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ABSTRACT

Let S be a linearly ordered set, {G>+>0}|| IU a * com

plete normed abelian group, H the set of functions from G 

to G that take 0 to 0, OA and OM classes, of functions from 

SXS to H that are order-additive and order-multiplicative 

respectively and satisfy a Lipschitz-type condition, E be 

J. 5. Mac Nerney’s reversible mapping from OA onto OM. 

Definitions. If each of K and M is a function from SXS to 

H, K is' differentia 11 y equivalent to M means there is a 

function k from SXS to the real numbers such that for each 
{x,y,P} in SXSXG x^yk = 0 and ||K(x,y)P - M(x,y)P|| 

_< k(x,y)||P||. £ and are mappings such that if {V,W) is

ence theorems for product integrals of the form W(x,c)P 
= Hc[l-M]-^[l+KjP (where each of K and M is in $(0A)) which

x 
we show solves a nonlinear integral equation of the form 
f(x) = P + JC(Kf[Rj + Mf[L]).

x

in OAXOM, 5>(V) and ip(W) are the sets of all functions that 

are differentially equivalent to V and VI-1 respectively. 

Theorem. ip[E] = This analysis is used to prove exist
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INTRODUCTION

In his 1963 paper [9], J. 8. Mac Nerney obtained product 

integral solutions of linear integral equations of the form

C X
f(x) = f(c) + / Vf[R] and f(x) = f(c) + J f[L]V, 

x c

where the integration is directed along intervals in some 

linearly ordered set S, with ordering 0, the kernel function 

V for the integral equation is an O-additive function, and the 

Right and Left integrals are of the subdivision-refinement type.

In 1964, Professor Mac Nerney extended [9] into a nonlinear 

setting [10] by imbedding the normed ring in [9] into a normed 

near-ring and adding a Lipschitz-type condition to the kernel 

function V (see def. 1.6, this dissertation).

In 1966 in [3], B. W. Helton extended [9] by obtaining 

product integral solutions of linear integral equations of the 

form

c
(1) f(x) = f(c) + / (Kf[R] + Mf[L]),

x

where each of K and M is differentially equivalent to an O-additive 

function (see def. 1.7, this dissertation).

This dissertation extends Professor Helton’s paper [3] into 

the nonlinear setting developed by Professor Mac Nerney in [10] 
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thereby also obtaining an extension of [10].

In [9] and [10] Professor Mac Nerney identified two classes, 

OA and OM, O-additive and O-multiplicative respectively, and 

established that there is a reversible function E from OA onto 

OM such that if V is in OA and E(V) = W, then for each (x,y} 

in SXS

y y
W(x,y) = H [1+V] and V(x,y) = [W-l]

x x

(see def. 1.6 and thm. 1.2, this dissertation).

In [3] Professor Helton expanded the linear OA in [9] into 
a larger class OA0,OB° (see def. 5-3, this dissertation) and 

the linear OM in [9] into a related larger class OM°-OB0 and 

showed that OA°-OB0 = OM°-OB0.

In Chapter II we expand the nonlinear OA in [10] into a 

larger class £(0A) and the nonlinear OM in [10] into a related 

larger class ip(OM) and show that ip[E] = $ (see def. 1.7 and 

thm. 2.2, this dissertation).

In Chapter III we use the analysis developed in Chapter II 

to prove existence theorems and establish identities for non

linear product integrals of the form

(2) W(x,c)f(c) = n [1-M] 1[l+K]f(c), 
x

where each of K and M is in 5>(OA). Linear product integrals 
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of this form were introduced by Professor Helton in [3] as the 

solution to (1).

In Chapter IV we show that (2) solves (1) when they are 

both taken in the nonlinear setting of [10].

In Chapter V we show that as in [9] and [10] the theory 

of a seemingly more general equation

c
f(x) = P + / (Kf[R] + Mf[L]) + V(x,c)P 

lx 2

is subsumed in this treatment.

Finally in Chapter VI we show that the product integral 

solution Reneke gave for nonlinear Stieltjes-Volterra Integral 

equations in [12] can be refined still further using the results 

presented here. This refinement was noticed by W. L. Gibson 

(July 197^, oral communication), and is reproduced here with 

his permission.

Chapters II through V constitute an elaboration of some 

of the author’s results which will appear in the Pacific Journal 

of Mathematics under the title of "Nonlinear Integral Equations 

and Product Integrals".



CHAPTER I

PRELIMINARY DEFINITIONS AND THEOREMS

Let S denote a nondegenerate set with linear ordering

0 in the sense that 0 is a subset of SXS having the following 

properties:

(i) if each of {x,y} and {y,z} is in 0, then {x,z} is in 0;

(ii) if {x,y} is in SXS, then {x,y} or {y,x} is in 0, and

(ill) if {x,y} is in 0 and {y,x} is in 0, then y is x.

Definition 1.1: The statement that t is an 0-subdivision of

the member {x,y} of SXS means that t is a finite sequence (t }n

(i) if {x,y} is in 0, then

such that {tQ>tn} is {x,y} and

integer j not greater than n.

{t. ,t.} 1-1 J
and

is in 0 for each positive

(ii) if {y,x} is in 0 then ^j^j-l^ 1S in 0 for each positive

integer j not greater than n.

Definition 1.2: The statement that r is a refinement of the 

0-subdivision t of the member {x,y} of SXS means that r is an 

0-subdivlsion of {x,y} of which t is a subsequence.

Definition 1.3 [9]: 0A+ denotes the class of all functions a

from SXS to the nonnegative real numbers such that a is 

O-additive in the sense that, for each {x,z} in SXS, if {x,y,z} 



5

is an O-subdivision of {x,z}, then a(x,y) + a(y5z) = a(x,z)« 
0M+ denotes the class of all functions y from SXS to the set 

of real numbers not less than one such that p is O-multiplica- 

tive in the sense that, for each {x,z} in SXS, if {x,y,z} is 

an O-subdivision of {x,z}, then p(x,y)p(y,z) = p(x,z).

Theorem 1.1 [9]: There is a reversible function E+, from 0A+ 

onto 0M+, such that the follovzing statements are equivalent:

(i) {a,p} is in E+.

(ii) p(x,y) = xIiyEl+a] = L.U.B. n^El+a] for all O-subdivisions 

t of {x,y}.

(iii) a(x,y) = ^Ep-1] = G.L.B. Ep-1] for all O-subdivisions
x t

t of lx,y}.

Definition 1.4 ElOJ: IM denotes a complete normed

abelian group and H denotes the class of all functions from 

G to G to which {0,0} belongs with identity function 1.

