation and forecasts with high temporal resolution. This 

framework is named Forecasting Inundation Extents using Rotated empirical orthogonal 

function analysis (FIER). Chang et al. (2020) successfully implemented this in the TSLF 

for daily hindcast and forecast of areal inundations using multi-temporal Sentinel-1A 
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imagery and daily interpolated Jason-series altimetry-derived TSL levels. This study 

further expanded the study area to the flood-prone MRB floodplain, including the TSLF 

and CF (Hereafter, TSLF and CF will be abbreviated as TCF when they appear together 

for conciseness.), and MD. The FIER framework over the MRB floodplain was 

constructed using a multi-temporal stack of Sentinel-1A intensity images and MR 

levels. With the water level forecasting system for MR developed by Chang et al. (2019) 

(Details in Section 5.3.3), this study serves as a pilot to test the feasibility of its 

integration with FIER over the MRB floodplain. An application of FIER in flood risk 

forecasting is also demonstrated. 

 

 Data 

 Sentinel-1 SAR Data 

Sentinel-1 is a two-satellite-constellation mission (Sentinel-1A/-1B) under the 

Copernicus Earth observation program of the European Space Agency (ESA). Sentinel-

1A was launched on April 3rd, 2014, while Sentinel-1B was launched on April 25th, 

2016. Both satellites are equipped with C-band (5.405 GHz) SAR sensors with 12 days 

of revisit time and free product accessibility. In this study, Sentinel-1A VV-polarized 

images of Ground Range Detection High-resolution (GRDH) product were obtained 

from the Alaska Satellite Facility (ASF). Only Sentinel-1A data were used to avoid the 

influence of potential systematic difference between backscattering intensities acquired 

by two satellites (Sentinel-1A/-1B) on the results of the Rotated Empirical Orthogonal 
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Function (REOF) analysis. The VV-polarization was chosen because of its superior 

surface water mapping capability (Markert et al., 2020; Twele et al., 2016).  

To cover the TCF and MD in one scene, four Sentinel-1A frames including 

Frames 23, 29, 34 and 39 of Path 26 were mosaicked (see Figure 5.1). After mosaicking, 

85 images acquired from March 13th, 2017 to December 28th, 2019, were used for REOF 

analysis, while 30 images from January 9th to December 22nd, 2020 were used for cross-

comparison of hindcasted and pseudo-forecasted inundation extents. In this study, 

image pre-processing, including mosaicking, multi-looking, radiometric terrain 

correction, geocoding and co-registration (with respect to the image acquired on March 

13th, 2017, which is the first acquired image) were done using GAMMA software 

(Werner et al., 2000) with the aid of the Multi-Error-Removed Improved-Terrain DEM 

(MERIT DEM) (Yamazaki et al., 2017). Note that we multi-looked the images to 500 

m of spatial resolution for the purpose of this feasibility study as the pre-processing of 

fine-resolution (i.e., 10 m) multi-temporal SAR image stacks may take a prohibitively 

long time on a personal computer. However, it is worth mentioning that the pre-

processing is one-time-only if there is no severer flooding that occurs during the time 

span of images where REOF analysis extracts spatiotemporal patterns (See Section 

5.3.1). Moreover, the pre-processing time can also be alleviated by using cloud-based 

platforms, such as Google Earth Engine and Google Colab. 
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Figure 5.1  Example of Sentinel-1A VV-polarized GRDH intensity image used in this study acquired 

on March 13th, 2017, covering the TCF and MD. The basemap is World Imagery provided 

by ArcMap 10.7. 

 

 MODIS Surface Reflectance Data and Yearly Water Mask 

Terra and Aqua satellites with MODerate resolution Imaging Spectro-

radiometers (MODIS) onboard were launched in 1999 and 2002, respectively. They 

continuously provide Earth surface radiance with high temporal and spectral resolution 

(https://modis.gsfc.nasa.gov/). MODIS products have been widely used for monitoring 

and long-term analysis of inundation extents in many studies due to their high temporal 
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resolution despite cloud cover (Frappart et al., 2018; Gumma et al., 2014; Huang et al., 

2013, 2014; Islam et al., 2010; Normandin et al., 2018; Sakamoto et al., 2007, 2009). In 

this study, tiles H28V07 and H28V08 of MOD09A1 and MOD44W were obtained from 

the USGS Earth Explorer website (https://earthexplorer.usgs.gov/). MOD09A1 is an 8-

day composite surface reflectance data derived from Terra satellite raw radiance 

measurements from bands 1 to 7 at 500 m spatial resolution with the atmospheric effect 

corrected. For each pixel, surface reflectance data with the best quality within the 8-day 

period was retained based on cloud cover and solar zenith angle criteria. For cross-

comparison of FIER-generated hindcast of inundation maps in the case of an extreme 

flooding event, we generated inundation extents using MOD09A1 images acquired in 

October of 2011 since the National Aeronautics Space Agency (NASA) Goddard Space 

Flight Center (GSFC) Near Real-Time (NRT) flood maps (details in Section 5.2.3) 

cover the MD only partially. 

MOD44W is a MODIS-based yearly water mask product with 250 m resolution 

available from 2000 to 2015. In this study, MOD44W Version 6 was adopted. It is 

derived using a decision tree-based classifier trained with MODIS data and validated 

with the previous version of the MOD44W product 

(http://lpdaac.usgs.gov/products/mod44wv006). The MOD44W water mask from 2015 

was used as a permanent water body mask since the worst drought in decades occurred 

in 2015, impacting Thailand, Laos, Cambodia, and Vietnam (Guo et al., 2017). By 

masking out the permanent water bodies, the influence of surface roughness change-

induced SAR intensity variation on REOF analysis results can be mitigated. Such 

variation is often caused by wind-induced surface roughness change. 
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 NASA GSFC NRT Global Flood Maps 

NASA GSFC NRT global flood mapping project was developed in partnership 

with the Dartmouth Flood Observatory (now at the University of Colorado, Boulder) 

and NASA’s GSFC funded by NASA’s Applied Sciences program. Since late 2011, the 

project has produced daily global flood maps at 250 m spatial resolution using a 

threshold-based water detection algorithm by utilizing MODIS band-1 (red), band-2 

(infra-red), and band-7 (shortwave infra-red) surface reflectance data (MOD09) 

acquired by both Terra and Aqua satellites (2 observations each day). Before temporally 

compositing, pre-processing, including terrain and cloud shadow masking, have been 

performed to reduce shadow-induced false-positive pixels (Slayback, 2021). The 

product has been adopted by several governmental agencies such as the Federal 

Emergency Management Agency (FEMA) and United Nations Office for the 

Coordination of Humanitarian Affairs (UN-OCHA), UN Operational Satellite 

Applications Program (UN-OSAT) and non-governmental organizations in the past 

decade (Slayback, 2021). In this study, the 2-day composite absolute surface water maps 

from March 13th, 2017 to December 28th, 2019, corresponding to the Sentinel-1A image 

acquisition dates, were used to select water classification thresholds (See Section 5.3.2 

for details). The 2-day composite product is considered to have more representative 

flooded extents among other available products because of the strategy applied for cloud 

and terrain shadows masking  (Nigro et al., 2014; Revilla-Romero et al., 2015; Slayback, 
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2021). The product is archived and available from 

https://floodmap.modaps.eosdis.nasa.gov/. 

 

 MRC In-situ Water Levels 

MRC is an inter-governmental organization established in 1995 with 

collaborating efforts of the Lower Mekong countries, including Thailand, Laos, 

Cambodia, and Vietnam, based on the 1995 Mekong Agreement. It serves as a 

diplomacy platform, knowledge exchange and data sharing hub between member 

countries, coordinating sustainable water resource management and regional 

development. Since 2008, MRC has installed hydrometeorological monitoring stations 

over MRB in collaboration with international organizations. The observed data are 

archived and distributed through MRC Data and Information Services 

(https://portal.mrcmekong.org/home). This study used in-situ river level observations at 

14 stations in the MRB for analysis. Among these 14 stations, there are 4 stations located 

along the Mekong Mainstem (MM) (Khong Chiam to Kompong Cham), 5 stations 

located in the TCF (Kompong Luong to Koh Khel/Neak Luong), and another 5 stations 

located in the MD (Chau Doc/Tan Chau to My Thuan/Can Tho). Raw data are collected 

1 – 6 times/day, and were averaged to provide daily data. Figure 5.2 shows the 

geographical location of in-situ stations used in this study. 
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Figure 5.2 Geographical locations of the MRC in-situ water level gauges used (Basemap is World 

Imagery provided by ArcMap 10.7). 

 

 Jason-3 Altimetry-derived Water Levels 

Jason-3 altimetry satellite, launched on January 17th, 2016, is the successor to 

the Topex/Poseidon (T/P) and Jason-1/-2 missions under the collaboration of NASA 

and Centre National d’Etudes Spatiales (CNES), National Oceanic and Atmospheric 

Administration (NOAA) and the European organization for the exploitation of 

METeorological SATellites (EUMETSAT). The Jason-3 satellite altimetry mission 

follows the same orbit configuration as its predecessors; thus, it continuously collects 

highly accurate altimetry data with the same spatial coverage with ~10 days revisit 

period. In this study, we used Jason-3 data from cycles 33 to 181, spanning from 
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December 30th, 2016 to January 6th, 2021. We used 20-Hz ICE-retracked ranges from 

the Geophysical Data Record (GDR)-D from cycles 33 to 177, while GDR-F was used 

starting with cycle 178 as it is the only standard data provided since then. After 

removing outliers in each cycle of altimetry measurements (Okeowo et al., 2017), water 

level time series (with respect to the WGS84 ellipsoid) at two Virtual Stations (VSs), 

JVS P001-01 and JVS P001-02, located in the MM near Khong Chiam and TSL, 

respectively, were derived (See Figure 5.3 for locations of VSs). The Jason-3 derived 

water levels were validated with MRC in-situ water levels. At JVS P001-01, Jason-3 

derived water levels show 0.49 m of Root Mean Square Error (RMSE) and a 0.99  

correlation coefficient (Cor.) with nearby Khong Chiam water levels (See Figure 

5.4(a)). At JVS P001-02, Jason-3 derived water levels show 0.30 m of RMSE and a 0.99  

Cor. with Kompong Luong water levels (See Figure 5.4(b)).   

 
Figure 5.3 Geographical location of VSs used and corresponding in-situ gauges for validation. 
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(a) (b) 

Figure 5.4 Comparison of altimetry-derived water levels at (a) JVS P001-01 with Khong Chiam and 

(b) JVS P001-02 with Kompong Luong. 

 

 Modeled Discharges at Virtual Station 

The river discharges at JVS P001-01 are obtained by the Variable Infiltration 

Capacity (VIC) hydrological model version 5 (Hamman et al., 2018; Liang et al., 1994) 

and a streamflow routing model (Lohmann et al., 1998). The VIC model is comprised 

of a three-layer soil column structure and considers land cover, soil type as well as 

meteorological forcings to characterize the hydrological mechanism in the soil column 

of given ground cells for runoff and baseflow estimation. Version 5 of the VIC model 

reconfigures the legacy VIC source code to enhance its reproducibility and integrability 

with other applications and makes it easier to maintain (Hamman et al., 2018). For this 

study, we used a 0.1-degree-resolution VIC model, which has been set up and calibrated 

for the MRB (Hossain et al., 2017). However, the model generates river discharges only 

down to Kompong Cham due to complicated hydraulic conditions, including bi-

directional flow reversal into TSL and tide intrusion in the further downstream areas. 

Here, we used Integrated Multi-satellitE Retrievals for Global Precipitation 
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Measurement (IMERG) version 6B early run near real-time product (Tan et al., 2019) 

for precipitation forcing. For temperature and wind speed forcing, the National Centers 

for Environmental Prediction (NCEP) Final Operational Model Global Tropospheric 

Analysis data were used (NCEP, 2000). The streamflow routing model (Lohmann et al., 

1998) was then used to route the surface runoff and baseflows estimated by the VIC 

model to the river channels based on the flow direction map derived from the SRTM 

DEM for river streamflow simulation at JVS P001-01 from 2017 to 2019. 

 

 MERIT DEM 

MERIT DEM (Yamazaki et al., 2017) is a global DEM with respect to the Earth 

Gravitational Model 1996 (EGM96) with 3 arc-second spatial resolution (about 90 m at 

the equator). The baseline DEMs consist of 3 arc-second spatial resolution Shuttle Radar 

Topography Mission DEM (SRTM3 DEM) and the Advanced land observing satellite 

World 3D-30 m DEM (AW3D-30m DEM), in the regions 60o S to 60o N and 60o N to 

90o N, respectively. The unobserved gaps in both SRTM3 and AW3D-30m DEMs are 

filled with the Viewfinder Panoramas DEM. The NASA Ice, Cloud, and land Elevation 

Satellite (ICESat) laser altimetry global land surface elevation data (GLAH14) is used 

as the reference ground elevations for DEM bias estimation. The University of 

Maryland Landsat forest cover dataset (Hansen et al., 2013) and NASA global forest 

height data (Simard et al., 2011) are used to estimate DEM errors due to forest canopy. 

For more details, readers are referred to Yamazaki et al. (2017). In this study, the DEM 
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was multi-looked to spatial resolutions of 500 m to match the preprocessed Sentinel-1A 

GRDH images. 

 

 Methods 

 FIER Framework 

 REOF Analysis 

Here, the first 4 dominant modes were retained for REOF analysis based on the 

“rule of thumb” of North et al. (1982), accounting for 60.4% of the total variance of the 

SAR imagery used. The temporally invariant spatial variations of SAR intensities are 

called Rotated Spatial Modes (RSMs). Their corresponding temporal variations are 

called Rotated Temporal Principal Components (RTPCs). Hereafter, the first mode of 

RSM (RTPC) will be called RSM-01 (RTPC-01), the second mode of RSM (RTPC) 

will be called RSM-02 (RTPC-02), and so forth. For technical details about REOF 

analysis, readers are referred to Section 4.3.1. 

Figure 5.5 shows the normalized RTPCs, where annual seasonalities can be 

seen. In addition, there are also temporal phase differences between them. RTPC-01 and 

RTPC-02 seem to reach their peaks earlier than others, while the last to reach their peak 

is RTPC-03. These temporal phase differences may reflect different stages of floodwater 

distribution, which can be seen in the corresponding RSMs, as Figure 5.6 shows. In 

Figure 5.6, large negative-value pixels (deeper blue) represent flood signals as 

inundation leads to lower SAR intensities due to specular backscattering. In RSM-01, 

pixels with larger negative values are mainly distributed over the TCF. In RSM-02, 
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pixels with larger negative values are also mainly distributed over the CF (near 

Kompong Cham, Chau Doc). These areas are in a relatively upstream region of the MRB 

floodplain, where seasonal floods occur earlier than downstream. This echoes the 

patterns of RTPC-01 and RTPC-02, reaching peaks earlier than RTPC-03 and RTPC-

04.   

In RSM-03 and RSM-04, flood signals can be seen over the MD floodplain as 

well as the TSLF. In RTPC-03, flood signals over the MD floodplain reach the south of 

Can Tho, and are more distal from the MR than that in RTPC-04. On the other hand, in 

RTPC-03, flood signals over the TSLF are restricted to the surrounding areas of TSL, 

while those in RTPC-04 are distributed widely over the TSLF. This may indicate that 

mode-03 represents the stage when floodwater has mostly moved from the upstream 

floodplain to the wider downstream MD floodplain, which also echoes that RTPC-03 is 

the last to reach its peak (See Figure 5.5.). Mode-04, on the other hand, represents the 

stage when floodwater has partially moved to the downstream. 

