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Abstract

There have been extensive applications of wavelets to petroleum seismic data. In

this dissertation, we focus on developing and testing new wavelets approaches to

seismic data compression, microseismic first arrival picking, seismic event picking,

and seismic reflectivity inversion.

First, we developed new methodologies for seismic data compression based on wavelets.

We started with applying matching pursuit to obtain a sparse representation of seis-

mic signals on a dictionary, so we only need to store and transmit the sparse repre-

sentation. The dictionaries tested initially are Symlets. To improve the performance

of compression further, we proposed the new idea of using subspace matching pur-

suit to obtain perfect reconstruction for a phase-rotated signal. We obtained better

fidelity than matching pursuit, but the convergence is slowed down due to the in-

completeness of the dictionary. Finally we proposed using matching pursuit with a

combination of Symlets dictionary and subspace dictionary, thereby obtaining the

best quality with the same compression ratio.

Second, we report a new method of automatic first break detection of P-waves and

S-waves. Our method is based on a time-frequency analysis of the seismic trace using

minimum uncertainty (µ-)wavelets, in particular in the minimum-phase form. We

have tested our method on both lab data with various signal-to-noise ratio (S/N or

SNR) and on field data.

Third, we explored methods of automatic seismic event picking. It is known that no

single automatic seismic event indicator works for all data; therefore, we explored
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two indicators based on the µ-wavelets and on an energy ratio. Thresholding was

applied to pick seismic events. We have tested the methods with both synthetic data

and offshore field data.

Finally, we proposed new seismic sparse inversion methods based on complex basis

pursuit (CBP) and a modified complex basis pursuit (MCBP). In practice, constant

phase wavelets are used for seismic inversion algorithms, for example, the basis pur-

suit (BP). If the phase of the estimated wavelet is wrong, this will surely cause

an error in reflectivity. We can obtain more accurate reflectivity even though the

estimated wavelet has biased phase by using CBP and MCBP rather than BP.
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CHAPTER 1

Introduction

1.1 Background

There have been extensive applications of wavelets to petroleum seismic data [25, 27,

28, 26, 14]. Wavelet transforms were applied for downward continuation [18], shear-

wave discrimination [31], and seismic data processing [24]. Dessing and Wapenaar

used wavelets for wavefield extrapolation [9] and seismic migration with one-way op-

erators in the wavelet transform domain [10]. Wang and Pann developed compressed

Kirchhoff migration based on wavelets [49]. Li and Ulrych studied tomography via

wavelet transform constraints [19] and Hilbert attribute analysis [20]. Wavelets have
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1.2. SEISMIC DATA COMPRESSION

also been applied to the interpretational aspects [13], such as amplitude variation

with offset [52], thin-bed analysis [59], direct hydrocarbon detection [41], and SPICE

attribute [40].

In this dissertation, we focus on wavelets approaches to seismic data compres-

sion, microseismic first arrival picking, seismic event picking, and seismic reflectivity

inversion.

1.2 Seismic data compression

In current 3-D seismic acquisitions, data volumes of a few terabytes are common. As

wide azimuth and even rich azimuth acquisition become the new standards, seismic

volumes are becoming even larger. An efficient seismic data compression method can

speed up handling large data volumes and possibly speed up the imaging algorithm.

Generally, there are four types of data compression techniques: basic methods

(e.g. scalar quantization, run length encoding), statistical methods (e.g. Huffman

coding, arithmetic coding), transform methods (e.g. wavelet, Fourier transform), and

dictionary based methods (e.g. GZIP, PNG)[39]. Among these, there are two groups:

lossless and lossy techniques. If we apply lossless methods on SEG-Y format files, the

compression is not significant. This is because there is hardly any absolute repetition

of the entire 32-bit vector even if millions of different data traces are analyzed [51].

To obtain higher compression performance, we focus on wavelet-based methods

which are lossy in Chapter 2. Wavelets have been applied as a popular tool for seismic

2



1.2. SEISMIC DATA COMPRESSION

data processing. An important goal of wavelet-based compression is to represent

seismic data in a sparse way. Once we have a sparse representation of seismic data,

we can store a relatively small number of coefficients and indices as compressed

data. We can transmit the compressed data and reconstruct the full data for later

processing. A sparser representation with good fidelity is preferred.

We applied matching pursuit [22] to compute the sparse representation of seismic

signals on a dictionary. Matching pursuit is a greedy algorithm that iteratively

selects a vector in a complete and redundant dictionary to obtain a sub-optimal

approximation to a signal. The matching pursuit algorithm has been applied to

seismic spectral decomposition [2], and it provides excellent spectral localization:

the reflection, direct and surface waves, and artifact energy are clearly identifiable.

In [35], the authors presented a new method to regularize irregularly sampled seismic

data, based on a matching pursuit technique.

The dictionaries we have initially tested are Symlets. Symlets are a modified

version of Daubechies wavelets with increased symmetry. We obtained good quality

(SNR > 40dB) for a compression ratio of 10%, but obvious oscillating artifacts

(mosaic phenomenon) appear at low level of compression.

To improve the performance of compression further, we explored ideas to leverage

source wavelets or estimated source wavelets. We found that if we use the dictionary

based on source wavelets, the results suffer from phase-rotation. Then we proposed a

new idea of using subspace matching pursuit to obtain almost exact reconstructions

for a phase-rotated signal. We have tested the subspace matching pursuit on a syn-

thetic shot, and the results show better fidelity than matching pursuit with Symlets

3



1.3. MICROSEISMIC FIRST ARRIVAL PICKING

when the compression ratio is less than 3.3%. But its convergence slowed down due

to the incompleteness of the dictionary.

Finally, we proposed using matching pursuit based on the combined Symlets and

subspace dictionaries. We obtained the best quality with the same compression ratio.

Only limited artifacts were observed for various compression ratios.

1.3 Microseismic first arrival picking

In refraction seismology, first break (or arrival time) detection has been applied to

study the near surface low-velocity zone and determine static corrections. In recent

years, with the advances in hydraulic fracturing techniques, first break detection of P-

waves and S-waves has become crucial for locating microseismic events. Most of the

first arrival picking methods are applied in the time domain. Examples include the

multi-window algorithm [5] and the short-term average/long-term average method

[54].

In Chapter 3, we proposed a first break detection method which is based on a

time-frequency approach. It has been observed that the high-frequency component

of microseismic traces increased dramatically at the onset of a microseismic event

[42]. Taking into account the analysis of the frequency characteristics of the seismic

trace, a continuous wavelet analysis with optimal temporal and frequency localiza-

tion may yield accurate results and a method that can be automated easily. We

propose to employ a minimum uncertainty (µ-) wavelets basis to perform spectral

decomposition, since the µ-wavelets result from a constrained minimization of the

4



1.3. MICROSEISMIC FIRST ARRIVAL PICKING

Heisenberg uncertainty product [15] and consequently can improve the temporal and

frequency resolution [29]. Often, when the trace has been decomposed using zero-

phase wavelets, the signal will be noncausal in the sense that a small amount of

energy leaks into times before the true first arrival. Ricker (1953) noted this in the

predigital analysis era. We circumvent this by transforming the original µ-wavelets

(non-causal) into minimum-phase wavelets, which are causal.

The reference [36] took the maximum of the cross-correlation of the traces with a

“model” trace as the indicator of the shift of the traveltime. This was based on the

assumption that the waveforms in each trace are reasonably similar to those of the

“model” trace which is obtained by hand-aligning two chosen traces and summing

them. In a time domain approach, one could take the µ-wavelets as the “model”

traces, and cross-correlate them with each trace and take the maximum as the indi-

cator of the time shift. Since the µ-wavelet is initialized to time zero, the time of the

maximum of the cross-correlation corresponds to the first arrival time. Unfortunately

this doesn’t work well, as our tests show. An alternative to a purely time-domain

approach is to use time-frequency analysis.

In Chapter 3, we introduced a time-frequency decomposition of the signal using

µ-wavelets. We employed the maximum of the power mean, computed from the time-

frequency record as our first arrival indicator function. We applied a peak-picking

algorithm to find the largest two peaks which are the indicators for the P-wave and

S-wave first arrivals. We specified a potential region of the first arrivals for each of

P-wave and S-wave. In each potential region, we neglected every other points and

then applied Hermite distributed approximating functionals (HDAFs) to fill in the

5



1.4. SEISMIC EVENT PICKING

neglected points [56]. This yielded a less noisy indicator function at the potential

region. Next we obtained the maximum of all the points in each of the potential

arrival region as our indicator. Thus we obtained two indicators, the smaller one for

the P-wave first arrival and the other one for the S-wave arrival. We have tested our

method on both lab data with various signal-to-noise ratio (S/N or SNR) and on

field data. Our method picks the first arrival time for lab data contaminated with

both high and low S/N with an accuracy of 0.5 µs. We also compare our automatic

detection of the first break in field data with manual detection. The difference is

less than 1 ms. Our results indicate that our method is robust for automatically

detecting the first arrival time for field data.

1.4 Seismic event picking

In seismic traveltime tomography, the automatic or manual picking of seismic events

are used to give a correct velocity model. In this tomographic velocity model updat-

ing process, the manual picking of prestack events is a primary bottleneck. Besides,

Laplace domain waveform inversion requires muting prestack seismic data before the

first arrival, protecting refracted waves. We explored methods of automatic seismic

event picking in Chapter 4.

It is known that no single automatic seismic event indicator works for all data;

therefore, we explored two indicators based on µ-wavelets and an energy ratio method.

Thresholding was applied to pick seismic events. We have tested with synthetic data

and offshore field data.

6



1.5. SEISMIC REFLECTIVITY INVERSION

We first applied a µ-wavelets based seismic event indicator as we introduced in

Chapter 4. We applied the indicator on each trace and picked the first arrivals

on synthetic shots of BP2004. We obtained good picking results but each shot

took 2069s on a work station. This efficiency is not satisfactory and is due to the

computational complexity of the spectral decomposition. We next explored an energy

ratio method, which is less computationally complex.

We computed short-term average/long-term average (STA/LTA) ratios trace by

trace and then applied thresholding to mute. We have added various levels of white

noise to the synthetic shots and then picked seismic events using the energy ratio

method. We obtained good results, as demonstrated by successfully muting the

noise before the first arrival for the synthetic shots with various noise levels. With

extremely high levels of noise (e.g SNR≤2dB), the indicator does yield errors, as

expected. We have tested the method on field data from Total E&P, but due to a

confidentiality constraint we can not show the results.

1.5 Seismic reflectivity inversion

Seismic reflectivity inversion is one of the important digital signal processing meth-

ods in geophysical exploration. Traditional seismic deconvolution uses a wavelet

inverse filter to yield a bandlimited reflectivity. Sparse seismic inversion methods

can produce a significant increase in bandwidth content from band-limited seismic

observations (e.g. [37]). This has become more important because the main task in

today’s seismic exploration is seeking to locate subtle hydrocarbon traps. Assume

7



1.5. SEISMIC REFLECTIVITY INVERSION

the seismic trace s(t) is a simple convolution of a stationary seismic wavelet w(t) and

the reflectivity r(t) with additive noise n(t).

s(t) = w(t) ∗ r(t) + n(t) (1.1)

where t is the two-way traveltime and ∗ means convolution. This is the so called

convolutional model and it assumes that a set of planar layers of constant impedance

can sufficiently represent the earth structure. Seismic reflectivity inversion aims to

obtain the reflectivity r(t) given the data (measurements) s(t), and with assumption

of seismic wavelet w(t). It is an ill-posed mathematical inversion problem for which

the solution (reflectivity r(t)) is not unique, because the seismic wavelet is band

limited and seismic data are finite and inaccurate. Among all of the possible solutions

(reflectivity) that fit the data, constraints and tolerance are specified to pick the

”optimal” reflectivity. It is widely known that applying valid constraints in seismic

reflectivity inversion can produce a higher bandwidth of the solution [44]. Besides,

it is a common practice to assume some prior information about the solution. For

example, sparse-spike deconvolution supposes that the reflectivity consists of a sparse

sequence of spikes as a prior [48]. With the assumption of sparseness, the seismic

inversion objective is to determine the location of the reflection coefficients and their

amplitudes. Various methods were proposed to optimize some norm that forces the

solution to be sparse ([34],[38],[50], and [58]).