Definition 1.5 ElOj: If g is a function from SXS to G and h

is a function from SXS to H and {x,y} is in SXS and P is in

G, then
y(i) the sum integral V g denotes a member P_ of G with 

xL 1

the property that, for each positive number c, there is an
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refine-

O-subdivision s of {x.y} such that if {t.}n is a refinement 
JO

where g denotes the sum (in G)

P2 of G 

there is

of s, then I IP1 ~

(ii) the product integral H^h[P] denotes a member 

with the property that, for each positive number c, 
an O-subdivision s of {x.y} such that if {t.}n is a 

J 0 
ment of s, then ||P2 - n^h[P]|| < c, where n^h[P] denotes the 

image of P under the product (functional composite)

vn , 0,t1) + ... + g(tn_1»tn)» and

V from SXS to H such that

(i) V is O-additive in the sense that, for each {x,z,P} 

in SXSXG, if {x,y,z} is an O-subdivision of {x,z}, then

V(x,y)P + V(y,z)P = V(x,z)P, and
(ii) there is a member a in 0A+ such that if {x,y} is in

SXS and {P,Q} is in GXG, then

Remark: We adopt the notational convention that always 

means the nleft-to-right" continued product A-L-**An and that 
each of 11%. and P,11 A. denotes 1.

1 * 1 (ii) n+i 1

Definition 1.6 [10]: The class OA consists of all functions
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I|V(x,y)P - V(x,y)Q|| < a(x,y)||P-Q||.

The class OM consists of all functions W from SXS to H such 

that

(i) W is O-multiplicative in the sense that, for each 

{x,z,P} in SXSXG, if {x,y,z} is an 0-subd.ivision of {x,z}, 

then

W(x,y)W(y,z)P = W(x,z)P, and
(ii) there is a member p of 0M+ such that if {x,y} is in 

SXS and {P,Q} is in GXG, then

||[W(x,y)-l]P - [W(x,y)-1]Q|| £ [p(x,y)-lj||P-Q||.

Lemma 1.1 [10]: If {A.}^ is a sequence with values in H and ------- .------- i i
^ai^l is a nunierical sequence such that, for each {P,Q} in GXG 

and 1=1, ... ,n,
| | (A^DP - (A^DQj | < (a^l)! | P-Q | | ,

then, for each {P,Q} in GXG,
n n n

(I) ||( n A.-DP - ( n A.-DQll < ( n a.-i) | |p-q| |,
1=1 1 1=1 1 1=1

and
(Ii) ||( n A.-1)P - ? [A -1]P|| < ( n a.-l - 2 [a.-l])||P|I.

1=1 1 1=1 -*■ 1=1 "L 1=1 1

Lemma 1.2 [10]: 

values in H, and

If each of {A1J^ and {B±}^ 

each of {a.}?? and {c.}^ is 
il il 

is a sequence with

a numerical sequence

such that for each {P,Q} in GXG and 1=1, ,n.
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I iAiP - A±Q| | < a1||P-Q|| and I |B^P - Ai?| | < cJlPH, 

then, for each P in G,

n n n n
||( n b.)p - ( n a.)p|| < ( n [a.+c.] - n a.)||p||. 

i=i 1 * K * * i=i 1 1=1 1=1 1

H, the statement that K is differentially equivalent to M means

there is a function k from SXS to the real numbers such that 
||K(x,y)P - M(x,y)P|| £k(x,y)]|P|| and xI^k = 0 f°r each 

{x,y,P} in SXSXG. denotes a function from OA such that if 

V is in OA, q(V) is the set to which K belongs only in case

K is differentially equivalent to V. ip denotes a function

from OM such that if W is in OM, ip(W) is the set to which

K belongs only in case K is differentially equivalent to W-l.

Theorem 1.2 [10]: There is a reversible function E from OA 

onto CM such that the following are equivalent:

(I) {V,W} belongs to E.

(I1) W Is in OM and V is the function defined by the condi
tion that, for each {x,y,P} in SXSXG, V(x,y)P = x£y[W-l]P.

(Iii) V is in OA and W is the function defined by the condi
tion that, for each {x,y,P} in SXSXG, W(x,y)P = ^H^El+VjP.

(iv) {V,W} is in OAXOM and there is a member {a,p} in E+ 

such that for each {x,y,P} in SXSXG,
|)W(x,y)P - P - V(x,y)P|| £ [p(x,y) - 1 - a(x,y)]||P||.

Definition 1.7: If each of K and M is a function from SXS to
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Remark: We adopt the notational convention that $(0A) is the 

set to which K belongs only in case there is a V in OA such 

that K is in C’(V).

Remark: The concept of differential equivalence between real 

valued functions was introduced in 1930 by A. Kolmogoroff in 

[7], where he proved the following theorem.

Theorem 1.3 [?]: If K is a function from SXS to the real

numbers such that exists for each {x,y} in SXS, and 
|K(x,y) - X^K| = k(x,y), then aI^k = 0 for all {a,b} in 

SXS.

Theorem 1.4 E3J: If K is a function from SXS to the real 
numbers such that IIy[l+K] exists for each {x,y} in SXS, and 
11+K(x,y)-xIIy[14-K] | = k(x,y), then aZbk = 0 for each {a,b} 

in SXS.

Remark: In [3] Professor Helton proved that both Theorems

1.3  and 1.4 hold in any finite dimensional normed ring N.

This does not remain true in an infinite dimensional ring.

W. D. L. Appling in [1] showed that if N is infinite dimen

sional, there is a function K from SXS to N for which Theorems 

1.3 and 1.4 are false.
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Definition 1.8: If K is a function from SXS into G, the state

ment that K is of bounded variation on each O-interval of S
means if tx,y} is in SXS, then there is a positive number- b

and an O-subdivision s of {x,y} such that if is a

refinement of s. then |K(t^_i,t^) | | ■< b. If f is a function

from S to G, the statement that f is of bounded variation on

each O-interval of S means df (i.e.. df(a,b) = f(b) - f(a)

for each {a,b} in SXS) is of bounded variation on each O-inter

val of S.