 

Figure 5.5 Normalized RTPCs (with percentages of explained variance). 
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RTPC-01 RTPC-02 

  
RTPC-03 RTPC-04 

 

Figure 5.6 REOF-extracted RSM-01 to RSM-04 for multi-temporal Sentinel-1A imagery used in this 

study. Grey areas are permanent water bodies.  

 

 

 Synthesis of SAR-like Images 

FIER synthesizes SAR-like images by summing up the products of each mode 

of temporally invariant RSMs and the corresponding temporally variant RTPCs 
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retained. Correlation analysis between the in-situ river levels and the RTPCs retained 

was conducted to decide which gauges to be used. As Figure 5.7 shows, RTPC-01 better 

correlates with river levels in the TCF and upper MD (Chau Doc – Vam Nao) with 

correlation coefficients of 0.8 – 0.9. RTPC-02 better correlates with river levels in the 

MM (Stung Treng – Kompong Cham) with correlation coefficients above 0.7. In the 

cases of RTPC-03 and RTPC-04, correlation increases with in-situ river levels closer to 

the lower MD (My Thuan and Can Tho). This indicates that mode-3 and mode-4 

represent the flood signals in the lower MD. However, interestingly, both RTPC-03 and 

RTPC-04 have similar levels of correlation with water levels at Kompong Luong 

(located at the TSL) as with those in the lower MD. This may be because the water level 

at Kompong Luong reaches its peak later than those at downstream gauges in the CF 

and upper MD (Prek Kdam – Vam Nao), probably due to the role of TSL in the flow 

reversal mechanism (Kim et al., 2019). That is, TSL level reaches its peak later than 

downstream as water reversely flows from the MR to TSL through the floodplain.  

Based on the correlation analysis between RTPCs and in-situ river levels, we 

then selected gauges whose river levels better correlate with the RTPCs and built Hydro-

to-RTPC models through regression analysis. Consequently, Chau Doc, Kratie, Can 

Tho, and My Thuan were selected for RTPC-01 to RTPC-04, respectively. For RTPC-

03 and RTPC-04, we chose Can Tho, and My Thuan rather than Kompong Luong to 

ensure the model inputs better reflect local hydrological variation, considering that these 

two modes are influenced by floods in the MD. Figure 5.8 shows the scatter plots of 

RTPCs and their corresponding river level data along with the Hydro-to-RTPC models 

built with regression analysis. With these Hydro-to-RTPC models, river level data at 
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any time can be fed into the models to estimate the corresponding RTPCs. By summing 

the products of each mode of RSMs and RTPCs, SAR-like images can be synthesized. 

  
(a) (b) 

  
(c) (d) 

Figure 5.7 Zero-lag correlation between MRC in-situ water levels at different gauges and RTPCs. 

Note that MM means Mekong Mainstem, TCF means Tonle Sap Lake and Cambodian 

Floodplain, while MD represents Mekong Delta 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.8 Hydro-to-RTPC models between MRC in-situ river levels at selected gauges and RTPCs. 
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 Iterative Threshold Calibration and Water Classification 

After SAR-like images have been synthesized, the next step is to perform water 

classification. Here, a change detection approach was adopted, subtracting the driest 

condition image (hereafter called baseline image) from those of other dates to get 

difference images (Clement et al., 2018; Long et al., 2014; Singha et al., 2020). The 

historical difference images were then used for an iterative threshold calibration process. 

Once the threshold was determined, it was applied to the difference images on any other 

dates for water classification. The iterative threshold calibration was also performed on 

the Sentinel-1 SAR images acquired from March 13th, 2017 to December 28th, 2019, 

which will be later used for comparison with FIER-derived inundation extents.  

As we adopted river levels at several gauges for FIER to synthesize SAR-like 

images, river levels of these gauges were taken into account to generate the baseline 

image. We identified the dates within the Sentinel-1 SAR image acquisition period from 

March 13th, 2017 to December 28th, 2019 when we have the lowest river levels at each 

of the selected gauges. Those were on July 1st, July 25th  and December 16th of 2019. 

The baseline image was then generated as the median value composite of the images 

from these dry dates (Clement et al., 2018; Singha et al., 2020). Then, difference images 

were generated by subtracting the baseline image from the other FIER-synthesized 

SAR-like and real Sentinel-1 images. Due to specular backscattering, inundated areas 

in difference images would appear to be dark. Examples of difference images are shown 

in Figure 5.9. 
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August 23rd, 2018 

  
October 10th, 2020 

 

(a) (b) 

Figure 5.9 Examples of difference images in the wet season generated from (a) FIER-synthesized 

SAR-like images and (b) Sentinel-1 SAR images where lower difference values over 

inundated areas can be clearly seen. Grey areas are permanent water bodies. 

 

 

Next, the threshold candidates were iteratively applied to generate inundation 

extents for the period from 2017 – 2019, which were then compared with the NASA 
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GSFC NRT flood maps to obtain the CSI (top panel of Figure 5.10). The 2015 

MOD44W water mask was added to the generated inundation extents as the permanent 

water body. For each calibration date, a threshold was selected which led to maximum 

CSI. Then, those thresholds from the same month were averaged using the numbers of 

valid pixels on their corresponding NASA GSFC NRT flood maps as weights to finally 

derive the monthly calibrated thresholds (bottom panel of Figure 5.10). The monthly 

calibrated thresholds for the Sentinel-1 images to derive the inundation maps for cross-

comparison purpose were also determined in a similar manner.  

For both the FIER-synthesized SAR-like images and Sentinel-1 SAR images, 

higher monthly calibrated thresholds are obtained during the wet season, as can be seen 

in the bottom panel of Figure 5.10. This may be because the inundated floodplains 

during the wet season have higher intensities than those from the permanent water 

bodies. 

  

  
(a) (b) 

Figure 5.10 (Top panel) CSIs from different threshold candidates for each calibration date, (bottom 

panel) calibrated monthly thresholds, for the case of (a) FIER-synthesized SAR-like images, 

and (b) Sentinel-1 SAR images. 
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 Daily Water Level Forecasting 

The forecasting of inundation extents using FIER requires forecasted river levels 

as inputs, and the model-aided satellite altimetry-based MR level forecasting system 

developed by Chang et al. (2019) was adopted for this study.  

There are two upstream VSs used in this study; one located in the upstream of 

the MM near Khong Chiam and the other one located at the TSL: named JVS P001-01 

and JVS P001-02, respectively. The reconstruction of JVS P001-01 altimetric river 

levels was based on a depth-discharge power-law rating curve (Leopold and Maddock, 

1953) 

 𝑑𝑤 = 𝑒 ∙ 𝑄𝑓 (5.1) 

where 𝑑𝑤  is the water depth, Q is the discharge modeled with VIC and e and f are 

parameters to be estimated. Since satellite altimetry provides water levels with respect 

to a specific datum, (WGS84 reference ellipsoid in this case) not the river bed, we 

followed Kim et al. (2019a and 2019b) to estimate 𝑑𝑤  in Eq. (5.1), which was 

reformatted as  

 𝑑𝑤 = ℎ𝐼𝑛𝑠𝑡.
𝐴𝑙𝑡. − ℎ𝑚𝑖𝑛

𝐴𝑙𝑡. + 𝑑𝑚𝑖𝑛 = 𝑒 ∙ 𝑄𝑉𝐼𝐶
𝑓 (5.2) 

where ℎ𝐼𝑛𝑠𝑡.
𝐴𝑙𝑡.  is instantaneous altimetry-derived water level, ℎ𝑚𝑖𝑛

𝐴𝑙𝑡.
 is the minimum 

altimetry-derived water level within the observation period which has the corresponding 

minimum water depth of dmin and 𝑄𝑉𝐼𝐶  is the VIC-derived discharge. The minimum 

water depth (dmin) was then determined by maximizing the coefficient of determination 

(R2) of the fitted depth-discharge rating curve (Kim et al., 2019a and 2019b) as in Figure 

5.11(a). The final fitted depth-discharge rating curve is shown in Figure 5.11(b). Finally, 
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the daily reconstructed water levels at JVS P001-01 were obtained by reformatting Eq. 

(5.2) as 

 ℎ𝑅𝑒𝑐.
𝑀𝐾 = 𝑒 ∙ 𝑄𝑉𝐼𝐶

𝑓 + (ℎ𝑚𝑖𝑛
𝐴𝑙𝑡. − 𝑑𝑚𝑖𝑛). (5.3) 

Since the current version of the VIC model for the Mekong Basin (Hossain et 

al., 2017) does not simulate flooding of TSL, a different approach has to be considered 

for JVS P001-02 at TSL. Fortunately, since TSL water levels have smooth annual 

variation, daily TSL levels from Jason-3 altimeter data were simply reconstructed using 

a spline interpolation. Figure 5.12 shows the validation of daily reconstructed water 

levels from 2017 – 2019 at these two VSs with in-situ water levels from nearby gauges.  

  

(a) (b) 

 Figure 5.11 (a) Iterative definition of the minimum depth at JVS P001-01 by maximizing R2 of fitted 

depth-discharge power-law relationship and (b) the final fitted rating used to reconstruct 

altimetry-derived water levels.  
 

  

(a) (b) 

Figure 5.12 Comparison of reconstructed daily water levels at (a) JVS P001-01 and (b) JVS P001-02 

with in-situ water levels at Khong Chiam and Kompong Luong, respectively. 
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Based on the correlation analysis performed in section 5.3.1.2, water levels at 

the selected gauges of Kratie, Chau Doc, Can Tho, and My Thuan were forecasted to 

obtain RTPC-01 to RTPC-04, respectively. The water levels at Kratie were forecasted 

using a simple linear regression model with JVS P001-01 water levels as the only input 

since it is located in the middle reach of MM where its hydraulic condition is relatively 

simple (Chang et al., 2019) 

 ℎ𝐼𝑛−𝑠𝑖𝑡𝑢(𝑡 + 𝑘) = 𝐸 ∙ ℎ𝑅𝑒𝑐.
𝑀𝐾 (𝑡) + 𝐹 (5.4) 

where ℎ𝑅𝑒𝑐.
𝑀𝐾 (𝑡) is the reconstructed water levels at JVS P001-01 at the time 𝑡 that can 

be derived using Eq. (5.3), ℎ𝐼𝑛−𝑠𝑖𝑡𝑢(𝑡 + 𝑘) is the historical water levels at Kratie at time 

(𝑡 + 𝑘) with 𝑘 as lead time and 𝐸 and 𝐹 are parameters to be fitted. 

To forecast the water levels at Chau Doc, Can Tho, and My Thuan, which are 

located in the MD, we need to take into account upstream water flows from the MM, 

TSL, and ocean tide intrusion from downstream (Pagano, 2014). Accordingly, the water 

levels at JVS P001-02 and tidal oscillations using a sinusoidal model are considered as 

(Chang et al., 2019) 

 ℎ𝐼𝑛−𝑠𝑖𝑡𝑢(𝑡 + 𝑘) = 𝐺 ∙ ℎ𝑅𝑒𝑐.
𝑀𝐾 (𝑡) + 𝐻 ∙ ℎ𝑅𝑒𝑐.

𝑇𝑆𝐿 (𝑡) + 𝐼 + ℎ𝑇𝑖𝑑𝑒(𝑡 + 𝑘), 

ℎ𝑇𝑖𝑑𝑒(𝑡) = ∑ 𝑀𝑖 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝜔𝑖 ∙ 𝑡 + 𝑁𝑖)

5

𝑖=1

 

(5.5) 

where ℎ𝑅𝑒𝑐.
𝑇𝑆𝐿 (𝑡) is the reconstructed water level of time 𝑡 at JVS P001-02 and ℎ𝑇𝑖𝑑𝑒 is 

the tidal fluctuation modeled by the 5-term sinusoidal function. Parameters to be fitted 

are 𝐺, 𝐻, and 𝐹 as well as magnitudes 𝑀𝑖  and phase shift 𝑁𝑖  of sinusoidal functions. 



 

143 

The known dominant tidal frequencies (𝜔𝑖) include the annual, semi-annual, monthly, 

fortnightly and synodic fortnightly tides (See Table 5.1).  

Table 5.1 Dominant ocean tide frequencies. 

Name of tide Period (Days) Frequency (1/year) 

Annual 365.26 1.00 

Semi-annual 182.62 2.00 

Monthly 27.55 13.26 

Fortnightly 14.77 24.73 

Synodic fortnightly 13.66 26.74 

 

For pseudo-forecasting in 2020, the daily updated VIC-derived discharge was 

used to reconstruct the daily water levels at JVS P001-01 following Eq. (5.3). For JVS 

P001-02, since Jason-3 altimetry has a revisit period of ~10 days, the data gap between 

the latest available and the next Jason-3 data acquisition has to be filled in order to 

perform daily forecasting until the next visit of Jason-3. To fill the gap, a method called  

regression with Auto-Regressive Integrated Moving Average (ARIMA) errors was 

adopted following Hyndman (2013, 2014). The method adopts a Fourier term to deal 

with seasonality and models the remaining signals with the ARIMA process. 

Considering the fact that the annual signal (365.25 days of period) is dominant for the 

water level at JVS P001-02, the regression with ARIMA errors can be written as 

 
ℎ𝑝𝑟𝑒.

𝑇𝑆𝐿 = 𝑐 ∙ 𝑡 + (𝛼 ∙ 𝑠𝑖𝑛 (
2𝜋 ∙ 𝑡

365.25
) + 𝛽 ∙ 𝑐𝑜𝑠 (

2𝜋 ∙ 𝑡

365.25
)) + 𝜂𝑡 

(5.6) 

where ℎ𝑝𝑟𝑒.
𝑇𝑆𝐿  is the daily spline-interpolated JVS P001-02 water levels up to the latest 

available Jason-3 data acquisition, 𝑡 is the time, 𝑐 is the temporal trend, 𝛼 and 𝛽 are the 

parameters for the Fourier term with the annual seasonality and 𝜂𝑡  is the remaining 
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signal which is modeled by the ARIMA process. The gap-filling process was realized 

using the auto.arima function in the R language forecast package which automatically 

finds the best ARIMA structure by minimizing the Akaike Information Criterion (AIC) 

(Hyndman and Khandakar, 2008; Wang et al., 2006). Figure 5.13 illustrates this gap-

filling process. First, the daily interpolated JVS P001-02 water levels were calculated 

up to the latest acquisition. The daily interpolated JVS P001-02 water levels were then 

used to build the ARIMA model and perform forecasting with lead times up to the 

between-cycle gap (i.e., 10 days). The process was repeated whenever new Jason-3 data 

becomes available. 

 

Figure 5.13 Illustration of the gap-filling process for daily JVS P001-02 water levels for pseudo 

forecasting. 

 

The reconstructed daily water levels at the two VSs in 2020, for the purpose of 

pseudo-forecasting, are shown in Figure 5.14 with in-situ water levels at nearby gauges. 

As can be seen from Figure 5.14(b) and Figure 5.14(c), the RMSE between the original 

JVS P001-02 (with 10-day gaps) and the in-situ water levels is 0.39 m, which is close 

to that of 0.40 m between the ARIMA gap-filled JVS P001-02 and in-situ water levels. 
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This demonstrates that the method, regression with ARIMA errors, can successfully 

reconstruct daily water levels from the original JVS P001-02 water levels with 10-day 

gaps. 

   

(a) (b) (c) 

Figure 5.14 Reconstructed and gap-filled daily water levels at (a) JVS P001-01 and (b) JVS P001-02 

along with in-situ water levels at Khong Chiam, and Kompong Luong, respectively. The 

original JVS P001-02 water levels with the in-situ levels at Kompong Luong are shown 

separately in (c). 

