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Abstract—In traditional cognitive radio networks, secondary
users (SUs) typically access the spectrum of primary users (PUs)
by a two-stage “listen-before-talk” (LBT) protocol, i.e., SUs
sense the spectrum holes in the first stage before transmitting
in the second. However, there exist two major problems: 1)
transmission time reduction due to sensing, and 2) sensing
accuracy impairment due to data transmission. In this paper,
we propose a “listen-and-talk” (LAT) protocol with the help of
full-duplex (FD) technique that allows SUs to simultaneously
sense and access the vacant spectrum. Spectrum utilization
performance is carefully analyzed, with the closed-form spectrum
waste ratio and collision ratio with the PU provided. Also,
regarding the secondary throughput, we report the existence of a
tradeoff between the secondary transmit power and throughput.
Based on the power-throughput tradeoff, we derive the analytical
local optimal transmit power for SUs to achieve both high
throughput and satisfying sensing accuracy. Numerical results
are given to verify the proposed protocol and the theoretical
results.

Index Terms—Cognitive radio, full-duplex, listen-and-talk,
residual self-interference.

I. I NTRODUCTION

With the fast development of wireless communication, spec-
trum resources have become increasingly scarce, motivating
the development of technologies such as D2D communica-
tions [1] to improve spectrum utilization of the crowded
spectrum bands. Meanwhile, as an early study by Federal
Communications Commission suggests, some of the allocated
spectrum is largely under-utilized in vast temporal and geo-
graphic dimensions [2], [3]. Cognitive radio, focusing on these
bands, has attracted wide attentions over the past years as a
promising solution to the spectrum reuse [4], [5]. In cognitive
radio networks (CRNs), unlicensed secondary users (SUs) are
allowed to access spectrum bands of the licensed primary
users (PUs) by two spectrum sharing approaches: underlay and
overlay [6]. In underlay spectrum sharing, the SUs are allowed
to operate if the interference caused to PUs is below a given
threshold with proper resource management [7], [8]. Overlay
spectrum sharing, which is adopted in this paper, refers to the
spectrum utilize technique that allows the SUs to access only
the empty spectrum for PUs [9]. Thus, reliable identification
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of spectrum holes is required to protect the PUs and maximize
SUs’ throughput [10].

A. Conventional Cognitive Radio Protocols

Most existing works on overlay CRNs employ “listen-
before-talk” (LBT) protocol on half-duplex (HD) radio, in
which the traffic of SUs is time-slotted, and each slot is divided
into two sub-slots, namely sensing sub-slot and transmission
sub-slot. SUs sense the target channel in the sensing sub-slot
to decide whether to access the spectrum in the following
transmission sub-slot [11]–[19]. In [13]–[15], optimization
of sensing and transmission duration has been discussed. In
[16], the authors considered general PU idle time distributions
and imperfect sensing, and provide a tight upper bound of
the performance in the LBT protocol. Cooperative spectrum
sensing has been studied in [17]–[19] to achieve better sens-
ing performance. Though the conventional HD based LBT
protocol is proved to be effective, it actually dissipates the
precious resources by employing time-division duplexing,and
thus, unavoidably suffers from two major problems as follow.

1) The SUs have to sacrifice the transmit time for spectrum
sensing, and even if the spectrum hole is long and
continuous, the data transmission need to be split into
small discontinuous slots;

2) During the transmission sub-slots, the SUs do not sense
the spectrum. Thus, if the PUs arrive or leave during the
transmission sub-slots, SUs cannot be aware until the next
sensing sub-slot, which leads to long collision (when the
PUs arrive) and spectrum waste (when the PUs leave).

B. Utilizing Full-duplex Technique in CRNs

A more efficient way to utilize the spectrum holes and
protect the PU network should allow the SUs to keep sensing
the spectrum all the time. Whenever a spectrum hole is
detected, SUs begin transmission, and once the PU arrives, the
transmission ceases. This can be facilitated by full-duplex (FD)
techniques [20]. In a FD system, a node can transmit and
receive using the same time and frequency resources. However,
due to the close proximity of a given modem’s transmitting
antennas to its receiving antennas, strong self-interference
introduced by its own transmission makes decoding process
nearly impossible, which had been a huge impediment to the
development of FD communications in the past. Recently,
there has been significant progress in the self-interference
cancelation including proper hardware design and signal pro-
cess techniques, presenting great potential for realizingthe FD
communications for the future wireless networks [20]–[23].
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Motivated by the FD techniques, in this paper, we propose
a “listen-and-talk” (LAT) protocol, by which SUs can simulta-
neously perform spectrum sensing and data transmission [24].
We assume that the PU can change its state at any time and
each SU has two antennas working in FD mode. Specifically,
at each moment, one of the antennas at each SU senses the
target spectrum band, and judges if the PU is busy or idle;
while the other antenna transmits data simultaneously or keeps
silent on basis of the sensing results.

C. Related Works

We remark that the ideas of this kind have also been
mentioned by some other recent works [25]–[30]. Some of the
papers such as [25] have mentioned the simultaneous sensing
and transmission briefly as a feasible application scenarioof
FD technology without further analysis, while some other
papers study the similar topics. We concisely summarize them
as follow.

