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Abstract
Deep learning (DL) based decoders for Brain-Computer-Interfaces (BCI) using

Electroencephalography (EEG) have gained immense popularity recently. However,

the interpretability of DL models remains an under-explored area. This thesis aims

to develop and validate computational neuroscience approaches to make DL models

more robust and explainable. First, a simulation framework was developed to eval-

uate the robustness and sensitivity of twelve back-propagation-based visualization

methods. Comparing to ground truth features, after randomizing model weights and

labels, multiple methods had reliability issues: e.g., the gradient approach, which is

the most used visualization technique in EEG, was not class or model-specific. Over-

all, DeepLift was the most reliable and robust method. Second, we demonstrated

how model explanations combined with a clustering approach can be used to com-

plement the analysis of DL models applied to measured EEG in three tasks. In the

first task, DeepLift identified the EEG spatial patterns associated with hand motor

imagery in a data-driven manner from a database of 54 individuals. Explanations

identified different strategies used by individuals and exposed the issues in limit-

ing decoding to the sensorimotor channels. The clustering approach improved the

decoding in high-performing subjects. In the second task, we used GradCAM to ex-

plain the Convolutional Neural Network’s (CNN) decision associated with detecting

balance perturbations while wearing an exoskeleton, deployable for fall prevention.

Perturbation evoked potentials (PEP) in EEG (∼75 ms) preceded both the peak in

electromyography (∼180 ms) and the center of pressure (∼350 ms). Explanation

showed that the model utilized electro-cortical components in the PEP and was not

driven by artifacts. Explanations aligned with dynamic functional connectivity mea-

sures and prior studies supporting the feasibility of using BCI-exoskeleton systems for

fall prevention. In the third task, the susceptibility of DL models to eyeblink artifacts

was evaluated. The frequent presence of blinks (in 50% trials or more), whether they

bias a particular class or not, leads to a significant difference in decoding when using
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CNN. In conclusion, the thesis contributes towards improving the BCI decoders using

DL models by using model explanation approaches. Specific recommendations and

best practices for the use of back-propagation-based visualization methods for BCI

decoder design are discussed.
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Chapter 1

Background

1.1 Brain-Machine Interface Systems

Brain-Computer Interface (BCI) systems provide means by which one could use

the brain activity measured either invasively or noninvasively to interact with an

external device or their environment [1]. These systems record the brain activity,

process the signal, and translate relevant features into commands which drive an

end-effector that can be used to control a virtual or physical machine such as a

computer, robot, exoskeleton, prosthetic, or even a digital avatar [2]. BCI systems

are being used in both assistive modes such as providing means for individuals who

are paralyzed to control external devices/communicate or as a rehabilitation tool to

improve their recovery process [3]. BCI systems have also proved to be useful in

assisting individuals with different neuromuscular and neurological disorders such as

spinal cord injury [4], stroke [5], cerebral palsy [6], etc. BCI can compensate, restore

or replace their reduced functional capabilities and facilitate neural recovery.

A typical BCI system contains multiple stages of pre and post-processing indi-

cated by Fig 1.1. The artifact removal stage contains different pre-processing steps

which handle most of the artifacts that contaminate the brain signals. This is usually

followed by a feature engineering stage wherein the most relevant features for the

particular task of interest are identified. These features are then used to train a clas-

sifier/regression model to generate the commands for controlling an external device

[7].

Recent advancements in machine learning and deep learning-based decoders have
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Figure 1.1: Example processing pipeline used to develop EEG-based BMI.

led to significant improvement in decoding capabilities using EEG. Lately, with the

advancements in deep learning (DL), studies adopting such models as decoders have

exponentially increased. DL models use a computational framework that has multiple

layers that learn representations at multiple levels of abstraction [4]. In addition to

improving the predictive power, the utility of DL is mainly inspired by the possibil-

ity of removing this multi-stage processing of EEG. Many studies have been using

deep learning models to function in an end-to-end manner wherein the same model

is supposed to handle the artifacts, identify relevant features, as well as perform

decoding [8] [9]. Over 60-70 % of studies do not handle artifacts when using deep

learning models. [8] [10] [9]. The possibility of not handcrafting the features required

for decoding is also an advantage of using DL models. The model would be able

to automatically identify the relevant features thus not limiting the decoding to the

hand-picked or pre-selected features. A review by Roy et al. [9] reported that studies
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Table 1.1: Different aspects illustrating the importance of explainability of deep learn-
ing models.

Sl No Explainability aspect Factors and applications

1 Model debugging
Failure mode analysis
Assessing the impact of artifacts
Improving model performance

2 Regulatory oversight
FDA jurisdiction
Compliance
Trustworthiness

3 Scientific insights Data-driven feature learning
Learning from the state of the art models

4 Adoption Automation bias
Model skepticism

5 Ethics Transparency
Decision-making accountability

6 Bias Training data not representative of the population
Proxy measures as the dependent variable

have reported a median decoding increase of 5.4% between DL algorithms and tra-

ditional ML algorithms demonstrating the benefit of using DL models as a decoder.

However, these models do suffer from poor interpretability and explainability which

limits their widespread adoption in spite of the performance improvement, especially

in industries such as healthcare [11] [12].

1.1.1 Why is explainability important?

The implications and the need for explaining the model decision are multidimen-

sional. Some of the major aspects are summarized in table 1.1

Using explainability approaches allows us to understand the failure modes in the

model, giving valuable insights about the model. These methods will help debug

the model by identifying some of its limitations and mistakes thereby improving the

model. When the DL models are translated to EEG, some key challenges need to

be addressed. Even though EEG provides significant advantages over other measure-

ment modalities, one of the biggest limitations of EEG is the relatively lower SNR.
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Many of the artifacts of physiological and non-physiological origin such as eye blink/

movement, muscular artifacts, cable pops, etc typically have much higher amplitude

compared to true brain signals. There exists a possibility that the models could be

learning from these artifacts and not the real brain signals. The reliance on spu-

rious correlations present in the data is commonly referred to as the "Clever Hans

Problem" [13]. Therefore, it is essential to understand the decision-making process

to know why a model arrived at a particular decision. A model learning spurious

correlations will fail when deployed in the real-world making it useless. Using ex-

plainability approaches can help debug these potential confounds.

From a regulatory standpoint, if an artificial intelligence software making a rec-

ommendation to the healthcare professional is not explainable, the software will fall

under the FDA jurisdiction and will have to clear stringent long regulatory pathways

for its usage [14]. On the other hand, explainable recommendations to healthcare

professionals do not fall under the regulatory powers of the FDA [14]. When de-

veloping software solutions, from a deployment perspective, if the solution does not

cause significant risk and if the regulatory oversight could be avoided, it will be a

critical design consideration, to avoid regulatory complications as they can be time

and resource-intensive. A significant emphasis on the explainability of DL models is

required as FDA is shifting towards expanding the regulatory oversight to artificial

intelligence and machine learning software, most of which were exempt under the

Cures Act [15]. Currently, the FDA is developing an action plan on how best to

regulate AI/ML-based software [16]. Similarly, under the newly proposed EU general

data protection regulation, the new law creates a "right to explanation", whereby

the user can ask for the explanations of an algorithmic decision that was made about

them [17]. With various regulatory bodies expanding their jurisdiction to regulating

algorithmic decision making, knowing whether the DL solutions would be compliant
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with such regulatory requirements would be an important aspect going forward. Ad-

ditionally, having explainable decisions from the DL models also helps to improve the

trust in the model.

One of the advantages of using DL is the possibility it offers to avoid the need

for hand crafting features. The model can automatically identify relevant patterns

required for decoding. This is another important area in which explainability would

offer tremendous possibilities. Understanding what the models are looking at could

lead to new scientific discoveries and progress the field forward [18] [19]. Recent stud-

ies are also attempting to better understand how different state-of-the-art models are

beating human experts, E.g. study evaluating how Alpha Zero beat human experts

at chess [20].

The popularity of deep learning is not without its share of skepticism. In terms

of the adoption of DL models, there exist two subsets of people at either end of the

spectrum. The first category puts too much trust in the AI model assuming it is

error-proof while the other group consists of skeptics who are hesitant to adopt [21].

Often, many experienced researchers tend to fall into the latter category since they

are uncomfortable using a model without understanding how the model arrived at a

particular decision. The automation bias can be detrimental too particularly in appli-

cations aimed at helping the clinical population or high-risk applications. Consider a

model for decoding motor imagery for stroke rehabilitation purposes. Ideally, a model

should learn neural features from regions of the brain which has representations of

limb movement (typically motor-related signals). Say a DL model exhibits significant

performance gain compared to traditional models, but if the model is learning from

irrelevant noise signals instead of motor-related potentials, the rehabilitation will not

5



be effective and the high-performance increase becomes insignificant. Ideally, the pre-

dictive models should utilize neural features associated with the task-specific region

to induce therapeutic plasticity, rather than an unrelated neural activity that is not

associated with the motor task. Similarly, if explanations could be provided on what

the model was looking for when making the decisions, the people who are hesitant to

use these models could be more open to their adoption.

Ethics is yet another major aspect in which explainability will play a huge role.

There is a growing popularity for devices in the consumer industry that make use

of EEG for different applications including sleep monitoring [22], neurofeedback ap-

plications [23], measuring attention and fatigue levels [24]. Some of these devices

have already garnered their fair share of criticism and concerns regarding their im-

plementation. Recently, Brainco [25], a consumer neurotech company came under

scrutiny. Their system used a dry EEG system and use proprietary algorithms to

measure whether students are attentive or not and provides a report to faculty and

parents. Should one believe the device that gives a number without giving a proper

explanation or the student if they say they are being attentive? By not being aware

of how the attention scores are estimated or providing means to debug whether arti-

facts are biasing these systems, the product providing such single-number metrics can

cause tremendous pressure and ethical challenges to both students, teachers, and par-

ents. The cause of concern related to privacy and psychological stress resulting from

wearing these devices led to the government suspending their use [26]. With more

consumer companies moving towards using novel machine learning and deep learning

models in their applications, explainability will be key in building trust and could

help in addressing some of the ethical dilemmas caused by the use of such systems.

Similarly, knowing whether the model is discriminative towards any particular

community due to bias present either in the training data or how the training was
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performed will be critical when the solutions get deployed [27]. If the training data

poorly represents the entire population, this could lead to biases in its decision-

making process. In a recent study, it was identified that multiple datasets used for

facial recognition had an overwhelming majority of lighter-skinned subjects resulting

in reduced accuracy to detect darker-skinned faces [28]. A similar racial bias was

identified for prediction algorithms used in health care [27]. They identified that

black patients who are assigned the same level of risk by the algorithm were found to

be sicker than the white patients. The bias was caused by the algorithm using health

cost as a proxy for health needs. Interpreting how and why a model is arriving at

specific decisions will be critical to eliminate similar biases in algorithms.

1.1.2 Model Explanation approaches

Even though there exist many variants of the algorithms being developed to inter-

pret the neural network models, the broad majority of them could be categorized into

three categories: Model Distillation, Visualization methods, and Intrinsic methods

[29]. A summary of the different types of model explanations is given in Fig.1.2.

Distillation/Approximations Methods

A group of approaches tries to approximate the DL models with simpler models

whose input-output behavior mimics that of the DL model. Later, by interpreting the

simpler model, insights into how the complex model works can be obtained. These

approaches are broadly labeled under the category of distillation methods. One of

the most popular among these methods would be the use of the Local Interpretable

Model-agnostic Explanations (LIME) method [30].
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Figure 1.2: Different types of explanation approaches in neural network models.

Visualization

Visualization methods are approaches which in general highlight the most impor-

tant feature or attribute present in the input that affects the decision of the model

through different visualization. One of the most common approaches is the saliency

maps which highlight the important segment of the input. These could further be

divided into different categories based on how they are implemented. The majority

of the approaches developed in this category are based on back-propagation [31]. The

gradient/relevancy score for a particular class or neuron is back-propagated in some

form for these approaches. The most common and oldest approach is the Gradient

approach [32] which is estimating the gradient of the output with respect to the input.

Variants of the simpler models have been developed which are more robust and less

noisy like FullGrad [33], Input X Gradient, Layerwise Relevance Propagation [34],

DeepLift [35] or different approaches of class activation maps likes GradCAM [36],

GradCAM++[37], LayerCAM [38], GuidedGradCAM [39], ScoreCAM [40] etc. There

are a few methods that attempt to reverse the forward operations (’Inversion’) in a
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CNN such as Deconvolution [41] and Guided Backpropagation [42]. Other approaches

like activation maximization involve adding an additional ’optimization’ step wherein

it tries to create an input the maximizes the score for a particular class/ filter of

interest [32]. Through all of these methods, the researcher gets additional context

through different ways of scientific visualization on what drives a model decision.

Intrinsic Methods

Intrinsic methods involve either developing models which provide an explanation

for the decision as part of its model output or those in which explanations can be

extracted from the architecture rather straightforward way [29]. Some common meth-

ods involve models using the attention mechanism [43]. The attention mechanism

generates a contextual vector for downstream processing by learning a conditional

distribution over the input. Some studies on the other hand engineer the deep net-

work to perform specific meaningful functions which are easily interpretable. One

such approach is the development of SincNet [44] which is based on parameterized

sinc functions wherein the model learns cutoff frequencies for the filter banks. This

allows for more easily interpretable filters as the most highly activated units would

correspond to a particular frequency band.

1.1.3 Scope

In the EEG literature, a majority of the model explanations are based on the visu-

alization method using the backpropagation approach. The scope of the dissertation

will be limited to the visualization approach as this is also the most extensively de-

veloped explainability method in other domains as well [45] [46]. Limiting the scope

to these methods further allows for a more straightforward comparison of their effec-

tiveness. The dissertation is aimed at finding some best practices to adopt different

visualization-based model explanations methods for EEG applications.
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For the first specific aim (SA1), multiple visualization-based explanation methods

would be tested on simulated EEG to understand the ground truth sensitivity and

robustness of these methods. This would help understand when these approaches

fail and identify the most suitable method for EEG. Simulated data allows isolation

of distinct EEG features such that only the particular feature of interest would be

different between the classes and can produce a selective and controlled variation

of these features. This will help with providing a more objective assessment of the

robustness and sensitivity of these approaches to different features.

Next, for specific aim 2 (SA2), understanding from simulated data would be trans-

lated to real EEG data, to evaluate whether certain DL models can discover the un-

derlying brain dynamics in a data-driven manner and identify if these methods can

give insights into whether the model is biased by artifact or not.

Next, for specific aim 3 (SA3), these identified explainability tools and the simula-

tion framework would be used for model debugging purposes to explore the influence

of eye blink artifacts. To summarize, the following theme of questions would be

covered in the dissertation:

1. Which visualization based model explanation approaches are more suitable for

EEG? (SA1: Chapter 2)

2. Can model explanations provide neurological insights into the underlying brain

dynamics during different BCI paradigms? (SA2: Chapter 3a, 3b)

3. Instead of looking at individual explanations, can the model explanations be

aggregated to learn global, class-specific patterns? Can this framework be used

to assist with model debugging? (SA2, SA3: Chapter 3, 4)

4. Will the DL model learn to avoid eye blink artifacts when trained in an end-

to-end manner without manually removing them? If not, how would the model

be influenced by eye blinks? (SA 3)

10



Chapter 2

An Empirical Comparison of Deep Learn-

ing Explainability Approaches for EEG

using Simulated Ground Truth

2.1 Introduction

With the popularity of neural networks in recent years, the field of deep learning

has gained exponential growth in the last decade. They have become the state of

the art model in different domains including computer vision [47], natural language

processing [48],[49], etc. They started beating human performance in many tasks such

as the game of GO [50], and recently solved 50-year-old grand challenge of protein

folding problem [51]. Even in EEG, they have shown a median improvement of 5.4%

classification score in various applications [9]. There exists concern on whether this

improvement in decoding is from learning the underlying true data distribution or

learning spurious artifacts present in the data [13],[52],[53].

The emphasis on explainability hasn’t picked up a similar pace in popularity

compared to deep learning in general for EEG applications. The adoption of explain-

ability for deep learning models in the research involving EEG is still very rare. To

better quantify the number of studies that employ explainability approaches when

using deep learning on EEG, a literature review was conducted using the Web of

Science. The advanced search option was used with the criterion ((AB=(EEG)

OR AB=(Electroencephalography)) AND (AB= (neural network) OR AB= (deep
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learning) OR AB = (CNN) OR AB = (Convolutional Neural Network) OR AB

= (Recurrent Neural Network) OR AB = (LSTM) OR AB = (GRU))) AND (

ALL=(interpretability) OR ALL=(explainability) OR ALL=(interpretable)). The

search conducted in November 2021 gave a total of 65 publications. Among these 30

did not use any specific explainability method in the paper. They either only refer

interpretability/ explainability in the paper for discussion purpose or is not relevant.