Theorem 1.5 [3]: If {x,y} is in SXS and each of K and M is 

a function from SXS to the real numbers that is of bounded

variation on each O-interval of S, there is a number b such
that if {t.}n is 

j 0 an O-subdivision of {x,y} then

n n
| H [l+K(tj_1,tj)J - II [1+M(tj_1,tj)]| 

n
< t> y |K(t ,t ) - wet ,t )|.

j — l <)—1 J J—l. j

Theorem 1.6 [10] : If {c,P} is in SXG and W is in OM, then

W( ,c)P is of bounded variation on each O-interval of S



CHAPTER II

ip[E] = $

In this chapter we prove two theorems that will be used 

in the proofs of later theorems. In the first theorem we 

prove that if K is in ip(OM), then the sum and product integrals 

of K exist, and in the second theorem we prove that if {V3VJ} 

is in E3 the collection of functions which are differentjally 

equivalent to V is the same as the collection of functions 

which are differentially equivalent to W-l.

Theorem 2.1: If {V,W} is in E and K is in ip(W)3 then

(1) W(x,y)P = ny[l+V]P = ny[l+K]P for every {x,y}P} in
x x

SXSXG, and
(2) V(x,y)P = x£yCW-l]P = yyKP for every {x3y,P} in

SXSXG.

Proof: (1) Let VI be in OM and K in ip(W)3 k be a function

from SXS to the real numbers such that for {x3y3P} in SXSXG

||K(x3y)P - [W(x3y)-l]P|| < k(x3y)||P|| and x£yk = 03 and

p be a member of 0M+ such that for each {x3y} in SXS and {P3Q}

in GXG
||[W(x3y)-l]P - [W(x3y)-1]Q|| £ [p(x3y)-l]||P-Q||.
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By Lemma 1.2 and Theorem 1.5 we have that, for each 

{x,y,P} in SXSXG, there is a number b and an O-subdivision 

s of {x,y} such that if t is a refinement of s, then

| |nt[i+K]p - ntwp| I < {ntCu+k] - ntu}| |p| | < b^k] |p11.

Since x2^k = 0 the proof of (1) is complete.

(2) For each O-subdivision t of {x,y} in SXS

||V(x,y)P - XtKP|| < yt||[W-1]P - KP|| + ||yt[W-l]P - V(x,y)P||

£ Qtk + lpl I-

Since x^k + xyy[p-l] - a(x,y) = 0 the proof is complete.

Remark: The proof of the following theorem is similar to 

the proof of Theorem 3.4 [3, p. 301] of which this theorem is 

an extension.

Theorem 2.2: tp[E] = $.

Proof: Part I. Let V be in OA and E(V) = W and K be in ip(W); 
there is a p in 0M+ such that for each {x,y} in SXS and {P,Q} 

in GXG

||[W(x,y)-l]P - [W(x,y)-1]Q|| < [y(x,y)-l]||P-Q||; and there

is a function k from SXS to the real numbers such that xIyk = 0 
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and | | [l+KCxjjr) jP -W(x)y)P||;<k(x,y)||P||. By Theorem 1.2

{[p(x,y)-l] - £y[]j-lJ}| |P| | > | |[W(x,y)-l]P - Iy[W-ljP| | 
x — x

||K(x,y)P - yyEVZ-UP| I - I I El+K(x,y)]p - W(xsy)P||; hence 
x

||K(x,y)P - V(x,y)P|| £ {[p(x,y)-l] - x^yEv-l] + k(x3y)}||p||

so K is in $(V).

Part II. Let K be in $(V); there is an a in 0A+ such

that if {x,y} is in SXS and {P,Q} is in GXG, then

| |V(x,y)P - V(x,y)Q|| a(x,y)| jP—Q|| and there is a function

h from SXS to the real numbers such that
||V(x,y)P - K(x,y)P|| < h(x,y)||P|| and Jyh = 0. By

Theorem 1.2, ||El+K(x,y)]P - W(x,y)P||

< ||El+V(x,y)]P - xnyEl+V]P|| + ||V(x,y)P - K(x,y)P||

< { HyEl+a] - a(x,y)-l + h(x,y)}||P||; therefore K is in
— x

ip(E(V)).



CHAPTER III

EXISTENCE THEOREMS

In this chapter we will prove that If each of K and 
M Is In <±>(0A) and [1-M(x,y)J--1 2 3- exists and Is bounded 

sufficiently there Is a member V of OA such that 
Ll-M]-1[l+K] - 1 is In 5(V); hence, W(x,y)P = xny[l-M]-1El+K]P 

exists for every {x,y,P} in SXSXG. This extends existence 

theorems proven by J. S. Mac Nerney [9] [10], B. W. Helton [4], 

J. V. Herod [6], and J. C. Helton [5]- Also we give an ex

tension of a theorem of D. L. Lovelady’s [8] which provides 

some new Identities for W.

(1) a(x,y) = yy([l-3]"'1 - 1) exists for each {x,y} in
x

SXS and a is in 0A+;

(2) p(x,y) = ny[l-g]-1 exists for each {x,y} in SXS and

p is in 0M+; and

(3) {a,p} is in E+.

Theorem 3.0: If g is in 0A+ and 3(x,y) < 1 for each {x,y} in 

SXS, then
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Proof: Let e = [1-3] -*■ - 1; if {r,s,t} is an O-subdivision 

of {r,t} in SXS,

e(r,t) e(r3s) + e(s3t) 0.

Hence, a(x,y) = e = G.L.B. V, e 0 for all 0-subdivisions 
x L ~

t of {x,y} in SXS. e is in $(a) and from Theorem 2.2 e is in 

ip(E(a)). Hence, from Theorem 2.1

u(x,y) = H^[1+e] = H^[l+a] for all {x,y} in SXS, and 
x x

the proof is complete.

Lemma 3-1 [H]• If T is in H and 0 < t < 1 and

I|TP-TQ|| < t||P-Q|| for all {P,Q} in GXG, then

(l-T)-l is in H, (l-T)"1 = 1 + T(l-T)-1, and for each

such {P,Q} ||(1-T)"1P - (1-T)"1Q|| < (l-t)-1||P-Q||.

Remark: These and closely related inequalities are used in 

the sequel, usually without explicit reference.
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Theorem 3-1: If Is in OA and is in OA+ such that for 

{x,y} in SXS and {PjQ} in GXG, a^x^y) < 1, and

I (V-j^CxjyJP - V1(x,y)Q| | < a1(x,y) [ |P—Q| | , then

(1) V(x,y)P = V - 1}P exists for each {x.,y,P} in

SXSXG and V is in OA;

(2) W(x,y)P = Iiy[l-V1 J-1P exists for each {x}y,P} in SXSXG
x •L

and W is in ON; and

(3) {V,W} is in E.