 

The skill of the forecasted water levels was evaluated by Mean Absolute Error 

(MAE) and Nash-Sutcliffe Efficiency (NSE). The MAE is a measure of error that can 

be calculated by 

MAE=
∑ | 𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑓𝑐𝑡

 |𝑁
𝑖=1

𝑁
 (5.7) 

where 𝑁 is the total number of data, with 𝑖 = 1~𝑁. 𝑌𝑖
𝑜𝑏𝑠 the in situ observations and 

𝑌𝑖
𝑓𝑐𝑡

 is the forecasting results. A MAE value of 0 indicates perfect forecasting. 

The NSE is a normalized statistic which reflects the relative magnitude of the 

residual variance (noise) compared to the measured data variance (information) (Nash 

and Sutcliffe, 1970). It indicates how well the plot of observations versus forecasting 

results fits the 1:1 line and is commonly used to evaluate the performance of a 

forecasting model 
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NSE= 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑓𝑐𝑡

)
2

𝑁
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

2
𝑁
𝑖=1

  . (5.8) 

NSE ranges from -∞ to 1.0. An NSE value of 1 indicates perfect forecasting skill, 0 

means the forecasting skill is no better than adopting the average of the observations as 

forecasting results and a negative NSE means unacceptable skill (Moriasi et al., 2007). 

 

 Framework Skill Evaluation Statistics 

Skill evaluation was conducted based on a 2 × 2 confusion matrix (Kohavi and 

Provost, 1998) as Figure 5.15 illustrates, where 𝑎 and 𝑑 are the number of pixels which 

FIER correctly estimates as inundated (hit) and non-inundated (correct negative), 

respectively. Conversely, 𝑏  and 𝑐  are the number of pixels that are misestimated, 

representing false alarm and miss, respectively.  

Confusion Matrix 
Observation Marginal 

Total Inundation Non-inundation 

FIER 

estimation 

Inundation 
𝑎 

(Hits) 

𝑏 

(false alarms) 
𝑎 + 𝑏 

Non-inundation 
𝑐 

(missed) 

𝑑 

(correct negative) 
𝑐 + 𝑑 

Marginal 

Total 
𝑎 + 𝑐 𝑏 + 𝑑 

Total = 

𝑎 + 𝑏 + 𝑐 + 𝑑 

Figure 5.15 A 2 × 2 confusion matrix, which displays the number of pixels that is hit, false alarm, miss, 

or correct negative. 

 

We used pixel count-based skill evaluation indices including overall accuracy, 

CSI, omission error, and commission error. The overall accuracy is the percentage of 

pixels which were correctly estimated as either inundated or non-inundated (hit or 

correct negative) by the total number of pixels 

 Overall accuracy =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 × 100 (%). (5.9) 

The range of overall accuracy is 0 – 100%, meaning zero skill to perfect skill.  
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CSI (Gilbert, 1884), also called the threat score, is the number of correctly 

estimated inundated pixels (hit) over the total number of pixels, which are either 

observed or estimated as inundated (hit + false alarm + miss)  

 CSI =
𝑎

𝑎 + 𝑏 + 𝑐
× 100(%). (5.10) 

CSI takes both false alarm and miss into account and is therefore considered to be more 

complete. It also avoids possible bias caused by correct negative (Wing et al., 2017). It 

ranges from 0 to 100%, meaning zero skill to perfect skill. CSI is often used as a standard 

validation measure (World Meteorological Organization, 2017). 

Omission error represents the percentage of pixels which are actually inundated 

but are not captured over the total number of actually inundated pixels 

 Omission error =
𝑐

𝑎 + 𝑐
× 100 (%). (5.11) 

It ranges from 0 to 100% with 0% meaning perfect skill. This indicates the extent of 

missed pixels. 

Commission error is the percentage of estimated inundated pixels which are 

actually non-inundated over the total number of estimated inundated pixels 

 Commission error =
𝑏

𝑎 + 𝑏
× 100 (%). (5.12) 

It ranges from 0 to 100% with 0% meaning perfect skill. This indicates the extent of 

false alarm pixels. 

 

 Inundation Depth Estimation 

In this study, the inundation depths were determined by using the Floodwater 

Depth Estimation Tool (FwDET) version 2 (Cohen et al., 2019). The tool consists of 
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several steps including (1) identifying inundation boundary cells, (2) extracting the 

elevation of the inundation boundary cells, (3) assigning the elevations of the nearest 

inundation boundary cells to the non-boundary inundated cells, (4) floodwater depth 

estimation by subtracting the DEM value from the assigned boundary elevation at 

inundated cells, and (5) smoothing. The stand-alone ArcPy script is available on 

https://github.com/csdms-contrib/fwdet. The tool requires polygons of inundation 

extents as input, which can be generated by ArcGIS 10.7 using the “Raster to Polygon” 

function. We did not perform the smoothing process as it can also smooth the signal of 

real inundation depths. For a detailed technical description of FwDET, readers are 

referred to Cohen et al. (2018, 2019). 

 

 Results and Discussions 

 FIER-hindcasted Inundation Extents in 2020 

FIER-hindcasted inundation extents over the MRB floodplain for 2020 were 

generated using in-situ water levels as inputs. Note that FIER is capable of generating 

daily inundation extents as long as daily water levels (or streamflows) are available. 

Figure 5.16 shows examples of FIER-hindcasted inundation extents on the 15th of each 

month in 2020, illustrating the dynamics of the areal inundation for a year in the MRB 

floodplain where widespread flooding can be seen in October and November. Skills of 

the FIER hindcast were then evaluated by cross-comparing with inundation extents 

derived from the original SAR images. Since the in-situ water levels are considered as 

ground truth and used as inputs in this case, the performance of FIER itself can be 
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assessed. For details about the water classification method, readers are referred to 

section 5.3.2.  

    
January 15th, 2020 February 15th, 2020 March 15th, 2020 April 15th, 2020 

    
May 15th, 2020 June 15th, 2020 July 15th, 2020 August 15th, 2020 

    
September 15th, 2020 October 15th, 2020 November 15th, 2020 December 15th, 2020 
Figure 5.16 Examples of FIER-hindcasted inundation extents on the 15th of each month for 2020 using 

MRC in-situ river levels as inputs. The black box in the background shows the boundary 

of  Sentinel-1 frames. 

 

The results of cross-comparison with concurrent Sentinel-1 images (See Section 

5.2.1.) are shown in Figure 5.17. During the wet season, the overall accuracies and CSIs 



 

150 

are around 93 – 97% and 60 – 70%, respectively (Figure 5.17(a)). The omission errors 

are about 5 – 25% during the wet season, while the commission errors are about 25 – 

40% (Figure 5.17(b)). One of the potential error sources could be the less skillful Hydro-

to-RTPC-03/-04 models which have relatively lower R2 than those of the first 2 modes. 

It should be noted that our FIER implementation in the MRB currently considers the 

dominant modes only for synthesizing the SAR-like images, which mostly retain the 

strong seasonal SAR intensity variations caused by the seasonal flood regime. Hence, 

the short-period and weaker variations in the in-situ MD water level may not be well 

coupled with RTPC-03/-04. Furthermore, MD is a region with intensive human water 

control with densely distributed canals and dykes as well as sluice gate operation and 

water pumping activity for enhancing agricultural productivity (Hung et al., 2012, 2014; 

Tran et al., 2019, 2020). Such human intervention weakens the natural hydraulic 

connectivity between the MD floodplain water levels and the MR water levels (Hung et 

al., 2012; 2014) which could also lead to less skillful couplings between the MD water 

levels with RTPC-03/-04 and the resulting errors when synthesizing SAR-like images.  

On the other hand, as the accuracy of the synthesized SAR-like images relies on 

input water levels, short-period oscillations of in-situ water levels in the MD caused by 

tides can lead to errors in the SAR-like images. In addition, since water classification is 

based on monthly thresholds, strong intra-monthly variations in in-situ water levels in 

the MD could also result in overestimations or underestimations. Another factor that 

can cause errors, particularly during the dry season, is when the input water levels used 

for SAR-like image synthesis is lower than that used to generate the baseline image for 

the change detection-based water classification. Figure 5.18(a) shows an abrupt drop in 
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water levels at Kratie, the inputs to the Hydro-to-RTPC-02 model, in early March 2020 

which makes water levels lower than 2017 – 2019. Figure 5.18(b) shows that all of the 

false alarm pixels on March 9th, 2020, have large positive values (> 90% percentile) in 

RSM-02. Since the change detection-based water classification we adopted was 

performed upon the difference images generated by subtracting the baseline image from 

the SAR-like images (See Section 5.3.2.), the “lower-than-baseline” input water levels 

can lead to larger negative difference values over positive RSM pixels, resulting in 

overestimated inundation extents. But this type of overestimation only occurs in the dry 

season and therefore would not be an issue if estimating the wet season inundation 

extents is the main interest. Figure 5.19 shows the occurrence (%) of either miss or false 

alarm pixels out of the 30 images used for cross-comparison indicating where the FIER 

hindcast in the MRB results should be used with more caution 

 

  

(a) (b) 

Figure 5.17 (a) Overall accuracies, and CSIs, (b) omission, and commission errors for the FIER-

hindcasted inundation extents in 2020, compared with original SAR image-derived 

values. 
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(a) (b) 

Figure 5.18 (a) In-situ river level at Kratie in 2017 – 2020 where an abrupt drop in early March 2020 

is marked in the red box and (b) percentages of false alarm pixels on March 9th, 2020, that 

have high positive RSM values (> 90% percentile). 

 

 

Figure 5.19 Occurrence (%) of errors over 30 images used for cross-comparison. 

 

We then assessed the skills of the FIER hindcast in the MRB under extreme 

flooding. As the 2011 flood was the most severe flooding event since 2000 and the water 

levels in October had the maximum exceedance for that year (MRC, 2014), the 

inundation extents in October 2011 were hindcasted. In this case, MODIS-based 

inundation maps were used for cross-comparison. Since the NASA GSFC NRT flood 
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maps available on the web portal do not cover the entire MRB floodplains back in 2011, 

we generated inundation maps from MOD09A1 8-day composite products using the 

same band math criteria as the NASA GSFC NRT flood maps (Slayback, 2021). Due to 

dynamic cloud cover over the MODIS images, the statistics were averaged by using the 

numbers of valid pixels as weights. Table 5.2 shows that the FIER hindcast provides 

about 92% of overall accuracies and 68% of CSIs with 21% of omission errors and 18%  

commission errors. The spatial distribution of each category of the cross-comparison 

results is shown in Figure 5.20. The CSIs of the FIER hindcast during the 2011 flood 

are of similar levels as (64% and 74%) in Triet et al. (2017, 2018) which simulated the 

inundation extents in 2011 over the MD using a quasi-two-dimensional hydraulic 

model. 

 

Table 5.2 Skills of the FIER hindcast in October 2011 cross-compared with MODIS-based 

inundations maps. 

Dates of 

MODIS MOD09A1 /  

FIER synthesis 

Skills (%) Errors (%) 
Valid  

pixels Accuracy CSI Omission Commission 

October 8th – 15th /  

October 11th 
89.2 61.5 22.9 24.8 358261 

October 16th – 23rd /  

October 18th 
92.1 69.5 22.2 13.2 428428 

October 24th – 31st /  

October 27th 
93.0 71.5 17.8 15.5 406414 

Weighted average 91.6 67.8 20.9 17.5  
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MODIS: October 8th – 15th 

FIER: October 11th 
MODIS: October 16th – 23rd 

FIER: October 18th 
MODIS: October 24th – 31st 

FIER: October 27th 

 
Figure 5.20 Cross-comparison between the FIER hindcast and MODIS-based inundation maps in 

October 2011 (FA: false alarm; CN: correct negative). 

 

 FIER Pseudo-forecasted Inundation Extents in 2020 

The daily FIER pseudo-forecasted inundation extents over the MRB floodplain 

for 2020 with up to 20-day lead time have been generated with forecasted water levels 

as inputs. Figure 5.21 shows MAEs and NSEs of forecasted water levels for different 

lead times at Kratie, Chau Doc, Can Tho, and My Thuan, that used as inputs to the FIER 

pseudo-forecast. For Kratie, MAEs are from 1.58 – 1.65 m with NSEs about 0.6 – 0.7. 

For Chau Doc, MAEs are from 0.16 to 0.22 with NSEs about 0.7 – 0.9. For Can Tho 

and My Thaun, MAEs are from about 0.11 – 0.13 m with NSEs about 0.6 – 0.7.  

    

(a) (b) (c) (d) 

Figure 5.21 Skills water level forecasting at selected gauges with up to 20-day lead time.  
In Figure 5.22, FIER pseudo-forecasts with 5, 10, 15 and 20 days of lead time 

from the arbitrarily chosen 15th of July to December, the months during the critical flood 
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risk period (Wassmann et al., 2019), are shown as examples. The average skills of the 

FIER pseudo-forecast with 1-day to 20-day lead times are shown in Figure 5.23. In the 

wet season, the overall accuracies and CSIs are from 94 – 98%, and 50 – 70%, 

respectively (See Figure 5.23(a)). The omission and commission errors are up to 30% 

and 40%, respectively (See Figure 5.23(b)). Since the FIER forecast requires forecasted 

water levels as inputs, its skills can be influenced by not only the factors discussed in 

Section 5.4.1 but also the accuracy of forecasted water levels. Potential error sources of 

our forecasted water levels include the propagation of errors from the VIC-estimated 

discharges and altimetry-derived water levels at upstream VSs. For example, it can be 

seen in Figure 5.14(b) and Figure 5.14(c) that the altimetry water levels at JVS P001-

02 (at the TSL) were about 1 – 2 m higher than the in-situ water levels at Kompong 

Luong in August and September 2020. An underestimation in reconstructed water levels 

at JVS P001-01 can be seen near early October 2020 in Figure 5.14(a). This could be an 

error source for the higher commission errors in August and September and higher 

omission errors in October 2020 as shown in Figure 5.23(b). For detailed discussion 

about the error sources of the forecasted water levels, readers are referred to Section 3.4. 

It is worth mentioning that the FIER forecast has the flexibility to take forecasted 

water levels generated by different approaches as inputs. In other words, FIER can take 

advantage of different water level (or streamflow) forecasting systems that may lead to 

improved inundation forecasting skill. For example, the water level forecasting system 

developed by Chang et al. (2019) is computationally lighter than the MRC’s water level 

forecasting system and performs promisingly inside the MD, while the MRC’s system 

has better skill at locations outside of the MD (such as at Kratie) but does not routinely 
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issue forecasting inside the MD due to a heavy computational burden (Chang et al., 

2019; Pagano, 2014). With the flexibility of FIER, it is possible to assemble the 

forecasted water levels at different gauges generated by two different systems for more 

accurate forecasts of inundation extents. In the following section, applications of the 

daily FIER pseudo-forecasted inundation extents will be introduced. 

   
July 15th, 2020 August 15th, 2020 September 15th, 2020 

   
October 15th, 2020 November 15th, 2020 December 15th, 2020 

05-day lead time 

   
July 15th, 2020 August 15th, 2020 September 15th, 2020 
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October 15th, 2020 November 15th, 2020 December 15th, 2020 

10-day lead time 

   
July 15th, 2020 August 15th, 2020 September 15th, 2020 

   
October 15th, 2020 November 15th, 2020 December 15th, 2020 

15-day lead time 
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July 15th, 2020 August 15th, 2020 September 15th, 2020 

   
October 15th, 2020 November 15th, 2020 December 15th, 2020 

20-day lead time 

Figure 5.22 FIER pseudo-forecasted inundation extents on the 15th of July to December, 2020. 

