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Abstract

In order to study the valvular dynamic relying on a sequence of non-invasive

echocardiographic 3D images of the mitral valve, one main goal is the reconstruction

of shape deformations. In this dissertation, we use a spline technique to generate a

static model of the mitral valve, which contains around 2000 points per snapshot.

We find the optimal diffeomorphic matching of these mitral valves using an operator

splitting method. To make the problem computationally accessible, we consider

reproducing kernel Hilbert spaces using Gaussian kernels and weighted sums of Dirac

measures. The objective function includes the kinetic energy of the velocity and

a shape matching term. In order to efficiently optimize it, we apply an operator

splitting method. Then based on the optimal diffeomorphism, the strain value of

every point around the surface is calculated through a local surface strain tensor. A

machine learning approach based on support vector machines is used to automatically

classify patients into several subgroups.
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CHAPTER 1

Introduction

This is a long term project. We are thankful to Houston Methodist Hospital car-

diology team led by Doctor William Zoghbi. Without their help, this dissertation

would not have been possible. The task in automated 3D image registration is the

reconstruction of a 3D movie on the basis of image snapshots Sj, acquired at suc-

cessive times tj, 0 ≤ j ≤ q. This can be achieved by computing a time-dependent

family of R3 diffeomorphisms Ft such that Ft0(S0) = S0 and Ftj(S0) is as close to Sj,

1 ≤ j ≤ q, as possible in terms of an appropriately chosen matching quality criterion.

G. Dupuis, U. Grenander, M. Miller, A. Trouvé, M. F. Beg and L. Younes have pub-

lished several fundamental research papers in this field [16, 40, 42, 8, 20, 24, 19, 16].
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In the paper [2], R. Azencott, R. Glowinski, J. He, and R. Hoppe have applied

diffeomorphic shape matching to movie reconstruction from a finite number of snap-

shots. In collaboration with R. Azencott, J. He, W. Zoghbi (MD), S.Little (MD),

S. Ben Zekry (MD), several PhD students and Post Docs (A. Jajoo, J. Freeman, Y.

Qin) have paved the way for the strain study of live mitral valves in human patients

[49, 50, 48, 30, 18, 47]. In the work of A. Jajoo [30], a gradient method with Armijo

line-search is used to compute a diffeomorphic registration flow minimizing an ade-

quate cost function. Y. Qin [47] applies a second order gradient descent to the same

problem to construct a minimizing diffeomorphic matching based on Bellman’s op-

timality principle and she develops a dynamic programming algorithm, which works

well when the number of data points per discretized snapshot is less than 400.

This work involves a patient specific discretized modeling of the mitral valve dy-

namics with a live human heart. With the help of K. C. El Tallawi (MD from Houston

Medthodist Hospital) using a TOMTEC segmentation software, a finite sequence of

discretized 3D snapshots of mitral valve is generated, like Figure 2.1. However this

TOMTEC software only implements successive but separate segmentations of each

image frame, so that actual tracking of the mitral valve dynamics is definitely not

provided by the software and part of our algorithmic work was to actually develop

a fast and accurate diffeomorphic registration of successive image snapshots. Using

the finite grids generated by TOMTEC sofware for each 3D snapshot of the mitral

valve, we modelize the dynamic deformation of the mitral valve by a diffeomorphic

flow to be computed by minimizing an adequate cost function. Then, the strain

values distribution on the mitral valve leaflets is computed and studied. This helps
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us to evaluate which mitral valve regions have high or low strain.

The thesis is organized as follows. Chapter 2 focuses on the construction of the

mitral valve. To do this, we reparameterize the finite grids provided by TOMTEC

software, using cubic spline interpolation and thin plate splines. Chapter 3 introduces

the mathematical foundation of the valve tracking problem. Chapter 4 provides a

detailed study of the splitting method, which includes a quadratic control step and a

single period proximal step. Chapter 5 provides the test results of our approach. To

improve the matching of boundaries for mitral valve leaflets, we introduce weights in

our formulation to better match the boundary points. This is explained in Chapter

6. In the next chapter, a comparison of the operator splitting model with a second

order variational model [47] developed by Y. Qin is illustrated. Our new algorithmics

based on operator splitting is much more efficient and faster. It is very robust and

enables us to deal with large data sets. Chapter 8 handles one of the main goals of

our research project: strain values calculation and analysis. We use a novel method

to quantitatively analyze and compare the strain values distribution computed at

around 2000 points of the mitral valve surface. In Chapter 9, the regional strain

values distributions will be studied for several anatomic regions of the mitral valve

surface. Finally, automatic classification for various clinically defined groups of pa-

tients is implemented using support vector machines. The accuracy achieved by our

SVM approach is about 80%.
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CHAPTER 2

Mitral Valve Modeling

The mitral valve is an important valve in the human heart. When it opens, the

blood will go through from the left atrium to the left ventricle. The mitral valve

has two leaflets, an anterior leaflet and a posterior leaflet. In a normal patient, the

anterior leaflet and posterior leaflet will close to prevent the blood backflow into the

atrium. In mitral valve prolapse, the valve leaflets balloon upward as the ventricle

contracts due to the mitral valve leaflets’ abnormal size or damaged mitral valve

tissues. For most patients with mitral valve prolapse, the root cause of the problem

is unknown. Nearly 8 million people in the US have mitral valve prolapse. The most

severe situation, named regurgitation, is when the valve leaflets do not properly close,

4



2.1. PRINCIPAL COMPONENT ANALYSIS

forcing blood back into the atrium.

For each 3D image snapshot of a given patient’s mitral valve, the TOMTEC soft-

ware is used interactively by K. C. El Tallawi (MD at Houston Methodist Hospital).

He provides us with a finite 3D grid of points discretizing the mitral valve surface.

In general, there are around 8 to 14 three dimensional image frames for each patient.

For each three dimensional frame, two leaflets are included, the anterior leaflet (820

points) and the posterior leaflet (820 points). This is shown in Figure 2.1. The ante-

rior leaflet (magenta) and posterior leaflet (cyan) have 40 intersection points lying on

two commissures curves (black). The annulus (blue), the anterior coaptation curve

(red), the posterior coaptation curve (green ) respectively have 80, 40 and 40 points.

Based on these grid data, we construct a uniform mesh which is better suited

for our optimization. This means the size of every grid will be almost the same.

We will separate anterior leaflet and posterior leaflet, and use principal component

analysis for pre-alignment, then generate a new model using the spline interpolation

techniques.

2.1 Principal Component Analysis

Suppose we have L + 1 frames per sample. For the image frame acquired at time

t, denote by St ≡ {PT (t)
i |1 ≤ i ≤ Nt} the set of frame surface points, introduce

the subset Stant ≡ {PAti|1 ≤ i ≤ Na} corresponding to the anterior leaflet and the

subset Stpos ≡ {PP t
i |1 ≤ i ≤ Np} discretizing the posterior leaflet, where 0 ≤ t ≤ L;

typically Nt = 1600, Na = 820 and Np = 820.

5



2.1. PRINCIPAL COMPONENT ANALYSIS

Figure 2.1: Mitral valve: when the valve is closed, the anterior coaptation line
will meet the posterior coaptation line. Anterior leaflet (magenta), posterior leaflet
(cyan), annulus (blue), commissure curve (black), anterior coaptation line (red),
posterior coaptation line (green).

For each leaflet, principal component analysis (PCA) is applied for pre-alignment

of the leaflet surface. We choose the anterior leaflet S1
ant as an example to illustrate

how it works. For simpler notation, we ignore the index t, i.e., Sant ≡ {PAi|1 ≤ i ≤

Na}. In 3D space, each point is represented by PAi ≡ (xi, yi, zi). The PCA is done

as follows. Step 1, find the center point PC ≡ (c1, c2, c3), which is the mean value of

each coordinate. Step 2, center the data. For each point PAi, the new coordinates

are PA′i ≡ (x′i, y
′
i, z
′
i) ≡ (xi − c1, yi − c2, zi − c3). Step 3, use the covariance matrix

6



2.2. FITTING LEAFLET BOUNDARIES BY CUBIC SMOOTHING SPLINE

(Σ) of the centered data; the principal components (e′′1, e
′′
2, e
′′
3) are computed based

on a singular value decomposition. The vectors (e′′1, e
′′
2, e
′′
3) are the eigenvectors of Σ

corresponding to the eigenvalues λ1, λ2, λ3. Step 4, transfer the points into a new

basis. We get S ′′ant ≡ {PA′′i |1 ≤ i ≤ Na} ≡ {(x′′i , y′′i , z′′i )|1 ≤ i ≤ Na} as new

coordinates [29].

The purpose of pre-alignment is trying to construct the surface function g(x′′, y′′)

for a given mesh S ′′. This is what we discuss next.

2.2 Fitting Leaflet Boundaries By Cubic Smooth-

ing Spline

The boundary of the anterior leaflet contains four pieces: part of the annulus, two

commissures, and an anterior coaptation line. They will be fitted separately. To

simplify the notation, we denote the new coordinates by xyz. The parametric curve

(x(τ), y(τ), z(τ)) is denoted by Sc.

We focus on finding a spline function f(τ) ≡ f(x(τ), y(τ)) to fit the data Sc.

Consider the following problem: Among all the function f with two continuous

derivatives, find the one that minimizes the penalized residual sum of squares

PRSS(f, p) = p

m∑
i=1

|zi − f(xi, yi)|2 + (1− p)
∫
|D2f(τ)|2dτ, (2.1)

7



2.2. FITTING LEAFLET BOUNDARIES BY CUBIC SMOOTHING SPLINE

where m is the number of curve points. The smoothing parameter p is chosen em-

pirically to offer a balance between the error measure, which measures closeness to

the data,

RSS(f) =
m∑
i=1

(zi − f(xi, yi))
2,

and the roughness penalty functional, which penalizes the curvature of the function

f

J(f) =

∫
|D2f(τ)|2dτ.

Two special cases are:

• p = 1: no penalty is imposed, the solution can be any function that interpolates

the data.

• p = 0: the solution is the least square line fit to the data [25].