It is well known that the success of the seismic reflectivity inversion depends on

the quality of the estimated wavelet w(t) [34]. There are several methods to derive

the estimated wavelet (e.g. [47]), but the quality varies with data. For simplicity,

a constant phase wavelet is used for seismic inversion [57, 48]. If the phase of the
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estimated wavelet was wrong, this will surely cause an error in reflectivity [58, 48]. In

this dissertation, I proposed new sparse inversion methods that do not require that

the phase of the estimated wavelet is the same as the seismic data. We constructed a

complex dictionary of the estimated wavelets and performed a complex basis pursuit

to decompose the complex seismic traces to corresponding real and imaginary re-

flectivities. The complex dictionary consisted of the estimated wavelet with various

shifts as the real part and the corresponding Hilbert transform of the wavelets as the

imaginary part. In this way, we can obtain more accurate reflectivity even though

the estimated wavelet has a biased phase. I also proposed a modified complex basis

pursuit method to invert the real seismic trace (not the complex seismic trace) for

reflectivity. In this case, we minimized the real part of the least square error instead

of the complex least square error. We obtained results which are visually the same

as the fully complex basis pursuit.

1.6 Outline of dissertation

In Chapter 2, we describe two new wavelet-based methods on seismic data compres-

sion. Test results for a synthetic shot are discussed.

In Chapter 3, we describe a new automatic first break detector for microseismic

data using µ-wavelets. We have tested the approach on lab data and field microseis-

mic data to pick both P-wave and S-wave arrivals.

In Chapter 4, we describe methods of automatic seismic event picking based on

wavelets and energy ratio.

9
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In Chapter 5, we describe new seismic sparse inversion methods based on complex

basis pursuit and a modified basis pursuit.

In Chapter 6, we present our conclusions and discuss future work.

In the Appendix A, we derive the elastic wave equation in a pre-stressed medium.

The pre-stress causes anisotropy of the elastic tensor and wave velocities. We obtain

the Green-Christoffel equation by considering the harmonic plane wave solution.

Also we analyze experimental data to obtain the elastic tensor under a uni-axial

pre-stress.

10



CHAPTER 2

Wavelet-based seismic data compression

We describe two new methodologies for seismic data compression based on wavelets

in this chapter. We started with applying matching pursuit to obtain a sparse repre-

sentation of seismic signals on a dictionary, so we only need to store and transmit the

sparse representation instead of the original signals. The dictionary tested initially

is composed of Symlets. To improve the performance of compression further, we

explore ideas to leverage source wavelets or estimated source wavelets. We propose

a new idea of using subspace matching pursuit to obtain perfect reconstruction for

phase-rotated signals. We have tested this subspace matching pursuit on a synthetic

11



2.1. MATCHING PURSUIT WITH SYMLETS

shot, and the results show better fidelity than matching pursuit for compression ra-

tios less than 3.3%, but the convergence slowed down due to the incompleteness of

the dictionary. Finally we propose using matching pursuit with a combination of the

Symlets dictionary and subspace dictionary. We obtain the best quality result with

the same compression ratio with this approach.

2.1 Matching pursuit with Symlets

In this section, we introduce a matching pursuit algorithm with Symlets to compress

seismic data. Symlets are a modified version of Daubechies wavelets with increased

symmetry. Matching pursuit is a greedy algorithm that iteratively selects a vector

in a complete and redundant dictionary to obtain a sub-optimal approximation to

a signal. We generate the synthetic shot data by forward modeling on a three layer

velocity model to test the compression performance.

2.1.1 Algorithm

Let Γ be a index set and D = {ωp}p∈Γ be a dictionary of P unit norm vectors

‖ωp‖ = 1 in a signal space CN . Finding an optimal M -term approximation fM ∈ D

of a signal f ∈ CN with M vectors selected in a redundant dictionary D is NP-hard

[21]. Thus it is necessary to rely on suboptimal approximations by computational

algorithms. Several algorithms were investigated in [21]. A best-basis algorithm

selects the orthogonal vectors in the basis but the rigidity of orthogonality limits the

12



2.1. MATCHING PURSUIT WITH SYMLETS

approximation. Matching pursuit has the freedom to incorporate more patterns using

large and non-orthogonal dictionary. Matching pursuit iteratively obtains one vector

from a redundant dictionary at a time [22]. Matching pursuit is nonlinear and it

maintains an energy conservation which ensures its convergence. It is closely related

to projection pursuit strategies used in statistics [11]. The two algorithms were

developed independently in a very different context but the share similar underlying

mathematics. The matching pursuit algorithm proceeds as follows:

Let R0f = f . Suppose that the mth-order residue Rmf is already computed for

m ≥ 0. The next iteration chooses ωpm ∈ D such that

| < Rmf, ωp0 > | = max
p∈Γ
| < Rmf, ωp > |. (2.1)

and projects Rmf on ωpm :

Rmf =< Rmf, ωpm > ωpm +Rm+1f. (2.2)

The orthogonality of Rmf and ωpm implies

‖Rmf‖2 = | < Rmf, ωpm > |2 + ‖Rm+1f‖2, (2.3)

which can be interpreted as the conservation of energy. Summing (2.2) on m between

0 and M − 1 yields

f =
M−1∑

m=0

< Rmf, ωpm > ωpm +RMf. (2.4)

Analogously, summing (2.3) on m between 0 and M − 1 yields

‖f‖2 =
M−1∑

m=0

| < Rmf, ωpm > |2 + ‖RMf‖2. (2.5)
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Next, we show that if the residual ‖Rmf‖ has a minimum rate of decay, the

matching pursuit has an exponential decay [22]. The decay of ‖Rmf‖ depends on

the correlation between the residues and the dictionary elements. Let µ(r,D) be the

coherence of a vector r relative to the dictionary D and it is defined as

µ(r,D) = max
p∈Γ
| < r

‖r‖ , ωp > | ≤ 1. (2.6)

Lemma 2.1.1. Let D be a complete dictionary in a finite dimensional space CN ,

µmin(D) = inf
r∈CN ,r 6=0

µ(r,D) > 0. (2.7)

Proof. We prove the lemma by contradiction. Suppose µmin(D) = 0. There

exist {fm}m∈N with ‖fm‖ = 1 such that

lim
m→

sup
p∈Γ
| < fm, ωp > | = 0. (2.8)

Since the unit sphere of CN is compact, there exists a subsequence {fmk}k∈N that

converges to a unit vector f ∈ CN . Then we have

sup
p∈Γ
| < f, ωp > | = lim

m→+∞
sup
p∈Γ
| < fmk , ωp > | = 0. (2.9)

So < f, ωp >= 0 for all ωp ∈ D. Since D contains a basis of CN , necessarily f = 0,

which is contradict with ‖f‖ = 1. Therefore,

µmin(D) > 0. (2.10)

Theorem 2.1.2. Let D be a complete dictionary in a finite dimensional space CN .

The residual Rmf computed by a matching pursuit satisfies

‖Rmf‖2 ≤ (1− µmin(D))m‖f‖2, (2.11)
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where 1 ≥ µmin(D) > 0. As a consequence,

f =
+∞∑

m=0

< Rmf, ωpm > ωpm , (2.12)

and

‖f‖2 =
+∞∑

m=0

| < Rmf, ωpm > |2. (2.13)

Proof. The energy conservation equation 2.3 implies

‖Rm+1f‖2

‖Rmf‖2
= 1− | < Rmf

‖Rmf‖2
, ωpm > |2 ≤ 1− µ2(Rmf,D) (2.14)

We iterate on this equation and proves that

‖Rmf‖2 ≤ (1− µmin(D))m‖f‖2. (2.15)

By Lemma 2.1.1, we have

1− µ2
min(D) < 1, (2.16)

and it follows that

lim
m→+∞

‖Rmf‖ = 0. (2.17)

Inserting this into equation 2.4 and equation 2.5 proves that equation 2.12 and equa-

tion 2.13 hold respectively.

In the limit of infinite dimensional space, Jones’ theorem shows that the matching

pursuit still converges but the convergence is not exponential [16].

We have the algorithm written in Algorithm 1 in the form of pseudocode.

For seismic shot gathers, we applied matching pursuit trace by trace to obtain

coefficients and indices on the dictionary. We first used well-known discrete wavelets
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Algorithm 1 Matching pursuit

Input: signal(column vector of length N),dictionary(matrix of N by K),threshold,
maxiteration

Output: coefficient (column vector of length Niter), index (column vector of length
Niter)
Initialization: residue ← signal , m ← 0
while m ≤ maxiteration and norm(residue) ≤ threshold do

m← m+ 1
for i = 1→ K do

innerprod(i) ← dot-product(dictionary(:, i), residue)
end for
index(m) ← the index of max(abs(innerprod))
coefficient(m) ← innerprod(index(m))
residue ← residue - coefficient(m)*dictionary(:,index(m))

end while
Niter ← m

to form the dictionary. We use Daubechies’s least-asymmetric wavelets symJ (J is

the number of vanishing moments) [8] as one example for demonstration. Symlets

are a modified version of Daubechies wavelets with increased symmetry. SymJ have

a minimum support [−J + 1, J ] with J vanishing moments. So each symJ has 2J

samples which have been stored in a separate data file, for example, sym4.mat in the

MATLAB wavelet toolbox.

We generate a dictionary of Symlets using inverse discrete wavelet transform. We

illustrate the procedure by generating a dictionary of Sym4 at level 2 for a signal of

N = 64 samples. We set the approximation and detail coefficients in the way that

they consist a unit diagonal matrix of N by N as shown in Figure 2.1. Then we apply

1-D inverse discrete wavelet transform using Sym4 column by column to obtain a

dictionary as shown in Figure 2.2. Each column is a wavelet in the dictionary.
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The 1-st to
N

4
-th components are plotted using different colors in Figure 2.3a.

The
N

4
+ 1-th to

N

2
+ 1-th components are plotted in Figure 2.3b. The

N

2
+ 1-th

to N -th components are plotted in Figure 2.3c. To look at one of the component

closely, we plotted three components in Figure 2.4. The 3-rd component is in black

as shown in Figure 2.4 and it has support of 4J . The 25-th component in blue as

shown in Figure 2.4 and it has support of 4J . The 59-th component in red as shown

in Figure 2.4 and it has support of 2J .

Figure 2.1: The approximation and detail coefficients.

Next we applied the matching pursuit algorithm on a synthetic trace. We gen-

erated a synthetic trace shown in Figure 2.5a by superposition of the 22-nd and the

58-th components of the dictionary.

We applied the matching pursuit algorithm using the previously generated dic-

tionary. The algorithm stopped after two iterations and the coefficients and indices

17
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Figure 2.2: The dictionary generated by inverse discrete wavelet transform using
Sym4.

computed are shown in Fig 2.5b. The first index is 58 (black) and its coefficient

0.8. The second index is 22 (red) and its coefficient is 0.4. They were exactly the

components that consisted the synthetic signal. For a real case, we don’t know the

original components of the signal. We must compare the reconstructed signal with

the original one. We obtain the reconstructed signal in Figure 2.5c by summing the

components with index 58 (black) and 22 (red) with their coefficients as weight. It

is exactly the same signal as in Figure 2.5a. We obtained a compression ratio of

CR = 3%.
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(a) The 1-st to 16-th components.

(b) The 17-th to 32-th components.

(c) The 33-th to 64-th components.

Figure 2.3: Dictionary of Symlets with N = 64, J = 4
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Figure 2.4: Three components of the dictionary with N = 64, J = 4

2.1.2 Numerical experiments

We generated a synthetic shot by forward modeling on a three layer velocity model.

It is a common practice to use a Ricker wavelet as the source. The Ricker wavelet

can be described by

Ricker(t, f0) = (1− 2π2f 2
0 t

2)e−2π2f20 t
2

(2.18)

where f0 is the dominant frequency. Here we used a Ricker wavelet with dominant

frequency f0 = 10Hz. The shot record has 220 traces and each has 1001 time samples

with sample rate 8ms. The right panel of Figure 2.7 shows the shot record in grey

scale. We applied Algorithm 1 trace by trace with maxiteration = N
CR

where CR is

compression ratio. In data compression literature, CR is defined as

CR = 100 ∗ Size of the compressed data
Size of the original data

% (2.19)
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(a) A synthetic trace

(b) The sparse representation.

