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Abstract 

 3-Alkoxy-1-N-aryl azopropene structural motifs in the Eschenmoser-

Tanabe Fragmentation pathway have been known for almost 50 years, yet 

one unexploited feature of these intermediates is their putative 1,3-dipole. 

Described here is a transformation leveraging this reactivity to synthesize 

an important class of oxygen heterocycles, β,γ-fused bicyclic γ-lactones, by 

the simple combination of an ester or acyl pyrrole, an α-epoxy-2-

nitrophenyl hydrazone, and a base. The products of this reaction, including 

those containing quaternary centers, are generated with high (up to >25:1) 

diastereoselectivity. Conveniently, both syn- and anti-fused bicyclic 

systems can be generated stereoselectively by simply changing the counter-

ion of the base, LiHMDS and KHMDS, respectively.  

This dissertation also describes the development of a new functional 

group, 3-amino-1-azopropene, and its use in novel annulation strategies leading 

to N-heterocycles, which are important structures found in drugs and 

biologically active natural products. The 3-amino-1-azopropene functional 

group possesses multiple nucleophilic sites and, as such, is expected to inspire 

the development of a wide range of new synthetic methods and/or find 

applications in the development of new drugs and materials. 

Lastly, as part of the continuing effects to develop new reactions for the 

formation of saturated heterocycles, the conjugated π systems of azoalkenes in 

3-hydroxy-azopropenes and 3-amino-1-azopropene were utilized in a [4+2] 

cyclization reaction in order to achieve ring closure. Compounds were prepared 



 v 

in high (up to >25:1) diastereoselectivity from a cascading Tsuji-Trost [4+2] 

cycloaddition, producing a wide array of fused tetrahydrofuran- and pyrrolidine- 

tetrahydropyridazine derivatives.
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1.1 Introduction and background 

1.1.1 Azoalkenes and nitrosoalkenes 

 

Scheme 1. The reaction web of conjugated nitrosoalkenes and azoalkenes. 

Conjugated nitrosoalkenes (NA) and azoalkenes (AK) have been successfully 

explored as a valuable intermediates in organic synthesis, especially for the production of 

heterocycles, a prevalent structural motif present in the majority of pharmaceutical 

compounds (Scheme 1).1,2,3,4,5,6,7 NA and AK are mainly used as electron-deficient 

heterodienes in hetero-Diels–Alder reactions with electron-rich heterocycles, nucleophilic 

olefins, as well as other types of cycloaddition reactions, namely [4+3], [4+1], and [3+2] 

cycloadditions.8,9,10,11,12,13,14,15 NA and AK are also Michael-type acceptors in 1,4-

addition conjugate addition reactions, and subsequent hydrolysis provides an Umpolung 

approach to α-functionalization of ketones.16,17,18,19,20 
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1.1.2 Generation and stability of azoalkenes and nitrosoalkenes 

NA and AK have attracted significant attention as useful intermediates and have 

consolidated their importance in organic chemistry for the synthesis of heterocyclic 

systems.21,22,23,24 This is due to the simple and reliable methods for their generation from 

readily available precursors, usually through base-mediated dehydrohalogenation of α-

halooximes or α-halohydrazones (Scheme 2a).25,26 Many factors such as temperature, 

concentration and solvent affect coupling of NA, but the nature of the its precursor is 

especially important, so other methods have been developed to broaden its application. 

For instance, α-halooxime silyl ethers, N,N-bis(silyloxy)enamines, and N-

siloxysulfonamides have all been employed for NA production.27,28,29,30,31,32 AK can be 

generated through the oxidation of hydrazones with 2,2,6,6-tetramethylpiperidin-1-

yl)oxyl (TEMPO), I2, HgO, or through the pyrolysis of 1,2,3-thiadiazole dioxides, 

oxadiazinones, or 3-hydroxy-2-arylhydrazonoalkanoic acid derivatives (Scheme 

2b).33,34,35,36,37 The electrophilic character of a heterodiene is crucial for efficient 

cycloaddition, therefore, NA having electron-withdrawing substituents at R2- and/or R3-

positions such as aryl, trifluoromethyl, acyl, alkoxycarbonyl, phosphorus, tetrazolyl, and 

triazolyl groups have been used in the target-oriented synthesis of naturally occurring and 

biologically active molecules.38,39,40 Once formed, the highly reactive NA differs from 

AK, because AK’s physical properties and stabilities can also be altered by electron-

withdrawing groups (EWG) on the distal nitrogen, AKs unsubstituted at the R3-position 

are unstable and are typically generated in situ, whereas heavily substituted AKs are 

stable enough to be isolated and characterized, allowing for their study and use in the 

formation of AK cycloaddition products with pharmacological properties.41,42,20 NA and 
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AK have also been prepared through the deprotonation of α,β-epoxyoximes or α,β-

epoxyhydrazones followed by ring opening of an epoxide. These intermediates are 

typically intercepted by a nucleophile, but isolation of 1-hydroxy-3-azopropenes (HAP) 

have been reported, more on this in Section 1.1.5 (Scheme 2c).43 

 

Scheme 2. Routes to nitrosoalkenes and azoalkenes 

1.1.3 Conjugate addition to azoalkenes and nitrosoalkenes  

While traditional enolate chemistry has been instrumental to synthetic organic 

chemistry for the assembly of carbon-carbon bonds in complex molecular architectures, 

the transformation is inherently limited due to its mechanistic requirements of enolate 

attack to an electrophile through a SN2 reaction.44,45,46,47,48,49 Consequently, this SN2 

requirement restricts the incorporation of substituents whose parent electrophile is 

incapable of undergoing an SN2 reaction. Azo- or nitroso- substituents impart strong 
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electrophilic character on the terminal carbon in AK and NA systems, which activates 

and makes them susceptible to nucleophilic attack.50,51,52 Thus, nitrosoalkenes and AKs 

are enolium synthetic equivalents, and their reactivity toward nucleophiles opens the way 

to Umpolung α-functionalization of ketones (Scheme 3). 

 

Scheme 3. Enolate chemistry vs umpolung-based approach 

Gais and co-workers53 reported a conjugate addition of alkenyl copper to a 

bicyclic AK as a key step in the synthesis of 3-oxacarbacyclin (Scheme 4).  The AK 

1.21, prepared from dehydrohalogenation of α-haloketone 1.22, underwent the 

stereocontrolled reaction with an alkenyl iodide in the present of CuCN/LiCl to produce 

the alkenylated product 1.23 in 73% yield.  

 

Scheme 4. Addition of a phenyl cuprate to azoalkene 1.22 

In 2010, the Coltart group reported a method for α-alkylation of hydrazones via in 

situ-generated AKs with commercial Gignard reagents using a catalytic amount of CuI 

(Scheme 5).54  The AKs, derived from α-chloro N-sulfonylhydrazones, react with 
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primary alkyl, secondary alkyl, tertiary alkyl, and phenyl reagents to form the alkylated 

products.  This method also allows the formation of regiocontrolled α,α-bisalkylated 

products from the α,α-dichloro-N-sulfonylhydrazones.   

 

Scheme 5. Cu(I)-catalyzed Grignard addition to in situ generated azoalkenes  

In 2008 Zanna et al. reported an unusual addition of 1,3,5-trianilines to AKs to 

form α-arylated hydrazones (Scheme 6).55  The reactions proceeded via the formation of 

σ-complexes 1.27, which are well-known intermediates in the context of electrophilic 

substitution of aromatic rings.  In the present of sodium methoxide, these products 

undergo cyclizations to afford pyrazalone derivatives or cinnoline derivatives depending 

on the solvent of the reaction.   
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Scheme 6. Nucleophilic addition of aromatic compounds to azoalkenes 

AKs also react with silyl enol ethers in the Mukaiyama-Michael-type addition.  In 

2007, Filippone et al. reported the addition of various silyl enol ethers to AKs at room 

temperature in the present of ZnCl2 (Scheme 7).56  The coordination of ZnCl2 with the 

silyl enol ethers promoted the nucleophilic addition to AKs and generates the products.  

In 2008, the same group reported a similar transformation of AKs 1.31 with 

Danishefsky’s diene 1.32.57  
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Scheme 7. Nucleophilic addition of silyl enol ethers to azoalkenes 

1.1.4 Cycloadditions of azoalkenes and nitrosoalkenes 

In 1979, Gilchrist et al. reported another cycloadditon of AK species 1.33, 

generated in situ from α-chloroacetophenone hydrazones, with cyclopentadiene and furan 

(Scheme 8).58  AKs bearing an electron-withdrawing group on the azo group or electron-

rich dienes facilitated the cycloaddition and generated the pyridazine derivatives 1.34 in 

good yields.  
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Scheme 8. [4+2] cycloaddition of electron-deficient azoalkenes and electron-rich alkenes 

In 2014, Wang et al. reported the copper-catalyzed asymmetric aza-Diels-Alder 

reactions of in situ generated AK 1.35 and indoles 1.36 to generate tetrahydropyridazine 

derivatives 1.37 (Scheme 9).59  Using a chiral nonracemic ligand and copper (I) as a 

chelating metal to the AK, the cycloaddtion of this AK with indoles generated adducts 

with excellent yields and high levels of enantioselectivity.  
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Scheme 9. Catalytic asymmetric aza-Diels-Alder reactions of an azoalkene with indoles 

The copper-catalyzed asymmetric [4+1] cycloaddition of in situ generated AKs 

with sulfur ylides to produce dihydropyrazole derivatives was reported in 2012 by Bolm 

et al. (Scheme 10).60  In the presence of base (Na2CO3), α-halo hydrazones 1.38 

underwent a dehydrohalogenation to form AKs, which was presumably activated by 

Cu(OTf)2 complexed to the chiral nonracemic Tol-BINAP ligand L.  The cycloaddition 

of the activated AKs with ylides produced synthetically and biologically important 

dihydropyrazoles 1.39 in good yields with high enantioselectivitives (up to 97:3 er). 

O

NH
N

Ph

N
Ph

Cl
R3

R2

R1
N
R3R1

N
N

R2

H

Ph

O
Ph

Fe PPh2
N

O

(5 mol%)

Cu(MeCN)4BF4 (5 mol%), 
NaCO3, DCM, -20 oC, 18-24h

1.35 1.37a-d1.36

N
N

N

H

Ph

O
Ph

1.37a, 95%, 97% ee

N
N

N

H

Ph

O
Ph

1.37b, 85%, 97% ee

N
N

N

H

Ph

O
Ph

1.37c, 87%, 95% ee

N
N

N

H

Ph

O
Ph

1.37d, 90%, 98% ee

Br
Br Cl

N
N

N

H

Ph

O
Ph

1.37e, 88%, 96% ee

N
N

N

H

Ph

O
Ph

1.37f, 89%, 97% ee

N
N

N

H

Ph

O
Ph

1.37g, 92%, 98% ee

N
N

N

H

Ph

O
Ph

1.37h, 91%, 96% ee

N
N

N

H

Ph

O
Ph

1.37i, 90%, 97% ee

N
N

N

H

Ph

O
Ph

1.37j, 89%, 97% ee

N
N

N
Ph

H

Ph

O
Ph

1.37k, 91%, 97% ee

N
N

N

H

Ph

O
Ph

1.37h, 91%, 96% ee

MeO

Ph
MeO2C



 

 
10 

 

Scheme 10. Asymmetric [4+1] cycloaddition of in situ-derived azoalkenes with sulfur ylides 

The enantioselective [4+3] annulation reactions between enals and in situ formed 

AKs was reported in 2014 by Glorius et al (Scheme 11).61  This organocatalysis process, 

catalyzed by an N-heterocyclic carbene generated from L2, produced a diverse set of 1,2-

diazepine derivatives 1.41 in good yields with excellent enantioselectivities.   