Some works focus on deploying FD radios on CR users
and the impact of some physical issues leading to residual
self-interference and imperfect sensing [26]–[28]. Specifically,
[26] discussed the use of directional antennas, and showed
that directionality of multi-reconfigurable antennas could in-
crease both the range and rate of full-duplex transmissions
over omni-directional antenna based full-duplex transmissions;
[27] focused on comparing sensing error probabilities in
the half-duplex, two-antenna full-duplex, and single-antenna
full-duplex cognitive scenarios under energy detection; and
the impact of some physical issues leading to residual self-
interference and imperfect sensing such as bandwidth, antenna
placement error, and transmit signal amplitude differencewas
discussed in [28]

In [29], the authors considered multiple SU links with par-
tial/complete self-interference suppression capability, and they
could operate in either simultaneous transmit-and-sense (TS)
or simultaneous transmit-and-receive (TR) modes. Mode se-
lection between the TS and TR mode and the coordination of
SU links were proposed to achieve high secondary throughput.
The idea of the TS mode is similar to our protocol. However,
in [29], one fixed threshold for energy detection was used in
both SO and TS modes, while in our work, a pair of sensing
thresholds are designed to compensate for the imperfect self-
interference cancelation. Besides, the authors in [29] only
provided calculation of error sensing probabilities in series
expressions in the analysis, and failed to present how well
can the SUs utilize the spectrum holes, which is addressed in
our work.

The authors in [30] considered cooperation between primary
and secondary systems. In their model, the cognitive base
station (CBS) relays the primary signal, and in return it can
transmit its own cognitive signal. The CBS was assumed to be
FD enabled with multiple antennas. Beamforming technique
was used to differentiate the forwarding signal for primary
users and secondary transmission.

Different from all the above works, throughout the paper,
we focus on the following important issues:

• How to design the sensing strategy so that the benefits of
the FD can be fully enjoyed?

• How to design the secondary transmit parameter, e.g.,
transmit power, so that SUs can achieve high throughput
as well as satisfactory sensing performance?

• How well can the proposed LAT perform in terms of
spectrum utilization efficiency and secondary throughput?

We explore answers to these questions by both theoretical
analysis and simulation results. The main contributions ofthis
paper can be summarized below.

• We clearly present the idea of simultaneous sensing
and transmission, and design a “listen-and-talk” protocol
indicating when and with what power should a SU access
the spectrum, and how to set the detection threshold.

• We present theoretical analysis of the sensing per-
formance and the spectrum utilization. Especially, the
closed-form expressions of the collision ratio at the pri-
mary network and the spectrum waste ratio are provided.

• We report a power-throughput tradeoff, show the exis-
tence of a local optimal transmit power, with which the
SUs can achieve high throughput as well as satisfying
sensing performance, and derive the theoretical expres-
sion of the local optimal transmit power.

The rest of the paper is organized as follows. Section II
describes the system model and the concept of simultaneous
sensing and transmission. In Section III, we elaborate the
proposed LAT protocol and discuss the design of important
parameters. In Section IV, we investigate the analytical per-
formance, including the spectrum utilization efficiency and
secondary throughput. Also, a power-throughput tradeoff is
reported and analyzed. Simulation results are presented to
verify the analytical results in Section V. We conclude the
paper in Section VI.

II. SYSTEM MODEL

In this section, the system model of the overall network
is presented, and the concept of simultaneous sensing and
transmission under imperfect self-interference suppression is
elaborated.

A. System model

We consider a CR system consisting of one PU and one
SU pair as shown in the left part of Fig. 1, in which SU1

is the secondary transmitter and SU2 is the receiver. Each
SU is equipped with two antennas Ant1 and Ant2, where
Ant1 is used for data reception, while Ant2 is used for data
transmission. The transmitter SU1 uses both Ant1 and Ant2
for simultaneous spectrum sensing and secondary transmission
with the help of FD techniques, while the receiver SU2 uses
only Ant1 to receive signal from SU1.1

The spectrum band occupancy by the PU is modeled as an
alternating busy/idle random process where the PU can access
the spectrum at any time. We assume that the probabilities

1In this model, only the secondary transmitter (SU1) performs spectrum
sensing, while the receiver (SU2) does not. This transmitter-only sensing
mechanism is widely adopted in today’s cognitive radio, considered that
secondary transmitters and receivers cannot continuouslyexchange sensing
results without interfering the primary network. Besides,we assume that SU2
has two antennas for fairness and generality, since SU2 does not always need
to be the receiver.
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2: the SU transmits when the PU is absent.       4-A: spectrum waste caused by the PU�s departure.

3-A:collision caused by the PU�s arrival.       4-B: spectrum waste caused by false alarm.

Fig. 1. System model: Listen-and-Talk.

of the PU’s arrival and departure remain the same across
the time, and the holding time of either state is distributed
as the exponential distribution [31]. We denote the variables
of the idle period and busy period of the PU ast0 and
t1 , respectively. And letτ0 = E [t0] and τ1 = E [t1]
represent the average idle and busy duration. According to
the property of exponential distribution, the probabilitydensity
functions (PDFs) oft0 and t1 can be written as, respectively,

f0(t0) =
1

τ0
e−

t0
τ0 ,

f1(t1) =
1

τ1
e−

t1
τ1 .

(1)

For SUs, on the other hand, only the idle period of the
spectrum band is allowed to be utilized. To detect the spectrum
holes and avoid collision with the PU, SU1 needs to sample
the spectrum at sampling frequencyfs, and make decisions of
whether the PU is present after everyNs samples, This makes
the secondary traffic time-slotted, with slot lengthT = Ns/fs.

Considering the common case thatfs can be sufficiently
high and the state of PU changes sufficiently slowly, we
assume thatτ0, τ1 ≫ T andNs is a sufficiently large integer.
If we divide the PU traffic into slots in accordance with SU’s
sensing process, the probability that PU changes its state in a
stochastic slot can be derived as follows.

• The PU arrives in a stochastic slot:

µ =

T∫

0

f0 (t0) dt0 = 1− e
− 1

m0 , (2)

wherem0 = τ0/T and we assume it to be a large integer.
• The PU leaves in a stochastic slot:

ν =

T∫

0

f1 (t1) dt1 = 1− e−
1

m1 , (3)

wherem1 = τ1/T is assumed to be a large integer.