A few of the papers that include interpretability in title/abstract used hand-crafted

features to train the model and refer to them as "interpretable models". These stud-

ies were also not included. Two papers were not considered because of poor quality.

After removing these papers, only 33 studies remained that used some form of model

explanation. On the other hand, studies without the part (ALL=(interpretability)

OR ALL=(explainability) OR ALL=(interpretable)) in the advanced search provided

a total of 5,951 papers suggesting the studies including model explanation currently

is less than 0.6 %.

The types of methods used in the 33 studies is summarized in Fig. 2.1. The ma-

jority of the studies use some form of heatmap approach. These heatmap approaches

highlight the part of the input data the model is looking at to arrive at the correct

prediction. The most commonly method (Saliency) is also the most simplest wherein

the gradient w.r.t. input was computed [54],[55],[56],[57],[58],[59],[60],[57],[61]. The

next commonly used method is plotting the convolutional filters directly; usually, the

convolutional filters that have a kernel spanning the entire EEG channels (spatial

convolutional layer weights) [62],[63],[64],[65]. However, looking at the raw weights

does not directly indicate whether they are class-specific features or not. Consider-

ing there is a large number of filters, the ideal combination of filters that contribute

positively to the prediction would be difficult to discern. Also, previous studies have

shown that significant non-zero weights can be observed for channels whose activity

can be independent of the underlying cortical activity [66]. Many other studies used

occlusion based model explanations wherein they occlude or zero out parts of the
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input to identify the most sensitive region. However, occlusion methods are not ideal

when there are dependencies between non-local features. In that case it has to be

known apriori how to define the mask to include these dependencies (width, shape of

mask, etc). Other studies have used more complex versions of back-propagation ap-

proaches. E.g. Sturn et al. (2016) used LayerWise Relevance Propagation (LRP) to

identify scalp relevancy associated with motor imagery [67]. Similarly, Lawhern et al.

(2018) used the Deep Learning Important FeaTures (DeepLift) method [65] for motor

imagery and error-related negativity response task. Ravindran et al. used GradCAM

to demonstrate that CNN was learning from common perturbation evoked potentials

in single-trial EEG [68]. A good number of studies used the activation maximization

approach [32] to synthetically generate inputs that maximally activate a particu-

lar neuron, typically the final layer neurons [69],[70],[71]. Few studies attempted a

perturbation approach in which they perturb the input and evaluate the change in

output [72],[73]. The other category includes studies that use approaches not com-

monly used. Most of them either visualize clustering of hidden layer activation to

show class separation [74] or show a correlation of hidden layer activation to different

features [75],[76].

Recent research in computer vision has shown that many of these visualization-

based approaches when applied to images have reliability issues [77],[78]. Adebayo

et al. (2018) showed that visual inspection of model explanations alone can mislead

into giving compelling cases. They demonstrated that many of the commonly used

explainable methods lack sensitivity to the model and the data generating process

[78]. In that study, they randomized the labels and separately reinitialized the model

weights. Then they hypothesized that if the model was specific to data / the trained

model the explanations should be significantly different with randomization. How-

ever, they found that many methods were invariant to these manipulations and only

gradients and GradCAM passed their sanity checks. In a separate study Kindermans

et al. (2019) show that many methods do not satisfy input invariance either [77].
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Figure 2.1: Left: Pie chart showing the distribution of methods used in the screened
studies from the web of science search. Right: Trend showing the number
of EEG publications using deep learning, with and without explainability
(not screened).

Most of these studies in EEG limit visualization to either one example or an average

of one subject. Thus, it is not clear whether the proposed methods would general-

ize to other datasets. Therefore, it remains unclear which explainability method(s)

are robust and reliable when applied to EEG data, and whether or not these meth-

ods are sensitive to only certain features in EEG. The sensitivity element is equally

important on top of robustness because unlike images, EEG is a bit more complex

with features in multiple domains such as temporal, spectral, and spatial domains all

equally relevant. Looking at raw time series is less intuitive relative to looking at an

image. Also, finding the ground truth in real EEG is a challenging task particularly

with the lower values of SNR. Even the same task repeated might have a large source

of variability due to the nature of how the human brain works, the influence of the

environment, etc. Knowing the exact location of a particular feature in time could

be difficult to ascertain when looking at individual trials as well. In addition, often

multiple features and noise superimpose making it difficult to know which feature the

model is sensitive to. Here, the sensitivity and robustness of 12 of the heatmap based
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methods for different sources of signal with varying signal-to-noise ratios (SNR) were

evaluated. The methods will be evaluated to know if they can identify the ground-

truth signal accurately as well as whether the explanations are both class specific and

model specific. This research proposes to compare the strengths and weaknesses of

different methods to better understand the pitfalls and provide recommendations for

the appropriate application.

2.2 Methods

2.2.1 Convolutional Neural Network

The architecture for the model is summarized in Fig. 2.2. The intention was to use

a very generic CNN model without any specialized architectural changes. This was

done to ensure generalizability to existing studies. The input to the model is the 1 s

EEG window (batch size × 250 samples × 54 channels). Eight channels were removed

as they are not contained in the forward model. The model consisted of 5 temporal

convolution layers of 32 units each (5 × 1 kernel size with a stride length of 1) and 1

spatial convolution layer of 32 units (1 × 62 kernel size). The number of convolutional

layers was kept as 6 as the majority of the prior studies used 6 or lower convolutional

layers [8]. This also aligns with how the motor cortex is arranged, which is organized

into a total of 6 layers as well [79],[80]. We would like to emphasize here that having

a similar number of layers does not necessarily enforce that each layer would replicate

the actions of each layer of the motor cortex. The filter size was selected such that

the total receptive field for the final convolutional block would span at least half the

sampling rate (125 Hz). A temporal pooling layer of 2 × 1 pooling dimension with a

stride length of 2 was also used after every convolutional filter layer except the last

two blocks. The output from these convolutional layers was flattened and fed into

a dense, fully connected layer of 32 hidden units followed by an output layer with
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softmax activation.

A dropout layer with alpha = 0.5 was added in between the dense layer and the

output layer to reduce overfitting. Except for the output layer, the model utilized

ReLU as the activation function. ReLU was used as the activation function as this

was also the most popular activation function used (70% of studies [8]). The proposed

model was implemented in python 3.7 using Pytorch library [81]. For each of the con-

dition (temporal, spatial and spectral), an independent model was trained to classify

the distinct classes. A 5-fold cross-validation was performed and model explanations

and the comparison metrics were estimated on the test set from each fold. The value

across the folds are then compared between the type of model explanations.

Figure 2.2: Model architecture: Each block correspond to different types of layers in
the model. The dotted line illustrates the dropout operation during the
training phase aimed at reducing overfit. During inference, all units were
retained.

2.2.2 Simulated Data

To compare the relative performance of different model explanation methods, the

SEREEGA library [82] was used to simulate ground truth EEG features. The typical

workflow used to simulate EEG activity using SEREEGA is summarized in Fig 2.3.

The process starts by defining the lead field matrix and the head model. The New

York head model was used for generating the lead field matrix [83]. The toolbox

supports the pre-generated leadfield that includes 75,000 source locations which could

be projected to 228 sensor locations on the scalp. The New York head model does
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detailed segmentation of six types of tissues (scalp, skull, cerebrospinal fluid, gray

matter, white matter, air cavities). Later, the source location was selected to project

the feature from. The source location could either be randomly selected or chosen

manually based on the Montreal Neurological Institute (MNI) coordinates [84]. Later,

the orientation for the dipoles was chosen. Each source has a default orientation

associated with it. But, the orientation that is either tangential or perpendicular to

the scalp for each of the dipoles can also be chosen. For this study, all dipoles are

chosen to be perpendicular to the scalp surface to improve the localization of the

scalp projection for ground truth.

Once the source and the orientation are selected, an activation/signal would be

added to these sources. SEREEGA offers systematic deflections in the time domain

to simulate event-related potentials as well as systematic modulations of oscillatory

activity to simulate event-related spectral perturbation. The toolbox also allows

simulating different types of additive noises (pink, white, brown, etc). Once the

appropriate signal and noise are added, it allows mixing the signal and noise in varying

proportions such that different combinations of Signal-to-Noise Ratio (SNR) could be

achieved at the projected scalp EEG. In addition, uncorrelated white noise was added

to simulate sensor noise. Using the combination of signal, noise, source location and

orientation the toolbox allows creating ground truth simulated EEG with varying

localization capabilities in temporal, spatial, and spectral domains.

Figure 2.3: Steps present in generating different types of features in simulated EEG
using the SEREEGA toolbox.
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For all the simulations, the leadfield matrix with projected on to actiCAP64 chan-

nel configuration from the sources was used. The sampling rate was set to 250 Hz

with the window size of each simulated epoch to 1 second long. To replicate brain

noise, sources equaling the number of channels - the number of signal dipoles were

uniformly selected randomly across the brain surface and a 5µV pink noise were added

to these sources similar to the simulation replication done by Krol et al. 2018 [82].

For each condition, to evaluate the performance impact under varying SNR, the noise

was added to yield the following SNR: -3.5 dB, -12 dB, -16 dB, -19 dB, -23 dB. Fig 2.4

shows an example of the difference when the simulated ERP component gets added

with noise at varying SNR.

Figure 2.4: Representative example to demonstrate the effect of varying SNR on an
ERP component.
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Event-Related Potential Components

To evaluate how different model explanations fair in localizing the temporal aspect

of EEG, different ERP components were simulated. Four distinct classes of ERP

components were simulated with N = 10000 per class. For each epoch, the source

location was sampled from one among 10 source locations in Table 2.1. Even though

the precise location is not very important, in order to have some constraint, source

locations were selected corresponding to perturbation evoked potentials based on

ranges suggested in the source analysis results from prior studies [85],[86],[87]. These

components were selected as the balance perturbation task in specific aim 2 elicits

perturbation evoked components. The source locations in the MNI coordinates are

shown in Fig2.8.

The following attributes for the source components were tested for in the simula-

tion.

1. Class 1: Time locked positive deflection of EEG. Class 1 contained a positive

component centered at 60 ms with 8 s.d. latency with a peak width of 50 ms

± 2. The amplitude of the component was randomly sampled between 1 µV to

13 µV uniformly. The component’s magnitude and width closely resemble the

characteristic range of the P1 component in perturbation evoked potentials [88].

One among the first 5 source locations from Table 2.1 was selected randomly

as the source location.

2. Class 2: Same properties as Class 1 but different latency (latency difference).

Class 2 contained a positive component centered at 900 ms ± 5 s.d. latency with

a peak width of 100 ± 4 ms. The amplitude of the component was the same as

that of Class 1. However, latencies were shifted to avoid overlap between the

two classes to better quantify and compare the explainability techniques. One

among the first 5 source location from Table 2.1 was selected randomly as the
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Table 2.1: MNI coordinates of the ERP sources.

No. Dipole Location MNI coordinates
x y z

1 Paracentral lobule -9.1 -8.5 60.2
2 Paracentral lobule 10.1 -6.9 62.3
3 Paracentral lobule 4.6 -3.4 54.3
4 Paracentral lobule 8.4 -9.9 57.9
5 Posterior cingulate 7.5 -1.6 53.5
6 Precuneus -2.6 -33.9 54.5
7 Posterior cingulate -3.5 -30.7 52.1
8 Precuneus -4.1 -43.2 49.7
9 Isthmus cingulate -3.6 -39.2 46.1
10 Posterior cingulate -3.3 -26 50.4

source location.

3. Class 3: Same magnitude as Class 1 and 2 but negative deflection instead of

positive (sign difference). Class 3 consisted of an ERP component with the

same amplitude of class 2 but inverted with a latency centered at 500 ms ± 8

s.d. and a width of 100 ms ± 4 s.d. One among the first 5 source location from

Table 2.1 was selected randomly as the source location.

4. Class 4: Same magnitude and sign as class 3 but a different source location

(source difference). Class 4 consisted of a signal of the same properties as Class

3 except that the source location is different. One among the source location

(6-10) from Table 2.1 was selected randomly as the source location.

Figure 2.5: Dipole locations in MNI coordinates for the ERP components.
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Spectral Perturbations

To test the sensitivity to detect spectral perturbation events, four separate classes

of data were simulated each belonging to spectral perturbation events happening in

four separate frequency bands. The magnitude of the signal was set to 0.5-3 µV

[82]. For each epoch, the magnitude and the latency were kept the same for all

classes and they only differed in their spectral content/ frequency. The latency of

the center of the spectral burst for each epoch was uniformly random sampled to be

between 200 and 500 ms to add a source of variability. The burst width was randomly

sampled to be between 400 ms and 600m. The MNI coordinates used for the sources

are summarized in table 2.2. The source location was referenced based on dipoles

associated with motor imagery/execution from prior literature [89],[90],[91]. For each

epoch, one of the dipole locations was selected at random to act as the source. All

the dipole locations are shown in Fig 2.6.

1. Class 1: Spectral perturbation in the frequency band of 3-8 Hz. The magnitude,

latency, and width of the burst were randomized between epochs.

2. Class 2: Spectral perturbation in the frequency band of 8-13 Hz. The magni-

tude, latency, and width of the burst were randomized between epochs.

3. Class 3: Spectral perturbation in the frequency band of 14-30 Hz. The magni-

tude, latency, and width of the burst were randomized between epochs.

4. Class 4: Spectral perturbation in the frequency band of 30-58 Hz. The magni-

tude, latency, and width of the burst were randomized between epochs.

The representative example of simulated EEG from each of the classes is shown

in fig 2.7.
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Figure 2.6: Dipole locations in MNI coordinates for both the spectral and spatial
conditions.

Table 2.2: MNI coordinates of the dipoles selected for the spectral perturbation and
spatial condition simulations.

No. Dipole Location MNI coordinates
x y z

1 L Superioparietal -40 -21 51
2 R Postcentral gyrus 40 -21 51
3 L Superioparietal -38 -26 53
4 R Postcentral gyrus 38 -26 53
5 L Postcentral gyrus -48 -15 50
6 R PostCentral gyrus 48 -15 50
7 L Cingulate gyrus -24 -24 32
8 R Cingulate gyrus 24 -24 32
9 L Supramarginal gyrus -34 -32 38
10 R Superior parietal 34 -32 38
11 L Rostral middle frontal gyrus -42 40 25
12 R Caudal middle frontal 42 40 25
13 L Paracentral 0 -4 65
14 R Posterior cingulate 8 -12 52
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Figure 2.7: Example simulated data waveforms for each of the classes of spectral
perturbations. For visualization purposes, every other channel from the
true signal, ground truth, and the signal+noise waveform from one epoch
is shown.
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Spatial Precision

Different ERP components and ERSP perturbations with identical properties but

different dipole location was simulated to assess the channel specificity. The only

separation between the two classes created here is the location of the source signal.

Class 1 had dipoles localized in the left hemisphere and Class 2 contains dipoles in

the right hemisphere. Here the model is expected to learn all the distinct features

and localize the correct scalp projection. The dipole source location for Class 1 was

randomly selected from all source locations in the left hemisphere in table 2.2. Class

2 on the other hand corresponds to locations in the right hemisphere in table 2.2

2.2.3 Robustness and Sensitivity Analysis

For each condition, the simulated EEG with the respective properties are gener-

ated as discussed before. This signal is then forward projected. Noise is later added

with varying levels of signal-to-noise ratios as discussed before. To get the ground

truth explanation, the tapered window corresponding to the signal location was for-

ward projected using the same lead field matrix. The segment outside of the projected

signal would have a value of 0. The section with the signal (across all the channels)

was normalized by dividing by the maximum value. The sensitivity/accuracy of each

method was compared by evaluating the performance metrics (discussed below) w.r.t.

this ground truth data.

To test the robustness of each of the explanation methods, the approach used in

Adebayo et al.2018 [78] was adopted. Once the original explanation was obtained,

the explanation after independently randomizing the labels and the model weights

was re-computed. This tests whether the explanations are class or model-specific.

The similarity of explanations w.r.t. the original explanation based on the absolute

Pearson’s correlation coefficient and the SSIM measure (detailed later) was estimated.
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Ideally, if the model is accurate, it should have high similarity to the ground truth.

