
MAGNETOTRANSPORT STUDIES ON TOPOLOGICAL

INSULATORS

A Dissertation

Submitted to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Keshav Shrestha

December 2015



MAGNETOTRANSPORT STUDIES ON TOPOLOGICAL

INSULATORS

Keshav Shrestha

APPROVED:

Prof. Paul C. W. Chu, Chairman
Department of Physics

Prof. Wei Kan Chu
Department of Physics

Prof. Kevin Bassler
Department of Physics

Prof. Zhifeng Ren
Department of Physics

Prof. Allan Jacobson
Department of Chemistry

Dean, College of Natural Sciences and Mathematics

ii



Acknowledgements

I would like to express my sincere gratitude to my dissertation supervisor Prof. Paul

C.W. Chu for the continuous support during my PhD research. His constant en-

couragement and assistance at all times have been of immense value. Besides my

advisor, I would like to express my deepest gratitude to Dr. Bernd Lorenz for his

patient guidance, enthusiastic encouragement and useful comments throughout my

research. I would like to thank to my PhD committee members, Prof. Kevin Bassler,

Prof. Wei Kan Chu, Prof. Zhifeng Ren and Prof. Allan Jacobson for their insight-

ful comments and encouragements with some hard questions which incented me to

widen my research from various perspectives. I would like to extend my gratitude to

other High-Pressure Low-Temperature team, Melissa Gooch, Zheng Wu, Ben Jawdat,

Lianzi Deng, Kui Zhao, Narayan Poudel, Hanming Yuan, Shuyan for their assistance

and having intense discussions to solve problems. I would like to thank Prof. Carlos

Ordenez for bringing me from the Abdus Salam International Center for Theoretical

Physics (ICTP) to the Physics Department at University of Houston. Some of my

friends who deserve special thanks for their help and friendly advice are Rooplekha

Mitra, Kalyan Sasmal, and all Nepalese students at the University of Houston.

Last but not the least, I would like to thank my family: my parents and to my

brother for their love and support. A special thanks to Irina Galstyan for her true

love and encouragement throughout my Ph.D. life. I will forever remain indebted to

her. I wish for her success and happiness.

iii



MAGNETOTRANSPORT STUDIES ON TOPOLOGICAL

INSULATORS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Keshav Shrestha

December 2015

iv



Abstract

The present work describes the magnetotransport studies of topological-surface

state (SS) in metallic topological compounds. We have chosen three different classes

of topological insulators, Bi2Se2.1Te0.9 (BST), Bi2Te3 (BT), and Sb2Te2Se (STS) for

our study. The BST sample shows metallic behavior and has p-type bulk charge

carriers. From the angle dependence of quantum oscillations and our Berry phase

calculations, we have proved the existence of topological SS in the metallic BST

sample. Based on the frequency analyses at high field, up to 35 T, the SS quantum

oscillations dominate at low magnetic field and the surface to bulk state cross-over

of oscillations takes place at higher magnetic field. The physical origin of the SS in

the BST metallic sample can be understood as the low position of the Fermi energy

measured from the Dirac point; however, it still cuts the two valence band maxima

in the band structure explaining the bulk metallic property. We have found the ex-

istence of weak antilocalization (WAL) in the three BT metallic single crystals with

different bulk charge carriers. From the angle dependence of the WAL, we found that

the topological SS dominates in the samples having lower bulk carriers. From our

Hikami-Larkin-Nagaoka analyses, we have found a larger number of conduction chan-

nels and a smaller phase coherence length in the samples having more bulk carriers

as compared to those having less bulk carriers. Similar magnetoresistance measure-

ments have been carried out in the p-type metallic STS sample in high-field up to 31

T. The angle dependence of quantum oscillations and the Berry phase calculations

also show the dominance of topological SS. The physical origin of topological SS in

the STS sample can be understood the same way as in the BTS sample.
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Chapter 1

Introduction

The discovery of a new state of matter is always the driving force of condensed

matter physics research. This has led to many historical discoveries such as super-

conductivity [1], the quantum Hall effect (QHE) [2], the fractional quantum Hall

effect (FQHE) [3]. The recent discovery of the topological insulating state of matter

has opened a new area of research in condensed matter physics [4] [5]. The topologi-

cal insulating state is a new manifestation of quantum mechanics which exploits the

non-trivial topology of Hilbert space, a space spanned by wave functions characteriz-

ing electronic states. Depending upon how the Hilbert Space becomes topologically

non-trivial, there are many different kinds of topological insulators [6].

The topologically non-trivial bulk states in topological insulators (TIs) lead to

the existence of metallic states when the insulator is physically terminated and in-

terfaces with an ordinary insulator (including vacuum) [5]. The metallic states in 2

dimensional (2D) topological insulators appear as edge states (edge modes) and as

1



Figure 1.1: An energy (E) versus momentum (k) band structure sketch of a topolog-
ical insulator. The Fermi level (EF ) lies somewhere in between the bulk valence band
and conduction band. The surface states with spins up and down form a Dirac-like
dispersion.

surface states in 3 dimensional (3D) topological insulators. The edge/surface state

is protected by symmetry-like time-reversal symmetry (TRS) in 3D topological in-

sulators. The surface states of 3D topological insulators show a characteristic Dirac

dispersion as shown in Fig. [1.1], and the quasi-particles in this state are massless

Dirac fermions where the spin is locked to the momentum, thereby forming a helical

spin state.

Due to topological protection, the surface state (SS) is very stable and robust

against disorder. The presence of surface states allows for potential applications in

technology like spintronics and computer memory devices because of their stability

2



and robustness [5]. Moreover, topological insulators can exhibit many exotic quan-

tum effects. For example, BiSbSe2Te shows the QHE under high magnetic field [7].

By breaking time reversal symmetry (TRS) with magnetic impurities like chromium

(Cr), TIs show the quantum anomalous Hall Effect (QAHE) [8] [9]. Furthermore, the

proximity-induced superconductivity in TIs may pave the way towards the discov-

ery of Majorana fermions, quasi-particles which are their own antiparticles [10][11].

Bi2Se3 is a topological insulator, which becomes superconductive with Cu or Sr in-

tercalation [12] [13].

The transport characteristics of the SS are important for technological appli-

cations if the bulk is insulating. However, the majority of 3D topological insulators

discovered until now, such as the bismuth chalcogenides like Bi2Se3, Bi2Te3, Bi2Se2Te

or Bi2Te2Se, always have crystal defects (point, dislocations or antisite defects) [5].

The Fermi level lies either in the conduction band or the valence band; depending

on the type of crystal defects, the bulk charge carriers will be of either electron or

hole type. In such a case, the bulk conduction channel interferes SS which makes the

transport studies of topological SS difficult and extremely challenging. A systematic

transport study of Bi2Te3 single crystals (both metallic and non-metallic) has been

completed, Qu et al [14] and they reported that it is hard to detect the topological

SS in the metallic samples due to significant interference from the bulk conduction

channel. The metallic sample studied by Qu et al has n-type bulk charge carriers.

The question which still remains is: is it possible to detect SS in metallic samples

by transport measurements? In this research work, we have carried out systematic

3



magnetotransport studies on 3 different types of metallic topological insulating sam-

ples Bi2Te2.1Se0.9, Bi2Te3 and Sb2Te2Se. Our angle dependent quantum oscillations

and Berry phase calculations showed the existence of topological surface states in

Bi2Te2.1Se0.9 and Sb2Te2Se samples. Similarly, we have observed weak antilocaliza-

tion (WAL) effects on the metallic Bi2Te3 sample. The angle depedence of the WAL

effect proved the dominance of topological surface states in the magnetoconductivity

of Bi2Te3 single crystals having lower bulk carriers.

In Chapter 2, I will present a broad but concise review of the topological phases

of materials and their fundamental physical properties. Chapter 3 will cover the

experimental methods used to carry out the measurements. Chapter 4 will include

the results followed with discussions. Finally, Chapter 5 will summarize the whole

research work with conclusions.
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Chapter 2

Background

Electrons and atoms in the quantum world form many different states of matter

[15]. Crystals, magnets, superconductors etc. are different states of matter. Quan-

tum states are classified by the principle of “spontaneous symmetry breaking” [16].

For example: water and ice are the same material; however, they form different

phases. The translational symmetry that exists in an ice crystal is broken when

water is formed. Similarly, a ferromagnet breaks the rotational symmetry of electron

spins; a superconductor breaks gauge symmetry, etc. Hence, a phase transition is

equivalent to a symmetry breaking. Recently, a new state of matter has been discov-

ered. Materials belonging to this state are classified based on a topological quantum

number, sometimes known as a topological invariant [4][5]. A topological insulator

has been theoretically predicted [17][18][19] and discovered experimentally later on

[20][21]. The most interesting and useful property of a topological insulator is the

surface state. There is a continous transition of electronic states if two materials
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Figure 2.1: The trefoil knot (left) and the simple loop (right) represent different
insulating materials: the knot is a topological insulator, and the loop is an ordinary
insulator. The figure is adapted from the reference [22].

of the same topology interface with each other. However, a conducting edge state

(surface state) appears if two materials of different topological phases interface with

each others [22]. Geometrically, this can be understood by taking a simple cartoon as

shown in Fig. [2.1]. Consider, for example, that we want to change a topologically

non-trivial trefoil knot to a topologically trivial simple loop. From the theory of

topology, the topology of an object does not change under a continous deformation

[23]. However, in case of the above example Fig. [2.1] there is no way to convert

the trefoil knot into the simple loop with a continous deformation. The only way

to deform a trefoil knot into a simple loop is to cut the string and then reconnect

it. However, the topological invariant is not defined for the string with open ends

(middle in Fig. [2.1]). Similary, to go from one phase of matter defined by a certain

topological invariant to another phase of matter defined by a different topological

invariant, an intermediate state with an “undefined” topological invariant is needed;

this is known as the metallic surface state. Some examples of topological insulators
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Figure 2.2: The interface between a quantum Hall state and an insulator has chiral
edge mode. (a) The skipping cyclotron orbits. (b) The chiral edge mode which
connects valence band to conduction band. The figure is adapted from the reference
[4].

are the materials that show the quantum Hall Effect (QHE).

2.1 Quantum Hall Effect

QHE is the quantization of Hall conductance in 2D electron gas under high mag-

netic field [2]. The 2D electron gas is usually found in semiconductor interfaces. An

electron moving in a magnetic field B experiences a Lorenz force of F = Bev ( e is

electron charge and v is its velocity) and exhibits cyclotron motion with a frequency

ωc = eB
mcyc

(mcyc is the cyclotron mass). The energy levels are quantized as

εn = (n+
1

2
)h̄ωc,

n is an integer, also known as Landau level (LL); the consecutive Landau levels are

separated by an energy of h̄ωc. The Hall conductivity is quantized as

σxy = N
e2

h
(2.1)
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where N is the filling factor. N can take any integer value in the QHE [2] and

any positive rational number in fractional quantum Hall effect (FQHE) [3]. In the

semiclassical picture, the QHE can be understood in terms of cyclotron motion of

electrons. An electron inside the sample undergoes cyclotron motion about the axis

of applied field; however, an electron close to the boundary can not complete its

cyclotron orbit and makes an escaping orbit as shown in Fig. [2.2(a)]. These escaping

orbits on the boundary can be regarded as the motion of an electron. The edge state

is chiral and represented as a gapless state in the band structure Fig. [2.2(b)].

Thus, the electrons in the bulk do not conduct, but the edge electrons contribute

to the flow of current at the edge in the QHE. That is why a QHE material is

regarded as a topological insulator [4]; N is also regarded as the Thouless, Kohmoto,

Nightingale, and den Nijs (TKNN) number. TKNN showed that the QHE is not

only a quantum mechanical phenomenon, but also has a topological origin. They

mapped the quantum Hall system in k-space to a topologically non-trivial Hilbert

space, whose topology can be specified by an integer number N [24].

N =
1

2π

∫
BZ

∇k × A(kx, ky)d
2k (2.2)

where A = -i <uk|∇k|uk> is a vector potential, and |uk> is a Bloch wave function

with a wave vector k. Thus, the precise quantization of Hall conductance can be

understood in terms of topological protection.
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Figure 2.3: Quantum Spin Hall Insulator (QSHI). (a) The interface between QSHI
and a trivial insulator. (b) Energy (E) versus wave vector (k) band structure of a
QSHI. The Fermi energy (EF ) lies in between the valence and conduction bands.
The figure is adapted from the reference [4].