(c) The reconstructed signal.

Figure 2.5: A example of synthetic trace
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Specifically, our compression ratio can be computed by the ratio of the number of

coefficients in the sparse representation and the number of the samples in the traces.

We plotted the 20-th trace and its reconstructions in Figure2.6a with CR = 1%

(top) and CR = 2% (bottom). The relative l∞ errors of the reconstruction are

0.26 and 0.15 respectively. In Figure 2.6b, the original trace was compared with its

reconstruction with CR = 3.3% (top) and CR = 10% (bottom). The relative l∞

errors of the reconstruction are 0.07 and 0.01 respectively.

With CR = 1% and CR = 2% we obtained the reconstructed shot record in the

left and middle panel of Figure 2.7. We observe serious oscillating artifacts (mosaic

phenomenon) along the edges. The artifacts were reduced dramatically when we

increase the size of compressed data as shown in Figure 2.8 when CR = 3.3% and

CR = 10%. The residues of the reconstructed shot record were concatenated in

Figure 2.9 and they decreased as the size of compressed data increased.
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(a) CR = 1% at the top, CR = 2% at the bottom.

(b) CR = 3.3% at the top, CR = 10% at the bottom.

Figure 2.6: Matching pursuit with Symlets reconstructed trace
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Figure 2.7: Matching pursuit with Symlets reconstructed data with CR = 1% on
the left, CR = 2% in the middle, and original data on the right.

Figure 2.8: Matching pursuit with Symlets reconstructed data with CR = 3.3% on
the left, CR = 10% in the middle, and original data on the right.
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Figure 2.9: Matching pursuit with Symlets residue with CR = 1%, 2%, 3.3%, 10%
from left to right.
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2.2 Subspace matching pursuit

To improve the performance of compression further, we explored an idea to leverage

source wavelets or estimated source wavelets. We found that if we use the dictionary

based on a source wavelet, the results suffer from phase-rotation. Then we proposed a

new idea of using subspace matching pursuit to obtain almost exact reconstructions

for a phase-rotated signal. We have tested the subspace matching pursuit on the

same synthetic shot as previous section.

2.2.1 Algorithm

As is known, seismic signals constantly have phase rotations [43]. A phase-rotated

signal can be decomposed into a linear combination of a zero-phase signal and the

−90-degree phase-rotated signal. The zero-phase wavelet is symmetrical with a

maximum at time zero (non-causal). We plotted a phase-rotated Ricker wavelet

in Figure 2.10a. It can be decomposed into the zero-phase Ricker wavelet shown in

Figure 2.10b and a −90-degree phase Ricker wavelet shown in Figure 2.10c.

We can construct a dictionary as a series of subspaces using zero-phase wavelets

and their corresponding −90-degree phase-rotated wavelets. Then we can seek the

correct subspace to reconstruct any phase-rotated signal from the subspace dictio-

nary. We describe below our new matching pursuit strategy, called subspace match-

ing pursuit, to obtain approximations to phase-rotated signals.

Let Γ be an index set and Ds = {(φp, ψp}p∈Γ) be a subspace dictionary with φp
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(a) A phase-rotated Ricker wavelet.

(b) A zero-phase Ricker wavelet.

(c) A −90 degree phase Ricker wavelet.

Figure 2.10: A phase-rotated Ricker wavelet in (a) can be decomposed into the
zero-phase Ricker wavelet (b) and a −90-degree phase Ricker wavelet (c).
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as a shifted zero-phase source wavelet and ψp as a shifted −90 degree phase wavelet.

Let R0f = f . Suppose that the mth-order residue Rmf is already computed from

m ≥ 0. The next iteration chooses

(φpm , ψpm) ∈ Ds

such that

| < Rmf, φp0 > |+ | < Rmf, ψp0 > | = (2.20)

max
p∈Γ

(| < Rmf, φp > |+ | < Rmf, ψp > |). (2.21)

and projects Rmf on (φpm , ψpm):

Rmf =< Rmf, φpm > φpm+ < Rmf, ψpm > φpm +Rm+1f. (2.22)

We stop at the Mth iteration when ‖RMf‖ < ε or the maximum number of iterations

is reached. Summing (2.22) on m between 0 and M − 1 gets

f =
M−1∑

m=0

(< Rmf, φpm > φpm+ < Rmf, ψpm > ψpm) +RMf. (2.23)

We summarize the subspace matching pursuit in Algorithm 2 and the generation

of the subspace dictionary in Algorithm 3.

We generated a dictionary of size N = 400 by 2N = 800 for the signal in Fig-

ure 2.10a with N = 400 time samples. The 1-st to the 400-th components are the

zero-phase Ricker wavelets and we plotted 10% of them in Figure 2.11a. The 401-st

to 800-th components are the −90 degree phase Ricker wavelets and we plotted 10%

of them in Figure 2.11b.
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Algorithm 2 Subspace matching pursuit

Input: signal(column vector of length N),dictionary(matrix of N by 2N),threshold,
maxiteration

Output: coefficient (column vector of length 2Niter), index (column vector of length
2Niter)
Initialization: residue ← signal , m ← 0
while m ≤ maxiteration and norm(residue) ≤ threshold do

m← m+ 1
for i = 1→ N do

innerprod0(i) ← dot-product(dictionary(:, i), residue)
innerprod90(i)← dot-product(dictionary(:, i+N), residue)

end for
index(2m-1) ← the index of max(abs(innerprod0)+abs(innerprod90))
index(2m) ← index(2m-1)+N
coefficient(2m-1) ← innerprod0(index(m))
coefficient(2m) ← innerprod90(index(m))
residue ← residue - coefficient(2m-1)*dictionary(:, index(2m-1))
residue ← residue - coefficient(2m)*dictionary(:, index(2m))

end while
Niter ← m

Algorithm 3 Generate Subspace Dictionary

Input: sourcewavelet(vector of length W), N(size of the signal)
Output: dictionary(matrix of N by 2N)

temp0 ← pad(sourcewavelet, N)
. Pad zeros to the end of array to be of length N
temp90 ← −90 degree phase-rotation of temp0
for i = 0→ N − 1 do

dictionary(:, i) ← circle-shift(temp0, i)
dictionary(:, i+N) ← circle-shift(temp90, i)

end for
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(a) 10% of the zero-phase Ricker wavelets in the dictionary.

(b) 10% of the −90 degree phase Ricker wavelets in the dictio-
nary.

Figure 2.11: Subspace dictionary.
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After one iteration of subspace matching pursuit algorithm, we obtained two

coefficients as shown in Figure 2.12. We obtain the reconstructed signal by summing

the zero-phase Ricker wavelet (black) and −90-degree phase Ricker wavelet (red)

with their coefficients as weights. It is exactly the same as the original signal.

Figure 2.12: A sparse representation of a phase-rotated Ricker wavelet.

Next, we consider another example. We generated a synthetic trace by summing a

30-degree and 60-degree rotated Ricker wavelet as shown in Figure 2.13. We satisfied

the threshold after 2 iterations; therefore, we only need to save 4 coefficients and 2

indices to reconstruct the signal. As can be seen from Figure 2.13, our reconstructed

signal overlaps exactly with the original one. Our compression ratio is 1% in this

case.
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Figure 2.13: Subspace matching pursuit: the reconstructed and original signal agree
perfectly.

2.2.2 Numerical experiments

We have tested this approach on the same synthetic shot as previous chapter. We

plotted the 20-th trace and its reconstructions in Figure2.14a with CR = 1% (top)

and CR = 2% (bottom). The relative l∞ errors of the reconstruction are 0.17

and 0.11 respectively. In Figure 2.14b, the original trace was compared with its

reconstruction with CR = 3.3% (top) and CR = 10% (bottom). The relative l∞

errors of the reconstruction are 0.05 and 0.03 respectively.

With CR = 1% and CR = 2% we obtained the reconstructed shot record in the

left and middle panel of Figure 2.15. No oscillating artifacts (mosaic phenomenon)

exist. We have more accurate reconstructed data as shown in Figure 2.16 when

CR = 3.3% and CR = 10%. The residues of the reconstructed shot record were
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(a) CR = 1% at the top, CR = 2% at the bottom.

(b) CR = 1% at the top, CR = 2% at the bottom.

Figure 2.14: Subspace matching pursuit reconstructed trace
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concatenated in Figure 2.17 and they decreased as the size of compressed data in-

creased. We define common metrics to measure the quality of the reconstructed

signal compared with the original. Let P be a signal (vector) or a image (matrix)

and Q be the reconstructed one. Root mean square error is defined as

RMSE =
norm(P −Q, 2)√

length(P )

signal-to-noise ratio is

SNR = 20log10
norm(P, 2)

norm(P −Q, 2)

We have plotted the error and SNR comparison of Matching pursuit with Symlets and

Subspace matching pursuit in Figure 2.18a and 2.18b. Subspace matching pursuit

converges faster in the beginning, but then become slower than the matching pursuit

with Symlets. Because the incompleteness of the subspace dictionary, it was hard

to reconstruct the higher frequency residue. In the next section, we will solve this

problem by using matching pursuit with combined dictionary.
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Figure 2.15: Subspace matching pursuit reconstructed data with CR = 1% on the
left, CR = 2% in the middle, and original data on the right.

Figure 2.16: Subspace matching pursuit reconstructed data with CR = 3.3% on the
left, CR = 10% in the middle, and original data on the right.
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Figure 2.17: Subspace matching pursuit residue with CR = 1%, 2%, 3.3%, 10% from
left to right.
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(a) Error.

(b) SNR.

Figure 2.18: Comparison of matching pursuit with Symlets and subspace matching
pursuit.
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2.3 Matching pursuit with combined dictionaries

In this section, we propose using matching pursuit with the combined dictionaries

of Symlets and subspace. We obtain the best quality with the same compression

ratio. Only limited artifacts were observed for various compression ratios for our

test synthetic shot.

2.3.1 Algorithm

We combined the Symlets dictionary and subspace dictionary to form a dictionary

Dc = {ωp, φp, ψp}. Then we applied matching pursuit on Dc.

2.3.2 Numerical results

We have applied our combined Symlets dictionary and subspace dictionary matching

pursuit. We plot the 20-th trace and its reconstructions in Figure 2.19a with CR =

1% (top) and CR = 2% (bottom). The relative l∞ errors of the reconstruction are

0.12 and 0.07 respectively. In Figure 2.19b, the original trace was compared with

its reconstruction with CR = 3.3% (top) and CR = 10% (bottom). The relative l∞

errors of the reconstruction are 0.04 and 0.01 respectively.

With CR = 1% and CR = 2% we obtain the reconstructed shot record in the

left and middle panel of Figure 2.20. Only limited artifacts were observed compared

to Figure 2.7 and more seismic events were reconstructed compared to Figure 2.15.

With CR = 3.3% and CR = 10% we obtained reconstructed shot record of better
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(a) CR = 1% at the top, CR = 2% at the bottom.

(b) CR = 1% at the top, CR = 2% at the bottom.

Figure 2.19: Matching pursuit with combined dictionaries reconstructed trace.
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quality in the left and middle panel of Figure 2.21.

Figure 2.20: Matching pursuit with combined dictionary reconstructed data with
CR = 1% on the left, CR = 2% in the middle, and original data on the right.

Next, we validated matching pursuit with combined dictionaries approach with

noisy synthetic data. We added white noise at the level of SNR = 33dB to the

synthetic shot and then applied matching pursuit with combined dictionary.

We plotted the 20-th trace and its reconstructions in Figure2.23a with CR = 1%

(top) and CR = 2% (bottom).In Figure 2.23b, the original trace was compared with

its reconstruction with CR = 3.3% (top) and CR = 10% (bottom).