Proof: (1) Note that - 1 =

and if {x,y,P} is in SXSXG and {x,s,t3y} is an O-subdivision 

of {x3y}3 then

| |[l-V1(x,y)]-1P - [I-V-lCs,!)]"1?! |

= ||V1(x,y)[l-V1(xJy)]~1P - V1(s)t)El-V1(s,t)J-1P

±V1(x)y)El-V1(s3t)]"1P||
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< a1(x,y) | | [l-V1(x,y)]”1P - [1-V-j^(s,t)]-1P | |

+ Ea-hCxjy) - a1(s,t)][l-a1(s,t)J"1) |P| |

< {[l-a^Cx^y)J-1 - [l-a1(s,t)]-1}||P||.

For each {x,ysP} in SXSXG and O-subdivision of {x,y}

| |V1(x3y)[l-V1(x,y)]-1P - | |

= 11(itv1)ri-v1(x,y)j-1p - 2tv1[i-v1r1p||

< ffa (t. 1,t.){[l-a1(x,y)]“1 - [l-a-jCt ,t .)]"1}||P||
J- JL J u -1- * J ”*-L J

= {[!-«, (x.y)]"1 - 1 - LCEl-a.r1 - 1)1| |F| | .
j. b -L

It follows that if s is a refinement of t

llZs([i-v1]'1 - df - - dp||

< {Lm-,]"1 - i) - Ejci-0,3-1 - i)}||f|I-
O j- b J-

Hence, by the completeness of {G3+$0,|| ||} and Theorem 3*0

V(x3y)P = ^{[I-YtK1 - 1)P exists. For each {x3y} in SXS 
x

and {P3Q} in GXG ||V(x3y)P - V(x,y)Q|| £ a(x3y)||P—Q|| 

where a is defined as in Theorem 3«0. Therefore V is in OA 
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of e-a may be

Theorem 3-2: of which is

v(x,y)

Furthermore

If {x^y,!?,}

is in xp (y).

extension of D. L. Love-

with values in OA and

{x,y,P} in SXSXG and W is in OM.

p is in OM+.

1 <_ Y(x,z) < y(x)y)Y(y}z) < ExpE^a (x,y)J.

lady’s Theorem 6[8, p.425].

in 0A+, then

Proof: Let

n"Ei+aaJ

Remark: The following theorem is an

seen to show that [1-V^] -*■ - 1 is in 0(V).

of {x,y} in SXS. By Theorem 1.4 y-1

1 is in xp(p).

ny{nn[l+aj} exists and 
x 1 J

and, with e as in the proof of Theorem 3«0, considerations

If {a^is a sequence each value

W(x,y)P = ny{nn[l+V.]}p = ny{nn[l+K.]}P for each 
x 1 i x i i

Theorem 3-3- If is a sequence

is a sequence such that for each positive integer 1 not 

greater than n, is in $(V^), then

Y = nn[l+a.] and {x,z} be in SXS.
1 J

is an O-subdivision of {x,z}, then

Hence, p(x,y) = HyY = L.U.B. H y f°r all O-subdivisions t 
x t
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Furthermore H [1+K.] - 1 is in ip(W). 1 1

Proof: It will suffice to show that if each of and is

in OA and K1 is in «>() and is in , then

W(x,y)P = xny[l+V1][l+V2]P = xny[l+K1][l+K2]P for each {x,y,P}

in SXSXG and [1+K ][1+K2] - 1 is in ip(W).

2 2Let and be sequences with values in 0A+

o yg
and [0,<») respectively such that for i = 1, 2, {x>y} in

SXS, and {P,Q} in GXG, = 0,

| (K^x^y)? - V1(x,y)P|| < k± (x,y) | | P | |, and

| |V1(x,y)P - V1(x,y)Q| | < | ]P-QI I ♦

Let {x,y} be in SXS; then for each 0-subdivision {t^. }q 

of {x,y}

||[l+V1(x,y)][l+V2(x,y)]P - P - ([1+V1][1+V2] - 1)P||

= ||(ZtV1)[l+V2(xJy)]P - ItV1[l+V2]P||

< A (t t )||[1+V (x3y)]P - [1+V (t t )JP|[
jL -L J J J **-*- v

< vt ){a2(x3y) - a (t ,t.)>] |P| |
J- J ”*-L J U *”-L v

= |[l+a1(x3y)][l+a2(x3y)] - 1 - [l+a1][l+a2] - 1}| ]|P||.
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It follows that if s is a refinement of t

||ys([i+v1][i+v2] - 1)P - yt(C1+v13C1+v2j - 1)P||

£ (Is[1+02] - 1) - [l+a^Hl+c^] -

Hence, by the completeness of {G,+30,|| ||} and Theorem 3.2,

V(x,y)P = x^y([1+V^][1+V2] - 1)P exists. For each {x,y} 

in SXS and {P,Q} in GXG

||V(x,y)P = V(x,y)Q|| < a(x,y)||P-Q|] where 

a(x,y) = x£y([l+o^Hl+cXg] - 1). Therefore V is in OA and 

considerations of [l+a-^Hl+o^] - 1 - a may be seen to show 

that [1+V^][l+Vg] - 1 is in £(V). Let W = E(V); from Theorems 

2.1 and 2.2, [1+V1][1+V2J - 1 is in ip(W) .

For each {x,y,P} in SXSXG and positive integer n 

xny(n^[i+K1])p = xny[n-v]Ei+Kn]p

where ^(x,y)P = xIIy(nJ"1El+Ki])P and V = E-1^^).

vHence, considerations of El+V]El+KnJP and the assertion 

we established in the first part of this argument can be seen 

to establish the induction for this theorem.
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Theorem 3.^: If each of and Is in OA, and each of 
and a2 is in 0A+ such that for each {x,y} in SXS and {P,Q} 

in GXG, a^Cx^y) < 1} and for i = 1, 2

||Vi(x,y)P -V1(x,y)Q|| < ^(x,y)||P-Q||, then

(1) V(x,y)P = x^y([1-V2]~^[1+V^] - 1)P exists for each

{x,y,P} in SXSXG, and V is in OA;

(2) W(x,y)P = xny[l-V2]"- [l+V1]P exists for each {x,y,P}L

I |v1(x,y)P - V1(x,y)Q| | < ^(x^) | |P-Q| |;

in SXSXG, and W is in OM; and

(3) {V,W} is in E.

Proof: This theorem is a corollary to Theorems 3.1 and 3.3.

Remark: The proof in the Pacific Journal of Mathematics 

paper yet to appear was independent of Theorem 3.3.