 

Scheme 11. Asymmetric [4+3] cycloaddition of in situ-derived azoalkenes with enals 
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12).62,63 This method has been widely applied to fused rings to form internal acetylenes, 

as well as the synthesis of many natural products.64,65 

 

Scheme 12. Eschenmoser-Tanabe Fragmentation and known 3-hydroxy-1-N-aryl or N-alkyl 
azopropenes. 
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Corey and co-workers employed the ring opening of α,β-epoxy oximes with Gilman’s 
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10 position (Scheme 13).66 Interestingly, with cyclohexenone oxime excellent 

stereoselectivity was observed (exclusively trans isomers were formed), yet substituted 

cyclohexenone oxime derivatives such as α,β-epoxycarvone and epoxyisophorone oximes 

produced diastereomeric mixtures of products.  
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In 1976, Fuchs reported a new methodology for the α-arylation of α,β-

unsaturated ketones (Scheme 14).67 Fuchs recognized that a nucleophile should be 

primed to intercept the 3-alkoxy-1-N-toluenesulfonyl azopropene intermediate at the α-

position. Thus, the 3-alkoxy-1-N-toluenesulfonyl azopropene moiety was formed by the 

addition of n-BuLi at –78 °C to α-epoxy hydrazone (1.57 or 1.58) and Gilman’s reagents 

in good yield.  Fuchs then progressed the α-phenyl-β-hydroxy hydrazone to the α-

arylation-α,β-unsaturated ketones by dehydration and hydrolysis of the hydrazone. While 

it was not the initial goal of Fuchs, this reaction provided a fundamentally new approach 

to the synthesis of α-aryl-β-hydroxy ketones. 

 

Scheme 14. Interception of the 3-alkoxy-1-N-toluenesulfonyl azopropene intermediate with 
phenyl copper. 

From the early 70s into the 80s, Kamernitskii and Akhram employed α,β-epoxy-

hydrazones several times to directly modify steroids 1.61 (Scheme 15).68 They were able 

to demonstrate a variety of hetero nucleophiles that could be added to the α-position in 
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Scheme 15. Kamernitskii and Akhram modified steroids  

In 1982, Hajivarnava and co-workers showed that reacting anhydro-

glycopyranosiduloses 1.63 with p-nitrophenyl-hydrazine yielded isolatable HAPs 1.64.70 

Subsequent, they reacted HAP 1.64 with a range of nucleophiles yielding the anti-α-

substituted phenylhydrazones by 1,4-addition (Scheme 16).  

 

Scheme 16. Reactions of isolatable HAP 
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underwent 1,4-addition to the AK, and ultimately produced the α-alkyl-β-hydroxy N-

sulfonyl hydrazone on acidic workup.  Such a process provided diastereoselective 

addition of various Grignard reagents to 3-alkoxy-1-N-toluensesulfonyl azopropenes, as 

well as gave access to synthetically challenging α-quaternary centers. The products, α-

alkyl-β-hydroxy-N-sulfonyl hydrazones, were formed in up to > 25:1 syn:anti ratio.  

While that work proved successful for the conjugate addition of Grignard reagents 

to in situ generated HAPs, it had yet to be proven that this substrate could be utilized in 

new transformations. Specifically, in the context of generating saturated heterocycles.  
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Scheme 17. Grignard addtion to 3-alkoxy-1-N-tolenesulfonyl azopropenes. 
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hybridized ring atoms).  Interestingly, while N- and O-heterocycles of all degrees of 

saturation are widely represented among natural products, the unsaturated forms are by 

far the most common in pharmaceuticals.72,73,74,75,76,77,78,79,80 The underrepresentation of 

saturated and partially saturated heterocycles among drugs is surprising given the 

potential benefits that they offer in comparison to their unsaturated counterparts. 

Deficiencies in the synthesis of these species are largely to a lack of simple, effective, 

and broadly applicable methods for their synthesis.  It has been shown that saturation 

levels impact the clinical success of drug candidates by effecting their bioavailability and 

target promiscuity, which are the leading causes of attrition in the drug development 

process.81  In general, the higher the sp3 content of a compound, the greater its 

bioavailability and target specificity will be, thereby increasing its likelihood to succeed 

as a drug.  It is also the case that lower molecular weight drug candidates tend to be more 

successful; the mean MW of compounds at the drug discovery stage is 442, but this drops 

to 360 for those compounds that become drugs.  Increasing structural complexity by 

increasing levels of saturation allows a vastly greater portion of chemical space to be 

explored, with a minor increase in molecular weight.  Clearly, there is a critical need to 

develop simple, effective, and broadly applicable methods for the synthesis of saturated 

and partially saturated N- and O-heterocycles.  Such methods will not only find 

application in the asymmetric total synthesis of natural products, but will also be of great 

value by providing opportunities to investigate hitherto non- or underexplored areas of 

structure space in the search for new drugs.  What follows describes the development of a 

simple, effective, and broadly applicable method for the synthesis of saturated and 

partially saturated O-and N-heterocycles.  
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1.2 Synthesis of β ,γ-fused bicyclic γ-lactones82,83 

1.2.1  γ-lactones 

γ-lactones appear in 10 U.S. FDA approved pharmaceuticals, all of which are 

polycyclic, and only one contains unsaturation and lacks a stereocenter (Scheme 18).73  

Substitution in γ-lactones plays a critical role in its bioactivity; for instance, spirolactone 

steroids are critical for mineralocorticoid receptor antagonist activity that helps to 

increase sodium excretion and potassium retention, whereas sentacyclic cores containing 

γ-lactones are thrombin receptor antagonist, and disubstituted γ-lactones are used to treat 

glaucoma, xerostomia and to help prevent transplant rejection.84,85,86,87 

 

Scheme 18. Examples of lactones in drugs and natural products 

1.2.3 Multicomponent ring expansion cascade 
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While the previously mentioned examples utilizing HAP moieties for non-

Eschenmoser-Tanabe fragmentations are impressive, little has been reported on the 

alkoxide being used as a nucleophile or the development of these intermediate in the 

context of a 1,3-dipole (Scheme 19).68 Therefore, these intermediates were engaged with 

suitable dipoles to investigate their potential reactivity. While a range of dipoles can be 

envisioned, for our initial investigation the use an enolate derived from an ester was most 

practical. The product of such a novel cascade reaction would be an β-γ-fused bicyclic γ-

lactone (2.6). Mechanistically, this would require 2 equiv of enolate. The first equiv 

would deprotonate the α,β-epoxy-p-toluenesulfonylhydrazones initiating a reopening of 

the epoxide to generate the 3-alkoxy-N-p-toluenesulfonyl azopropene (2.7), then the 

second equiv of enolate would engage in nucleophilic addition to the AK (2.9). Finally, 

the alkoxide induced transesterification to give the desired β-γ-fused bicyclic γ-lactone 

(2.6) (Scheme 20).  

 

Scheme 20. Proposed mechanism for α-β-fused bicyclic γ-lactone 
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toluenesulfonyl azopropene (Scheme 21a). To this reaction mixture was added an enolate 

derived from methyl phenylacetate and KHMDS. The desired β-γ-fused bicyclic γ-

lactone 2.12 was produced, but the low yield is mostly due to the Eschenmoser-Tanabe 

Fragmentation. To simplify the procedure, 2.25 equiv of enolate was added to 2.11, with 

one equiv of the enolate acting as a sacrificial base to deprotonate the α-epoxy tosyl 

hydrazone to form the HAP. This modified procedure reduced the fragmentation reaction 

by generating the reactive HAP while in the presence of the nucleophile.  By 

implementing this modified procedure, the desired β-γ-fused bicyclic γ-lactone 2.14 was 

formed in 50% yield (Scheme 21b).  Unfortunately, no additional experimentation with 

the reaction conditions led to an increase in yield, so the hydrazone was then modified to 

avoid the unwanted fragmentation reaction pathway.  

 

Scheme 21. Initial reaction conditions for the multicomponent ring expansion cascade 
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maintain the electrophilicity of the AK component an EWG would be incorporated. o-

NO2 phenyl hydrazine was selected as our substrate because the nitro group at the ortho 

positioned was suspected to be sufficiently electron withdrawing to maintain 

electrophilicity, and the o-nitro group could also provide higher reactivity in the AK by a 

through-space electronic interaction between oxygen and nitrogen lone pair. α-epoxy-N-

(2-nitro)phenyl hydrazone 2.16 was then prepared by condensing (2-nitro)phenyl 

hydrazide (2.15) on to 2.10 (Scheme 21c). 2.16 was then added to a solution of phenyl 

methylacetate and KHMDS in THF at –78 ºC, followed by warming to 0 ºC, which 

resulted in the formation of the desired product 2.17 in very good yield as a single 

diastereomer. The relative stereochemistry of 2.17 was established via 1D and 2D NMR 

studies, including nOe experiments, and was later confirmed by X-ray crystal analysis of 

the ketone obtained from hydrolysis. 

1.2.4 Synthesis of β,γ-anti-β,γ-fused bicyclic γ-lactones 

 
After establishing the ring expansion cascade with respect to 2.11a, other aryl 

groups and a heteroaryl group were tested with α-epoxy hydrazone 2.16, and all were 

found to give good yields and excellent diastereoselectivities (Table 1). All 

transformations involving the 5-membered α-epoxy hydrazone failed to give an adequate 

amount of desired product, but the corresponding 7-membered α-epoxy hydrazone 

successfully underwent the ring expansion cascade, providing the desired α-β-fused 

bicyclic γ-lactones as single diastereomers and good yield (2.29, 2.30, and 2.31).  
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 Synthesis of β ,γ-anti-β ,γ-fused bicyclic γ-lactones Table 1.

Incorporating alkyl groups into the α-position of the lactone ring using methyl 

propionate under the same reaction conditions as before failed, as the enolate precursor 

gave a complex mixture with no visible formation of the desired product (Table 2). The 

utilization of 2-oxazolidinone and pyrrole (Table 2, entries 2 and 3) gave the desired γ-

lactone in low yield, but with further experimentation using pyrrole propionoate systems 
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the β,γ-fused bicyclic γ-lactone was eventually produced in 52% yield. This was done by 

diluting the reaction concentration from 0.06 M to 0.03 M, increasing the amount of 

KHMDS used to 2.55 equiv, and working up the reaction using CH2Cl2 rather than 

EtOAc. The dilution of the reaction conditions proved pivotal in reducing the amount of 

Claisen-condensation byproduct.  

 

entry x Yield of 2.32:2.33(%)  

1 -OMe complex mixture 
2 

 

8:0 

3 

 

28:0 

4 -SEt 11:78 
5 

 

complex mixture 

6 

 

complex mixture 

 Incorporating alkyl groups Table 2.