 

  
(a) (b) 

Figure 5.23 Averaged (a) overall accuracies, and CSIs, and (b) omission, and commission errors of 

FIER pseudo-forecasted inundation extents with 1-day to 20-day lead times. 

 

 Application: Pseudo-forecasted Flood Risk in 2020 

The capacity of FIER to forecast daily inundation extents can be applied to 

generate corresponding daily two-dimensional inundation depths that are commonly 

used for flood risk assessment. Since rice normally starts to die after being submerged 
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for 8 to 10 consecutive days (Pagano, 2014), the application of FIER forecasts for 

generating daily continuous inundation depth maps can help reveal where the rice 

paddies will be exposed to flood risk. Here, daily pseudo-forecasted inundation depths 

were generated using the FloodWater Depth Estimation Tool (FwDET) developed by 

Cohen et al. (2018, 2019) by integrating the daily FIER pseudo-forecasted inundation 

extents and the MERIT DEM. Figure 5.24 shows examples of 20-day lead time pseudo-

forecasted inundation depths on the 15th of July to December 2020. We then followed 

Wassmann et al. (2019), defining rice paddies with flood risk as those that have been 

inundated with >0.4 m of water for 7 consecutive days. The pseudo-forecasted flood 

risk maps for rice cultivation were generated by combining the pseudo-forecasted 

inundation depth maps with 14 to 20-day lead time (7-day time span), showing the 

extents of rice paddies that could be under flood risk 20 days later.  

Figure 5.25 shows examples of such pseudo-forecasted flood risk maps for rice 

paddies on the 15th of July to December 2020, the months in the critical risk period 

(Wassmann et al., 2019), in purple. Such maps can be generated on a daily basis so that 

the local government can frequently monitor when rice paddies will be threatened by 

floods. Figure 5.26 shows the start date (as Day-Of-Year, DOY) for pseudo-forecasted 

flood risk over rice paddies. It can be seen that based on the FIER pseudo-forecast, some 

rice paddies near the CF and upper MD could be exposed to flood risk at the end of 

August (DOY ~ 230). Since late August is when local farmers typically start to harvest 

(Triet et al., 2018), the spatial distribution of the rice paddies predicted to be under flood 

risk can serve as a reference to inform local stakeholders (1) where the inundation 

should be monitored with more caution, (2) where flood-preparedness resources (i.e, 
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water pumps) should be allocated, and (3) where rice should be harvested with higher 

priority. Local stakeholders can then allocate flood-preparedness resources or issue a 

warning message to farmers for rice paddies at risk in advance to mitigate flood impact 

on rice productivity. In addition, Figure 5.26 also shows that some rice paddies in the 

lower MD could be under flood risk in November (DOY ~320).  Since November is 

when local farmers typically start to sow, such information can help the local 

stakeholders decide where the sowing should be either postponed or switch to rice 

varieties with higher resiliency to floodwaters and then inform local farmers 

accordingly. 

   
July 15th, 2020 August 15th, 2020 September 15th, 2020 

   
October 15th, 2020 November 15th, 2020 December 15th, 2020 

 
Figure 5.24 20-day lead time pseudo-forecasted inundation depths on the 15th of July to December. 

Grey areas are permanent water bodies. 
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July 15th, 2020 August 15th, 2020 September 15th, 2020 

   
October 15th, 2020 November 15th, 2020 December 15th, 2020 

Figure 5.25 Rice paddies (light purple) in the Sentinel-1 frame with those pseudo-forecasted to be 

under flood risk on the 15th of July to December being marked in purple. Grey areas are 

permanent water bodies. 
 

 

Figure 5.26 Rice paddies (light purple) in the Sentinel-1 frame with the start DOY of pseudo-

forecasted flood risk areas marked as colorbar shows. Grey areas are permanent water 

bodies. 
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Forecasted inundation depths derived from the FIER forecasts can also be used 

to predict the spatial distribution of flood hazard levels. We followed Balica et al. 

(2014), which classified flood hazards in the MD into five levels based on inundation 

depths (See Table 5.3 modified from Balica et al., 2014). Figure 5.27 is a detailedlook 

at the 20-day lead time of pseudo-forecasted hazard levels over different areas in the 

MRB on the 15th of November 2020, the month that the FIER pseudo-forecast shows 

the most widespread inundation extents (See Figure 5.20.). While most areas have very 

low level of flood hazard (light green), some areas appeared to have low flood hazard 

(blue) where the movement of vehicles can be affected (See Table 5.3.). Areas with 

medium to very high hazard levels (yellow to purple) are sparsely distributed in the 

TSLF and MD, but widely distributed in the CF. Such flood hazard level maps can help 

decision-makers take necessary proactive actions, such as allocating essential resources 

(i.e., water pumps, and early reinforcement of first responders) or set up evacuation 

plans earlier if necessary so that flood damages can be mitigated. The applications of 

FIER forecasts are not restricted to the prevention of flood damage in rice cultivation 

but can also be more generally applied to multi-aspect damage prevention, and aiding 

decision-making for more comprehensive and efficient flood preparedness and early 

response.  

Table 5.3 Definition of hazard levels categorized by inundation depths (modified from Balica et al., 

2014). 

Inundation  

depth (m) 

Hazard level Definition 

0.0 – 0.2 Very low • Very low property damage 

0.2 – 0.5 Low • Insignificant flood-induced number of causalities 

• Low property damage 

• Affected vehicle movement but is safe walking 

through water 
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Table 5.3 (Continued) 

0.5 – 1.0 Medium • Considerable flood-induced causalities 

• High property damage 

• Not safe for vehicle movement and walking through 

water 

1.0 - 2.0 High • Extensive property damage 

• High probability of having dead and injured people 

> 2.0 Very high • Severe damages at all levels 

• Nothing is safe any longer 

 

  
(a) (b) 

  
(c) (d) 

 
Figure 5.27 Examples of 20-day pseudo-forecasted maps of flood hazard levels in November 2020 

over the (a) TSLF, (b) CF, (c) northern MD, and (d) southern MD. Grey areas are 

permanent water bodies 
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 Conclusions 

MRB floodplain is a flat-terrain region with highly complex hydraulic 

conditions due to the impact of coexisting MR flows, flow reversal of TSL and tidal 

effects, that make the implementation of conventional inundation extent forecasting 

approaches, such as hydrodynamic modeling and GIS-based approaches, extremely 

challenging both in terms of computational burden and accuracy. In this study, we 

integrated FIER (Chang et al., 2020) and the daily water level forecasting system 

(Chang et al., 2019) that can more efficiently forecast daily inundation extent in the 

region.  

The FIER-hindcasted inundation extents for 2020 were first generated with in-

situ water levels at selected gauges as inputs. The skills were assessed with inundation 

extents derived from Sentinel-1A SAR images. To evaluate the skills of FIER hindcast 

under extreme flood events, FIER-hindcasted inundation extents for October 2011 were 

also generated and cross-compared with 8-day composite MODIS-derived inundation 

extents. Based on the cross-comparison, the FIER-hindcasted inundation extents can 

reach higher than 90% of accuracy and 60 to 70% of CSI during the 2020 wet season. 

The skills for the extreme 2011 flood event are compatible with those simulated by a 

quasi-two-dimensional hydraulic model (Triet et al., 2017, 2018). In the pseudo-

forecasting case, up to 20-day lead time for FIER pseudo-forecasted inundation extents 

were generated and cross-compared with Sentinel-1 SAR image-derived inundation 

extents, showing higher than 90% accuracy and 50 – 70% CSI. One of the potential 

error sources for the FIER-estimated inundation extents can be the relatively lower 
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quality of Hydro-to-RTPC-03/-04 models which may be because: (1) the current FIER 

framework only considers dominant modes with strong seasonality that do not contain 

tidal influences with higher frequency; and (2) weaker hydraulic connection between 

the MD floodplain and the MR due to the intervention of human water controls. The 

dependence on synthesis of SAR-like images on input water levels as well as the 

adopted monthly water classification thresholds could also be another error source (See 

Section 5.4.1). In the case of FIER pseudo-forecasting, the skills can also be influenced 

by the accuracies of the pseudo-forecasted water levels.  

It is expected that the quality of the Hydro-to-RTPC-03/-04 models and the skills 

of FIER can be further improved if later modes representing high-frequency tidal signals 

or flash floods can be identified and retained. On the other hand, if water levels in the 

MD floodplain are available as independent variables in the models, or more concrete 

information about how the MR levels can be linked to the MD floodplain water levels 

can be accessed, the skills of FIER could be improved as well. For the FIER forecast, 

note that FIER has the flexibility to take water levels forecasted by any system as inputs, 

meaning that it is possible to combine different water level forecasting systems that can 

be complementary (i.e., MRC’s and Chang et al., 2019) in order to enhance the skill of 

inundation extent forecasting.  

Lastly, the application of the FIER forecast for flood risk prediction was also 

demonstrated. By combining the FIER pseudo-forecasted inundation extents with a 

DEM, we were able to generate pseudo-forecasted inundation depths, which are 

commonly used for flood risk assessment. Note that an advantage of  FIER is its capacity 

for generating daily forecasted inundation extents with daily forecasted water levels, 
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which allows forecasting of continuous daily inundation depths. Such continuous 

inundation depths are essential for assessing flood risk to rice cultivation. The forecasted 

inundation depths can also be used to generate forecasted flood hazard maps. With 

spatial information on the rice paddies exposed to future flood risks and future flood 

hazard levels, local stakeholders can make necessary decisions promptly and take proper 

proactive measures to have more efficient early response. Note that the accuracy of such 

applications can be influenced by not only the skill of FIER-estimated inundation 

extents but also the accuracy of the DEM. In addition, their spatial resolution can also 

be an influential factor, which can be addressed by the flexibility of FIER to be 

implemented on satellite images with different spatial resolutions. Although the pre-

processing of satellite images (mosaic, co-registration, and RTC) with finer spatial 

resolution can take more time, such pre-processing is often a one-time-only event unless 

more severe floods, not observed by historical satellite images used for the REOF 

analysis, occur. The computational loading required for satellite imagery pre-processing 

can also be significantly reduced by leveraging recent cloud-based computation 

platforms such as Google Earth Engine and Google Colab. 

The application of FIER, however, can be limited if historical floods were not 

observed by the satellite images due to their coarse temporal resolution. The 

implementation of FIER in this study used Sentinel-1A images with 12-day revisit 

times. Such a revisiting cycle may work fine in areas where the floods are more or less 

prolonged (i.e., wetlands that are seasonally flooded) but may not be temporally dense 

enough in areas where flash floods are more dominant. To address this limitation, a data 

fusion technique that merges optical imagery or multi-satellite SAR imagery should be 
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a topic of future study to generate a temporally longer and denser image stack with 

records of more flood signals. 
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6. CONCLUSION AND FUTURE WORK 

 Conclusion 

Potential hydrology alteration that the downstream Mekong River Basin (MRB) 

may face, induced by climatic and anthropogenic changes, can influence the livelihoods 

of millions of local inhabitants. Currently, the Regional Flood Management and 

Mitigation Center (RFMMC) of the Mekong River Commission  (MRC) does not 

publicly issue routine water level forecasting in the Mekong Delta (MD), except at Chau 

Doc and Tan Chau, located near the Cambodia-Vietnam national border. There is also 

no publicly and routinely available information about inundation extent forecasting. 

This could be due to: (1) the heavy computational burden and accuracy concerns of 

conventional approaches and (2) not very effective practical data exchange procedure 

between the MRC member countries (Anh et al., 2021). Hence, in this dissertation, one 

research question was introduced: How can we build skillful, computationally efficient, 

and sustainable flood forecasting systems of the Mekong River (MR) water levels and 

inundation extents for the MRB, with focus on the downstream areas? 

To address this question, novel computationally efficient approaches for water 

level and inundation extent forecasting have been developed, that utilize remotely 

sensed observations to mitigate the geopolitical limitations on data sharing. In Chapter 

3, a model-aided satellite altimetry-based daily water level forecasting system using 

simple regression analysis was proposed for the MRB. In the MD, where the RFMMC 

of MRC does not routinely issue comprehensive forecasting, ocean tides, which strongly 

impact water levels, were specifically addressed by a sum of sinusoidal functions. 

Forecasting skills for the system are promising in the MD. In contrast to the current 
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operating system, our system circumvents the need for frequent altimeter samplings in 

the upstream by using daily discharges estimated by the Variable Infiltration Capacity 

(VIC) model and is computationally efficient, without the need for complex 

hydrodynamic modeling. 

In Chapter 4, a daily inundation extent estimation framework, named 

Forecasting Inundation Extents using Rotated empirical orthogonal function analysis 

(FIER), was proposed with the Tonle Sap Lake Floodplain (TSLF) as a test bed. By 

coupling spatiotemporal patterns of a multi-temporal Sentinel-1A Synthetic Aperture 

Radar (SAR) image stack extracted by Rotated Empirical Orthogonal Function (REOF) 

analysis with hydrological data, FIER is able to synthesize SAR-like images at any time 

when hydrological data is available. Inundation extents can then be generated through 

a water classification method. The estimated inundation extents are quite promising in 

the cases of hindcast and forecast. The advantage of FIER in generating inundation 

extents of any time allows retrospective and prospective studies on the continuous 

dynamics and impacts of inundation. FIER also has the potential to be implemented on 

imagery acquired by different satellites, over different regions, or at different spatial 

resolutions, as long as the connection between the temporal patterns of satellite imagery 

and hydrological data can be built.  

In Chapter 5, the implementation of FIER was expanded to the whole MRB 

floodplain, encompassing the TSLF, Cambodian Floodplain (CF) and the MD where 

conventional inundation forecasting approaches are difficult to apply, by using a multi-

temporal stack of Sentinel-1A images and multiple gauges for  MR levels. Both hindcast 

and pseudo-forecasts were performed, that use historical in-situ and pseudo-forecasted 
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water levels (Chang et al., 2019) as inputs, respectively.  Based on cross-comparison, 

FIER hindcast and pseudo-forecast both have fairly good skills. The hindcast skill for 

the extreme October 2011 flood is compatible with that simulated by the quasi-two-

dimensional hydraulic model over the MD (Triet et al., 2017, 2018). FIER’s capacity 

for quickly estimating inundation extents is advantageous when practically performing 

continuous areal inundation forecast, which allows instantaneous spatial prediction of 

flood hazard levels and flood risk for rice cultivation.  

To conclude this dissertation,  

• We have developed skillful, computationally efficient, and sustainable flood 

forecasting systems that address the challenges in the MRB Floodplain by using 

remotely sensed data (satellite altimetry, and satellite imagery), and low 

computational cost approaches (regression analysis, principal component analysis). 

• By combining the water level forecasting system, FIER, and DEM allows spatial 

prediction of flood risk areas and flood hazard levels which can help local 

stakeholders and farmers more smartly manage rice cultivation activities, preventing 

and lifting the threat of flood to rice productivity. Such applications are extremely 

crucial for the MRB floodplain where is heavily populated with highly rice-

dependent food intake and economy. 

• FIER has potential to be applied to other flood-prone areas in the world. A freely 

accessible python package, named FIERpy, has been developed by our collaborator 

in NASA (Kel, 2021), which can also be implemented on cloud-computing-based 

platform, Google Colab. With this, FIER now can be easily scaled up to different 

areas of interest with enhanced accessibility. 