2.2 Quantum Spin Hall State

In the quantum Hall effect, the time reversal symmetry (TRS) is broken because

of external magnetic field. However, a question that still remained unanswered dur-

ing that time is the existence of quantum Hall like states without external magnetic

field. In order words, can we get a quantum Hall like state without breaking the

TRS? This question could be answered after the discovery of the quantum spin Hall

effect, where spin orbit coupling (SOC) provides an internal magnetic field [25].

Initially, the quantum spin Hall effect (QSHE) was considered as a combina-

tion of two QHE i.e. there are two edge currents, spin up and spin down, which

preserve TRS. However, the TKNN or Chern number of two independent edge cur-

rents for spin up and spin down electron add up to give zero i.e. the net Chern

number n = n ↑ + n ↓ = 0 [26]. However, that does not mean that QSHE is a

topologically trivial state. Kane and Mele found a way to define another topological
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invariant ν in QSH system, which takes values of 0 or 1 [27]. For the QSHE, ν is

equal to 1, and there exist two edge states (spin up and spin down) which form a

Dirac cone. The quantum spin Hall state is a real 2D topological insulator and has

been discovered in the HgTe/CdTe quantum well [28].

In this dissertation, we have studied the 3D topological insulator, which is

the extension of the 2D topological insulator. The surface state in a 3D topological

insulator is protected by TRS as in QSHE.

2.3 Quantum Oscillations

Ideally, a topological insulator should have large bulk resistivity so that only

the surface state conducts electrical current. However, due to scattering and crystal

defects in bismuth-based topological insulators, a bulk conduction channel always ex-

ists and this interferes with the surface channel. Therefore, resistance measurements

alone cannot detect surface states. However, under the application of magnetic field,

the resistivity or conductivity of a topological insulator shows quantum oscillations,

known as Shubnikov de Haas (SdH) oscillations [29]. Physically, the origin of quan-

tum oscillations can be understood in terms of the quantization of electron density

of states into Landau levels in the presence of a magnetic field. With an increase

of magnetic field, the Fermi level crosses the Landau levels (as shown in Fig. [2.4])

i.e. the density of states (DOS) becomes a periodic function of the magnetic field,

which leads to oscillations in the physical properties of the materials. The angle de-

pendence of the quantum oscillations with respect to the direction of magnetic field
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Figure 2.4: (a)Partially-filled 2D Dirac cone; µ is the Fermi level.(b) Landau quanti-
zation of the Dirac cone; LLs below µ are filled with electrons.(c) In a higher magnetic
fields, the spacing between LLs increases as

√
N , and fewer Landau levels are filled.

The figure is adapted from the reference [5].

allows one to map the Fermi surface, which ultimately probes whether the quantum

oscillations originate from 2D surface states or 3D bulk states. Moreover, the phase

factor of the quantum oscillations allows for the calculation of the Berry phase. It

directly reflects the nature of the charge carrier, i.e. either Dirac fermions or normal

electrons [5]. Thus, the ability to detect quantum oscillations is a very important

tool for the study of surface states in 3D topological insulators.

2.3.1 Onsager Relation

Onsager developed a mathematical formula that maps the cross-sectional area of

the Fermi surface to the frequency of quantum oscillations. The following derivations

are inspired by Ashcroft and Mermin [30], and Kittel [15]. According to Bohr’s
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corresponding principle, the spacing between two Landau levels is h̄ωc,

Eν+1(kz)− Eν(kz) = h̄ωc

= h̄
eB

mcyc

(2.3)

where ν is LL index which is an integer number, kz is the z component of the wave

vector k, and mcyc is the cyclotron mass of electron, which is defined as

mcyc(Eν , kz) =
h̄2

2π

∂A(Eν , kz)

∂E
. (2.4)

where A(Eν , kz) is the area enclosed in k space by cyclotron orbit.

Combining Eq. [2.3] and Eq. [2.4], we get

Eν+1(kz)− Eν(kz) =
2πeB

h̄[∂A(Eν ,kz)
∂E

]
. (2.5)

From the results of free electrons under a magnetic field, the energy difference

between Landau levels is h̄ωc, which is at least 10−4 times smaller than the energies

of the levels themselves. So, we can approximate the expression

∂A(Eν , kz)

∂E
=
A(Eν+1, kz)− A(Eν , kz)

Eν+1(kz)− Eν(kz)
. (2.6)

Putting Eq. [2.6] in Eq. [2.5], we get

A(Eν+1, kz)− A(Eν , kz) = ∆A =
2πeB

h̄
(2.7)
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Figure 2.5: Landau levels in 3 dimension are cylindrical tubes as shown and the
Fermi surface is displayed by the red lines.

Equation [2.7] states that the area between two adjacent classical orbits (at the

same kz) can differ only by a fixed amount ∆A. Thus the cross-section area enclosed

by an orbit of LL ν is given by

A = πk2
F = (ν + β)∆A (2.8)

where β represents a phase constant which is connected to the Berry phase and gives

information about the nature of the Dirac spectrum. For free spin 1/2 particles, the

phase constant is 1/2. kF is the Fermi wave vector. Substituting the value of ∆A

from Eq. [2.7], we get

A = (ν + β)
2πeB

h̄c
(2.9)

In Fermi surface experiments we may be interested in the increment ∆B for which

two successive orbits, ν and ν+1, have the same area in k space on the Fermi surface.
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The area is equal when

A

(
1

Bν+1

− 1

Bν

)
=

2πe

h̄c
(2.10)

Equation [2.10] is an important result which implies that equal increments of 1/B

reproduce similar orbits - this periodicitiy is a striking feature of the magneto-

oscillatory effects in many physical properties of metals at low temperature.

2.3.2 Lifshitz Kosevich Theory

Various physical quantities which characterize quantum oscillations, like the cy-

clotron mass mcyc, the scattering time τ , mobility µ and etc., can be evaluated using

the Lifshitz Kosevich theory. Following Shoenberg [29], the quantum oscillations in

conductivity can be expressed as

∆Rxx = ∆R0RTRDRScos

[
2π

(
F

B
− 1

2
+ β

)]
(2.11)

where ∆R0 is a constant and the three coefficients,

RT = 2π2(kBT/h̄ωc)/sinh[2π2(kBT/h̄ωc)], RD = exp[−2π2(kBTD/h̄ωc)] and

RS = cos(1
2
πgme/mcyc) are called temperature, Dingle, and spin damping factors,

respectively with TD the Dingle temperature (g is the electron g-factor and me is the

free electron mass). For a given magnetic field, RD does not change and tempera-

ture dependence shows up only through RT . Thus, the cyclotron frequency ωc can

be calculated using the temperature dependence of quantum oscillation amplitude,

which in turn gives mcyc = eB/ωc. From Eq. [2.4],

mcyc(Eν , kz) =
h̄2

2π

[
∂A(Eν , kz)

∂E

]
E=EF

. (2.12)
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In case of 2D Dirac fermions, the energy dispersion is E(k) = h̄vFk, and one

obtains A(EF ) = πk2
F = πE2

F/(h̄vF )2 and hence mcyc = EF/v
2
F = h̄kF/vF . Thus, by

calculating the cyclotron mass mcyc, we can calculate Fermi velocity vF = h̄kF/mcyc.

Other quantities like the Dingle temperature, TD, can be determined from the mag-

netic field-dependence of the amplitude of the SdH oscillations at a fixed temperature

and obtain the quantum scattering time, τ . The obtained τ can be used to calculate

the mean-free-path lSdH = vF τ , which in turn gives an estimate of the surface carrier

mobility µSdHs = eτ/mcyc.

2.4 Weak Antilocalization

Weak antilocalization (WAL) is a quantum interference effect in quantum trans-

port of a disordered electron system having strong spin-orbit coupling [31]. These

effects have been widely observed in topological insulators [32][33][34]. The WAL

effect enhances the conductivity. However, in the presence of magnetic field, time

reversal symmetry (TRS) is broken and, consequently, the magnetoconductivity de-

creases. Thus, negative magnetoconductivity is taken as an experimental signature

of WAL [31] as shown in Fig. [2.6].

2.4.1 Physical Origin of WAL

Motion of an electron in a disordered system is characterized by three parameters,

the scattering length (l), the phase coherence length (lφ) and the sample length (L).
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Figure 2.6: Conductivity as a function of magnetic field B. Negative and positive
mangnetoconductivities are taken as signature of WAL and WL respectively. The
figure is adapted from the reference [35].

Figure 2.7: Schematic illustration of different electronic transport regimes in solids.
The open circles represent impurities and arrows mark the trajectories that electron
travelled. The figure is adapted from the reference [31].

Depending upon the disorders in a given sample as shown in Fig. [2.7], the motion

of electrons can be either (i) ballistic (l > L), (ii) diffusive (l < L, and l << lφ),

or (iii) quantum diffusive (lφ >> l). In diffusive region, we can use the classical

Drude formula to calculate the conductivity. However, the quantum interference

between two time-reversed paths in the quantum diffusive region gives quantum

correction to the conductivity. The quantum correction is mostly due to quantum

interference effects between self-crossing electron paths [36]. The electron paths due

to scattering can be either clockwise or counter-clockwise as shown in Fig. [2.8]. Due
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Figure 2.8: Schematic illustration of different electron paths in a disorderd system.
(a) Clockwise (b) Anticlockwise.

to the identical lengths of the two paths along a loop, the quantum phases cancel

each other out; if not, they are random in sign (i.e. the quantum interference terms

survive upon disorder averaging). In strong-spin orbit interaction (SOI) systems,

the electron spin is coupled to its momentum. The phase difference between two

time-reversed paths for a spin is 2π. However, the wavefunction of a spin changes

sign for the rotation of 2π, this causes a destructive interference. The destructive

interference increases the conductivity; this is called weak antilocalization. Since it

is more probable to find self-crossing paths in lower dimensions, the WAL effect is

more tangible to thin films or wires. In two dimensions, the quantum correction to

conductivity is described by the Hikami-Larkin-Nagaoka (HLN) formula [37]

σ(B)− σ(0) = ∆σxx(B) = α
e2

πh

[
Ψ

(
h̄c

4el2φB
+

1

2

)
− ln

(
h̄c

4el2φB

)]
(2.13)

where Ψ is the digamma function and lφ is the phase coherence length. The pre-

factor α takes a value of 1
2

per conduction channel that carries the π Berry phase or
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bears a strong SOC.

Equation [4.4] is derived for 2D systems like thin films having strong SOC. However,

this formula still can be used in case of 3D topological insulators having insulating

bulk channels. The surface channel is 2D in nature and many physical properties

can be studied using the HLN formula.
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Chapter 3

Methods

3.1 Sample Preparation

3.1.1 Bi2Se2.1Te0.9 Single Crystal

Single crystals of Bi2Se2.1Te0.9 were grown by a modified Bridgman technique.

The starting materials with high purity, Bi (99.9999%), Se (99.9999%), and Te

(99.9999%), were mixed according to the desired compositions in encapsulated quartz

ampoules of 20 mm diameter. The mixtures were annealed at 875 oC for 48 hour

in order to obtain a homogenized melt. Then the melt was cooled to 670 oC at a

rate of 0.5 oC/hour. Finally, the crystals were cooled to room temperature at a rate

of 0.5 oC/hour. The single crystals of Bi2Se2.1Te0.9 were grown by Dr. Vera Mari-

nova at the Institute of Optical Materials and Technology, Bulgarian Academy of

Sciences, Acad. G. Bontchev Str. 109, Sofia 1113, Bulgaria. Figure [3.1] shows the
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Figure 3.1: Crystal Structures of Bi2Se3 and Bi2Se2Te. The picture is adapted from
the reference [38].

crystal structures of Bi2Se3 and Bi2Se2Te. The crystal is rhombohedral with hexag-

onal planes. The rhombohedral crystal structures of Bi2Se3 and Bi2Se2Te consist of

hexagonal planes of Bi and Se/Te stacked on top of each other along the z-direction.