Remarkably, it can be shown that equation (2.1) has an explicit, finite-dimensional,

unique minimizer, which is a natural cubic spline with knots at unique values of

(xi, yi), i = 1, ...,m [25].

In addition, to control the level of fit at different data points, weights wi are

added to the smoothing spline. The problem becomes

p

m∑
i=0

wi|zi − f(xi, yi)|2 + (1− p)
∫ b

a

|D2f(τ)|2dτ.

In practice, we use the MATLAB function csaps of the Curve Fitting Toolbox to

get the cubic smoothing splines [6].

8



2.3. FITTING LEAFLET SURFACE BY THIN-PLATE SPLINE

The fitted smoothing spline f̂(τ) is computed as an approximation function to

predict new values.

2.3 Fitting Leaflet Surface By Thin-plate Spline

For each leaflet surface, we implement smoothing by thin plate splines.

We want to fit the leaflet surface by a single Cartesian equation denoted as

z = g(x, y).

The idea is to set up the variational problem

min
g
p

m∑
i=1

|zi − g(xi, yi)|2 + (1− p)J [g],

where the roughness penalty functional on R2 is

J [g] =

∫ ∫
R2

[(
∂2g(x, y)

∂x∂x
) + 2(

∂2g(x, y)

∂x∂y
) + (

∂2g(x, y)

∂y∂y
)]dxdy.

Solving this variational problem leads to a smooth two dimensional surface, which

is a thin-plate spline. Similarly, for p = 1, the solution approaches an interpolating

function. For p = 0, the solution is the least square fit. We use the MATLAB

function tpaps in the curve fitting tool box [6] to get the thin-plate spline, which is

9



2.3. FITTING LEAFLET SURFACE BY THIN-PLATE SPLINE

of the form

g(x, y) = β0 + β1x+ β2y +
m∑
j=1

αjhj(x, y),

where hj(x, y) = ||(x, y) − (xj, yj)||2 log ||(x, y) − (xj, yj)||2. These hj are examples

of radial basis functions. Using the existing data S, we can estimate the coefficients

β0, β1, β2, and αj, 1 ≤ j ≤ m.

The fitted smoothing spline ĝ(x, y) is a smooth interpolation function for the

leaflet surface.

We start by creating a regular grid in the (x, y) plane. Let a1, a2 represent the

lower bound and upper bound of the first coordinate of the surface Sant and b1,

b2 the bounds for the second coordinate, respectively. Along the x coordinate, we

partition the line from a1 to a2 equally into Nr pieces. The length for each piece

is h ≡ (a2 − a1)/Nr. Then, the spline knots for x coordinate are {a1, a1 + h, a1 +

2h, · · · , a1 +Nrh}.

Along the y coordinate, we use the same length h for each curve segment. Choos-

ing b1 as the start knot, add h to the former knot to get the next knot, until the

knot at the upper bound b2. Suppose we have M pieces, the knots for y coordinate

will be {b1, b1 + h, b1 + 2h, · · · , b1 +Mh}.

Using the knots of the x, y coordinates, we generate a mesh in the (x, y) plane,

which is displayed in Figure 2.2.

Using the thin-plate spline, the surface equation is approximated by z = ĝ(x, y).

10



2.3. FITTING LEAFLET SURFACE BY THIN-PLATE SPLINE
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Figure 2.2: Construction of base plane (Nr = 46, h = 1.125,M = 30), red line is the
boundary
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2.4. COMBINING LEAFLET SURFACE AND BOUNDARY

2.4 Combining Leaflet Surface and Boundary

For each leaflet, define its interior points as the leaflet points which are inside the

boundary and have a distance to the boundary larger than 3h/4.

Denote the starting point of a leaflet boundary curve by pb, and its end point

by pe. Set b0 ≡ pb, then find the boundary point b1 which is at a distance almost

h from the initial point b0. After that we similarly find b2 at distance h from b1.

In the same way, we can find b3, · · · , bn with bn close to the curve end point pe.

If ||bn − pe|| > h/3 , we will add bn to the discretized boundary curve which will

be {b0, b1, · · · , bn, pe}. Otherwise, we will pick pe and disregard bn; the discretized

boundary is then {b0, b1, · · · , bn−1, pe}.

Figure 2.3, 2.4, 2.5 show that the differences between the new grid points just

constructed and the original TOMTEC grid points data are fairly small.

12



2.4. COMBINING LEAFLET SURFACE AND BOUNDARY

Figure 2.3: Anterior leaflet of new uniform data (891 points)
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2.4. COMBINING LEAFLET SURFACE AND BOUNDARY

Figure 2.4: Anterior leaflet of original TOMTEC data (820 points)
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2.4. COMBINING LEAFLET SURFACE AND BOUNDARY

Figure 2.5: Comparison of uniform data and original TOMTEC data
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2.5. CONSIDERING TOTAL FRAMES

2.5 Considering Total Frames

There are usually 5 to 18 frames for each echocardiograph during one heart beat.

For pre-alignment, one can implement PCA on the first frame. Doing so we get the

center and new coordinates, then apply this same change of coordinates to all other

frames. After that, the prealignment is finished. This method works well in most

cases. Another approach is to do PCA to each frame, then fit the leaflet boundary

and surface by splines separately on each frame. After that, match separately the new

coordinate system of each frame to the new coordinate system of the first frame. In

practice, we prefer the first method. We require the next frame to have more points

than the current frame, which means that the grid size Nr is an increasing sequence.
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CHAPTER 3

Diffeomorphic Shape Matching

3.1 Dynamics of Diffeomorpic Flows

The continuous path defined by the time dependent R3-diffeomorphisms Ft will be

constructed as a geodesic t → Ft in a specific infinite dimensional Lie group of

R3-diffeomorphisms.

Fix a Hilbert space U of smooth vector fields on R3 with norm || · ||U ; consider

the associated Hilbert space L2(I, U) of vector field flows where I ≡ [0, 1]. The time

dependent vector field flows ν : t → νt, 0 ≤ t ≤ 1, where νt tends zero at infinity in
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3.1. DYNAMICS OF DIFFEOMORPIC FLOWS

R3 is associated with the flow equation

∂Ft
∂t

= νt(Ft), t ∈ I, (3.1)

F0 = Id, (3.2)

where Id is the identity map. G. Dupuis, U. Grenander, M. Miller, A. Trouvé, M. F.

Beg, and L. Younes have presented this differential equation in papers [16, 40, 42, 8].

For some fixed constant λ > 0, the main variational problem is to find a vector field

flow ν = (νt) which minimizes the cost functional

J(ν) =

∫ 1

0

||νt||2Udt+ λdis[Ft(Sref ), Star], (3.3)

where Sref and Star are the reference surface and target surface. This objective

linearly combines a kinetic energy term and a surface matching term. There are

many known possible different Hilbert spaces and matching functionals, as shown by

many deep research papers, like [20, 24, 19, 16].

This is a classical problem. There are three often used algorithms to compute

large deformation diffeomorphisms. The main algorithms are various types of gradi-

ent descent algorithms including deterministic Newton descent. Christensen [10] has

examined various boundary conditions, including zero, mixed and periodic situations.

See also A. Trouve [42], Grenander and Miller [20]. A second type of algorithm is im-

plemented by Christensen in [11, 35]. S. Joshi [32] implements landmark deformation

in the Lagrangian framework.
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3.2. EXISTENCE AND UNIQUENESS OF COST MINIMIZING
DIFFEOMORPHIC MATCHING

In our research group (UH Mathematics), A. Jajoo has used the gradient descent

with Armijo line search to minimize the cost functional (see [30]). Y. Qin has ap-

plied the second order Newton method to compute a cost minimizing diffeomorphic

flow based on Bellman’s optimal principle. She developed a dynamic programming

algorithm, which works well when the grid size per surface snapshot is small [?].

For clinical application to mitral valves dynamics analysis in nearly real time, we

had to implement computable algorithmics enabling very high speed and acceptable

accuracy. We introduce here an operator splitting technique associated with New-

ton descent to minimize our cost functional. In brief, we break the optimization of

our nonlinear control problem into two parts, an optimal quadratic control problem,

which can be solved very efficiently by the Lagrangian method, and a set of single

period optimization problems, which can be approximated in parallel by Newton

iteration.

3.2 Existence and Uniqueness of Cost Minimizing

Diffeomorphic Matching

The dynamic system (3.1) has a unique solution, when t→ ||νt||U is integrable under

suitable regularity conditions on the Hilbert space of U [16, 19].

Theorem 3.2.1 (Jajoo). Assume ν ∈ L2(I, U) where U is continuously embedded

in Sobolev space W s,2(R3) for some s > 5/2, which is , then the dynamic system

(3.1),(3.2) admits a unique solution Ft with each Ft being an R3-diffeomorphism of

smoothness class 1 ≤ r ≤ s− 3/2.
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3.3. REPRODUCING KERNEL HILBERT SPACES

Proof. See [30]

Thus we define the finite kinetic energy Kin(ν) as

Kin(ν) =
1

2
||ν||2L2(I,U) =

1

2

∫ 1

0

||νt||2Udt. (3.4)

3.3 Reproducing Kernel Hilbert Spaces

In our context, the relevant Hilbert space U of R3 vector fields is defined as a self-

reproducing Hilbert space.

Definition 3.3.1. A function K : R3 × R3 → R is called a semi-positive definite

kernel iff

1. It is symmetric, i.e., K(x, y) = K(y, x), for x, y ∈ R3.

2. It is semi-positive definite, that is
N∑
i=1

N∑
j=1

cicjK(xi, xj) ≥ 0 for an arbitrary positive

integer N , any choice of N vectors xi ∈ R3, and any real values ci ∈ R.

For any positive definite kernel K, we define a set of R3-vector fields w(z,u) indexed

by arbitrary pairs (z, u) ∈ R3 × R3 as w(z,u)(x) = K(z, x)u for all x ∈ R3, and we

denote by LW the vector space of all finite linear combinations of the R3-vector fields

w(z,u). Then LW is endowed with the pre-Hilbertian scalar product

< w(z,u), w(z′,u′) >= K(z, z′) < u, u′ >R3 .