Note that whenm0 and m1 are sufficiently large, we have
µ ≈ 1

m0
andν ≈ 1

m1
.

B. Simultaneous Sensing and Transmission

With the help of FD technique, SU1 can detect the PU’s
presence when it is transmitting signal to SU2. However, as
shown by the dotted arrow in the system model in Fig. 1, the
challenge of using FD technique is that the transmit signal
at Ant2 is received by Ant1, which causes self-interference at
Ant1. Note that for Ant1, the received signal is affected by
the state of the transmit antenna (Ant2): when Ant2 is silent,
the received signal at Ant1 is free of self-interference, and the
spectrum sensing is the same as the conventional half-duplex
sensing. Thus, we consider the circumstances when SU1 is
transmitting or silent separately.

When SU1 is silent, the received signal at Ant1 is the
combination of potential PU’s signal and noise. The cases
when the PU is busy or idle are referred to as hypothesis
H01 andH00, respectively. The received signal at Ant1 under
each hypothesis can be written as

y =

{
hssp + u, H01,

u, H00,
(4)

wheresp denotes the signal of the PU,hs is the channel from
the PU to Ant1 of SU1, and u ∼ CN

(
0, σ2

u

)
denotes the

complex-valued Gaussian noise. We assume thatsp is PSK
modulated with varianceσ2

p, and hs is a Rayleigh channel
with zero mean and varianceσ2

h.
When SU1 is transmitting to SU2, RSI is introduced to the

received signal at Ant1. The received signal can be written as

y =

{
hssp + w + u, H11,

w + u, H10,
(5)
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where H11 and H10 are the hypothesises under which the
SU is transmitting and the PU is busy or idle, respectively.
w in (5) denotes the RSI at Ant1, which can be modeled as
the Rayleigh distribution with zero mean and varianceχ2σ2

s

[22], [32], whereσ2
s denotes the secondary transmit power

at Ant2 and χ2 := Power of the RSI
Transmit power represents the degree of

self-interference suppression, which is commonly expressed
in dBs, and indicates how well can the self-interference be
suppressed.

Spectrum sensing refers to the hypothesis test in either (4)
or (5). Given that SU1 has the information of its own state
(silent or transmitting), it can automatically choose one pair
of the hypothesises to test({H00,H01} or {H10,H11}) and
decide whether the PU is present or not.

III. L ISTEN-AND-TALK (LAT) PROTOCOL AND KEY

PARAMETER DESIGN

In this section, we first present the proposed LAT protocol,
and then discuss the key parameter design in spectrum sensing
to meet the constraint of collision ratio to the primary network.

A. The LAT Protocol

The right part of Fig. 1 shows the LAT protocol, in which
SU1 performs sensing and transmission simultaneously by us-
ing the FD technique: Ant1 senses the spectrum continuously
while Ant2 transmits data when a spectrum hole is detected.
Specifically, SU1 keeps sensing the spectrum with Ant1 with
sampling frequencyfs, which is shown in the line with down
arrows. At the end of each slot with durationT , SU1 combines
all samples in the slot and makes the decision of the PU’s
presence. The decisions are represented by the small circles,
in which the higher ones denote that the PU is judged active,
while the lower ones denote otherwise. The activity of SU1 is
instructed by the sensing decisions, i.e., SU1 can access the
spectrum in the following slot when the PU is judged absent,
and it needs to backoff otherwise.

Since the PU can change its state freely, there exist the
following four states of spectrum utilization:

• State1: the spectrum is occupied only by the PU, and SU1

is silent.
• State2: the PU is absent, and SU1 utilizes the spectrum.
• State3: the PU and SU1 both transmit, and a collision

happens.
• State4: neither the PU nor SU1 is active, and there

remains a spectrum hole.
Among these four states, State1 and State2 are the normal

cases, and State3 and State4 are referred to as collision and
spectrum waste, respectively. There are two reasons leading to
State3 and State4: (A) the PU changes its state during a slot,
and (B) sensing error, i.e., false alarm and miss detection.

B. Energy Detection

We adopt energy detection as the sensing scheme, in which
the average received power in a slot is used as the test statistics
M :

M =
1

Ns

Ns∑

n=1

|y (n)|2, (6)

wherey (n) denotes thenth sample in a slot, and the expres-
sion for y (n) is given in (4) and (5).

With a chosen thresholdǫ, the spectrum is judged occupied
whenM ≥ ǫ, otherwise the spectrum is idle. Generally, the
probabilities of false alarm and miss detection can be defined
as,

Pf (ǫ) = Pr (M > ǫ|H0) ,

Pm (ǫ) = Pr (M < ǫ|H1) ,
(7)

whereH0 andH1 are the hypothesises when the PU is idle
and busy, respectively.

Considering the difference of the received signal caused by
RSI, we can achieve better sensing performance by changing
the threshold according to SU1’s activity. Let ǫ0 and ǫ1 be
the thresholds when SU1 is silent and busy, respectively, and
we can have two sets of probabilities of false alarm and
miss detection accordingly, denoted as{P 0

f (ǫ0) , P
0
m (ǫ0)} and

{P 1
f (ǫ1) , P

1
m (ǫ1)}, respectively.

C. Key Parameter Design

The most important constraint of the secondary networks is
that their interference to the primary network must be undera
certain level. In this article, we consider this constraintas the
collision ratio between SUs and the PU, defined as

Pc = lim
t→∞

Collision duration
PU’s transmission time during[0, t]

.

The sensing parameters are designed according to the con-
straint of Pc. In the rest of this subsection, sensing perfor-
mance is evaluated, based on which we provide the analytical
design of the sensing thresholds.

