Regularization Schemes for Linear Inverse Problems

Haley Rosso \& Andreas Mang

Department of Mathematics, University of Houston, Houston, TX, USA

Introduction

Teaser: Our primary goal is the design of effective regularization schemes for inverse problems.

Mathematical Problem Formulation

In a first step, we consider linear inverse problems [1]. That is, we assume that the observed data $\boldsymbol{y}_{\text {obs }}=\boldsymbol{A x}+\boldsymbol{\eta}$, where $\boldsymbol{x} \in \mathbb{R}^{n}$, $\boldsymbol{A} \in \mathbb{R}^{m, n}, \boldsymbol{y}_{\text {obs }} \in \mathbb{R}^{m}$, and $\boldsymbol{\eta} \propto \mathcal{N}\left(0, \boldsymbol{I}_{n}\right)$ is a random perturbation. In the inverse problem, we seek \boldsymbol{x} given $\boldsymbol{y}_{\text {obs }}$ and \boldsymbol{A}. In general, \boldsymbol{A} will not be invertible and $\boldsymbol{y}_{\text {obs }} \notin \operatorname{col} \boldsymbol{A}$. Consequently, we will formulate the solution of the linear system $\boldsymbol{A x}=\boldsymbol{y}_{\text {obs }}$ as a regularized least squares problem of the form
$\underset{x \in \mathbb{R}^{r}}{\operatorname{minimize}} f(x)$, where $f(x):=\frac{1}{2}\left\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}_{\text {obs }}\right\|_{2}^{2}+\frac{\alpha}{2}\|\boldsymbol{L} \boldsymbol{x}\|_{2}^{2}$. (1)
The first term of f measures the discrepancy between the model prediction $\boldsymbol{A x}=: \boldsymbol{y}_{\text {pred }}$ and the observed data $\boldsymbol{y}_{\mathrm{obs}}$. The second term $\|L x\|_{2}^{2}=\left\langle L^{\top} L x, x\right\rangle, L \in \mathbb{R}^{n, n}$, is a regularization functional; it is introduced to alleviate mathematical issues with the ill-posedness of the inverse problem, with regularization operator L and regularization parameter $\alpha>0$. We will see that the choices for L and α greatly affect the computed solution x of (1). We consider the following regularization operators: (i) $\boldsymbol{L}^{\top} \boldsymbol{L}=\boldsymbol{I}_{n}$ (identity matrix), (ii) $L^{\top} L=-\Delta$ (Laplace operator), and (iii) $L^{\top} L=\boldsymbol{I}_{n}-\boldsymbol{V} V^{\top}$, where \boldsymbol{V} are the right-singular values of \boldsymbol{A} (see below) [2].

Optimality Conditions

For an admissible solution $\boldsymbol{x}^{\star} \in \mathbb{R}^{n}$ of (1) we require that the gradient $\nabla f\left(x^{\star}\right), f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the objective function f vanishes. The gradient of f is given by
$\nabla f(\boldsymbol{x})=\nabla\left(\frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\frac{\alpha}{2}\|\boldsymbol{L}\|_{2}^{2}\right)=\boldsymbol{A}^{\top}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})+\alpha \boldsymbol{L}^{\top} \boldsymbol{L} \boldsymbol{x}$. Consequently, at optimality we have

$$
\begin{equation*}
\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{x}^{\star}-\boldsymbol{b}\right)+\alpha \boldsymbol{L}^{\top} \boldsymbol{L} \boldsymbol{x}^{\star} \stackrel{!}{=} 0 \tag{2}
\end{equation*}
$$

the so-called normal equation.

Numerical Methods

We consider different approaches to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}_{\text {obs }}$ for \boldsymbol{x}. We consider two classes of approaches-direct solvers and iterative methods.

Direct Solvers

In our first approach, we consider direct solvers for computing a solution to the regularized least squares problem (1). Here, we directly solve the optimality system (2) using MATLAB's backslash command; the numerical solution is given by

$$
\boldsymbol{x}_{\text {sol }}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\alpha \boldsymbol{L}^{\top} \boldsymbol{L}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}
$$