3.1.2 Sb2Te2Se Single Crystal

The preparation of Sb2Te2Se crystals is described further as follows. First binary

compounds Sb2Se3 and Sb2Te3 were synthesized. The synthesis was done by using

stoichiometric quantities of the starting materials Sb, Se, and Te, with purity of

99.9999%, mixed in quartz ampoules with a diameter of 20 mm, vacuumed to 10−6

torr. The synthesis and homogenization process last for 25 hours at a temperature

in the interval 620 - 650 oC. The binary compositions prepared in this way were

mixed to the desired ternary compounds and then placed in quartz ampoules with

diameter 10 mm and after that vacuumed to 10−6 torr and sealed. These ampoules
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were further positioned in Bridgman crystal growth furnace. In the furnace the

ampoules were heated to 650 oC and homogenized for 36 hours. The crystal growth

process was performed through temperature decreasing with a speed of 0.5 oC per

hour in the interval 650 - 570 oC. Further in the temperature interval from 570 oC

to room temperature, the ampoules were cooled with a speed 10 oC/ hour. The

single crystals of Sb2Te2Se were grown by Dr. Vera Marinova in Institute of Optical

Materials and Technology, Bulgarian Academy of Sciences, Acad. G. Bontchev Str.

109, Sofia 1113, Bulgaria.

3.2 Experimental Setup

3.2.1 Sputtering Gold Contacts

A fresh single crystal of a typical size 5 mm×3 mm×0.1 mm was cleaved and cut

into a rectangular shape. The selected sample was patterned using scotch tape as a

mask. Six gold contacts were sputtered on the top surface (a-b plane) of the sample

using an Anatech Hummer 6.2 sputtering machine as shown in Fig. [3.2]. The sample

was placed inside the glass jar and purged with argon gas several times. A constant

flow of argon was maintained with a pressure of approximately 100 mbar. Under a

high dc electric field, the argon gas atoms ionize and form a plasma. A continous

bombardment of argon ions (Ar+) on the gold target caused erosion of gold atoms

which then was deposited on the sample. The sputtered sample was attached on a

substrate (MgO) using GE varnish. The geometrical configuration of the sample for
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Figure 3.2: Hummer 6.2 sputtering and carbon coating machine. A sample is placed
inside the glass jar (shown on the top) and a high dc electric field is applied from
the control unit.

the transport measurements is shown in Fig. [3.3]. Six platinum wires were attached

using silver paint. I+ and I− represent the current contacts; VL and VT represent

pairs for the longitudinal and transverse voltages, respectively. The dot sign inside

the circle shows that the magnetic field is pointing out and perpendicular to the

sample surface i.e. ab plane. The sputtered gold contacts are shown by the yellow

patches.

3.2.2 Magnetoresistance Measurements

The resistivity of the topological insulator samples was measured in the physi-

cal properties measurement system (PPMS, Quantum Design). The resistance was
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Figure 3.3: A sample geometry for measuring the longitudinal and Hall resistances.

measured from 300 K to 2 K. The sample was attached with GE - varnish on the ro-

tator platform and then plugged onto the PPMS horizontal rotator as shown in Fig.

[3.2.2]. The platform has 3 channels: channel 1 is used for the platform thermometer;

2 is used for the longitudinal resistance; and channel 3 is used for the Hall resistance

measurements. The channel 2 provides the current for both the longitudinal and

the Hall resistance measurements. The sample platform can be rotated by 360o

using a stepper motor attached on the top of the probe. The top part of the probe

has a vernier dial which measures the angle of rotation of the sample platform with

respect to the direction of applied magnetic field. At 0o angle of rotation, the sample

platform is horizontal with its surface facing the downward direction. Therefore, the

applied magnetic field is always perpendicular to the platform surface at 0o angle.
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(a) A horizontal rotator probe. (b) A rotator platform.

Figure 3.4: (a) A horizontal rotator probe for resistivity and Hall measurements in
the PPMS. (b) The wire connection for resistivity and Hall measurements, where the
blue rectangle represents a sample.
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The sample platform was always rotated in one direction in order to reduce the back-

lash error. The calibration of the polarity of charge carriers and any adjustment of

the rotational angle were done using a Hall sensor. At 0o angle, the positive slope

of the Hall resistance indicates the presence of positive (hole) type of charge carriers

and vice versa. A typical error bar in the angle of rotation is less than 3o.

3.2.3 Magnetoresistance Measurements in Oxford Cryostat

The range of the magnetic field was extended to 13 Tesla using an Oxford cryostat.

In order to conduct measurements at different angles, a rotator probe had to be built,

calibrated and tested, as described below.

3.2.3.1 Probe Construction

The probe for the magnetotransport measurements in the Oxford cryostat is

shown in Fig. [3.5]. This special probe has a facility to rotate a sample in a magnetic

field. The rotation mechanism is attached at the bottom part of the probe. The

bottom part of the probe consists of a hollow cylinder built by joining two circular

discs with two walls as shown in Fig. [3.6]. A threaded plastic wheel is attached to

one of the walls. A plastic scew with exact matching thread is attached against the

rim of the wheel; so that the screw rotation moves the wheel. A small stainless steel

rod (S1) rotates the plastic screw. Both the wheel and screw are made out of nylon

plastic. A sample holder made out of copper is attached to the wheel. A cernox

temperature sensor is attached on the back side of the sample holder to measure
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the temperature of the sample. The cernox temperature sensor was calibrated from

room temperature to 1.9 K using the standard probe built in our lab. The plastic

scew is rotated by a stepper motor attached on the top part of the probe as shown

in Fig. [3.2.3.1]. The number of rotations is counted by a mechanical counter. The

angle of rotation was calibrated by counting the number of turns need to rotate the

plastic disc by 360o as follows.

76 turns of the stainless steel rod (S1) = 360o of the plastic wheel

1 turn of the stainless steel rod (S1) = 4.737o of the plastic wheel

Similarly,

1 turn of the stainless steel rod (S1) = 360o of the stepper motor

1 turn of the stainless steel rod (S1) = 4.737o of the plastic wheel

Therefore,

1o of the stepper motor = 4.737o/360o = 0.013o of the plastic wheel

However, the smallest step of the stepper motor is 0.9o. Hence,

0.9o of the stepper motor = 0.012o of the plastic wheel

Thus, the sensititivity of the angle of rotation of the sample platform is less than

0.2o. This very high sensitivity is due to the very small step of angle of rotation of

the stepper motor.

The middle part of the probe consists of a stainless steel tube with six copper

radiation heat shields. Five pairs of twisted copper wires run from the sample holder

to a 25 pins connector, which is attached on the top of the probe. A Lakshore LS336

and a linear resistance bridge LR-700 were used for temperature and electrical signal
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Figure 3.5: An AutoCAD design of the probe that fits in 16 Tesla Oxford cryostat.
The top part consists of a stepper motor and a mechanical counter, the middle part
has a stainless steel with heat shields made out of copper, and the buttom part is
made out of brass cylinder.
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(a) AutoCAD drawing . (b) A real picture.

Figure 3.6: The botton part of the probe that houses the rotational mechanism.

measurements, respectively. Fig. [3.8] shows the connection diagram for measuring

temperature and electrical signals coming from the sample. Since the Hall resistance

depends on the angle of rotation with respect to magnetic field, we tested the pe-

formance of the probe by using a Hall sensor. It was found that the Hall resistance

follows a cosθ dependence, where θ is the angle between the normal to the sample

surface and the direction of magnetic field as shown Fig. [3.9], this step confirmed

that the mechanism for rotation is behaving as expected.

3.2.3.2 Cooling the Cryostat

Figure [3.10] shows the Oxford cryostat in our laboratory. The Oxford cryostat

consists of two vacuum jackets: an outer and an inner jacket. The outer vacuum

jacket was pumped overnight with a turbo pump to a pressure lower than 10−4
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(a) AutoCAD Drawing. (b) A Real Picture.

Figure 3.7: The top part of probe that consists of a stepper motor and a mechanical
counter. The stepper motor is driven by an external electrical control unit.
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Figure 3.8: The connection diagram for the probe. Pin numbers (14, 15, 16, 17)
and (18, 19, 20, 21, 22, 23) in 25 pin connector are used for the cernox temperature
sensor and samples, respectively.

Figure 3.9: Hall resistance as a function of the angle of rotation. The green circles
show the measured Hall resistance and solid red line is the cosine fit. The measurment
has been conducted at 60o K in the presence of a 1 Tesla magnetic field.
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mbar. Then, the variable temperature insert (VTI) was removed using a crane and

the helium dewar was pre-cooled using liquid nitrogen. The cryostat was filled with

liquid nitrogen overnight. The inner vacuum jacket was also evacuated using the

turbo pump. On the next day, the liquid nitrogen was pumped out using a nitrogen

hose. It is very important to note that there should be no liquid nitrogen left in

the cryostat. Otherwise, it is impossible to condense helium. Once all the liquid

nitrogen was pumped out, the VTI was inserted back into the cryostat. Then, we

started filling helium through helium filling port. Initially, the flow of helium was

kept low to cool down the cryostat slowly. Once the cryostat was cool enough to

condense helium, the rate was increased. The condensation of helium was measured

using the helium level meter. It usually takes 70 - 80 liters of helium for the first fill.

So, it is recommended to use a 100 L tank for the first fill.

3.2.4 Experimental Set up in National High Magnetic Field

Laboratory

High field measurements were perfomed at the National High Magnetic Field

Laboratory (NHMFL), with fields up to 35 Tesla. Longitudinal and Hall resistances

were measured using Oxford lock-in amplifiers. AC current of 1 mA was passed

through the sample at a certain frequency using a Keithley source meter. The longi-

tudinal and Hall resitances were measured in channel 1 and 2 of the lock-in amplifier

respectively. The sample was mounted on a rotating platform which allowed for

positioning the sample at different angles with respect to the magnetic field. The
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Figure 3.10: The Oxford Cryostat with 13 Tesla superconducting magnet in our lab.

(a) Toploading 3He Cryostat. (b) Lock-in amplifier measurement setup.

Figure 3.11: Experimental Set up in the National High Magnetic Field Laboratory.
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platform, mounted in a 3He cryostat (Oxford), was inserted into the 32 mm bore of

a resistive magnet with a maximum field of 35 Tesla. Fig. [3.12] is a sketch of the 35

T resistive magnet system. The magnet is comprised of an assembly of Bitter plates,

named after American physicist Francis Bitter. A Bitter plate is a circular conduct-

ing metal plate having several holes on it as shown in Fig. [3.13]; these plates are

then stacked in a helical configuration with insulating spacers between. The current

flows in a helical path through the plates and this design of stacked plate magnet also

helps to withstand the enormous outward mechanical pressure due to the Lorentz

force. Also, this design allows for cold water to pass easily through the holes and

carry away the heat produced due to resistive heating. The magnet was operated

always in sweeping mode with a rate of 2 Tesla per minute in order to minimize

electric power consumption.
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Figure 3.12: A sketch of 35 Tesla magnet design in NHMFL, Tallahassee, Florida.
The dimensions are measured in mm. The figure is adapted from NHMFL website.

Figure 3.13: Resistive magnets are made of metal Bitter plates stacked into a coil.
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3.2.5 Seebeck Coefficient Under Magnetic Field

The Seebeck coefficient of topological single crystals were measured in a magnetic

field up to 7 Tesla. We designed a special puck that can be fitted in PPMS (Quantum

Design). A sinusoidal temperature gradient at a certain frequency is created and the

sinusoidal thermovoltage of the same frequency is measured across the sample. The

computer program performs a non-linear curve fitting to the sinusoidal thermovoltage

to calculate its average amplitude. This non-linear curve fitting also helps to reduce

the noise level in the measurement. By taking the ratio of the amplitude of the

thermovoltage (∆V ) to the amplitude of the temperature gradient (∆T ), we can

calculate Seebeck coefficient i.e.

S =
∆V

∆T
. (3.1)

This technique is similar to a lock-in technique where the signal of only desired

frequency is measured. That is why this measurement is more precise than a one

heater or a direct current (dc) technique to measure the Seebeck coefficient.

A sample was placed across two sapphire plates (as shown in Fig. [3.15]). A sinusoidal

temperature gradiant of amplitude 0.25 K was created across the sample using two

thin film heaters H1 and H2. A sinusoidal current was applied to both heaters

using Keithley 220 programmable current source with a 90o phase offset. Consider

I1 = I0Sin(ωt) and I2 = I0Cos(ωt) to be the current through the first heater and

second heater, respectively, then total power dissipated on the sample

P = I2R = I2
1R + I2

2R = I2
0R (3.2)

is constant with time. This tells that the average sample temperature is constant.
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Figure 3.14: A thermoelectric power puck. Two black rectangular plates are saphhire
plates which are heated by individual thin film heater attached on them.