Sensing Error Probabilities: With the statistical infor-
mation of the received signal in (4) and (5), the statistical
properties ofM under each hypothesis can be derived. We
consider the following two types of time slots:

• Slots in which the PU changes its state:if the PU arrives
in a certain slot, the received signal power is likely to
increase in the latter fraction of the slot, and the average
signal power (M ) is likely to be higher than the previous
slots when the PU is absent. Then the probability of
correct detection is higher thanP i

f , with i denoting the
current activity of SU1. Similarly, if the PU leaves in a
slot, the probability of correct detection is higher than
P i
m. Note that these slots are rare in the whole traffic,

we only consider the lower limits of correct detection
in these slots, i.e., we set without further derivation the
probabilities of correct detection to beP i

f andP i
m when

the PU arrives or leaves, respectively.
• Slots in which the PU remains either present or ab-

sent: in these slots, the received signaly (n) in the
same slot is i.i.d., and as we assumed in Section II-
A, the number of samplesNs is sufficiently large.
According to central limit theorem (CLT), the PDF
of M can be approximated by a Gaussian distribution
M ∼ N (E

[
|y|2

]
, 1
Ns

var
[
|y|2

]
). The specific statistical

properties and the description under each hypothesis are
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TABLE I
PROPERTIES OFPDFS OFLAT PROTOCOL

Hypothesis PU SU E [M ] var [M ]

H00 idle silent σ2
u

σ4

u

Ns

H01 busy silent (1 + γs)σ2
u

(1+γs)
2σ4

u

Ns

H10 idle active (1 + γi)σ
2
u

(1+γi)
2σ4

u

Ns

H11 busy active (1 + γs + γi)σ
2
u

(1+γs+γi)
2σ4

u

Ns

given in Table I, in whichγs =
σpσ

2

h

σ2
u

denotes the signal-

to-noise ratio (SNR) in sensing, andγi =
χ2σ2

s

σ2
u

is the
interference-to-noise ratio (INR). Detailed derivation of
the distribution properties are provided in Appendix A.

Based on Table I, the sensing error probabilities can be
derived.

• When SU1 is silent and the test threshold isǫ0, the
probability of miss detection (P 0

m) and the probability
of false alarm (P 0

f ) can be written as

P 0
m (ǫ0) = 1−Q

((

ǫ0
(1 + γs) σ2

u

− 1

)√
Ns

)

, (8)

and
P 0
f (ǫ0) = Q

((

ǫ0
σ2
u

− 1

)√
Ns

)

, (9)

respectively, whereQ(·) is the complementary distribu-
tion function of the standard Gaussian distribution.

• Similarly, when SU1 is transmitting with the thresholdǫ1,
the miss detection probability (P 1

m) and the false alarm
probability (P 1

f ) are, respectively,

P 1
m (ǫ1) = 1−Q

((

ǫ1
(1 + γs + γi) σ2

u

− 1

)√
Ns

)

, (10)

and
P 1
f (ǫ1) = Q

((

ǫ1
(1 + γi) σ2

u

− 1

)√
Ns

)

. (11)

State Transition and Overall Collision Probability: Dif-
ferent from the conventional LBT protocol in HD CRNs where
each slot is independent, in the LAT protocol, the selectionof
sensing threshold depends on SUs’ activity, which is instructed
by the sensing result in the previous slot. Thus, the state of
the system in each slot is no longer independent, and the
collision ratio is not only related to sensing error probabilities
in each slot, but also the state in the previous slots. Thus,
joint consideration of the transition among all kinds of slots
is necessary. Since the sensing error probabilities in the slots
where the PU changes its presence can be approximated by
that in the other slots, in this part, we model the state transition
of the system as a discrete-time Markov chain (DTMC),
in which the system can be viewed as totally time-slotted
with T as the slot length. Fig. 2 shows the state transition
diagram, where we denote Statei asSi mod 4 (i = 1, 2, 3, 4)
for simplicity.

Proposition 1: The probability that the system stays in the
collision stateS3 is

P3 =
1

r + 1
·
P 0
m (1− ξ∆) +

(
1− P 0

f

)
r

(1− ξ∆) ς + ξr
, (12)

silent

(S1)

active

(S3)
busy

silent

(S0)

active

(S2)
idle

PU activity

SU1 activity

Fig. 2. State Transition of the System

whereξ = 1 − P 0
f + P 1

f , ζ = 1 + P 0
m − P 1

m, r = ν/µ, and
∆ = 1 + r − 1/µ.

Proof: The probability for the system staying in each state
Pk (k = 0, 1, 2, 3) can be calculated considering the steady-
state distribution of the Markov chain:

Ψp = p, (13)

wherep = [P0, P1, P2, P3]
T is the vector of steady proba-

bilities, andΨ is the state transition matrix abstracted from
Fig. 2, which is given at the top of next page.

Combining the constraint that
3∑

k=0

Pk = 1, we have

p =
1/(r + 1)

(1− ξ∆) ς + ξr









r
(

P 1
f (r − ς∆) + 1− P 1

m

)

(

1− P 1
m

)

(1− ξ∆) + P 1
f r

r
((

1− P 0
f

)

(r − ς∆) + P 0
m

)

P 0
m (1− ξ∆) +

(

1− P 0
f

)

r









. (14)

To have a check on the result, we consider the probability
that the PU is busy and idle asPbusy = P1 + P3 = µ

µ+ν
≈

m1

m0+m1
andPidle = P0 + P2 = ν

µ+ν
≈ m0

m0+m1
, which are

consistent with the results when we consider the PU’s traffic
only.

Collision Ratio: The collision of the PU and SU1 occurs
in the following two kinds of circumstances: (A) When the
PU keeps occupying the spectrum and SU1 fails to detect the
presence of PU’s signal in the previous slot, which is depicted
in Fig. 2 asS3 with the probability ofP3. The collision length
is T . (B) The certain slots in which PU arrives. SU1 is very
likely to be transmitting in these slots since the PU is likely
to be absent in the previous ones. The occurrence probability
of this circumstance is equal to the PU’s arrival rateµν

µ+ν
.