 

171 

Despite the advantages of FIER, its ability to reveal the spatiotemporal flood 

signals depends on whether the signals can be observed and recorded in the satellite 

imagery used. This means its skill is influenced by the electromagnetic characteristics 

of spectral bands, such as canopy penetrating capacity and the spatial resolution of the 

images used. Hence, proper satellite imagery and resolution should be chosen depending 

on the area of interest. In addition, whether the synthesized images are sufficient enough 

to reconstruct flood-related signals also influences the skill of FIER. This means the 

REOF modes retained, and the build of models, connecting hydrological data and 

temporal patterns of satellite imagery, should be carefully investigated. Water 

classification applied also affects prediction accuracy. Lastly, whether available input 

hydrological data represents what is really happening over the floodplains well can also 

be an influential factor for the skills of the models and the final estimated inundation 

extents. The MD, where floodplain water has weaker natural hydraulic connectivity 

with the MR due to intensive human water control, is an example of weak correlation. 

However, the FIER implementation in the TSLF and the whole MRB floodplain still 

shows promising skill and provides opportunities for valuable applications in fast and 

continuous spatial flood hazard and flood risk prediction. It is expected that FIER will 

greatly benefit local stakeholders with a more efficient decision-making process for 

better flood damage mitigation. 

 

 Future Works 

Chapter 4 and Chapter 5 of this dissertation demonstrated the feasibility of FIER 

over the TSLF and the MRB floodplain using Sentinel-1 SAR imagery, respectively. 
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However, the implementation of FIER is not restricted to a specific geographical region, 

satellite imagery source and spatial resolution. Ideally, as long as skillful models 

between patterns in multi-temporal satellite images and hydrological data can be 

established, FIER should work. This gives FIER the potential to be applied globally in 

areas with different landcover types. Table 6.1 shows a list of implementations that have 

been tested so far. 

Table 6.1 Implementation of FIER that have been tested in areas other than the MRB. 

Satellite Sensor type Spatial resolution Study area 

Sentinel-1A/-1B SAR 20 m Houston 

Visible Infrared 

Imaging Radiometer 

Suite 

(VIIRS) 

Optical 10 arc-second 
Mississippi River near 

New Madrid, Missouri 

 

For testing the implementation over Houston, Sentinel-1A/-1B SAR imagery 

(Path 143, Frame 492) acquired within 2016 – 2017 were used. Figure 6.1 shows the 

test area in the red box where in-situ gauges are marked by red dots. Considering the 

distribution of floodwater in urban areas would require finer resolution for detection, 

therefore, images were multi-looked and pre-processed to 20-m resolution. Unlike the 

cases over the TSLF and the MRB floodplain, where seasonal flooding is the dominant 

signal, Houston has more flash floods caused by thunderstorms or tropical systems. The 

REOF analysis therefore decomposed flood-related signals to the later modes. Figure 

6.2(a) shows the identified flood-related spatial patterns (Rotated Spatial Mode, RSMs) 

for SAR images. Figure 6.2(b) shows the normalized temporal patterns (Rotated 
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Temporal Principal Components, RTPCs) of SAR images and in-situ water levels. 

Figure 6.2(c) gives the corresponding scatter plots along with regression models. 

Preliminary hindcasted inundation extents along the Buffalo Bayou near the strike of 

Hurricane Harvey in late August 2017 are shown in Figure 6.3.  

Note that since there are more flash floods in this area, the 6-day revisit time of 

Sentinel-1A/-1B constellation may not be temporally fine enough to record flash flood 

events. Consequently, only a limited number of data points in the scatter plot reflect the 

flooding, such as the case of mode-10 in Figure 6.2(c), which corresponds to the extreme 

floods caused by Hurricane Harvey. Recently, an open-source Python application for 

downloading, processing, and delivering surface water maps derived from remote 

sensing data, called the Hydrological Remote Sensing Analysis for Floods 

(HYDRAFloods), has been proposed. HYDRAFloods is built using Google Earth 

Engine and Google Cloud Platform and can be run on Google Colab, which leverages 

cloud computing for large-scale computations and handling high data volume outputs. 

It also provides machine learning modules for data fusion, which allows conversion of 

SAR indices into optical Modified Normalized Difference Water Index (MNDWI) 

(Haag et al., 2021). The combination of optical and SAR imagery can help generate a 

multi-temporal image stack with a denser temporal sampling rate and longer time span. 

With this, it is expected that more flood events can be observed and contained in the 

image stack where REOF analysis then extracts spatiotemporal patterns. This can also 

be beneficial for generating better linkages between hydrological data and RTPCs. 

Cloud-computing platforms can also alleviate the relatively longer computational time 

for pre-processing high-resolution SAR imagery. 
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Figure 6.1 Area over the metropolitan area of Houston that FIER implementation has been tested. 

 

   

   

   

(a) (b) (c) 

Figure 6.2 Water-related (a) RSMs, (b) normalized RTPCs and in-situ water levels, and (c) scatter plots 

between RTPCs and in-situ water levels over the metropolitan areas of Houston. 
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Figure 6.3 Preliminary hindcast inundated extents along Buffalo Bayou in Houston in 2017 on the 

dates near the strike of Hurricane Harvey. 
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Implementation of FIER with the optical imagery has also been tested by using 

Visible Infrared Imaging Radiometer Suite (VIIRS) surface reflectance images. The test 

bed is the Mississippi River near New Madrid, Missouri (See Figure 6.4). The short-

Wave InfraRed (SWIR) band is less affected by concentrations of sediments and other 

optical active constituents within the water, and therefore is a more stable indicator of 

inundated areas (Huang et al., 2018; Li et al., 2013), SWIR surface reflectance images 

with less cloud cover were selected to form a multi-temporal image stack for REOF 

analysis to extract spatiotemporal patterns. Figure 6.5 shows the identified water-related 

RSMs, normalized RTPCs and in-situ water levels as well as corresponding scatter plots 

and regression models. Preliminary hindcasted inundation extents are shown in Figure 

6.6. It is worth mentioning that by implementing FIER on the selected less cloud-

affected optical images, FIER can generate optical imagery-based inundation extents 

that are both temporally dense and with less cloud cover issue, which has previously 

been a major drawback of using optical imagery for continuous inundation mapping. 

 
Figure 6.4 Area over the Mississippi River near New Madrid, Missouri, that FIER implementation 

was tested. 
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(a) (b) (c) 

Figure 6.5 Water-related (a) RSMs, (b) normalized RTPCs and in-situ water levels, and (c) scatter plots 

between RTPCs and in-situ water levels over the Mississippi River near New Madrid, 

Missouri. 
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(a) (b) 

Figure 6.6 Preliminary hindcast inundation extents on (a) March 12th, and (b) March 25th, 2018. 

 

To sum up, our future work will focus on directions of: 

• Expanding the implementation of FIER over different geographical areas, 

including other wetlands or even urban areas that are flood-prone. For 

implementation in other wetlands, dominant local vegetation type has to be 

considered to properly select satellite imagery considering both canopy 

penetrating capacity and spatial resolution. 

• Implementation of FIER for optical imagery, which has advantages of more 

frequent temporal sampling and more spectral information than SAR imagery. 

The more frequent temporal sampling enhances the chance that flood events can 

be captured. On the other hand, the ability to record more spectral information 

allows band-math to generate a water-sensitive index, such as MNDWI, which 
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might be beneficial when extracting flood-related spatiotemporal patterns using 

REOF analysis. 

• Exploiting cloud-based database and computation platforms, such as Google 

Earth Engine, which is freely accessible and has archived remote sensing data, 

and Google Colab to alleviate processing time of satellite imagery pre-

processing or data fusion. 

  



 

180 

REFERENCES 

Ablain, M., Philipps, S., Picot, N., Bronner, E., 2010. “Jason-2 global statistical 

assessment and cross-calibration with Jason-1.” Mar. Geod. 33, 162–185. 

https://doi.org/10.1080/01490419.2010.487805 

Adamson, P., 2006. “Hydrological and water resources modelling in the Mekong 

region: A brief overview.” in: Explore Water Futures Together: Mekong Region 

Waters Dialogue, IUCN, TEI, IWMI, and M-POWER, pp. 69–74. 

Amitrano, D., Di Martino, G., Iodice, A., Riccio, D., Ruello, G., 2018. “Unsupervised 

rapid flood mapping using Sentinel-1 GRD SAR images.” IEEE Trans. Geosci. 

Remote Sens. 56, 3290–3299. https://doi.org/10.1109/TGRS.2018.2797536 

Anh, N.T.K., 2021. “Data exchange as key mechanism in the joint use of the Mekong 

River.” in: Modern Global Economic System: Evolutional Development vs. 

Revolutionary Leap, Popkova, E.G., Sergi, B.S. (Eds.), Springer International 

Publishing, Cham, pp. 990–996. https://doi.org/10.1007/978-3-030-69415-9_110 

Arias, M.E., Cochrane, T.A., Piman, T., Kummu, M., Caruso, B.S., Killeen, T.J., 2012. 

“Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) 

caused by water infrastructure development and climate change in the Mekong 

Basin.” J. Environ. Manage. 112, 53–66. 

https://doi.org/https://doi.org/10.1016/j.jenvman.2012.07.003 

Arthur, D., Vassilvitskii, S., 2007. “K-means++: The advantages of careful seeding.” 

in: Proceeding of the Annual ACM-SIAM Symposium on Discrete Algorithms. 

https://doi.org/10.1145/1283383.1283494 

AVISO+, https://www.aviso.altimetry.fr/en/applications/hydrology-and-land.html 



 

181 

(Accessed on June 22nd, 2021) 

AVISO+, https://www.aviso.altimetry.fr/en/techniques/altimetry/principle/pulses-and-

waveforms.html (Accessed on June 22nd, 2021) 

Balica, S., Dinh, Q., Popescu, I., Vo, T.Q., Pham, D.Q., 2014. “Flood impact in the 

Mekong Delta, Vietnam.” J. Maps 10, 257–268. 

https://doi.org/10.1080/17445647.2013.859636 

Bamber, J.L., 1994. “Ice sheet altimeter processing scheme.” Int. J. Remote Sens. 15, 

925–938. https://doi.org/10.1080/01431169408954125 

Banks, J.C., Camp, J. V., Abkowitz, M.D., 2014. “Adaptation planning for floods: A 

review of available tools.” Nat. Hazards 70, 1327–1337. 

https://doi.org/10.1007/s11069-013-0876-7 

Bates, P.D., Pappenberger, F., Romanowicz, R.J., 2014. “Uncertainty in flood 

inundation modelling,” in: Beven, K.J., Hall, J. (Eds.), Applied Uncertainty 

Analysis for Flood Risk Management, Imperial College Press, pp. 232–269. 

Bates, P.D., De Roo, A.P.J., 2000. “A simple raster-based model for flood inundation 

simulation.” J. Hydrol. 236, 54–77. https://doi.org/https://doi.org/10.1016/S0022-

1694(00)00278-X 

Biancamaria, S., Frappart, F., Leleu, A.S., Marieu, V., Blumstein, D., Desjonquères, 

J.D., Boy, F., Sottolichio, A., Valle-Levinson, A., 2017. “Satellite radar altimetry 

water elevations performance over a 200 m wide river: Evaluation over the 

Garonne River.” Adv. Sp. Res. 59, 128–146. 

https://doi.org/10.1016/j.asr.2016.10.008 

Biancamaria, S., Hossain, F., Lettenmaier, D.P., 2011. “Forecasting transboundary river 



 

182 

water elevations from space.” Geophys. Res. Lett. 38, 1–5. 

https://doi.org/10.1029/2011GL047290 

Bioresita, F., Puissant, A., Stumpf, A., Malet, J.P., 2018. “A method for automatic and 

rapid mapping of water surfaces from Sentinel-1 imagery.” Remote Sens. 10. 

https://doi.org/10.3390/rs10020217 

Boergens, E., Dettmering, D., Seitz, F., 2019. “Observing water level extremes in the 

Mekong River Basin: The benefit of long-repeat orbit missions in a multi-mission 

satellite altimetry approach.” J. Hydrol. 570, 463–472. 

https://doi.org/10.1016/j.jhydrol.2018.12.041 

Bouvet, A., Le Toan, T., Lam-Dao, N., 2009. “Monitoring of the rice cropping system 

in the Mekong Delta using ENVISAT/ASAR dual polarization data.” IEEE Trans. 

Geosci. Remote Sens. 47, 517–526. https://doi.org/10.1109/TGRS.2008.2007963 

Bracher, A., Taylor, M.H., Taylor, B., Dinter, T., Röttgers, R., Steinmetz, F., 2015. 

“Using empirical orthogonal functions derived from remote-sensing reflectance for 

the prediction of phytoplankton pigment concentrations.” Ocean Sci. 11, 139–158. 

https://doi.org/10.5194/os-11-139-2015 

Brêda, J.P.L.F., Paiva, R.C.D., Bravo, J.M., Passaia, O.A., Moreira, D.M., 2019. 

“Assimilation of Satellite Altimetry Data for Effective River Bathymetry.” Water 

Resour. Res. https://doi.org/10.1029/2018wr024010 

Busker, T., De Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, 

J.F., Cottam, A., 2019. “A global lake and reservoir volume analysis using a 

surface water dataset and satellite altimetry.” Hydrol. Earth Syst. Sci. 23, 669–690. 

https://doi.org/10.5194/hess-23-669-2019 



 

183 

Calmant, S., Crétaux, J.F., Rémy, F., 2016. “Principles of radar satellite altimetry for 

application on inland waters.” in: Microwave Remote Sensing Land Surfaces, 

Baghdadi, N., and Zribi, M., (Eds.), pp. 175–218. https://doi.org/10.1016/B978-1-

78548-159-8.50004-9 

Campbell, I.C., Say, S., Beardall, J., 2009. “Tonle Sap Lake, the heart of the Lower 

Mekong,” in: The Mekong: Biophysical Environment of an International River 

Basin, Campbell, I.C. (Ed.), pp. 251–272. https://doi.org/10.1016/B978-0-12-

374026-7.00010-3 

Celik, T., 2009. “Unsupervised change detection in satellite images using principal 

component analysis and K-means clustering.” IEEE Geosci. Remote Sens. Lett. 6, 

772–776. https://doi.org/10.1109/LGRS.2009.2025059 

Center for Excellence in Disaster Management and Humanitarian Assistance, 2017. 

Cambodia Disaster Management Reference Handbook. Center for Excellence in 

Disaster Management and Humanitarian Assistance, Joint Base Pearl Harbor – 

Hickam, Hawaii, U.S. 

Chang, C.-H., Lee, H., Hossain, F., Basnayake, S., Jayasinghe, S., Chishtie, F., Saah, 

D., Yu, H., Sothea, K., Du Bui, D., 2019. “A model-aided satellite-altimetry-based 

flood forecasting system for the Mekong River.” Environ. Model. Softw. 112, 112–

127. https://doi.org/https://doi.org/10.1016/j.envsoft.2018.11.017 

Chang, C.-H., Lee, H., Kim, D., Hwang, E., Hossain, F., Chishtie, F., Jayasinghe, S., 

Basnayake, S., 2020. “Hindcast and forecast of daily inundation extents using 

satellite SAR and altimetry data with rotated empirical orthogonal function 

analysis: Case study in Tonle Sap Lake Floodplain.” Remote Sens. Environ. 241, 



 

184 

111732. https://doi.org/https://doi.org/10.1016/j.rse.2020.111732 

Chang, M.J., Chang, H.K., Chen, Y.C., Lin, G.F., Chen, P.A., Lai, J.S., Tan, Y.C., 2018. 