On the other hand, if explanations are model and/or class-specific, the randomization

performed should yield very dissimilar explanations to the original explanations. If the

explanations are very similar even after randomizing, it indicates that the explanation

is not very robust. The process was repeated for each type of signal/condition and

SNR levels for all the explanation methods being compared.

2.2.4 Explanation Methods

The different types of visualization-based explanation methods being compared

in this study are detailed below. All the methods were implemented in Python using

Pytorch 1.7.0 framework [81] using either Captum 0.4.0 [92] or the Pytorch-grad-cam

toolbox [93].

Gradient/Saliency (S)

Gradient or basic Saliency map as referred to in some studies is probably one of

the earliest yet commonly used model explanation approaches. The gradient gives

a measure of how a change in input x would change the prediction S(x) in a small

neighborhood around the input [32]. It is given by

Saliency/Gradient =
∂S

∂x
. (2.1)

Deconvolution

Deconvolutions can be thought of as reversing the process done in a convolutional

neural network [41]. Essentially attempting to recreate the input from the output

activation by running the CNN in reverse top-down. The convolutions get replaced

with deconvolutions also called transposed convolution. The filter values are copied

after transposing their values. The process also replaces max-pooling layers with
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unpooling operations wherein the feature map is upsampled depending on the pooling

parameters while retaining the maximum value. This is done by storing the position

of the maximum value in the forward operation of the CNN. The process is repeated

from the layer whose filter is to be visualized back to the input space.

Guided Backpropagation

Guided backpropagation [42] builds upon deconvolution. It combines vanilla back-

propagation at ReLUs (knowing which elements are positive in the previous feature

map) with DeconvNets (keeping only positive gradients).

Input × Gradient

Input × Gradient is another type of attribution method wherein, the gradient was

multiplied with the input x [94]. The equation to compute the Input × Gradient is

Input×Gradient =
∂S

∂x
.x. (2.2)

GradCAM

GradCAM is a generalization for Class Activation Map (CAM) as CAM limits the

CNN to require a global average pooling layer at the end of the convolutional blocks

[36]. GradCAM on the other hand does not require this.

For the kth feature map activation Ak in the final convolutional layer of a CNN,

the gradient of the score yc for the class c of interest is initially computed. The

average score of the gradient w.r.t. each node in the feature map is computed to get

an importance value αk,c for the particular feature map. The equation to estimate
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αk,c is

αk,c =
1

m.n

m∑
i=1

n∑
j=1

∂yc
∂Ak,i,j

. (2.3)

Here, Ak,i,j is a single neuron/node at position (i, j) in the feature map Ak of dimen-

sion m x n. GradCAM then linearly combines the importance score for each of the

feature map and pass them through a ReLU the total relevance score map equals to

GradCAM = ReLU(
K∑
k

αk,cAk). (2.4)

The relevancy score is then upsampled using bi-linear interpolation to the same di-

mension as the input.

GradCAM++

GradCAM++ can be considered as a generalized formulation for GradCAM [37].

This method uses the second and third order derivative on the gradients to obtain

the gradient weights αkc
ij for the particular class c and the feature activation map k

yielding the value of αkc
ij as

αkc
ij =

∂2Y c

k
ij

2

2. ∂
2Y c

∂Ak
ij

2 +
∑

a

∑
bA

k
ab(

∂3Y c

∂Ak
ij

3 )
. (2.5)

Using these, the weights of GradCAM++ comes out to be

wc
k =

∑
i

∑
j

αkc
ij .ReLU(

∂Y c

∂Ac
ij

). (2.6)

Multiplying these weights with the activation and passing the pooled value from all

the filters through a ReLU gives the final GradCAM ++ heatmap representation for

each of the inputs as

GradCAM + + = ReLU(
∑
k

wc
k.A

k
ij). (2.7)
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Guided GradCAM

Guided GradCAM is a combination of GradCAM and Guided Backpropagation

to obtain pixel-level granular GradCAM representation [39]. GradCAM is combined

with Guided Backpropagation by performing an element-wise product of the two to

obtain Guided GradCAM.

Layer Wise Relevance Propagation

Layer wise Relevance Propagation (LRP) redistributes the prediction score for a

particular class of interest through custom backward pass through the model back to

the input following a conservation principle [34].

DeepLift

DeepLift is similar to LRP in the sense that it decomposes the output prediction

for a particular input by backpropagating the contribution of all neurons in the model

to each feature of the input [35]. DeepLift gives a measure of the change in output

from a "reference" output w.r.t. the change in input from a ’reference’ input. The

reference is a neural input that is task-irrelevant. Here an array of zeros is used with

the same dimension as the input [65].

ScoreCAM

ScoreCAM is a perturbation-based expansion to the class activation map frame-

work [40]. ScoreCAM basically tries to mask part of the input and observe the change

in prediction score for the class of interest similar to the occlusion approach. How-

ever, unlike occlusion, here the mask is obtained by initially forward passing to get

the feature map activation. To perturb the input these are up-sampled to input di-

mension and smoothed by normalizing to have a value between 0 and 1. Later they
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are masked based on the activation scores and the masked input is fed into the CNN

to compute prediction score which serves as a weight for the feature map. This pro-

cess is repeated for all the filters present in the final convolutional layer and pooled

to obtain the final ScoreCAM representation.

FullGrad

FullGrad is an attribution method that aggregates the gradient for the entire

network by decomposing the prediction score into input sensitivity and per neuron

sensitivity components. FullGrad computes the gradient of the biases from the entire

network and sums them [33].

LayerCAM

LayerCAM builds on top of GradCAM wherein the class activation maps are ex-

tracted for all layers instead of the final convolutional layer as is done in CAM/GradCAM

[38].

2.2.5 Metrics

The visualization approach assigns a relevancy or importance scores to each pixel/

data point in the input. To compare different explanation methods, metrics to quan-

tify the similarity the explanations are after randomization as well as, the efficiency

in capturing the true underlying ground truth is equally important. For the robust-

ness measure, both the Pearson’s correlation and Structural Similarity index (SSIM)

[95] were used to compare explanations before and after randomization. The out-

put of the visualization method’s being compared here can be considered as images

with relevancy scores on a pixel basis. SSIM has been demonstrated to have good
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agreement with human observers when using reference images by quantifying the per-

ceptual difference and have been shown to perform better compared to both mean

squared error as well as the peak signal-to-noise ratio [96]. In addition, the correlation

coefficient further quantifies the linear relationship between the two. Ideally, for a

robust method, the original explanations should become uncorrelated or minimally

correlated w.r.t. explanation after randomizing.

Robustness Metrics

The measures used to compare the similarities between the explanations are

adapted from Adebayo et al. [78].

1. Pearson’s Correlation Coefficient: Compute the sample correlation between the

explanations yielding a measure of the strength and direction of the linear re-

lationship between the two variables. Here the explanations would initially be

flattened out. The equation to compute the Pearson’s Correlation Coefficient is

r =
cov(x, y)√

var(x).
√
var(y)

. (2.8)

2. Structural Similarity Index (SSIM): Measure of the perceptual similarities be-

tween two images SSIM. Given two images/inputs SSIM provides a measure of

distortion along the luminance, contrast, and correlation dimensions [97].

Sensitivity Metrics

To compare the effectiveness of these models in identifying the true signal of in-

terest, two measures to quantify the sensitivity are used. The main goal of evaluating

these measures is to ensure that a majority of the top relevancy scores assigned fall

in the ground truth region of the data. Ground truth mask is a binary array with

a value of one assigned to all non zero data points in the ground truth and a value

30



of zero for others. The relevance mass accuracy measure quantifies how much of the

total relevancy assigned by the methods is localized in the ground truth region. This

gives a measure of accuracy.

1. Relevance Mass Accuracy (RMA): Ratio of the total relevancy inside the ground

truth mask divided by the sum of the total relevancy assigned for the input [98].

The equation to compute RMA is

RelevanceMassAccuracy =
Rwithin

Rtotal

. (2.9)

Since in the simulation the source signal has been assigned to a dipole that

projects onto the surface, a non-zero ground-truth value is assigned to all chan-

nels due to volume conduction. Therefore, to compare the similarity with the

ground truth topoplot representation, a different distance measure of similarity

is used for spatial data

2. Cosine Similarity (For Spatial Sensitivity): Cosine similarity computes the co-

sine of the angle between two non-zero vectors which is equivalent to the inner

product of the vectors after normalizing to get unit length [99]. The equation

to compute cosine similarity is

CosineSimilarity =
A.B√

ΣA.
√

ΣB
. (2.10)

2.3 Results

The cross-validated robustness and sensitivity measures were estimated for each

of the three conditions for different levels of SNR. Each of the following subsections

gives the comparison for each of the conditions.
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2.3.1 Event Related Potential Component (Temporal Preci-

sion)

The averaged cross-validated performance metrics are summarized in Fig 2.8.

From the RMA measure, Deeplift was found to be the most accurate/sensitive fol-

lowed by LRP and I×G to localize the ERP component. This was followed by Guided

GradCAM and LayerCAM. On the other hand, GradCAM++ was the worst at tem-

poral precision, followed closely by GradCAM and ScoreCAM.

Looking at the top 5 percentile explanations, DeepLift still emerged as the best

followed by LRP, I×G. However, Saliency, GradCAM, and LayerCAM become much

more comparable in the top 5 percentile. Even here, GradCAM++ remained the

worst.

However, when the similarity of original explanations were compared to that with

randomized labels, it was observed that methods like GradCAM++, Fullgrad, and

Saliency have very similar explanations suggesting that their explanations are not

class-specific. Similarly Deconvolution and Guided Backpropagation also yielded high

correlation with the original true explanation. DeepLift, LRP, I×G, and GradCam

were the most robust.

In the case of randomized weights, Deconvolution, Guided Backpropagation had

the highest R-value followed by GradCAM++. For SSIM, GradCAM++ had the

highest value followed by Saliency, FullGrad and ScoreCAM. DeepLift, LRP, I×G

were still having low values.

Overall Deeplift was found to be the best closely followed by LRP and I×G,. They

had a good trade-off in both robustness and sensitivity whereas GradCAM++ was

the worst. Even though Saliency, Guided Backpropagation, and LayerCAM had good

sensitivity, they were not very robust to randomizing labels and weights.
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Figure 2.8: Comparison of the cross-validated metrics for different explanation meth-
ods with and without label/model weight randomization for detecting
ERP components.
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2.3.2 Spectral Perturbation (Frequency)

The averaged cross-validated performance metrics are summarized in 2.9. From

the RMA measure, most measures do have high accuracy but Deeplift was still the

most accurate/sensitive method. This was closely followed by LRP, I×G, Guided

G-cam, Guided Backpropagation, Saliency, Deconvolution, and FullGrad. ScoreCam,

GradCAM++ was the worst followed by GradCAM and LayerCAM.

However, when the similarity of original explanations to that with randomized

labels is compared, like before it was observed that GradCAM++, Fullgrad, Saliency,

Guided Backpropagation and Deconvolution have very similar explanations suggest-

ing their explanations are not class-specific. Similarly LayerCAM and ScoreCAM also

yielded a high correlation with the original true explanation. DeepLift, LRP, I×G,

GradCAM, Guided GradCAM were the most robust.

In the case of randomized weights, GradCAM++, Deconvolution, Guided Back-

propagation had the highest R-value followed by Saliency, FullGrad, ScoreCam, Lay-

erCAM, and Guided GradCAM. For SSIM, GradCAM++ had the highest value fol-

lower by Saliency, FullGrad, and ScoreCam. DeepLift, LRP, I×G, GradCAM were

still having low values.

Overall Deeplift was found to be the best closely followed by LRP and I×G. They

had a good tradeoff in both robustness and sensitivity whereas GradCAM++ was

the worst. Even though Saliency, Deconvolution, Guided BP, Guided GradCAM,

FullGrad had good sensitivity they were not very robust to randomizing labels and

weights.
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Figure 2.9: Comparison of the cross-validated metrics for different explanation meth-
ods with and without label/model weight randomization for detecting
spectral perturbation features.
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2.3.3 Scalp Distribution (Spatial)

The averaged cross-validated performance metrics are summarized in Fig 2.10.

Here, cosine similarity was used instead of RMA as there exists non-zero ground-

truth value in all channels due to volume conduction. Here, unlike other measures,

based on cosine similarity, it was found that on the true explanation, GradCAM,

ScoreCAM had the highest RMA followed by GradCAM++, FullGrad and Layer-

CAM. DeepLift, LRP, and I×G still had high values but were lower than the other

measures. However, looking at the top 5 percentile, it has been found that LayerCAM

had the highest accuracy followed by DeepLift and then LRP, I×G, and GradCAM.

Guided Backpropagation, Deconvolution, and Guided GradCAM were the worst for

spatial relevancy. Even though GradCAM has high sensitivity, their performance

drops much fast with SNR lower than 19dB compared to other methods.

However, when the similarity of original explanations was compared to that with

randomized labels, the measures like GradCAM ++, ScoreCAM, Fullgrad which had

the highest sensitivity to ground truth, also had the most similarity to the randomized

label explanation. Saliency and Guided Backpropagation also had high similarities

to the original explanation. DeepLift, LRP, I×G, GradCAM, and Guided GradCAM

were the most robust.

Similarly, in the case of randomized weights,GradCAM ++, ScoreCAM, Fullgrad

which had the highest sensitivity to ground truth, also had the most similarity to

the randomized label explanation. Saliency and Guided Backpropagation also had

high similarities to the original explanation. In addition, randomizing weights had

high similarity for LayerCAM as well. DeepLift, LRP, I×G, GradCAM, and Guided

GradCAM still remain the most robust.

Overall GradCAM, Deeplift, LRP, and I×G were the better approach and had a

good tradeoff in both robustness and sensitivity. GradCAM++ was the worst. Even
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Figure 2.10: Comparison of the cross validated metrics for different explanation meth-
ods with and without label/model weight randomization for detecting
spatial features.
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though ScoreCAM, FullGrad, LayerCAM, and Saliency had good sensitivity, they

were not robust to randomizing labels and weights.

2.4 Discussion

Including explainability approaches in deep learning studies is critical to under-

stand the operation of the model, identifying the most relevant features with discrimi-

native power, and generating scientific insights about the datasets. However, choosing

these approaches require a good understanding of the strengths and weaknesses of the

methods available when applied to EEG. Twelve heatmap-based visualization meth-

ods were systematically compared for their ability to detect different fundamental

attributes of EEG. Using a simulation framework allows us to limit and understand

the exact feature from which the model can learn from. Using real EEG, it is very

difficult and challenging to ensure the model is only learning from a particular feature,

and to know the true ground truth available, their location, duration, etc. For the

same reason, it would be very difficult to compare the methods on how well they cap-

ture the ground truth signal as well. The robustness and the accuracy of these models

to temporal, spectral, and spatial sensitivity of these methods for varying signal-to-

noise ratios were compared. Figure 2.11 gives a high level summary of the different

comparison. The methods which have a mean sensitivity measure greater than 0.55

is indicated by the dark blue color. Red color indicates the particular method for the

condition being considered is not class specific (robustness measure > 0.5). Similarly,

orange color indicates the method is not class specific with robustness measure > 0.3

but < 0.5. If the method is not model specific it is indicated by the asterisk "*"

symbol. Here, if the robustness measure >0.5, they are marked with "**" and if the

robustness measure >0.3 and < 0.5, it will be indicated by a single "*".

Based on these comparisons, some of the recommendations for different conditions
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Figure 2.11: Comparison of the cross validated metrics for different explanation meth-
ods with and without label/model weight randomization for detecting
spatial features.

are summarized in table 2.3.

Evaluating the robustness and sensitivity measures, even though many measures

show high accuracy/sensitivity to the feature of interest, they are not class or model-

specific. E.g., Saliency/Gradient is a basic yet one of the most commonly used model

explanation methods in EEG [59],[60],[57],[61]. They also have high sensitivity to de-

tect spectral perturbation and relevant channels as well. However, randomizing the

model weights or labels yielded a very similar explanation to the original one. This

suggests that they are not model or label-specific. Therefore, this method should be

used with caution. A similar observation was found for many of the methods like De-

convolution, Guided Backpropagation, ScoreCAM, FullGrad, LayerCAM, GradCAM

++ as well. GradCAM ++ was one of the least reliable explanation methods.

On the other hand, DeepLift, Input × Gradient, and LRP was found to be both

accurate as well as robust in all three cases (spatial, temporal, and spectral). Looking

at the explanation metrics, LRP with epsilon rule, and Input × Gradient share very

significant similarities. This is because previous studies have shown that when all the

non-linearities involved are ReLU, epison rule-based LRP approximates to Input ×
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Table 2.3: Recommendations for the use of different explainability approaches for
EEG. The methods are arranged alphabetically in each column.