The reproducing kernel Hilbert space U classically defined by K is then the unique
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3.3. REPRODUCING KERNEL HILBERT SPACES

Hilbert space generated by LW.

Definition 3.3.2. Let U be a Hilbert of functions defined on R3. The real function

K(x, y) of x and y in R3 is called a reproducing kernel for U if it satisfies:

1. For every y, Ky(x) := K(x, y) is a function of x belonging to U .

2. The reproducing property: for every y ∈ R3, and every f ∈ U , we have

f(y) = (f(x), Ky(x))U .

There are many kernels to choose from, such as the Laplacian kernel, or the

Gaussian kernel. Usually for shape matching applications, the radial Gaussian kernel

K is often used; it is given by

K(x, y) = exp(−||x− y||
2

σ2
),

with a suitable scale parameter σ > 0.

Definition 3.3.3. The Hilbert space H is said to be a Reproducing Kernel Hilbert

Space, if there exists a reproducing kernel K for H.

Remark 3.3.4. By definition, choosing x, y ∈ R3, we have

Kx(y) =< Kx, Ky >H= K(y, x),

||Kx||H = K(x, x)1/2.
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3.4. DISCRETIZATION OF THE FLOW EQUATION

3.4 Discretization of the Flow Equation

Consider a time partition 0 = t0 < t1 < t2 < · · · < tL = 1, with step size τk =

tk+1 − tk, 0 ≤ k ≤ L − 1. Assume that we are given L + 1 snapshots, the shape

snapshots Sk = S(tk). Represent each snapshot Sk by a finite grid of points {yi(tk) ∈

R3 | 0 ≤ i ≤ Mk}. In our mitral valve application, the discretization of Sk will

be computed by thin plate spline fitting as explained above. Deforming the initial

snapshot S0 by the R3 diffeomorphism F ν
t satisfying the flow equations (3.1), (3.2),

we obtain at time tk the surface Ŝk := F ν
tk

(S0). Denote the trajectory of point xi(0)

by t → xi(t), 1 ≤ i ≤ N . The discretization of Ŝk is {xi(tk) ∈ R3 | 0 ≤ i ≤ N} at

time tk. From (3.1) and (3.2), the ordinary differential equation for point xi(t) will

be

dxi(t)

dt
= νt(xi(t)), t ∈ (0, 1], (3.5)

here νt is the time dependent vector field of velocities.

The left side of equation (3.5) at tk can be discretized by xi(tk+1) and xi(tk) to

give the approximation

dxi(t)

dt
≈ xi(tk+1)− xi(tk)

tk+1 − tk
at time tk.

On the right side of equation (3.5), a well known theorem in papers [9, 31] asserts

that a cost minimizing vector field flow νt in U must be a linear combination of radial
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3.5. DISTANCE BETWEEN SHAPES

Gaussian kernels

K(x, x′) := exp(−||x− x
′||2

2σ2
),

that is

νt(x) =
N∑
n=1

K(xn(t), x)αn(t), x ∈ R3,

here the time dependent vectors αn(t) ∈ R3 are unknown coefficients. We will also

specify the choice of σ later.

The equation (3.5) will be approximated by

xi(tk+1)− xi(tk)
tk+1 − tk

≈
N∑
n=1

K(xn(tk), xi(tk))αn(tk), 0 ≤ i ≤ N, 0 ≤ k ≤ L− 1, (3.6)

which is

xi(tk+1) ≈ xi(tk) + τk

N∑
n=1

K(xn(tk), xi(tk))αn(tk). (3.7)

By the definition of a Reproducing Kernel Hilbert Space, we have the norm

||νt(x)||2 =
N∑
i=1

N∑
j=1

K(xi(t), xj(t))αi(t)
Tαj(t). (3.8)

3.5 Distance between Shapes

To compare two surfaces S and Ŝ, we need to define a distance between S and Ŝ.
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3.5. DISTANCE BETWEEN SHAPES

3.5.1 Hausdorff Distance

Define the distance from point x to surface S by,

D(x, S) = min
y∈S
||x− y||. (3.9)

The classical Hausdorff disparities h(S, Ŝ) and h(Ŝ, S) between two surfaces S, Ŝ are

defined by

h(S, Ŝ) = max
x∈S

(D(x, Ŝ)),

h(Ŝ, S) = max
x∈Ŝ

(D(S, x)).

The Hausdorff distance is Dh(S, Ŝ) = max(h(S, Ŝ), h(Ŝ, S)).

The shortcoming for the use of the distance Dh is that Dh(S, Ŝ) is not a differen-

tiable function of S and Ŝ. But this distance is very useful to monitor the matching

accuracy between a deformed initial surface and a target surface.

3.5.2 Dirac Measure

Consider a smooth compact surface S in R3 discretized by a finite point grid xi of

large size N . The Lebesgue measure of R3 induces on S a bounded measure which

for large N can be well approximated by a linear combination µ of Dirac measures,

as in [9, 31]:

µ =
N∑
i=1

ciδxi ,
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3.5. DISTANCE BETWEEN SHAPES

here δxi is the Dirac mass at node xi, ci is the unknown coefficients.

Consider any existing snapshot St and deformed surface Ŝt = F ν
t (S0). Denote

the corresponding measures by

µ(S0) =
N∑
i=1

aiδxi(0), µ(Ŝ) =
N∑
i=1

aiδxi(t), µ(S) =
M∑
i=1

biδyi(t), (3.10)

here setting coefficients ai = 1
N

, and bj = 1
M

. Associated with another Gaussian ker-

nel Ks for some positive suitable scale parameter s, the disparity function ψ(F ν
t (S0))

between surface St and Ŝt is

ψ(F ν
t (S0)) := ||

N∑
i=1

aiδxi(t) −
M∑
j=1

bjδyj(t)||2H

=<
N∑
i=1

aiδxi(t) −
M∑
j=1

bjδyj(t),
N∑
i=1

aiδxi(t) −
M∑
j=1

bjδyj(t) >H

=<
N∑
i=1

aiδxi(t),
N∑
i=1

aiδxi(t) >H −2 <
N∑
i=1

aiδxi(t),
M∑
j=1

bjδyj(t) >H

+ <
M∑
j=1

bjδyj(t),
M∑
j=1

bjδyj(t) >H (3.11)

=
N∑
i=1

N∑
j=1

aiajKs(xi(t), xj(t))− 2
N∑
i=1

M∑
j=1

aibjKs(xi(t), yj(t))

+
M∑
i=1

M∑
j=1

bibjKs(yi(t), yj(t)).

To quantify the matching accuracy of all discrete snapshots, the disparity cost

functional is

Ψ(v) :=
L∑
k=1

λkψ(F ν
tk

(S0)), (3.12)
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3.6. THE CHOICE OF THE SCALE PARAMETERS σ AND S IN GAUSSIAN
KERNELS

here λk is an adequately selected fixed positive weight. For the choice of λk, there

are two special cases: Choice (1): uniformly deal with all snapshots by setting λk =

1, 1 ≤ k ≤ L. Choice (2): focus only on the end snapshot by setting λL = 1, and the

other λk as 0.

3.6 The Choice of the Scale Parameters σ and s

in Gaussian Kernels

Suppose S◦ is the finite grid discretizing the interior of the interior of an initial

surface S. For each p ∈ S◦, and each fixed integer r > 0, define N (p) ⊂ S◦ as the

set of the r closest neighbors of p in S◦, including p itself. The radius function is

defined by

R(p) = max
z∈N (p)

||p− z||,∀p ∈ S◦.

Then the local mesh size of S◦ is

M(S◦) = max
p∈S◦
{R(p)}.

The scale parameter σ for the radial Gaussian kernel will be selected as follows

σ =
coef1 ×M(S◦)√

2
,

where coef1 is some constant such that 1 ≤ coef1 ≤ 2.
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3.6. THE CHOICE OF THE SCALE PARAMETERS σ AND S IN GAUSSIAN
KERNELS

For selecting the s value, we use the Hausdorff distance between Ŝ and S

s = coef2 ×
Dh(Ŝ, S)√

2
,

here 1 ≤ coef2 ≤ 2.

In our experiments, s is a variable depending on how close the deformed surface

is to the target surface.

In practice, we introduce high quantiles instead of absolute maxima to avoid

possible strange values around the boundary. For instance, M(S◦) will be

M(S◦) := 80th percentile of {R(p)|p ∈ S◦}.

Similarly, Dh(Ŝ, S) will be changed to

Dh(Ŝ, S) := 98th percentile of {D(x, S)|x ∈ Ŝ}.
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3.7. EXISTENCE OF A SOLUTION FOR THE COST MINIMIZATION
PROBLEM

3.7 Existence of a Solution for the Cost Minimiza-

tion Problem

Using the kinetic energy Kin(ν) defined in (3.4) and the disparity function ψ(F ν
t (S0))

defined in (3.11), the cost function J : L2(I, U)→ R introduced in papers [1, 22] is

J(ν) := λ0Kin(ν) +

1∫
0

ψ(F ν
t (S0))dt, (3.13)

here λ0 is a fixed weight to be determined later on.

Theorem 3.7.1. The minimization problem

inf
ν∈L2(I,U)

J(ν),

under the non-linear constraints specified by the ODE system (3.1),(3.2) has a solu-

tion.

Proof. See [2].
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CHAPTER 4

Optimal Nonlinear Control Problem

4.1 Problem Description

The notations are

xk := x(tk) = (x1(tk), · · · , xN(tk)) ∈ R3N ,

yk := (y1(tk), · · · , yM(tk)) ∈ R3M is target data,

αk := α(tk) = (α1(tk), · · · , αM(tk)) ∈ R3M ,
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4.1. PROBLEM DESCRIPTION

x := (x0,x1, · · · ,xL) ∈ R3N(L+1),

y := (y0,y1, · · · ,yL) ∈ R3M(L+1),

α := (α0,α1, · · · ,αL) ∈ R3M(L+1),

K(xk) = [Kij(x(tk))] ∈ R3N×3M the N ×M block matrix of Kij(x(tk)) ,

Kij(x(tk)) = Ks(xi(tk), yj(tk))I3 ∈ R3×3,

K(yk) = [Kij(y(tk))] ∈ R3M×3M the M ×M block matrix of Kij(y(tk)) ,

Kij(y(tk)) = K(yi(tk), yj(tk))I3 ∈ R3×3,

0 ≤ k ≤ L.