Theorem 3.5: Suppose

(1) each of and V2 is in OA, and each of and is in 
0A+ such that for each (x,y} in SXS and lP,Q} in GXG and for 

i = 1, 2
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(2) K is in $(V^) and. M is in $(V2) and each of h and k is a 

function from SXS to the real numbers such that for each {x,y,P} 
in SXSXG, xyyk = 0, ^h = 0,

||K(x,y)P - V1(x,y)Pj| £ k(x,y)||P|| and

||M(x,y)P - V2(x,y)P|| < h(x,y)||P|j ;

(3) there is a number a < 1 such that for each {x,y} in SXS 

a2(x,y) + h(x,y) < a; and

(4) g = [l-ag] ^[l+a^l and y = [l-a2-h] ^[l+a^+k].

Conclusion:

(1) ||[1-V2(x,y)] 1[l+V1(x,y)]P - [1-V2(x,y)]-1[l+V1(x,y)]Q||

£ B(x,y)||P-Q|| for every {x,y} in SXS and {P,Q} in GXG;

(2) | | [l-M(x,y)]-1[14-K(x,y)]P - [1-V2(x,y) ]"1[1+V1(x ,y) ]P| j

£ LyCx^y) - B(x,y)]||P|| for every {x,y,P} in SXSXG;

and

(3) xny[l-M]"*1[l+K]P = xny[l-V2]~1[l+V1]P for every {x,y,P}

in SXSXG.
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Proof: Let {x,y} be in SXS, {P,Q) be in GXG and

A = [1-V2(x,y)]~1[1+V1(x,y)]. First note that

A = 1 + V1(x,y) + V2(x,y)A.

||AP - AQ|| £ [l+a1(x,y)]||P-Q|| + a2(x,y)||AP - AQ|| 

and assertion (1) follows. Let B = [1-M(x,y)]“^[1+K(x,y)];

| |BP - AP| | = | | [l+K(x,y)+M(x,y)B]P - [l+V^x^)+V2(x,y)A]P

± V2(x,y)BP| |

< k(x,y)||P|| + h(x,y)||BP|| + a2(x,y)||BP - AP||

< k(x,y)|]P|| + h(x,y)||AP|| + [h(x,y) + a2(x,y)]||BP - AP||

< k(x,y)||P|| + h(x,y)[l+a1(x,y)][l-a2(x,y)] 1||P||

+ [h(x,y) + a2(x,y)]||BP - AP||

which, except for minor algebraic manipulation, establishes (2).

For each O-subdivision t of {x,y} it follows from Lemma 1.2 

that

||nt[i-M]"1[i+K]p - nt[i-v2]"1[i+v1]p|I < (ntY - nte)||p||.

By Theorem 1.5 and hypothesis (3) of this theorem, there is a 

number b such that
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n.Y - n B < bK(y-B) < b2£ k + b3 [l+a (x,y)]V h. V v v U JL V

Since = 0 and x£yh = 0 the proof is complete.

Theorem 3.6: If each of Vj and V"2 is in OA, and each of
and is in 0A+ such that for each {x,y} in SXS and {P,Q}

in GXG, < 1> and for i = 1, 2

IlV^x^)? - Vi(x,y)Q|| < ai(x,y) | | P[ | ,

(H) xyya1a2 = 0 and xyya2 = 0, then

(0) for each {x,y,P} in SXSXG

xny[i-v2]"1[i+v1]p = xny[i+v14.v2]p.

Proof: ||[1-V2(x,y)]“1[l+V1(x,y)]P - P - V1(x,y)P - V2(x,y)P||

< ||V2(x,y)[l-V2(x,y)]“1[l+V1(x,y)]P - V2(x,y)P||

< a2(x,y)||V1(x,y)P + V2(x,y) [1-V2(x,y) ]”1[1+V-L(x)y) ]P | |

< a2(x,y)a1(x,y)||P|| + a2(x,y)2[l-a2(x,y)]”1[l+a1(x,y)]||P||.

Since £y (a^a. +a^Cl-a?] ^[1+a-,]) = 0, ^[1+V, ] is

differentially equivalent to 1 + + V2. Hence this theorem

is a corollary to Theorems 3.3 and 3.4.
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Remark: The inequalities in the proof of the preceding theorem 
are sharp in the sense that if each of and V2 is in 0A+, 

then (H) and (C) are equivalent.



CHAPTER IV

THE INTEGRAL EQUATIONS

Definition ^.1 [2]: R and. L each denotes a function from

SXS into S such that R(x,y) = y and L(x,y) = x for each {x,y} 

in SXS.

Remark: This notation due to W. L. Gibson in [2] provides 

a more precise notation for left and right integral process 

than that used before. Hence

y y
(RL) / (Kf + Mf) becomes / (Kf[R] + Mf[L]). 

x x

Definition 4.2[10]: F(c,P) denotes the class of all functions 

f from S to G such that f(c) = P and there is a member g of 
0A+ such that ||f(y) - f(x)|| £ P(x,y) for each {x,y} in SXS 

(i.e., f is of bounded variation on each O-interval of S).

Remark: The construction of the proof of the next lemma is 

similar to that of Lemma 2.2 [10, p. 629].

Lemma 4.1: Suppose
(1) each of and OA and and is in 0A+ such

that for each {x,y} in SXS and {P,Q} in GXG and 1=1,2

1 |V1(x,y)P - Vi(x,y)Q|| < ajL(x,y) | |P-Ql | ;
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(2) f is in F(c,P); and

(3) for each {x3y} in SXS

c(x3y) = x/y(V1f[R] + V2f[L]) - V1(x,y)f(y) - V2(x,y)f(x).

Conclusion: For each {x,y} in SXS ||C|| = 0. 
x

Proof: Let 3 be in 0A+ such that | | df | | 0, {x,y} be in SXS

such that {x,y,c} is an 0-subdivision of {x,c} where c is in 

S, and an ^-subdivision of £x,y}; then

I IZt(V1f[R] + V2f[L]) - V1(x,y)f(y) - V2(x,y)f(x)||

< ||ItV2f[Lj - ItV2f(x)|| + Hlt-V^LR] - Zt.V;Lf(y) J |

< V ||V f[L] - V2f(x)|| + LI|V1fER] - V f(y)||L/ L- v "J-

S 2t.a23Ex, ][L] + Z^-a^L^E ,yJER]

= a2(x3y)3(xsc) - I^oig^E ,c]EL]

+ Zta13E ,c]ER] - a-L(x>y) 3(y,c).