No. Temporal Spectral Spatial

Sensitive
DeepLift
I×G
LRP

DeepLift
Guided GradCAM
I×G
LRP

DeepLift
FullGrad
GradCAM
GradCAM++ I×G
LayerCAM
LRP
Saliency
ScoreCAM

Robust

DeepLift
GradCAM
Guided GradCAM
I×G
LRP
ScoreCAM

DeepLift
GradCAM
Guided GradCAM
I×G
LRP

Deconvolution
DeepLift
GradCAM
Guided GradCAM I×G
LRP

Methods to avoid

Deconvolution
FullGrad
GradCAM
GradCAM++
Guided BP
Saliency
ScoreCAM

Deconvolution
FullGrad
GradCAM
GradCAM++
Guided BP
LayerCAM
Saliency
ScoreCAM

Deconvolution
FullGrad
GradCAM++
Guided BP
Guided GradCAM
LayerCAM
Saliency
ScoreCAM

Recommended DeepLift DeepLift DeepLift

Alternatives LRP/ I×G LRP / I×G GradCAM
LRP / I×G
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Gradients [100]. There exist multiple studies in Computer Vision that assessed the

unreliability of Saliency map-based approaches [101] [78]. However, these studies do

not measure the accuracy of these explanation methods. This is an important question

because, in the study by Adebayo et al. [78], they identified that GradCAM was one

of the most reliable/robust explanation methods available. In this study, we do show

that even though the robustness aspect is preserved in all the 3 conditions, GradCAM

is not ideal in the case of spectral perturbation and temporal data conditions. The

reasoning for that comes from the framework itself. GradCAM as well as the general

class activation maps, compute the model explanation w.r.t. the last convolutional

block. With successive pooling and convolution operations, the temporal resolution of

the activation in the final convolutional layer would be small. These methods get an

estimate of the relevant input by performing a bilinear interpolation to upsample to

the input dimension. These will lead to reduced temporal resolution, a key attribute

in EEG. However, when we are not interested in the temporal aspect, but instead

want to look at spatial relevancy, GradCAM was found to be the most accurate

method. Another limitation of using GradCAM which needs to be checked for was

that their performance decreased much faster than other methods when the SNR

decreased i.e. when the model confidence dropped. One additional point to keep

in mind if researchers plan on using GradCAM is that many of the existing EEG

architecture uses a spatial convolutional layer in the initial layers. This spatially

mixes the information across channels and the succeeding layers do not have channel-

independent data. Therefore, using GradCAM in such a case will not be able to

produce channel relevancy as the last convolution is purely temporal data. So, this

study recommends researchers adopting heatmap-based model explanation methods

to either use DeepLift or Layerwise Relevance Propogation in general to explain deep

learning studies. However, unless the decoding is poor, GradCAM is still a good

alternative for estimating spatial relevancy.

Overall, this study provides both a framework as well as an empirical comparison

41



of different model explanation methods. The sensitivity to detect three fundamental

properties in EEG, specifically the temporal, spectral, and spatial properties were

evaluated. Pitfalls in using some of these methods were identified. It was also ob-

served that some methods were consistently better in all three aspects. Overall LRP

or DeepLift was the most reliable method among all. They were also the most ac-

curate in identifying the ground truth. Even though GradCAM is one of the most

robust methods, they fail when the SNR is either low or in the case wherein temporal

precision is critical.

2.5 Conclusion and future directions

The approach used here will serve as a benchmark for future researchers to get

familiarized with the robustness and effectiveness of multiple explainable techniques;

specifically different heatmap based attribution methods. The research provides a

summary and recommendations to understand when some of these methods fail and

what they can capture in EEG. This study is limited to features that are commonly

reported in the tasks studied in this research. There could be many other features to

test for and the set is not exhaustive. Overall, this research identified that some of

the most used model explanation methods such as Saliency/Gradient are not class or

model-specific. It was found that DeepLift was consistently accurate as well as robust

to detect the three key attributes tested here. GradCAM even though was consistently

robust, does not have good temporal precision. However, it is still good for detecting

spatial patterns for signals with high SNR. The next chapter will demonstrate how

these methods can be used to debug the model when applied to real EEG as well as

show how they can capture the underlying brain dynamics. The method when added

to existing studies will provide additional context to evaluate the bias of the models

to spurious correlations or artifacts. Some of the limitations and future directions of

the analysis are discussed below:
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2.5.1 Approximation error

Synthetic EEG is only an approximation to measured EEG. Many physiological

and non-physiological signals and artifacts, which are generally present in measured

EEG, are not contained in the synthetic EEG. This can be both an advantage and

also a limitation of the simulation approach. There is a possibility of missing some key

EEG properties while modeling using simulation. However, in this study, the objec-

tivity was prioritized higher to compare the different methods. Moreover, EEG data is

quasi-stationary, context-dependent, and influenced by learning. Thus, interpretabil-

ity models must also account for these factors if they are part of the experimental

design. In future studies, with the developed framework, identified confounds and

complex modeling could be added later.

2.5.2 High level explanations

The scope of this research is limited to visualization methods that highlights key

segments of the input data. But assessing which specific feature in EEG caused

the correct prediction would still be difficult to ascertain. However, combining the

methods can help develop insights. Knowing the scalp relevance heatmap can help

isolate the relevant channels. Later, checking the relevancy of temporal data can get

specificity for temporal localization. Following this with activation maximization [71]

on these channels or other feature perturbation approaches [72] can give insight into

the relevant frequency bands or feature that is being perturbed. This can be followed

up with traditional signal processing methods focused on the relevant regions to gain

additional insights. This method can identify which features are not sensitive (if any)

as well as the regions that are not important and those can be avoided.
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2.5.3 Other approaches

Although this research limited the analysis to visualization-based approaches,

there are other types of model explanations as summarized in the introduction. Some

of these methods could provide better insights. However, exploring all of this itera-

tions is outside of the scope of the study and will be explored in future studies.
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Chapter 3

Decoding Neural Activity Preceding Bal-

ance Loss during Standing with a Lower-

limb Exoskeleton

3.1 Introduction

The World Health Organization (WHO) reported that over 37 million falls require

medical attention each year worldwide [102]. Indeed, falls are a leading cause of

injury, loss of independence, hospital admission, and even death. While conventional

therapies have been successful in fall reduction and prevention, many individuals

with severe illness or injury remain unable to participate in activities of daily living

(ADLs) or complete standard care protocols. Recent efforts to aid these populations

have utilized wearable robotic systems and, in particular, powered robotic orthoses

(i.e., exoskeletons) [103],[104].

The U.S. Food and Drug Administration (FDA) classifies powered exoskeletons

as Class 2 medical devices with special controls. They are used frequently for re-

habilitation applications due to their ability to provide active, assistive support for

walking, sitting, and standing [105],[106]. When compared to traditional therapies,

these devices provide intense training in an active and stimulating environment while

providing quantifiable markers of progression [107],[108]. In addition to rehabilita-

tion, exoskeletons can also be purposed to reduce the risk of falling and/or aid in fall

prevention.
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However, falls while wearing the exoskeletons are a significant risk in using these

devices [109]. Current FDA-cleared exoskeletons use different strategies for dealing

with potential falls and are indicated for use with a trained companion. The effec-

tiveness of these strategies is not studied and is still unclear. Some systems utilize

kinematic response assessments to detect fall events based on accelerometers, mag-

netometers, or joint angles. The Indego and Ekso exoskeleton systems detect falls in

real-time by checking for excursions in kinematic variability beyond certain limits. In

the case of the Indego device, movements beyond a set threshold will trigger corrective

postural movements to reduce the risk of injury [109]. However, while other studies

have examined fall risk and incidence [110], tested exoskeletons during perturbations

[111],[112], or even developed positioning algorithms to promote safer falls [113], very

few appear to both detect and respond to these falls or perturbations. There was

only one study that was identified which detailed an exoskeleton system with built-in

perturbation or fall detection and response. In this study, Monaco et al. utilized

a micro-controller to compare real-time kinematics with predicted walking values.

Threshold reaching discrepancies between the predictions and real values were used

to apply corrective hip torques to restore balance. Their detection algorithm was able

to identify the lack of balance resulting from slippages within about 350 ms of the

event [114]. Nevertheless, there are still drawbacks to this mechanism of fall detec-

tion; kinematic measures leave minimal time between detection and the fall event. In

these systems, given that the use of electric motors with large gear reductions will

have reduced response speed, early detection of balance loss is critical. With this in

mind, approaches that can identify and act to correct balance loss earlier would be

extremely beneficial.

Kinematic measures are not the only way of detecting fall events. Multi-sensory

information from visual, somatosensory, and vestibular systems acting on the cerebral

cortex, cerebellum, and brainstem have a significant role in postural corrections [115].

These sensory signals might precede the latency of kinematic responses and could
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offer a longer stimulus to fall interval within which to respond. Physical balance

perturbations elicit cortical responses called Perturbation Evoked Potentials (PEP).

These PEP can be detected using electroencephalography (EEG). A PEP generally

consists of 3 components. The first component is a small positive wave (P1) at

approximately 30-90 ms. This is followed by a negative peak at around 90-160 ms

with a final, late response (P2 and N2) around 200-400 ms [88]. These PEPs are

typically observed by averaging waveforms across many trials. However, if PEP could

be detected from a single trial, balance perturbations could be identified much earlier.

This would afford considerable, additional time to initiate preventative movements.

Studies examining perturbations during exoskeleton use with an EEG paradigm,

as well as the temporal relationship between signal modalities, are rare [116]. More

importantly, to our knowledge, no previous studies have evaluated the influence of

balance perturbations on EEG during exoskeletal suit use. Further understanding

of the influence of exoskeletons on physiological responses observed with EEG as

well as physical responses to perturbations is important. In this study, how different

perturbations during standing conditions modulated the brain activity was evaluated

and tested the possibility of detecting physical perturbations from single-trial EEG

in individuals wearing an exoskeleton.

3.2 Methods

3.2.1 Participants

Seven healthy participants (5 male) aged 18-32 participated in the study. The

experimental protocol was approved by the Institutional Review Board (IRB) at the

University of Houston, in accordance with the Declaration of Helsinki. The written

informed consent form was collected from each of the participants before the start of
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the experiment.

3.2.2 Experimental Setup

Participants were fitted with a 64-channel EEG cap (ActiCap, Brain Products,

GmbH, Morrisville, NC) referenced to the ear lobes. 60 active AG/AgCL electrodes

were placed in the cap according to the modified 10-20 international system to record

EEG signals. Electrodes normally positioned at FT9 and FT10 were moved to replace

the AFz and FCz electrodes on the cap (ground and reference, respectively). In addi-

tion, electrodes that were to be placed at TP9, TP10, PO9, and PO10 were instead

used to measure electro-oculography signals (EOG). Two electrodes were placed above

and below the right eye with the remaining two electrodes placed at the lateral can-

thus of each eye to extract the eye-related artifacts. EEG/EOG data were recorded

wirelessly using the MOVE system at 250 Hz and amplified using the BrainAmp DC

amplifier (Brain Products, GmbH, Morrisville, NC).

Surface electromyography (EMG) sensors were placed over the tibialis anterior

(TA), Medial Gastrocnemius (MG), Lateral Gastrocnemius (LG), and Soleus (S)

muscles of both legs, along with one sensor on the forehead and torso. EMG data

were collected wirelessly using the Delsys Trigno system (Delsys Inc., Boston, MA).

After set-up and electrode impedance measurements, participants were asked to

stand comfortably on a balance platform (Neurocom Balance Manager platform,

(NeuroCom, Clackamas, OR) for 2 minutes to acquire eyes open resting-state ac-

tivity. At the end of 2 minutes, subjects received a series of postural perturbations.

This consisted of a series of 32 constant (duration, period, and velocity) perturba-

tions where the platform generated maximal backward translations (displacement of

6.35 cm in 400 ms, i.e. velocity of 15.875 cm/s). This condition is referred to as the

Random Timing Condition (RTC), as the timing alone was randomized. The second

postural task consisted of 33 random/unexpected perturbations where the platform
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generated forward/backward/tilted perturbations in a random order (Random Tim-

ing and Type Condition - RTTC). Individual trials with the same parameters as the

RTC trials were embedded randomly into the RTTC condition. After 16 trials of

RTC and RTTC, respectively, a break of approximately 2-5 minutes was given to

avoid fatigue. Each trial lasted five seconds and the timing to perturbation onset was

randomized in all trials to avoid anticipation of when the perturbation would occur.

All conditions were repeated with and without the H2 exoskeleton (in passive mode

with the joints decoupled) to evaluate if PEPs would be altered in the presence of

the mechanical constraints introduced by wearing the exoskeleton. For every other

participant, the order of trials with and without H2 was reversed. The protocol is

summarized in Fig 3.1.

Figure 3.1: Experimental protocol: the two conditions were repeated with and with-
out the exoskeleton. A 2-5 minute break was provided in between each of
the blocks (RTC RTTC).

3.2.3 Signal pre-processing

The pre-processing steps used to process EEG, EMG, and the Neurocom data are

summarized in figure 3.2.

Both the EEG and EOG signals were bandpass filtered between 0.2 to 50 Hz to

remove low-frequency drift and minimize muscular artifacts. A 4th order zero-phase

Butterworth filter was used to avoid phase distortion. The high pass cut-off of 0.2

Hz was selected from Tanner et al., which suggested high pass filtering above 0.3

Hz will distort the ERP components [117]. Ocular artifacts were removed using the
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Figure 3.2: Flowchart detailing the different pre-processing steps performed for each
of the signal modalities.

H-infinity-based adaptive filter [118]. The gamma parameter was set to 1.1 and the q

parameter used was 1e-11 from empirical testing. Data 1.2 seconds before and after

the perturbations were discarded and individual trials were concatenated together.

Later, to remove any sudden spikes in the EEG and improve Independent Compo-

nent Analysis (ICA) decomposition, Artifact Subspace Reconstruction (ASR) [119]

with less conservative thresholds of 30-75 were used to reconstruct poor components

in artifactual windows. The thresholds were selected based on empirical evaluation

and also by recommendations from Chang et al. [120]. ICA decomposition was then

performed using the Infomax algorithm to identify and remove ocular, muscular, or

bundle artifacts (artifacts caused by the physical pulling of cable bundles). Here, a

more conservative cleaning is performed to remove 26-44 ICs across subjects. Ocular

artifacts were identified by looking at topographical distributions, power spectra with

power localized in the delta/theta bands, as well as the time-series data for repeatable
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ocular artifacts. Muscular ICs were identified by examining the spatial weighting of

the IC (localized in the temporal channels), power spectra (looking at the increasing

power in 30+ Hz) as well as time-series data for spiking activity. The bundle artifacts

were identified by the spatial weight of the IC (alternating pattern for the 2 bundles).

Any additional ICs (indicating electrode shifts) were identified and removed. Repre-

sentative examples of the ICs removed are provided in the supplementary materials.

All the pre-processing steps were implemented using the EEGLAB library[121].

EMG data were bandpass filtered with a passband frequency of 20 - 450 Hz using

a 4th order Butterworth zero-phase filter. Later, to extract the envelope, data were

rectified by computing the absolute value and passing through a second low pass filter

at 40 Hz. The envelope of the EMG was then resampled to 100 Hz to match with the

sampling rate of the kinematic data from the Neurocom. All three modalities were

then aligned to the perturbation onset in each of the trials.

3.2.4 Latency relationship between the signals

To study how electrophysiological and kinematic responses varied in response to

the perturbation, all the signals after baseline correction were trial averaged. This

also increased the signal-to-noise ratio. Averaging was done separately for each of the

conditions. The period between -500 ms to -200 ms was used to estimate baseline

correction values. Perturbation response in the first trial was consistently, significantly

larger than the succeeding trials, and thus were removed before averaging. The trial

averaged physiological and kinematic signals were aligned to the perturbation onset

to evaluate the latency difference between the signals. In the end, the grand average

response was computed by averaging the time series across all subjects and trials.
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3.2.5 Detecting perturbations from single trials

A CNN was implemented to detect the presence of perturbations from 200 ms

long windows of single-trial EEG. Class 1 was composed of individual trial windows

during the baseline period (1200 to 500 ms) prior to the onset of perturbation. Class 2

consisted of EEG segments between -200 ms until +500 ms post perturbation onset.

Windows of 200 ms from each of these classes were extracted in a sliding window

manner with a one-sample difference. The data were scaled by dividing by a value

of 100 (µV). The baseline period per trial was selected as class 1, instead of the

resting state, to avoid the model prediction being confounded by impedance change

between the two segments. It further ensures that internal states unrelated to the

perturbations are comparable across the classes.