The purpose is to minimize the discrete cost functional:

minimize J({αk}Lk=0;xinit) := λ0

L−1∑
k=0

φ(xk,αk; tk) +
L∑
k=1

λkψ(xk), (4.1)

subject to xk+1 = xk + τkK(xk)αk, k = 0, · · · , L− 1, (4.2)

x0 = xinit.
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4.2. SPLITTING TECHNIQUE

The kinetic energy and the snapshots matching terms are given by

φ(xk,αk; tk) =
τk
2
αTkK(yk)αk. (4.3)

ψ(xk) =
1

N2

N∑
i,j=1

Ks(xi(tk), xj(tk))−
2

NM

N∑
i=1

M∑
j=1

Ks(xi(tk), yj(tk)) (4.4)

+
1

M2

M∑
i,j=1

Ks(yi(tk), yj(tk)).

Combining them, we get the discrete cost functional in detail

J({αk}Lk=1) =
L−1∑
k=0

τk
2
αTkK(yk)αk +

L∑
k=1

λk

{ 1

N2

N∑
i,j=1

Ks(xi(tk), xj(tk))

− 2

NM

N∑
i=1

M∑
j=1

Ks(xi(tk), yj(tk)) +
1

M2

M∑
i,j=1

Ks(yi(tk), yj(tk))
}
.

4.2 Splitting Technique

For convenience, setting Φ(x,α) :=
L−1∑
k=0

φ(xk,αk; tk) and Ψ(x,α) =
L∑
k=1

λkψ(xk),

the cost function to minimize then becomes

J(x,α) = Φ(x,α) + Ψ(x,α).
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4.2. SPLITTING TECHNIQUE

We try to decouple the minimizations of Φ and Ψ as follows

minimize J(x,α) = Φ(x,α) + Ψ(x̃, α̃),

subject to ||(x,α)− (x̃, α̃)|| < ε,

xk+1 = xk + τkK(xk)αk, k = 0, · · · , L− 1.

Definition 4.2.1. The proximal operator proxf (v) : Rd → Rd of f is defined by

proxf (v) = arg min
x

(f(x) + (1/2)||x− v||2). (4.5)

The proximal minimization algorithm, also called proximal iteration, is xn+1 :=

proxf (x
n) where f : Rd → R ∪ {+∞} is a closed proper convex function, n is

the iteration counter, and xn denotes the nth iterate of the algorithm. If f has

a minimum, then xn will converge to the minimizer of the function f and f(xn)

converges to the minimum of f (see [4]).

The Alternating Direction Method of Multipliers (ADMM), also known as Douglas-

Rachford splitting, starts from any (x̃0, α̃0) , (z0, β0) and implements the following

iterative steps for n = 0, 1, · · ·

(xn+1,αn+1) := proxρΦ+ID((x̃n, α̃n) + (zn, βn)),

(x̃n+1, α̃n+1) := proxρΨ((xn+1,αn+1)− (zn, βn)),

(zn+1, βn+1) := (zn, βn) + (x̃n+1, α̃n+1)− (xn+1,αn+1),
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4.2. SPLITTING TECHNIQUE

where D = {(x,α)|x0 = xinit, xk+1 = xk + τkK(xk)αk, 0 ≤ k ≤ L − 1} is

the set of state-control pairs that satisfies the dynamics, ρ > 0 is the parameter.

(z, β) is a pair of dual variables associated with the consensus constraint ||(x,α)−

(x̃, α̃)|| < ε, (zn+1, βn+1) is the running sum of errors (x,α)− (x̃, α̃) and converges

to zero. In other words, (xn,αn) − (x̃n, α̃n) tends to 0 as n tends to infinity. This

technique converges under very general conditions [7]. The advantage of ADMM is

that the objective terms are handled completely separately, and indeed, the functions

are accessed only through their proximal operators. ADMM is most useful when

the proximal operators of Φ and Ψ can be efficiently evaluated while the proximal

operator for the sum of Φ and Ψ is not easy to evaluate.

The optimal control problem (4.1), (4.2) will hence be solved here by the following

explicit version of the Douglas-Rachford Splitting Method:

(xn+1,αn+1) = arg min
(x,α)∈D

(Φ(x,α) +
ρ

2
||(x,α)− (x̃n, α̃n)− (zn, βn)||22), (4.6)

(x̃n+1, α̃n+1) = arg min
(x̃,α̃)

(Ψ(x̃, α̃) +
ρ

2
||(x̃, α̃)− (xn+1,αn+1) + (zn, βn)||22), (4.7)

(zn+1, βn+1) = (zn, βn) + (x̃n+1, α̃n+1)− (xn+1,αn+1), (4.8)

with variables (x,α), (x̃, α̃) ∈ R3N(L+1)+3M(L+1), and ρ > 0 is an algorithm param-

eter. This formalization is referred as consensus form in papers [15, 7, 23].
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4.3. QUADRATIC CONTROL STEP

Φ(x,α) : =
L−1∑
k=0

φ(xk,αk; tk)

= λ0

L−1∑
k=0

τk
2
αTkK(yk)αk

= λ0

L−1∑
k=0

τk
2

xk
αk


T 0 0

0 K(yk)


xk
αk



=
λ0

2



x0

α0

...

xL−1

αL−1

xL

αL



T 

0 0 · · · 0 0 0 0

0 τ0K(y0) · · · 0 0 0 0

...
...

. . .
...

...
...

...

0 0 · · · 0 0 0 0

0 0 · · · 0 τL−1K(yL−1) 0 0

0 0 · · · 0 0 0 0

0 0 · · · 0 0 0 0





x0

α0

...

xL−1

αL−1

xL

αL



.

4.3 Quadratic Control Step

The first step (4.6) in the splitting algorithm

minimize
(x,α)∈D

(Φ(x,α) +
ρ

2
||(x,α)− (x̃n, α̃n)− (zn, βn)||2),
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4.3. QUADRATIC CONTROL STEP

can be expressed in matrix form and the objective function is a quadratic function:

minimize
1

2
ωTEω + ηTω, (4.9)

subject to Gω = h.

Here the vectors ω, η ∈ R(3N+3M)(L+1), h ∈ R3N(L+1), and the matrices

E ∈ R(3N+3M)(L+1)×(3N+3M)(L+1), G ∈ R3N(L+1)×(3N+3M)(L+1) are given by

ω =



x0

α0

...

xL

αL


, η =



−ρ(x̃n0 + zn0 )

−ρ(α̃n0 + βn0 )

...

−ρ(x̃nL + znL)

−ρ(α̃nL + βnL)


, h =



xinit

0

...

0


,

E =



ρI 0 · · · 0 0

0 λτ0K(y0) + ρI · · · 0 0

...
...

. . .
...

...

0 0 · · · ρI 0

0 0 · · · 0 ρI


,
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4.3. QUADRATIC CONTROL STEP

and

G =



I 0 0 · · · 0 0 0 0

−I −τ0K(y0) I · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 · · · I 0 0 0

0 0 0 · · · −I −τL−1K(yL−1) I 0


.

In order to solve this quadratic optimization problem, we use the method of

Lagrange multipliers. Define the Lagrange function

L(ω,Λ) =
1

2
ωTEω + ηTω + ΛT (Gω − h).

The KKT conditions for the solution ω∗ and Λ∗ of this quadratic programming

problem give rise to the following linear system

E GT

G 0


ω∗

Λ∗

 =

−η
h

 .
To make sure the matrix is invertible, we will add a small ε on the 0 block in the

KKT matrix. Suppose we can apply the LDLT decomposition to the regularized
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4.4. SINGLE PERIOD PROXIMAL STEP

KKT,

E GT

G ε

 = PLDLTP T . (4.10)

Then the solution could be expressed as

ω∗
Λ∗

 = PL−TD−1L−1P T

−η
h

 . (4.11)

Then we can get (xn+1,αn+1) from ω∗.

In practice, we initialize x̃1, α̃1, z1 and β1 as follows: x̃1 = (x0,x0, · · · ,x0),

α̃1 = 0, z1 = 0, β1 = 0.

4.4 Single Period Proximal Step

In (4.7), the second minimization problem of the splitting algorithm is

minimize
(x̃,α̃)

(Ψ(x̃, α̃) +
ρ

2
||(x̃, α̃)− (xn+1,αn+1) + (zn, βn)||2),

where

Ψ(x̃, α̃) =
L∑
k=1

λkψ(x̃k).

Here, ψ(x̃, α̃) is separable across state and control. It can be split further into

L proximal optimization problems. So (4.7) can be changed to find the minimizing
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4.4. SINGLE PERIOD PROXIMAL STEP

value of x̃k, α̃k as follows:

minimize
(x̃k,α̃k)

λkψ(x̃k) +
ρ

2
||(x̃k, α̃k)− (xn+1

k − znk ,αn+1
k − βnk )||22. (4.12)

Hence, the minimizing value for α̃k has the form α̃k = αn+1
k − βnk . To find the

minimizing value for x̃k, we have to solve the following optimization problem:

minimize
x̃k

SPk(x̃k) := λkψ(x̃k) +
ρ

2
(x̃k − (xn+1

k − znk ))2. (4.13)

Simplify the notation as follows:

SPk(x̃k) = λkψ(x̃k) +
ρ

2
(x̃k − wk)2, (4.14)

where wk = xn+1
k − znk . Our goal is to find a local minimizer for x̃k.

We use Newton’s method [37], which is displayed in Algorithm 1 to compute the

minimal value of the function SPk(x̃k).

Algorithm 1 Pure Newton’s method

1: Select and fix a tolerance parameter εnewton > 0 ;
Require: : initialize ξ0 ∈ R2N arbitrarily.