1.2.5 Formation of α-and β-quaternary centers and α-tertiary 
esters 

Our next interest was to explore the ring expansion cascade for the production of 

heavily substituted γ-lactones. Being slower to form, it was ultimately found that after the 

addition of the hydrazone to the preformed enolate at –78 °C, warming the reaction to – 

40 °C for 20 h, and then subsequently warming the reaction to 0 °C the desired γ-lactones 
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Ar = (2-nitro)phenyl

X

2.16 racemic

N
ArHN

O
O

H

H

ArNHN

+

2.32 2.33

X

O

N

O

N

N
N
N

NN



 

 
23 

were provided in 51% yield and 8:1 dr at the Cβ-Cγ ring fusion, while maintaining 

excellent stereoselectivity at the Cα-Cβ bond (>25:1 dr) (Table 3).  

  

 Synthesis of β ,γ-fused bicyclic γ-lactones containing α- and β-Table 3.

quaternary center 

1.2.6 Synthesis of β,γ-syn-β,γ-fused bicyclic γ-lactones 

While the cascading ring expansion reaction proved successful using KHMDS, 

other bases were tested (Table 4).  With the exception of KOt-Bu, the desired product 

was obtained, but the diastereoselectivity varied.  Interestingly, the stereochemistry at the 

ring fusion was altered to favor the syn-product with the use of LiHMDS, with the best 

selectivity being obtained by increasing the reaction temperature and time (Table 4, 
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CβH-CγMe anti:syn 14:1
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CβH-CγMe anti:syn 3:1
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X-ray crystal structure
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entry 5).  Conditions providing access to syn-β,γ-fused bicyclic γ-lactones were further 

explored using 2.16 and several different aryl methyl esters.  Once again, the selectivity 

outcome of these reactions favored the syn-ring fused products, thereby establishing the 

stereodivergent nature of the ring expansion process.   

 

entry base time (h) temp (ºC) CαH-CβH 
anti:syn 

CβH-CγH 
anti:syn 

1 KHMDS 1 –78 to 0 >25:1 >25:1 
2 NaHMDS 1 –78 to 0 >25:1 5:1 
3 LDA 1 –78 to 0 >25:1 1:2 
4 LiHMDS 1 –78 to 0 >25:1 1:5.5 
5 LiHMDS 5 –78 to rt >25:1 1:6.5 
6 KOt-Bu 1 –78 to 0 complex mixture obtained 

 Effect of the base on the reaction outcome Table 4.

Due to the pronounced effect of the base, the procedure was reevaluated with 

respect to the 5-membered α-epoxy hydrazone, which had previously been unable to 

cyclize. Thus, a α-epoxy-methyl (2-nitro)phenyl hydrazone was combined with the Li-

enolate of phenyl methyl acetate in THF to produce  2.47 as a single diastereomer, but 

this time the reaction was selective for the syn-fused product (Table 5). The 

transformation was tried with different aryl acetic methyl esters and consistently 

produced only the syn-fused diastereomer (2.47-2.55). 

ArNHN

O

R
O

Base (2.25 equiv),
THF, –78 to 0 °C

Ar = (2-nitro)phenyl

OMe N
ArHN

H

R2
O

O

R

αβ
γ

2.16 racemic 2.44



 

 
25 

 

 Synthesis of β ,γ-syn-β ,γ-fused bicyclic γ-lactones Table 5.

1.2.7 Hydrolysis conditions 

Using conditions previously established by the Coltart group to hydrolyze ACC-

hydrazones into their corresponding ketones, the β,γ-fused bicyclic γ-lactone hydrazones 

were hydrolyzed with p-TsOH·H2O in acetone:H2O (4:1 v/v) at rt.88 All substrates 

underwent efficient hydrolysis in good to excellent yield, with no indication of 

epimerization at any of the stereogenic centers (Table 6).  
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 (2-nitro)phenyl hydrazone hydrolysis Table 6.

1.2.8 Mechanistic studies  

Investigations into the mechanism of the reaction were undertaken. It was 

suspected that the transformation was proceeding via a 3-alkoxy-1-N-(2-nitro)phenyl 

azopropene intermediate, because the syn-fused products form fromed α-methyl-α-epoxy 

hydrazones would be unlikely to undergo an SN2 reaction. However, the possibility that 

the transformation was simply an SN2 epoxide ring opening89,90 by the enolate can not be 

completely ruled out. Nonetheless, to test for the existence of the 3-alkoxy-1-N-(2-

nitro)phenyl azopropene intermediate, the transformation between 2.16 and enolate was 

carried out, but this time using only 0.95 equivalents of KHMDS and immediately 

quenching the reaction following addition of the α-epoxy hydrazone to the enolate 
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solution (Scheme 22a).  If the 3-alkoxy-1-N-(2-nitro)phenyl azopropene intermediate 

was being formed in the reaction mixture, then these conditions should lead to its 

formation without leaving a sufficient amount of the enolate species to fully consume it, 

thereby allowing the alkoxy azoalkene to be trapped upon rapid quenching.  This 

experiment gave a mixture of 2.20, 2.65, and 2.66 in a 1:2.7:4 ratio.  The presence of 2.66 

in the reaction mixture is a strong indication of the involvement of the 3-alkoxy-1-N-(2-

nitro)phenyl azopropene in the above reactions.  To obtain further evidence for the 

existence of this intermediate, compound 2.16 was treatment with NaOH.  Alcohol 2.66 

could be isolated and purified, and it was then added to a solution of the enolate under the 

standard reaction conditions established above (Scheme 22b).  This resulted in the 

exclusive formation of 2.20, further supporting the intermediacy of the 3-alkoxy-1-N-(2-

nitro)phenyl azopropene in the ring expansion method.   

 

Scheme 22. Mechanistic studies of the ring expansion cascade 

 With regard to the formation of the anti-ring fusion product giving a single 

diastereomer of the uncyclized product 2.65, it seems likely that an enolate of a single 
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geometry adds in a stereoselective manner to the alkoxy azopropene intermediate.  This 

could conceivably occur through the stereoselective kinetic deprotonation to give E(O)- 

or Z(O)-enolate, which would then add to the AK in a diastereoselective manner to 

produce 2.65.   

 The production of the anti-ring fusion suggests opposite face addition 

would be favored based on the relatively low affinity of the potassium (versus lithium) 

and oxygen ions – which diminishes the likelihood of a closed transition state – coupled 

with the relatively large atomic radius of potassium (versus lithium), which would 

sterically bias the addition (Scheme 23a).  Dianion 2.68 would then undergo protonation 

by residual ester and intramolecular O→O acyl transfer to produce γ-lactone 2.69, which 

would be followed by epimerization at the lactone α-carbon to produce 2.70, the 

thermodynamically more stable product.91   

 

Scheme 23. Preliminary stereochemical models 

 Formation of the syn-fused product when LiHMDS is used can be 

rationalized by a closed transition state in which both the alkoxy function and the enolate 
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oxygen are coordinated via a lithium ion (Scheme 23b). This would be expected to lead 

preferentially to addition of enolate to the AK from the same face as the alkoxy group, 

establishing the syn relative configuration at what becomes the ring fusion position of the 

final product (2.72), as well as the stereochemistry at what becomes the β-lactone 

position.  Nitrogen protonation and intramolecular O→O acyl transfer would then 

produce γ-lactone 2.73, directly providing the thermodynamically more stable lactone.91 
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1.3 Synthesis of α ,β-fused bicyclic γ-lactams92 

1.3.1 γ-lactams 

Nitrogen containing heterocycles makeup 59% of U.S. FDA approved drugs 

(Scheme 24).72 This has spurred the development of numerous methods to prepare 

achiral N-heterocycles; however, few approaches are available to access more 

synthetically challenging chiral N-heterocycles.93,94,95,96 In fact, it has been argued that 

the lack of straightforward and reliable approaches to chiral N-heterocycles has led to an 

undersaturation of heterocyclic drugs. As such, the potential of chiral variants in drug 

development has yet to be fully developed. 

 

Scheme 24. Examples of lactams in drugs and natural products 
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1.3.2 Synthesis of α-alkyl-β-amino oximes 

 

Scheme 25. Proposed mechanism for α-β-fused bicyclic γ-lactam 

 In an effort to expand on α-epoxy N-sulfonyl hydrazone chemistry, a 

modification was proposed, in which an aziridine would replaced the epoxide functional 

group to give α,β-aziridino-p-toluenesulfonylhydrazones 3.1 (Scheme 25).83 Considering 

the previous success with the formation of α-β-fused bicyclic γ-lactones using HAP, this 

would potentially give us access to both syn- and anti-α-β-fused bicyclic γ-lactams 

moiety 3.2. Similar ring opening would produce a new functional group, not previous 

reported in literature, in the form of 1-amino-3-azopropene 3.3 (AAP). Nucleophilic 

addition to AAP with an enolate ester, followed by intramolecular N→O acyl transfer 

would produce a γ-lactam.  
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Scheme 26. Substrate for multicomponent ring expansion cascade 

Unable to synthesize an α,β-aziridino-p-toluenesulfonylhydrazones 3.1, as all 

conditions tried led to decomposition of starting material with no desired product formed. 

E.J. Corey’s use of α,β-epoxyoxime then inspired the combination of α,β-aziridino ketone 

3.6 and TBSONH2 in MeOH, for the successful preparation of α,β-aziridino O-silyloxime 

3.7 (Scheme 26). After surveying reaction conditions, it was found that a solution of 3.7 

could be treated with TBAF and enolate at −78 °C. However, no desired γ-lactams was 

detected by 1H NMR of the crude material, and only the uncyclized amine was isolated. 

When methyl phenyl acetate was changed to methyl malonate ester, having two possible 

sites for intramolecular N→O acyl transfer to occur, cyclized was still not observed. 

Regardless, the α-alkyl-β-amino oxime are still synthetically useful, so further 

experimentation was conducted. Increasing the equivalence of enolate and maintaining 

low temperatures throughout the reaction lead to high yield and diastereoselectivity 

(Table 7, entry 5). 
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entry R equiv temp. (oC) dr. yield (%) 

1 Ph 2 –78 oC 2:1 82 

2 CO2Me 1.2 –78 oC to 0 oC >25:1 23 

3 CO2Me 1.2 –78 oC to –40 oC >25:1 26 

4 CO2Me 1.2 –78 oC >25:1 53 

5 CO2Me 2 –78 oC >25:1 77 
 Synthesis of α-alkyl-β-amino oximes  Table 7.

Our methodology is also Conducive for the formation of all carbon α-quaternary 

center (Table 8). After testing several reactions conditions, it was found that the desired 

product could be made in good yield and diastereoselectivity.   