Figure 3.15: A sketch of the front panel of the thermoelectric power puck.
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The temperature measured by a cernox was used as the reference temperature to

the Copper-constantan (Cu-Con) thermocouple. Two Cu-Con thermocouples mea-

sured temperatures at two ends of the sample for the temperature difference, as well

as the ac thermovoltage at either ends of the sample. A HP34420A nanovoltmeter

was used to measure the voltage across the copper wires Cu1, Cu2 and sample i.e.

V = VCu1 + Vsample − VCu2 . (3.3)

The negative voltage across Cu2 wire is because of negative temperature gradient

with respect to the reference temperature. In order to get the real signal from the

sample, we have to know the voltage across the copper wires Cu1 and Cu2. Since a

superconductor has zero a Seebeck coefficient at its superconducting state, we have

used Yttrium Barium Copper Oxide (YBCO), a high temperature superconductor to

measure the Seebeck coefficient of the copper wires. However, the high temperature

calibration (above 90 K) of the copper wires were done using a high purity lead.

The thermopower of high purity lead is known well and its value was substracted to

calculate the thermovoltage across copper wires.

The magnetic field dependence of thermocouple was done by creating a con-

stant temperature in one of thermocouples. A dc current was applied to one of the

heaters that creats a temperature gradient across the thermocouple. The current was

adjusted such that a constant temperature gradient of 0.5 K is maintained. Simi-

larly, the magnetic field dependence of thermovoltage across the copper wires was

carried out using a Manganin foil. The Manganin foil was used as a sample and its

magneto-thermovoltage was substracted to evaluate the magneto-thermovoltage of

the copper wires.
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Chapter 4

Results

In this chapter, I will present the main findings of the present work. We have car-

ried out a detailed magnetotransport study on Bi2Se2.1Te0.9, Bi2Te3, and Sb2Te2Se

metallic topological insulators to investigate the possible presence of topological sur-

face states. All magnetotransport experiments are carried out at low temperatures

(5 K to 300 mK). After detailed analyses, we concluded the existence of topological

surface states in metallic topological samples and the possible reasons for their ex-

istence. In Bi2Se2.1Te0.9 and Sb2Te2Se samples, we found that if the Fermi energy

is low enough that it cuts the valence band in the band structure, it allows us to

study the surface states at low magnetic field. Our theoretical arguments are further

supported by the high field data up to 35 Tesla at the national high magnetic field

lab, Tallahassee, Florida. Similarly, angle dependence of weak antilocalization in

Bi2Te3 samples proved the dominance of topological surface states in the samples

having low bulk carriers.
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Figure 4.1: Temperature-dependence of resistivity (ρxx) of a Bi2Se2.1Te0.9 single crys-
tal. The lower right inset shows Hall data at 5 K. The upper left inset displays the
temperature dependence of the thermoelectric power.

4.1 Bi2Se2.1Te0.9 Single Crystal

4.1.1 Resistivity, Hall and Seebeck Coefficient

We have selected a single crystal of Bi2Se2.1Te0.9 and sputtered six gold contacts

on its surface as explained in the method section. The temperature-dependence of

the resistivity is metallic as shown in Fig. [4.1]. Hall measurements reaveled that the

charge carriers are p-type, as shown in lower inset Fig. [4.1]. The bulk carrier density

is found to be N = 2×1018 cm−3 at 5 K, consistent with the metallic character of the

bulk resistivity. The positive and large thermoelectric power has further confirmed

the p-type nature of the carriers, as shown in the upper left inset to Fig. [4.1].
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Figure 4.2: Magnetic field dependence of the resistance of Bi2Se2.1Te0.9 (black, upper
curve) at 2 K. The red (lower) curve shows the SdH oscillations in the derivative
dRxx/dB.

4.1.2 Shubnikov de Haas Oscillations

The magnetoresistance Rxx(B) of Bi2Se2.1Te0.9 single crystal is shown in Fig.

[4.2]. The magnetic field was applied along c-direction of the sample. Small quantum

oscillations can be seen above 3 Tesla magnetic field, known as Shubnikov de Haas

(SdH) oscillations. These oscillations become more clear in the derivative of Rxx as

shown in the right scale of Fig. [4.2]. The quantum oscillations that we have observed

can be of either surface or bulk origin. In order to identify the possible origin of the

quantum oscillations, we have measured the magnetoresistance at different angles of

rotation of the sample with respect to B. The SdH oscillations maxima and minima

positions do not change when the derivatives dRxx/dB are plotted as a function of

the inverse of the normal component of applied magnetic field 1/B⊥ as shown in
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Figure 4.3: (a) dRxx/dB as a function of the inverse perpendicular component
1/B⊥=1/Bcosθ, demonstrating the scaling expected for surface conduction chan-
nels. (b) Plot of the field position of a maximum of dRxx/dB corresponding to
n=5.5 in the Landau level fan diagram. The line shows the 1/cosθ scaling.

Fig. [4.3 (a)], where B⊥=Bcosθ is the normal component of magnetic field with θ

is the angle between the normal to the sample surface and the direction of B. This

shows that the quantum oscillations we observed here depends only on the normal

component of B, indicating they are possibly originated from topological surface

states. The amplitude of the oscillations decreases quickly at higher angles and the

SdH oscillations can no longer be resolved. The angle dependence of one extremum

is shown in Fig. [4.3 (b)] and it follows the expected 1/cosθ scaling for surface states.

This is taken as evidence that the quantum oscillations arise from the topological

surface states [14].
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Figure 4.4: (a) Oscillatory part of the magnetoresistance Rxx (B) at different tem-
peratures vs inverse magnetic field. The field is perpendicular to the crystals surface.
(b) Fourier transform of the data from (a).

4.1.3 Frequency Analysis

Figure [4.4] shows the oscillations at different temperatures, obtained after sub-

stracting the smooth polynomial background. The oscillations are periodic in 1/B

and the amplitude decreases with an increase in temperature; however, the frequency

remains unchanged as shown in Fig.[4.4 (b)]. Besides the major sharp peak at a fre-

quency of F1 ≈ 23 T, there is a weak shoulder around a frequency F2 ≈ 50 T. This

could indicate a small contribution from a higher frequency, as observed in other

topological systems with complex Fermi surfaces [39][40][41]. However, the effect is

relatively minor and disappears with increasing temperature.
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Figure 4.5: Field dependence of conductivity σxx (B) (red curve). Upper left inset:
second derivative dσ2

xx/dB
2 vs 1/B. The vertical dashed lines mark the positions

of the maxima and minima of the quantum oscillations. Lower right inset: Landau
level fan diagram with linear extrapolation (dashed line) to 1/B = 0.

4.1.4 Berry Phase

Further evidence of the origin of SdH oscillation from the topological surface

states can be provided from the value of the Berry phase β. It can be evaluated

from Landau level fan diagram [5]. Here the integer n, denoting the nth Landau

level, is plotted as a function of the position of maxima and minima of the quantum

oscillations, 1/Bmax and 1/Bmin. The value of n0, obtained by a linear extrapolation

of 1/B → 0, defines the value of the Berry phase in units of 2π. n0 = 0.5 (β = π) is

expected for Dirac particles. As pointed out by Ando [5], however, using resistivity

ρxx data can lead to a deviation from the true value of β, and conductivity (σxx)

data should be evaluated instead.
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We have evaluated the conductivity using the formula σxx = ρxx/(ρ
2
xx + ρ2

xy)

from ρxx and ρxy measured at 2 K. Figure [4.5] shows the conductivity as a function

of 1/B. The quantum oscillations are not visible in σxx and its first derivative. How-

ever, the oscillations are clear in its second derivative as shown in upper inset to Fig.

[4.5]. Assigning integer values to the positions of minima and half integer values to

the maxima in d2σxx/dB
2 vs 1/B graph, we have plotted a Landau level fan diagram

in the lower inset to Fig. [4.5]. The positions of the extrema of d2σxx/dB
2 are in

perfect agreement with the extrema of ∆Rxx shown in Fig. [4.4 (a)]. The values

from ∆Rxx are included as blue triangles and green diamonds in the Landau level

fan diagram of Fig. [4.5]. The linear extrapolation 1/B → 0 in the Landau level fan

diagram yields n0 = 0.45 ± 0.04, consistent with the Dirac nature of the particles,

and a slope of F = 23.3 T, in good agreement with the characteristic frequency of

the SdH oscillations determined from Fig. [4.4 (b)].

4.1.5 Lifshitz Kosevich Theory

The characteristic angle dependence of quantum oscillations and the value of

Berry phase show that the SdH oscillations in the transport data are predominantly

caused by the topological surface states of Bi2Se2.1Te0.9. Therefore, it is quite in-

teresting to know the physics of why there is a small interference from the bulk

conduction channel in p-type metallic topological insulators. For that, we have cal-

culated many physical parameters characterizing the quantum oscillations by using

the Lifshitz Kosevich (LK) theory. The frequency of oscillations, F = 23.3 T, corre-

sponds to a Fermi momentum kF = 2.7×106 cm−1 according to the Onsager relation
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Figure 4.6: Temperature dependence of the amplitude of the SdH oscillation (∆Rxx)
at 4.6 T. The red line represents the fit to the equation for RT . Lower left inset: ∆E
vs B. Upper right inset: Dingle plot used to determine the Dingle temperature TD
and the carrier lifetime τ .
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F = 1/(2e)k2
F . For a circular Fermi surface, this value of kF results in a surface car-

rier density of n2D = k2
F/4π = 5.8 × 1011 cm−2. The value of kF is slightly smaller

than those obtained in other topological insulators with electron as well as hole car-

riers at the surface [14][42][43][39], indicating the closer proximity of the Fermi level

to the Dirac point in our sample.

According to the LK theory, the temperature dependence of the amplitude

of the SdH oscillation is given by ∆RT = e−λDλ(T/B)/sinh[λ(T/B)], where λD

is defined below, λ(T/B) = [2π2kBT/(∆EN(B))] and the Landau level spacing

∆EN(B) = h̄eB/mcyc. ∆EN(B) can be determined for different magnetic field

values from ∆Rxx(T ), as shown in Fig. [4.6] for B = 4.6 T. The lower left inset in

Fig. [4.6] displays the linear dependence of EN on B. From the slope, the cyclotron

mass is determined as mcyc = 0.08m0, with m0 the bare electron mass. With the

linear dispersion relation for Dirac fermions, vF = h̄kF/mcyc, the Fermi velocity of

the surface carriers is obtained as vF = 3.9 ×107 cm/s.

Another factor in the LK theory is the Dingle factor e−λD(λD = 2π2kBTD/h̄ωc),

where ωc is the cyclotron frequency, which accounts for the life time τ of the surface

carriers through the Dingle temperature, TD = h̄/(2πkBτ). TD is determined, follow-

ing the standard Dingle analysis, from the slope of the semilogarithmic plot shown

in the upper right hand inset of Fig. [4.6]. With the estimated value TD = 12 K,

the surface carrier lifetime is τ = 1.0 × 10−13 s, corresponding to a mean free path

of l2D= vF τ = 39 nm and a surface carrier mobility of µ2D = (el2D)/(h̄kF ) = 2200

cm2/(V S). These values are comparable with other topological systems [44][45].
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4.1.6 Discussion

From the angle dependence of the quantum oscillations and the Berry phase

calculations, we have proved the existence of topological surface states in Bi2Se2.1Te0.9

despite the metallic conductivity from bulk carriers, which deserves a more detailed

discussion. The relatively small value of kF indicates that the Fermi energy in our

sample is lower than in other Bi-Se-Te based compounds. The estimated Fermi

energy EF = 69 meV is significantly closer to the Dirac point than EF values found,

for example, in Bi2Te3 [14], Bi2Te2Se [43], or in Sb-doped Bi2Se3 [42]. With this low

value, EF cuts through the maxima of the valence band in the band structure, as

sketched in Fig. [4.7]. It is important to note that the valence band has two maxima

at a finite momentum whereas the conduction band shows its minimum at k = 0 [14]

[43].