To increase the sample size for the classifier, trials not involving the exoskeleton

were also included. Therefore, a total of 60 trials of RTC trials were used for training

the model. Trials were randomized and divided into train, test, and validation sets.

15% of trials were divided into validation and 15% into the test set. The data was

divided based on trials and not by random sampling of all the windows. This was

done to avoid any potential data leakage due to the high level of overlap. This ensured

that there was no shared information between the three sets. A total of 5 such held

out sets were created for cross-validation to evaluate the generalizability of the model.

In addition to test accuracy, F-score was also computed for each of the folds.

The architecture for the model is summarized in Fig. 3.3. The input to the model

is the 200 ms EEG window (batch size x 50 samples x 60 channels). The model

consisted of 5 temporal convolution layers of 8 units each (3 x 1 kernel size with a

stride length of 1). A temporal pooling layer of 2x1 pooling dimension with a stride

length of 2 was also used after every pair of convolutional filter layers except the last

block. These should help with the trial-by-trial translational variance of the PEP

components. The output from these convolutional layers was flattened and fed into
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a dense, fully connected layer of 16 hidden units followed by an output layer with

softmax activation.

A dropout layer with alpha = 0.5 was added in between the dense layer and the

output layer to reduce overfitting. Except for the output layer, the model utilized

ReLU as the activation function. An Adam optimizer [122] with a learning rate of

0.0001 was used to train the model. A batch size of 32 and epoch length of 100 was set.

An early stopping condition was set to avoid the model from being overfitted. This

stopped the training if the validation loss did not improve in 5 consecutive epochs. A

re-initialized independent copy of the same model architecture was used for each fold

and subject. The proposed model was implemented in python 3.6 using keras 2.15

[123] wrapper using Tensorflow [124] backend.

The model architecture was selected to better facilitate the GradCAM algorithm

in identifying relevant channels. Most currently available models use a spatial filter in

the early stage of the architecture. If spatial filters are used early on, the deeper layers

can only see a mixed channel (time x number of filters dimension) representation.

GradCAM will not be able to identify the relevant channel distribution. Here, the

emphasis was put on explaining the model decision to ensure the model is indeed

learning from relevant components and not driven by irrelevant signals. To ensure

that prioritizing explainability during architecture selection did not impair decoding

performance, the performance of the model was compared with the DeepConvNet

architecture [72]. The original paper that proposed the DeepConvNet architecture

used a 2-second long EEG, sampled at 256 Hz as input. For the DeepConvNet,

to account for the difference in dimensions the architecture hyper-parameters were

modified to make it compatible with our data. In this study, three blocks were

used instead of four as the window size is not long enough to accommodate the 4th

block. Additionally, to evaluate the impact of denoising, the process was repeated by

training the model used in this study on EEG data prior to ICA cleaning instead of
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the denoised EEG.

Figure 3.3: Model architecture: Each block correspond to different types of layers in
the model. The dotted line is to illustrate the dropout operation during
the training phase aimed at reducing overfit. During inference, all units
were retained.

3.2.6 Explaining the CNN model decision

The model decision explanation was carried out using the GradCAM method [36].

GradCAM is a class-specific explanation technique that identifies relevant regions in

the input that the model used to make the prediction pertaining to a specific class.

The algorithm is explained in Selvaraju et al. 2017 [36]. GradCAM is a generalization

for Class Activation Map (CAM) as CAM limits the CNN to require a global average

pooling layer at the end of the convolutional blocks. GradCAM on the other hand

does not require this. GradCAM computes the gradient of the score of the class of

interest with respect to each of the feature map activations of the penultimate layer

being considered. These gradients are then global average pooled to serve as weights

for the particular feature map. A weighted sum of the feature map activations with

respect to these weights is then computed. These are then are passed through a

ReLU operation to consider only positive values as they contribute to making the

correct prediction. Here, the penultimate layer used is the convolutional layer L5 to

learn channel relevancy. From the model explanations, time-averaged GradCAM is

computed to identify the relevant channels per window.
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Next, k-means clustering was performed on the model decisions. All the correctly

predicted data points across all subjects from the best performing fold (combined

validation and test set) were fed into the clustering algorithm instead of visualizing

hand-selected examples to avoid bias. The distance measure used was squared eu-

clidean with the maximum number of iterations allowed set to the total number of

samples present. The optimal cluster number was selected using the elbow method.

K-means was evaluated for a variable number of clusters ranging from one to 100. The

total within-cluster sums of point-to-centroid distances were computed for each of the

K values. The K values that corresponded to the knee of the curve were selected.

Instead of manually selecting the knee point which could be subjective, the Kneedle

algorithm was used to detect the knee [125]. The parameter S was set to 0 as rec-

ommended in the offline setting in the original paper[125]. The process was repeated

5 times and the average K values were chosen for the final k-means clustering. The

cluster results were then evaluated to assess whether the model was learning from

the PEP components and not being driven by artifacts. The process was repeated

on separate models trained on pre-processed EEG as well as raw EEG without ICA

cleaning.

Post-hoc test to evaluate model explanation with traditional signal pro-

cessing approaches

To evaluate how the network dynamics evolve with time during the PEP, a measure

of dynamic functional connectivity called phase difference derivative (PDD) [126]

was calculated for each trial. PDD is a measure of the stability of phase difference

between two signals. It computes the instantaneous phase of the signal based on the

analytic signal extracted from the Hilbert transform of each of the signals. For phase-

locked signals, the difference in phase remains constant across time, in which case the

derivative of that should be approximately zero. Taking the negative exponent of

55



the derivative further ensures that it is bounded between 0 and 1 with a value of 0

meaning no coupling between the signals. The equation to estimate PDD is

PDDij(t) = exp(−|d∆Φij(t)

dt
|). (3.1)

Here, ∆Φij is the phase difference between signals i and j at time t. The PDD in

the alpha band was calculated by initially band-pass filtering the signal using a 4th

order zero-phase butter worth filter in the band (8-13 Hz). The PDD was estimated

with a center frequency of 10 Hz and a window size of 128 ms. The window size was

selected such that it contains at least one cycle of the lowest frequency of interest

(8 Hz). The measure was estimated from seven channels. Six of the channels were

relevant to the task (based on model explanations from CNN). A seventh channel,

which we expected to be task-independent (TP7) was also evaluated. The PDD

was baseline corrected (w.r.t. -500 ms to -200 ms) to further remove any residual

connectivity across channels that are not task-dependent. The grand average ERP

and PDD were estimated from each of these channels using the same procedure as

described in the section above.

3.2.7 Continuous decoding of COP from EEG

The predictive power of EEG to continuously decode the COP variations in re-

sponse to perturbations was then evaluated. Gated Recurrent Units (GRU) were

used to decode the COP values. Considering the perturbations were solely a back-

ward translation, only the y component of COP was decoded as it had the largest

modulations. To evaluate the ideal model parameters, a hyperparameter search was

performed by varying the number of layers (1 to 3) and the number of units per layer

(8, 16, 32, 64, 128, 256, 512, 1024). This was followed by a dense layer with a ReLU

activation function and the number of units equal to that of the GRU units. The

dense layer was then connected to the output layer with a linear activation function.
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To evaluate the decoding performance, the coefficient of determination (R2 score),

Pearson’s correlation coefficient (R-value) and mean squared error (MSE) metrics

were used [127]. All of these were implemented in python using the Scikit library

[128]. Similar to the classification model, 70% of the trials were divided into training,

15% for validation, and 15% for testing. The GRU model was trained and tested

on five such splits to evaluate generalizability. Here, unlike the classification model,

EEG from 1.2 seconds prior to perturbation onset until 1-second post perturbation

onset was used. Separate models were trained for each combination of participant x

number of layers x number of GRU units x folds. Predicted and actual COP values

were evaluated using the measures on the validation set across all 5 sets to identify

the optimal model hyperparameters. Upon identifying the optimal hyperparameters

for the model with minimal computational cost, the optimized model was evaluated

on the test set to determine final performance values. The models were trained using

the Keras library with the TensorFlow backend. The initial learning rate was set

to 0.001 with the model weights optimized using Adam optimizer [122]. The batch

size used was 128 and trained for a maximum of 200 epochs with an early stopping

condition of stopping the training if the validation loss did not improve in 5 consec-

utive epochs. The GRU was trained to minimize the mean squared error between

the actual and predicted COP values. To further evaluate how the model generalized

when the person was not only blind to the timing but also the type of perturbation,

trials with the same type of perturbations that were randomly present in the RTTC

sessions were also tested.
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3.3 Results

3.3.1 Latency relationship between the signals

Fig 3.4 depicts the grand average response across channels during the exoskeleton

RTC condition. The top row shows the grand average PEP components in the Cz

EEG channel. All the previously reported components of the PEPs including P1, N1,

and P2 are retained while wearing the exoskeleton. In addition, the P1 peak (75 ±

8 ms) and N1 peak (137 ± 12 ms) precedes the peak in EMG (MG: 195 ± 27 ms;

LG: 182 ± 19 ms; TA: 180 ± 14 ms; S: 181 ± 13 ms) which again precedes the peak

in the COP (365 ± 22 ms). The peak of COP is the point at which the participants

start initiating the return to the original position. This indicates that EEG contains

discriminatory information much earlier than the kinematic response which could be

used to detect the balance perturbations.

3.3.2 Detection of balance perturbation using a convolution

neural network

The capability for CNN to detect the PEP components and other underlying

neural representations from single trials alone in a data-driven manner was tested.

The cross-validated results are summarized in Table 3.1. Overall, all the subjects

obtained above chance level (∼ 50%) classification scores. A cross-validated mean

test F score of 74.7 ± 4.5 % was obtained. Subject 4 had the lowest F score of 69.2

± 7.1 % whereas subject 6 obtained the highest F score of 79.8 ± 1.9 %. The same

model was tested on EEG without ICA denoising (Raw) and that model achieved a

higher decoding accuracy (F score = 78.0 ± 5.2).

DeepConvNet yielded a mean test F score of 69.5 ± 4.3. Compared to DeepCon-

vNet, our model performed better. However, we emphasize that the study do not
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Figure 3.4: Between subject grand average latency difference between different elec-
trophysiological and kinematic responses associated with balance pertur-
bation while wearing the exoskeleton. The muscles shown are from the
left leg with the following abbreviations: MG (medial gastrocnemius), LG
(lateral gastrocnemius), TA (Tibialis Anterior), S (Soleus).

claim superiority for the architecture. Instead, this is evaluated only to show that

focusing on architecture by prioritizing model explanation did not compromise model

performance. To make the comparison fairer, randomization of the trials was made

consistent for all models by assigning the same seed per fold.
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Table 3.1: Cross validated performance metrics evaluated on the test set; all numbers
are in percentages; Raw: model trained on EEG without ICA denoising,
Clean: model trained on ICA cleaned EEG, DCN: DeepConvNet trained
on ICA cleaned EEG.

Sub Accuracy F-score
Raw Clean DCN Raw Clean DCN

S1 79.3 ± 4.1 75.2± 3.6 67.3 ± 2.5 79.2 ± 4.0 75.0 ± 3.4 65.4 ± 2.1
S2 72.2 ± 5.4 77.6 ± 6.8 73.3 ± 3.1 72.1 ± 5.4 77.5 ± 6.8 72.7 ± 3.7
S3 77.2 ± 11.5 75.5 ± 3.7 67.0 ± 5.5 77.0 ± 11.6 75.4 ± 3.7 65.3 ± 7.2
S4 84.1 ± 1.7 70.3 ± 5.4 65.0 ± 5.0 84.0 ± 1.6 69.2 ± 7.1 64.0 ± 4.9
S5 74.9 ± 4.2 71.4 ± 4.1 70.5 ± 5.2 74.5 ± 4.2 71.1 ± 4.1 69.9 ± 5.6
S6 81.7 ± 3.9 80.0 ± 1.8 79.8 ± 2.6 81.6 ± 3.9 79.8 ± 1.9 79.6 ± 2.6
S7 76.9 ± 5.3 75.3 ± 4.8 70.7 ± 4.1 76.6 ± 5.2 75.2 ± 4.7 69.7 ± 3.9
Avg 78.0 ± 5.2 75.0 ± 4.3 70.5 ± 4.0 77.9 ± 5.1 74.7 ± 4.5 69.5 ± 4.3

3.3.3 Explaining the CNN model decision

The optimal K value to perform the k-means on the model explanations was

identified as 11 for the model trained on clean EEG and 14 for the model trained

on EEG without ICA cleaning. Fig 3.5 shows the clustering results on the best-

performing fold for both cases. Fig 3.5.a summarizes the clustering performed on the

explanations from the model trained on cleaned denoised EEG. Fig 3.5.b corresponds

to the explanations from the model trained on the raw EEG without ICA cleaning.

The top row in both cases shows the mean relevancy score for the channels in each

of the identified clusters. The middle row represents the distribution of window

latency relative to perturbation onset (w.r.t. the last sample in each window). The

distribution was normalized for visualization purposes. The third row shows the

contribution of the examples in each cluster from each of the 7 participants.

From Fig 3.5.a, it can be seen that none of the clusters were weighing in on the

periphery channels, which are often strongest if driven by artifacts. Almost all clusters

were focusing on the channels in the motor, parietal and pre-motor regions to arrive

at the decisions. From these, clusters C3 and C8 are localized in the Cz channel and

are centered around the time when N1 peaks. Similarly, the parietal channels become
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more relevant both in the early and late stages of the perturbations (C1, C6). The

clusters localizing in the frontal channels (C7, C10) are centered in the latter half

of the perturbation. In multiple clusters, the model is focusing on a broader range

of channels but is still centered around the motor regions (C1, C2, C4, C11). The

largest cluster, C5 had contributions from both the central as well as the parietal

channels. Overall, in evaluating the spatial map distribution, the response is found

to be highly dynamic, involving multiple brain regions varying over time.

To further verify that the model explanation was not biased against detecting ar-

tifacts and that the pre-processing was reliable and significant, the process of training

and explaining the model decisions was repeated on EEG without ICA cleaning. The

clustering results of data with artifacts are summarized in Fig 3.5.b. Even though the

model trained on data without ICA cleaning achieved higher performance (F-score:

78 ± 5.2), evaluating the model explanations, it was observed that the model was

learning the artifacts for decoding purposes. The model learned to detect the bundle

artifacts indicated by alternative localized channel relevancy (C3, C6, C13) as well

as started giving more relevance to the peripheral channels (C3, C5, C8, C10, C11,

C12). These were absent in our pre-processed data.

Post-hoc test to evaluate model explanation with traditional signal pro-

cessing approaches

The variability of the dynamic measure of the functional connectivity ∆PDD is

shown in Fig 3.6. The parietal and parietal-occipital channels that are heavily re-

ported to be involved with sensory processing have increased connectivity in both the

start and end of the perturbations. The variability in the motor channels particularly

the Cz is centered around the N1 peak. The FCz on the other hand has an increase

in connectivity relative to other channels soon after the N1 peak as well.

In addition, the connectivity strength of the Cz, C2, and FCz channels is high
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Figure 3.5: Clustering result of the model explanations from the highest performing
fold.

w.r.t. the frontal and parietal channels prior to the perturbations suggesting antici-

patory mechanisms. TP7 which is task-irrelevant does not appear to have significant

activity throughout the duration of interest.
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Figure 3.6: The difference in alpha band PDD w.r.t. -500 to -200 ms prior to the tri-
als. Each column corresponds to connectivity w.r.t. one specific channel.
The top row indicates how the alpha band ∆ PDD of all other channels
w.r.t. the channel of interest changes with time. The bottom row is a
grand average PEP for the channel of interest.
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3.3.4 Continuous decoding of COP from EEG

From the model explanation results and the PDD analysis, it was observed that

there are dynamical changes in response to perturbations with time. Additionally,

from the PEP, it is clear that distinct PEP components exist at varying latencies.

With this in mind, the possibility to estimate the variation of COP associated with

balance perturbation from EEG was tested. Initially, the cross-validated grid search

identified the optimal hyperparameters for the GRU architecture. Fig 3.7. A) shows

the distribution of R-value, R2 value, and MSE losses for all combinations of the

hyperparameters used. After the hyperparameters were selected based on the perfor-

mance metrics evaluated on the validation set, the optimized model was tested on the

held-out test set. The performance measures are summarized in table 3.2. Evaluating

the violin plot, the number of layers was found to be not critical here. The perfor-

mance initially increases with the number of units but starts decreasing/saturating

after 256 units. Considering this, the number of layers was chosen as one and the

number of units to be 256. The model was then trained using these architectural

choices.