 

entry R conc. dr. yield (%) 
1 CO2Me 0.2 >25:1 35 

2 CO2Me 0.7 >25:1 69 

3 Ph 0.6 2:1 54 
 Synthesis of α-alkyl-β-amino oxime containing α-quaternary Table 8.

centers 

After establishing enolate addition, attempts to induce cyclization by modification 

of 3.14 were carried out. Despite trying numerous reaction conditions for 

transesterification, amidation, and deprotection of the tosyl groups, the formation of a 

fused bicyclic γ-lactam from β-amido oximes was unsuccessful. (Table 9). 
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entry conditions  result 
1 NaOMe Starting material 

2 Naphthalene, Li, THF, 
–78 °C to rt 

Decomposition 

3 NaOH, 90 °C 3.16 
 Examples of further attempts at cyclization Table 9.

1.3.3 Synthesis of β ,γ-fused bicyclic γ-lactams 

 

Scheme 27. New functional group: 3-amino-1-azopropene 

With the above knowledge, the AAP substrate were redesigned to have a less 

electron withdrawing protecting group on the amine, to give it move nucleophilicity 

upon ring opening of the aziridine (Scheme 27). From the mechanistic studies on the 

synthesis of α-β-fused bicyclic γ-lactones, a HAP was isolated, hinting at the possibility 

of preparing AAPs and using them for the synthesis of N-heterocycles. In fact, it found 

that the condensation of an α-aziridino ketone with a phenyl hydrazine in Et2O directly 

generated AAP without the need for base (Table 10). As it was with HAPs, this 

compound was stable to silica gel chromatography, atmosphere, moisture and it could 

be heated to reflux in toluene and recovered unaltered. It was also dissolved in a 

solution with n-BuLi followed by an acidic work-up in saturated ammonium chloride, 

AAP was recovered without decomposition. Both allyl and benzyl protected AAPs of 
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varying ring sizes and substitution were prepared. All products were stable to silica gel 

chromatography and gave good yield. 

 

 Synthesis of 3-amino-1-azopropene Table 10.

1.3.4 Synthesis of β,γ-anti-β,γ-fused bicyclic γ-lactam 

For the use of AAP in cyclization KHMDS was first tested in THF –78 °C and 

gradually warmed to 0 °C over 2 hours. In this case, sterics controlled the stereochemical 

outcome of the addition of enolate to the face opposite of the amino group as it had for 

β,γ-anti-β,γ-fused bicyclic γ-lactones. A solution of methyl phenyl acetate and KHMDS 

in THF was added to AAP and the intended β,γ-anti-β,γ-fused bicyclic γ-lactam was 

indeed generated in good yield and with very high diastereoselectivity. Unfortunately, the 

γ-lactam hydrazones produced were unstable to silica gel purification, in fact, Bozzini has 

shown that some phenyl hydrazones are unstable and undergo radical based autoxidation 

process with molecular oxygen.97,98 Fortunately, immediately hydrolyzing the cyclized 
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product was possible by using p-TsOH in wet acetone to give the corresponding keto β,γ-

anti-β,γ-fused bicyclic γ-lactams after silica gel purification in good yield and excellent 

diastereoselectivity (Table 11, entry 1). A brief survey of related reaction conditions did 

not increase yield and the use of lithium bases decreased the diastereoselectivity but did 

not produce β,γ-syn-β,γ-fused bicyclic γ-lactam as the major stereoismer (Table 11, 

entries 2-4). 

 

entry base dr. yield (%) 

1 KHMDS >25:1 68 

2 NaHMDS >3:1 14 

3 LiHMDS >3:1 16 

4 LDA >3:1 20 
 Survey reaction conditions for cyclization Table 11.

With an approach for β,γ-anti-β,γ-fused bicyclic γ-lactams the scope was tested 

with AAPs of different ring sizes and substitutions. High yields are reported for for most 

β,γ-anti-β,γ-fused bicyclic γ-lactams (Table 12). The stereochemistry was established 

via nOe experiments, and was confirmed in the case of compound 3.35 with an X-ray 

crystal structure. 
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 Synthesis of β ,γ-Anti-β ,γ-fused bicyclic γ-lactams Table 12.

Having developed a successful approach to β,γ-anti-β,γ-fused bicyclic γ-lactams 

via the intermolecular enolate addition to AAP, and the failure of lithium bases to 

reverse the stereo outcome of this reaction. To access the corresponding β,γ-syn-β,γ-

fused bicyclic γ-lactams the order of connectivity was reversed, by forming the amide 

bond first then using base to induce an intramolecular cyclization reaction. 

1.3.5 Synthesis of β,γ-syn-β,γ-fused bicyclic γ-lactam 

With AAPs already prepared, reaction parameters for amidation were tested 

next. It was found that cross coupling could be effectively achieved using a combination 

of EDCI, HOBt, and Et3N in CH2Cl2 (Table 13). Using these conditions 
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amidoazopropenes 3.45-3.53 were prepared in very good to excellent yield after 

purified by silica gel chromatography.  

 

 Amidation of 3-amino-1-azopropene Table 13.

To test the theory that a stereodivergence synthesis of bicyclic γ-lactams was 

possible, KHMDS was added to 3.45 in THF at –78 °C, followed by hydrolysis to give 

the intended β,γ-anti-β,γ-fused bicyclic γ-lactam in good yield and with very high 

diastereoselectivity. A survey of reaction conditions saw no increase in yield (Table 

14).  
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entry base solvent temp. (oC) dr. yield (%) 

1 KHMDS THF –78 oC – 0 oC >25:1 79 

2 NaHMDS THF –78 oC – 0 oC >25:1 25 

3 LiHMDS THF –78 oC – 0 oC >25:1 13 

4 LDA THF –78 oC – 0 oC >25:1 20 

5 KHMDS Et2O –78 oC – 0 oC >25:1 10 
 Survey reaction conditions for cyclization Table 14.

All amidoazopropenes reacted to give the desired β,γ-syn-β,γ-fused bicyclic γ-

lactams in good yield and diastereoselectivity (Table 15). The reaction worked with 

different ring sizes and was able to form quaternary centers. The stereochemistry was 

established via nOe experiments, and was confirmed in the case of compound 3.60 with 

an X-ray crystal structure.  

N
P
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NNPh

O

1) Base (2.25 equiv),
Solvent, –78 to 0 °C

2) p-TsOH•H2O, acetone

O

N
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G

O

PhH

H

3.45 racemic 3.54
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 Synthesis of β,γ-syn-β,γ-fused bicyclic γ-lactams Table 15.

By simply changing the mode of addition of enolates from inter to intramolecular 

addition a stereodivergent strategy was established for both syn- and anti-β,γ-fused 

bicyclic γ-lactams.   

1.3.6 Substrate scope of hydroxy- and amino-azopropenes 

AK’s physical properties and stabilities can also be altered by EWG or EDG on 

the distal nitrogen. The formation of HAPs and AAPs was then studied in relationship to 

the EWGs and EDGs in their aromatic ring. Several cyclic HAPs and AAPs were 

prepared with moderate to good yields (Table 16). In the case of HAP 3.69, the 

hydrazone form was was preffered over the AK. Excitingly for HAP 3.71 and AAP 3.82 

X-ray crystal structures were obtained. 
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 Scope of hydroxy- and amino-azopropenes Table 16.

Next acyclic HAPs and AAPs were prepared, but yields were obstructed by the 

formation of pyrazole 3.85, which was preferred in some cases (Table 17). No pyrazole 

was observed with 3.95 or 3.97 and in cases where R = Ph, no acycle HAP or AAP was 

detected in the NMR of the crude material, only pyrazole was formed. Attempts to 

crystallize acycle HAPs and AAPs have been unsuccessful.  

ArNHNH2,
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 Scope of acyclic hydroxy- and amino-azopropenes Table 17.

The synthetic equivalent of 1,3-carbodipoles still remains a challenging problem 

in organic synthesis (Scheme 28).99 In general donor–acceptor cyclopropanes can fill this 

role with defined reactivity in [3+n] cycloadditions to form various saturated 

compounds.100 This system provides one of the most rational and straightforward 

synthetic routes to cyclopentane, an ubiquitous core scaffolds in numerous bioactive 

compounds including drugs, via a [3+2] cycloaddition with a C–C double or triple 

bonds.101,102,103 This reactivity also provides possibilities for the development of a general 

strategy for the synthesis of diverse heterocycles. This approach has been successfully 

utilized to preparing five-, six-, and seven- membered rings.104,105,106  
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Scheme 28. 3-carbo-1-azopropenes 

Our chemistry allows for the formation of 3-carbo-1-azopropenes (CAP). 

However, the simple combinations of base, substrate, hydrazine and lewis acid were 

unable to form CAPs cleanly. Moderate success has only been achieved using a 

combination of base and a lewis acid that also contains a nucleophilic halide (Table 

18).107 It’s purpose that the formation of CAP progresses through intermediate 3.101. 

Currently, studies are underway to use CAPs as a 1,3 dipole in cyclization reaction.  

 

entry lewis acid yield (%) 

1 MgI2 71 

2 Cu(OTf)2 42 

3 AlCl3 26 

4 BF3⋅Et2O 21 
 Survey reaction conditions for 3-carbo-1-azopropenes. Table 18.

1.3.7 Synthetic utility and other reactions 

As a preliminary demonstration of further synthetic utility, the keto lactams 3.66 

was converted into its corresponding acetal upon treatment with ethylene glycol (Scheme 

29). 3.103 was then allylated With LDA and allyl bromide to give 3.104, or in 

another intense 3.66 was reduced using LiAlH4 in THF to give a pyrrolidine 3.106, 
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another biologically relevant core. Both products were followed by deprotection with 

FeCl3 hydrate in CH2Cl2.  

 

Scheme 29. Synthetic utility of keto lactams 

Next AAPs were tested with benzenethiolate to give 2.108, vinyl Grignard to 

produce 2.109, and carbon disulfide for the cyclized product 2.110, all with high 

diastereoselectivity and good yields, further demonstrating the synthetic potential of 

AAPs (Scheme 30). 
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Scheme 30. Reactivity of 3-amino-1-azopropenes 

Serendipitously, while reacting AAP with an in situ formed benzyne, nucleophilic 

addition was not preceded by the proposed cascade cyclization to form 3.112, but instead 

an inverse electron-demand aza-Diels–Alder reaction with the allylic protecting group 

proceeded to give 3.111 (Scheme 31). This inspired a novel annulation strategy of 

utilizing the 4 π system of the AK for the formation of saturated O- and N-heterocycles 

(see next section).  

 

Scheme 31. [4+2] Cyclization of amino-azopropene 
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1.4 The stereocontrolled synthesis of tetrahydrofurans and 
pyrrolidines108 

1.4.1 Tetrahydrofurans and pyrrolidines 

O-heterocycles are the second most common type of heterocycles that appear in 

approved pharmaceuticals.74 Tetrahydrofuran-containing drugs are prescribed as 

treatments for various diseases including cardiovascular, cancer, antifungal, diabetes, 

urinary, and HIV infections.109,110,111,112 Only 13 tetrahydrofuran-containing drugs are 

currently on the market, all contain at least one stereocenter. A number of synthetic 

approaches to substituted THFs have been reported, along with their application to 

natural product targets containing these structures.113 However, the majority of these 

strategies concern the construction of di- and trisubstituted furans with relatively few 

focused on the synthesis of tetrasubstituted tetrahydrofurans.114 Tetrasubstituted 

tetrahydrofurans, often with multiple stereogenic centers, are commonly encountered as 

structural core units in various natural products displaying a broad spectrum of biological 

activities.115 

 

Scheme 32. Examples of tetrahydrofurans in drugs 
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Conversely, pyrrolidines are the most represented nonaromatic N-heterocyclic 

core, with 37 drugs currently in market.73 Tetrasubstituted-pyrrolidines are 

underrepresented, with disubstitution being the most dominant pattern observed. The 

natural proline core is a commonly employed pyrrolidine structural fragment.116,117,118,119 

Efficient methods for the synthesis of tetrasubstituted heterocycles would go a long way 

to breaking our dependency on chiral pools.  