Let h(x,y) = a2(x,y) 3(x ,c ) - x^c^E sc]EL]

+ X3^01! PE ,c]ER] - a (x,y) 3(y,c).
x 1 1
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y ySince a g[ >c][L2 and £ a $cJ[R] exist for every 
x 2 x 1

{x,y} in SXS (as in [10, p.629]) and each is real valued,

nb
then by Theorem 1.3 / h = 0 for all {a,b} in SXS and the 

a

proof is complete.

Lemma 4.2: Suppose

(1) each of and is in OA, and each of and a2 in
0A+ such that for each {x,y} in SXS and {P,Q} in GXG, 

a2(x>y) < and for i = 1, 2

I|V1(x,y)P - Vi(x,y)Q|| < a1(x,y)||P-Q||;

(2) 0 is a function from SXS to G such that for each {x,y}
y

in SXS J, ||C|| = 0; and

(3) A(x,y)P = [l-V2(x,y)]'1 2 3([l+Vi(x,y)]P + C(x,y)) 

for each {x,y,P} in SXSXG.

y vConclusion: n [1-V„] •I[1+V1]P = H AP for every {x,y,P}x 2 J. x
in SXSXG.

Proof: This lemma is a corollary to Theorems 3-3 and 3.4.
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Theorem 4.1: Suppose

(1) each of and. Vp is in OA,

(2) K is in $(Vj) and. M is in $CV"2),

(3) f is a function from 5 to G that is bounded, on each

O-interval of S, and
(4) for each {x,y} in SXS, xJy(V1f[R] + V2f[L]) exists.

Conclusion: For each {x,y} in SXS

y y/ (Kf[R] + Mf[L]) = J (V f[R] + V f[Lj). 
x x 1

Proof: Let each of h and k be a function from SXS to the

y 
real numbers such that for each {x3y,P} in SXSXG, V k = 0, 

x
||K(x,y)P - V1(x,y)P|| < k(x,y)||P||, £Yh = 0, and 

x

||M(x,y)P - V2(x,y)P|| < h(x,y)||P||.

Pick {x,y} in SXS and a number b such that if {x-.Zjy} 

is an 0-subdivision of {x,y} then ||f(z)|| £ b. Let 

be an 0-subdivision of {x3y}; then

||^[K(t t.)f(t ) + M(t. x,t )f(t )]
I «JL J- ■ —1- J- JL JL -L

< Si |K(t1_1,t1)f(t ) - V.(t 
_L - -L «±» J-
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= ^k(ti l5ti ) । । । + I | |
' I I -* 1 2 3* _L -1- -1- JL -L -L

is similar to that of Theorem 5*1 E3S p*310j.

Theorem 4.2: Suppose

(1) each of V and V2 is in OA and each of and «2 is in
OA+ such that for each {x,y} in SXS, in GXG, and

i = 1, 2

I|V1(x>y)Q1 - V1(x,y)Q2|| £ a1(x,y)||Q1-Q2||;

(2) K is in $(7^) and M is in ^(V2) and each of h and k is 

a function from SXS to the real numbers such that for each 
{x,y,Q} in SXSXG, yyk = 0, £yh = 0,

x x

I|V1(x,y)Q - K(x,y)Q|| £ k(x3y)||Q||, and

||V2(x,y)Q - M(x,y)Q|| h(x,y)||Q||;

(3) there is a number a < 1 such that u2(x3y) + h(x3y) a 

for all {x3y} in SXS; and

< b[ffk(t._vt ) + ^h(t. ,t )].

Remark: The construction of the proof of the next theorem
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(4) {c,p} is in SXG.

Conclusion: The following statements are equivalent:

(1) f is in F(c,P) and f(x) = P + . JC(Kf[R] + Mf[L])
x

for each x in S;

(2) f(x) = II [1-14] X[1+K]P for each x in S; and
x

(3) if for each {a,b,Q} in SXSXG,

r>b 1V(a,b)Q = I ([1-M]"1[1+K] - 1)Q, then 
a 
c f(x) = H [1+V]P for each x in S. 

x

an O-subdivision of {x,c}If {x,y,c} isProof:

then by Theorem 4.1

x

= f(y) +

an O-subdivision of {x,c} and j is an

then

J

c
P + J (V f[R] + V f[L])

J(V1f[R] + V2f[L]) and
J-l

/(V f[R] + V f[L]). 
x 1

Hence if {t^. is

integer in [l,n].

tJ-l

c
(Kf[R] + Mf[L]) =
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where = J (V^fCR] + V^fELJ) - )f (t j)
j W1

" V2(tj-l’tj)f(tj-l)‘

[ I-V2 (t j _ J , t j ) Jf( t j _ ) = [1+Vj(t ) If (tj ) + C (t j jt j ) •

f(tj_2_) = [1-V2 (t j , t j ) 3 { [ 1+Vj (t j , t j ) J f (t j ) + C (t j _ j # t j ) J .

Let A(x,y)Q = [l-V^x,y) ]""1{[l+V^^Cx,y)]Q + C(x,y)} for each 

{x,y,Q} in SXSXG.

By iteration j = n, n-1, n-2, ..., 1, in order, we obtain 

f(t0) = n^A(tj_1,tj)f(tn).

Using our Lemmas N.I and N.2 and Theorem 3.5

c -1 c -1 f(x) = n Ei-v2] Ei+v^p = n ei-m] Ei+k]p.
X x X

(2*1): If {x,c} is in SXS and tt^Jg is an O-subdivision 

of {x,c} and i is an integer in El>n], then from Theorem 3.5

-1f^i-l) = t n El+KjfC^)
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^1 -i
= t [i-v2] [i+v1]f(ti)

t J _ J
where D(t, , ,t,) = . [l+VnJ

J-” JL 1 v i

f(fcl-l) * f(ti) = + V2(ti-litl)Cf(ti-l)

c c
f(x) = f(c) + J {V f[R]+V (f[L]+Df[R])} + J Df[R]; 

x 1 x
c c c

but / V (f[L]+Df[R]) + / Df[R] = / V f[L] because
x 2 x x 2

■*" ^1^ "* ^1-1^ H

£ Ila2^। (t^) | | + |D(t^_j,t^)f(t^) | ]

< {l+a2(x,c)}^| |D(t1_1,t1)f(t1)||

£ {l+a2(x,c) | |f(ti) | |

where d(a,b) = Hb[l-a ] l[l+a1] - [1-a (a,b)J l[l+a1(a,b)]
a 2 ± <: J. 
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for each {a>b} in SXS. The preceding inequality follows from 

the proof of Theorem 3.4 and it follows from Theorem 3-0 and 

Theorem 1.4 that aI^d = 0 for each {a,b} in SXS. Hence from 

Theorem 4.1 f(x) = P + JC(V1f[R] + VDf[L])
x 1 2

= P + JC(Kf[Rj + Mf[L]). 
x

It follows from Theorems 3.4 and 3-5 that (3) is equival

ent to (2) and the proof is complete.