The final optimized model yielded an across subject mean R-value of 0.7 ± 0.06,

R2 score of 0.48 ± 0.1 on the test set ( RTC - random timing alone), and a mean

R-value of 0.64 ± 0.03, an R2 score of 0.41 ± 0.05 on the RTTC test set (random

timing + type). Participant 6 had the highest decoding performance with an R-value

of 0.85 ± 0.06 and an R2 value of 0.7 ± 0.4 on the test set. Participant 1 had the

lowest decoding performance with an R-value of 0.45 ± 0.08 and an R2 value of 0.13±

0.13 on the test set. Fig 3.7b. shows the continuous sample-by-sample decoder results

corresponding to the best fold from the worst-performing participant (S1). Fig 3.7c.

shows the continuous point-by-point decoder results corresponding to the best fold

from the best performing participant (S6).
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Table 3.2: GRU decoder performance metrics on the test set.

Subject Correlation
(RTC)

R2-Score
(RTC)

Correlation
(RTTC)

R2-Score
(RTTC)

HS1 0.45 ±0.08 0.13 ±0.13 0.33 ±0.06 0.07 ±0.06
HS2 0.76 ±0.03 0.54 ±0.07 0.81 ±0.02 0.65 ±0.03
HS3 0.71 ±0.06 0.47 ±0.14 0.8 ±0.02 0.63 ±0.04
HS4 0.56 ±0.06 0.29 ±0.08 0.37 ±0.06 0.07 ±0.06
HS5 0.81 ±0.05 0.64 ±0.09 0.76 ±0.04 0.56 ±0.06
HS6 0.85 ±0.06 0.7 ±0.1 0.74 ±0.02 0.51 ±0.02
HS7 0.78 ±0.04 0.59 ±0.08 0.64 ±0.03 0.34 ±0.06
mean ±s.d. 0.7 ±0.06 0.48 ±0.1 0.64 ±0.03 0.41 ±0.05

3.4 Discussion

This study investigates whether the PEP components would be preserved when a

user wears an unpowered exoskeleton. It was found that all the components of the

PEP were preserved and that the latency of the P1 and N1 wave preceded that of

EMG and kinematic response peaks. This suggests the P1 and N1 components are

a viable signal for fall prediction and prevention in exoskeletons. Fall detection in

exoskeleton systems is limited and latencies are often too long to be pragmatic in

real-world applications. A system detailed in Monaco et al. [114] identified balance

perturbation while walking at 350 ms based on hip joint angles. It was also observed

that the kinematic response from balance perturbation (while standing) peaked at ap-

proximately 350 ms. Comparatively, muscular activity peaked earlier than the COP.

Also, PEP components appear as early as 75-137 ms in response to the perturbations.

This provides us with a much longer window to perform actions to prevent/reduce

fall-related injuries than relying exclusively on temporal kinematic features of the

perturbation response.

In a recent review, Varghese et al. suggest that P1 is the earliest non-specific

cortical response to a perturbation [88]. They argue that the P1 is not related to the

context of the balance perturbation task, and does not contain information related
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Figure 3.7: a) Performance measures evaluated on the validation set for varying hy-
perparameters for the GRU architectures. Each row corresponds to differ-
ent evaluation metrics; b) decoded COP from the best performing subject
(test set, RTC condition); c)decoded COP from the lowest-performing
subject (test set, RTC condition).

to the predictability of the perturbation or whether the perturbations are internally

or externally induced. It is the earliest exogenous cortical response driven by the
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somatosensory input typically in the range of 0.2-12.7 µV [88]. Compared to P1, N1

is a significantly larger component distributed across the central, frontal, and pari-

etal channels at a latency of 100-150 ms [86],[87]. Prior studies have reported the

N1 peak to be as high as 60 µV, localizing in the Cz or FCz channels [86]. Unlike

P1, N1 potential has been shown to not just be influenced by afferent signals. In-

stead, it is also influenced by the predictability and difficulty of the balance task,

[129],[130] as well as the presence of competing cognitive tasks [131]. This suggests

a higher-order cognitive processing role [87]. Typically, EEG data are trial-averaged

to improve signal-to-noise ratio from event-related potentials. After confirming that

PEP components were preserved while wearing the exoskeleton, it was determined

that perturbations can also be detected from single-trial EEG. This is a crucially

important step towards the real-time detection of perturbations. In real-world appli-

cations, decoding must occur in real-time. Studies decoding PEP components from

single trials are rare and only find one study examining the feasibility was identified

[116]. However, that particular study was conducted in a seated condition with a

whole-body perturbation and did not examine standing or the use of an exoskele-

ton. No previous studies that target decoding PEP components from single trials in

neither standing nor with an exoskeletal suit were found.

Initially, a CNN model was used to check if the presence of balance perturbation

could be detected from single trials. The architecture of the CNN-based decoder was

selected considering the usability of the gradCAM approach. GradCAM was chosen

specifically because many of the other saliency methods were mentioned to be un-

reliable and GradCAM was known to be one of the most robust model explanation

methods [78]. The performance was compared w.r.t the DeepConvNet [72] model.

However, this study does not claim the superiority of the used model architecture

or the decoder. The optimization of hyperparameters for both models was not per-

formed, as that is outside the scope of this study. Here, the evaluation is done to

confirm the existence of predictive power to detect balance perturbation on a single
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trial basis and further ensure the model architecture used for prioritizing explain-

ability is comparable to existing architectures. Subject S4 had the lowest decoding

performance. During the experiment, this participant reported having congenital nys-

tagmus. There exist a possibility that the PEP might have been corrupted by sudden

eye movements and gotten removed during the pre-processing or there may be a

difference in the PEP response either of which could cause a reduction in decoding

performance.

It was also demonstrated that the CNN model used to detect perturbations was

primarily driven by PEP components and not by artifacts. Unlike prior studies that

reported few hand-selected examples to demonstrate model explanation, a cluster-

ing approach was employed in this study to visualize the model explanation of all

the windows from the test and validation set. Model explanations in deep learning

studies on EEG are rare. There are only a few (∼ 1.5%) studies that explore the

interpretability or explainability of the model used [9]. It is very important to assess

whether the outputs of deep learning models are driven by artifacts or PEP signals.

This is even more critical considering that the majority of the published studies using

deep learning methods currently do not handle the artifacts. A recent review by Roy

et al reported that only 23% of studies performed artifact handling [9]. A similar

review by Craik et al. [8] reports 63 % of studies did not preprocess the EEG for clas-

sification tasks. As seen from this study, even though the prediction score is higher

when using the model trained on EEG without ICA cleaning, many of the decisions

were driven by artifacts.

Examining the outputs gave further confidence that the artifact handling pipeline

was successful. When the model was trained on data that was not pre-processed,

it was biased by artifacts as shown in figure 3.5b. The CNN started learning from

bundle artifacts (C3, C6, C8, C13) and also emphasized peripheral channels more
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prominently (C5, C8, C10, C12). However, these were not present when the pre-

processed data was used to train the model. The study thus highlights the need for

providing model explanations in deep learning studies involving EEG, as context is

important to assess the main factors behind different decisions. This study also shows

how using the data-driven approach coupled with model explanations can help reduce

the number of channels required for the decoder. Here, the number of channels was

reduced from 60 to 8 without compromising the decoding accuracy.

In addition, from the model explanations shown in 3.5a., it was observed that de-

pending on the position of the window being considered relative to the perturbation

onset (middle row), different channel combinations become most relevant. Channels

in the parietal, and occipital regions were the most relevant in the earliest and the

latter part of the perturbation onset (C1 and C6). Between 100-300 ms, the model

shifted relevance to motor channels (C3, C5, C8). From 200-300 ms, the model was

prioritizing the parietal and fronto-motor channels (C1, C2, C4, C7, C10, C11). This

suggests the dynamic recruitment of different brain regions in response to the balance

perturbation. The model explanations are in agreement with prior works that demon-

strated the significance for these regions in balance perturbation tasks [132],[88],[133].

Further exploring these dynamics by computing a measure of dynamic functional con-

nectivity (PDD) similar effects were observed. Specifically, the nodal connectivity was

higher in the occipital-parietal region in the early stage of the perturbations, shifting

to the motor, then to frontal, and back to the parietal channels.

Given these dynamics, it was expected that the EEG would have the information

to be able to continuously decode the instantaneous COP variation. This was vali-

dated using a GRU model to decode continuous COP responses from single-trial EEG.

It was demonstrated that the GRU model was able to decode, on a sample-by-sample

basis, the COP variability from EEG alone for all participants. Evaluating the hyper-

parameters, it was observed that the number of layers did not contribute significantly
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to the model performance, which is in agreement with prior work [127]. However, the

number of hidden layer units does impact the model significantly. This effect appears

most noticeably in the variance across different folds. Comparing the three metrics,

a U-shaped relationship was observed between the number of units and the decoding

measures, with the performance peaking at 128 or 256 units. The variance was higher

with a smaller number of units, suggesting lower predictive power in small models

yields poor performance on out-of-distribution data. The variance again increased

for large values of hidden units, mostly indicating the tendency towards overfitting

to the training data. The selection of an appropriate number of hidden units per

layer seemed to be the most critical model hyperparameter. Additional tests were

conducted on similar types of trials (i.e. the backward perturbations described above)

which were randomly introduced in between variable types of perturbations that in-

cluded toes up, toes down and forward translations. There was a slight reduction

in performance in this condition potentially resulting from additional cognitive pro-

cesses required to anticipate both the timing and the type of perturbations. The

decoding score across all participants exhibited good performance (R-value greater

than 0.5), except for participant 1. Participant 1 consistently opted for a specific,

non-stereotypical strategy to counteract the perturbation. However, it was noticed

that the strategy used by this participant was not working effectively as the partic-

ipant had the greatest difficulty restoring postural equilibrium. It is possible that

the strategy chosen by this participant conflicted with the variable nature of the

perturbation, and led to poor decoding.

In summary, relevant components in PEPs were detected as early as ∼ 75-137 ms

after the onset of a mechanical external perturbation. These components preceded

both the peak in EMG activity (∼ 180 ms) and the COP data (∼ 350 ms). It

was observed that the perturbations could be decoded from single-trial EEG using a

CNN model. Also, it has been demonstrated that the model was driven primarily by

relevant components in the PEP to infer the predictions and not by artifacts. The
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model explanations further aligned with the dynamic functional connectivity measure

estimated using PDD. Moreover, the feasibility of decoding continuous COP values

from the EEG using a GRU model was established. Overall, the findings suggest that

the EEG signals contain short-latency neural information related to an incoming fall,

which may be useful for developing brain-machine interface (BMI) systems for fall

prevention in neurally-controlled robotic exoskeletons.
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Chapter 4

Motor Imagery: through the Lens of a

Convolutional Neural Network

4.1 Introduction

The ability to decode motor intent from brain activity to control external devices

is the core principle behind the application of many of the Brain-Computer Interface

(BCI) systems being developed. There exist different paradigms of BCI depending

on the source of control signals used. Many of the signals are generated without

conscious intent in response to external stimuli called evoked signals [134]. Evoked

responses could be elicited by visual stimuli such as Visual Evoked Potentials (VEP,

SSVEP), or sensory-based evoked responses like Somatosensory Evoked Potentials

(SSEP). It could also be evoked signals in different odd ball paradigms such as P300

which occur when a participant is exposed to infrequent/odd stimuli [135]. Motor im-

agery (MI) on the other hand is the act of mental rehearsal of a motor action without

any overt movement. MI is said to result from a ’conscious attempt of accessing the

contents of intending to move which are typically done when one engaged in move-

ment preparation unconsciously’ [136]. BCI based on MI is one of the most common,

yet probably one of the most difficult BCI tasks available. Studies have reported that

over 15-40% of the participants are unable to control the BCI based on MI [137],[138].

This challenge of "BCI Illiteracy" still remains one of the biggest research challenges

in EEG-based sensorimotor BCI [139]. There are many reasons for the inefficiency to
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control the BCI using imagery. It could be state-dependent, as decoding could de-

pend on the attention state, fatigue, frustration, or other psychological factors. [140].

Unfamiliarity with the technology could be another factor as participants would need

to become familiar with and learn the internal model of the external device being

controlled by the BCI in the first place [141],[142]. For another group of participants,

the cause could also be physiological. There exist the possibility that the neuronal

population contributing to the motor imagery could be localized in the folds of the

brain and the sensors on the scalp would be unable to pick them up [143]. However,

one important reason which is not emphasized enough is the sensor configuration,

neural features, and the decoder itself that is used for the decoding purpose. Con-

sidering that targeted signals in most decoders are sensorimotor rhythms, typically

the EEG sensors and the decoders localize on the sensorimotor region for training

the decoders. A recent review paper looking into deep learning studies on MI also

identified that majority of the studies do localize on the sensorimotor region [10]. Fig

4.1, summarizes some of the most commonly used configurations in the studies. BCI

competition is one of the most popular MI-based BCI datasets currently available.

BCIC IV 2a [144] localizes in the sensorimotor region in a diamond configuration and

occupies 37 % of MI studies that use deep learning. Similarly, BCIC IV 2b [145] and

BCIC II [146] use a 3 channel configuration and together occupy an additional 43%

of studies. A significant proportion of studies limit their channel to the configuration

resembling the third column [10]. This assumes that when the participants are di-

rected to perform motor imagery, everyone recruits a single strategy to achieve that.

However, this might not always be the case. It could also be due to communication

problems between the experimenter and the participant. Not being able to articulate

the requirements of the BCI well or how they respond to the instructions could cause

variability in how they engage with the BCI.

To address some of the challenges above, this study proposes a data-driven ap-

proach to study the underlying brain dynamics of motor imagery. Here, without
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Figure 4.1: The channels used in the majority of deep learning studies looking into
motor imagery. The percentage values are obtained from [10].

hand-selecting the channel configuration or the neural features, whether the deep

learning model can identify the different strategies used by individuals were tested.

Later, how these model explanations can improve the BCI decoders were also evalu-

ated.

4.2 Methods

4.2.1 Dataset

For replication purposes and to include data from a large sample of subjects, the

MI data collected by Lee et al. [147] was used in this study. It consisted of 62

channel EEG sampled at 1000 Hz, collected from fifty-four healthy individuals (age:

24-35 years, 25F). Thirty-eight subjects were naive BCI users whereas the others had

prior experience working with BCI experiments. The data was collected using the

BrainAmp system (Brain Products, Munich, Germany) referenced to the nasion, and

grounded with respect to the AFz channel. The electrode impedance was kept below

10 Kohm. Each trial consisted of 3 seconds of looking at a black fixation cross at the

center of the screen. Then an arrow appears for 4s pointing left or right directing
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the participants to perform hand imagery by imagining grasping the respective hand.

Each trial ended with a rest period of 6 ± 1.5 s. A total of 100 such trials on two

separate days/sessions were recorded. In the original data, they trained a model on

the training set and tested it with real-time visual feedback during a test set that

included 100 additional trials. To avoid confound related to decoder-specific BCI used

in that study, the test trials are not included here. The experimental design for an

individual trial is summarized in Fig 4.2

Figure 4.2: Motor Imagery experimental design for an individual trial.

4.2.2 Pre-processing

The 62 channel EEG was initially down-sampled to 250 Hz for computational

efficiency. Later the signals were high pass filtered using a 4th order Butterworth

zero-phase filter to reduce the drift artifacts. The cutoff frequency was set to 0.3 Hz.

The data was then fed into an IIR notch filter with a Q-factor of 20 to remove 60 Hz

line noise. The EEG was then decomposed into the independent components using

the Infomax algorithm [148]. The artifactual IC’s were then removed an automated

process using the ICLabel toolbox. The thresholds for rejection were as follows:

Ocular (60%), Muscule (50%), Heart (70%), Linenoise (70%), Channel noise (60%),

or if the identified percentage for Brain is < 10 %. After denoising the EEG per

session, the trial data is Z-scored w.r.t. to 6s window prior to each trial. Later,

the continuous trials data during the MI task is segmented into 1.5 s long windows
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with an overlap of 40 ms. All the pre-processing steps were implemented using the

EEGLAB library[121]. The pre-processing flowchart is summarized in Fig 4.3

Figure 4.3: The pre-processing flowchart used to remove the artifacts and prepare the
data for classification.