“A support vector machine forecasting model for typhoon flood inundation 

mapping and early flood warning systems.” Water 10. 

https://doi.org/10.3390/w10121734 

Chen, Z., Luo, J., Chen, N., Xu, R., Shen, G., 2019. “RFim: A real-time inundation 

extent model for large floodplains based on remote sensing big data and water level 

observations.” Remote Sens. 11. https://doi.org/10.3390/rs11131585 

Cheng, X., Nitsche, G., Wallace, J.M., 1995. “Robustness of low-frequency circulation 

patterns derived from EOF and rotated EOF Analyses.” J. Clim. 8, 1709–1713. 

https://doi.org/10.1175/1520-0442(1995)008<1709:ROLFCP>2.0.CO;2 

Church, J.A., White, N.J., Coleman, R., Lambeck, K., Mitrovica, J.X., 2004. “Estimates 

of the regional distribution of sea level rise over the 1950–2000 period.” J. Clim. 

17, 2609c2625. https://doi.org/10.1175/1520-

0442(2004)017<2609:EOTRDO>2.0.CO;2 

Clement, M.A., Kilsby, C.G., Moore, P., 2018. “Multi-temporal synthetic aperture radar 

flood mapping using change detection.” J. Flood Risk Manag. 11, 152–168. 

https://doi.org/https://doi.org/10.1111/jfr3.12303 

Cohen, S., Brakenridge, G.R., Kettner, A., Bates, B., Nelson, J., McDonald, R., Huang, 

Y.-F., Munasinghe, D., Zhang, J., 2018. “Estimating floodwater depths from flood 

inundation maps and topography.” J. Am. Water Resour. Assoc., 54, 847–858. 

https://doi.org/10.1111/1752-1688.12609 

 Cohen, S., Raney, A., Munasinghe, D., Loftis, J.D., Molthan, A., Bell, J., Rogers, L., 



 

185 

Galantowicz, J., Brakenridge, G.R., Kettner, A.J., Huang, Y.-F., Tsang, Y.-P., 

2019. “The floodwater depth estimation tool (FwDET v2.0) for improved remote 

sensing analysis of coastal flooding.” Nat. Hazards Earth Syst. Sci., 19, 2053–

2065. https://doi.org/10.5194/nhess-19-2053-2019 

Cox, R., Bauer, B.L., Smith, T., 1998. “A mesoscale model intercomparison.” Bull. 

Amer. Met. Soc. 79, 265–283. 

Curlander, J. C., McDonough, R. N., 1991. Synthetic Aperture Radar: Systems and 

Signal Processing, John Wiley & Sons., New York, NY, U.S. 

Da Silva, J.S., Seyler, F., Calmant, S., Rotunno Filho, O.C., Roux, E., Araújo, A.A.M., 

Guyot, J.L., 2012. “Water level dynamics of Amazon wetlands at the watershed 

scale by satellite altimetry.” Int. J. Remote Sens. 33, 3323–3353. 

https://doi.org/10.1080/01431161.2010.531914 

Dang, T.D., Cochrane, T.A., Arias, M.E., Tri, V.P.D., 2018. “Future hydrological 

alterations in the Mekong Delta under the impact of water resources development, 

land subsidence and sea level rise.” J. Hydrol. Reg. Stud. 15, 119–133. 

https://doi.org/10.1016/j.ejrh.2017.12.002 

Dinh, D.A., Elmahrad, B., Leinenkugel, P., Newton, A., 2019. “Time series of flood 

mapping in the Mekong Delta using high resolution satellite images.” IOP Conf. 

Ser. Earth Environ. Sci. 266, 12011. https://doi.org/10.1088/1755-

1315/266/1/012011 

Dommenget, D., Latif, M., 2002. “A cautionary note on the interpretation of EOFs.” J. 

Clim. 15, 216–225. https://doi.org/10.1175/1520-

0442(2002)015<0216:ACNOTI>2.0.CO;2 



 

186 

Du, T.L.T., Lee, H., Bui, D.D., Arheimer, B., Li, H.-Y., Olsson, J., Darby, S.E., 

Sheffield, J., Kim, D., Hwang, E., 2020. “Streamflow prediction in geopolitically 

ungauged basins using satellite observations and regionalization at subcontinental 

scale.” J. Hydrol. 588, 125016. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125016 

Egbert, G.D., Ray, R.D., 2003. “Deviation of long-period tides from equilibrium: 

Kinematics and geostrophy.” J. Phys. Oceanogr. 33, 822–839. 

https://doi.org/10.1175/1520-0485(2003)33<822:doltfe>2.0.co;2 

Fisheries Administration of Cambodia, 2011. Status of the Fishery Sector in 2011 and 

Targets for 2012. Fisheries Administration, Phnom Penh, Cambodia. 

Fok, H.S., He, Q., Chun, K.P., Zhou, Z., Chu, T., 2018. “Application of ENSO and 

drought indices for water level reconstruction and prediction: A case study in the 

lower Mekong River estuary.” Water 10. https://doi.org/10.3390/w10010058 

Frappart, F., Biancamaria, S., Normandin, C., Blarel, F., Bourrel, L., Aumont, M., 

Azemar, P., Vu, P.L., Le Toan, T., Lubac, B., Darrozes, J., 2018. “Influence of 

recent climatic events on the surface water storage of the Tonle Sap Lake.” Sci. 

Total Environ. 636, 1520–1533. https://doi.org/10.1016/j.scitotenv.2018.04.326 

Frappart, F., Do Minh, K., L’Hermitte, J., Cazenave, A., Ramillien, G., Le Toan, T., 

Mognard-Campbell, N., 2006. “Water volume change in the lower Mekong from 

satellite altimetry and imagery data.” Geophys. J. Int. 167, 570–584. 

https://doi.org/10.1111/j.1365-246X.2006.03184.x 

Fredén, F., 2011. Impacts of dams on lowland agriculture in the Mekong River 

catchment. Lunds Universitets Naturgeografiska Institution-Seminarieuppsatser, 



 

187 

Lund, Sweden. 

Gerlak, A.K., Lautze, J., Giordano, M., 2011. “Water resources data and information 

exchange in transboundary water treaties.” Int. Environ. Agreements Polit. Law 

Econ. 11, 179–199. https://doi.org/10.1007/s10784-010-9144-4 

Gilbert, G. K., 1884. “Finley’s tornado predictions.” Am. Meteorol. J. 1, 166-172. 

Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S., Nelson, A., 2014. “Mapping 

seasonal rice cropland extent and area in the high cropping intensity environment 

of Bangladesh using MODIS 500m data for the year 2010.” ISPRS J. Photogramm. 

Remote Sens. 91, 98–113. https://doi.org/10.1016/j.isprsjprs.2014.02.007 

Haag, A., Markert, K., Markert, A., Mayer, T., Chisthie, F., Poortinga, A., Saah, D., 

Towashiraporn, P., Meechaiya, C., Thwal, N.S., Benito Lazaro, I., Nicolau, A.P., 

Bhandari, B., Wadhwa, A., Sundaram, J., Burja, K., 2021. “Current status and 

future developments of HYDRAFloods: Operational flood monitoring in Southeast 

Asia.” The 4th Hydrospace-GEOGloWS, Hosted as a virtual event from ESA-

ESRIN, Frascati, Rome, Italy. 

Hamman, J.J., Nijssen, B., Bohn, T.J., Gergel, D.R., Mao, Y., 2018. “The Variable 

Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for 

new applications and reproducibility.” Geosci. Model Dev. 11, 3481–3496. 

https://doi.org/10.5194/gmd-11-3481-2018 

Hannachi, A., Jolliffe, I.T., Stephenson, D.B., 2007. “Empirical orthogonal functions 

and related techniques in atmospheric science: A review.” Int. J. Climatol. 27, 

1119–1152. https://doi.org/10.1002/joc.1499 

Hannachi, A, Jolliffe, I.T., Stephenson, D.B., Trendafilov, N., 2006. “In search of 



 

188 

simple structures in climate: simplifying EOFs.” Int. J. Climatol. 26, 7–28. 

https://doi.org/10.1002/joc.1243 

Hannachi, A., Jolliffe, I.T., Stephenson, D.B., Trendafilov, N., 2006. “In search of 

simple structures in climate: Simplifying EOFS.” Int. J. Climatol. 26, 7–28. 

https://doi.org/10.1002/joc.1243 

Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, 

A., Thau, D., Stehman, S. V, Goetz, S.J., Loveland, T.R., Kommareddy, A., 

Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. “High-resolution 

global maps of 21st-century forest cover change.” Science 342, 850 – 853. 

https://doi.org/10.1126/science.1244693 

Henry, J. ‐B., Chastanet, P., Fellah, K., Desnos, Y. ‐L., 2006. “Envisat multi‐polarized 

ASAR data for flood mapping.” Int. J. Remote Sens. 27, 1921–1929. 

https://doi.org/10.1080/01431160500486724 

Hiep, N.H., Luong, N.D., Viet Nga, T.T., Hieu, B.T., Thuy Ha, U.T., Du Duong, B., 

Long, V.D., Hossain, F., Lee, H., 2018. “Hydrological model using ground- and 

satellite-based data for river flow simulation towards supporting water resource 

management in the Red River Basin, Vietnam.” J. Environ. Manage. 217, 346–

355. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.03.100 

Hoang, L.P., Lauri, H., Kummu, M., Koponen, J., van Vliet, M.T.H., Supit, I., Leemans, 

R., Kabat, P., Ludwig, F., 2016. “Mekong River flow and hydrological extremes 

under climate change.” Hydrol. Earth Syst. Sci. 20, 3027–3041. 

https://doi.org/10.5194/hess-20-3027-2016 

Hoanh, C.T., Jirayoot, K., Lacomne, G., Srunetr, V., 2010. “Impacts of climate change 



 

189 

and development on Mekong flow regimes. First assessment – 2009,” Mekong 

River Commission. Vientiane. 

Hortle, K. G., Lieng, S., Valbo-Jorgensen, J., 2004. An Introduction to Cambodia’s 

Inland Fisheries, Mekong Development Series No. 4. Mekong River Commission, 

Phnom Penh, Cambodia. 

Hossain, F., Maswood, M., Siddique-E-Akbor, A.H., Yigzaw, W., Mazumdar, L.C., 

Ahmed, T., Hossain, M., Shah-Newaz, S.M., Limaye, A., Lee, H., Pradhan, S., 

Shrestha, B., Bajracahrya, B., Biancamaria, S., Shum, C.K., Turk, F.J., 2014a. “A 

promising radar altimetry satellite system for operational flood forecasting in 

flood-prone bangladesh.” IEEE Geosci. Remote Sens. Mag. 2, 27–36. 

https://doi.org/10.1109/MGRS.2014.2345414 

Hossain, F., Siddique-E-Akbor, A.H., Mazumder, L.C., Shahnewaz, S.M., Biancamaria, 

S., Lee, H., Shum, C.K., 2014b. “Proof of concept of an altimeter-based river 

forecasting system for transboundary flow inside Bangladesh.” IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens. 7, 587–601. 

https://doi.org/10.1109/JSTARS.2013.2283402 

Hossain, F., Sikder, S., Biswas, N., Bonnema, M., Lee, H., Luong, N.D., Hiep, N.H., 

Du Duong, B., Long, D., 2017. “Predicting water availability of the regulated 

Mekong River Basin using satellite observations and a physical model.” Asian J. 

Water, Environ. Pollut. 14, 39–48. https://doi.org/10.3233/AJW-170024 

Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M., Corato, G., 

Pelich, R.M., Matgen, P., 2018. “Near-real-time assimilation of SAR-derived flood 

maps for improving flood forecasts.” Water Resour. Res. 54, 5516–5535. 



 

190 

https://doi.org/10.1029/2017WR022205 

Houghton, R.W., Tourre, Y.M., 1992. “Characteristics of low-frequency sea surface 

temperature fluctuations in the tropical Atlantic.” J. Clim. 5, 765–772. 

https://doi.org/10.1175/1520-0442(1992)005<0765:COLFSS>2.0.CO;2 

Huang, C., Chen, Y., Wu, J., 2014. “Mapping spatio-temporal flood inundation 

dynamics at large riverbasin scale using time-series flow data and MODIS 

imagery.” Int. J. Appl. Earth Obs. Geoinf. 26, 350–362. 

https://doi.org/10.1016/j.jag.2013.09.002 

Huang, C., Chen, Y., Wu, J., 2013. “A dem-based modified pixel swapping algorithm 

for floodplain inundation mapping at subpixel scale.” Int. Geosci. Remote Sens. 

Symp. 3994–3997. https://doi.org/10.1109/IGARSS.2013.6723708 

Huete, A.R., Liu, H.Q., Batchily, K., van Leeuwen, W., 1997. “A comparison of 

vegetation indices over a global set of TM images for EOS-MODIS.” Remote Sens. 

Environ. 59, 440–451. https://doi.org/https://doi.org/10.1016/S0034-

4257(96)00112-5 

Hung, N.N., Delgado, J.M., Tri, V.K., Hung, L.M., Merz, B., Bárdossy, A., Apel, H., 

2012. “Floodplain hydrology of the mekong delta, Vietnam.” Hydrol. Process. 26, 

674–686. https://doi.org/10.1002/hyp.8183 

Hyndman, R.J., Khandakar, Y., 2008. “Automatic time series forecasting: The forecast 

Package for R.” J. Stat. Software, 1, 3. https://doi.org/10.18637/jss.v027.i03 

Hyndman, R. J., 2013. https://robjhyndman.com/hyndsight/dailydata/ (Accessed on 

June 22nd, 2021) 

Hyndman, R. J., 2014. https://robjhyndman.com/hyndsight/forecasting-weekly-data/ 

https://robjhyndman.com/hyndsight/dailydata/
https://robjhyndman.com/hyndsight/forecasting-weekly-data/


 

191 

(Accessed on June 22nd, 2021) 

Imani, M., Chen, Y., You, R., Lan, W., Kuo, C., Chang, J., Rateb, A., 2017. 

“Spatiotemporal prediction of satellite altimetry sea level anomalies in the tropical 

Pacific Ocean.” IEEE Geosci. Remote Sens. Lett. 14, 1126–1130. 

https://doi.org/10.1109/LGRS.2017.2699668 

Islam, A.S., Bala, S.K., Haque, M.A., 2010. “Flood inundation map of Bangladesh using 

MODIS time-series images.” J. Flood Risk Manag. 3, 210–222. 

https://doi.org/10.1111/j.1753-318X.2010.01074.x 

Jiang, L., Madsen, H., Bauer-Gottwein, P., 2019. “Simultaneous calibration of multiple 

hydrodynamic model parameters using satellite altimetry observations of water 

surface elevation in the Songhua River.” Remote Sens. Environ. 225, 229–247. 

https://doi.org/10.1016/j.rse.2019.03.014 

Johnson, J.M., Munasinghe, D., Eyelade, D., Cohen, S., 2019. “An integrated evaluation 

of the National Water Model (NWM)--Height Above Nearest Drainage (HAND) 

flood mapping methodology.” Nat. Hazards Earth Syst. Sci. 19, 2405–2420. 

https://doi.org/10.5194/nhess-19-2405-2019 

Johnston, R., Kummu, M., 2012. “Water resource models in the Mekong Basin: A 

review.” Water Resour. Manag. 26, 429–455. https://doi.org/10.1007/s11269-011-

9925-8 

Kaiser, H.F., 1958. “The varimax criterion for analytic rotation in factor 

analysis.“ Psychometrika 23, 187–200. https://doi.org/10.1007/BF02289233 

Kaula, K. M., 1970. The Terrestrial Environment: Solid Earth and Ocean Physics, 

NASA CR-1599, Massachusetts Institute of Technology, Cambridge, MA, U.S. 