Proposition 2: The average collision length under circum-
stance (B), where the PU changes state, can be approximated
by T

2 , whenm0 is large enough.

Proof: and the average collision length in this case can
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Ψ =




P 0
f (1− µ) P 0

f µ
(
1− P 0

m

)
ν P 1

f (1− µ)
(
1− P 1

m

)
ν

P 0
f µ

(
1− P 0

m

)
(1− ν) P 1

f µ
(
1− P 1

m

)
(1− ν)(

1− P 0
f

)
(1− µ) P 0

mν
(
1− P 1

f

)
(1− µ) P 1

mν(
1− P 0

f

)
µ P 0

m (1− ν)
(
1− P 1

f

)
µ P 1

m (1− ν)




be calculated as

T̄2 =

T
∫

0

(T − t0) f0 (t0) dt0

T
∫

0

f0 (t0) dt0

= T

(

1−m0 −
e
−

1

m0

1− e
−

1

m0

)

≈ T





1− e
−

1

m0

1− e
−

1

m0 + 1
m0

e
−

1

m0



 ≈ T

(

e
−

1

m0

e
−

1

m0 + e
−

1

m0

)

=
T

2
,

(15)

where the approximation is valid whenm0 is sufficiently large.

It is unavoidable in the LAT protocol that when the PU
arrives, a short head of the signal, with the length of a SU’s
slot approximately, collides with the SU’s signal. Combinethe
two circumstances, and the overall collision rate can be given
by

Pc =

(

P3 +
1

2

µν

µ+ ν

)

/Pbusy =
ν

2
+

P 0
m (1− ξ∆) +

(

1− P 0
f

)

r

(1− ξ∆) ζ + ξr
,

(16)

Design of Sensing Thresholds:For the parameter design,
we have a maximum allowablePc as the system constraint, and
all the parameters of the sensing process should be adjusted
according toPc. Note that∆ and r are only related to the
PU’s traffic, and{P 0

m, P 0
f } and{P 1

m, P 1
f } are closely related

via thresholdsǫ0 andǫ1, respectively. Thus, we actually have
two independent variables of the secondary network to design
to meet the constraint ofPc.

We chooseP 0
m andP 1

m as the independent variables. With
(16) as the only constraint, there are infinite choices of
(P 0

m, P 1
m) pair. For simplicity, we setP 0

m = P 1
m = Pm, i.e.,

ζ = 1 to reduce the degree of freedom, and the constraint can
be simplified as

Pc =
ν

2
+

Pm (1− ξ∆) +
(

1− P 0
f

)

r

1 +
(

1
µ
− 1
)

ξ
, (17)

where∆, r, µ, andν are relevant only to the PU traffic, and
ξ = 1− P 0

f + P 1
f can be derived fromPm via test thresholds

ǫ0 andǫ1.
In the rest of this part, we calculatePm from the constraint

of Pc, from which the sensing thresholdsǫ0 and ǫ1 can be
obtained.

Combining (8) and (9), (10) and (11), we can obtainP 0
f

andP 1
f as functions ofPm as, respectively,

P 0
f (Pm) = Q

(

−Q−1 (Pm) (1 + γs) + γs
√
Ns

)

; (18)

P 1
f (Pm) = Q

(

−Q−1 (Pm)

(

1 +
γs

1 + γi

)

+
γs
√
Ns

1 + γi

)

. (19)
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Fig. 3. Numerical Solution ofPm; γs = -10dB,γi = 5dB,Ns = 200, and
r = 5

From (18) and (19), we can find a rise of the false alarm
probability when the RSI exists. This result indicates thatwhen
interference increases, the sensing performance gets worse.

With (18) and (19),ξ can be expressed asξ (Pm) = 1 −
P 0
f (Pm)+P 1

f (Pm). With given parameters of the PU’s traffic
and the slot length,Pm can be solved from (17). Since the
analytical expression ofPm is complicated, we only give some
typical numerical solution in Fig. 3, where the sensing SNR
γs = −10dB, INR γi = 5dB, number of samplesNs = 200,
and r is set to be 6 to meet the real case that the typical
spectrum occupancy is less than15% [2].

It is shown in Fig. 3 that whenµ goes down,Pc− ν
2 becomes

a fine approximation ofPm. With the large-m0 assumption,
we regardµ as sufficiently small, andPm is determined by

Pm = Pc −
ν

2
= Pc −

1

2

(
1− e−

T
τ1

)
. (20)

This indicates that with the same constraintPc and parameters
of the PU’s traffic, the requiredPm gets squeezed when SU’s
slot lengthT increases.

With Pm = Pc − ν/2, the thresholdsǫ0 and ǫ1 can be
obtained from (8) and (10), respectively:

ǫ0 =

(

Q−1 (1− Pm)√
Ns

+ 1

)

(1 + γs)σ
2
u

∣

∣

∣

∣

Pm=Pc−ν/2

; (21)

ǫ1 =

(

Q−1 (1− Pm)√
Ns

+ 1

)

(1 + γs + γi)σ
2
u

∣

∣

∣

∣

Pm=Pc−ν/2

. (22)

A lift of sensing threshold due to the RSI (γi) can be found
from (21) and (22), which is in accordance with the previous
analysis.
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IV. PERFORMANCEANALYSIS OF THE LAT

In this section, we first evaluate the sensing performance of
the LAT by the probabilities of spectrum waste ratio under the
constraint of collision ratio. Then, with the closed-form ana-
lytical secondary throughput, a tradeoff between the secondary
transmit power and throughput is elaborated theoretically.