The question arises as to why the bulk states do not produce SdH oscillations

within the field range of the current experiment. The peculiar shape of the valence

band with the Fermi energy cutting through the two maxima as well as the Dirac

cone requires a larger Fermi momentum kbulkF and a larger area of the Fermi surface to

observe bulk SdH oscillations. The corresponding oscillation frequency F = (h̄/2e)k2
F

will be significantly higher. The magnetic field needed for the nth Landau level of

the bulk carriers to cross the Fermi energy and to impact the conductivity is now

much larger, dictated by the condition F/Bn − β = n− 1. Therefore, the quantum

oscillations of bulk carriers for low n are shifted to higher fields, beyond the range of

the current measurements. Only bulk oscillations at larger Landau level indices could

be observed at smaller fields, however, these oscillations are naturally attenuated,
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Figure 4.7: Schematic of the band structure of Bi2Se2.1Te0.9. The Fermi energy is
low enough to cut through the maxima of the valence band, resulting in bulk holelike
transport properties.
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according to the LK theory. This explains why in the present data (Figs. 4.2 - 4.4)

the topological surface states dominate the oscillations of the electrical transport

properties. The observations discussed above open additional possibilities to study

topological effects in Bi-Te-Se type compounds when the Fermi energy is close to or

even cutting through the valence band.

It should be noted that the above discussion only applies if the Fermi energy

is low and close to the Dirac point and the valence band. For higher EF , cutting

through the bottom of the conduction band, the above argument is not valid. Since

the conduction band has its minimum at k = 0, the related Fermi momentum of

the bulk carriers is of the same magnitude as that of the Dirac states. In this case,

the bulk transport is electronlike (metallic) and the SdH oscillations from bulk and

surface states will be equally present in the whole range of magnetic fields. The

quantum oscillations from bulk states are frequently dominating [14].

4.2 Extending Magnetic Field Range

In the previous section, we have argued that the observation of a second frequency

F2 is possibly due to interference from the bulk states. However, as the frequency F2

is almost twice the value of the first frequency F1, it could also be interpreted as the

second harmonic of F1. In order to resolve the origin of the F2, we extended the range

of the magnetic fields to 13 Tesla. We have selected another fresh single crystal of

Bi2Se2.1Te0.9 from the same batch and sputtered six gold contacts for resistivity and

Hall measurements. From the preliminary characterization of the sample up to 7 T
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Figure 4.8: Comparison of quantum oscillations measured in PPMS (Quantum De-
sign) and those measured in an Oxford cryostat. The range of magnetic fields are 7
and 13 Tesla in PPMS and Oxford cryostat, respectively.

in the PPMS, the sample is found to be metallic and p-type, similar to the previous

sample [46]. The bulk carrier density is found to be N = 7×1017 cm−3 from the Hall

measurements. Also, the existence of surface states is confirmed from both the angle

dependence of quantum oscillations and Berry phase calculation. Figure [4.8] shows

the comparison of quantum oscillations measured in PPMS and Oxford cryostat

at 5 K. With the increase of magnetic field to 13 T, more quantum oscillations are

observed. However, there is a slight mismatch in the positions of quantum oscillations

measured in Oxford cryostat compared to those measured in PPMS. This may be

caused by the sweeping drive mode of magnet that cause the loss of the precision

of the measurements. There appears to be a possible interference of the second

frequency at higher fields. This can be observed clearly in FFT spectrum as shown

in Fig. [4.9]. The position of the first frequency F1 does not change, however, the
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Figure 4.9: Fourier transform of quantum oscillations shown in Fig. [4.8].

second frequency F2 becomes more prominent upon an increase in magnetic field.

This result is consistent with our previous theoretical argument [46].

The amplitude of F2 is found to be weaker at higher angle of rotation of the sample

with respect to magnetic field direction. That is why we could not study the angle

dependence of F2 to investigate its possible origin. Hence we have extended the

measurements even further, to 35 T in National High Magnetic Field Laboratory,

Tallahassee, FL.

4.3 Measurements in National High Field Lab

In this work, another freshly cleaved piece of p-type metallic Bi2Se2.1Te0.9 single

crystal was selected and used for magnetoresistance measurements in the magnetic
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Figure 4.10: Shubnikov-de Haas oscillation of the transverse magnetoresistance of
Bi2Se2.1Te0.9. The oscillatory part ∆Rxy is plotted versus the inverse field.

field range up to 35 Tesla. The sample was metallic and carrier density was found

to be 1.3 ×1018 cm−3 from the Hall measurement. This bulk carrier density is

reasonable agreement to the previous single crystal of similar comosition [46]. We

have found that SdH oscillations from bulk carriers dominate at higher magnetic

field but are attenuated at lower fields. This allows us to separate bulk and surface

states, determine the relevant parameters, and explain the interference and possible

separation of surface and bulk quantum oscillations.
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4.3.1 Shubnikov-de Haas Oscillations

Figure [4.10] shows the SdH oscillations of Rxy obtained after substracting the

smooth polynomial background. The measurements were conducted with the mag-

netic field perpendicular to the large face of the crystal (a ⊥ b plane in the hexagonal

system). The quantum oscillations originate from the quantization of Landau levels

in strong magnetic field and are periodic in 1/B. However, it is obvious from Fig.

[4.10] that the data cannot be described by an oscillation with one single frequency

only, but rather by a superposition of different frequencies. This is confirmed by

analyzing the Fourier transform of the data shown in Fig. [4.10].

Two frequencies, F1 ≈ 26 Tesla and F2 ≈ 55 Tesla, dominate the oscillat-

ing behavior of Rxy. Since F2 is nearly twice F1, both frequencies could be the

first and second harmonic of the same oscillation, as observed in other compounds

[39][40][47][48]. However, the relative weight of the oscillations with F1 and F2

strongly depends on the magnetic field range, which rules out the possibility of

F2 being simply the second harmonic of F1. The SdH oscillation with the lower

frequency F1 dominates in the low-field range whereas the higher frequency F2 is

stronger at higher magnetic fields. This is demonstrated in Fig. [4.11], where the

Fourier transform of the data is shown in Fig. [4.10] for various field ranges with the

cutoff fields indicated in the figures. In the low-field range, B < 5 Tesla, the FFT

transform exhibits only one peak at frequency F1 [Fig. 4.11(a)]. This is similar to

and consistent with the earlier work that was limited to magnetic fields below 7 Tesla

[46]. With increasing magnetic field, a second peak at F2 develops [Fig. 4.11(b)] and

for fields up to 15 tesla both peaks have about the same amplitude [Fig. 4.11(c)].
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Figure 4.11: Fourier transform of ∆Rxy in different field ranges. The cutoff field
is indicated in the graphs. The SdH oscillations with frequencies F1 and F2 are
dominant at low and high magnetic fields, respectively.

With further increasing field, the F2 peak becomes dominant [Fig. 4.11(d)]. The

development of the two peaks shown in Fig. [4.11] prove that F1 and F2 characterize

SdH oscillations of different origin. In our previous communication, we have shown

that the low-frequency oscillation (F1) arises from topological surface states, but

the origin of the second frequency observed at higher fields is not clear. It appears

conceivable to attribute the F2 frequency to bulk SdH oscillations, as conjectured
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Figure 4.12: Fourier transform of ∆Rxy in the high-field range, between 10 and 35
Tesla. Only one peak is observed at frequencyF2.

earlier [46]. To study the properties of the F2 oscillation it has to be resolved sepa-

rately, without the interference from the surface state oscillations (F1). This can be

achieved by analyzing the high-field data above 10 Tesla. Figure [4.12] shows that

the FFT transform of the data above 10 Tesla exhibits only one pronounced peak at

frequency F2, i.e. the contribution from surface oscillations is largely eliminated.

4.3.2 Angle Dependence of SdH Oscillations

SdH oscillations from bulk and surface states can be distinguished by measuring

the dependence on the angle with respect to the magnetic field direction. Surface

oscillations of ∆Rxy or ∆Rxx are expected to be periodic if plotted as function of the

inverse normal component, 1/B⊥, of the field with respect to the surface. If the field
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Figure 4.13: Angle dependence of the SdH oscillation frequencies F1 (a) and F2 (b).
Only F1 follows the 1/cos(θ) scaling for surface conduction (dashed line).

angle θ to the normal of the surface changes, the position of the oscillation frequency

follows a 1/cosθ scaling, due to the strictly two-dimensional character of the surface

conduction [48]. For bulk conduction, however, the SdH frequency will not follow the

1/cosθ scaling, but it may still show a minor angle dependence if the Fermi surface

geometry is anisotropic [43].

The angle dependent measurements have been conducted over the whole field

range up to 35 Tesla and angles between 0o and 70o. As shown in Fig. [4.13], the

frequency F1 scales well with 1/cosθ (dashed line in Fig. [4.13]) indicating that this

conduction channel is two-dimensional. The F2 oscillation, however, changes only
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very little with the angle θ and is therefore attributed to the bulk conduction channel.

It should be noted that there is a small shoulder in the Fourier transform spectrum

near 100 Tesla visible in Figs. [4.11(d)] and [4.12]. This shoulder develops into a peak

with frequency F3 ≈ 90 to 100 Tesla with increasing angle θ. This additional peak

is attributed to another section of the bulk Fermi surface which contributes to the

SdH oscillations only at higher angles θ. Since the value of F3 is nearly independent

of the angle θ, it cannot arise from surface states.

4.3.3 Berry Phase

The angle dependent transport data discussed so far lead to the conclusion that

SdH oscillations from bulk and topological surface states can be measured simulta-

neously and resolved separately in different magnetic field ranges. The conclusion is

further supported by an analysis of the Berry phase which distinguishes the nature of

the charge carriers. The charge carriers of the topologically nontrivial surface states

with a Dirac dispersion are expected to have a Berry phase β = 1/2, in contrast to

the bulk carriers with a Berry phase of zero. β can be determined from the Landau

level fan diagram [5].

It has been shown that the SdH oscillations of the conductivity ∆σ, in con-

trast to oscillations of the resistivity ∆ρ, provides a more accurate determination of

the Berry phase [5]. To determine the nature of the charge carriers in the high-field

range (with oscillation frequency F2), we have to evaluate the SdH oscillations at

sufficiently high fields, cutting off the low-field data, to eliminate any interference
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from the surface oscillations. It will be shown below, that the crossover from surface

(F1) to dominantly bulk (F2) oscillations takes place at Bc ≈ 14 Tesla. Therefore, we

evaluate the bulk SdH oscillations in the field range between 15 and 35 Tesla using

the the Hall conductivity σxy = ρxy/(ρ
2
xx + ρ2

xy) to construct the Landau level fan

diagram. The oscillating part of σxy at 5 K is plotted as function of the inverse field

1/B in Fig. [4.14]. The vertical dashed lines indicate the extrema above the cutoff

field of 15 Tesla. It was shown that the minima and maxima of the field derivative of

σxy correspond to the integer and half-integer numbers of n, respectively, whereas the

extrema of σxy are shifted by ∆n = 1/4 [14]. The Landau level fan diagram, shown

in the inset of Fig. [4.14], includes data from both, σxy and its field derivative. The

plot n vs. 1/Bn reveals a linear relation given by F/Bn - β = n - 1 and the value n

obtained from the extrapolation 1/Bn → 0 is very close to 1. Accordingly, the linear

fit determines the Berry phase as β = 0.03 ± 0.08. This value is consistent with

the bulk nature of the charge carriers which give rise to the SdH oscillations in the

high-field range, in agreement with the weak angle dependence (Fig. [4.13(b)]). For

comparison, the Berry phase of the surface carriers is determined from the lowfield

data, B < 7 Tesla. In this field range, the SdH oscillations are pronounced in the

second derivative of σxx with respect to the inverse field 1/B (see Fig. [4.15]). Here

the maxima are assigned to integer values of the Landau level index n, as labeled in

Fig. [4.15]. The linear extrapolation of the fan diagram (inset to Fig. [4.15]) to 1/B

→ 0 reveals a value of n0 = 0.45 corresponding to a Berry phase of β = 0.55 ± 0.06.

This value is in very good agreement with the earlier data for a similar crystal of

Bi2Se2.1Te0.9 [46]. The value of β close to 0.5 proves Dirac nature of the topological
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Figure 4.14: SdH oscillation of the conductivity ∆σxy vs. B−1 in the high-field range
at T = 5 K. The positions of maxima and minima are indicated by vertical dashed
lines. The inset shows the Landau level fan diagram. The linear extrapolation 1/Bn

→0 determines the Berry phase β. Bold (black) squares and circles are the positions
of the ∆σxy minima and maxima, respectively. Open (red) symbols are derived from
the extrema of the field derivative of ∆σxy.
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Figure 4.15: SdH oscillations of the second derivative of the conductivity
d2σxx/d(1/B)2 vs. B−1 in the low-field range (B < 7 Tesla). The maxima cor-
respond to integer value of n, as labeled. The inset shows the Landau level fan
diagram. The linear extrapolation 1/Bn → 0 (dashed line) determines the Berry
phase β = 0.55.

surface carriers.

