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Introduction

Teaser: Our primary goal is the design of effective regularization
schemes for inverse problems.

Mathematical Problem Formulation

In a first step, we consider linear inverse problems [1]. That is, we
assume that the observed data y obs = Ax + η, where x ∈ Rn,
A ∈ Rm,n, y obs ∈ Rm, and η ∝ N (0, In) is a random perturbation.
In the inverse problem, we seek x given y obs and A. In general, A will
not be invertible and y obs 6∈ colA. Consequently, we will formulate
the solution of the linear system Ax = y obs as a regularized least
squares problem of the form

minimize
x∈Rn

f (x), where f (x) :=
1

2
‖Ax − y obs‖2

2 +
α

2
‖Lx‖2

2. (1)

The first term of f measures the discrepancy between the model pre-
diction Ax =: y pred and the observed data y obs. The second term

‖Lx‖2
2 = 〈LTLx , x〉, L ∈ Rn,n, is a regularization functional; it is

introduced to alleviate mathematical issues with the ill-posedness
of the inverse problem, with regularization operator L and regular-
ization parameter α > 0. We will see that the choices for L and
α greatly affect the computed solution x of (1). We consider the
following regularization operators: (i) LTL = In (identity matrix),
(ii) LTL = − ∇

(Laplace operator), and (iii) LTL = In − V V T,
where V are the right-singular values of A (see below) [2].

Optimality Conditions

For an admissible solution x? ∈ Rn of (1) we require that the gradi-
ent ∇f (x?), f : Rn → R of the objective function f vanishes. The
gradient of f is given by

∇f (x) = ∇
(1

2
‖Ax − b‖2

2 +
α

2
‖Lx‖2

2

)
= AT(Ax − b) + αLTLx .

Consequently, at optimality we have

AT(Ax? − b) + αLTLx?
!

= 0, (2)

the so-called normal equation.

Numerical Methods
We consider different approaches to solve Ax = y obs for x . We con-
sider two classes of approaches—direct solvers and iterative meth-
ods.

Direct Solvers

In our first approach, we consider direct solvers for computing a
solution to the regularized least squares problem (1). Here, we di-
rectly solve the optimality system (2) using MATLAB’s backslash
command; the numerical solution is given by

x sol = (ATA+ αLTL)−1ATb.

In our second approach, we compute the pseudo-inverse A+ of A.
We use a truncated singular value decomposition (TSVD).
That is, we compute the factorization USV T of A, where U ∈
Rm,m is an orthogonal matrix for the left-singular vectors, S ∈
Rm,n diagonal matrix for the singular values, and V ∈ Rn,n is
an orthogonal matrix for the right-singular values of A. Sup-
pose that A has rank r � n. Under this assumption, U =

[ u1 . . . ur ur+1 . . . um ] ∈ Rm,m, S = diag(σ1, . . . , σr , 0, . . . , 0) ∈
Rm,n, and V = [ v 1 . . . v r v r+1 . . . v n ] ∈ Rn,n. Consequently, we
can decompose A into

A ≈ UrSrV T
r ,

where Ur = [ u1 . . . ur ] ∈ Rn,r and V r = [ v 1 . . . v r ] ∈ Rn,r are
the left- and right singular values and Sr = diag(σ1, . . . , σr) ∈ Rr,r .
The pseudo-inverse is given by A+ = V S+UT, where S+ ∈ Rn,m
is computed by taking the reciprocal of each non-zero element on
the diagonal (leaving the zeros in place) and then transposing the
matrix. In numerical computation, we either select a small tolerance
ε > 0 and set all σi ≤ ε to 0, or we select a target rank r . The
choice of the target rank depends on how fast the spectrum decays.

Iterative Solvers

We use an iterative scheme of the form

xk+1 = xk − γkBk∇f (xk), k = 1, 2, . . .

Here, k ∈ N is the iteration index and γk ∈ [0, 1] is determined
using a backtracking line search [3,4]. The search direction is given
by sk := −Bk∇f (xk). We consider a gradient descent approach
for which Bk = In and Newton’s method with Bk = (∇2f (xk))−1,
where ∇2f (xk) = ATA+αLTL is the Hessian matrix. In our proto-
type implementation we invert the Hessian matrix using MATLAB’s
backslash. We terminate our solver if (i) we reach a user defined
number of iterations, or (ii) the `2-norm of the gradient is reduced
by a user defined tolerance κ > 0, or (iii) the `2-norm of ∇f (xk) is
smaller or equal to 1e−6. Our numerical scheme is as follows.

1: x0 ← 0, k ← 0
2: g0 ← objfun(x0)
3: while not converged do
4: sk ← compSearchDir(objfun, xk,gk)
5: γk ← doLineSearch(objfun, xk, sk)
6: xk ← xk + γksk, k ← k + 1
7: converged ← checkConvergence(k,gk,g0)

Regularization Parameter Selection

To identify an optimal regularization parameter α, we consider the
L-curve method [1], i.e., a log-log plot of the norm of a regularized
solution versus the norm of the corresponding residual norm.

Numerical Experiments
Synthetic Test Problem

We consider a synthetic test problem to study the performance of
the proposed methodology. The operators in (1) are as follows:
For A, we consider a Helmholtz-type operator of the general form
A = (− ∇

+ k2In)−1, where − ∇

is a Laplace operator, k > 0, and
In is an n × n identity matrix. The structure of the matrix A is
shown in Figure 1.
We compute y obs by applying the forward operator A. That is,
y obs = Ax true + κη, η ∝ N (0, In), κ = θ‖x true‖2

2, θ ∈ [0, 1]. We
select

x true := (sin(z) + γz � sin(4z))� exp(−‖z − π‖2
2/2κ), (3)

with κ = 9/10 and γ = 7/2 and zi = hi , h = 2π/n, i = 1, . . . , n.
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Figure 1:Visualization of the structure of the Helmholtz matrix A. We

show the decay of the eigenvalues on the left. The remaining figures (from

left to right) show the entries of the matrix A and low rank approximations

Ar for r ∈ {5, 15, 25, 50} built using TSVD. Above each visualization of

the low rank approximations we report the relative error ‖A−Ar‖2
F/‖A‖2

F .

Numerical Results

We report numerical results for different strategies to solve the con-
sidered inverse problem for the test problem described in the former
section in Figure 2.
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Figure 2:We report solutions for the least squares problem in (1) for dif-

ferent numerical strategies. The numerical solution is shown in red and

the true solution x true is shown in green. Top row: For the unregularized

case (α = 0) we can observe that the noise is amplified; the computed

solution has nothing to do with the true solution. For the regularized

case (with regularization parameter α = 1e−2 and regularization opera-

tor LTL = − ∇

), we can see that we underfit the data. The best result

is obtained by computing the solution through a low rank approximation

UrSrV
T
r ≈ A (truncated SVD; we consider rank r = 15). Bottom row:

We report results for the regularization operators LTL = I − Vr V T
r with

regularization parameters α ∈ {1e−2, 1e2} and ranks r ∈ {5, 15}.

Conclusions
We have developed and tested a computational framework for solv-
ing and regularizing linear inverse problems [1]. We have tested a
Thikonov-type regularization operator that is motivated from SVD
and yields results that are consistent with the TSVD [2]. This reg-
ularization scheme outperforms standard regularization approaches
based on the identity and Laplace operator. In our future work
we aim at extending the proposed methodology to nonlinear inverse
problems [5,6].
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