A. Spectrum Utilization Efficiency and Secondary Throughput

Spectrum Waste Ratio: Similar to the analysis of the
collision ratio, we combine the following two kinds of time
slots to derive the spectrum waste ratio: (A) the slots when the
spectrum remains idle; and (B) the slots of the PU’s departure.
There exists waste of spectrum holes in (A) when the system
is in the stateS0 in Fig. 2, and the probability is given by
P0 in (14). Every time when the SU fails to find the hole,
the waste length isT . In (B), the average waste length can
be derived from the PU’s traffic with the similar method in
(15), and it also yieldsT2 of the average waste length. The
probability of the PU’s departure isµν

µ+ν
, which is same as its

arrival rate. The ratio of wasted spectrum hole is then given
by

Pw =

(

P0 +
1

2

µν

µ+ ν

)

/Pidle =
µ

2
+

(

1
µ
− 1
)

P 1
f + 1− Pm

1 +
(

1
µ
− 1
)

ξ
.

(23)
Secondary Throughput: SU1’s throughput can be mea-

sured with the waste ratio and the transmit rate. The achievable
rate under perfect sensing is given as

R = log2 (1 + γt) , (24)

whereγt =
σ2

sσ
2

t

σ2
u

represents the SNR in transmission, withσ2
t

denotes the channel gain of the transmit channel from SU1 to
SU2, and SU1’s throughput can be measured as

C = R · (1− Pw)

= log2 (1 + γt)



1− µ

2
−

(

1
µ
− 1
)

P 1
f + 1− Pm

1 +
(

1
µ
− 1
)

ξ



 .
(25)

B. Power-Throughput Tradeoff

In the expression of SU1’s throughput in (25), there are
two factors:R and (1− Pw). On one hand,R is positively
proportional to SU1’s transmit powerσ2

s . On the other hand,
however, the following proposition holds.

Proposition 3: The spectrum waste ratioPw increases with
the secondary transmit powerσ2

s .
Proof: Firstly, the INR γi increases with the transmit

power and in turn liftsP 1
f , which can be seen from (19).

Then, we can rewrite (23) as

Pw =
µ

2
+

(

1
µ
− 1
)

P 1
f + 1− Pm

1 +
(

1
µ
− 1
)

ξ

=
µ

2
+

(

1
µ
− 1
)

P 1
f + 1− Pm

1 +
(

1
µ
− 1
)(

1− P 0
f

)

+
(

1
µ
− 1
)

P 1
f

=
µ

2
+ 1−

(

1
µ
− 1
)

(

1− P 0
f

)

+ Pm

1 +
(

1
µ
− 1
)(

1− P 0
f

)

+
(

1
µ
− 1
)

P 1
f

.

(26)

WhenP 1
f increases, the third term decreases andPw increases

monotonically. Then the increase of SU1’s transmit power
results in greater waste of the vacant spectrum.

Thus, there may exist a power-throughput tradeoff in this
protocol: when the secondary transmit power is low, the RSI
is negligible, the spectrum is used more fully with smallPw,
yet the ceiling throughput is limited byR; when the transmit
power increases, the sensing performance get deteriorated,
while at the same time, SU1 can transmit more data in a single
slot.

Local Optimal Transmit Power: 2 The analysis above
indicates the existence of a mediate secondary transmit power
to achieve both high spectrum utilization efficiency in time
domain and high secondary throughput. To obtain this mediate
value of transmit power, we differentiate the expression ofthe
throughput to find the local optimal points of the secondary
transmit power̂σ2

s , which satisfies

dC

dσ2
s

∣∣∣∣
σ̂2
s

= 0. (27)

With detailed derivation presented in Appendix B, we have
the local optimal power satisfies

κ ln (γt + 1)
exp

(

− ρ2

2

)(

1
µ
− 1
)

Ξ
√
2π (γi + 1)2 α

+
σ2
t

(

µ
2
− κ
)

γt + 1
= 0, (28)

where the notations are as follow:

ρ = −Q−1 (Pm)

(

γs
γi + 1

+ 1

)

+
γs

γi + 1

√
Ns, i.e., Q (ρ) = P 1

f ,

α =

(

1

µ
− 1

)

·
(

Q (ρ)− P 0
f + 1

)

+ 1,

κ =

(

1
µ
− 1
)

·
(

1− P 0
f

)

+ Pm

(

1
µ
− 1
)(

Q (ρ)− P 0
f + 1

)

+ 1
,

Ξ = γsχ
2
(

Q−1 (1− Pm) +
√
Ns

)

.

With σ2
s as the only unknown variable, it can be calculated

numerically.
To obtain better comprehension about the properties of the

local optimal transmit power, we consider the case whenµ is
sufficiently small, and (28) can be simplified as

exp

(

−ρ2

2

)

(γt + 1) ln (γt + 1)

(γi + 1)2
=

√
2πσ2

t

Ξ

(

1− P 0
f +Q (ρ)

)

.

(29)
Now we provide the existence conditions of the local

optimal transmit power. The left side of (29) is a convex
curve ofσ2

s with a single maximum. Whenσ2
s goes to zero or

infinity, the value of the left side goes to zero. The value of
the right side changes from

√
2πσ2

t

Ξ to
√
2πσ2

t

Ξ

(
2− P 0

f − Pm

)
.

2Note that the secondary throughput is not purely convex throughout the
domain of transmit power. There may exist local optimal points in low power
region, while the throughput is monotonically increasing in the high power
region. The point of the discussion of the power-throughputtradeoff and
the calculation of the local optimal transmit power is that the secondary
throughput does not monotonously increase with the transmit power, which
means that SUs may not always transmit with its maximum transmit power
to achieve highest throughput, instead, a mediate value maylead to better
performance.
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We can roughly say that when the maximum of the left side
is larger than either

√
2πσ2

t

Ξ or
√
2πσ2

t

Ξ

(
2− P 0

f − Pm

)
, there

would be two solutions to (29). When the maximum of the
left side is smaller than the minimum of the right side, on the
other hand, no solution exists.