4.3.4 Lifshitz-Kosevich Analysis

The separation of SdH oscillations due to the topological surface in low magnetic

field from the trivial bulk states in a metallic topological insulator is interesting and

it needs a careful analysis. In order to have a better understanding, the microscopic

parameters defining the quantum oscillations have to be determined. This can be

achieved through the Lifshitz-Kosevich (LK) analysis of the SdH oscillations of ∆Rxx
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measured at different temperatures. According to the LK theory, the amplitude of

the SdH oscillation of ∆Rxx is expressed as function of temperature and magnetic

field: [14][5].

∆R(T,B) = ∆R0e
−λD(B) λ(T/B)

sinh[λ(T/B)]
(4.1)

with

λD(B) =
2π2kB
h̄e

mcyc
TD
B

(4.2)

λ(T/B) =
2π2kB
h̄e

mcyc
T

B
(4.3)

The first term in Eq. [4.1], ∆R0, is the amplitude of the oscillation in the high-

field limit 1/B →0. The next term is the Dingle factor representing the exponential

decrease of ∆R with decreasing field B. The last term describes the attenuation of

∆R with increasing temperature T , mcyc is the cyclotron mass of the charge carriers

and TD is the Dingle temperature which is related to the inverse life time of the

carriers.

There are only three fit parameters in Eqs. [4.1] to [4.3], ∆R0, mcyc, and TD, which

can be determined for a specific oscillation by analyzing the field and temperature

dependencies of ∆R(T,B). Figure [4.16 (a))] shows the SdH oscillations of ∆Rxx in

the high field range at different temperatures. The temperature dependence of ∆R is

solely determined by the λ/sinhλ term in Eq. [4.1]. The fitting of this expression to

the data at different constant magnetic fields, e.g. at 25 Tesla as shown in Fig. [4.17],

allows for the determination of the Landau level spacing ∆EN(B) = h̄eB/mcyc and

the cyclotron mass mcyc from the slope of the plot ∆E vs. B in Fig. [4.17], lower
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Figure 4.16: SdH oscillation of ∆Rxx vs. B−1 in the high-field range at different
temperatures between 2 K and 15 K. (a) In high field range 12 T to 35 T (b) In low
field range 3 T to 7 T.
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Figure 4.17: LK analysis of the high-field SdH oscillation with frequency F2. Main
panel: Temperature dependence of the amplitude ∆Rxx at 25 Tesla. The line is a
fit to the LK formula (4.1). The lower inset shows the Landau level spacing ∆E as
function of magnetic field B. The cyclotron mass mcyc = 0.34mo is determined from
the slope of ∆E(B). The upper inset is the semi-logarithmic Dingle plot from which
the Dingle temperature TD = 8.5 K is obtained.
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Figure 4.18: LK analysis of the low-field SdH oscillation with frequency F1. Main
panel: Temperature dependence of the amplitude ∆Rxx at 5.85 Tesla. The line is a
fit to the LK formula (4.1). The lower inset shows the Landau level spacing, ∆E,
as a function of magnetic field B. The cyclotron mass mcyc= 0.13 mo is determined
from the slope of ∆E (B). The upper inset is the semi-logarithmic Dingle plot from
which the Dingle temperature TD = 6.6 K is obtained.

inset. For the high-field (bulk) oscillations we obtain mcyc = 0.34mo (mo is the bare

electron mass).

The Dingle temperature can be determined from the semi-logarithmic plot shown

in the upper inset of Fig. [4.17] for three different temperatures. The dashed lines

are a linear fit to the data and TD = 6.6 K is calculated from the slopes. With

the parameters mcyc and TD fixed, the oscillation amplitude can be estimated from

the data of Fig. [4.16] as ∆R0 = 5.04 mΩ. The three parameters completely define

the bulk SdH oscillation amplitude as function of magnetic field and temperature,

dominating the quantum oscillations above 15 Tesla. In the low-field range, the SdH

oscillations are determined by the topological surface states. A similar evaluation
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Table 4.1: Comparison of the relevant parameters of bulk and surface SdH oscillations
of Bi2Se2.1Te0.9

∆ R0(mΩ) mcyc/mo TD (K)
Bulk 5.04 0.34 6.6

Surface 2.6 0.13 8.5

within the LK theory, restricted to below 10 Tesla, reveals the set of parameters for

the SdH oscillations arising from the surface conduction. For the current sample,

those parameters are ∆R0 = 2.6 mΩ, mcyc = 0.13 mo, and TD = 8.5 K.

The parameters for bulk and surface quantum oscillations are compared and

summarized in Table [4.1]. Note that the oscillation amplitude ∆R0 of the bulk

SdH oscillations is larger by a factor of 2 as compared to ∆R0 of the surface states,

explaining the domination of bulk oscillations at higher magnetic fields. However,

the cyclotron mass mcyc of the bulk oscillations is also significantly larger than that

of the surface conduction resulting in a faster exponential decay at lower fields and

higher temperatures. Although the Dingle temperature TD is slightly lower in the

bulk, the product of mcyc and TD, which determines the exponent λD in Eq. [4.1], is

still larger and the bulk oscillations decrease more rapidly upon decreasing magnetic

field. Therefore, the SdH oscillations are dominated by surface states in the low-field

range. As an example, we show in Fig. [4.19] the oscillation amplitudes for both,

surface (frequency F1) and bulk (frequency F2) transport, at 5 K calculated with

the parameters from Table [4.1]. It is obvious that, with increasing magnetic field,

there is a crossover from surface dominated to bulk dominated SdH oscillations. For

example, at 5.85 T (data shown in Fig. [4.18]) the ratio of surface and bulk oscillation
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Figure 4.19: Amplitudes of bulk and surface SdH oscillations as function of inverse
magnetic field at 5 K. The crossover point of 14 Tesla is indicated in the figure.
The curves have been calculated from the LK theory (Eq. [4.1]) with the physical
parameters listed in Table [4.1].

amplitudes is about 9, demonstrating the dominance of quantum oscillations from

topological surface states at this field. At 14 T, both oscillation amplitudes are equal

resulting in the strongest interference. Below and above this crossover field, surface

and bulk oscillations can well be separated, as shown in the frequency analysis above.
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4.3.5 Summary and Conclusions

Shubnikov-de Haas oscillations have been observed in metallic Bi2Se2.1Te0.9 with

hole type carriers in magnetic fields up to 35 T. Two characteristic oscillation fre-

quencies, F1 and F2, represent oscillations from surface and bulk states, respectively.

The character of the surface and bulk carriers is determined from the angle depen-

dence of the SdH oscillations and the derived Berry phase. It is demonstrated that

both oscillations can be separated whereas the topological surface states dominate

in the low-field range and the bulk oscillations increase in relative weight at higher

magnetic fields. The origin of this separation is found in the different cyclotron

masses (mbulk
cyc /msurf

cyc ≈ 3) which causes the bulk oscillations to decay (exponentially)

more rapidly if the magnetic field is decreased. The crossover from bulk to surface

dominated quantum oscillations upon decreasing field is found at a critical value of

Bc = 14 Tesla. The results of this study show that SdH oscillation from topological

surface states can be detected even when the Fermi energy cuts through the valence

band and the bulk transport properties are metallic. The key to separate surface and

bulk oscillations is the difference of the cyclotron mass mcyc which has a profound

effect on the oscillation amplitudes as a function of magnetic fields. According to

the Lifshitz-Kosevich theory, the oscillation amplitude decreases exponentially with

the inverse magnetic field and the exponent is determined by mcyc. In the current

example, Bi2Se2.1Te0.9, the field ranges where bulk and surface oscillations dominate,

are well separated and the analysis of the quantum oscillations can be conducted at

high and low fields revealing the fundamental parameters of bulk and surface oscil-

lations, respectively. Other topological systems with bulk metallic conduction are
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expected to show similar properties and may be analyzed following the procedure

outlined above.

4.4 Weak Antilocalization in Bi2Te3

We have performed magnetotranport study to examine the weak antilocalization

(WAL) effect in metallic Bi2Te3 single crystals. We have also calculated different

physical parameters characterizing the weak antilocalization. From the angle de-

pendence of WAL with respect to the magnetic field direction, we have shown the

dominance of topological surface states in the magentoconductance of Bi2Te3 single

crystals having low bulk carriers although the bulk states show a metallic behavior.

4.4.1 Experiment

We have selected 2 single crystals of freshly cleaved Bi2Te3 (HD1 and HD2) and

cut them almost in a rectangular shape. Six gold contacts were sputtered on the

a-b plane (hexagonal plane) as explained in method section. Platinum wires were

attached for standard resistivity and Hall measurements. The magnetotransport

measurements in low field up to 7 Tesla were carried out using ac-transport option of

the physical property measurement system (PPMS, Quantum Design). The sample

was mounted on the rotator platform and plugged into the PPMS horizontal rotator

probe. Similarly, high field magnetotransport measurements have been conducted

using a lock-in technique at the National High Magnetic Field Laboratory (NHMFL)
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in Tallahassee, FL. The sample was mounted on a rotating platform which allowed

for positioning the sample at different angles with the magnetic field. The platform,

mounted in a 3He cryostat (Oxford), was inserted into the 50 mm bore of a resistive

magnet with a maximum field of 31 Tesla. A Hall sensor was also attached on the

sample platform to determine the precise angle of rotation of the sample with respect

to the direction of magnetic field.

4.4.2 Resistivity and Hall Measurements

Figure [4.20] shows the temperature dependence of the longitudinal resistivity

for the HD1 and HD2 samples. Both samples show a metallic behaviour below the

room temperature. The resistivity of the HD1 sample is higher than the HD2 sample

over the whole temperature range. The inset in Fig. [4.20] (upper left) shows the

magnetic field dependence of the Hall resistance at 5 K. The positive slope of the Hall

resistance for both the HD1 and HD2 samples indicate the positive (hole) type of the

bulk carriers. The carrier concentration is inversely proportional to the slope of the

Hall resistance. The slope of the Hall resistance for the HD1 sample is higher than

that for the HD2 sample. This is consistent with the lower bulk carrier concentration

of the HD1 sample N(HD1) = 6 ×1017 cm−3 in compared to the HD2, N(HD2) = 3

×1018 cm−3.
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Figure 4.20: Temperature dependence of resistivity of Bi2Te3 samples (HD1 and
HD2) single crystals. The upper left inset shows Hall data at 5 K.
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Figure 4.21: Normalized magnetoresistiance of Bi2Te3 HD1 and HD2 single crystals
at various temperatures.
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4.4.3 Magnetoconductance Measurements in Bi2Te3 Single

Crystals

In order to understand the origin of the conductive channel in the HD1 and HD2

samples, we have performed magnetoresistance measurements with magnetic field

perpendicular to the sample surface. Figure [4.21 (a)] shows the normalized mag-

netoresistance, i.e. R(B)/R(0), of the HD1 sample at different temperature as a

function of magnetic field up to 7 T. A sharp resistance dip is clearly observed at

T=2 K, indicating the presence of a WAL effect in the HD1 sample [32]. With an

increase in temperature, the cusp like feature at low B is broadened and finally turns

into parabolic feature (curve at 70 K in Fig. [4.21 (a)]) due to the decrease of the

phase coherence length at higher temperature [49]. This observation is consistent

with the previous reports in Bi-Se-Te topological insulators [50][38].

Similar magnetoresistance measurements were carried out in the HD2 sample in mag-

netic field up to 7 T. The temperature dependent magnetoresistance curves of the

HD2 sample is shown in Fig. [4.21 (b)]. There also exists a cusp like feature in the

magnetoresistance curve at low temperature, T = 2 K. This indicates the existence

of a WAL in the HD2 sample as well. However, the sharpness of cusp like feature in

the HD2 sample is smaller than in the HD1 sample. This gives a hint to a partial

3D contribution of the bulk spin-orbit coupling [38].

As a quantum correction to classical conductivity, a WAL can be originated

either from the strong spin-orbit coupling in the bulk states or in the topological

surface states. In order to clarify the origin of the WAL, we have performed the

angle dependent magnetoresistance measurements at high magnetic field up to 31
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Figure 4.22: Magnetoconductance curves of the HD1 sample measured at 0.4 K.
(a) The angle dependent magnetoconductance curves at different angle of rotation
of sample. (b) The magnetoconductance curves plotted against the perpendicular
component, Bsinθ of the magnetic field.