With CR = 1% and CR = 2% we obtained the reconstructed shot record in the

left and middle panel of Figure 2.24. With CR = 3.3% and CR = 10% we obtained

the reconstructed shot record in the left and middle panel of Figure 2.25. We have

recovered as many seismic events as with clean synthetic data as shown in Figures
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Figure 2.21: Matching pursuit with combined dictionary reconstructed data with
CR = 3.3% on the left, CR = 10% in the middle, and original data on the right.

2.20 and 2.21. The residue for the reconstructed shot record were concatenated in

Figure 2.26. The lateral correlation in the residue decreases when the size of the

compressed data increases. For a compression ratio 10% we barely found lateral

correlation which indicates good quality of reconstruction of seismic events, but not

for the noise.
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Figure 2.22: Matching pursuit with combined dictionary residue with CR = 1%, 2%,
3.3%, 10% from left to right.
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(a) CR = 1% at the top, CR = 2% at the bottom.

(b) CR = 1% at the top, CR = 2% at the bottom.

Figure 2.23: Matching pursuit with combined dictionaries reconstructed trace.
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Figure 2.24: Matching pursuit with combined dictionary reconstructed data with
CR = 1% on the left, CR = 2% in the middle, and original data on the right.

Figure 2.25: Matching pursuit with combined dictionary reconstructed data with
CR = 3.3% on the left, CR = 10% in the middle, and original data on the right.
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Figure 2.26: Matching pursuit with combined dictionary residue with CR = 1%, 2%,
3.3%, 10% from left to right.
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2.4 Comparison

We applied the three methods trace by trace on the same synthetic shot. For the 20-

th trace, we have plotted the relative l∞ error for all the three methods with various

compression ratios in Figure 2.27. With CR = 2% we obtained the reconstructed

Figure 2.27: Relative infinity error comparison of three methods for the 20-th trace.

shot records and concatenated from left to right in Figures 2.28. The rightmost

panel of Figure 2.28 shows the shot record in grey scale. From left to right, we show

matching pursuit with Symlets, subspace matching pursuit, and matching pursuit

with combined dictionaries. We also concatenated the residue of the three methods

in the same order in Figures 2.29.

With CR = 10% we obtained the reconstructed shot records and concatenated

from left to right in Figures 2.30. The rightmost panel of Figure 2.30 shows the shot
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Figure 2.28: Original and reconstructed shot records for CR = 2%

record in grey scale. From left to right, we show matching pursuit with Symlets,

subspace matching pursuit, and matching pursuit with combined dictionaries. We

also concatenated the residue of the three methods in the same order in Figures 2.31.

We observed serious oscillating artifacts (mosaic phenomenon) along the edges

for matching pursuit with symlets in the first panel from the left in Figure 2.28.

The artifacts were reduced dramatically when we increase the size of compressed

data as shown in Figure 2.30. No oscillating artifacts (mosaic phenomenon) exist for

subspace matching pursuit as seen in the second panel in both Figure 2.28 and 2.30.

Only limited artifacts were observed compared for matching pursuit with combined

dictionaries as shown in the third panel in both Figure 2.28 and 2.30. More seismic

events were reconstructed compared to the other two.
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Figure 2.29: Residue of the three methods CR = 2%

We compared the error and SNR for the three methods. As one can see from

Figure 2.32a, errors for all methods decreased when the size of compressed data in-

creases. Matching pursuit with combined dictionaries had the smallest error among

the three methods. The subspace matching pursuit started with a smaller error than

matching pursuit with Symlets, but the convergence slowed down due to incomplete-

ness of its dictionary. SNR for all three methods increased as the size of compressed

data increased. Matching pursuit with combined dictionaries obtained the highest

SNR in Figure 2.32b.

We list the characteristics of the three methods below:

1. Matching pursuit with Symlets

• worked without knowledge of source wavelet
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Figure 2.30: Original and reconstructed shot records for CR = 10%

• obtained better quality than Discrete Wavelet Transform

• had obvious artifacts for too much compression

2. Subspace matching pursuit

• needed source wavelet or estimated source wavelet

• had no artifacts existing for various compression ratio

• had its convergence slowing down due to incompleteness of the dictionary

3. Matching pursuit with combined dictionaries (Symlets and Subspace)

• needed source wavelet or estimated source wavelet

• had limited artifacts existing for various compression ratio

• achieved best quality with fastest convergence among the three methods
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Figure 2.31: Residue of the three methods CR = 10%
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(a) Error.

(b) SNR.

Figure 2.32: Comparison of the three methods.
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CHAPTER 3

Wavelet-based microseismic first arrival detection

We proposed a new method of automatic first break detection of P-waves and S-

waves. Our method is based on a time-frequency analysis of the seismic trace using

minimum uncertainty (µ-)wavelets, in particular in the minimum-phase form. We

have tested our method on both lab data with various S/N and on field data.

3.1 Method

In this section, we propose a new automatic first arrival picking method based on

µ-wavelets. We introduced the µ-wavelets for spectral decomposition of microseismic
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3.1. METHOD

traces to generate a indicator function. We developed a technique to yield a less noisy

indicator function using Hermite distributed approximating functionals (HDAFs).

3.1.1 µ-Wavelets and Heisenberg’s uncertainty principle

It is well-known that the bandwidth-duration product of any physical signal has to

be greater than a minimum universal value. Essentially, it is a rigorous mathematical

bound which makes it impossible to create signals with arbitrarily narrow width si-

multaneously in both time and frequency. This is known as Heisenberg’s uncertainty

principle, and we will derive the µ-wavelets from it.

We define Heisenberg’s uncertainty product as

∆ = ∆t∆ω =

ˆ ∞

−∞
t2|φ(t)|2dt

ˆ ∞

−∞
ω2|φ(ω)|2dω (3.1)

where φ(t) is the time domain signal and φ(ω) is the Fourier transform of it:

φ(ω) =

ˆ +∞

−∞
φ(t)e−iwtdt (3.2)

∆t and ∆ω are the standard deviation in time domain and frequency domain, re-

spectively. Here we assumed that the expected values of φ(t) and φ(ω) are zero. It

is well-known that the absolute minimum of the uncertainty product is
1

2
when φ(t)

is a Gaussian signal. The uncertainty is associated with the standard deviation in

time and frequency (∆t∆ω = constant).

To generate a family of wavelets, we start with an arbitrary function φ0(t) which

we shall choose to be a Gaussian. We modify φ0(t) to create a new function

φ1(t) = φ0(t) + ψ(t), (3.3)
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By Parseval’s Theorem

ˆ ∞

−∞
ω2|φ(ω)|2dω =

ˆ ∞

−∞
|IFT (ωφ(ω))|2dt =

ˆ ∞

−∞
|i∂φ(t)

∂t
|2dt (3.4)

Thus the uncertainty product of φ1 can be written as

∆ =

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
|∂φ1(t)

∂t
|2dt (3.5)

We substitute Equation (3.3) into the second integral in Equation (3.5),

∆ =

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
|∂(φ0(t) + ψ(t))

∂t
|2dt

=

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
[(
∂φ0(t)

∂t
)2 + 2

∂φ0(t)

∂t

∂ψ(t)

∂t
+ (

∂ψ(t)

∂t
)2]dt

=

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
[(
∂φ0(t)

∂t
)2 + 2

∂φ0(t)

∂t

∂ψ(t)

∂t
]dt+

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
(
∂ψ(t)

∂t
)2dt

It is convenient to separate ∆ into 2 separate contributions, ∆f and ∆v, defined by

∆f =

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
[(
∂φ0(t)

∂t
)2 + 2

∂φ0(t)

∂t

∂ψ(t)

∂t
]dt

∆v =

ˆ ∞

−∞
|tφ1(t)|2dt

ˆ ∞

−∞
(
∂ψ(t)

∂t
)2dt

We see that ∆v is the product of the full uncertainty in t times the uncertainty in ω

that is strictly due to the modification function, ψ(t). So

∆ = ∆f + ∆v.

We minimize ∆v to get the minimum of the full time uncertainty times the ∆ω due

solely to ψ(t). Thus, by applying the Schwarz inequality, we get

∆v ≥ |
ˆ ∞

−∞
(tφ1(t))(

∂ψ(t)

∂t
)dt|2 (3.6)
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The equality holds when tφ1(t) and
∂ψ(t)

∂t
are proportional

1

σ2
tφ1(t) =

∂ψ(t)

∂t
=
∂(φ1(t)− φ0(t))

∂t
(3.7)

If we take the Fourier transform on both sides, we get

i
1

σ2

∂φ1(ω)

∂ω
= −iω(φ1(ω)− φ0(ω)) (3.8)

We can rewrite it as

− 1

σ2ω

∂φ1(ω)

∂ω
= φ1(ω)− φ0(ω) (3.9)

If we define ξ = ω2σ2/2, the Equation (3.9) is equivalent to

− ∂φ1(ξ)

∂ξ
= φ1(ξ)− φ0(ξ), (3.10)

which has the solution

φ1(ξ) =

ˆ ξ

0

dξ′e−(ξ−ξ′)ξ0(ξ′)φ0(ξ′), (3.11)

obeying the wavelet admissibility requirement that φ1 = 0 when ω = 0 [15]. We can

generate an infinite family of wavelets as

φn(ξ) =

ˆ ξ

0

dξ′e−(ξ−ξ′)ξn−1(ξ′)φn−1(ξ′), (3.12)

Thus, we obtain the µ-wavelets as

φn(ξ) = e−ξ
ξn

n!
= e−(σ2ω2)/2 (σ

2ω2

2
)n

n!
, (3.13)

For large n,

φn(ξ)→ 1√
2πn

e−(ξ−n)2/2n, (3.14)
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3.1. METHOD

which shows that the µ-wavelets are generalized Gaussians. The µ-wavelet can also

be written in the time domain as

µλ,σn (x) =
1

σ(
√

2nn!
√
π)
Hn(x)e−x

2

, (3.15)

where x =
√
λ(t−t0)
σ

, λ and σ are parameters that control the bandwidth of the

wavelets, t0 is the center-time of the wavelets, and Hn(x) is the nth order Hermite

polynomial which is defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (3.16)

The µ-wavelets are functions that are localized in both time and frequency. We have

plotted a family of µ-wavelets with n = 2, · · · , 30 in Figure 3.1.

It is useful to make a few comments about the µ-wavelets. First, we stress

that φ0, which is chosen to be a Gaussian, is therefore not a wavelet. In wavelet

theory, it corresponds rather to the basic ”low pass” function, since it is equal to the

Gaussian. Indeed, the work of [15] showed that sums of the µ-wavelets, plus φ0, give

rise to infinitely smooth approximations to the ideal window. Second, we make the

observation that the φn are, in fact, ”generalized Gaussians ”, in the following sense.

It is well-known that the Gaussian is a solution of the diffusion equation with a Dirac

delta function source. It is also true that φn, n > 0, is a solution of the diffusion

equation with the nth derivative of the Dirac delta function as the source. It is this

fundamental connection of the φ0 and µ-wavelets, φn, n > 0, that motivated us to

investigate them for time-frequency analysis of seismic signals.

The original µ-wavelets are zero-phase wavelets. In Figure 3.2 we plotted the

zero-phase µ-wavelet of degree 10. Throughout this article we choose σ = 0.005 and
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Figure 3.1: Wavelets family with n = 2, · · · , 30.

λ = 7 after exploring the µ-wavelets dependence on its parameters.

As we know, the zero-phase wavelet is symmetrical with a maximum at time

zero (non-causal). Often, when the trace has been decomposed using zero-phase

wavelets, then there will be a small amount of energy leaks into times before the true

first arrival. The minimum phase wavelet is the most front-loaded wavelet possible

that is zero before time zero (causal) and has the given amplitude spectrum. If the

phase is made smaller, then the wavelet becomes non causal. Of all causal wavelets

with given amplitude spectrum, the phase spectrum given by the Hilbert transform
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Figure 3.2: The zero-phase µ-wavelet of degree n = 10 (upper) and its amplitude
spectrum (lower).

of the logarithm of the amplitude spectrum is the smallest in absolute value at any

frequency. Therefore, we generate the minimum phase µ-wavelet with the phase

spectrum as the Hilbert transform of the logarithm of the amplitude spectrum of

the zero-phase µ-wavelets. In this way, we transform the zero-phase µ-wavelets into

minimum-phase wavelets (see Figure 3.3 for example) and employ them to do spectral

decomposition by the algorithm in section 3.1.3.
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Figure 3.3: The minimum-phase µ-wavelet of degree n = 10 (upper) and its ampli-
tude spectrum (lower).