 

Scheme 33. Examples of pyrrolidines in drugs 

1.4.2 Tsuji-Trost allylation [4+2] cycloaddition  

As mentioned above, AKs are heterodienes capable of various [4+1], [4+2], and 

[4+3] reactions to generate N-heterocycles. As part of our continuing efforts to develop 

new reactions for the formation of saturated heterocycles, the conjugated π systems of 

AK in HAPs and AAPs was utilized in a [4+2] cyclization reaction in order to achieve 

ring closure (Scheme 34). The introduction of the dienophile could be achieved through a 

simple SN2 allylation, where the nucleophile is the hydroxyl group of the HAP or the 

amino group of the AAP. The products of the following [4+2] cycloaddition reaction 

would be a fused furan-tetrahydropyridazine derivative, or pyrrolidine-

tetrahydropyridazine derivative for AAP systems, both biologically relevant cores.  
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Scheme 34. 1,3-dipolar and 1,3,6-tripolar reactivity 

Initial attempts to perform a SN2 displacement on an allyl bromide were 

unsuccessful. Fortunately, the Tsuji-Trost could also grant access to these highly 

functionalized tetrahydrofurans and pyrrolidines (Scheme 35).120 In this transformation, 

again, the hydroxyl group of the HAP or amino group of the AAP would serve as the 

nucleophile in a Tsuji-Trost reaction, giving rise to an allyl ether or allyl amine, 

respectively, in situ that would then undergo a [4+2] addition with the AK 

moiety.121,122,123124,125,126,127,128,129,130,131 The use of cyclic HAPs/AAPs would produce 

tricyclic tetrahydrofurans/pyrrolidines, whereas the use of acyclic ones would give rise to 

the corresponding bicyclic products.  Interestingly, as mentioned above, not only are the 

tetrahydrofuran and pyrrolidine motifs in these multicyclic products highly valuable, but 

the six-membered cyclic hydrazones that are generated are also important, as they are 

widely represented among biologically active compounds.132,133,134,135,136,137  
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Scheme 35. Mechanism for the Tsuji-Trost allylation [4+2] cycloaddition  

1.4.3 Synthesis of tetrahydrofurans 

Initial studies using HAP 3.68 and diallyl carbonate, in combination with 

Pd2(dba)3 (5 mol%) and Xantphos (10 mol%) in toluene at 100 ºC found the predicted 

product 4.10 as a single diastereomer (Table 19, entry 1). The stereochemistry of 4.10 

was established using standard 1D and 2D NMR techniques, and correlated to crystal 

structures from a previous transformation (Scheme 28). The stereochemistry is consistent 

with the alkene component of allyl alcohol intermediated undergoing a [4+2] addition to 

the AK from the same face of the cyclohexene ring as the oxygen atom.  A survey of the 

reactions conditions was conducted to improve on the initial result (Table 18, entries 2-

14).  Best results have been achieved use Pd(OAc)2 (2.5 mol%) and racemic (±)-BINAP 

(5 mol%) in toluene to give 4.10 as a single diastereomer in 86% yield.  
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entry HAP HAP:diallyl 
carbonate 

Pd species  
(mol %) 

ligand  
(mol %) 

solvent product isolated 
yield (%) 

1 3.68 1 : 2.2 Pd2(dba)3 

(5) 

Xantphos (10) PhMe 4.10 55 
2 3.68 1 : 2.2 Pd2(dba)3 (5) dppf (10) PhMe 4.10 41 
3 3.68 1 : 2.2 Pd2(dba)3 (5) (±)-BINAP 

(10)  

PhMe 4.10 67 
4 3.68 1 : 2.2 Pd2(dba)3 (5) dppcy (10) PhMe 4.10 52 
5 3.68 1 : 2.2 Pd2(dba)3 (5) Xphos (10) PhMe 4.10 45 
6 3.68 1 : 2.2 Pd2(dba)3 (5) dppe (10) PhMe 4.10 47 
7 3.68 1 : 2.2 Pd2(dba)3 (5) PCy3 (10) PhMe n.a.† n.r. ‡ 
8 3.68 1 : 2.2 Pd2(dba)3 (5) PPh3 (10) PhMe 4.10 55 
9 3.68 1 : 2.2 Pd(OAc)2 

(5) 

(±)-BINAP 

(10) 

PhMe 4.10 74 
10 3.68 1 : 1.7 Pd(OAc)2 

(5) 

(±)-BINAP 

(10) 

PhMe 4.10 88 
11 3.68 1 : 1.7 Pd(OAc)2 

(2.5) 

(±)-BINAP (5) PhMe 4.10 86 
12 3.68 1 : 1.7 Pd(OAc)2 

(2.5) 

(±)-BINAP(5) dioxane 4.10 47 
13 3.68 1 : 1.7 Pd(OAc)2 

(2.5) 

(±)-BINAP (5) 1,2-

DCE* 

n.a.† n.r. ‡ 
14 3.68 1 : 1.7 None None PhMe n.a.† n.r. ‡ 

        * = 1,2-dichloroethane; † n.a. = not applicable; ‡ n.r. = no reaction  

 Screening conditions for the cascading Tsuji-Trost allylation Table 19.

[4+2] cycloaddition 

These conditions were also tried using different HAPs 3.69-3.73 (Table 20).  In 

all cases the desired product was observed by 1H NMR of the crude material, however, 

attempts to isolate 4.11, 4.14, and 4.15 by silica gel chromatography were unsuccessful 

and caused the desired products to decompose.  Again, this may have been due to radical-

based auto oxidation with molecular oxygen, although this has not been confirmed.97,98 

 

 

 

 

 

N
N

Conditions

OH

N
N

O

Ph

H

H

H

Ph

3.68 4.10



 

 
51 

 

entry HAP Ar product yield (%) 
1 3.68 Ph 4.11 55 
2 3.69 (4-NO2)C6H4 4.12 dec. 
3 3.70 (2-CF3)C6H4 4.13 78 
4 3.71 (3-CF3)C6H4 4.14 dec. 
5 3.72 (4-CF3)C6H4 4.15 dec. 
6 3.73 (4-OMe)C6H4 4.18 71 

 Screening hydroxy azoalkenes for the cascading Tsuji-Trost Table 20.

allylation [4+2] cycloaddition 

With suitable conditions established the scope of HAPs with varying ring sizes 

and different substituted allylic carbonates were tested (Table). The products from the 

substituted allylic carbonates have greater structurally complexity, so for the remainder of 

our studies HAP 3.70 was used because they would provide the option of conducting 19F 

NMR should it be needed in determining diastereomer ratios. Many aryl allyl t-butyl 

carbonates, including heteroaryls, underwent the Tsuji-Trost allylation [4+2], and in all 

cases the four contiguous stereogenic centers where obtain in high diastereoselectivity.  

The relative stereochemistry of the products was determined by 1D and 2D nOe NMR, 

and confirmed by X-ray crystal structure obtained for compound 4.26.  In each case, the 

stereochemical outcome of the reaction was consistent with the Tsuji-Trost allylation 

reaction producing an E-olefin that then underwent the [4+2] addition to the AK from the 

same face as the oxygen atom. 
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1.4.4 Scope of tetrahydrofurans and pyrrolidines 

 

 Scope of hydroxy azoalkene in Tsuji-Trost [4+2] cycloaddition  Table 21.

The corresponding benzyl protected AAPs were examined under the same 

reaction conditions and it was found that it produced 4.36 in moderate to excellent yield 

and in all case as a single diastereomer. The incorporation of electron rich, electron 

deficient phenyl groups and heteroaryl where tolerated. To introduce a methyl group, 

conditions where screened and [Pd(allyl)Cl]2 (2.5 mol%) and (±)-BINAP (5 mol%) in 

THF at 65 °C was found to be affective.   
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* [Pd(allyl)Cl]2 (2.5 mol %), BINAP (5 mol %), THF, 65 °C 

 Scope of amino azoalkene in Tsuji-Trost [4+2] cycloaddition  Table 22.

1.4.5 Tsuji-Trost allylation [4+2] cycloaddition of acyclic hydroxy 
and amino azopropenes 

Acyclic HAP and AAP systems also underwent the cascading [4+2] cycloaddition 

with moderate yield and as a single diastereomer. The stereochemical outcome was 

determined using 1D and 2D nOe NMR techniques, and confirmed by X-ray crystal 

structure obtained for compound 4.55.  
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 Scope of acyclic systems in Tsuji-Trost [4+2] cycloaddition Table 23.

1.4.6 Synthetic utility and other reactions 

A Tsuji-Trost allylation [4+2] cycloaddition reaction was attempted using an allyl t-butyl 

carbonate having two phenyl substituents.  Initial conditions did not work, but the trivial 

modification of adding LiBr gave the desired product in 1:1 mixture of diastereomers.  

The formation of three new bonds and four new stereogenic centers during this reaction 

surpasses the venerable Diels-Alder reaction, in which two new bonds and up to four new 

stereogenic centers can be formed.138 The stereochemistry of the products were 
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established via 1D and 2D NMR techniques. While the stereochemistry at C-ε position 

has yet to be control, the use a chiral nonracemic ligand could facilitate better selectivity.    

 

Scheme 36. Synthetic utility of keto lactams 

 To exhibit the synthetic utility of the Tsuji-Trost allylation [4+2] cycloaddition 

products, the nitrogen–nitrogen bond of the cyclic hydrazone was cleaved.  This was 

achieved by treating 4.10 or 4.18 with LiAlH4 to give the corresponding diamine, which 

was then benzoylated to produce 4.85 or 4.86 (respectfully) as a single diastereomer.  The 

nitrogen–nitrogen bond then cleaved using SmI2 to give 4.87 or 4.88 (respectfully).  4.88, 

substituted with 4-OMe-phenyl could then be oxidative cleaved by treatment with 

trichloroisocyanuric acid (TCICA) into 4.90, a primary amine and an amide, with the 

orthogonally differentiated amines poised for further reaction.139 
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Scheme 37. Synthetic utility of keto lactams 

The oxidation of cyclic hydrazone was made possible by treatment of 4.13 with 

(diacetoxyiodo)benzene in hexafluoroisopropanol (HFIP) to produce the keto-aldehyde 

4.91 in 51% yield.140  In a similar fashion reaction of 4.22 gave diketone 4.92 in 74% 

yield. Hydrogenolysis of 4.37 was carried out in essentially quantitative yield to give 

secondary amine 4.93.   Lastly, it was found that epimerize the center α-to the hydrazone 

of 4.94 was possible by simply heating it at 100 ºC in toluene, providing a simple 

modification for stereodivergence.   
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Scheme 38. Synthetic utility of keto lactams 
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1.5 A ring expansion cascade for the formation of tricycles  

1.5.1 Daphniphyllum alkoloids 

Since their isolation from the bark of Daphniphyllum macropodum Miquel 

(Euphorbiaceae) in 1909 by Yugi and later characterization by Hirata, the azapolycyclic 

cagelike architecture of Daphniphyllum alkaloids have proven to be some of the most 

structurally complex and synthetically challenging targets for total synthesis (Scheme 

39).141,142,143,144,145 Their unique rigid and compact tetracyclic cores, often containing one 

or more quaternary stereogenic center at a ring junctions and a single tertiary nitrogen at 

another ring junction, make them challenging to retrosynthetically deconstruct.146,147 