2: l = 1.
3: compute the Newton direction dl, which satisfies ∇2SPk(ξ

l)dl = −∇SPk(ξ
l);

4: set ξl+1 = ξl + dl;
5: if ||∇SPk(ξ

l+1)|| < εnewton then
6: stop and ξl+1 will be the local minimum assigned to the output x̃n+1

k

7: else
8: return to step 2, and set l = l + 1;

We can run Newton’s method L times to get (x̃n+1, α̃n+1) in (4.7).
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4.4. SINGLE PERIOD PROXIMAL STEP

The first and second derivatives of SPk are needed in the preceding Newton

descent,

[(SPk)x]u =
2λk
N2

N∑
j=1

Ks(x
u, xj)(−x

u − xj

s2
)− 2λk

NM

M∑
j=1

Ks(x
u, yj)(−x

u − yj

s2
)

+ ρ(xu − wu),

and

[(SPk)xx]uv = δvu[
2λk
N2

N∑
j=1

K11(xu, xj)− 2λk
NM

M∑
j=1

K11(xu, yj)

+ ρI3×3] +
2λk
N2

K12(xu, xv),

where

K11(xu, xj) =
∂

∂xu
[−Ks(x

u, xj)
(xu − xj)

s2
]

= Ks(x
u, xj)

(xu − xj)′(xu − xj)
s4

−Ks(x
u, xj)

I3×3

s2
,

K11(xu, yj) =
∂

∂xu
[−Ks(x

u, yj)
(xu − yj)

s2
]

= Ks(x
u, yj)

(xu − yj)′(xu − yj)
s4

−Ks(x
u, yj)

I3×3

s2
,
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4.5. RELAXATION AND REGULARIZATION

and

K12(xu, xv) =
∂

∂xv
[−Ks(x

u, xv)
(xu − xv)

s2
]

= −Ks(x
u, xv)

(xu − xv)′(xu − xv)
s4

+Ks(x
u, xv)

I3×3

s2
.

4.5 Relaxation and Regularization

To improve the convergence rate of the preceding operator splitting technique, we

apply a relaxation approach, which replaces (xn+1, αn+1) in (4.7) and (4.8) by

(xn+1
new ,α

n+1
new) = a(xn+1,αn+1) + (1− a)(x̃n, α̃n), (4.15)

where a ∈ (0, 1) is a relaxation parameter.

To ensure the factorization always exists and the factorization algorithm is stable,

we need to regularize the system. Instead of the original KKT matrix, we factor the

regularized KKT matrix as indicated in (4.10).

4.6 Convergence and Stopping Criteria

The primal residual and dual residual for (4.1),(4.2) are defined by

ren = (xn,αn)− (x̃n, α̃n), (4.16)

dren = ρ((x̃n, α̃n)− (x̃n−1, α̃n−1)). (4.17)

40



4.6. CONVERGENCE AND STOPPING CRITERIA

Our stopping criterion is to stop iterations when the residuals are smaller than

some thresholds

||ren||2 ≤ εpri, ||dren||2 ≤ εdual,

where εpri > 0, εdual > 0 are tolerances for primal and dual feasibility. The actual

values of those two tolerances will be set as follows

εpri = εabs
√

(L+ 1)(N +M) + εrel max{||(xn, un)||2, ||(x̃n, α̃n)||2}, (4.18)

εdual = εabs
√

(L+ 1)(N +M) + εrel||(zn, βn)||2, (4.19)

where εabs > 0 and εrel > 0 are absolute and relative tolerances respectively.
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CHAPTER 5

Application to Concrete Diffeomorphic Shape Matching

Examples

All computations are carried out on a system of dual core Intel i7-6600u with CPU

2.6GHz and 2.81GHz, and 8GB of RAM, running Windows 10. All our codes are

implemented in Matlab.
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5.1. MATCHING FROM PLANE TO SPHERE

5.1 Matching from Plane to Sphere

The initial and target surfaces y0 and y1 are respectively a planar disc of radius 1

and an upper hemisphere of radius 2 in R3. For simplicity, the time partition is

t0 = 0 and t1 = 1. A spherical coordinate system is used to generate a point grid

of size ny on the upper hemisphere of radius 2 in R3. Fix an integer ny. Define

two vectors of ny angles, namely θy = [0, π
2(ny−1)

, · · · , π
2(ny−1)

, π(ny−2)

2(ny−1)
] ∈ R(ny−1), and

ϕy = [0, 2π
ny
, · · · , 2π] ∈ Rny . The initial planar disc of radius ry(t0) = 1 in R3 is

discretized by the following set of ny(ny − 1) points

y(i,j)(t0) = [ry(t0) cos(θy(i))cos(ϕy(j)), ry(t0) cos(θy(i)) sin(ϕy(j)), 0],

1 ≤ i ≤ ny − 1, 1 ≤ j ≤ ny. Define similarly two other vectors of nx angles denoted

by θx and ϕx, fix rx(t0) = 1 and define another finite planar grid of points by

x(i,j)(t0) = [rx(t0) cos(θx(i))cos(ϕx(j)), rx(t0) cos(θx(i)) sin(ϕx(j)), 0],

1 ≤ i ≤ nx − 1, 1 ≤ j ≤ nx.

The discretized grid on the upper hemisphere is given by

y(i,j)(t1) = [ry(t1) cos(θy(i))cos(ϕy(j)), ry(t1) cos(θy(i)) sin(ϕy(j)), ry(t1) sin(θy(i))].

where 1 ≤ i ≤ ny − 1, 1 ≤ j ≤ ny.

These point grids are represented in matrix form as yk = (y1(tk), · · · , yNy(tk)),
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5.1. MATCHING FROM PLANE TO SPHERE

x0 = (x1(t0), · · · , xNx(t0)). The radiuses are fixed as follows: ry(t0) = 1, ry(t1) = 2

and rx(t0) = 1.

Starting from the initial x0, and applying the operator splitting method, we get

the approximation x1 and compare it to y1. Table 5.1 shows the three simulation

results based on three different grid sizes for the target surface; the corresponding

three approximating surfaces x1 are given in Figure 5.1. The first conclusion is

that these approximations are all close to the targeted upper hemisphere with radius

2. The second conclusion is that computing times remain fairly stable when one

increases the number of points in the target surface.

Table 5.1: Operator splitting method for diffeomorphic matching of a planar disc
onto a hemisphere

Number of grid points for x0 182 182 182
Number of grid points for y0 380 462 600

Radius of hemisphere 2 2 2
Horizon length L 2 2 2

Fixed number of iterations 200 200 200
KKT solving time (ms) 0.38 0.35 1.69

Quadratic control step time (ms) 0.013 0.0158 0.0642
Single period proximal step time (ms) 0.132 0.157 0.324

Shape matching disparity 4×10−6 4×10−6 8×10−6

Number of Newton iteration 4 4 4

We put the three approximations of x1 with different mesh sizes of the target

upper hemisphere y1 in the same Figure 5.1. They are very close to each other.
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5.1. MATCHING FROM PLANE TO SPHERE

Figure 5.1: Diffeomorhic matching of a planar disc onto an upper hemisphere
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5.2. DIFFEOMORPHIC MATCHING FROM SURFACE TO SURFACE

5.2 Diffeomorphic Matching from Surface to Sur-

face

Consider the sequence of discretized surface data extracted from echocardiographic

3D movies of mitral valve dynamics. We consider here the mitral valve data corre-

sponding to a single cardiology patient. We have a sequence of 6 discretized mitral

valve snapshots yk, 0 ≤ k ≤ 5 extracted (via TOMTEC softwares) by Carlos El

Tallawi at Houston Methodist Hospital (Cardiology). A divided part of y0 is defined

as initial data x0. We reconstruct an associated diffeomorphic flow matching these

six snapshots by the operator splitting technique described in preceding chapters.

This generates reconstructed trajectories for each initial grid point in xk. Table 5.2

shows two approximation results corresponding to different grid sizes for the dis-

cretization of the initial surface x0. We conclude from Figures 5.2 and 5.3 that for

each one of the snapshots 1,2,3,4,5, the reconstructed snapshot is very close to the

given true snapshot. The boundary matching for the second case is not very accu-

rate. In the next chapter, we will indicate how to place additional constraints for

better boundary matching.
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5.2. DIFFEOMORPHIC MATCHING FROM SURFACE TO SURFACE

Table 5.2: Operator splitting method for diffeomorphisms from surface to surface
Case Case 1 Case 2

Grid size for x0 144 288
Grid size for y0 576 576

Horizon length L 6 6
Fixed number of iterations 80 80

KKT solving time (ms) 1.91 3.73
Quadratic control step time (ms) 0.06 0.12

Single period proximal step time (ms) 0.84 2.33
Shape matching disparity 9× 10−3 6× 10−3

Number of Newton iteration 5 5
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5.2. DIFFEOMORPHIC MATCHING FROM SURFACE TO SURFACE

(a) Frame 0 (b) Frame 1

(c) Frame 2 (d) Frame 3

(e) Frame 4 (f) Frame 5

Figure 5.2: Comparison of reconstructed snapshot (red) and target snapshot (blue)
for six 3D image frames of case 1
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5.2. DIFFEOMORPHIC MATCHING FROM SURFACE TO SURFACE

(a) Frame 0 (b) Frame 1

(c) Frame 2 (d) Frame 3

(e) Frame 4 (f) Frame 5

Figure 5.3: Comparison of reconstructed snapshot (red) and target snapshot (blue)
for six 3D image frames of case 2
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CHAPTER 6

Diffeomorphic Matching for Surfaces with Boundaries

6.1 Adjustment

In the cost functions studied precedingly, the weights in the matching disparity

terms are identical for interior points and boundary points. In order to improve the

boundary matching accuracy, a larger weight is added to the shape disparity terms

involving boundary points. Specifically, denote by x′k, y′k the boundary points for

the reconstructed snapshot and true snapshot. Denote by N ′ and M ′ the respective

grid sizes of the reconstructed and true boundaries. The cost function (4.1) and the
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6.1. ADJUSTMENT

minimization problem are now modified as follows:

minimize J({αk}Lk=0) :=
L−1∑
k=0

φ(xk,αk; tk) (6.1)