3.1.2 Hermite distributed approximating functionals

In broad terms, approximating functions and their derivatives can be cast in terms

of the Dirac delta function, having the following property:

f(x) =

ˆ ∞

−∞
δ(x− x′)f(x′)dx′, (3.17)
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We introduce the Hermite distributed approximating functionals or HDAFs.

δM(x− x′, σ) =
1√
2πσ

e−
(x−x′)2

2σ2

M/2∑

n=0

(−1

4
)n

1

n!
H2n(

x− x′√
2σ

), (3.18)

It has been proved that the HDAFs yield unity approximations [3] [53]. Therefore

fM(x) =

ˆ ∞

−∞
δM(x− x′)f(x′)dx′ (3.19)

is a delta sequence of functions which approximates f(x).

Let us consider a discrete uniform grid (xi) of size h. By carrying out a numerical

integration of (3.19), considering that the HDAF has a limited numerical support,

the HDAFs approximation for f(x) is:

f(xi) ≈ fM(xi) ≈
N∑

j=0

hδM(xi − xj, σ)f(xj) ≈
i+W/2∑

j=i−W/2
hδM(xi − xj, σ)f(xj), (3.20)

where W is the HDAFs bandwidth. Next, we can formulate filling a gap in data

using HDAFs [56]. Suppose we have a set of uniformly spaced grid points on the

infinite line. f(x) is a continuous function that is known on all grid points except

for the set xJ , · · · , xK . We can estimate the unknown values by minimizing the cost

function,

C =
∞∑

p=−∞
Wp(f(xp)− fM(xp))

2 (3.21)

where Wp is a weight assigned to the point xp. In this dissertation it is chosen to be

1 on a finite grid and 0 elsewhere. We substitute the HDAFs approximation fM(xp)

in equation 3.20 into equation 3.21, we obtain

C =
∞∑

p=−∞
Wp(f(xp)−

p+W/2∑

j=p−W/2
hδM(xp − xt, σ)f(xt))

2 (3.22)
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We minimize the cost function with respect to the unknown values, f(xJ), · · · , f(xK)

by specifying

∂C

∂f(xl)
= 0, J ≤ l ≤ K (3.23)

to obtain the system of linear algebraic equations,

∞∑

p=−∞
2Wp(f(xp)−

p+W/2∑

j=p−W/2
hδM(xp−xt, σ)f(xt))(δpl−δM(xp−xl, σ)) = 0, J ≤ l ≤ K

(3.24)

where the unknowns are f(xp) and f(xt) for p = l or t = l. Here δpl is the Kronecker

delta. We can obtain the predicted values of f(x) on the grid points in the gap.

3.1.3 Algorithm

We next assume the signal can be expressed as a linear combination of the µ-wavelets:

S(t) =
N∑

n=0

Cnµn(t) (3.25)

We carry out the following steps to obtain the first arrival detection based on a

time-frequency analysis.

Step 1: cross-correlate the analysis µ-wavelet µm(t) with both sides of equation 3.25

and obtain

µm(t)⊗ S(t) = µm(t)⊗
∑

n

Cnµn(t), (3.26)

µm(t)⊗ S(t) =
∑

n

Cnµm(t)⊗ µn(t), (3.27)

where g(t)⊗ f(t) =
´∞
−∞ g(t+ τ)f(t)dt, and define

dm(τ) =

ˆ ∞

−∞
µm(t+ τ)S(t)dt, (3.28)
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Xmn(τ) =

ˆ ∞

−∞
µm(t+ τ)µn(t)dt, (3.29)

where we use the Einstein summation convention for repeated indices. Thus

equation 3.27 can be written in the matrix vector form as

dm(τ) = Xmn(τ)Cn, (3.30)

Thus we can get the coefficients Cn by

Cn(τ) = X+
mn(τ)dm(τ), (3.31)

where X+
mn is the pseudo-inverse of Xmn which can be obtained by singular

value decomposition.

Step 2: We obtain the time-frequency representation of the signal by multiplying

the coefficients with the Fourier transform of the µ-wavelets

S(τ, ω) =
∑

n

Cn(τ)µn(ω), (3.32)

where µn(ω) = FT (µn(t)).

Step 3: We define the power spectrum P (τ, ω) = S2(τ, ω), of the time-frequency

form of the signal and then integrate it over frequency at various times τ to

define the first break indicator function, f(τ):

f(τ) =

ˆ

S2(τ, ω)dω. (3.33)

Step 4: We apply a peak-picking algorithm to find the largest two peaks, and de-

note them as identifiers for the P-wave and S-wave first arrivals. We specify

a potential region of the first arrivals for each of P-wave and S-wave. In each
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potential region, we neglect every other point and then apply Hermite dis-

tributed approximating functionals (HDAFs) to fill the neglected points [56].

This yields a less noisy indicator function at the potential region. Next we find

the maximum of all the points in each potential region as our indicator. Thus

we obtain two indicators, the smaller one for P-wave first arrival and the other

one for S-wave arrival.

3.2 Examples

We validated our method using both lab data with various S/N and on field micro-

seismic data.

3.2.1 Test on lab data

The experimental data was obtained for an S-wave source. The original sampling

frequency was 50 MHz. We re-sampled the data with sampling frequency of 5 MHz for

our test. The seismic trace was gathered by stacking 64 signals in Figures 3.4 and 3.5.

But the seismic trace in Figure 3.6 was not stacked. The signals in Figures 3.5 and 3.6

are noisier than that of Figure 3.4, as we can see from both the original signals and

the indicator functions. Our automatic time arrival detections for the three signals

are very close to each other and to the actual arrival time of S-wave which is 0.22238

ms. Our automatic time arrival detection has error of less than 0.5 µs as shown in

the figures. This illustrates the accuracy of our method.
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Figure 3.4: The zero-phase µ-wavelet of degree n = 10 (upper) and its amplitude
spectrum (lower).The upper picture shows the stacked seismic trace of gain +30 dB,
the lower one shows the first arrival indicator function. Our method detects the
S-wave arrival time ts = 0.2228 ms.

3.2.2 Test on field data

The field data we tested on have a sampling frequency of 2 KHz. Our data are for

three components and was recorded at 8 stations. As shown in Figures 3.7 to 3.9, we

detected both P-wave and S-wave arrival times since we have two obvious peaks in

the indicator function. The first peak detects the P-wave arrival and the second peak

detects the S-wave arrival respectively. The time arrivals we detected by each of the
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Figure 3.5: The upper picture shows the stacked seismic trace of gain 0 dB, the lower
one shows the first arrival indicator function. Our method detects the S-wave arrival
time ts = 0.2228 ms.

three components are slightly different, so we calculated the average to obtain the

arrival time for the station. We found that the Z-component and NS-component are

better behaved to detect P-wave arrival, while the SW-component is better behaved

to detect S-wave arrival.

We compare the result of our method with the manual time arrival picking in

Table 3.1. Our detection of the arrival time is generally consistent with the manual

detection. The differences are within 1 ms.
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Figure 3.6: The upper picture shows one seismic trace of gain +30 dB, the lower
one shows the first arrival indicator function. Our method detects the S-wave arrival
time ts = 0.2224 ms.

We tested on 440 microseismic traces and plot the difference of the manually

detected S-wave arrivals and our automated picked S-wave arrivals using a histogram

in Figure 3.10. The width of each bin is 0.5ms which is the sample rate. The mean

of the difference is 0.16ms.

We have proposed a new method of automatic first break detection of P-waves

and S-waves. Our method is based on a time-frequency analysis of the seismic trace

using minimum uncertainty (µ-) wavelets. The performance of our method has been
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Figure 3.7: The upper picture shows the real passive seismic trace Z-component
recorded at station 1, the lower one shows the first arrival indicator function. Our
method detects that P-wave arrives at tp = 0.427 s and the S-wave arrives at ts =
0.499 s.

tested on both lab data and field data. The results suggest that our method is robust.
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Figure 3.8: The upper picture shows the real passive seismic trace in NS-component
recorded at station 1, the lower one shows the first arrival indicator function. Our
method detects that P-wave arrives at tp = 0.4275 s and the S-wave arrives at
ts = 0.500 s.
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Figure 3.9: The upper picture shows the real passive seismic trace in EW-component
recorded at station 8, the lower one shows the first arrival indicator function. Our
method detects that P-wave arrives at tp = 0.4275 s and the S-wave arrives at
ts = 0.500 s.
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P-wave arrival time (s) S-wave arrival time (s)
Station Our Method Manual Our Method Manual

1 0.4273 0.427 0.4997 0.5005
1 0.421 0.4215 0.490 0.4905
3 0.417 0.417 0.482 0.4825
4 0.4145 0.415 0.477 0.4775
5 0.412 0.4125 0.471 0.4715
6 0.4075 0.4085 0.463 0.464
7 0.4055 0.405 0.458 0.458
8 0.400 0.4005 0.452 0.452

Table 3.1: Comparison our automatic method and manually detection.

Figure 3.10: Histogram of the difference.
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CHAPTER 4

Seismic event picking

We explored methods of automatic seismic event picking. It is known that no single

automatic seismic event indicator works for all data; therefore, we explored two

indicators based on µ-wavelets and on an energy ratio. Thresholding was applied to

pick seismic events. We have tested with synthetic data and offshore field data.

4.1 µ-Wavelets-based seismic event picking

We applied µ-wavelets-based seismic event indicator as we introduced in the previous

chapter on the synthetic data set BP2004. The dataset was generated using a 2D
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time-domain, acoustic, finite difference modeling algorithm. It was modeled with a

streamer configuration, using a 15km streamer with 12.5m group interval and a 50m

shot interval. Minimum offset is 0m, and sampling interval is 6ms. A total of 1340

shots were generated each with 1201 receivers. Shot 1 is shown in figure 4.1. We

applied the indicator on each trace and picked the first arrivals which were shown in

black in Figure 4.2. Shot 15 is shown in figure 4.3. We applied the indicator on each

trace and picked the first arrivals which were shown in black in Figure 4.4. We have

good picking results but each shot took 2069s on a work station. Its efficiency is not

satisfactory because of the computational complexity of the spectral decomposition.

We also explored an energy ratio method which is less computationally complex.

4.2 Energy ratio-based seismic event picking

In this section, we introduced a short-term average/long-term average (STA/LTA)

ratio [54], applied trace by trace, and followed by thresholding to mute. We have

added various levels of white noise to the synthetic shots and then picked seismic

events using the energy ratio method for testing.

Let xi be the time series representing a seismic trace. We define the energy ratio

as the short-term average/long-term average ratio as in [54]. Let the length of a

short-term window be Ns, and the length of the long-term window be Nl (Nl > Ns).

For each time index i(1 < i < N), we define short-term average of the energy as

STAi =
1

Ns

i∑

j=i−Ns−1

x2
j
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And long-term average of the energy is defined as

LTAi =
1

Nl

i∑

j=i−Nl−1

x2
j

If j ≤ 0,set xj = x1. Then we define STA/LTA ratio as

ri =
STAi
LTAi

When we apply this to shot records, we compute STA/LTA ratio trace by trace

and then apply thresholding to mute. We generated the shot record by forward

modeling using finite differences. The sampling interval is 8ms with a total of 1876

samples. One shot has 801 traces. We have added various levels of white noise

to the shot and then pick seismic events using the energy ratio method. We have

plotted a near offset trace (#600) with low noise added at the top of Figure 4.5a.

We accurately picked the first arrival using the energy ratio indicator and muted

the noise before the first arrival as shown at the bottom of Figure 4.5a. We plotted

a far offset trace (#200) with low noise added at the top of Figure 4.5b and the

corresponding accurately muted trace is shown at the bottom of Figure 4.5a. For

the entire shot record with low noise, as shown in Figure 4.6, we have correctly muted

the noise before the first arrival by the energy ratio method in Figure 4.7.