Heathcock’s seminal contributions have been toward the biomimetic total synthesis of 

several Daphniphyllum alkaloids.148,149 Since then over 300 other Daphniphyllum 

alkaloids have been isolated and characterized, some of which possess unprecedented 

ring systems that still resist the efforts of synthetic chemists.150,151 New synthetic 

methodologies to construct azapolycyclic with quaternary stereogenic carbon centers at 

ring junctions would be an extraordinary step in the direction of an efficient total or 

partial synthesis of these cores. With potent anticancer, antioxidant, vasorelaxant, and 

anti-HIV properties of these alkaloids further efforts toward their synthesis and of their 

chemically modified congeners are warranted.152,153,154,155 
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Scheme 39. Daphniphyllum alkaloids 

1.5.2 Cascading reaction for azapolycycles 

Amines, like those in the AAP motifs, are versatile in their ability to perform multiple 

nucleophilic attacks on separate electrophiles.156 This has inspired a reaction involving an 

α-aziridino ketone, which upon the addition of phenylhydrazine, would initiating a ring 

opening release of an amino nucleophile (5.1 to 5.3) with a tethered electron-deficient 

double bond (5.3 to 5.4).  The following aldol addition to the azoalkene would then 

produce a tricycle 5.5 (Scheme 40). The proposed structural motifs generated by this 

reaction appears in the structural class of natural products called the Daphniphyllum 

alkaloids, which display a remarkable range of biological activities.157 Due to the scarcity 

of Daphniphyllum alkaloids from natural sources, an expedient synthesis of its core 

structure would allow for further exploration of its bioactivity. 
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Scheme 40. Proposed mechanism for tricyclic core 

To start our investigation, a variety of different ring sizes and tethered chain 

lengths were synthesized by mixing iodoenone, Cs2CO3, 1,10-phenanthroline, and alkene-

amine 5.7 in CH2Cl2. This aziridination method gave 5.8 in good to moderate yield 

(Table 22).  
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Transalkylidenation of 5.9 was carried with a variety of electron deficient alkenes 

using Hoveyda-Grubbs Catalyst(TM) 2nd Generation in CH2Cl2 (Table 25). However only 

ethyl ester and cyano electron withdrawing groups were successfully installed.   

 

entry product yield (%) 
1  83  

2  

 

 

 

32 

3  Start material 

4  Start material 

5  

 

 

Start material 

6  Dimerized aziridine 

 Screening of cross metathesis  Table 25.

The remaining substrate were installed with ethyl ester as mixture of E to Z 

alkenes, the major E isomer was isolated after column chromatography to good yield 

(Table 26).  
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 Scope for cross metathesis Table 26.

The cascade reaction was attempted using a thio-urea organic catalyst designed to 

enhance the electrophilic character of conjugated esters, to moderate success (Table 27). 

The relative stereochemistry of 5.27 was established via 1D and 2D nOe NMR 

experiments, and later confirmed by X-ray crystal analysis of compound 5.27.  
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 Ring expansion cascade for the formation of tricycles Table 27.

1.5.3 Convergent cascading reaction for azapolycycles 

The products of these reactions are exciting, but the utility of AAPs could be 

advanced further. Convergent synthesis of these substrates was invisioned (Scheme 41). 

This would require the amino of the AAP to carryout two nucleophilic attacks. The 

unprotected α-aziridino ketone upon addition of phenylhydrazine would initiate a ring 

opening release of an amino nucleophile. This amine would attack, in an intermolecular 

fashion, a dielectrophilic substrate. An intramolecular attack to the tethered electron-

deficient double bond would then follow as before. Lastly, the enolate addition to the 

azoalkene would produce a N-heterocycle. 

X-ray crystal structure 5.27
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Scheme 41. Proposed convergent mechanism for tricyclic core 

Unprotected α-aziridino ketone are prone to dimerization, so substrate 5.37 was 

chosen as it could be stored for weeks at a time and was readily produce from 

commercially available starting materials.158,159 Unfortunately, all attempts have failed to 

produce the desired cyclized product, even attempts at first alkylating the α-aziridino 

ketone are insolvent (Table 28). This reaction still warrants further investigation as it 

addresses gaps in current mythologies for the synthesis of unsaturated N-heterocycles.  
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1.5.4 Mechanism  

The formation of a single diastereomer of tricycle 5.16 is explained based on the 

preference for conformer 5.41 over 5.40 during conjugate addition (Scheme 42).  This 

would lead to coordinated intramolecular addition of enolate to the azoalkene from the 

same face as the amino group, establishing the syn relative configuration at what becomes 

the α,β ring fusion position of the final product 5.27. 

 

Scheme 42. Proposed mechanism for diastereoselectivity  
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1.6 Conclusion 

In conclusion, we have discovered a new synthetically rich landscape, with 

inspiring chemistry and we have built a chemical library incorporating straightforward 

approaches for unlocking the chemical space of heterocycles from readily available 

HAPs and AAPs. In this dissertation we covered; 

The stereodivergent synthesis of β,γ-fused bicyclic γ-lactones—an important 

class of O-heterocycles—including those with quaternary centers. The combination of a 

substrate, ester and a commercially available base, KHMDS or LiHMDS, giving the 

anti- or syn-fused bicyclic systems, respectively, with high (up to >25:1) 

diastereoselectivity.  

The synthesis of β,γ-fused bicyclic γ-lactams—an important class of N- 

heterocycles—including those with quaternary centers, using a new functional group in 

the form of AAPs. Selectivity for the anti-β,γ-fused bicyclic γ-lactams was preferred 

with intramolecular addition of enolate, even when Li bases were used.  The syn-β,γ-

fused bicyclic γ-lactams excessed by first using forming an amidoazopropene, by 

coupling with EDCI HOBt, then forming the enolate with KHMDS. Both syn and anti-

β,γ-fused bicyclic γ-lactams were form with high (up to >25:1) diastereoselectivity. 

A variety of stable HAPs, AAPs and a CAP have been prepared. Acyclic 

HAPs and AAPs have also been formed.  

The synthesis of fused tetrahydrofuran- and Pyrrolidine-tetrahydropyridazines—

both important classes of heterocycles—including heavily substituted systems. Utilizing 

the conjugated π systems of AKs in HAPs and AAPs in a cascading Tsuji-Trost [4+2] 
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cyclization reaction to give tetrahydrofuran- and Pyrrolidine-tetrahydropyridazines, 

respectively, with high (up to >25:1) diastereoselectivity. 

Lastly, the synthesis of azapolycycles—a core structure in many important N- 

heterocycles—through an impressive cascading ring expansion. A variety of different 

azapolycycles where prepared with high (up to >25:1) diastereoselectivity. 

 

Scheme 43. The reaction web of 3-hydroxy- and 3-amino-1-azoalkenes. 

It is our sincere hope that these will be the tools to escape flatland, on saturated 

heterocycles of our own design. 
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1.7 Experimental 

General Considerations. Unless stated to the contrary, where applicable, the 

following considerations apply: Reactions were carried out using dried solvents (see 

below) and under a slight static pressure of Ar (pre-purified quality) that had been passed 

through a column (5 x 20 cm) of Drierite. Glassware was dried in an oven at 120 °C for 

at least 12 h prior to use and then either cooled in a desiccator cabinet over Drierite or 

assembled quickly while hot, sealed with rubber septa, and allowed to cool under a 

stream of Ar. Reactions were stirred magnetically using Teflon-coated magnetic stirring 

bars. Teflon-coated magnetic stirring bars and syringe needles were dried in an oven at 

120 °C for at least 12 h prior to use then cooled in a desiccator cabinet over Drierite. 

Hamilton microsyringes were dried in an oven at 60 °C for at least 24 h prior to use and 

cooled in the same manner. Commercially available Norm-Jet disposable syringes were 

used. Dry THF and PhMe was obtained using an Innovative Technologies solvent 

purification system. All other dry solvents were of anhydrous quality purchased from 

Aldrich. Commercial grade solvents were used for routine purposes without further 

purification. Flash column chromatography was performed on silica gel 60 (230-400 

mesh). 1H and 13C NMR spectra were recorded on a JEOL ECA-500 or ECX-400P 

spectrometer at ambient temperature. All 1H and 13C chemical shifts are reported in ppm 

(δ) using residual solvent as an internal reference (CDCl3: 7.25 ppm for 1H NMR and 

77.1 ppm for 13C NMR). HRMS analyses were performed at the Univ. of Texas-Austin 

mass spectrometry facility using an Agilent Technologies 6530 Accurate Mass Q-ToF 

LC/MS. All commercially available materials were purchased from Aldrich.  
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1.7.1 Synthesis of lactones 

 

(E)-4-methyl-N'-2-oxo-3-phenylhexahydrobenzofuran-4(2H)-

ylidene)benzenesulfonohydrazide (2.12). To a stirred solution of phenyl methyl acetate 

(0.062 g, 0.416 mmol) in THF (0.5 mL) was added KHMDS (0.42 mL, 0.416 mmol, 1.0 

M soln. in THF) at –78 °C. The mixture was stirred for 30 min. Separately, N'(7-

oxabiocyclo[4.1.0]heptane-2-ylidene)-4-methylbenzenesulfonohydrazide71 (2.11) (0.053 

g, 0.189 mmol) was dissolved in THF (1.0 mL) and cooled to –78 °C. This solution was 

added dropwise over a period ca. 1 min to the preformed enolate solution followed by the 

addition of a THF wash (0.5 mL). The resulting solution was stirred 5 min at –78 °C and 

subsequently warmed to 0 °C (ice-bath) and stirred 1 h. The reaction was quenched with 

aq. 10% NH4OH saturated with NH4Cl (5 mL). The biphasic solution was partitioned 

between EtOAc and H2O, and the aq. phase extracted with EtOAc (3 X 15 mL). The 

combined organic extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, 

and concentrated in vacuo. Flash chromatography over silica gel (60:40 EtOAc-Hexanes) 

gave an off-white solid (0.038 g, 50%). mp 160-162 °C; 1H NMR (400 MHz, CDCl3): δ 

7.96 (brs, 1 H), 7.60 (d, J = 8.24 Hz, 2 H), 7.28-7.23 (m, 3 H), 7.19-7.16 (m, 2 H), 7.12 

(d, J = 8.24 Hz, 2 H), 4.06 (d, J = 12.36 Hz, 1 H), 3.93 (dt, J = 11.45 Hz, 3.66 Hz, 1 H), 

2.84 (t, J = 11.91 Hz, 1 H), 2.70 (dq, J = 15.11 Hz, 2.29 Hz, 1 H), 2.41-2.39 (m, 4 H with 

an apparent singlet at 2.39 ppm), 2.08-2.03 (m, 1 H), 1.82-1.71 (m, 2 H), 1.61-1.53 (m, 1 

H); 13C NMR (100 MHz, CDCl3): δ 176.1, 154.3, 144.2, 135.1, 134.8, 129.6, 128.9, 

NNHTs
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PhTsNHNn-BuLi, THF, –78 °C;
then KHMDS, THF to rt
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128.6, 127.9, 127.5, 81.0, 56.8, 48.2, 29.3, 26.0, 22.2, 21.7; HRMS-ESI: m/z calcd. for 

C21H22N2O4S [M+Na]+: 421.1192, found 421.1196. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-phenylhexahydrobenzofuran-2(3H)-

one (2.12). To a stirred solution of phenyl methyl acetate (0.066 g, 0.444 mmol) in THF 

(0.5 mL) was added KHMDS (0.45 mL, 0.454 mmol, 1.0 M soln. in THF) at –78 °C. The 

mixture was stirred for 30 min. Separately, α-epoxy 2-nitrophenylhydrazone (2.16) 

(0.050g, 0.202 mmol) was dissolved in THF (1.0 mL) and cooled to –78 °C. This 

solution was added dropwise over a period ca. 1 min to the preformed enolate solution 

followed by the addition of a THF wash (0.5 mL). The resulting deep purple solution was 

stirred 5 min at –78 °C and subsequently warmed to 0 °C (ice-bath) and stirred 1 h. The 

reaction was quenched with aq. 10% NH4OH saturated with NH4Cl (5 mL). The orange 

biphasic solution was partitioned between EtOAc and H2O, and the aq. phase extracted 

with EtOAc (3 X 15 mL). The combined organic extracts were washed with sat. aq. 