4.2.3 Convolutional Neural Network

The architecture for the model is summarized in Fig. 5.3. The input to the

model is the 1.5 s EEG window (batch size x 375 samples x 62 channels). The model

consisted of 5 temporal convolution layers of 32 units each (5 x 1 kernel size with
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a stride length of 1). A temporal pooling layer of 2x1 pooling dimension with a

stride length of 2 was also used after every convolutional filter layer except the last

two blocks. The output from these convolutional layers was flattened and fed into

a dense, fully connected layer of 32 hidden units followed by an output layer with

softmax activation.

A dropout layer with alpha = 0.5 was added in between the dense layer and the

output layer to reduce overfitting. Except for the output layer, the model utilized

ReLU as the activation function. The proposed model was implemented in python

3.7 using Pytorch library [81].

Figure 4.4: Model architecture: Each block correspond to different types of layers in
the model. The dotted line is to illustrate the dropout operation during
the training phase aimed at reducing over-fit. During inference, all units
were retained.

4.2.4 Training the CNN

The CNN was trained to classify between left hand and right-hand motor imagery.

A 5-fold cross-validation was performed to estimate the mean decoding performance.

A re-initialized independent copy of the same model architecture was used for each

fold on a per subject basis. An Adam optimizer [122] with a learning rate of 0.001

was used to train the model. A batch size of 128 and epoch length of 100 was set.

An early stopping condition was set to avoid the model from being over-fitted. This

stopped the training if the validation loss did not improve in 10 consecutive epochs.
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To ensure reproducibility and consistency Numpy, Pytorch and Cuda random number

generator were all seeded by the fold number.

4.2.5 Model Explanation

To identify the segment of EEG the CNN looked at to arrive at the correct pre-

dictions pertaining to each class of interest, Deeplift based model explanation was

applied for all correctly predicted data points in the validations set [35]. Deeplift

assigns the relevancy to the input data points by backpropagating the contribution

of the output activation to the input and comparing the activation w.r.t. a reference

set and the relevancy is assigned as a function of this difference w.r.t. the reference.

Here, the reference/baseline input used is an input of zeros as was done by Lawhern

et al. 2018 [65]. Once the model explanation was extracted from each of the data

points, instead of hand-selecting individual data points, a clustering approach to pool

the model explanations from all the participants was used. Initially, the individual

explanations were time-averaged to get the scalp relevancy maps. Then, to make the

explanation’s scale comparable, the data was normalized by dividing by the maxi-

mum absolute relevancy per explanation. Later, the normalized explanations from

all the subjects across all the folds from the validation set were combined to be used

for clustering using k-means clustering. The process is summarized in Fig 4.5.

Figure 4.5: Clustering flowchart: The figure summarizes the clustering flowchart to
pool the explanations across subjects.

Clustering was done separately for each of the classes. To estimate the ideal

cluster number, the k-means were estimated iteratively from K = 1 to 54. Instead of
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manually selecting the K values, the Kneedle algorithm[125] was used to estimate the

Knee of the curve. The knee was extracted from the curve corresponding to the mean

within-cluster distance for each of the k values. The knee point was then identified

by the Kneedle algorithm. The process was repeated 10 times and the mean K value

was selected for the final clustering.

4.2.6 Impact of channel selection

To evaluate the impact of channel selection, a separate model looking at EEG

from a subset of channels in the sensorimotor region as in Fig 4.1.c was trained. The

channels selected were FC5, FC1, FC2, FC4, FC6, C5, C3, C1, C1, C2, C4, C6, CP5,

CP3, CP1, CP1, CP2, CP4, CP6. The change in accuracy w.r.t. using all the channel

montage was then compared.

4.3 Results

4.3.1 Individual subject model training

For the individual intra-subject model trained on each subjects data alone, a mean

cross-validated test accuracy of 60.7 ± 10.2 % was obtained with subject 36 having

the highest accuracy of 89.3 ± 3.7 % and subject 34 had the lowest accuracy of 46.7

± 4.8 %. The chance level was 50 % as the cross-validation split was done ensuring

an equal number of trials and windows from both classes were preserved in all the

folds and sets. The distribution of decoding performance for each individual subject

across the folds arranged in increasing order of mean test accuracy is summarized in

Fig 4.6
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Figure 4.6: The distribution of test accuracy across the 5 folds for each individual
subject, arranged in increasing order of performance. 50 % is the chance
level of decoding.

4.3.2 Model explanation analysis

The optimal K value was identified to be 8 per class. The clustering results are

summarized in Fig 4.7. The top two rows correspond to the right-hand motor imagery

and the bottom two rows correspond to the left-hand motor imagery. The histogram

is sorted in increasing order of accuracy. Each bin corresponds to the percentage of

data from the particular subject in that cluster. The bin in the right would correspond

to the top-performing subjects and the bin in the left would correspond to the low

performing subject. Cluster 6 in the RH and cluster 5 in the LH group is localizing

in the channels over the motor cortex, which is over the area of the cortex with hand

representation. It is localizing the region and by further evaluating the histogram, it
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was found that subjects in that cluster are also the top-performing subjects. Similarly,

C1 (RH), C7(LH) is also focusing on the channels on the sensorimotor region.

However, it was observed that multiple clusters primarily localize in non-motor

regions like C2, C4 in LH, and C2, C4 in RH. These are focusing on either the parietal

or the occipital channels or both. Cluster C8 on the other hand seems to be focusing

on the temporal channels and they correspond to some of the low-performing subjects.

Figure 4.7: Cluster representation summarizing the different subset of network con-
figuration the model focused to arrive at the correct prediction for each
of the classes. The histograms are sorted in increasing order of decoding
accuracy. They represent the percentage of each subject that belongs to
that particular cluster.

4.3.3 Impact of channel selection

Figure 4.8 shows the distribution of the difference in decoding performance when

using the motor only channels w.r.t. using all the channels.
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Figure 4.8: Distribution of difference in decoding performance for when using senso-
rimotor montage vs using all the channels for each cluster. * indicates
statistically significantly different from zero for p < 0.05.

Each violin plot corresponds to this distribution in the respective cluster. The

subjects are considered only if the cluster contains at least 12.5 % of their data which

is the chance level for 8 clusters. For subjects who are in cluster 2 in either of the

class, the decoding is statistically significantly and consistently lower (p < 0.05) if the

motor channel montage alone is used (RH: p = 0.008, LH: p = 007). On the other

hand, subjects in cluster 1 in RH and cluster 7 in LH perform better when using

the motor region montage. The difference in accuracy for the subjects when using

motor channels alone in these clusters were statistically significantly higher compared

to using all the channels for p < 0.05; C1 (RH): p = 0.02, C7 (LH): p = 0.04. Cluster

4 and 5 for RH and which had relevant channels outside of the motor-only channels

had a lower median accuracy compared to using all channels. However, it was not

statistically significantly lower.
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4.3.4 Cluster specific training

To further evaluate whether the model explanations could be used to improve the

decoding performance of individual subjects, the clusters that localized in the motor

channels (C6- RH and C5 LH) were selected. Later, subjects whose 50% or more data

belonged to either of these clusters (N = 10) were identified. A separate reinitialized

model with the same configuration was pre-trained using the data from all these

selected subjects. Later the pre-trained model was fine-tuned for each subject with

> 12.5 % of their data represented in the cluster (N = 15). Evaluating the decoding

performance, it was observed that doing the fine-tuning significantly improved the

decoding compared to training on individual subjects (P < 0.05) as depicted in Fig

4.9c.

It was important to know if the decoding will be good if the base model was

trained on 10 subjects selected randomly or if it is specific to pre-selecting the sub-

jects. Training on randomly selected subjects had a median decoding performance

drop and was significantly lower than cluster-specific training (P < 0.05) fig 4.9c.

Later, it was evaluated whether training on all the subject’s data would improve the

decoding similarly. It was found that doing so did end up significantly improving the

decoding w.r.t. training on individual models but the median accuracy was still lower

compared to training on cluster-specific approach. However, the difference between

using all the subject’s data and cluster-specific training was non-significant at p <

0.05 . To evaluate the possibility that the non-significant reduction in decoding could

be caused by the inclusion of very low performing subjects upon training on all sub-

jects data, the process was repeated by only including subjects with accuracy > 60%.

Interestingly, it was found that doing so led to a further drop in decoding accuracy.

This suggests the relevance and need for identifying participants who share similar

strategies and using that to selectively train the models. To further evaluate the

performance difference with more detail, the difference on a subject-by-subject basis
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Figure 4.9: Performance difference w.r.t different pre-training strategies. a: difference
in decoding performance w.r.t. training on the subjects data alone; b:
difference in decoding performance w.r.t. training on all the subjects
data; c: baseline difference in decoding performance for each individual
arranged in increasing order of accuracy; d: distribution of data from
each subject in either of the selected clusters; e: distribution of change in
decoding performance w.r.t. training on individual subject’s data alone.

was evaluated. Fig 4.9a-d gives a detailed illustration of a performance differences in

each of the subjects in the cluster. Here, using either all the subject’s data or cluster-

specific training improves training in most subjects. Interestingly, compared to either

using all the subject’s data, or the subjects with >60% decoding accuracy, using the
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cluster-specific approach is consistently better for all the top-performing subjects.

For the low-performing subjects, both the cluster-specific approach and using all the

subject’s data still improves the decoding compared to training on individual subject

data. However, using the data from all the subjects seems to work better for these

participants than the cluster-specific approach.

4.4 Discussion

BCI provides a means of interaction with an external device or to communicate

using brain activity. However, prior studies have shown these do not work for all

subjects often leading to a subset of individuals being labeled as "BCI illiterate".

Previous studies have shown that various solutions such as improved signal process-

ing, additional feedback sessions, more number of sessions, providing instructions

differently etc have resulted in improving decoding [143] in people who are labeled

under the "BCI illiteracy" category. However, currently, the different strategies used

are applied to all the individuals purely based on decoding performance value. This

study offers a possible alternative- by using the model explanation approach, a data-

driven approach can be used to identify different strategies or a subset of individuals.

Using this information, BCI illiteracy could be reduced. Model explanations could

throw some insights into why some individuals perform better compared to others,

why some respond to specific feedback training whereas others do not etc. This study

identified that for some of the subjects the most relevant channels are not in the sen-

sorimotor regions perhaps indicating the use of alternative non-MI strategies. This is

important as most of the existing BCI on MI extract specific features from a subset of

channels in the sensorimotor regions. When individuals are labeled as BCI illiterate

based on an arbitrary set decoding threshold [138], at least some of them may fall

under this category, as they might be eliciting a different strategy/channel config-

uration. This was observed in our analyses as well with subjects having relevancy
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localized in the occipital-parietal regions, their decoding is consistently lower when

using channels in the motor cortex compared to using all the channels. Some of them

might be using visual imagery instead of motor imagery. A study by Stinear et al.

showed that corticomotor excitability is modulated only in kinesthetic imagery and

not visual [149]. Similar a study by Neuper et al demonstrated that visual motor

imagery did not elicit any clear spatial pattern in the sensorimotor hand area [150].

When only performance accuracy or a particular signal or interest (e.g. ERD/S in

the motor channels [151]) is considered, the absence of signal or low decoding could

partially be accounted for by the fact that they could be using a different strategy.

Instead of labeling them to be BCI-illiterate, trying to personalize and diagnose the

reason for poor performance would be critical to the advancement of BCI adoption

and development. Using model explanations in a data-driven manner as done here

provides more context than just a simple number to cluster individuals. This would

allow a better evaluation of the effectiveness of different types of interventions and

decoders.

Evaluating the cluster explanations, it was identified that some of the model ex-

planations were localized in the inferior parietal regions. In a lesion study, Schwoebel

et al. showed that people with parietal lobe lesion was unable to predict the sensory

outcome or the time required to complete the hand movement. They were unable to

prevent overt movement during the motor imagery [152]. Another study involving

TMS stimulation showed that the right inferior parietal lobe (rIPL) conditioning 6

ms prior to M1 stimulation facilitated the motor evoked potentials (MEP), whereas

the facilitation was abolished during mental rotation. Similarly, the corticimotor ex-

citability was suppressed during MI [153]. This suggests the parietal lobe play the

role of movement inhibition and in terms of motor imagery that reflects to preventing

the hand from moving during imagery. For some of the participants with distribution

prevalent in the cluster localizing parietal and non motor channels, they might be

engaging in a strategy to avoid hand movement, than focusing on the kinesthetic
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imagery. Follow-up questionnaires and experimental design based on the model ex-

planations might shed more light on the strategies used by these individuals.

This study also showed that pooling individuals with similar scalp relevancy and

pre-training the subject independent model trained on this subset of individuals im-

proved the decoding performance of the subjects. The decoding performance was

significantly better than training on a random subset of the same number of subjects.

It was found that the training on data from all the subjects had lower median accu-

racy and also higher variance but was not significantly different. Assuming this to be

caused by the inclusion of very low performing subject’s data bringing the decoding

lower, the model was retrained using data from subjects with 60% and above decoding

accuracy alone. Interestingly, this brought the decoding even lower. This suggests

the improvement is not associated with removing the low-performing subjects but the

potential benefit of identifying subjects with similar strategies prior to pooling. Later,

to better understand the cause of non-significant reduction in decoding when using all

the subject’s data compared to subject-specific approach, the change in performance

at an individual level was explored. Here, it was observed that the top-performing

subjects consistently performed better when using the cluster-specific fine-tuning com-

pared to using data from all the subjects. However, the low-performing subjects who

also have a low percent of points in those clusters benefit from pooling data from all

the subjects. Even though the performance improved in them while using cluster-

specific approach, the accuracy was better when using all subject’s data. This could

come from the fact that windows corresponding to the mean cluster distribution was

low in these subjects and they might not have a strong consistent pattern. For them,

using all the subjects could help them learn more variable representations eventually

providing additional benefits. On the other hand, doing so in top-performing sub-

jects, who have a clear strategy would have the opposite effect. Since they have a clear

and strong signal, adding variability and subjects using different strategies would be

detrimental and confuse the decoder. For them, they would prefer to have subjects
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who share a very similar strategies. Therefore, using model explanation, personalized

model improvement especially for high-performing subjects could be done.

In conclusion, this study shows how model explanation could identify the un-

derlying scalp representation of motor imagery in a data-driven manner. Without

providing any prior domain knowledge, the model was able to localize channels in the

sensorimotor region to be the most critical in decoding. They also identified a subset

of individuals who did not engage these regions whereas they clearly localized chan-

nels in the occipital-parietal regions. The model explanation could be used to identify

potentially different strategies used by individuals and how limiting channel montage

to the sensorimotor region might not be ideal for all participants. Moreover, the clus-

tering approach using model explanation improved the decoding in high-performing

subjects. Overall, the explainability approach can lead to personalized measures of

handling BCI illiteracy and potentially provide insights into why specific individuals

respond to certain interventions compared to others.
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Chapter 5

Susceptibility of Deep Learning based

BCI Decoders to Eye Blink Artifacts

5.1 Introduction

Brain-Computer Interfaces (BCI) are systems that allow an individual to control

different end effectors using his/her brain activity. Electroencephalography (EEG) is

a commonly used modality for non-invasive control of BCI. These systems typically

involve a multi-stage process starting with data acquisition, followed by pre-processing

to clean artifacts. The task-specific features are then hand crafted from these de-

noised signals which are then fed into a classical machine learning model. With the

recent advancement of computational tools available, the decoders used to develop

such systems have been replaced with more sophisticated yet data-driven models like

convolutional neural networks and other deep learning models. These models have

been shown to improve the state-of-the-art decoding performance compared to regular

linear models. However, a significant amount of studies employing deep learning,

currently do not address the artifacts present in the data. The total percentage

of studies as high as 67 % [8] to 77 % [9] either do not handle artifacts or report

whether they de-noised in their studies. This is even worse in studies focused on

motor imagery being as high as 85 % [10]. This is further exacerbated by the fact

that less than 1.5 % of studies [9],[8] employ some form of interpretability in their

analysis making it difficult to assess whether the model has learned to avoid artifacts

or not. There exist some studies that use deep learning either to detect artifacts or
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solely artifact removal [154]. However, there are no systematic studies that evaluate

how a deep learning model trained on an end-to-end basis handles artifact. One

commonly observed artifact which would be present independent of the task is eye

blink artifacts. This is particularly important and relevant since blink artifacts in

EEG are typically much higher amplitude compared to the background brain activity.

Considering CNN’s are data-driven model that can be thought of as a model that

looks for distinct patterns in the data, how they handle these high amplitude events

is surprisingly not discussed in the literature.

This study uses synthetic (simulated) eye blink data to systematically vary the

rate of eye blinks added to single-trial EEG data. To simulate the eye blinks, many

of the prior studies have made use of simple exponential functions to approximate

the blinks. However, these do not capture the complete morphology of the blinks.