We plotted a near offset trace (#600) with medium noise added at the top of

Figure 4.8a. We accurately picked the first arrival using energy ratio indicator and

muted the noise before the first arrival as shown at the bottom of Figure 4.8a. We

plotted a far offset trace (#200) with medium noise added at the top of Figure 4.8b

and the corresponding accurately muted trace is shown at the bottom of Figure

4.8a. For the entire shot record with medium noise, as shown in Figure 4.9, we have
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correctly muted the noise before the first arrival by the energy ratio method in Figure

4.10.

We plotted a near offset trace (#600) with high noise added at the top of Figure

4.11a. We accurately picked the first arrival using energy ratio indicator and muted

the noise before the first arrival as shown at the bottom of Figure 4.11a. We plotted

a far offset trace (#100) with high noise added at the top of Figure 4.11b and the

corresponding accurately muted trace is shown at the bottom of Figure 4.11a. For

the entire shot record with high noise, as shown in Figure 4.12, and we have correctly

muted the noise before the first arrival by the energy ratio method in Figure 4.13.

74



4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.1: Shot 1.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.2: Shot 1 automatic picking.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.3: Shot 15.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.4: Shot 15 automatic picking.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

(a) Synthetic trace #600 is at the top and its corresponding accurately
muted trace at the bottom.

(b) Synthetic trace #200 is at the top and its corresponding accurately
muted trace at the bottom.

Figure 4.5: Synthetic traces with low noise.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.6: Synthetic shot record with low noise.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.7: Accurately muted synthetic shot record with low noise by the energy
ratio method.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

(a) Synthetic trace #600 is at the top and its corresponding accurately
muted trace at the bottom.

(b) Synthetic trace #200 is at the top and its corresponding accurately
muted trace at the bottom.

Figure 4.8: Synthetic traces with medium noise.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.9: Synthetic shot record with medium noise.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.10: Accurately muted synthetic shot record with medium noise by the
energy ratio method.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

(a) Synthetic trace #600 is at the top and its corresponding accurately
muted trace at the bottom.

(b) Synthetic trace #200 is at the top and its corresponding accurately
muted trace at the bottom.

Figure 4.11: Synthetic traces with high noise.
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Figure 4.12: Synthetic shot record with high noise.
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4.2. ENERGY RATIO-BASED SEISMIC EVENT PICKING

Figure 4.13: Accurately muted synthetic shot record with high noise by the energy
ratio method.
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CHAPTER 5

Seismic reflectivity inversion

We propose two new seismic sparse inversion methods based on complex basis pursuit

and a modified basis pursuit. In practice, constant phase wavelets are used for seismic

inversion algorithms (e.g the basis pursuit method). If the phase of the estimated

wavelet is wrong, this can cause an error in reflectivity. We can obtain more accurate

reflectivity even though the estimated wavelet has biased phase using complex basis

pursuit and modified complex basis pursuit. We have tested the new approaches

on a wedge model and the results are much more accurate than the standard basis

pursuit method.

88



5.1. BASIS PURSUIT

5.1 Basis pursuit

In this section, we introduce a seismic reflectivity inversion method using the basis

pursuit method. A wedge model was generated for demonstration. We discuss the

characteristics and limitations of the basis pursuit method for inverting reflectivity.

In the case of a discretized time series, the convolutional model 1.1 can be written

as [57]

Ax + e = y (5.1)

where A ∈ RN×N is the diagonal wavelet matrix whose columns consist of the time-

shifted wavelets, x ∈ RN is the reflectivity series column vector with P (P < N)

nonzero elements., y ∈ RN is a column vector representing the seismogram, and

e ∈ RN is a noise vector.

Let the wavelet vector have length of K = 2M + 1 and denote wk(1 ≤ k ≤ K)

as the k-th element. Let Aij be the element in the i-th row and j-th column of A,

then we have

Aij =





wi−(j−M), if −M ≤ i− j + 1 ≤M

0, otherwise
(5.2)

The columns of A are not linearly independent so that rank(A) < N . Equation 5.1

is an underdetermined linear system. Minimizing a quadratic loss

‖e‖2 = ‖Ax− y‖2 (5.3)

can lead to over-fit. Here ‖x‖2 = (
∑

i

x2
i )

1
2 denotes the l2 norm of x. One of the

techniques to prevent over-fitting is Tikhonov regularization, which can be written
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5.1. BASIS PURSUIT

as [30]

min
x
‖Ax− y‖2 + λ‖x‖2 (5.4)

where λ > 0 is a regularization parameter. The Tikhonov regularization solutions

x typically have all coefficients nonzero which is not desired for sparse inversion.

The basis pursuit algorithm formulates an optimization problem that simultaneously

minimizes both the l2 norm of the error and l1 norm of the solution [4]:

min
x
‖Ax− y‖2 + λ‖x‖1 (5.5)

where ‖x‖1 =
∑

i

|xi| denotes the l1 norm of x, and λ > 0 is the regularization

parameter. Throughout this study, we have used λ = 0.01 for our computations.

Basis pursuit typically yields a sparse vector x, that is an x that has relatively few

nonzero coefficients.

We test the basis pursuit by convolving a 40−Hz zero-phase Ricker wavelet with

reflection-coefficient pairs with varying ratios. We generated wedge models with 1ms

sampling for a reflection-coefficient pair r1 = 1 and r2 = 2. The values were taken

for better visualization. It is well known as the tuning effect that describes the

phenomenon of constructive or destructive interference of waves from closely spaced

reflections. At a spacing of less than
1

4
of the wavelength, reflections have constructive

interference and generate a single event of high amplitude. At spacing greater than

that, the event begins to be resolvable as two separate events. The tuning thickness

is the bed thickness at which two seismic events become indistinguishable in time,

and it is important for seismic interpreters to know the tuning thickness to study

thin reservoirs.
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5.1. BASIS PURSUIT

The tuning thickness of a thin-bed model with a Ricker wavelet can be calculated

by [6]

tR =

√
6

2πf0

(5.6)

where f0 is the dominant wavelet frequency. The equation assumes that the inter-

fering wavelets are identical in frequency content and are zero-phase. In our case,

the wedge model we produced satisfies the conditions to use the formula, for which

f0 = 40Hz, we have tuning thickness tR = 10ms.

We plotted the wedge model as shown in Figure 5.1a and we notice that the event

begins to be unresolvable as two separate events when time-thickness is less than the

tuning thickness tR = 10ms. When we invert with zero-phase wavelets, we obtain

inverted reflectivity exactly by basis pursuit in Figure 5.1b. The top of the layer lies

at 40ms and the base of the layer increased from 41ms to 61ms. We notice that we

have distinctly inverted the top and bottom of the wedge under the spacing of the

tuning thickness.

In the real world, given a seismogram, we couldn’t know the wavelet with exact

phase. Suppose we include a biased phase in the estimated wavelet. Then the

reflectivity inversion will not be exact. This is demonstrated by the result of using

a 30 degree phase wavelet to invert the same synthetic seismograms. The inverted

reflectivity has artifacts as shown in Figure 5.1c for the wedge model. Therefore,

we propose two new methods to invert reflectivity based on complex basis pursuit

and modified complex basis pursuit to decompose the biased phase in the estimated

wavelet.
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5.1. BASIS PURSUIT

(a) Wedge model

(b) Inverted reflectivity by basis pursuit with zero-phase seismic
wavelet.

(c) Inverted reflectivity by basis pursuit with 30-degree seismic
wavelet.

Figure 5.1: Wedge model and inverted reflectivity by basis pursuit.
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5.2. COMPLEX BASIS PURSUIT

5.2 Complex basis pursuit

In this section, we introduce a new method for seismic reflectivity inversion based

on complex basis pursuit. We generated a complex seismic trace and a complex

diagonal wavelet matrix and then applied complex basis pursuit to obtain real part

and imaginary part of reflectivity. We have tested using our wedge model and the

results are much more accurate than the basis pursuit method.

We define a complex diagonal wavelet matrix Ac. Let Ac
j be a complex column

vector of Ac which was defined by

Ac
j = Aj + iH(Aj) (5.7)

where H(·) is the Hilbert transform. The Hilbert transform has the effect of shifting

the phase of the negative frequency components by +90 degrees and the phase of the

positive frequency components by −90 degrees. Let xc = xr + ixi,yc = y + iH(y).

We formulate the complex basis pursuit as

min
xc
‖Acxc − yc‖2 + λ‖xc‖c1 (5.8)

where the norm ‖ · ‖c1 was defined

‖xc‖c1 =
∑

j

|xcj| =
∑

j

((xrj)
2 + (xij))

1
2 (5.9)

First we tested this approach on the same wedge models as shown in Figure

5.1a. We inverted the wedge model with complex basis pursuit. We obtained a real

reflectivity in Figure 5.2a and imaginary reflectivity in Figure 5.2b with 30-degree

phase seismic wavelet. We notice that we have inverted the top and bottom of the
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5.2. COMPLEX BASIS PURSUIT

wedge under the spacing of tuning thickness tR = 10ms. The inverted reflectivities

are clean in Figure 5.2c, while artifacts existed in the basis pursuit result shown in

Figure 5.1c.
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5.2. COMPLEX BASIS PURSUIT

(a) Inverted real reflectivity.

(b) Inverted imaginary reflectivity.

(c) Inverted reflectivity.

Figure 5.2: Complex basis pursuit with 30-degree phase seismic wavelet for wedge
model.
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5.3. MODIFIED COMPLEX BASIS PURSUIT

5.3 Modified complex basis pursuit

In this section, we introduced a second method for seismic reflectivity inversion based

on modified complex basis pursuit. We employ the complex diagonal wavelet matrix

as the previous section, but we then apply a modified complex basis pursuit for

the real seismic trace (not the complex seismic trace) to obtain the real part and

imaginary part of the reflectivity. We have tested using our wedge model and the

results are visually the same as the full complex pursuit method.

We formulate the modified complex basis pursuit as

min
xc
‖Ac · xc − y‖2 + λ‖xc‖c1 (5.10)

where

Ac · xc =
∑

j

Ajx
r −H(Aj)x

i ∈ RN (5.11)

We notice that here we minimize the real part of the complex least square error

instead of the complex least square error in complex basis pursuit. First we tested

on the same wedge models as shown in Figure 5.1a. We inverted the wedge model

with modified complex basis pursuit. We obtained a real reflectivity in Figure 5.3a

and imaginary reflectivity in Figure 5.3b with 30-degree phase seismic wavelet. We

notice that we have inverted the top and bottom of the wedge under the spacing of

the tuning thickness tR = 10ms. The results are visually the same as the complex

basis pursuit as shown in Figures 5.2a and 5.2b.

We compared the inverted reflectivity with the actual reflectivity as follows. We

vertically concatenated the inverted reflectivity with 30 degree phase wavelets by
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5.3. MODIFIED COMPLEX BASIS PURSUIT

(a) Inverted real reflectivity.

(b) Inverted imaginary reflectivity.

(c) Inverted reflectivity.

Figure 5.3: Modified complex basis pursuit with 30-degree phase seismic wavelet for
wedge model.
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5.3. MODIFIED COMPLEX BASIS PURSUIT

basis pursuit, complex basis pursuit, modified complex basis pursuit and the actual

reflectivity from top to bottom as shown in Figure 5.4. We noticed that the inverted

reflectivity by basis pursuit showed obvious artifacts (at the top), while the complex

basis pursuit (top middle) and modified complex basis pursuit (bottom middle) re-

sulted in much more accurate reflectivity. This is illustrated by the residue of the

inverted relectivities as shown in Figure 5.5 where the residue by basis pursuit, com-

plex basis pursuit and modified complex basis pursuit were vertically concatenated.

We tested using 60 degree phase wavelets. We noticed that the inverted reflec-

tivity by basis pursuit showed obvious artifacts (at the top), while the complex basis

pursuit (top middle) and modified complex basis pursuit (bottom middle) resulted

in similar reflectivity as the actual reflectivity (bottom) in Figure 5.6. The residues

were plotted in Figure 5.7 and it showed that the complex basis pursuit (middle) and

modified complex basis pursuit (bottom) were much more accurate than the basis

pursuit (top).