NaCl, dried over MgSO4, filtered, and concentrated in vacuo. Flash chromatography over 

silica gel (30:70 EtOAc-Hexanes) gave an orange solid (0.056 g, 76%). mp 158-160 ºC; 

1H NMR  (500 MHz, CDCl3): δ  10.84 (s,  1 H), 8.13 (dd, J = 8.59 Hz, 1.15 Hz, 1 H), 

7.66 (dd, J = 8.59 Hz, 1.15 Hz, 1 H), 7.51 (td, J = 6.87 Hz, 1.15 Hz, 1H), 7.41-7.36 (m, 4 

H), 7.32-7.28 (m, 1 H), 6.81 (td, J = 8.02 Hz, 1.15 Hz, 1 H), 4.20 (d, J =12.60 Hz, 1 H), 

4.06 (td, J = 11.46, 4.01 Hz, 1 H), 3.06 (t, J = 11.46 Hz, 1 H), 2.91 (dq, J = 14.89 Hz, 

2.29 Hz, 1 H), 2.53-2.48 (m , 1 H), 2.27-2.22 (m, 1 H), 2.08-2.02 (m, 1 H), 1.91 (qd, J = 

11.74 Hz, 4.01 Hz, 1 H), 1.76 -1.67 (m , 1 H); 13C NMR (125 MHz, CDCl3): δ 176.2, 

CO2MePh

KHMDS (2.25 equiv.),
THF, –78 to 0 °C
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148.7, 142.2, 136.3, 135.5, 131.1, 128.9, 128.7, 127.9, 126.0, 118.3, 115.6,  81.3,  57.4,  

49.0,  29.5,  25.7,  22.3;  HRMS-ESI:  m/z  calcd.  for  C20H19N3O4   [M+H]+: 366.1448, 

found 366.1451. 

General procedure A: Formation of α-epoxy (2-nitro)phenylhydrazones from α-

epoxy ketones 

To a stirred solution of α-epoxy ketone (1.0 equiv) in Et2O (1.0 M) was added 2- 

nitrophenylhydrazine (1.0 equiv) at rt. The reaction was stirred 14 h and concentrated in 

vacuo. Flash chromatography over silica gel gave the desired α-epoxy 2-

nitrophenylhydrazones. 

General procedure B: Formation of α-epoxy (2-nitro)phenylhydrazones from α-

epoxy ketones 

To a stirred solution of α-epoxy ketone (1.0 equiv) in Et2O (1.0 M) was added 2- 

nitrophenylhydrazine (1.0 equiv) at rt. The reaction was 14 h. The reaction was cooled to 

0 °C (ice bath), and subsequently filtered and rinsed with cold Et2O. The resulting solid 

was dried under vacuum overnight. 

 

(E/Z)-1-(7-oxabicyclo[4.1.0]heptan-2-ylidene)-2-(2-nitrophenyl)hydrazine

 (2.16).          α-epoxy ketone160 2.10 (0.470 g, 4.19 mmol) was treated following 

general procedure A. Flash chromatography (10:90 EtOAc-Hexanes) gave an orange 

solid (0.642 g, 62%, 3:1 E:Z). mp 83-85 °C; 1H NMR (400 MHz, CDCl3): δ 11.34 (s, 1 

H) major, 10.82 (s, 1 H) minor, 8.17-8.15 (m, 1 H),  7.95 (dd,  J  = 8.70 Hz, 1.37 Hz, 1 

O
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H)  minor, dd (7.83 ,  J  = 8.70 Hz, 1.14 Hz, 1 H) major, 7.56-7.47 (m, 1 H), 6.87-6.80 

(m, 1 H), 3.74 (d, J = 3.66 Hz, 1 H) major, 3.70 (d, J = 4.12 Hz, 1 H) minor, 3.60-3.58 

(m, 1 H) minor, 3.55-3.53 (m, 1 H) major, 2.61-2.50 (m, 1 H), 2.28-2.25 (m, 1 H), 2.20-

2.12 (m, 1 H) major, 2.09-2.00 (m, 1 H) minor, 1.94-1.76 (m, 1 H), 1.72-1.52 (m, 2 H); 

13C NMR (100 MHz, CDCl3): major: δ 149.0, 142.3, 136.2, 131.2, 126.0, 118.2, 115.9, 

53.3, 45.1, 30.6, 24.2, 17.8, minor: δ 147.7, 141.7, 136.3, 125.9, 118.6, 116.0, 54.7, 53.6, 

23.5, 23.4, 14.6; HRMS-ESI: m/z calcd. for C12H13N3O3 [M+H]+: 248.1030, found 

248.1033. 

 

(E/Z)-1-(8-oxabicyclo[5.1.0]octan-2-ylidene)-2-(2-nitrophenyl)hydrazine 

(SI1). α-epoxy ketone161 (0.225 g, 1.78 mmol) was treated following general procedure 

A. Flash chromatography (7:93  EtOAc-Hexanes) gave a red solid (0.291 g, 62%, 1.7:1 

E/Z). mp 69-70 °C; 1H NMR (500 MHz, CDCl3): δ  11.23 (s, 1 H) major, 10.03 (s, 1 H) 

minor, 8.11 (d, J = 8.59 Hz, 1 H), 7.85 (d, J = 8.59 Hz, 1 H) minor, 7.79 (d, J = 8.59 Hz, 

1 H) major, 7. 51-7.45 (m, 1 H), 6.80-6.75 (m, 1 H), 3.79 (d, J = 4.01 Hz, 1 H) major, 

3.74 (d, J = 4.58 Hz, 1 H) minor, 3.50-3.48 (m, 1 H), 3.39-3.33 (m, 1 H), 2.70 (dd, J = 

13.75 Hz, 5.15 Hz, 1 H) minor,  2.50-2.38 (m, 2 H), 2.36-2.27 (m, 1 H) minor, 2.14 (td, J 

= 13.17 Hz, 2.86 Hz, 1 H) minor, 2.01-1.50 (m, 8 H), 1.39-1.32 (m, 1 H)  major, 1.26-

1.21 (m, 1 H), 1.08-0.97 (m, 1  H)  minor;  13C NMR  (125 MHz, CDCl3): Major:  δ 

1153.0, 142.4,  136.1, 131.2, 125.9, 117.9, 115.7,  55.3,  52.1, 34.0,  28.7, 28.6, 22.6, 
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Minor: δ 153.8, 142.1, 136.3, 125.9, 118.2, 115.8, 58.7, 56.0, 27.4, 25.2, 24.0, 23.6; 

HRMS-ESI: m/z calcd. for C13H15N3O3 [M+H]+: 262.1186, found 262.1193. 

 

(E)-1-(1-methyl-7-oxabicyclo[4.1.0]heptan-2-ylidene)-2-(2-

nitrophenyl)hydrazine (SI2). α-epoxy ketone162 (0.654 g, 5.18 mmol) was treated 

following general procedure L. Filtration gave an orange solid (0.920 g, 68%). mp 87-88 

°C; 1H NMR (500 MHz, CDCl3): δ  10.81 (s, 1 H), 8.16 (dd, J = 8.59 Hz, 1.15 Hz, 1 H), 

7.92 (d, J = 8.02 Hz, 1 H), 7.54 (t, J = 8.02 Hz, 1 H), 3.36 (d, J = 3.44 Hz, 1 H), 2.58-

2.54 (m, 1 H), 2.33-2.19 (m, 1 H), 2.08-2.01 (m, 1 H), 1.94-1.81 (m, 2 H), 1.69-1.63 (m, 

4 H, apparent s at 1.63),   13C NMR (125 MHz, CDCl3): δ 146.6, 142.1, 136.3, 131.3, 

125.9, 118.4, 116.0, 61.0, 58.7, 23.6, 23.5, 19.1, 15.6; HRMS-ESI: m/z calcd. for 

C13H15N3O3 [M+H]+: 262.1186, found 262.1187. 

 

(E/Z)-1-(6-methyl-7-oxabicyclo[4.1.0]heptan-2-ylidene)-2-(2-

nitrophenyl)hydrazine (SI3). α-epoxy ketone163 (0.115 g, 0.911 mmol) was treated 

following general procedure A. Flash chromatography (10:90 EtOAc-Hexanes) gave an 

orange solid (0.167 g, 70%, 1.8:1 E/Z). mp 80-81 °C; 1H NMR (400 MHz, CDCl3): δ 

11.2 (s, 1 H) major, 10.76 (s, 1 H) minor, 8.12 (d, J = 8.70 Hz, 1 H), 7.90 (d, J = 8.70 Hz, 
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1 H) minor, 7.79 (d, J = 8.70 Hz, 1H) major, 7.53-7.45 (m, 1 H), 6.83-6.76 (m, 1 H), 3.51 

(s, 1 H), 2.54-2.47 (m, 1 H), 2.16-1.93 (m, 2 H), 1.86-1.74 (m, 1 H), 1.72-1.50 (m, 2 H), 

1.46 (s, 3 H) major, 1.45 (s, 3 H) minor; 13C NMR (100 MHz, CDCl3):  Major: δ 149.7, 

142.3, 136.2, 131.1, 125.9, 118.1, 115.8, 59.4, 51.8, 30.5,  29.6, 22.9, 18.6, Minor: δ 

148.6, 141.7, 136.3, 131.2, 125.9, 118.5, 115.9, 61.5, 59.5, 28.9, 23.2, 22.2, 15.9; 

HRMS-ESI: m/z calcd. for C13H15N3O3 [M+H]+: 262.1186, found 262.1187. 