 

192 

Keskinen, M., 2006. “The lake with floating villages: Socio-economic analysis of the 

Tonle Sap Lake.” Int. J. Water Resour. Dev. 22, 463–480. 

https://doi.org/10.1080/07900620500482568 

Kim, D., Lee, H., Chang, C.-H., Bui, D.D., Jayasinghe, S., Basnayake, S., Chishtie, F., 

Hwang, E., 2019a. “Daily river discharge estimation using multi-mission radar 

altimetry data and ensemble learning regression in the Lower Mekong River 

Basin.“ Remote Sens. https://doi.org/10.3390/rs11222684 

Kim, D., Yu, H., Lee, H., Beighley, E., Durand, M., Alsdorf, D.E., Hwang, E., 2019b. 

“Ensemble learning regression for estimating river discharges using satellite 

altimetry data: Central Congo River as a Test-bed.” Remote Sens. Environ. 221, 

741–755. https://doi.org/10.1016/j.rse.2018.12.010 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., 

Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K., 2015. “The 

JRA-55 reanalysis: General specifications and basic characteristics.” J. Meteorol. 

Soc. Japan. Ser. II 93, 5–48. https://doi.org/10.2151/jmsj.2015-001 

Kohavi, R., Provost, F., 1998. “Glossary of terms.” Mach. Learn. 30, 271–274. 

https://doi.org/10.1023/A:1017181826899 

Kuenzer, C., Guo, H., Huth, J., Leinenkugel, P., Li, X., Dech, S., 2013. “Flood mapping 

and flood dynamics of the mekong delta: ENVISAT-ASAR-WSM based time 

series analyses.” Remote Sens. 5, 687–715. https://doi.org/10.3390/rs5020687 

Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., Richey, J., Sarkkula, 

J., 2015. “Water balance analysis for the Tonle Sap Lake–floodplain system.” 

Hydrol. Process. 29, 5477. https://doi.org/10.1002/hyp.10763 



 

193 

Kummu, M., Sarkkula, J., 2008. “Impact of the Mekong River flow alteration on the 

Tonle Sap flood pulse.” AMBIO A J. Hum. Environ. 37, 185–192. 

Kummu, M., Sarkkula, J., Koponen, J., Nikula, J., 2006. “Ecosystem management of 

the Tonle Sap Lake: An integrated modelling approach.” Int. J. Water Resour. Dev. 

22, 497–519. https://doi.org/10.1080/07900620500482915 

Lamberts, D., 2006. “The Tonle Sap Lake as a productive ecosystem.” Int. J. Water 

Resour. Dev. 22, 481–495. https://doi.org/10.1080/07900620500482592 

Lamberts, D., Koponen, J., 2008. “Flood pulse alterations and productivity of the Tonle 

Sap ecosystem: A model for impact assessment.” AMBIO A J. Hum. Environ. 37, 

178–184. 

Lauri, H., de Moel, H., Ward, P.J., Räsänen, T.A., Keskinen, M., Kummu, M., 2012. 

“Future changes in Mekong River hydrology: impact of climate change and 

reservoir operation on discharge.” Hydrol. Earth Syst. Sci. 16, 4603–4619. 

https://doi.org/10.5194/hess-16-4603-2012 

Leandro, J., Chen, A.S., Schumann, A., 2014. “A 2D parallel diffusive wave model for 

floodplain inundation with variable time step (P-DWave).“ J. Hydrol. 517, 250–

259. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.05.020 

Lee, H., 2008. Radar altimetry methods for solid earth geodynamics studies. Ph.D. Diss. 

Ohio State Univ. 

Lee, H., Beighley, R.E., Alsdorf, D., Jung, H.C., Shum, C.K., Duan, J., Guo, J., 

Yamazaki, D., Andreadis, K., 2011. “Characterization of terrestrial water 

dynamics in the Congo Basin using GRACE and satellite radar altimetry.” Remote 

Sens. Environ. 115, 3530–3538. https://doi.org/10.1016/j.rse.2011.08.015 



 

194 

Li, Y., Martinis, S., Plank, S., Ludwig, R., 2018. “An automatic change detection 

approach for rapid flood mapping in Sentinel-1 SAR data.” Int. J. Appl. Earth Obs. 

Geoinf. 73, 123–135. https://doi.org/10.1016/j.jag.2018.05.023 

Lian, T., Chen, D., 2012. “An evaluation of rotated eof analysis and its application to 

tropical pacific sst variability.” J. Clim. 25, 5361–5373. 

https://doi.org/10.1175/JCLI-D-11-00663.1 

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. “A simple hydrologically 

based model of land surface water and energy fluxes for general circulation 

models.” J. Geophys. Res. 99. https://doi.org/10.1029/94jd00483 

Lin, G.F., Lin, H.Y., Chou, Y.C., 2013. “Development of a real-time regional-

inundation forecasting model for the inundation warning system.” J. 

Hydroinformatics 15, 1391–1407. https://doi.org/10.2166/hydro.2013.202 

Liu, X., Sahli, H., Meng, Y., Huang, Q., Lin, L., 2017. “Flood inundation mapping from 

optical satellite images using spatiotemporal context learning and modest 

AdaBoost.” Remote Sens. . https://doi.org/10.3390/rs9060617 

Liu, Y.Y., Maidment, D.R., Tarboton, D.G., Zheng, X., Wang, S., 2018. “A cyberGIS 

integration and computation framework for high-resolution continental-scale flood 

inundation mapping.” J. Am. Water Resour. Assoc. 54, 770–784. 

https://doi.org/https://doi.org/10.1111/1752-1688.12660 

Lloyd, S., 1982. “Least squares quantization in PCM.” IEEE Trans. Inf. Theory 28, 

129–137. https://doi.org/10.1109/TIT.1982.1056489 

Lohmann, D., Nolte-Holube, R., Raschke, E., 1996. “A large-scale horizontal routing 

model to be coupled to land surface parametrization schemes.” Tellus, Ser. A Dyn. 



 

195 

Meteorol. Oceanogr. https://doi.org/10.3402/tellusa.v48i5.12200 

Lohmann, D., Raschke, E., Nijssen, B., Lettenmaier, D.P., 1998. “Regional scale 

hydrology: I. Formulation of the VIC-2L model coupled to a routing model.” 

Hydrol. Sci. J. 43, 131–141. https://doi.org/10.1080/02626669809492107 

Long, S., Fatoyinbo, T.E., Policelli, F., 2014. “Flood extent mapping for Namibia using 

change detection and thresholding with SAR.” Environ. Res. Lett. 9, 35002. 

https://doi.org/10.1088/1748-9326/9/3/035002 

Lorenz, E. N., 1956. Empirical Orthogonal Functions and Statistical Weather 

Prediction. Statistical Forecasting Project Scientific Report No. 1., Massachusetts 

Institute of Technology, Cambridge, MA, U.S.  

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., Bierkens, M.F.P., 2014. “Consistent 

increase in high Asia’s runoff due to increasing glacier melt and precipitation.” 

Nat. Clim. Chang. 4, 587–592. https://doi.org/10.1038/nclimate2237 

Maçaira, P.M., Tavares Thomé, A.M., Cyrino Oliveira, F.L., Carvalho Ferrer, A.L., 

2018. “Time series analysis with explanatory variables: A systematic literature 

review.” Environ. Model. Softw. 107, 199–209. 

https://doi.org/https://doi.org/10.1016/j.envsoft.2018.06.004 

Markert, K.N., Chishtie, F., Anderson, E.R., Saah, D., Griffin, R.E., 2018. “On the 

merging of optical and SAR satellite imagery for surface water mapping 

applications.” Results Phys. 9, 275–277. 

https://doi.org/10.1016/j.rinp.2018.02.054 

Martin-Puig, C., Leuliette, E., Lillibridge, J., Roca, M., 2016. “Evaluating the 

performance of Jason-2 open-loop and closed-loop tracker modes.” J. Atmos. 



 

196 

Ocean. Technol. 33, 2277–2288. https://doi.org/10.1175/JTECH-D-16-0011.1 

Martinis, S., Kersten, J., Twele, A., 2015. “A fully automated TerraSAR-X based flood 

service.” ISPRS J. Photogramm. Remote Sens. 104, 203–212. 

https://doi.org/10.1016/j.isprsjprs.2014.07.014 

Mason, D.C., Speck, R., Devereux, B., Schumann, G.J.P., Neal, J.C., Bates, P.D., 2010. 

“Flood detection in urban areas using TerraSAR-X.” IEEE Trans. Geosci. Remote 

Sens. 48, 882–894. https://doi.org/10.1109/TGRS.2009.2029236 

MRC, 2010. Mekong River Commission: State of the Basin Report 2010. MRC, 

Vientiane, Laos PDR. 

MRC, 2011. Lower Mekong River Basin. MRC, Vientiane, Laos PDR. 

MRC, 2020a. Situation Report on Hydrological Conditions in the Lower Mekong River 

Basin in January – July 2020. MRC, Vientiane, Laos PDR. 

MRC, 2020b. Weekly Wet Season Situation Report in the Lower Mekong River Basin 

for 25 – 31 August 2020. MRC, Vientiane, Laos PDR. 

Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P., 

2013. “A tutorial on synthetic aperture radar.” IEEE Geosci. Remote Sens. Mag. 1, 

6–43. https://doi.org/10.1109/MGRS.2013.2248301 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 

2007. “Model evaluation guidelines for systematic quantification of accuracy in 

watershed simulations.” Trans. ASABE 50, 885–900. 

MRC, 2005. Overview of the hydrology of the Mekong Basin, Mekong River 

Commission. Vientiane. https://doi.org/1728 3248 

Nash, J.E., Sutcliffe, J. V, 1970. “River flow forecasting through conceptual models part 



 

197 

I — A discussion of principles.” J. Hydrol. 10, 282–290. 

https://doi.org/https://doi.org/10.1016/0022-1694(70)90255-6 

[Data] NCEP, 2000. FNL Operational Model Global Tropospheric Analyses, continuing 

from July 1999. https://doi.org/10.5065/D6M043C6 

[Software] NCL (Version 6.6.2), 2019. Boulder, Colorado. UCAR/NCAR/CISL/TDD. 

http://dx.doi.org/10.5065/D6WD3XH5 

Nguyen, V.K., Pittock, J., Connell, D., 2019. “Dikes, rice, and fish: how rapid changes 

in land use and hydrology have transformed agriculture and subsistence living in 

the Mekong Delta.” Reg. Environ. Chang. 19, 2069–2077. 

https://doi.org/10.1007/s10113-019-01548-x 

Nigro, J., Slayback, D., Policelli, F., Brakenridge, G. R., 2014. NASA/DFO MODIS 

near real-time (NRT) global flood mapping product evaluation of flood and 

permanent water detection. (Retrieved on June 22nd, 2021, from 

https://floodmap.modaps.eosdis.nasa.gov/documents/NASAGlobalNRTEvaluatio

nSummary_v4.pdf) 

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., 

Waterloo, M., Saleska, S., 2011. “Height Above the Nearest Drainage – a 

hydrologically relevant new terrain model.” J. Hydrol. 404, 13–29. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2011.03.051 

Nobre, A.D., Cuartas, L.A., Momo, M.R., Severo, D.L., Pinheiro, A., Nobre, C.A., 

2016. “HAND contour: A new proxy predictor of inundation extent.” Hydrol. 

Process. 30, 320–333. https://doi.org/10.1002/hyp.10581 

Normandin, C., Frappart, F., Lubac, B., Bélanger, S., Marieu, V., Blarel, F., Robinet, 



 

198 

A., Guiastrennec-Faugas, L., 2018. “Quantification of surface water volume 

changes in the Mackenzie Delta using satellite multi-mission data.” Hydrol. Earth 

Syst. Sci. 22, 1543–1561. https://doi.org/10.5194/hess-22-1543-2018 

North, G.R., Bell, T.L., Cahalan, R.F., Moeng, F.J., 1982. “Sampling errors in the 

estimation of empirical orthogonal functions.” Mon. Weather Rev. 110, 699–706. 

https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 

Nuorteva, P., Keskinen, M., Varis, O., 2010. “Water, livelihoods and climate change 

adaptation in the Tonle Sap Lake area, Cambodia: learning from the past to 

understand the future.” J. Water Clim. Chang. 1, 87–101. 

https://doi.org/10.2166/wcc.2010.010 

Okeowo, M.A., Lee, H., Hossain, F., Getirana, A., 2017. “Automated generation of 

lakes and reservoirs water elevation changes from satellite radar altimetry.” IEEE 

J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 3465–3481. 

https://doi.org/10.1109/JSTARS.2017.2684081 

Pagano, T.C., 2014. “Evaluation of Mekong River commission operational flood 

forecasts, 2000-2012.” Hydrol. Earth Syst. Sci. 18, 2645–2656. 

https://doi.org/10.5194/hess-18-2645-2014 

Paris, A., Dias de Paiva, R., Santos da Silva, J., Medeiros Moreira, D., Calmant, S., 

Garambois, P.-A., Collischonn, W., Bonnet, M.-P., Seyler, F., 2016. “Stage-

discharge rating curves based on satellite altimetry and modeled discharge in the 

Amazon basin.” Water Resour. Res. 52, 3787–3814. 

https://doi.org/10.1002/2014WR016618 

Pham-Duc, B., Prigent, C., Aires, F., 2017. “Surface water monitoring within cambodia 



 

199 

and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations.” 

Water 9, 1–21. https://doi.org/10.3390/w9060366 

Pham, H.T., Marshall, L., Johnson, F., Sharma, A., 2018. “Deriving daily water levels 

from satellite altimetry and land surface temperature for sparsely gauged 

catchments: A case study for the Mekong River.” Remote Sens. Environ. 212, 31–

46. https://doi.org/https://doi.org/10.1016/j.rse.2018.04.034 

Pierdicca, N., Pulvirenti, L., Chini, M., Guerriero, L., Candela, L., 2013. “Observing 

floods from space: Experience gained from COSMO-SkyMed observations.” Acta 

Astronaut. 84, 122–133. https://doi.org/10.1016/j.actaastro.2012.10.034 

Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, D.W., 2018. “A 

review of the integrated effects of changing climate, land use, and dams on Mekong 

River hydrology.” Water 10, 1–25. https://doi.org/10.3390/w10030266 

Revilla-Romero, B., Hirpa, F.A., Pozo, J.T., Salamon, P., Brakenridge, R., 

Pappenberger, F., and De Groeve, T., 2015. “On the use of global flood forecasts 

and satellite-derived inundation maps for flood monitoring in data-sparse regions.” 

Remote Sens. 7, 15702–15728. https://doi.org/10.3390/rs71115702  

Rantz, S.E., 1982. Measurement and computation of stream flow. Volume 1: 

Measurement of stage and discharge, US Geol. Surv. water-supply Pap. 2175, 631. 

https://doi.org/10.1029/WR017i001p00131 

Räsänen, T.A., Kummu, M., 2013. “Spatiotemporal influences of ENSO on 

precipitation and flood pulse in the Mekong River Basin.” J. Hydrol. 476, 154–

168. https://doi.org/10.1016/j.jhydrol.2012.10.028 

RFMMC, 2011. Seasonal Flood Situation Report for the Lower Mekong River Basin, 



 

200 

Phnom Penh, Cambodia. 

RFMMC, 2012. Seasonal Flood Situation Report for the Lower Mekong River Basin, 

Phnom Penh, Cambodia. 

RFMMC, 2013. Seasonal Flood Situation Report for the Lower Mekong River Basin, 

Phnom Penh, Cambodia. 