Besides, we tested using 90 degree phase wavelets. We noticed that the inverted

reflectivity by basis pursuit showed obvious artifacts (at the top), while the complex

basis pursuit (top middle) and modified complex basis pursuit (bottom middle) re-

sulted in similar reflectivity as the actual reflectivity (bottom) in Figure 5.8. The

residue were plotted in Figure 5.9 and it showed that the complex basis pursuit (mid-

dle) and modified complex basis pursuit (bottom) were much more accurate than the

basis pursuit (top).
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5.3. MODIFIED COMPLEX BASIS PURSUIT

Figure 5.4: Inverted reflectivity comparison with 30-degree phase seismic wavelet for
wedge model.
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Figure 5.5: Inverted reflectivity residue comparison with 30-degree phase seismic
wavelet for wedge model.
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Figure 5.6: Inverted reflectivity comparison with 60-degree phase seismic wavelet for
wedge model.
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Figure 5.7: Inverted reflectivity residue comparison with 60-degree phase seismic
wavelet for wedge model.
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Figure 5.8: Inverted reflectivity comparison with 90-degree phase seismic wavelet for
wedge model.
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5.3. MODIFIED COMPLEX BASIS PURSUIT

Figure 5.9: Inverted reflectivity residue comparison with 90-degree phase seismic
wavelet for wedge model.
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5.4. IMPLEMENTATION

5.4 Implementation

To solve problems in equation 5.5 for basis pursuit, equation 5.8 for complex basis

pursuit and equation 5.10 for modified complex basis pursuit we used CVX, a package

for specifying and solving convex programs [7, 12]. More specifically, the solver we

applied for both basis pursuit, complex basis pursuit and modified complex basis

pursuit is SDPT3 [45, 46]. The optimization algorithm implemented in SDPT3 is a

primal-dual interior-point algorithm that uses the path-following paradigm. In each

iteration, a predictor search direction was computed to decrease the duality gap as

much as possible. After that, the algorithm generated a Mehrotra-type corrector

step [23] to keep the iterate near the central path. Neighborhood restrictions were

not imposed on the iterates. Initial iterates need not be feasible -the algorithm tries

to achieve feasibility and optimality of its iterates simultaneously.
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CHAPTER 6

Conclusions and future work

An efficient seismic data compression method can speed up handling large data

volumes and possibly speed up the imaging algorithm. In Chapter 2, we developed

new methodologies using wavelet dictionary as new representation space so that

seismic data can be represented in smaller size. We have tested our methodologies

on a synthetic shot record, and the compressed data is 10% of the original with great

fidelity (SNR > 40dB). We list the characteristics of the three methods below:

1. Matching pursuit with Symlets

• worked without knowledge of the source wavelet
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• obtained better quality than Discrete Wavelet Transform

• had obvious artifacts for too much compression

2. Subspace matching pursuit

• needed source wavelet or estimated source wavelet

• eliminated artifacts for various compression ratio

• decreased convergence rate due to incompleteness of the dictionary

3. Matching pursuit with combined dictionaries (Symlets and Subspace)

• needed source wavelet or estimated source wavelet

• had limited artifacts existing for various compression ratio

• achieved best quality with fastest convergence among the three methods

All three methods can have adaptive error control by specifying the stopping criteria

for the iterations.

In refraction seismology, first break (or arrival time) detection has been applied

to study the near surface low-velocity zone and determine the static corrections.

In recent years, with the advances in hydraulic fracturing techniques, first break

detection of P-waves and S-waves has become crucial for locating microseismic events.

In Chapter 3, we proposed a new method of automatic first break detection of P-

waves and S-waves. Our method is based on a time-frequency analysis of the seismic

trace using minimum uncertainty (µ-) wavelets. The performance of our method has

been tested on both lab data and field data. The results suggest that our method is

robust to pick P-wave and S-wave arrivals for microseismic data, automatically.
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In seismic traveltime tomography, the automatic or manual picking of seismic

events are inverted to give a correct velocity model. In this tomographic velocity

model updating process, the manual picking of prestack events is a primary bot-

tleneck. In addition, Laplace domain waveform inversion requires muting prestack

seismic data before the first arrival protecting refracted waves. We explored methods

of automatic seismic event picking in Chapter 4. It is known that no single automatic

seismic event indicator works for all data; therefore, we explored two indicators based

on µ-wavelets and an energy ratio. Thresholding was applied to pick seismic events.

We have tested with synthetic data with various level of noise.

For seismic reflectivity inversion, a constant phase wavelet is usually used in

practice for simplification. If the phase of the estimated wavelet is wrong, this can

cause an error in reflectivity. I proposed a new sparse inversion method that doesn’t

require that the phase of the estimated wavelet be the same as the seismic data. We

constructed a complex dictionary of the estimated wavelets and performed a complex

basis pursuit to decompose the complex seismic traces to corresponding real and

imaginary reflectivity. The complex dictionary consisted of the estimated wavelet

with various shifts of the real wavelet using the corresponding Hilbert transform

of the wavelets for the imaginary part. In this way, we can obtain more accurate

reflectivity even though the estimated wavelet has biased phase. We also proposed

a modified complex basis pursuit method to invert the seismic trace for reflectivity.

The difference is that we only minimize the real part of the least square error instead

of the complex least square error. We obtained results which are visually the same

as the complex basis pursuit. Application to field data is left for future work.
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APPENDIX A

Elastic wave equation in pre-stressed medium

We derived an elastic wave equation in a pre-stressed medium. The pre-stress

causes anisotropy of the elastic tensor and wave velocities. We obtained the Green-

Christoffel equation by considering the harmonic plane wave solution. Also we ana-

lyzed an experimental study to get the elastic tensor under uni-axial pre-stress.

A.1 Derivation of equation of motion in Lagrangian

In the continuum mechanics, if the medium is such that the original relative posi-

tions of the particles have little or no effect on the internal forces throughout the
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A.1. DERIVATION OF EQUATION OF MOTION IN LAGRANGIAN

body, the it will be convenient to work in the current coordinates of each particle.

Otherwise, if the original relative positions affect the forces within the body, then it

is appropriate to work in the original coordinates. The two formulations are called

the Eulerian and the Lagrangian respectively. In elasticity, the force between any

pair of particles depends on the difference between the current and original mutual

distances, therefore, we will derive the elastic wave equation in Lagrangian from the

equation of motion in Eulerian.

The displacement of a particle is defined by

ui = xi − ai (A.1)

where ai are the original coordinates (Lagrangian variables) and xi are the current

coordinates (Eulerian variables). Let σ̂ij be the Eulerian stress tensor, and the force

fi exerted across the parallelogram with sides dxi and δxi (with normal ni) can be

given as

fi = σ̂ijεjklnjdxkδxl

where εijk is the permutation symbol:

εijk =





+1 if (i, j, k) is (1, 2, 3), (3, 1, 2) or (2, 3, 1),

−1 if (i, j, k) is (1, 3, 2), (3, 2, 1) or (2, 1, 3),

0 if i = j or j = k or k = i

We define τij as Lagrangian (Piola-Kirchhoff) stress tensor which satisfies that

fi = τijεjklnjdakδal
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In this case, the force fi is expressed in terms of the sides of the parallelogram in its

original position dai and δai. It is necessary and sufficient condition the relation of

the Eulerian stress tensor σ̂ij and the Lagrangian stress tensor τij holds [1]:

σ̂ij = J(xa)
∂xj
∂ak

τik (A.2)

where J(xa) is the Jacobian J(x1, x2, x3/a1, a2, a3), and

J(xa) =
ρ0

ρ
, J(ax) =

ρ

ρ0

(A.3)

where ρ0 and ρ are the initial and current densities.

The equation of motion in Eulerian form is

∂σ̂ij
∂xj

+ ρFi = ρ
D2ui
Dt2

(A.4)

where Fi is the body force per unit mass. To convert this equation into Lagragian

form we need the following result, namely

∂

∂xj
(J(ax)

∂xj
∂ak

) = 0 (A.5)

Proof. We have εijk
∂al
∂xi

∂am
∂xj

∂an
∂xk

= ε123εijk
∂al
∂xi

∂am
∂xj

∂an
∂xk

= εlmnδ1lδ2mδ3nεijk
∂al
∂xi

∂am
∂xj

∂an
∂xk

= εlmn
∂a1

∂al

∂a2

∂am

∂a3

∂an
εijk

∂al
∂xi

∂am
∂xj

∂an
∂xk

= εlmnεijk
∂a1

∂xi

∂a2

∂xj

∂a3

∂xk

= εlmnJ(ax)

111
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We multiply both sides by
∂xp
∂al

,

εijk
∂xp
∂xi

∂am
∂xj

∂an
∂xk

= εlmnJ(ax)
∂xp
∂al

(A.6)

That is,

εpjk
∂am
∂xj

∂an
∂xk

= εlmnJ(ax)
∂xp
∂al

(A.7)

Then we differentiate both sides by
∂

∂xp
,

∂

∂xp
(εpjk

∂am
∂xj

∂an
∂xk

) =
∂

∂xp
(εlmnJ(ax)

∂xp
∂al

) (A.8)

εpjk
∂

∂xp
(
∂am
∂xj

)
∂an
∂xk

+ εpjk
∂

∂xp
(
∂an
∂xk

∂am
∂xj

) = εlmn
∂

∂xp
(J(ax)

∂xp
∂al

) (A.9)

Since

∂

∂xp

∂

∂xj
=

∂

∂xj

∂

∂xp

We have

εpjk
∂

∂xp
(
∂am
∂xj

) = εjpk
∂

∂xj
(
∂am
∂xp

) = εjpk
∂

∂xp
(
∂am
∂xj

) = −εpjk
∂

∂xp
(
∂am
∂xj

)

Therefore, we obtain

εpjk
∂

∂xp
(
∂am
∂xj

) = 0

Analogously,

εpjk
∂

∂xp
(
∂an
∂xk

) = 0

Thus, we get

0 = εlmn
∂

∂xp
(J(ax)

∂xp
∂al

) (A.10)

We multiply both sides by εjmn, since εjmnεlmn = 2δjl

0 = 2δjl
∂

∂xp
(J(ax)

∂xp
∂al

) (A.11)

112



A.1. DERIVATION OF EQUATION OF MOTION IN LAGRANGIAN

That is

0 =
∂

∂xp
(J(ax)

∂xp
∂aj

) (A.12)

We introduce the Kirchhoff stress tensor Kij and the Eulerian stress tensor can

be written as

σ̂ij = J(xa)
∂xj
∂al

∂xi
∂ak

Kkl (A.13)

Comparing equation (A.2) and (A.13), we have the relationship of the two Lagrangian

stress tensors:

τik =
∂xi
∂al

Kkl (A.14)

and

∂σ̂ij
∂xj

=
∂

∂xj
(J(xa)

∂xj
∂al

∂xi
∂ak

Kkl), by (A.13)

=
∂

∂xj
(J(xa)

∂xj
∂al

)(
∂xi
∂ak

Kkl) + J(xa)
∂

∂xj
(
∂xi
∂ak

Kkl)
∂xj
∂al

,

= J(xa)
∂

∂al
(
∂xi
∂ak

Kkl)), by (A.5)

= J(xa)
∂

∂al
(
∂(ui + ai)

∂ak
Kkl),

= J(xa)(ui,kKkl + δikKkl),l = J(xa)(ui,kKkj +Kij),j,

= J(xa)(ui,kjKkj + ui,kKkj,j +Kij,j).