T in national high magnetic field laboratory, Florida. Figure [4.22 (a)] shows the

magnetoconductance, defined as σ(B, θ) = R(0)/R(B, θ), measured along different

angle of rotation θ at 0.4 K. The angle, θ is defined as the angle between the direc-

tion of magnetic field (B) and the current (I). The magnetoconductance strongly

depends on the tilt angle of the applied field B. If the WAL is originated due to spin-

orbit interaction in the topological surface states, the magnetoconductance should
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Figure 4.23: Magnetoconductance curves of the HD2 sample measured at 0.4 K.
(a) The angle dependent magnetoconductance curves at different angle of rotation
of sample. (b) The magnetoconductance curves plotted against the perpendicular
component, Bsinθ of the magnetic field.

depend only on the normal component of magnetic field [34][51]. All the magneto-

conductance curves at low magnetic field merged together when they are plotted as a

function of the normal component Bsinθ, as shown in Fig. [4.22 (b)]. This indicates

that the observed WAL arises from 2D topological surface states in the HD1 sample.

We have also carried out the similar angle dependent magnetoconductance

experiments on the HD2 sample. Figure [4.23 (a)] shows the magnetoconductance

as a function of the angle θ at 0.4 K for the HD2 sample. Because of the large scale
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Figure 4.24: Magnetoconductance curves of the HD2 sample measured at 5 K. (a)
The angle dependent magnetoconductance curves at different angle of rotation of
sample. (b) The magnetoconductance curves plotted against the perpendicular com-
ponent, Bsinθ of the magnetic field.

of the figure, it is hard to judge whether the magnetoconductance curves scale with

B or Bsinθ. In order to investigate it further, we have performed low field mag-

netotransport measurments in PPMS (Quantum Design). The persistent magnetic

field and stable temperature control, as opposed to the sweeping magnetic field at

the high magnet lab, allow us to carry out precise measurements in PPMS. Figure

[4.24] shows the magnetoconductance curves of the HD2 sample in low field range

(7 Tesla) at 5 K. Within 2 Tesla field range, the magnetoconductance curves weakly
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depend on the angle of rotation θ. This behavior is similar to the case where a WAL

is caused mainly by the spin-orbit coupling in a 3D bulk channel. If the WAL is

caused mainly by the spin-orbit coupling in a 3D bulk channel, the magnetoconduc-

tivity is independent of the tilt angles of the magnetic field. Except lower angles,

the magnetoconductance curves scale very well with the magnetic field B as shown

in Fig. [4.24(a)], suggesting the bulk states origin. The bulk origin of the WAL in

the HD2 sample is further verified from the spreading of the magnetoconductance

curves plotted as a function of the normal components Bsinθ, as shown in Fig. [4.23

(b)].

The results discussed above show that although the WAL effects are observed

both in the HD1 and HD2 samples, they have originated from different electronic

states. The dominance of topological surface states in the magnetoconductance in

the HD1 sample as compared to the HD2 sample is interesting and need more care-

ful analysis. Both the HD1 and HD2 samples show a metallic behavior and have

p-type bulk charge carriers. The only difference is that the HD1 sample has lower

carrier concentration than the HD2 sample. This gives a hint that the carrier density

might be playing a role for the dominance of surface states in WAL effect of the HD1

sample. In order to understand this further, we have chosen another n-type single

crystal, HD3, having lower bulk charge carriers. The n-type nature of the bulk carri-

ers in the HD3 sample also allows us to investigate whether the nature of the charge

carriers (p or n-types) plays a role in the observation of the WAL due to topological

surface states or not.

The temperature dependence of the resistivity of the HD3 sample is shown
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Figure 4.25: Temperature dependence of resistivity of Bi2Te3 HD3 single crystal.
The upper left inset shows Hall data at 5 K.
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Figure 4.26: Magnetoconductance curves of the HD3 sample measured at 5 K. (a)
The angle dependence magnetoconductance curves at different angle of rotation of
sample. (b) The magnetoconductance curves plotted against the perpendicular com-
ponent, Bsinθ of the magnetic field.

in Fig. [4.25]. The resistivity shows the metallic behavior below room temperature.

Around 150 K, there is a slight upturn of the resistivity, however, the resistance de-

creases further lowering the temperature. The negative slope of the Hall resistance

reveals that the charge carriers are negative (electron), as shown in the inset of Fig.

[4.25]. The bulk carrier density at 5 K is estimated to be N = 1×1018 cm−3 from

the Hall measurement. Figure [4.26 (a)] shows the magnetoconductance of the HD3

sample along different angle of rotation at 0.4 K. The magnetoconductance decreases
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with an increase in magnetic field. A cusp like feature at low magnetic field shows

the existence of the WAL effect also in the HD3 sample. The WAL curve depends

on the tilt angle of rotation θ, showing the possible dominace of surface states con-

duction channels as in the HD1 sample. The scaling of all WAL curves, as shown in

Fig. [4.26 (b)] with the normal component, Bsinθ shows that the WAL in the HD3

sample is originated from topological surface states.

4.4.4 Hikami-Larkin-Nagaoka Model

To gain a deeper understanding of the WAL phenomena in the HD1, HD2 and

HD3 samples, a more quantitative analysis is necessary. The quantum correction

of magnetoconductivity in the 2D system can be described using Hikami-Larkin-

Nagaoka (HLN) formula [37]. Under the assumption that the inelastic scattering

time is much longer than both the elastic and spin-orbit scattering times,

σ = −A

[
Ψ

(
1

2
+

h̄

4el2φB

)
− ln

(
h̄

4el2φ

)]
(4.4)

where Ψ is the digamma function, lφ is the phase coherence length, and the param-

eter A = α e2

2π2h̄
, for which α=1/2 per conduction channel. Using Eq. [4.4] to the

experimental data, the fitting parameters lφ and A can be obtained.

Figure [4.27] shows the HLN fitting of the magnetoconductivity data of the HD1

sample at 2 K in low field range 1 T. It is clear that the data can be fitted well using

the 2D HLN model. Similarly, HLN fittings were also carried out in the HD2 and

HD3 samples and calculated the parameters A and lφ. The fitting parameter lφ(T)

represents the coherence length, i.e the distance traveled by an electron before its
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Figure 4.27: Magnetoconductance WAL curve of the HD1 sample (skyblue dot) and
HLN fit (solid red).

Figure 4.28: Magnetoconductance WAL curve of the HD2 sample (green dot) and
HLN fit (solid red).
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Figure 4.29: Magnetoconductance WAL curve of the HD3 sample (gray dot) and
HLN fit (solid red).

phase is changed. The parameter A = α e2

2π2h̄
, determines the number of conduction

channels present in a sample [49]. The temperature dependence of the coherence

length lφ for the HD1, HD2 and HD3 samples are shown in Fig. [4.30 (a)]. According

to WAL of TIs , both the electron-electron (e-e) scattering and electron-phonon (e-

ph) scattering are supposed to emerge in the 3D TIs [52][49]. Therefore, the lφ as a

function of temperature may be expressed as:

1

l2φ(T )
=

1

l2φ(0)
+ AeeT

p1 + AepT
p2 . (4.5)

where, lφ(0) represents the zero-temperature coherence length, AeeT
p1 and AepT

p2

represent the contribution from the e-e and e-ph interaction, respectively. The co-

herence length lφ (T ) can be well described by Eq. [4.5] with p1 = 1 and p2 = 2 with

lφ = 59 nm, 26 nm, and 78 nm for the HD1, HD2, and HD3 samples, respectively,
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Table 4.2: Comparison of the fitting parameters to Eq. [4.5] of HD1, HD2 and HD3
samples at 2 K

lφ (0) (nm) Aee (nm−2) Aep(nm−2)
HD1 59 -5.13 ×10−6 3.25 ×10−7

HD2 26 -6.17 ×10−6 8.83 ×10−7

HD3 78 3.75 ×10−6 3.88 ×10−7

as shown in Fig. [4.30]. The larger values of lφ(0) for the HD1 and HD3 samples

provide a further evidence of the dominance of topological surface states in their

magnetoconductivities. However, the lower value of lφ(0) in the HD2 sample tells

that there is a significant bulk states contribution. Figure [4.30 (b)] shows

the parameter A as a function of temperature. Almost constant values of A over

a temperature range shows the existence of a constant number of conduction chan-

nels in the crystals [49]. Theoretical value of A is of the order of 10−6 in case of

2D systems showing WAL effect. However, A values obtained for all of our samples

are less than 1, i.e., nearly 106 larger than the theoretical value. This difference is

mainly caused by the significant contribution from the bulk conduction channels, as

seen in other topological systems [53][49]. At a given temperature, the A values are

almost equal for the HD1 and HD3 samples, but almost half as the A value of the

HD2 sample. This tells that there exists a small number of conduction channels in

the HD1 and HD3 samples as compared to the HD2 sample. The lower number of

conduction channels further supports the dominance of the 2D conduction channels

in the HD1 and HD3 samples.
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Figure 4.30: (a) Comparison of the temperature dependence of phase coherence
lengths lφ deduced from the WAL fit under a field limit of 1 T (solid circle). The
red line shows the fit according to Eq. [4.5] with p1=1 and p2=2. (b) Temperature
dependence of the parameter A in Eq. [4.4].

4.4.5 Summary and Conclusions

We have observed the weak antilocalization effect in the magnetoconductance

measurements of Bi2Te3 single crystals in magnetic fields up to 31 T. The HD1 (p-

type) and HD3 (n-type) samples have relatively smaller bulk carrier densities than

the HD2 (p-type) sample. The angle dependence of the WAL with respect to the

magnetic field direction showed the dominance of topological surface states in the

samples having lower carrier concentrations, the HD1 and HD3 samples. The exis-

tence of surface states in both HD1 (p-type) and HD3 (n-type) samples shows the

WAL due to topological surface states depends only the number of the bulk carriers,

not on the nature of the charge carrries. The HLN formula is used to calculate differ-

ent physical quantities that characterize the observed WAL effect. The temperature
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dependence of the coherence length of the HD1, HD2 and HD3 samples can be well

described with the electron-electron and electron-phonon scattering model. For the

HD1 and HD3 samples, the coherence length lφ values are relatively larger and have

smaller number of conduction channels as compared to the HD2 sample. The larger

coherence length and smaller number of conduction channels further support the

existence of topological surface states in the magnetoconductivity of the HD1 and

HD3 samples.

4.5 Sb2Te2Se Topological Insulator

After the discovery of topological surface states in the bismuth based binary

compounds like Bi2Se3, Bi2Te3, Sb2Se3, etc. [54][55], people have extended their

research to the tetradymite-like compounds such as Bi2Se2Te, Bi2Te2Se, Bi2Se3Te

etc [56][57]. Recently, first principles calculations have been carried out on Sb2Te2Se

and has been reported the existence of a Dirac cone [56]. ARPES measurements

have confirmed the existence of a single Dirac cone in this compound [58]. The

magnetotransport measurements carried out by Wang et al [59] reported only the

existence of a quasi-two dimensional Fermi surface based on the angle dependence of

the frequency. However, the angle dependence of the quantum oscillations and the

Berry phase determine whether the quantum oscillations originate from surface or

bulk states. Here, we have shown the existence of topological surface states from both

the angle dependence of the quantum oscillations and the Berry phase calculations.
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4.5.1 Experiment

We have selected a freshly cleaved single crystal of Sb2Te2Se and cut into a

rectangular shape. Six gold contacts were sputtered as explained in the method

section for a standard longitudinal and Hall resistance measurements. Six platinum

wires were used to make electrical contact for the measurements. The sample was

mounted in the rotating platform of the standard probe designed in the National

High Magnetic Field Laboratory, Tallahassee, FL.

4.5.2 Resistivity, Hall, and Seebeck Coefficient Measurements

Figure [4.31] shows the temperature-dependence of the resistivity for a Sb2Te2Se

single crystal. The sample exhibits the metallic behavior below room temperature.