Considering this, the researchers used real blink data as a source-level signal and

forward projected them using the leadfield matrix using the SEREEGA toolbox [82].

This allows us to precisely control the proportion of blinks in the trials and how

they bias each class. Even though the current analysis is limited to eye blinks, the

proposed framework could be used to study the impact of different kinds of artifacts.

5.2 Methods

5.2.1 Simulation

The flowchart for generating the simulated eye blinks is shown in Fig 5.2. The

blink waveform was extracted from the EOG data collected from the BCI competition

dataset [145]. The EOG was collected from the nasion location sampled at 250 Hz

from a total of 9 subjects. Each subject participated in a total of two sessions recorded

on two separate days. Each session consisted of a total of 120 trials of MI. This dataset
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was used only for extracting some real blink waveforms to be added as source signal in

the SEREEGA simulation framework [82]. The data was initially band pass filtered

between 1-30 Hz. An IIR notch filter at 50 and 100 Hz was employed to remove line

noise and its harmonics. In some datasets, there were a few bad segments consisting of

high amplitude deflections which were initially removed manually. To reject outliers in

peak detection, blinks were screened by passing the data through the blinker algorithm

[155]. The algorithm compares different morphological attributes of blink to reject

outliers or non-blink peaks. The filter parameters in the algorithm were set to 1-20

Hz filtering, blinkAmpRange set to [3,20], blinkfits correlations greater than at least

0.99. Later, 3.8 s long EOG (same as MI trial window used), centered around the

blink was extracted. The latency of the blink inside the window was sampled from a

normal distribution centered at 1.2± 0.2 s. In addition, adjacent blinks separated by

at least 1.5 seconds were only retained to ensure maximally one blink is present in each

window and that blinks do not overpower the window. The blinks were normalized by

the positive peaks and windows of blinks wherein the maximum negative deflections

are greater than 0.5 were also removed to reject any outliers. The extracted waveform

was then used as an activation signal for dipoles to simulate eyes. The signal from

these dipoles would then be forward projected to the scalp to replicate blinks.

Since none of the existing leadfield matrices include dipole locations outside the

brain or replicate the eye locations, 3 dipoles were selected such that when the ac-

tivity of the dipole was projected, the scalp projection simulates that of eye blink

independent components. Multiple MRI images including the eye were studied in

order to place the dipoles as close to where eyes are supposed to be present. The

dipole locations were the closest one to the MNI coordinates (-80,90,-60), (0,90,-60)

and (80,90,-60) with orientation set to (0,1,0). As can be seen from 5.2, the forward

projected scalp distribution resembles eye blink independent components typically

found using ICA with weights being higher on the frontal channels and reducing from

front to back.
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5.2.2 Dataset

For replication purposes and to include data from a large sample of subjects, the

MI data collected by Lee et al. [147] was used. It consisted of 62 channel EEG

sampled at 1000 Hz, collected from 54 healthy individuals (age: 24-35 years, 25F).

Thirty-eight subjects were naive BCI users, whereas the others had prior experience

working with BCI experiments. The data was collected using the BrainAmp system

(Brain Products, Munich, Germany) referenced to the nasion and grounded with

respect to the AFz channel. The electrode impedance was kept below 10 Kohm.

Each trial consisted of 3 seconds of looking at a black fixation cross at the center

of the screen. Then an arrow appears for 4s pointing left or right directing the

participants to perform hand imagery by imagining grasping the respective hand.

Each trial ended with a rest period of 6 ± 1.5 s. A total of 100 such trials on two

separate days/sessions were recorded. In the original data, they trained a model on

the training set and tested it with real-time visual feedback during a test set that

included 100 additional trials. To avoid confound related to decoder-specific BCI used

in that study, the test trials were not considered here.

The experimental design for an individual trial is summarized in Fig 5.1

Figure 5.1: Motor Imagery experimental design for an individual trial.
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5.2.3 Injection of blinks in varying proportions

To evaluate how the frequency of blink artifacts in the trials impact the decoding

performance, simulated blinks were randomly assigned to varying percentages of tri-

als. To also evaluate the impact of class imbalance, the process was repeated with and

without the blinks biasing a particular class. Three different proportions of trials were

tested. In the balanced class condition, the number of trials with blinks was made

equal across the two classes (10%, 50%, and 90% of trials). This helps understand

how the frequency of these high amplitude artifacts (even when they do not add any

class-specific information to the decoding) would impact the CNN performance. The

impact of blink artifacts was also tested in the unbalanced condition wherein blinks

are more in one class than the other. For class 1, blinks were added to 20%, 50%,

and 90% of the trials. Additionally, blinks were also added to random 10% trials of

class 2. A paired t-test was then done to evaluate the performance difference for each

of the participants with and without the blinks.

Figure 5.2: The flowchart details the process by which simulated blinks were gener-
ated with the help of the blink template and SEREEGA framework.

5.2.4 Convolutional Neural Network Architecture

The architecture for the model is summarized in Fig. 5.3. The input to the model

is the 1.5 s EEG window (batch size × 375 samples × 54 channels). Eight channels
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were removed as they are not contained in the forward model. The model consisted of

5 temporal convolution layers of 32 units each (5 × 1 kernel size with a stride length of

1). A temporal pooling layer of 2 × 1 pooling dimension with a stride length of 2 was

also used after every convolutional filter layer except the last two blocks. The output

from these convolutional layers was flattened and fed into a dense, fully connected

layer of 32 hidden units followed by an output layer with softmax activation.

A dropout layer with alpha = 0.5 was added in between the dense layer and the

output layer to reduce over-fitting. Except for the output layer, the model utilized

ReLU as the activation function. An Adam optimizer [122] with a learning rate of

0.001 was used to train the model. A batch size of 64 and epoch length of 100 was

set. An early stopping condition was set to avoid the model from being over-fitted.

This stopped the training if the validation loss did not improve in 10 consecutive

epochs. A re-initialized independent copy of the same model architecture was used

for each fold, condition, and subject. The proposed model was implemented in python

3.7 using Pytorch library[81]. A separate independent model was trained to predict

left hand vs right-hand motor imagery from single-trial EEG window for each of the

participants and each of the condition (different proportion of blinks per class).

Figure 5.3: Model architecture: Each block correspond to different types of layers in
the model. The dotted line is to illustrate the dropout operation during
the training phase aimed at reducing overfit. During inference, all units
were retained.
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5.3 Results

5.3.1 Impact of frequency of blinks to decoding

Fig 5.4 summarizes the impact of varying frequency of eye blinks on the decoding

performance. Each violin plot corresponds to each of the individual conditions (differ-

ent proportion of trials with eye blinks in both balanced and unbalanced conditions).

As expected, in the case of blinks biasing a particular class, it was observed that

the decoding is significantly higher compared to training on de-noised EEG without

blinks (p < 0.05). As the number of trials with the blinks increase, the decoding

performance increases proportionally. On the other hand, in the case wherein the

blinks are balanced across classes there is an insignificant difference in decoding per-

formance when the number of blinks is low. However, when the number of blinks

becomes more frequent, the decoding performance becomes significantly lower com-

pared to data without blinks (p < 0.05).

5.3.2 Change in decoding as a function of original decoding

accuracy

The difference in accuracy in the presence of blinks was compared with respect

to the subject’s original decoding accuracy in the absence of artifacts. Figure 5.5

summarizes the correlation in both the balanced and unbalanced cases. Interestingly,

the subjects with higher decoding performance tend to be minimally influenced by

the eye blinks even in the case of them biasing a particular class. As a matter of fact,

for some of the subjects, the slight imbalance (10%) causes a reduction in decoding

performance in some top performing subjects. The subjects with the poorest decoding

always benefit from the blinks when they bias the class. However, when the blinks

become too frequent (90% of trials), even the subjects with the higher decoding

95



Figure 5.4: Violin plot corresponding to the mean change in decoding performance
as function of both frequency of trials corrupted by blinks and the class
imbalance.

performance started to make use of blinks to improve their decoding performance.

On the other hand, in the class imbalanced case, frequent blinks negatively impact

particularly the top-performing subjects causing their accuracy to drop. In the case

of less frequent occurrence (10 % trials), the top-performing subjects are minimally

impacted by the blinks.

5.3.3 Visualizing the influence of eye blinks for the decoding

To further evaluate how the blinks are affecting the decoding, DeepLift based

model decision explanation was used. Fig 5.6 shows how each of the 6 models would
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Figure 5.5: Correlation plot showing the change in decoding performance as a func-
tion of the subject’s original decoding performance in the absence of ar-
tifacts.

look at the same input data for the best and the worst-performing subject. For the

best performing subjects, the model is focusing on features centered around differences

in alpha band power between C3 and C4 channels. It learned to neglect the blink in

all conditions except when the frequency of blinks in the biased condition is very high

(90% of trials). On the other hand, for the worst-performing subject, the model is

focusing on the blink in all the conditions mainly. The relevancy scores are assigned

to regions surrounding the blinks in all the cases. Interestingly, the relevance for the

non-blink segment region for this participant increased in the case wherein blinks bias

one class the most (90% trials).
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Figure 5.6: DeepLift model explanation showing where the model trained for each
condition (one per row) would look to make the correct prediction. Ex-
planations are from the best performing subject (left) and the worst per-
forming subject (right).

5.4 Discussion

Considering that an overwhelming number of studies employing deep learning does

not employ artifact handling in their analysis, it was important to evaluate the role the

presence of artifact play on the decoding performance. Here, the analysis was limited

to eye blinks but the framework could easily be transferred to multiple artifact types.

Blinks were chosen because they will be universally present in all studies unless the

paradigm involves eye-closed conditions and also due to the relatively high difference

in the magnitude of the artifact compared to the signal. CNN can be thought of

as a pattern matching framework that tries to find filters that maximally activate

them with the global aim of correct prediction of classes of interest. Considering

blinks are high amplitude events, it was expected that the frequent presence of blinks
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will impact the decoding in opposite directions depending on whether the blinks are

biased towards a class or not.

It was also expected that when blinks do bias a particular class, it should sig-

nificantly improve the decoding in all subjects. Interestingly, that is not the case

always, particularly for people in the high decoding category. Evaluating the differ-

ence in accuracy as a function of their original decoding on clean EEG 5.5, it was

observed that the high-performing subjects are minimally influenced by blinks when

they bias the class even 50% of the time. They do end up degrading the decoding

in balanced class conditions when the frequency was 50% or 90% of trials. Similarly,

in the unbalanced case, the decoding is lower for multiple subjects not in the lower

end of the decoding spectrum. This could come from the fact that the other class

also has blinks in 10% of the trials. Considering that the presence of blink is not

strictly dependent on a particular class, focusing on blinks could lead to many incor-

rect detections. Particularly for subjects with higher decoding, they would have more

consistent class-specific brain rhythms. Even though blinks are higher in one class,

the presence of a blink does not necessarily prove it belongs to a particular class as

a certain percentage of trials from the other class also contains blinks. Therefore, for

these participants, the model might benefit more from learning the consistent brain

rhythms instead of focusing on the random presence of blinks.

For some subjects particularly in the lower end of decoding performance, it was

observed that including blinks in a high frequency of trials end up improving the

decoder even when they do not bias any particular class. The reasoning for that

could come from the fact the convolutional neural networks have an implicit bias to

learn high-frequency features [156]. Typically the sensorimotor rhythms are in the

lower frequency range < 30 Hz (beta or lower). The low-performing subjects, might

not have strong signals which can drive the model to learn low-frequency filters to

capture these signals. By default, the model might resort to learning high-frequency
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filters due to the implicit bias. However, considering blinks are low-frequency signals,

when they are introduced in higher frequency, the CNN learns to attend to them

in all cases 5.6. By focusing on these blinks, the model would be directed to learn

low-frequency filters which might be the reason for the improvement in decoding.

Overall, we systematically compared the influence of the frequency of eye blink

artifacts on the CNN decoders, when applied to MI task. We showed that the model

decoding is significantly impacted when the frequency of blinks is high. Including

explainability approaches can provide some insights into whether the model is influ-

enced by artifacts or not. Currently, no study assesses the influence of artifacts on

DL models. We highlight the need for more systematic studies that objectively assess

the vulnerability of DL models to artifacts prior to deploying them in an end-to-end

manner.
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Chapter 6

Conclusion

This dissertation focused on comparing different visualization-based approaches of

explainability of deep learning models using both simulated and real EEG. The first

chapter motivated the need for explainability in EEG studies. The second chapter

used simulated EEG using a realistic head model to compare different model expla-

nation methods to detect distinct EEG features. The sensitivity and robustness of

twelve methods were evaluated with respect to detecting EEG features, specifically

spectral perturbations, event-related perturbation components, and scalp distribu-

tion (spatial). Pitfalls in using some of these methods were identified and DeepLift

or LRP methods were found to be the most robust and sensitive measure in general.

GradCAM method is a good alternative when looking for spatial patterns but their

performance degrades significantly with lower SNR/ model performance. In the third

and fourth chapters, the best explainability methods were deployed in two real EEG

datasets to evaluate whether they can identify the underlying neural dynamics asso-

ciated with balance perturbation and motor imagery from single-trial EEG. In the

balance perturbation task, it was confirmed that the model was learning from the

common PEP components. It was also demonstrated that not handling the artifacts

as is done in most deep learning studies currently, will cause the model to be biased

by artifacts. Model explanations aligned with prior literature as well as the findings

based on the classical signal processing approach. In the motor imagery dataset, the

model explanations identified the relevant scalp distribution pertaining to motor im-

agery aligning with findings from prior studies. Further analysis showed that some

participants used strategies/ recruited different channel combinations during the MI.

By choosing channel combination in the sensorimotor region as is done in most MI
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studies, some of these participants would have degraded decoding performance as the

channel montage does not include the channels being recruited the most. Moreover,

the analysis showed performance was consistently lower in these subsets of individuals

and demonstrated how cluster-specific model explanation could improve the decod-

ing performance, especially for individuals with high decoding scores. All of these

approaches suggest the possibility for a novel approach of precision BCI. In the fifth

chapter, the impact of eye blinks on the decoding performance was investigated using

simulated eye blinks, and it was demonstrated that high frequency of blinks, irre-

spective of whether they bias either class or not, lead to a significant difference in

the decoding. In the case of them biasing the class, including blinks improve the

decoding whereas they reduce the decoding performance in the case of balanced con-

dition in general. Interestingly, for high-performing subjects, when blinks are present

in a smaller proportion of trials, even when they bias a class, the presence of them

negatively impacted the decoding. On the other hand for some of the low-performing

subjects having the blinks ended up improving their model performance even when

they do not bias any particular class.

All of this comes with different limitations and pitfalls. As discussed earlier, the

model explanations were compared based on simulated EEG. Even though synthetic

EEG provides more control and allows better characterization, many key features

present in real EEG would be missing. However, the dissertation introduces a frame-

work and future studies could include newly identified confounds that are critical.

The framework will serve as a baseline for future studies as currently, no study uses

a simulation framework to study the influence of deep learning or model explanation

on EEG features. The framework could also be used to learn the sensitivity of model

architecture to distinct EEG features which is an exciting direction. Similarly, visu-

alization approach is a superficial model explanation method. It is not causal and

does not give the full picture. Following up visualization explanation with pertur-

bation approach would be an interesting direction. One approach could be to use
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visualization-based model explanation to identify the common channel configuration

and then, performing different spectral perturbations on the input for those channels,

giving additional insight into the spectral composition of signal in that channel group.

One additional limitation is the presence of many complicated characteristics in EEG

such as how context, session variability, etc, impact the BCI decoder which is cur-

rently not well understood. Evaluating context-independent and dependent features

will be extremely beneficial for advancing the BCI research. One possible proxy mea-

sure for session invariant decoder/feature stability could be to model the explanation

variance over multiple sessions to assess the effect of learning, changes in internal

state, and other variables.

In conclusion, this research shows how explainability could be integrated into

the existing deep learning studies to support the findings. This research introduces

a novel approach in which the clustering method coupled with model explanations

could uncover the network configurations for various decoding tasks. Currently, there

exists no means to get more context about performance improvement when using deep

learning models. The approach proposed here can be used to give further confidence in

our model predictions and give insights into whether the model is biased by artifacts or

not. This research also demonstrated ways in which model explanation can provide us

with valuable information to improve the existing decoders. Using model explanations

it is also possible to identify the underlying neural dynamics in a purely data-driven

manner. The work presented here will provide guidance and recommendations for

researchers who are new to explainability research on EEG. This will further promote

the use of an explainability approach to deep learning studies.
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