Richman, M.B., 1986. “Rotation of principal components.” J. Climatol. 6, 293–335. 

https://doi.org/10.1002/joc.3370060305 

Ruzza, G., Guerriero, L., Grelle, G., Guadagno, F.M., Revellino, P., 2019. “Multi-

method tracking of monsoon floods using Sentinel-1 imagery.” Water 11. 

https://doi.org/10.3390/w11112289 

Sáenz, L., Farrell, T., Olsson, A., Turner, W., Mulligan, M., Acero, N., Neugarten, R., 

Wright, M., McKinnon, M., Ruiz, C., Guerrero, J., 2016. “Mapping potential 

freshwater services, and their representation within Protected Areas (PAs), under 

conditions of sparse data. Pilot implementation for Cambodia.” Glob. Ecol. 

Conserv. 7, 107–121. https://doi.org/10.1016/j.gecco.2016.05.007 

Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N., Yokozawa, M., 

2007. “Detecting temporal changes in the extent of annual flooding within the 

Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery.” 

Remote Sens. Environ. 109, 295–313. https://doi.org/10.1016/j.rse.2007.01.011 

Sakamoto, T., Van Phung, C., Kotera, A., Nguyen, K.D., Yokozawa, M., 2009. 

“Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas 

in a coastal area of the Vietnamese Mekong Delta using MODIS time-series 



 

201 

imagery.” Landsc. Urban Plan. 92, 34–46. 

https://doi.org/https://doi.org/10.1016/j.landurbplan.2009.02.002 

Schumann, G.J.P., Moller, D.K., 2015. “Microwave remote sensing of flood 

inundation.“ Phys. Chem. Earth 83–84, 84–95. 

https://doi.org/10.1016/j.pce.2015.05.002 

Shin, S., Pokhrel, Y., Yamazaki, D., Huang, X., Torbick, N., Qi, J., Pattanakiat, S., Ngo-

Duc, T., Nguyen, T.D., 2020. “High resolution modeling of river-floodplain-

reservoir inundation dynamics in the Mekong River Basin.” Water Resour. Res. 

56. https://doi.org/https://doi.org/10.1029/2019WR026449 

Siddique-E-Akbor, A.H.M., Hossain, F., Sikder, S., Shum, C.K., Tseng, S., Yi, Y., 

Turk, F.J., Limaye, A., 2014. “Satellite precipitation data-driven hydrological 

modeling for water resources management in the Ganges, Brahmaputra, and 

Meghna Basins.” Earth Interact. 18, 1–25. https://doi.org/10.1175/EI-D-14-

0017.1 

Sikder, M.S., Hossain, F., 2018. “Improving operational flood forecasting in monsoon 

climates with bias-corrected quantitative forecasting of precipitation.” Int. J. River 

Basin Manag. 0, 1–11. https://doi.org/10.1080/15715124.2018.1476368 

Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. “Mapping forest canopy height 

globally with spaceborne lidar.” J. Geophys. Res. Biogeosciences 116. 

https://doi.org/10.1029/2011JG001708 

Singha, M., Dong, J., Sarmah, S., You, N., Zhou, Y., Zhang, G., Doughty, R., Xiao, X., 

2020. “Identifying floods and flood-affected paddy rice fields in Bangladesh based 

on Sentinel-1 imagery and Google Earth Engine.” ISPRS J. Photogramm. Remote 



 

202 

Sens. 166, 278–293. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.06.011 

Slayback, 2021. LANCE MODIS Flood Product User Guide. (Retrieved on June 22nd, 

2021, from https://earthdata.nasa.gov/earth-observation-data/near-real-

time/mcdwd-nrt) 

Smith, L.C., 1997. “Satellite remote sensing of river inundation area, stage, and 

discharge: a review.” Hydrol. Process. 11, 1427–1439. 

https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-

HYP473>3.0.CO;2-S 

Stewart, C., Larson, V., 1999. “Synthetic Aperture Radar Algorithm,” in: The Digital 

Signal Processing Handbook, Madisetti, V. K., Williams, D. B. (Ed.), CRC Press 

LLC. New York, NY, U.S. 

Sulistioadi, Y.B., Tseng, K.H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, 

A., Setiawan, F., Sunarso, S., 2015. “Satellite radar altimetry for monitoring small 

rivers and lakes in Indonesia.” Hydrol. Earth Syst. Sci. 19, 341–359. 

https://doi.org/10.5194/hess-19-341-2015 

Takagi, H., Ty, T. V., Thao, N.D., Esteban, M., 2015. “Ocean tides and the influence of 

sea-level rise on floods in urban areas of the Mekong Delta.” J. Flood Risk Manag. 

8, 292–300. https://doi.org/10.1111/jfr3.12094 

Tan, J., Huffman, G.J., Bolvin, D.T., Nelkin, E.J., 2019. “IMERG V06: Changes to the 

morphing algorithm,” J. Atmos. Ocean. Technol. 36, 2471-2482. Retrieved June 

22nd, 2021, from https://journals.ametsoc.org/view/journals/atot/36/12/jtech-d-19-

0114.1.xml 

Tarpanelli, A., Santi, E., Tourian, M.J., Filippucci, P., Amarnath, G., Brocca, L., 2019. 



 

203 

“Daily river discharge estimates by merging satellite optical sensors and radar 

altimetry through artificial neural network.” IEEE Trans. Geosci. Remote Sens. 57, 

329–341. https://doi.org/10.1109/TGRS.2018.2854625 

Taylor, M.H., Losch, M., Wenzel, M., Schröter, J., 2013. “On the sensitivity of field 

reconstruction and prediction using empirical orthogonal functions derived from 

gappy Data.” J. Clim. 26, 9194–9205. https://doi.org/10.1175/JCLI-D-13-00089.1 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S., 2017. “Flood 

inundation modelling: A review of methods, recent advances and uncertainty 

analysis.” Environ. Model. Softw. 90, 201–216. 

https://doi.org/10.1016/j.envsoft.2017.01.006 

Tospornsampan, J., Malone, T., Katry, P., Pengel, B., Pich An, H., 2009. Flood 

Management and Mitigation Progamme Component 1: Short and medium-term 

flood forecasting at the Regional Flood Management and Mitigation Center. 7th 

Annual Mekong Flood Forum, Integr. flood risk Manag. Mekong River Basin 155–

164. 

Tourian, M.J., Schwatke, C., Sneeuw, N., 2017. “River discharge estimation at daily 

resolution from satellite altimetry over an entire river basin.” J. Hydrol. 546, 230–

247. https://doi.org/10.1016/j.jhydrol.2017.01.009 

Tourian, M.J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., Sneeuw, 

N., 2016. “Spatiotemporal densification of river water level time series by 

multimission satellite altimetry.” Water Resour. Res. 52, 1140–1159. 

https://doi.org/10.1002/2015WR017654 

Try, S., Tanaka, S., Tanaka, K., Sayama, T., Hu, M., Sok, T., Oeurng, C., 2020a. 



 

204 

“Projection of extreme flood inundation in the Mekong River basin under 4K 

increasing scenario using large ensemble climate data.” Hydrol. Process. 34, 

4350–4364. https://doi.org/https://doi.org/10.1002/hyp.13859 

Try, S., Tanaka, S., Tanaka, K., Sayama, T., Lee, G., Oeurng, C., 2020b. “Assessing the 

effects of climate change on flood inundation in the lower Mekong Basin using 

high-resolution AGCM outputs.” Prog. Earth Planet. Sci. 7, 34. 

https://doi.org/10.1186/s40645-020-00353-z 

Tsyganskaya, V., Martinis, S., Marzahn, P., Ludwig, R., 2018a. “SAR-based detection 

of flooded vegetation – a review of characteristics and approaches.” Int. J. Remote 

Sens. 39, 2255–2293. https://doi.org/10.1080/01431161.2017.1420938 

Tsyganskaya, V., Martinis, S., Marzahn, P., Ludwig, R., 2018b. “Detection of 

temporary flooded vegetation using Sentinel-1 time series data.” Remote Sens. 

https://doi.org/10.3390/rs10081286 

Tuan, V.A., Quang, N.H., Hang, L.T.T., 2021. “Optimizing flood mapping using multi-

synthetic aperture radar images for regions of the Lower Mekong Basin in 

Vietnam.” Eur. J. Remote Sens. 54, 13–28. 

https://doi.org/10.1080/22797254.2020.1859340 

Twele, A., Cao, W., Plank, S., Martinis, S., 2016. “Sentinel-1-based flood mapping: a 

fully automated processing chain.” Int. J. Remote Sens. 37, 2990–3004. 

https://doi.org/10.1080/01431161.2016.1192304 

United Nations Country Team, 2016. Vietnam Drought and Saltwater Intrusion 

Situation Update No. 1, Hanoi, Vietnam. 

Van Trung, N., Choi, J.H., Won, J.S., 2013. “A land cover variation model of water 



 

205 

level for the floodplain of Tonle Sap, Cambodia, derived from ALOS PALSAR 

and MODIS data.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 2238–2253. 

https://doi.org/10.1109/JSTARS.2012.2226437 

van Zyl, J., Kim, Y., 2011. “Synthetic Aperture Radar (SAR) Imaging Basics.” Synth. 

Aperture Radar Polarim. 1–22. https://doi.org/10.1002/9781118116104.ch1 

Västilä, K., Kummu, M., Sangmanee, C., Chinvanno, S., 2010. “Modelling climate 

change impacts on the flood pulse in the Lower Mekong floodplains.” J. Water 

Clim. Chang. 1, 67–86. https://doi.org/10.2166/wcc.2010.008 

Wang, X., Smith, K., Hyndman, R., 2006. “Characteristic-based clustering for time 

series data.” Data Min. Knowl. Discov. 13, 335–364. 

https://doi.org/10.1007/s10618-005-0039-x 

Werner, C., Wegmüller, U., Strozzi, T., Wiesmann, A., 2000. “GAMMA SAR and 

interferometric processing software.” ERS-ENVISAT Sym. Gothenburg, Sweden. 

Werner, M., Schellekens, J., Gijsbers, P., van Dijk, M., van den Akker, O., Heynert, K., 

2013. “The Delft-FEWS flow forecasting system.” Environ. Model. Softw. 40, 65–

77. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.07.010 

White, L., Brisco, B., Pregitzer, M., Tedford, B., Boychuk, L., 2014. “RADARSAT-2 

beam mode selection for surface water and flooded vegetation mapping.” Can. J. 

Remote Sens. 40, 135–151. https://doi.org/10.1080/07038992.2014.943393 

Wilks, D.S., 2011. “Principal Component (EOF) Analysis,” in: Statistical Methods in 

the Atmospheric Sciences, Wilks, D.S. (Ed.), Academic Press, pp. 519–562. 

https://doi.org/https://doi.org/10.1016/B978-0-12-385022-5.00012-9 

Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., Erickson, T.A., 



 

206 

2017. “Validation of a 30 m resolution flood hazard model of the conterminous 

United States.” Water Resour. Res. 53, 7968–7986. 

https://doi.org/10.1002/2017WR020917 

Wing, O.E.J., Sampson, C.C., Bates, P.D., Quinn, N., Smith, A.M., Neal, J.C., 2019. “A 

flood inundation forecast of Hurricane Harvey using a continental-scale 2D 

hydrodynamic model.” J. Hydrol. X 4, 100039. 

https://doi.org/https://doi.org/10.1016/j.hydroa.2019.100039 

Wingham, D.J., Rapley, C.G., Griffiths, H., 1986. “New techniques in satellite altimeter 

tracking systems.” Int. Geosci. Remote Sens. Symp. 1339–1344. 

Wolter, K., Timlin, M.S., 2011. “El Niño/Southern Oscillation behaviour since 1871 as 

diagnosed in an extended multivariate ENSO index (MEI.ext).” Int. J. Climatol. 

31, 1074–1087. https://doi.org/10.1002/joc.2336 

Wolter, K., Timlin, M.S., 1998. “Measuring the strength of ENSO events: How does 

1997/98 rank?” Weather 53, 315–324. https://doi.org/10.1002/j.1477-

8696.1998.tb06408.x 

Wolter, K., Timlin, M.S., 1993. “Monitoring ENSO in COADS with a seasonally 

adjusted principal component index,” in: Proceeding of the 17th Climate 

Diagnostics Workshop, pp. 52–57. Norman, OK, U.S. 

Wood, M., Hostache, R., Neal, J., Wagener, T., Giustarini, L., Chini, M., Corato, G., 

Matgen, P., Bates, P., 2016. “Calibration of channel depth and friction parameters 

in the LISFLOOD-FP hydraulic model using medium-resolution SAR data and 

identifiability techniques.” Hydrol. Earth Syst. Sci. 20, 4983–4997. 

https://doi.org/10.5194/hess-20-4983-2016 



 

207 

World Meteorological Organization, 2017. Verification of flash flood warnings. 1st 

Steering Committee Meeting of the Southeastern Asia-Oceania Flash Flood 

Guidance System. Jakarta, Indonesia. 

World Meteorological Organization, 1980. Manual on Stream Gauging: Volume II - 

computation of discharge. 

Xiao, X., Boles, S., Liu, J., Zhuang, D., Liu, M., 2002. “Characterization of forest types 

in Northeastern China, using multi-temporal SPOT-4 vegetation sensor data.” 

Remote Sens. Environ. 82, 335–348. https://doi.org/https://doi.org/10.1016/S0034-

4257(02)00051-2 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., 

Sampson, C.C., Kanae, S., Bates, P.D., 2017. “A high-accuracy map of global 

terrain elevations.” Geophys. Res. Lett. 44, 5844–5853. 

https://doi.org/10.1002/2017GL072874 

Yan, K., Di Baldassarre, G., Solomatine, D.P., Schumann, G.J.-P., 2015. “A review of 

low-cost space-borne data for flood modelling: topography, flood extent and water 

level.” Hydrol. Process. 29, 3368–3387. https://doi.org/10.1002/hyp.10449 

Yosef, G., Alpert, P., Price, C., Rotenberg, E., Yakir, D., 2017. “Using EOF analysis 

over a large area for assessing the climate impact of small-scale afforestation in a 

semi-arid region.” J. Appl. Meteorol. Climatol. 56, 2545–2559. 

https://doi.org/10.1175/JAMC-D-16-0253.1 

Zheng, Z., Zhao, X., 1984. “A study of long-period sea level changes in the China Sea 

areas.” Mar. Geophys. Res. 7, 299–306. https://doi.org/10.1007/BF00305429 

Zheng, X., Maidment, D.R., Tarboton, D.G., Liu, Y.Y., Passalacqua, P., 2018a. 



 

208 

“GeoFlood: Large-scale flood inundation mapping based on high-resolution terrain 

analysis.” Water Resour. Res. 54, 10013–10033 

https://doi.org/https://doi.org/10.1029/2018WR023457 

Zheng, X., Tarboton, D.G., Maidment, D.R., Liu, Y.Y., Passalacqua, P., 2018b. “River 

channel geometry and rating curve estimation using Height Above the Nearest 

Drainage.” J. Am. Water Resour. Assoc. 54, 785–806. 

https://doi.org/https://doi.org/10.1111/1752-1688.12661 

Zheng, Y., Zhang, X., Hou, B., Liu, G., 2014. “Using combined difference image and 

K-means clustering for SAR image change detection.” IEEE Geosci. Remote Sens. 

Lett. 11, 691–695. https://doi.org/10.1109/LGRS.2013.2275738 

Zhou, Y., Jin, S., Tenzer, R., Feng, J., 2016. “Water storage variations in the Poyang 

Lake Basin estimated from GRACE and satellite altimetry.” Geod. Geodyn. 7, 

108–116. https://doi.org/10.1016/j.geog.2016.04.003 

 

 

 

 