In our second approach, we compute the pseudo-inverse \boldsymbol{A}^{+}of \boldsymbol{A}. We use a truncated singular value decomposition (TSVD). That is, we compute the factorization $U S V^{\top}$ of \boldsymbol{A}, where $\boldsymbol{U} \in$ $\mathbb{R}^{m, m}$ is an orthogonal matrix for the left-singular vectors, $S \in$ $\mathbb{R}^{m, n}$ diagonal matrix for the singular values, and $\boldsymbol{V} \in \mathbb{R}^{n, n}$ is an orthogonal matrix for the right-singular values of \boldsymbol{A}. Suppose that \boldsymbol{A} has rank $r \ll n$. Under this assumption, $\boldsymbol{U}=$ SURF: Research Poster - Houston, TX — Undergraduate Research Day April 2021
$\left[\boldsymbol{u}_{1} \ldots \boldsymbol{u}_{r} \boldsymbol{u}_{r+1} \ldots \boldsymbol{u}_{m}\right] \in \mathbb{R}^{m, m}, \boldsymbol{S}=\operatorname{diag}\left(\sigma_{1, \ldots}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in$ $R^{m, n}$, and $\boldsymbol{V}=\left[\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{r} \boldsymbol{v}_{r+1} \ldots \boldsymbol{v}_{n}\right] \in \mathbb{R}^{n, n}$. Consequently, we can decompose \boldsymbol{A} into

$A \approx U_{r} S_{r} V_{r}^{\top}$,

where $\boldsymbol{U}_{r}=\left[\boldsymbol{u}_{1} \ldots \boldsymbol{u}_{r}\right] \in \mathbb{R}^{n, r}$ and $\boldsymbol{V}_{r}=\left[\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{r}\right] \in \mathbb{R}^{n, r}$ are the left- and right singular values and $\boldsymbol{S}_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r}, r$. The pseudo-inverse is given by $\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{S}^{+} \boldsymbol{U}^{\top}$, where $\boldsymbol{S}^{+} \in \mathbb{R}^{n, m}$ is computed by taking the reciprocal of each non-zero element on the diagonal (leaving the zeros in place) and then transposing the matrix. In numerical computation, we either select a small tolerance $\epsilon>0$ and set all $\sigma_{i} \leq \epsilon$ to 0 , or we select a target rank r. The choice of the target rank depends on how fast the spectrum decays.

Iterative Solvers

We use an iterative scheme of the form

$$
x_{k+1}=x_{k}-\gamma_{k} B_{k} \nabla f\left(x_{k}\right), \quad k=1,2
$$

Here, $k \in \mathbb{N}$ is the iteration index and $\gamma_{k} \in[0,1]$ is determined using a backtracking line search $[3,4]$. The search direction is given by $\boldsymbol{s}_{k}:=-\boldsymbol{B}_{k} \nabla f\left(\boldsymbol{x}_{k}\right)$. We consider a gradient descent approach for which $\boldsymbol{B}_{k}=\boldsymbol{I}_{n}$ and Newton's method with $\boldsymbol{B}_{k}=\left(\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\right)^{-1}$, where $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)=\boldsymbol{A}^{\top} \boldsymbol{A}+\alpha \boldsymbol{L}^{\top} \boldsymbol{L}$ is the Hessian matrix. In our prototype implementation we invert the Hessian matrix using MATLAB's backslash. We terminate our solver if (i) we reach a user defined number of iterations, or (ii) the ℓ^{2}-norm of the gradient is reduced by a user defined tolerance $\kappa>0$, or (iii) the ℓ^{2}-norm of $\nabla f\left(x_{k}\right)$ is smaller or equal to $1 \mathrm{e}-6$. Our numerical scheme is as follows.

```
: }\mp@subsup{\mathbf{x}}{0}{}\leftarrow0,\quadk\leftarrow
2:}\mp@subsup{\mathbf{g}}{0}{}\leftarrow\operatorname{objfun(\mp@subsup{\mathbf{x}}{0}{})
3: while not converged do
    s}\mp@subsup{\mathbf{s}}{k}{}\leftarrow\mathrm{ compSearchDir(objfun, }\mp@subsup{\mathbf{x}}{k}{},\mp@subsup{\mathbf{g}}{k}{}
    \mp@subsup{\gamma}{k}{}}\leftarrow\mathrm{ doLineSearch(objfun, }\mp@subsup{\mathbf{x}}{k}{},\mp@subsup{\mathbf{s}}{k}{}
    \mp@subsup{\mathbf{x}}{k}{}\leftarrow\mp@subsup{\mathbf{x}}{k}{}+\mp@subsup{\gamma}{k}{}\mp@subsup{\mathbf{s}}{k}{},\quadk\leftarrowk+1
    converged }\leftarrow\mathrm{ checkConvergence( }k,\mp@subsup{\mathbf{g}}{k}{},\mp@subsup{\mathbf{g}}{0}{}
```


Regularization Parameter Selection

To identify an optimal regularization parameter α, we consider the L-curve method [1], i.e., a log-log plot of the norm of a regularized solution versus the norm of the corresponding residual norm.