Let us represent the total stress by

Kij = τ 0
ij + σij (A.15)

where τ 0
ij is the initial stress and σij is the stress produced by propagating waves.
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Then we have

∂σ̂ij
∂xj

= J(xa)(ui,kj(τ
0
kj + σkj) + ui,k(τ

0
kj,j + σkj,j) + (τ 0

ij,j + σij,j))

= J(xa)(τ
0
kjui,kj + ui,kjσkj + ui,kσkj,j + σij,j), since τ 0

kj,j = 0

≈ J(xa)(τ
0
kjui,kj + σij,j) ignoring the higher order terms

We then substitute this into the equation of motion in Eulerian form A.4. By the

equivalence of the material time derivative and
∂

∂t
in the Lagrangian coordinate

frame, we get the equation of motion in the Lagrangian form:

ρ

ρ0

(τ 0
kjui,kj + σij,j) + ρFi = ρ

∂2ui
∂t2

(A.16)

or equivalently,

τ 0
kjui,kj + σij,j + ρ0Fi = ρ0

∂2ui
∂t2

(A.17)

We next introduce the linear infinitesimal strain tensor:

εkl =
1

2
(
∂uk
∂al

+
∂ul
∂ak

) (A.18)

The second term in equation (A.17) can be written as

σij,j =
∂σij
∂aj

=
∂σij
∂εkl

∂εkl
∂aj

(A.19)

We then have

∂σij
∂εkl

= Cijkl(τ
0
mn) (A.20)

where the Cijkl(τ
0
mn) are the elastic constants in a pre-stressed medium. We substi-

tute equation (A.18) and (A.20) into (A.19) to obtain

∂σij
∂aj

= Cijkl(τ
0
mn)

1

2

∂

∂aj
(
∂uk
∂al

+
∂ul
∂ak

) = Cijkl(τ
0
mn)

∂2uk
∂aj∂al

(A.21)
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The equation of motion (A.17) can be rewritten finally as

Cijkl(τ
0
mn)

∂2uk
∂aj∂al

+ τ 0
kj

∂2ui
∂aj∂ak

+ ρ0Fi = ρ0
∂2ui
∂t2

(A.22)

A.2 The elastic tensor in anisotropic medium

Let us investigate the equation of elastic moduli in an arbitrarily, anisotropic initially

stressed medium. Let us represent stress

τij = τ 0
ij + σij (A.23)

where τ 0
ij is the initial stress and σij is the stress produced by propagating waves.

We represent the elastic potential as an expansion of the Green strain tensor εij

W = W0 + τ 0
ijεij + Cijklεijεkl + Cijklmnεijεklεmn + ... (A.24)

where Cijkl and Cijklmn are the second order and third order elastic moduli. The

initial stress can be written as

τ 0
ij = −Pδij + t0ij (A.25)

where P = −1

3
τ 0
ii is the initial pressure, and t0ij is the deviating part. Then we can

rewrite the potential as

W = W0 + τ 0
ijεij + C0

ijkl(P )εijεkl +Bijklmnεijεklt
0
mn + ... (A.26)

where C0
ijkl is the second-order elastic tensor dependent on pressure and determining

the type of symmetry in the medium without pre-stress; Bijklmn is the fourth-order
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tensor that characterizes the anisotropy of the medium generated by the pre-stress.

Comparing equation (A.24) and (A.26), we notice that

Cijkl = C0
ijkl +Bijklmnt

0
mn (A.27)

We can get the stress from the potential by

τij =
1

2
(
∂W

∂εij
+
∂W

∂εji
) (A.28)

Then substituting equation(A.26) into (A.28), we obtain

τpq = τ 0
pq + λεmmδpq + 2µεpq + ν1(t0mnεmnδpq + εjjt

0
pq)

+ ν2(εpmt
0
mq + t0pmεmq) (A.29)

where λ and µ are Lame constants which are dependent on the initial pressure P ,

and ν1 and ν2 are non-zero components of Bijklmn [32]. From equation (A.24) and

(A.28), we have

Cijkl =
∂2W

∂εijεkl
=

1

2
(
∂τij
∂εkl

+
∂τij
∂εlk

) (A.30)

We substitute equation (A.29) into (A.30), to obtain

Cpqkl = λδpqδkl + µ(δpkδql + δplδqk) + ν1(δpqt
0
kl + t0pqδkl)

+
1

2
ν2(δpkt

0
ql + δplt

0
qk) + (t0pkδql + t0plδqk) (A.31)

The elastic modulus reduces to the isotropic homogeneous case when τ 0
ij = 0:

C0
pqkl = λδpqδkl + µ(δpkδql + δplδqk) (A.32)

There is symmetry of the elastic tensor :

Cijkl = Cjikl = Cijlk = Cklij
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If we write the tensor in the form of matrix, according to the rule 11-1,22-2,33-3,23-

4,13-5,12-6, we have Cαβ =




C11 λ− ν1t
0
33 λ− ν1t

0
22 ν1t

0
23 (ν1 + ν2)t013 (ν1 + ν2)t012

C21 C22 λ− ν1t
0
11 (ν1 + ν2)t023 ν1t

0
13 (ν1 + ν2)t012

C31 C32 C33 (ν1 + ν2)t023 (ν1 + ν2)t013 ν1t
0
12

C41 C42 C43 µ− 1
2
ν2t

0
11

1
2
ν2t

0
12

1
2
ν2t

0
13

C51 C52 C53 C54 µ− 1
2
ν2t

0
22

1
2
ν2t

0
23

C61 C62 C63 C64 C65 µ− 1
2
ν2t

0
33




where Cαα = λ+ 2µ+ 2(ν1 + ν2)t0αα, α = 1, 2, 3, and Cαβ = Cβα.

A.3 Green Christoffel equation (Plane wave solu-

tion)

Let us consider plane wave propagation of the displacement:

uk = Ake
ik(npap−V t) (A.33)

Therefore,

∂2

∂aj∂al
[Ake

ik(npap−V t)] = −k2njnlAke
ik(npap−V t) (A.34)

∂2

∂aj∂ak
[Aie

ik(npap−V t)] = −k2njnkAie
ik(npap−V t) (A.35)

∂2

∂t2
[Aie

ik(npap−V t)] = −V 2k2Aie
ik(npap−V t) (A.36)
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If we substitute the terms above into equation (A.22) without a body force (Fi = 0)

and cancel out the exponential term:

− Cijkl(τ 0
mn)k2njnlAk − τ 0

kjk
2njnkAi = −ρ0V

2k2Ai (A.37)

Since Ai = δikAk, and we cancel out k2:

Cijkl(τ
0
mn)njnlAk + τ 0

kjnjnkδikAk = ρ0V
2δikAk (A.38)

We group the terms:

(Cijkl(τ
0
mn)njnl + τ 0

kjnjnkδik − ρ0V
2δik)Ak = 0 (A.39)

We denote Γ∗ik = Cijkl(τ
0
mn)njnl + τ 0

kjnjnkδik as the Green-Christoffel tensor, and

multiplying (A.39) by the exponential term we have

(Γ∗ik − ρ0V
2δik)uk = 0 (A.40)

We denote Γik = Cijklnjnl and its components are

Γ11 = C11n
2
1 + C66n

2
2 + C55n

2
3 + 2C16n1n2 + 2C15n1n3 + 2C56n2n3

Γ22 = C66n
2
1 + C22n

2
2 + C44n

2
3 + 2C26n1n2 + 2C46n1n3 + 2C24n2n3

Γ33 = C55n
2
1 + C44n

2
2 + C33n

2
3 + 2C45n1n2 + 2C35n1n3 + 2C34n2n3

Γ12 = C16n
2
1 + C26n

2
2 + C45n

2
3 + (C12 + C66)n1n2 + (C14 + C56)n1n3

+(C46 + C25)n2n3

Γ13 = C15n
2
1 + C46n

2
2 + C35n

2
3 + (C14 + C46)n1n2 + (C13 + C55)n1n3

+(C36 + C45)n2n3

Γ23 = C56n
2
1 + C24n

2
2 + C34n

2
3 + (C46 + C25)n1n2 + (C36 + C45)n1n3

+(C23 + C44)n2n3
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The tensor has the symmetry Γ12 = Γ21, Γ13 = Γ31, Γ23 = Γ32. Let B = τ 0
kjnjnk,

then the Green-Christoffel tensor is Γ∗ik = Γik +Bδik, i.e.,

Γ∗ik =





Γii +B, i=k;

Γik, otherwise.

Therefore, to obtain its eigenvalues we need to know ν1, ν2 and τ 0
kj.

Now we consider the velocities in an orthorhombic medium. (1) n1 = 1, n2 =

0, n3 = 0, then

Γ∗11 = C11 + τ 0
11

Γ∗22 = C66 + τ 0
11

Γ∗33 = C55 + τ 0
11

Γ∗ij = 0, otherwise

Thus the Green Christoffel tensor in such a medium is diagonal, and we have

ρ0V
2
p1 = C11 + τ 0

11 = C11 + t011 − P (A.41)

ρ0V
2
sh1 = C66 + τ 0

11 = C66 + t011 − P (A.42)

ρ0V
2
sv1 = C55 + τ 0

11 = C55 + t011 − P (A.43)

Analogously, (2)n1 = 0, n2 = 1, n3 = 0, we have

ρ0V
2
p2 = C22 + t022 − P (A.44)

ρ0V
2
sh2 = C66 + t022 − P (A.45)

ρ0V
2
sv2 = C44 + t022 − P (A.46)
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(3)n1 = 0, n2 = 0, n3 = 1, we have

ρ0V
2
p3 = C33 + t033 − P (A.47)

ρ0V
2
sh3 = C55 + t033 − P (A.48)

ρ0V
2
sv3 = C44 + t033 − P (A.49)

From the components of Cmn, we have

C11 + C22 + C33 = 3λ+ 6µ (A.50)

C33 + C44 + C55 = 3µ (A.51)

If we add equations (A.41,A.44,A.47), we get

ρ0(V 2
p1 + V 2

p2 + V 2
p3) = C11 + C22 + C33 + t11 + t22 + t33 − 3P

= C11 + C22 + C33 − 3P (A.52)

If we substitute equation(A.50) into equation(A.52), we find

λ+ 2µ− P =
1

3
ρ0(V 2

p1 + V 2
p2 + V 2

p3) (A.53)

If we add equations (A.42,A.46,A.48), we obtain

ρ0(V 2
sh1 + V 2

sv2 + V 2
sh3) = C44 + C55 + C66 − 3P (A.54)

If we substitute equation(A.51) into equation(A.54), we get

µ− P =
1

3
ρ0(V 2

sh1 + V 2
sv2 + V 2

sh3) (A.55)

We substitute C11 = λ+ 2µ+ 2(ν1 + ν2)t011 into equation (A.41) to obtain

ρ0V
2
p1 = λ+ 2µ− P + (2(ν1 + ν2) + 1)t011 (A.56)
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We substitute C33 = λ+ 2µ+ 2(ν1 + ν2)t033 into equation (A.47) to obtain

ρ0V
2
p3 = λ+ 2µ− P + (2(ν1 + ν2) + 1)t033 (A.57)

We substitute C66 = µ− 1
2
ν1t

0
33 into equation (A.45) to obtain

ρ0V
2
sh1 = µ− P − 1

2
ν1t

0
33 + t011 (A.58)

We substitute C44 = µ− 1
2
ν1t

0
11 into equation (A.49) to obtain

ρ0V
3
shv = µ− P − 1

2
ν1t

0
11 + t033 (A.59)

From the experimental data in [33], we have Vp1 = 4.22, Vp2 = 4.22, Vp3 = 3.85,

Vsh1 = 2.68, Vsh2 = 2.74,Vsv2 = 2.73, Vsv3 = 2.76 while τ 0
33 = 0.1kbar. Then we solve

equations (A.56 − A.59), obtaining ν1 = 11.8697,ν2 = 1.1685,t011 = −0.2427,t033 =

0.4853. This yields P = τ 0
33 + t33 = 0.5853. Then we solve equations (A.53, A.55)

to obtain λ = 6.4056 and µ = 19.2835 and finally construct the elastic tensor in a

medium under initial uniaxial stress:

Cαβ =




38.3 0.16 7.9 0 0 0

0.16 38.3 7.9 0 0 0

7.9 7.9 57.3 0 0 0

0 0 0 19.9 0 0

0 0 0 0 19.9 0

0 0 0 0 0 19.0




Using this result, we can obtain the Green-Christoffel tensor Γik which is a real

symmetric matrix. Its eigenvalues are ρ0V
2
p ,ρ0V

2
sh,ρ0V

2
sv. Therefore, we can calculate

the velocities of the P-wave, Sh-wave and Sv-wave.
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