Characteristics of the Power-throughput Curve: Given
the discussions above, there exist two cases of the power-
throughput curve regarding the existence of the local optimal
power. We analyze these two cases separately in the following.

1) When equation (29) has no solutions, the curves of
transmit power on the left and right sides never meet.
Since the right side of (29) is always far above zero
and the left can go to zero when the transmit power is
extremely high or low, we can safely say that the left side
is always smaller than the right, i.e.,

exp

(

−ρ2

2

)

(γt + 1) ln (γt + 1)

(γi + 1)2
<

√
2πσ2

t

Ξ

(

1− P 0
f +Q (ρ)

)

.

(30)
Substituting the inequation to (34), we havedC

dσ2
s

> 0,
which indicates that the secondary throughput would
increase with the transmit power monotonously.

2) When the solutions of (29) exist, we discuss the sign of
dC
dσ2

s
piecewise. When the power is low or high enough,

the left side is small, while the right remains considerable.
The solid red curve (maximum of the left side of (29))
is below the dash-dotted blue one (value of the right side
of (29)), and dC

dσ2
s

> 0. When the power is between

the two solutions, we havedC
dσ2

s
< 0. Thus, at the

smaller solution, d2C

d(σ2
s)

2 < 0, and this is the local optimal

transmit power̂σ2
s to achieve local maximum throughput.

Similarly, the larger solution denotes the local minimum
of the throughput.

As an example, we plot the curves of the maximum of
the left side and the corresponding value of the right side in
Fig. 4(b). It is shown that whenχ2 is smaller than 0.86, the
maximum of the left is larger than the corresponding value of
the right, and (29) will have solutions and power-throughput is
likely to exist. Whenχ2 is greater than 0.85, there may be no
tradeoff between the transmit power and secondary throughput,
which is verified by the thick solid line in Fig. 4(a).

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of the proposed LAT protocol. Monte Carlo
simulations are performed by varying channel conditions and
the PU’s state. We set the default values of the simulation
parameters as follow: the sample number in each slotNs =
300, the corresponding probability that the PU arrives in a
stochastic slotµ = 1/500, and the probability that the PU
leaves in any slotν as6/500. The constraint of collision ratio
is set as 0.1, and SNR in sensingγs is assumed to be -5dB.

A. Power-Throughput Relationship of the LAT Protocol

As is shown in Fig. 4(a), we consider the throughput per-
formance of the LAT protocol in terms of secondary transmit

power. The solid and dotted lines represent the analytical per-
formance of the LAT protocol, and the asterisks (*) denote the
analytical local optimal transmit power. The small circlesare
the simulated results, which match the analytical performance
well. The thin solid line depicts the ideal case with perfect
RSI cancelation. Without RSI, the sensing performance is no
longer affected by transmit power, and the throughput always
goes up with the power. This line is also the upperbound
of the LAT performance. The thick dash-dotted, dotted and
dash lines in the middle are the typical cases, in which we
can clearly observe the power-throughput tradeoff and identify
the local optimal power, which is calculated from (29). With
the decrease of RSI (χ2 from -10dB to -20dB to -30dB), the
local optimal transmit power increases, and the corresponding
throughput goes to a higher level. This makes sense since the
smaller the RSI is, the better it approaches the ideal case, and
the deterioration cause by self-interference becomes dominant
under a higher power. According to Fig. 4(b), whenχ2 is
sufficiently large (0.85 in the figure), there exists no power-
throughput tradeoff. We verify this result by the thick solid
line denoting the cases whenχ2 = −0.46dB = 0.9. No local
optimal point can be found in this curve, and the numerical
results show that the differentiation is always positive.

One noticeable feature of Fig. 4(a) is that when self-
interference exists, all curves approach the thin dotted line
C = 0.5 log2 (1 + γt) when the power goes up. This line
indicates the case that the spectrum waste is 0.5. When the
transmit power is too large, severe self-interference largely
degrades the performance of spectrum sensing, and the false
alarm probability becomes unbearably high. It is likely that
whenever SU1 begins transmission, the spectrum sensing result
falsely indicates that the PU has arrived due to false alarm,and
SU1 stops transmission in the next slot. Once SU1 becomes
silent, it can clearly detect the PU’s absence, and begins
transmission in the next slot again. And the state of SU1

changes every slot even when the PU does not arrive at all.
In this case, the utility efficiency of the spectrum hole is
approximately 0.5, which is clearly shown in Fig. 4(a). Also,
it can be seen that the largerχ2 is, the earlier the sensing gets
unbearable and the throughput approaches the orange line.

B. Sensing Performance

In this subsection, we use the receiver operating charac-
teristic curves (ROCs) to present the sensing performance.In
Fig. 5, with the sensing SNRγs fixed on −8dB, we have
the relation between the collision ratio and spectrum waste
ratio. The thick lines denote the cases when the PU changes
its state very slowly, while the fine lines represent the cases
when the PU changes comparatively quickly. In Fig. 5, smaller
area under a curve denotes better sensing performance. It can
be seen that the thick lines are lower than the corresponding
fine lines, which indicates that when the PU changes its
state slowly, the spectrum holes can be utilized with higher
efficiency. This is because the spectrum waste due to the
state change, i.e., re-access and departure of the PU happens
less frequently. Also, comparing the solid and dotted lines
with the sameµ, it can be found that smaller RSI leads to
better sensing performance, and the impact of the RSI can be
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significant. It is noteworthy that the ratio of spectrum waste
of the LAT can be quite close to zero if the self-interference
can be effectively suppressed, and the constraint of collision
ratio is not too strict. However, recall the conventional listen-
before-talk, the spectrum waste ratio can theoretically never
be suppressed lower than the sensing time ratio in a slot.