+
L∑
k=1

λkψ(xk) +
L∑
k=1

λ̂kψ̂(x′k),

subject to xk+1 = xk + τkK(xk)αk, k = 0, · · · , L− 1, (6.2)

x0 = xinit,

where each λ̂k is a new weight associated with the boundary matching term for the

k − th reconstructed and true snapshots. The three functionals φ, ψ, ψ̂ are now

defined as follows:

φ(xk,αk; tk) =
τk
2
αTkK(yk)αk, (6.3)

ψ(xk) =
1

N2

N∑
i,j=1

Ks(xi(tk), xj(tk))−
2

NM

N∑
i=1

M∑
j=1

Ks(xi(tk), yj(tk)) (6.4)

+
1

(M)2

M∑
i,j=1

Ks(yi(tk), yj(tk)),

ψ̂(x′k) =
1

N ′2

N ′∑
i,j=1

Ks′(x
′
i(tk), x

′
j(tk))−

2

N ′M ′

N ′∑
i=1

M ′∑
j=1

Ks′(x
′
i(tk), y

′
j(tk)) (6.5)

+
1

(M ′)2

M ′∑
i,j=1

Ks′(y
′
i(tk), y

′
j(tk)).
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6.2. MATLAB IMPLEMENTATION

The operator splitting method to solve this slightly modified optimal control problem

is given by:

(xn+1,αn+1) := arg min
(x,α)∈D

(Φ(x,α) +
ρ

2
||(x,α)− (x̃n, α̃n)− (zn, βn)||22),

(x̃n+1, α̃n+1) = arg min
(x̃,α̃)

(Ψ(x̃, α̃) +
ρ

2
||(x̃, α̃)− (xn+1,αn+1) + (zn, βn)||22),

(zn+1, βn+1) := (zn, βn) + (x̃n+1, α̃n+1)− (xn+1,αn+1).

Here

Ψ(x̃, α̃) =
L∑
k=1

(λkψ(x̃k) + λ̂kψ̂(x̃′k)). (6.6)

There are no changes in the quadratic control step for the kinetic energy and the last

step. The only thing that needs to be adjusted is the single period proximal step,

because we use a different Ψ function.

6.2 Matlab Implementation

As discussed in Chapter 2, we first construct an almost uniform reconstruction of

the discretizing point grids for the anterior leaflet and the posterior leaflet of a

mitral valve. The results are shown in Figures 6.1 and 6.2, respectively. Figure (a)

displays the discretizing point grid of the reconstructed initial surface, which is the

midsystol snapshots. Figure (b) displays the comparison of discretized point grid of

reconstructed target surface with TOMTEC discretized snapshots at endsystol.
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6.2. MATLAB IMPLEMENTATION

(a) Anterior leaflet of new uniform discretizing
point grid on midsystole frame

(b) Anterior leaflet of new uniform (red) with ex-
isting (blue) discretizing point grid on endsystole
frame

Figure 6.1: Anterior leaflet

(a) Posterior leaflet of new uniform discretizing
point grid on midsystole frame

(b) Posterior leaflet of new uniform (red) with ex-
isting (blue) discretizing point grid on endsystole
frame

Figure 6.2: Posterior leaflet
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6.2. MATLAB IMPLEMENTATION

6.2.1 Shape Matching

In Figures 6.3 and 6.4, we display the diffeomorphic deformation of the anterior and

posterior leaflets. The bottom surface is the initial snapshot, and the top surface is

the fifth snapshot.

Figure 6.3: Successive deformations of anterior leaflet between midsystole and
endsystole (six 3D image frames).
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Figure 6.4: Successive deformations of posterior leaflet between midsystole and
endsystole (six 3D image frames).
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6.2. MATLAB IMPLEMENTATION

The comparison of our reconstructed snapshots with target snapshots are dis-

played in Figures 6.5 and 6.6, respectively. These new snapshots matching are much

more accurate than the results obtained in the preceding chapter without introducing

stronger constraint on boundary matching.
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6.2. MATLAB IMPLEMENTATION

(a) Frame 0 (b) Frame 1

(c) Frame 2 (d) Frame 3

(e) Frame 4 (f) Frame 5

Figure 6.5: Comparison of reconstructed snapshots (red) with target snapshots (blue)
for the anterior leaflet.
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6.2. MATLAB IMPLEMENTATION

(a) Frame 0 (b) Frame 1

(c) Frame 2 (d) Frame 3

(e) Frame 4 (f) Frame 5

Figure 6.6: Comparison of reconstructed snapshots (red) with target snapshots (blue)
for the posterior leaflet
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6.2. MATLAB IMPLEMENTATION

At the end of the algorithmic cost minimization, the Hausdorff distances between

the reconstructed and targeted snapshots are systematically computed to quantify

the physical accuracy of the diffeomorphic reconstruction. The Hausdorff distance

curves displayed in Figure 6.7 decrease to a stable value, which nearly matches the

mesh size of our discretization grids.
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Figure 6.7: Hausdorff distances between reconstructed snapshots and target snap-
shots for each mitral valve leaflet
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CHAPTER 7

Numerical Comparison between Operator Splitting and Second

Order Newton Descent

In this chapter, we numerically compare our operator splitting method with the

second order variational approach implemented in earlier studies by Yue Qin. In her

dissertation [47], she used a second order Newton descent approach to construct an

optimal diffeomorphic matching a given finite set of mitral valve leaflets snapshots.

The basic idea in her work was to use Bellman’s optimality principle with quadratic

approximation to solve a nonlinear optimal control problem. We refer to her thesis

[47] for details.
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The continuous time nonlinear control problem is subjected to the following ODE

constraints

dx

dt
= F (x(t), α(t)), t ∈ (0, 1],

x(0) = x0

where the cost associated to the trajectory x(t) and the controls α(t) is given by

J(α) =

∫ 1

0

g(x(t), α(t))dt+ φ(x(1))

where the terminal payoff φ(x(1)) is the disparity between x(1) and the target set

S1, see (3.11).

In the classical Bellmann formalism, the associated value function V (x, t) is then

defined by

V (x, t) = inf
α

(

∫ 1

t

g(x(t), α(t))dt+ φ(x(1))) (7.1)

The value function V (x, t) represents the cost incurred from starting in state x(t) at

time t and controlling the system optimally from then until final time t = 1.

Based on Bellman’s optimality principle, and assuming that the value function

V is a C1 function of the variable (x, t), one needs to solve the nonlinear partial

differential equation

Vt(x, t) + min
α
{F (x, α) · 5xV (x, t) + g(x, a)} = 0
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with final state condition for x ∈ Rd, V (x, 1) = φ(x).

In [47], for the diffeomorphic matching problem, the authors introduce a quadratic

approximation for all the functions involved, in order to numerically derive the feed-

back control law. To apply their approach to the diffeomorphic matching problem ,

a key technical point in [47] is the use of the second order Newton descent method.

We have tested and compared these two diffeomorphic matching techniques in

four cases where we want to deform N discretized grid points of initial given surface

(S0) to a given M1 discretized grid points of target surface (S1) by a diffeomorphic

matching. Figure 7.1 displays those grid points of surface. The results are displayed

in Table 7.1. Our operator splitting method is more stable and much faster than

the Newton descent method implemented by Yue Qin. When sizes of the point

grids discretizing the surfaces become greater than 400 points, the Newton descent

algorithm can often break down due to the singularity of the Hessian matrix.

We select the fourth case to illustrate the comparison of matching disparity,

kinetic energy, CPU time and Hausdorff distances in Figures 7.2, 7.3, 7.4 and 7.5.

7.4 displays the statistical quantitative measure of distance D(x, S1) in (3.9) with

x ∈ Ŝ1 for every iteration.
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(a) Case 1: 83 grid points of initial surface (red)
and 82 grid points of target surface (blue).

(b) Case 2: 172 grid points of initial surface (red)
and 160 grid points of target surface (blue).

(c) Case 3: 332 grid points of initial surface (red)
and 302 grid points of target surface (blue).

(d) Case 4: 657 grid points of initial surface (red)
and 654 grid points of target surface (blue).

Figure 7.1: Four cases of discretized grid points of initial given surface (red) and
target surface (blue).
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Table 7.1: Comparison of operator splitting method with Newton descent method.
N and M1 are the grid sizes for the initial snapshot and target snapshot. L = 2 is
the number of given snapshots

Case Parameter Operator splitting Newton descent
Case 1
N : 83
M1 : 82
L : 2

Number of iterations 200 52
Matching disparity 2.6× 10−3 4.2× 10−5

Hausdorff distance 3.13 2.53
Kinetic energy 186 243
CPU time/iteration 0.023 0.073

Case 2
N : 172
M1 : 160
L : 2

Number of iterations 200 49
Mmatching disparity 4.91× 10−4 4.06× 10−5

Hausdorff distance 1.80 2.39
Kinetic energy 345 152
CPU time/iteration 0.086 0.401

Case 3
N : 332
M1 : 302
L : 2

Number of iterations 200 51
Matching disparity 3.37× 10−4 4.47× 10−5

Hausdorff distance 1.60 2.88
Kinetic energy 616 343
CPU time/iteration 0.36 1.81

Case 4
N : 657
M1 : 654
L : 2

Number of iterations 200 50
Matching disparity 5.46×10−5 4.10× 10−5

Hausdorff distance 1.11 3.22
Kinetic energy 1179 327
CPU time/iteration 1.87 9.9
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(b) Case 4: Netwon descent

Figure 7.2: Matching disparity
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(b) Case 4: Newton descent

Figure 7.3: Kinetic energy
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Figure 7.4: Distances comparison
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Figure 7.5: CPU time per iteration in seconds
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CHAPTER 8

Strain Intensities: Definition and Computation

8.1 Strain Intensities: Definition

Around each point p of the mitral valve observed at midsystole, we characterize ”local

tissue fatigue” by ”local tissue length deformation” around p between midsystole and

endsystole. To quantify this local length deformation, we compute and analyze the

strain tensor at p for all mitral valve grid points. This is a technically sophisticated

goal, for which we have developed a highly efficient numerical approach. The main

output of strain tensor computation and analysis is the numerical derivation of an

intuitively interpretable strain intensity SI(p) at p. Strain intensity SI(p) can be
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8.2. CONCRETE COMPUTATION OF STRAIN INTENSITIES

practically viewed as quantifying relative tissue length deformation around p.