Remark: A question that arises from the preceding theorem is: 

"Under what conditions is it true that V = Vj_ + V2?" Theo

rem 3.6 provides an answer to this question. Also from the 

foregoing argument it is evident that each of the following 

statements is equivalent to those in the conclusion of the 

preceding theorem:

(4) f is in F(c,P) and f(x) = P + fC(V,f[R] + Vof[L])
x 1 2

for each x in S; and

(5) f(x) = IIC[1-V9]~""1"[1+V ]P for each x in S.
y 1
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Theorem 4.3- Suppose
(1) each of V and. Vn is in OA and each of a1 and cl is in OA"*'12 12
such that for each {x,y} in SXS, {Q-|_JQ2^ in GXG, and 1 = 1, 2

||V1(x,y)Q1 - V1(x3y)Q2 H < a1(x,y) | IQ-L-Q2) | and

(2) K is in 5>(V^) and M is in $(V2) and each of h and k is a 

function from SXS to the real numbers such that for each {x3y3Q}

in SXSXG, £yk = 0, ^h = 0, 
x x

I|V1(x,y)Q - K(x,y)Q|| < k(x,y)||Q||, and

||V2(x3y)Q - M(x,y)Q|| £h(x,y)|lQ||;

(3) there is a number a < 1 such that a^(x,y) + k(x,y) £ a

for all {x3y} in SXS;

C1!) K’(y,x)Q = K(x,y)Q and M’(y,x)Q = M(x,y)Q for each

{x,y,Q} in SXSXG; and

(5) {c,P} is in SXG.

Conclusion: The following statements are equivalent:

(1) f is in F(c,P) and f(x) = P + / (Kf[R] + Mf[L]) 
c
X

for each x in S; and
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(2) f(x) = U [l-K’3 for each x in 8.
x

,x ,cProof: Since J (Kf[R] + Mf[L]) = J (M’f[R] + K'f[L]) 
c x

this theorem is a corollary to Theorem 4.2.



CHAPTER V

A SEEMINGLY MORE GENERAL INTEGRAL EQUATION

In [10, pp.632-633] Professor Mac Nerney showed that the 

theory he developed in solving an integral equation of the 

form 
.cf(x) = P + J Vf[R] could be used to solve a seemingly 

x

more general equation of the form

f(x) = P1 + /^fER] + V2(x,c)P2.

Vie repeat that procedure here by using the theory developed 

in the preceding chapters to solve an equation of the form

f(x) = P1 + c/X(Kf[R] + Mf[L]) + V(x,c)P2,

and the solution of this equation in the purely linear case is 

shown to include the solutions Helton obtained in Theorems 5»1- 

5.4 [3, pp.310-314].

Definition 5-1 [10]: {GXG, + ,{0,0},| | ||} denotes, the group 

with addition and norm defined by {P^jPg} + (Qj,Q2^ = 

{P1+Q1,P2+Q2h = I IP11 I + Hp2ll- For this com

plete normed group, let OA" and OM” be the functional classes 

corresponding, respectively, to the classes OA and OM for the 

group {G,+,0,|| ]|}, and let E" be the corresponding 
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napping from OA” onto ON" as given by the apparent analogue 

of Theorem 1.2.

Definition 5.2: Let ?>” and ip” be the mappings correspond

ing to the mappings $ and ip in Definition 1.7.

If each of K and M is in $(0A) and V is in OA, then 

there are members K” and M" of 5"(0A") determined by the 

condition that, for {x,y} in SXS and P in GXG,

Kn(x,y)P = {K(x,y)P1,0} and

M’’(x,y)P = {M(x,y)P1 + V(x,y)P2,0};

moreover, if c is in S and f-]_ is in F(c,P-^) and f2 is in 

F(c,P2) then

rX(K"f[Rj + M’’f[L]) = { JX(KfjR] + Mf.EL]) + /XVf2[L],0}

for x in S, where f is the function {f^,f2} from S to GXG; 

hence, with these identifications, we see that the condi

tion that, for each x in S,

f1(x) = P1 + cJX(Kf1[R] + + V(c,x)P2 and f2(x) = P2

is equivalent to the condition that for each x in S,

x
f(x) = P + J (K"fERj + M"fELj).
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These considerations show that the following theorem is 

a reinterpretation of Theorem 4.3* We will not state the 

corresponding reinterpretation of Theorem 4.2,

Theorem 5: Assume the hypothesis of Theorem 4.3 with K and 

M as defined there. Let P be in GXG, V be in OA and each of 

K" and M” be in $n(0A”) such that

K,,(x,y)Q = {K(y,x)Q1>0} and

M”(x,y)Q = {M(y,x)Q1 + V(y,x)Q2,0} 

for each {x,y} in SXS and Q in GXG. If f is a function from 

S to G, the following are equivalent:

(1) (f(x), P2) = xnc[l-K"]-1Cl+Ml,]P for each x in S, and

(2) f is in F(c,P^) such that for each x in S

x
f(x) = P1 + J (Kf[Rj + Mf[L]) + V(x,c)P2. 

c

Definition 5.3 [3]: (N,+ ,0,•,1,| |} denotes a complete 

normed ring. Let K be a function from SXS to N; 0A° denotes 

the set to which K belongs only in case for each {a,b} in

SXS and O-subdivision {a,x,y,b} of {a,b}> x^yK exists

and yyk = 0, where k(x,y) = |K(x,y) - ^K|. 0M° denotes 
x x

the set to which K belongs only in case for each {a,b} in
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SXS and O-subdlvislon {a,x,y,b} of {a,b}} xIIy[l+K] exists 

and = 0, where k(x,y) = |1 + K(x,y) - ^JI^El+K] |. 0B°

denotes the set to which K belongs only in case for each 

{a,b} in SXS there is a number b such that for each 0-sub- 

division of {a,b}, |K(tj_1,tJ.) | < b.

Remark: The next corollary shows that in the purely linear 

case Theorem 5 includes the solutions Helton obtained in his 

Theorems 5.1-5.4 [3, pp. 310-314].

Corollary: Suppose

(1) each of K and M is a function from SXS to N that is in 
the common part of 0A° and OB°;

(2) there exists a number a < 1 such that for each{x,y} in 
SXS |K(x,y) - x£yK| + xXyl l < a and M’(x,y) = M(y,x) and 

K ’ (x,y) = K(y,x); and

K

(3) c is in S and each of f and h is a function from S to'N 

such that f(c) = h(c) and dh is in 0B°.