C. Impact of the RSI Factorχ2

In Fig. 6, we consider the impact of the RSI factor on the
sensing performance. We fix the constraint ofPc as 0.1, and
evaluate the spectrum waste ratio under variousχ2. It can be
seen from Fig. 6 that with the increase ofχ2, the spectrum
waste ratio increases from zero to approximately 0.5. This
is reasonable in the sense that with sufficiently small RSI
factor, the RSI can be neglected compared with PU’s signal
and noise, and SUs can fully utilize the spectrum holes. When
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Fig. 6. Secondary throughput versus the RSI factorχ2, in which the collision
ratio is 0.1, sensing SNRγs = −5dB, the normalized secondary transmit
powerσ2

s/σ
2
u varies between 10dB to 20dB, and the numbers of samples in

a slot varies between 300 and 500, with the probability of thePU’s arrival
per slotµ varies between 1/500 and 1/300, departure probability per slot ν
varies between 6/500 and 6/300.

the RSI factor is moderate or close to 1, which indicates that
the RSI cannot be suppressed well, the secondary signal may
overwhelm the PU’s signal, leading to unreliability of sensing,
and the SUs are likely to stop communication due to false
alarm. Note that the asymptotic value of the spectrum waste
ratio when the RSI is large is 0.5, which is in accordance with
the results in Fig. 4(a).

Besides, it can be seen that when the normalized power
of RSI (χ2σ2

s/σ
2
u) ranges from approximately [0.1, 10], the

spectrum waste ratio changes fast, and when the normalized
power of RSI is below 0.1, the waste ratio remains at a
low level. This feature can be utilized to design the protocol
parameters to achieve full utilization of the spectrum holes.
Also, when the PU’s state change rate remains unchanged
while the slot length enlarges, it can be seen that the sensing
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performance becomes better, especially at the points when the
normalized power of RSI ranges from approximately [0.1, 10],
where more samples in a slot would help improve sensing
performance significantly.

VI. CONCLUSIONS

In this paper, we proposed a LAT protocol that allows
SUs to simultaneously sense and access the spectrum holes.
Taken the impact of the residual self-interference on sensing
performance into consideration, we designed an adaptively-
changed sensing threshold for energy detection. Spectrum
utilization efficiency and secondary throughput under the LAT
protocol has been provided in closed-form, based on which
a unique tradeoff between the secondary transmit power and
the secondary throughput has been reported, i.e., the increase
of transmit power does not always yield the improvement of
SU’s throughput, and a mediate value is required to achieve the
local optimal performance. Simulation results have verified the
existence of the power-throughput tradeoff, and shown thatthe
SUs can efficiently utilize the spectrum holes under the LAT
protocol.

The proposed LAT protocol has the potential to allow the
FD SUs to fully utilize the spectrum holes, given that the SUs
no longer need to periodically suspend their transmission for
sensing, and can react promptly to the spectrum opportunity.
Besides the basic model considered in this paper, the LAT
protocol can be readily extended to many other CR scenarios,
like the multi-user and multi-channel cases. With simultaneous
sensing and transmission, the collision between multiple SUs
is likely to be shorten, and the performance of the whole sec-
ondary network is likely to enjoy a significant improvement.

APPENDIX A
DERIVATION OF TABLE . I

We first provide the general properties of the test statistics.
Given that eachy(n) in (6) is i.i.d., the mean and the variance
of M can be calculated as

E [M ] = E

[
|y|2

]
; var [M ] =

1

Ns

var
[
|y|2

]
.

Further, if the received signaly is complex-valued Gaussian
with mean zero and varianceσ2

y, we have

E [M ] = σ2
y,

and

var [M ] =
1

Ns

(
E

[
|y|4

]
− σ4

y

)
=

σ4
y

Ns

. (31)

Then we consider the concrete form of the received signal
under each hypothesis. In the LAT protocol, given the PU
signal, RSI, and i.i.d. noise, the received signaly is complex-
valued Gaussian with zero mean. The variance ofy under the
four hypothesises are as follow:

σ2
y =





(1 + γs)σ
2
u H01,

(1 + γi)σ
2
u H10,

σ2
u H00,

(1 + γs + γi)σ
2
u H11.

(32)

By substituting them into (31), we can obtain the results in
Table I.

APPENDIX B
DERIVATION OF THE OPTIMAL TRANSMIT POWER

The optimal power̂σ2
s satisfies

dC

dσ2
s

∣∣∣∣
σ̂2
s

= 0. (33)

The differentiation of the secondary throughput can be
derived as shown in (34) at the top of next page, and with
dC
dσ2

s
= 0, equation (35) can be obtained, which can be

simplified as

ln (γt + 1)
exp

(

− ρ2

2

)(

1
µ
− 1
)

Ξ
√
2π (γi + 1)2 α

κ+
σ2
t

γt + 1

(µ

2
− κ
)

= 0.

(36)
Whenµ is sufficiently small, the notations can be simplified

as

α =
1

µ
·
(
Q (ρ)− P 0

f + 1
)
,

κ =
1− P 0

f

Q (ρ)− P 0
f + 1

,

(37)

and (36) becomes

ln (γt + 1)

(γi + 1)
2 ·

exp
(
− ρ2

2

)
· Ξ

√
2π

(
Q (ρ)− P 0

f + 1
) · κ− σ2

t κ

γt + 1
= 0, (38)

i.e.,

exp

(
−ρ2

2

)
(γt + 1) ln (γt + 1)

(γi + 1)2
=

√
2πσ2

t

Ξ

(
1− P 0

f +Q (ρ)
)
.

(39)
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