This intuitive interpretation of SI(p) is roughly valid for most small mitral valve

tissue segments around the point p. Since relative deformation of length can be

viewed as a percentage, each value SI(p) will be a percentage, a value varying between

0% and 100%.

8.2 Concrete Computation of Strain Intensities

8.2.1 Length Ratio Method

We need to compute the average geometric strain around each point p, which is called

the geometric strain intensity S(p) which we now define.

Call GMS and GES the point grids discretizing a given mitral valve leaflet at

midsystole and endsystole respectively. Assume that we have already computed

a diffeomorphic matching F : R3 → R3 such that F (GMS) = GES. For each

p ∈ GMS, define a small neighborhood N (p) of p, with discrete radius r(p), as the

set of the k points of GMS which are closest to p. For instance, we can take k = 6

or k = 12 or some other value adapted to the mesh size of GMS; the important

constraint is that these points should be physically close to p ∈ R3, and this should

be checked numerically. Then for every point q ∈ N (p), define the corresponding

length deformation by the deformation ratio

R(p, q) = D(p′, q′)/D(p, q) (8.1)
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where p′ = F (p) and q′ = F (q) are the points of GES associated with points p

and q by the deformation F . Here D(p, q) is the distance between p and q on

the discretized surface GMS, and D(p′, q′) is similarly defined on GES. For faster

implementation when the mesh sizes of GMS and GES are fairly small, we can

reasonably approximate D(p, q) and D(p′, q′) by Euclidean distances in R3. The

strain S(p) at p will then be computed by the dimensionless number

S(p) = 1/k
∑

q∈N (p)

R(p, q) (8.2)

which is the local average multiplicative factor representing average length deforma-

tion around the point p, between midsystole and endsystole.

When S(p) > 1, we have local surface dilation around p between midsystole and

endsystole. When S(p) < 1, we have local surface contraction around p. Thus large

values of |S(p)− 1| are indicative of potential high leaflet tissue fatigue at p. So the

local strain intensity SI(p) is defined as follows:

SI(p) = |S(p)− 1| (8.3)

8.2.2 Eigenvalue Method

The mean length ratio characterization of local strain which we have just described

is easily implemented and very efficient, but we have also tested and implemented

a second approach, much closer to the classical theoretical definition of the strain

tensor. Consider only two snapshots of a specific mitral leaflet, namely the midsystole
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snapshot L0 at time t = 0 and the endsystole snapshot L1 at time t = 1. We fix

k = 8 to be the number of closest neighbors of p and p′ = F (p) to define N (p) and

N (p′). We will denote p = p0 and p′ = p1 in the following definitions.

Call T (p0) the local tangent plane to L0 at the point p0. We first have to correctly

approximate the unit normal vector to T (p0). For each triangle 4pab, where a, b ∈

N (p), the normal vector to 4pab is the cross product −→pa×
−→
pb.

A properly weighted average of all these vectors computed over all pairs a, b ∈

N (p) provides us with a good approximation of the unit normal vector to T (p0),

and hence with a good approximation of T (p0), which we still denote by T (p0) for

brevity.

The neighborhood N (p0) is then projected onto the just constructed planar ap-

proximation of T (p0).

Similarly we compute T (p1) and we project N (p1) onto p1. As for p0 we then

denote Π the projection onto T (p1), and we define ΠN 1 = Π(N (P 1)). To compute

the local 2×2 surface strain tensor associated with the diffeomorphic deformation F

at p0, we use planar coordinates q = (x, y) in T (p0) for each point q = Π(p) with p in

N (p0) and planar coordinates q′ = [W1(x, y),W2(x, y)] ∈ T (p1) for the correspond-

ing point q′ = Π(F (q)). We will using second order polynomials to approximate

functions.

We can then approximate explicitly the classical local surface strain tensor by
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the matrix

J (p) =

 ∂W1(x,y)
∂x

1
2
(∂W1(x,y)

∂y
+ ∂W2(x,y)

∂x
)

1
2
(∂W2(x,y)

∂x
+ ∂W1(x,y)

∂y
) ∂W2(x,y)

∂y

 .

The geometric tissue strain geoStr(p) at p is the square root of the ratio of

area between deformed and reference small tissue patches around p, which is an

approximation of the average deformation ratio of small tissue lengths around p

between midsystole and endsystole. The specific formula is

geoStr(p) =
√
| det(J (p))| =

√
|λ1||λ2|, (8.4)

where λ1, λ2 are the eigenvalues of the local surface strain tensor matrix J (p) with

corresponding eigenvectors v1 and v2. When |λ| > 1, we have a local surface dilation

around p in direction v. When |λ| < 1, similarly, we have a local surface contraction.

The leaflet strain intensity SI(p) at p is then given by

SI(p) = |geoStr(p)− 1|. (8.5)

We can also consider the biggest difference of the eigenvalue with 1, which is

SI(p) = max(||λ1| − 1|, ||λ2| − 1|). (8.6)
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8.3 Quantile Curves of Strain Intensites

For each leaflet, at midsystole, our numerical codes compute the empirical quantiles

of strain intensities values and display them as a quantile curve. Recall that si is the

qv quantile for the variable SI, if Pr[SI < si] = qv or equivalently Pr[SI ≥ si] = 1−qv.

For each leaflet the quantile Q(50%) is its median strain. Extreme quantiles such

as Q(0%) or Q(100%) are deliberately not displayed because they are by nature

definitely less accurate.

Note that a leaflet with overall high strain intensities (such as a prolapsed poste-

rior leaflet), is typically characterized by higher quantile curves, as will be observed

in the prolapse case.

8.4 Graphic Displays of Strain Intensites

Strain intensities SI(p) are computed here for all the interior grid points p of the

anterior leaflet, as well as for the posterior leaflet with max eigenvalue. These two

spatial distributions of strain intensities over the two leaflets observed at mid-systole,

are then automatically displayed in 3D by numerical codes via a color map, assigning

to each leaflet grid point p a color which codes its strain intensity SI(p), with deep

blue indicating low strain and deep red indicating high strain. Figure 8.1 displays

graphically the strain intensities values for a given mitral valve. Figure 8.2 displays

separately the two strain quantile curves for the anterior and posterior leaflets. The

left side of Figure 8.2 displays strain quantile curves computed by the length ratio
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method, and the right side of Figure 8.2 is computed by evaluating the the local

surface strain tensors. The strain values estimated by the length ratio method tend

to be slightly larger than those computed via estimation of the surface strain tensors.

Figure 8.1: Spatial distribution of strain intensities on the midsystole mitral valve
leaflets

Figure 8.3 displays the contraction strain intensity ||λ| − 1| region with |λ| < 1

and the dilation strain intensity ||λ| − 1| region with |λ| > 1. Figure 8.4 displays the

eigenvectors of local strain tensor.

A comparative statistical analysis of strain distributions due to mitral valve dy-

namic deformations was first published in [33], to compare normal patients with

patients having primary or secondary mitral regurgitation. One conclusion in [33] is

that primary mitral regurgitation patients tend to have higher mitral valve strain.

Strain quantile curves for secondary mitral regurgitation are roughly comparable to
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(a) Strain value by length ratio method
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(b) Strain value by eigenvalue method

Figure 8.2: Strain value quantile curve

strain quantile curves for normal patients. Mitral valve strain tends to be higher for

the posterior leaflet compared to the anterior leaflet, and this result hold for normal

patients as well as for patients with mitral regurgitation. Numerical strain analysis

from echocardiographic 3D movies has the potential to improve characterization of

mitral valve diagnosis and to quantify the strain reduction impact of mitral valve

surgery.
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(a) Contraction strain intensity

(b) Dilation strain intensity

Figure 8.3: Spatial distribution of strain intensities with contraction and dilation
region.
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(a) Spatial distribution of eigenvector v1

(b) Spatial distribution of eigenvector v2

Figure 8.4: Spatial distribution of eigenvector.

77



CHAPTER 9

Mitral Valve Segmentation

The mitral valve consists of two deformable leaflets, the anterior leaflet (Ant) and

the posterior leaflet (Pos), which together have a surface 4− 6cm2. The two leaflets

in this study are partitioned into a total of six scallops: A1, A2, A3 (anterior leaflet)

and P1, P2, P3 (posterior leaflet). Relying on previous results of Jeff Freeman (PhD

thesis [18]), we implemented these two segmentations based on the three scallops

areas. The areas of A1, A2, A3 will respectively be 25%, 50% and 25% of the area of

the anterior leaflet, with a similar constraint for P1, P2, P3 and the posterior leaflet.

Specifically to construct the scallops A1, P1, we first choose two points along the

annulus, one point Ana on the annulus boundary of the anterior leaflet, the other
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point Anp on the annulus boundary of the posterior leaflet; we then connect the

points Ana and Anp by a curve lying on the surface. If the areas of both A1 and

P1 are close to 25% of the anterior leaflet area, we will fix the points Ana and Anp;

otherwise, we will start an easy iterative adjustment for the positions of these two

points in order to reach the desired values for the areas of A1 and P1. We also

construct an annulus band Zann of radius rann around the annulus boundary of the

anterior leaflet, with an easy iterative adjustment of rann to ensure that Zann contains

20% of the grid points of the anterior leaflet. We proceed similarly to generate a

coaptation band Zcoapt of radius rcoapt around the coaptation boundary of the anterior

leaflet, again with relative area close to 20%. The boundary zone Zbound is defined

as the union of the annulus band and the coaptation band. The complement of the

boundary zone will be called the center zone Zcenter. Finally, let com1 and com2 be

the two commissure curves, which connect the annulus and the two angular points of

the coaptation line. Then denote COM = com1∪ com2. Select a radius r such that

the region Zcomm of all leaflet points within distance r of COM covers an area close

to 8% of the total leaflet area. Zcomm will be called the commissure zone. Figure 9.1,

9.2, 9.3 display all these regions on the mitral valve surface at midsystole.