Numerical Experiments

Synthetic Test Problem

We consider a synthetic test problem to study the performance of the proposed methodology. The operators in (1) are as follows: For \boldsymbol{A}, we consider a Helmholtz-type operator of the general form $\boldsymbol{A}=\left(-\Delta+k^{2} \boldsymbol{I}_{n}\right)^{-1}$, where $-\Delta$ is a Laplace operator, $k>0$, and \boldsymbol{I}_{n} is an $n \times n$ identity matrix. The structure of the matrix \boldsymbol{A} is shown in Figure 1.
We compute $\boldsymbol{y}_{\text {obs }}$ by applying the forward operator \boldsymbol{A}. That is, $\boldsymbol{y}_{\text {obs }}=\boldsymbol{A} \boldsymbol{x}_{\text {true }}+\kappa \boldsymbol{\eta}, \boldsymbol{\eta} \propto \mathcal{N}\left(0, \boldsymbol{I}_{n}\right), \kappa=\theta\left\|\boldsymbol{x}_{\text {true }}\right\|_{2}^{2}, \theta \in[0,1]$. We select

$$
\begin{equation*}
x_{\text {true }}:=(\sin (z)+\gamma z \odot \sin (4 z)) \odot \exp \left(-\|z-\pi\|_{2}^{2} / 2 \kappa\right) \tag{3}
\end{equation*}
$$

with $\kappa=9 / 10$ and $\gamma=7 / 2$ and $z_{i}=h i, h=2 \pi / n, i=1$,

N

\sim
Figure 1:Visualization of the structure of the Helmholtz matrix \boldsymbol{A}. We show the decay of the eigenvalues on the left. The remaining figures (from left to right) show the entries of the matrix \boldsymbol{A} and low rank approximations \boldsymbol{A}_{r} for $r \in\{5,15,25,50\}$ built using TSVD. Above each visualization of the low rank approximations we report the relative error $\left\|\boldsymbol{A}-\boldsymbol{A}_{r}\right\|_{F}^{2} /\|\boldsymbol{A}\|_{F}^{2}$.

Numerical Results

We report numerical results for different strategies to solve the considered inverse problem for the test problem described in the former section in Figure 2.

Figure 2: We report solutions for the least squares problem in (1) for different numerical strategies. The numerical solution is shown in red and the true solution $\boldsymbol{x}_{\text {true }}$ is shown in green. Top row: For the unregularized case $(\alpha=0)$ we can observe that the noise is amplified; the computed solution has nothing to do with the true solution. For the regularized case (with regularization parameter $\alpha=1 \mathrm{e}-2$ and regularization operator $L^{\top} L=-\Delta$), we can see that we underfit the data. The best result is obtained by computing the solution through a low rank approximation $\boldsymbol{U}_{r} \boldsymbol{S}_{r} \boldsymbol{V}_{r}^{\top} \approx \boldsymbol{A}$ (truncated SVD; we consider rank $r=15$). Bottom row: We report results for the regularization operators $\boldsymbol{L}^{\top} \boldsymbol{L}=\boldsymbol{I}-\boldsymbol{V}_{r} \boldsymbol{V}_{r}^{\top}$ with regularization parameters $\alpha \in\{1 \mathrm{e}-2,1 \mathrm{e} 2\}$ and ranks $r \in\{5,15\}$

Conclusions

We have developed and tested a computational framework for solving and regularizing linear inverse problems [1]. We have tested a Thikonov-type regularization operator that is motivated from SVD and yields results that are consistent with the TSVD [2]. This regularization scheme outperforms standard regularization approaches based on the identity and Laplace operator. In our future work we aim at extending the proposed methodology to nonlinear inverse problems [5,6].

References

1. C. R. Vogel, Computational methods for inverse problems, SIAM, 2002. 2. J. Wittmer, B. Marin, \& T. Bui-Thanh, A data-oriented statistical framework for inversion and imaging, AMS Madison, 2019.
2. J. Nocedal \& S. Wright, Numerical Optimization, Springer Science, 1999.
3. A. Beck, Introduction to nonlinear optimization: Theory, algorithms, and applications with MATLAB, SIAM, 2014.
4. A. Mang \& G. Biros: An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration. SIAM Journal on Imaging Sciences 8(2):1030-1069, 2015.
5. A. Mang et al.: CLAIRE: A distributed-memory solver for constrained large deformation diffeomorphic image registration. SIAM Journal on Scientific Computing 41(5):C548-C584, 2019