Conclusions:

(1) The following two statements are equivalent:

(a) df is in 0B° and

f(x) = h(x) + /X(f[R]K + f[L]M) for each x in S; and
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x -i ,x x i(b) f(x) = f(c) H [1+MJE1-K] + . f (dh) n ri+M]El-K]~1[R]
C C t

for each x in S.

(2) The following two statements are equivalent:

(a) df is in 0B° and

f(x) = h(x) + J (KfER] + MfEL]) for each x in S; and 
c

C T(b) f(x) = n El-K,]"1E1+M,]f(c)
X

.x t n+ / n Ei-K,]-1Ei+ivi,JERJ(dh) 
c X

for each x in S.

(3) The following two statements are equivalent:

(a) df is in 0B° and

f(x) = h(x) + f (KfERJ + fEL]M) for each x in S; and 
c

(b) f(x) = ncEi-K,]~1f(c) nxEi+M]
X c

+ fx ntEi-K*J~1ER](dh) nxEi+M]ER]
e x t

for each x in S.

(4) The following two statements are equivalent:

(a) df is in 0B° and

f(x) = h(x) + f (fER]K + MfEL]) for each x in S; and cz
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(b) f(x) = ncCi+M,jf(c) nx[i-K]-1 
X c

+ Jx nt[i+M*][Rj(dh) nx[i-K]-1CRj 
CX t

(2) For each {x,y} in SXS and Q in NXN,

K"(x,y)Q = {K,(x,y)Q1, 0} and

M’’(x,y)Q = (M,(x,y)Q1 - dh(x,y)Q2, 0}.

for each x in S.

Proof: (1) For each {x,y} in SXS and Q in NXN

Kn(x,y)Q = {Q-j^KCy^x), 0} and

M"(x3y)Q = {Q1M(yJx) - dh(x3y)Q21 0}.

Let P be in NXN such that P^ = h(c) and ?£ = 1;

h(x) + /X(f[R]K + f[L]M) 
c

= P, + /C(K"f[R] + M"f[L]) + (-dh)(c,x)P2
"L x

and for each 0-subdivision (t. of {x,c} J 0

H^Cl-K-'Ct . ,t,)] 1[l+M"(t ,t )]P
J- d -1- J J -L J

J3"1n
= {f(c) n Cl+M(t . .t )][1-K(t _1St . j=1 n-j+1’ n-j n-j+12 3 n-j

n n-j
+ £ dh(t ,,t ) £ [1+M(t n+1,t n)J
j=1 n-j n-j+1 q=1 n-q+1 n-q

•El-K(t ,t )r1, Pol. 
n-q+1 n-q
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(3) For each'{x,y} in SXS and Q in NXN,

K"(x,y)Q = {K,(x5y)Q-L, 0} and

Mn(x,y)Q = {QjMCyjX) - dh(x,y)Q2, 0} .

(4) For each {x,y} in SXS and Q in NXN,

K"(x,y)Q = {Q1K(y,x), 0} and

M”(x,y)Q = {M’ (x,y)Q1 - dh(x,y)Q2, 0},.



CHAPTER VI

A REFINEMENT OF A PRODUCT INTEGRAL SOLUTION 

OF A STIELTJES-VOLTERRA INTEGRAL EQUATION

In this chapter we show that the product integral solu

tion Reneke gave for nonlinear Stieltjes-Volterra integral 

equations in [12J can be refined still further using the 

results contained in this dissertation. This refinement 

was noticed by VI. L. Gibson as indicated in the introduc

tion.

Definition 6.1 [12]: Let S be a number interval [a,b] with 

0 denoting the usual ordering of S and {G^,0$+)N^} be a 

complete normed abelian group with norm N^. Let M denote 

the class of all functions from G^ to G^ to which {030} 

belongs with identity function 1. Let C be the class of all 

functions F from SXS into M such that

(1) F(t,t) = 1 for all t in S,

(2) F[ ,t]P is quasi-continuous for each t in S and P in G^ 

(i.e.j if s is an increasing or decreasing sequence with final 

set in S then the limit of F[s,t]P exists), and

(3) there is a nondecreasing function k on S, called a super 

function for F, such that
N^CCFCtjX) - F(t,y)]P - [F(t,x) - F(t,y)]Q) < |k(x) - k(y)|N^(P-Q) 

for all {t,x,y} in SXSXS and {P,Q} in G XG1.
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Definition 6,2 [12]: Let G be the class of all functions from

S to which are quasi-continuous on S, + denote functional 

addition, 0 denote the member of G of which the only value is 0 

in G^, and |[ || be the supremum norm for G. It should be noted 

that {G,+,0,|| ||} Is the complete normed abelian group with 

respect to which the class OA from Chapter I is to be identified.

Theorem 6.1 [12]: Suppose F is a member of C. The formulas 

(with f in G)

x
[V(x,y)f](u) = f dF[u, ]f[L], for the {u,x,y} in SXSXS,

y
define a function V from SXS to H which belongs to OA and, for 

each member f of G and each c in S, the following statements 

are equivalent:

(1) h is a member of G such that if t is in S then

t
h(t) = f(t) + j dF[t, ]h[L]; and 

c

(2) h is a function on S such that

h(t) = [tnc(14-V)f](t) for each t in S.

Theorem 6.2: Suppose F is a member of C with super function k, 

and V is a member of OA as described in Reneke’s Theorem 6.1. 

The formulas (with f in G)

[K(x,y)f](u) = [F(u,x)-F(u,y)]f(y), for {u,x,y} in SXSXS, 
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define a function K from SXS to H such that if {f,g} is in

GXG then

||K(x,y)f - K(x,y)g|| < |k(x)-k(y)| ||f-g|| for {x,y}

in SXS,

and such that if K belongs to $(V) then, for each member f

of G and each c in S, the following statements are equivalent:

(1) h is a member of G such that if t is in S then

t 
h(t) = f(t) + / dF[t, ]h[L]; and 

c

(2) h is a function on S such that

ch(t) = [^.11 (1+K)f](t) for each t in S.

Remarks: This is a direct consequence of Theorem 3»3 (for the 

case n = 1) or of Theorem 2.1. To show that K belongs to $(V), 

one would need a function k^ on SXS such that if f is in G and 

{x,y} is in SXS then

||K(x,y)f - V(x,y)f|| < k2(x,y)||f|| and Jyk2 = 0.
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