For each patient, we have thus systematically identified 18 anatomically signif-

icant sub-regions of the mitral valve surface at midsystole, namely the 18 regions

denoted Ant, Pos, A1, A2, A3, Aann, Acoap, Acenter, Abound, Acomm, P1, P2, P3, Pann,

Pcoap, Pcenter, Pbound, Pcomm.

In Chapter 8, we have indicated how one can compute the strain intensity values

for all grid points of the discretized mitral valve surface observed at midsystole.
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Figure 9.1: Scallops: A1, A2, A3, P1, P2, P3
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Figure 9.2: Annulus, coaptation, center zones
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Figure 9.3: Commissure zone
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For each one of the preceding 18 subregions, we calculate 9 quantile values, namely

Q(10%), Q(20%), · · · , Q(90%). We have systematically applied a software to test

a large set of 159 mitral valves acquired at The Methodist Hospital (Cardiology).

This intensive computational approach has generated 162 = 18 × 9 strain features

for each one of the 159 mitral valve patients.
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CHAPTER 10

Automatic Classification of Mitral Valve Patients by Machine

Learning

In this chapter, we implement and test a support vector machines (SVM) approach to

test the impact of strain distribution analysis for automatic discrimination between

two small groups of patients, namely normal patients versus patients diagnosed with

secondary regurgitation. For each patient i, denote by xi the 162 dimensional feature

vector. Denote by yi ∈ {−1,+1} the binary classification of patient i as a normal

case or a regurgitation case.
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10.1. SUPPORT VECTOR MACHINES (SVM)

10.1 Support Vector Machines (SVM)

Denote by TR our training data set, consisting of N pairs (x1, y1), (x2, y2),· · · ,

(xN , yN), with xi ∈ Rp and yi ∈ {−1, 1}. Denote a generic hyperplane H(f) in

Rp as the set of all x in Rp such that

f(x) = xTβ + β0 = 0.

Recall that for any affine function f , and any z in Rp, f(z) is the algebraic distance

from point z to the hyperplane H(f). The SVM binary classification seeks an optimal

hyperplane separating the data points into two classes. For a linearly separable pair

of classes, the optimal hyperplane H(f) maximizes a margin defined as the distance

between the two smallest half spaces having boundaries parallel to H(f) and resp.

containing the true positive and negative classes. Ideally, in the linearly separable

situations, one seeks to find an affine function f(x) = xTβ+β0 such that yif(xi) > 0,

∀i. The SVM approach is then to solve the optimization problem

max
β,β0,||β||=1

M,

subject to yi(x
T
i β + β0) ≥M, i = 1, · · · , N.

The basic idea originally introduced by Vapnik [51] is to create the biggest margin

(2M) between the training points respectively belonging to class 1 and −1. A more
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convenient way to formulate this problem is the following

min
β,β0
||β||,

subject to yi(x
T
i β + β0) ≥ 1, i = 1, · · · , N,

here M = 1/||β||. This is a convex optimization problem. One classically uses the

method of Lagrange multipliers to get an expression for β. Substituting β into a

Lagrangian functional, we obtain the so-called Wolfe dual [52], a simpler convex

optimization problem, where the Λi are Lagrange multipliers to be determined,

L(β,Λ) =
1

2
||β||2 −

N∑
i=1

Λi[yi(x
T
i β + β0)− 1].

Setting derivatives to zero, we obtain:

β =
N∑
i=1

Λiyixi,

and the Wolfe dual problem becomes the minimization of

LD(Λ) =
N∑
i=1

Λi −
1

2

N∑
i=1

N∑
k=1

ΛiΛkyiykx
T
i xk, (10.1)

subject to Λi ≥ 0.

The solution vector β is a linear combination of the support vectors which are the

data points which lie on the hyperplane boundaries of the optimized margin zone.
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For nonlinearly separable classes, the objective is the same, but to deal with the

data points which are on the wrong side of their class boundary, one has to impose

complementary adequate penalties. Introduce a slack variable ξi to penalize the

wrongly classified data points. So one sets ξi = 0 for well classified data points,

and ξi ≥ 0 otherwise. The new constraint is yi(x
T
i β + β0) ≥ M(1 − ξi), ∀i, ξi ≥

0,
∑N

i=1 ξi ≤ constant. The basic idea of the formulation is to minimize the sum of

penalties
∑
ξi. Intuitively, one normalizes penalties so that misclassification occurs

when ξi > 1. The minimization problem then becomes

min
β,β0,ξ

||β||,

subject to yi(x
T
i β + β0) ≥M(1− ξi), ξi ≥ 0,

N∑
i=1

ξi ≤ constant.

Computationally, it is convenient to re-express this problem as follows

min
β,β0
{||β||2 + C

N∑
i=1

ξi},

subject to yi(x
T
i β + β0) ≥M(1− ξi), ξi ≥ 0,∀i,

where the positive parameter C has to be optimally selected at a later stage. The

Lagrangian becomes

L(β,Λ,Γ) =
1

2
||β||2 +C

N∑
i=1

ξi−
N∑
i=1

Λi[yi(x
T
i β + β0)−M(1− ξi)]−

N∑
i=1

Γiξi. (10.2)
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Setting derivatives to zero, we get

β =
N∑
i=1

Λiyixi.

After substituting this expression back into the Lagrange function, we obtain the

dual objective function to maximize under constraints:

LD(Λ) =
N∑
i=1

Λi −
1

2

N∑
i=1

N∑
k=1

ΛiΛkyiykx
T
i xk, (10.3)

subject to 0 ≤ Λi ≤ C,
N∑
i=1

Λiyi = 0.

Maximizing the dual (10.3) is a simpler convex quadratic programming problem,

and can be solved by standard techniques.

The support vector classifier described so far generates linear boundaries in the

input feature space. Introduce a Hilbert space U of functions g(x) defined on the

feature space Rp. One can map the feature space into U by a nonlinear mapping h, so

that optimal linear separation in U will then generate optimal nonlinear separation

in the original feature space. In the Hilbert space U , select M functions hm(x),m =

1, · · · ,M , and then define new input features by h(xi) = (h1(xi), h2(xi), · · · , hM(xi)),

i = 1, · · · , N . The nonlinear separator between our two classes will be of the form

f(x) = h(x)Tβ + β0.

Proceding as above to get an optimal margin linear separator in the Hilbert space
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U , one has then to minimze the objective functional

LD(Λ) =
N∑
i=1

Λi −
1

2

N∑
i=1

N∑
k=1

ΛiΛkyiyk < h(xi), h(xk) >, (10.4)

where the inner product <,> denotes the scalar product in U , and one must then

have

β =
N∑
i=1

Λiyih(xi).

So the solution function f(x) can be written

f(x) = h(x)Tβ + β0

=
N∑
i=1

Λiyi < h(x), h(xi) > +β0.

We now fix a positive definite kernel K(x, x′) defined for x, x′ ∈ Rp, and define U

to be the self-reproducing kernel Hilbert space defined by K. The space U is then

generated by the functions Ky(x) = K(y, x) with y arbitrary in Rp, and one has

the classical self reproducing property < Ky, Kz >U= K(y, z), which is covered in

Chapter 3.

Recall the well known theorem (see [53])

Theorem 10.1.1. A positive definite kernel generates a reproducing Hilbert space,

conversely a reproducing Hilbert space defines a positive kernel.
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Two popular choices for the kernel K in the SVM applications are the following:

Polynomial kernel: K(x, x′) = (1+ < x, x′ >)d,

Gaussian kernel: K(x, x′) = exp(−r||x− x′||2).

We had selected above arbitrary functions h1, h2, ... hN ∈ U . One can now specify

this choice more efficiently after selecting for U the self-reproducing Hilbert space

associated with the positive definite kernel K. The dual function to be maximized

then becomes

LD(Λ) =
N∑
i=1

Λi −
1

2

N∑
i=1

N∑
k=1

ΛiΛkyiykK(xi, xk).

Next we will test the SVM approach on our mitral valve classification problem,

using three separate kernels: using linear, polynomial and Gaussian. We have 30

normal and 28 regurgitation patients in our training set. The strain feature data

provide 162 features for each one of these 58 patients. We save these data into a

58× 162 matrix XRaw.

We compute the first two main principal components v1, v2 of the matrixXregionT ·

Xregion, with the 58×9 matrix Xregion on the region AP, which is one of 18 small

regions. Projecting the data Xregion onto the main components v1, v2, a smaller

58×2 matrix XAP is created. Secondly, combining all 18 regions, we have the 58×36

matrix Xpca = [XAP1 , XAP2 , · · · , XAP18 ].

Then, the new matrix Xpca is analyzed by PCA. In order to explain 95% of the
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Figure 10.1: Total variance explained

variance, we choose the first 8 main components, which is illustrated in Figure 10.1.

The new matrix Xpca8 will be a 58 × 8 matrix. Finally, we analyze the matrix

Xpca8 using SVM relying on three kinds of kernel, linear kernel, polynomial kernel

and Gaussian kernel.

Table 10.1: Support vector machines analysis (TN–true negatives, FP–false positives,
FN–false negatives, TP–true positives).

Kernel Type TN FP FN TP Accuracy
Linear 20 10 8 20 0.69
Polynomial of order 2 19 11 4 24 0.74
Polynomial of order 3 30 0 13 15 0.77
Polynomial of order 4 30 0 10 18 0.83
Gaussian 27 3 11 17 0.76

The SVM classifications based on polynomial kernels of degree 3 or 4 have roughly
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80% accuracy. But the number of support vectors is larger than 30. We need to input

more anatomic features into our SVM classification, such as, anterior leaflet area,

posterior leaflet area, anterior coaptation line length, posterior coaptation line length,

commissural diameter, tenting area, tenting height, etc. This will be tested in future

work.
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