A Hall measurement was carried out to determine the nature of the bulk charge

carriers and its concentration. From the positive slope of the Hall resistance (shown

in the upper left inset to Fig. [4.31]), the bulk carriers are p - type and its concen-

tration was estimated to be 3×1018cm−3 at 5 K. The lower right inset of Fig. [4.31]

shows the Seebeck coefficient as a function of temperature. The Seebeck coefficient is

positive above ≈ 150 K. But it decreases with decreasing temperature and becomes

negative below 100 K. With the further decrease of temperature, the Seebeck coef-

ficient becomes less negative and then positive below 10 K. The sign change of the

Seebeck coefficient with lowering the temperature hints that many factors contribute

to Seebeck coefficient of Sb2Te2Se sample. The positive Seebeck coefficient at 5 K is

consistent with the hole nature of the bulk carriers from the Hall measurement.
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Figure 4.31: Temperature-dependence of resistivity of the Sb2Te2Se single crystal.
The upper left inset shows Hall data at 5 K. The lower right inset displays the
temperature-dependence of the thermoelectric power.
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Figure 4.32: The magnetoresistance the Sb2Te2Se single crystal plotted as a function
of B at 0.4 K.

4.5.3 Shubnikov de Haas Oscillations

Figure [4.32] shows the magnetoresistance of the Sb2Te2Se at 0.4 K. The longitu-

dinal magnetoresistance (Rxx) is asymmetric in the positive and negative magnetic

field direction. This is due to the contribution of the transverse magnetoresistance

caused by the imperfect alignment of the Hall geometry. However, the antisymmetric

part of Rxx can be removed by taking the average of Rxx in the positive and negative
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fields, i.e., [Rxx(B)+Rxx(-B)]/2. The magnetic field was applied perpendicular to

the a-b plane of the single crystal. Due to the quantization of the electron density of

states into the Landau levels in a strong magnetic field, the magnetoresistance shows

SdH oscillations. The magnetoresistance of the Sb2Te2Se shows oscillations in the

field above 15 T as shown in Fig. [4.32]. The oscillations are clear and have a single

frequency. Figure [4.33] shows the quantum oscillations obtained after substract-

ing a smooth polynomial background at different temperatures. The amplitude of

quantum oscillation decrease with an increase in temperature. The oscillations are

periodic in 1/B and have a single frequency F = 215 Tesla in the frequency spectrum

as shown in Fig. [4.34]. The amplitude of frequencies also decreases with an increase

in temperature; however, the value of frequency does not change.

4.5.4 Angle Dependent Magnetoresistance Measurements

In order to investigate the origin of quantum oscillations observed here, we have

performed magnetoresistance measurements along different tilt angle of the sample

w.r.t. the applied magnetic field. The sample platform in magnetic field was rotated

by a stepper motor attached on the top of the probe as explained in the methods

section. Figure [4.35] shows the angle-dependence of SdH oscillations at different

angle (θ) of rotation with respect to the direction of the applied magnetic field

B. The maxima and minima positions change systematically with the tilt angle θ.

However, the maxima and minima positions align when the oscillations are plotted

as a function of the normal component Bcosθ as shown in Fig. [4.36]. This implies

that SdH oscillations seen here depend on the normal component of the magnetic
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Figure 4.33: The quantum oscillations of the Sb2Te2Se single crystal obtained after
substracting a smooth polynomial background.
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Figure 4.34: The frequency spectrum of the Sb2Te2Se single crystal obtained by
taking the fast Fourier transform of Fig. [4.33].
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Figure 4.35: The angle-dependence of Shubnikov de Haas oscillations of the Sb2Te2Se
single crystal plotted as a function of B.
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Figure 4.36: The angle-dependence of Shubnikov de Haas oscillations of the Sb2Te2Se
single crystal plotted as a function of the normal component Bcosθ.
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field. This is consistent with the surface states nature of the charge carriers [5].

The SdH oscillations can not be resolved above 40o angle of rotation of the sample.

This further supports the origin of the SdH oscillation is from the topological surface

states [14] [5].

4.5.5 Berry Phase

The origin of SdH oscillations can be determined by calculation of the Berry

phase (β). The Berry phase takes a value of β = 0.5 for surface state electrons (Dirac

electrons) and β = 0 for normal electrons. We have calculated the conductivity of

the Sb2Te2Se using the formula,

σxx = ρxx/(ρ
2
xx + ρ2

xy).

where ρxx and ρxy are the longitudinal and the Hall resistivities respectively. Figure

[4.37] shows the magnetoconductivity plotted as a function of 1/B at 0.4 K. The

quantum oscillation is clear and has a single-frequency. The existence of a well-

defined single-frequency allows us to calculate the Berry phase precisely. Let 1/Bmax

and 1/Bmin represent the position of maxima and minima of the quantum oscillation,

respectively. The positions of minima and maxima are assigned an integer and a half

integer values respectively to construct the LL fan diagram [5], shown in Fig. [4.38].

In the limit of 1/B → 0, the LL fan diagram allows to calculate the Berry phase.

The linear extrapolation 1/B → 0 in the Landau level fan diagram gives β = 0.43 ±

0.02. This value of β is very close to the theoretical value of 0.5 for the Dirac particle

(surface state electron). This further proves that the quatum oscillations are coming
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Figure 4.37: The magnetoconductivity of the Sb2Te2Se single crystal plotted as a
function of the inverse of the magnetic field B−1.
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Figure 4.38: The Landau level fan diagram of the Sb2Te2Se single crystal.

from the topological surface states.
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4.5.6 Lifshitz Kosevich Analyses

The characteristic angle dependence and the value of the Berry phase show that

the SdH oscillations in the transport data are predominantly caused by the topologi-

cal surface states in the Sb2Te2Se single crystal. We have used the Lifshitz Kosevich

(LK) theory to calculate the different physical parameters which characterize the

observed quantum oscillations. The frequency of oscillations, F = 215 T, corre-

sponds to a Fermi momentum kF = 8×106 cm−1 according to the Onsager relation

F = h̄/(2e)kF
2. The value of kF is almost 3 times larger than that obtained in our

study on the Bi2Se2.1Te0.9 topological insulator [46], indicating the higher position

of the Fermi level from the Dirac point in the Sb2Te2Se single crystal. For a circular

Fermi surface, this value of kF results in a surface carrier density of n2D = k2
F /4π

= 5.7×1012 cm−2.

The temperature dependence of quantum oscillations is described by the LK formula,

∆R(T,B) = ∆R0e
−λD(B) λ(T/B)

sinh[λ(T/B)]
(4.6)

with

λD(B) =
2π2kB
h̄e

mcyc
TD
B

(4.7)

λ(T/B) =
2π2kBT

∆EN(B)
(4.8)

The first term in Eq. [4.6], ∆R0, is the amplitude of the oscillation in the high-

field limit 1/B → 0. The next term is the Dingle factor representing the exponential

decrease of ∆R with decreasing field B. In the last term, ∆EN(B) = h̄eB/mcyc
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Figure 4.39: Temperature-dependence of the amplitude of the SdH oscillation (∆Rxx)
at B = 28.8 T. The red line represents the fit to the equation for ∆RT .

and it describes the attenuation of ∆Rxx with increasing temperature T , mcyc is

the cyclotron mass of the charge carriers and TD is the Dingle temperature which is

related to the inverse life time of the carriers. Figure [4.39] shows the temperature

dependence of the amplitude of the SdH oscillation of the Sb2Te2Se single crystal at

B = 28.8 T. The red line shows the LK fit to the data. The LK formula describes

the temperature-dependence of ∆Rxx very well. From the fitting to the LK formula,

we have calculated the magnetic field-dependence of the energy difference between

two consecutive Landau levels ∆EN(B) as shown in Fig. [4.40]. The spacing energy

∆EN(B) depends linearly on the applied magnetic field. From the slope of the linear

fit to the data, we have calculated the cyclotron mass mcyc = 0.1m0, where m0 is
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Figure 4.40: Magnetic field-dependence of the parameter ∆EN of the Sb2Te2Se single
crystal. The solid red line shows a linear fit to the data.

the rest mass of an electron. Using the linear dispersion relation for surface state

vF = h̄kF/mcyc, we have estimated the Fermi velocity vF = 6.7× 105 ms−1.

Following the standard Dingle temperature analysis, we have calculated the

Dingle temperature, TD, from the slope of the semilogarithmic plot, as shown in

Fig. [4.41], TD = 35 K. With the value of TD = 35 K, the surface carrier life time

τ = h̄/2πkBTD is estimated to be 3.5× 10−14 s. Similarly, other physical parameters

like the mean free path l = vF τ , mobility µ = eτ/mc and Fermi energy EF are

estimated to be 23 nm, 600 cm2/V s, and 250 meV respectively. These physical

parameters are comparable with the previous reports on other topological systems.
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Figure 4.41: Dingle plot used to determine the Dingle temperature TD and the carrier
lifetime τ of the Sb2Te2Se single crystal.

4.5.7 Discussion

From the angle dependence and the Berry phase calculations, we have proved the

existence of topological surface states in the Sb2Te2Se single crystal. It is interest-

ing to observe topological surface states in the metallic Sb2Te2Se with such a high

oscillation frequency. We have not observed any signature of a second frequency as

observed in our previous study of Bi2Se2.1Te0.9 [46]. The higher value of the Fermi

wave vector kF in the Sb2Te2Se implies the higher position of the Fermi energy w.r.t.

the Dirac point. Following similar argument as before [46], although the Fermi en-

ergy is higher in the Sb2Te2Se crystal, it still cuts the two valence band maxima in

the band structure. That is why it still shows a metallic behavior and has the p-type

bulk carriers. Due to the higher value of the bulk states Fermi wave vector, an even
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higher magnetic field strength is needed to observe quantum oscillations from the

bulk states as constrained by the relation F/Bn − β = (n − 1), where n represents

the Landau level. This explains qualitatively the dominance of topological surface

states in the Sb2Te2Se single crystal. The bulk states interference might be seen at

higher magnetic field, beyond the 31 T maximum magnetic field of this study. The

smaller value of the electron mean free path (l) in the Sb2Te2Se sample as compared

to that for the Bi2Se2.1Te0.9 sample implies the presence of more scattering centers in

the Sb2Te2Se sample. The more the scattering centers, the smaller the electron mo-

bility. This is consistent with the lower value of electron mobility (µ) in the Sb2Te2Se

than in the Bi2Se2.1Te0.9 sample.
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Chapter 5

Conclusion

In this dissertation, we have investigated the topological surface states in three

classes of metallic topological compounds; namely Bi2Se2.1Te0.9, Bi2Te3 and Sb2Te2Se.

Magnetotransport studies at high fields were carried out to see different physical phe-

nomena like Shubnikov de Haas oscillations and weak antilocalization. Bi2Se2.1Te0.9

is metallic and has p-type bulk carriers. The angle dependence of quantum oscil-

lations in a magnetic field of up to 7 T and Berry phase calculations showed the

suface states origin of the quantum oscillations. There is a negligible interference

from the bulk states frequency in the frequency spectrum. However, the interference

increases with an increase in magnetic field strength. The surface states quantum

oscillations dominate at low magnetic field and the surface to bulk states cross-over

takes place at higher magnetic field. Similarly, the quantum oscillations at high

field in the Sb2Te2Se sample were revealed to originate from surface states although

the bulk state is p-type and shows metallic behaviour. The physical reason for the
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dominance of topological surface states in p-type metallic sample is due to the “M”

shaped valence band structure. If the Fermi energy, measured from the Dirac point,

is low enough that it cuts two valence bands, then the sample is metallic and p-

type. In this case, the Fermi wave vector for the surface states is small, whereas it

is large for the bulk state. That is the reason the surface states quantum oscillation

dominates at low magnetic field. The position of the Fermi energy determines the

value of the Fermi wave vectors (both surface and bulk). Due to the higher value

of the Fermi energy in the Sb2Te2Se sample, we have not observed the bulk states

oscillation even up to 31 T magnetic field in the frequency spectrum, as observed

in the Bi2Se2.1Te0.9 sample. However, the bulk state interference is expected beyond

the current magnetic field range.

We have observed weak antilocalization in the metallic Bi2Te3 single crystals

having different bulk carrier densities. The angle dependence of weak antilocaliza-

tion with respect to the direction of the magnetic field showed the surface states

dominance in the samples having lower carrier concentration. The surface states

dominance in WAL does not depend the nature of the bulk charge carriers ( p or

n-type). Using the Hikami-Larkin-Nagaoka formula, we have found the number of

conduction channels is small in the samples having lower carrier concentration. This

explains the surface state dominance in the mangetoconductivity of those samples.

In this work, we have demonstrated the existence of topological surface states in

metallic topological compounds. This work opens a new window for the search and

study of topological surface states even in metallic topological insulators.
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