 

(E/Z)-1-(5-methyl-6-oxabicyclo[3.1.0]hexan-2-ylidene)-2-(2-

nitrophenyl)hydrazine (SI4). α-epoxy ketone164 (0.281 g, 2.50 mmol) was treated 

following general procedure A. Flash chromatography (10:90 EtOAc-Hexanes) gave an 

orange solid (0.346 g, 62%, 3.5:1 E/Z). mp 112-114 °C; 1H NMR (400 MHz, CDCl3): δ 

11.12 (s, 1 H) minor, 10.56 (s, 1 H) major, 8.15 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.85 (dd, 

J = 8.70 Hz, 0.92 Hz, 1 H) major, 7.77 (d, J = 8.70 Hz, 1 H) minor, 7.55-7.47 (m, 1 H), 

6.85-6.77 (m, 1 H), 3.81 (s, 1 H) minor, 3.70 (s, 1 H) major, 2.69-2.56 (m, 1 H), 2.48-

1.86 (m, 3 H), 1.59 (s, 3 H) minor, 1.60 (s, 3 H) major; 13C NMR (125 MHz, CDCl3): 

Major: δ 156.2, 141.9, 136.3, 131.1, 125.9, 118.3, 115.8, 63.7, 55.2, 29.8, 23.4, 17.9, 

Minor: δ 157.3, 142.4, 136.3, 130.8, 126.0, 118.0, 115.5, 67.7, 66.2, 29.0, 28.3, 18.3; 

HRMS-ESI: m/z calcd. for C12H13N3O3 [M+H]+: 248.1030, found 248.1040. 
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General procedure C: Anti-selective formation of β,γ-fused bicyclic γ-lactone 

hydrazones from 6 or 7-membered-α-epoxy-(2-nitro)phenyl hydrazones and 6-membered-

α-epoxy-α-methyl-(2- nitro)phenyl hydrazones 

To a stirred solution of the aryl acetic methyl ester (2.20 equiv) in THF (0.5 mL) 

was added KHMDS (2.25 equiv, 1.0 M soln. in THF) at –78 °C. The mixture was stirred 

for 30 min. Separately, the appropriate α-epoxy (2-nitro)phenylhydrazone (1.0 equiv) was 

dissolved in THF (1.0 mL) and cooled to –78 °C. This solution was added dropwise over 

a period ca. 1 min to the preformed enolate solution followed by the addition of a THF 

wash (0.5 mL). The resulting deep purple solution was stirred 5 min at –78 °C and 

subsequently warmed to 0 °C (ice-bath) and stirred 1 h. The reaction was quenched with 

aq. 10% NH4OH saturated with NH4Cl (5 mL). The orange biphasic solution was 

partitioned between EtOAc and H2O, and the aq. phase extracted with EtOAc (3 X 15 

mL). The combined organic extracts were washed with sat. aq. NaCl, dried over MgSO4, 

filtered, and concentrated in vacuo. Flash chromatography over silica gel provided the 

desired β,γ-fused bicyclic γ-lactone hydrazones. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-(p-tolyl)-hexahydrobenzofuran-2(3H)-

one (2.37). Hydrazone (2.16) (0.044 g, 0.177 mmol) was treated following general 

procedure M. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange solid (0.044 

g, 65%). mp 175-177 °C; 1H NMR (400 MHz, CDCl3): δ  10.83 (s, 1 H), 8.13 (dd, J = 
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8.70 Hz, 1.37 Hz, 1 H), 7.70 (d, J = 8.70 Hz, 1 H), 7.52 (td, J = 7.79 Hz, 0.92 Hz, 1 H), 

7.28 (d, J = 7.79 Hz, 2 H), 7.19 (d, J = 7.79 Hz, 2 H), 6.81 (td, J = 8.01 Hz, 1.37 Hz, 1 

H), 4.17 (d, J = 12.36 Hz, 1 H), 4.04 (td, J = 11.22 Hz, 4.12 Hz, 1 H), 3.03 (t, J = 11.45 

Hz, 1 H), 2.90 (dq, J = 15.34 Hz, 2.29 Hz, 1 H), 2.52-2.47 (m, 1 H), 2.32 (s, 3 H), 2.26-

2.22 (m, 1 H), 2.08-1.99 (m, 1 H), 1.90 (qd, J = 11.91 Hz, 4.58 Hz, 1 H), 1.76-1.65 (m, 1 

H);  13C NMR (125 MHz, CDCl3): δ  176.4, 148.8, 142.3, 137.6, 136.3, 132.6, 131.1, 

129.5, 128.8, 126.0, 118.2, 115.6, 81.3, 57.6, 48.7, 29.5, 25.7, 22.4, 21.2; HRMS-ESI: 

m/z calcd. for C21H21N3O4 [M+Na]+: 402.1424, found 402.1426. 

 

(E)-3-(4-bromophenyl)-4-(2-(2-nitrophenyl)hydrazono)-

hexahydrobenzofuran-2(3H)-one (2.22). Hydrazone (2.16) (0.058 g, 0.235 mmol) was 

treated following general procedure M. Flash chromatography (30:70 EtOAc-Hexanes) 

gave an orange solid (0.077 g, 74%). mp 198-199 °C; 1H NMR (400 MHz, d6-DMSO): δ 

10.49 (s, 1 H), 8.04 (dd, J = 8.47 Hz, 1.37 Hz, 1  H), 7.62-7.54 (m, 4 H), 7.37 (d, J = 8.70 

Hz, 2 H), 6.86-6.82 (m, 1 H), 4.35 (d, J = 12.82 Hz, 1 H), 4.15 (td, J = 11.22 Hz, 4.12 Hz, 

1 H), 3.38 (t, J = 11.91 Hz, 1 H), 2.75-2.71 (m, 1 H), 2.28-2.24 (m, 1 H), 2.15-2.06 (m, 2 

H), 1.88 (qd, J = 11.91 Hz, 3.66 Hz, 1 H), 1.67-1.60 (m, 1 H); 13C NMR (150 MHz, d6-

DMSO): δ 176.4, 151.9, 142.3, 137.0, 136.5, 131.9, 131.6, 131.1, 126.2, 120.9, 118.6, 

115.8, 81.2, 55.3, 49.1, 28.8, 25.6, 22.1; HRMS-ESI: m/z calcd. for C20H18BrN3O4 

[M+Na]+: 466.0370, found 466.0371. 
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(E)-3-(4-methoxyphenyl)-4-(2-(2-nitrophenyl)hydrazono)-

hexahydrobenzofuran-2(3H)-one (2.23). Hydrazone (2.16) (0.054 g, 0.218 mmol) was 

treated following general procedure M. Flash chromatography (35:65 EtOAc-Hexanes) 

gave an orange solid (0.055 g, 64%). mp 100-102 °C;  1H  NMR (400 MHz, CDCl3):  δ 

10.84 (s,  1 H), 8.12 (d,  J =8.70 Hz, 1 H), 7.68 (d,  J = 8.70 Hz, 1 H), 7.51 (t, J = 7.33 

Hz, 1 H), 7.33-7.29 (m , 2 H), 6.93-6.89 (m, 2 H), 6.81 (td, J = 6.64 Hz, 1.37 Hz, 1 H), 

4.15 (d, J = 12.36 Hz, 1 H), 4.04 (td, J = 11.22 Hz, 4.12 Hz, 1 H), 3.78 (s, 3 H), 3.00 (t, J 

=  11.45 Hz, 1H), 2.90 (dq, J = 15.11 Hz, 2.29 Hz, 1 H), 2.51-2.46 (m, 1 H), 2.25-2.22 

(m, 1 H), 2.09-2.00 (m, 1 H), 1.90 (qd, J = 11.91 Hz, 4.58 Hz, 1 H), 1.76-1.67 (m, 1 H);  

13C NMR (100 MHz, CDCl3): δ 176.6, 159.1, 148.9, 142.3, 136.3, 131.1, 130.0, 127.6, 

126.0, 118.2, 115.6, 114.2, 81.3, 57.5, 55.3, 48.2, 29.5, 25.7, 22.4; HRMS-ESI: m/z 

calcd. for C21H21N3O5 [M+Na]+: 418.1373, found 418.1377. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-yl)hexahydrobenzofuran-

2(3H)-one (2.24). Hydrazone (2.16) (0.052 g, 0.210 mmol) was treated following general 

procedure M. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange solid (0.067 
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g, 85%). mp 142-144 °C; 1H NMR (400 MHz, CDCl3): δ 10.92 (s, 1 H), 8.14 (d, J = 8.70 

Hz, 1 H), 7.81 (d, J = 8.70 Hz 1 H), 7.52 (t, J = 7.33 Hz, 1 H), 7.25-7.24 (m, 1 H), 7.19 

(d, 3.66 Hz, 1 H), 7.01-6.99 (m, 1 H), 6.84 (t, J = 7.33 Hz, 1 H), 4.49 (d, J = 12.36 Hz, 1 

H), 4.04 (td, J = 11.22 Hz, 4.12 Hz, 1 H), 3.05 (t, J = 11.91 Hz, 1 H),  2.95 (dq, J = 15.11 

Hz, 2.29 Hz, 1 H), 2.51-2.46 (m, 1 H), 2.27-2.23 (m, 1 H), 2.14-2.04 (m, 1 H), 1.89 (qd, J 

= 11.91 Hz, 4.58 Hz, 1 H), 1.77-1.65 (m, 1 H);  13C NMR (125 MHz, CDCl3): δ 174.7, 

148.1, 142.2, 137.1, 136.5, 131.1, 126.9, 126.5, 126.0, 125.2, 118.4, 115.7, 81.3, 57.9, 

43.5, 29.5, 25.7, 22.4; HRMS-ESI: m/z calcd. for C18H17N3O4S [M+Na]+: 394.0832, 

found 394.0832. 

 

(E)-3-(napthalen-2-yl)-4-(2-(2-nitrophenyl)hydrazono)hexahydrobenzofuran-

2(3H)-one (2.28). Hydrazone (2.16) (0.056 g, 0.226 mmol) was treated following 

general procedure M. Flash chromatography (40:50:10 EtOAc-Hexanes-CH2Cl2) gave an 

orange solid (0.049 g, 52%). mp 190-192 °C; 1H NMR (500 MHz, CDCl3): δ 10.82 (s, 1 

H), 8.11 (dd, J = 8.59 Hz, 1.72 Hz, 1 H), 7.90-7.81 (m, 4 H), 7.69 (dd, J = 8.59 Hz, 1.15 

Hz, 1 H), 7.50-7.44 (m, 4 H), 6.80 (td, J = 8.59 Hz, 1.72 Hz, 1 H), 4.37 (d, J = 12.03 Hz, 

1 H), 4.13 (td, J = 11.88 Hz, 4.01 Hz, 1 H), 3.16 (t, J = 10.88 Hz, 1 H), 2.92 (dq, J = 

14.03 Hz, 2.86 Hz, 1 H), 2.55-2.52 (m, 1 H), 2.28-2.25 (m, 1 H), 2.10-2.04 (m, 1 H), 1.96 

(qd, J = 11.74 Hz, 4.01 Hz, 1 H), 1.78-1.70 (m, 1 H);  13C NMR (125 

N
HN

O
O

H

H

O2N



 

 
79 

 MHz, CDCl3): δ 176.2, 148.6, 142.2, 136.3, 134.4, 133.3, 132.9, 131.1, 128.6, 127.8, 

127.7, 126.4, 126.3, 126.2, 126.0, 122.3, 118.3, 115.6, 81.1, 57.4, 49.3, 29.5, 25.6, 22.3; 

HRMS-ESI: m/z calcd. for C24H21N3O4 [M+Na]+: 438.1424, found 438.1431. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-yl)octahydro-2H-

cyclohepta[b]furan-2-one (2.30). Hydrazone (SI1) (0.0425 g, 0.162  mmol) was treated 

following general  procedure  M. Flash chromatography (30:70 EtOAc-Hexanes) gave an 

orange solid (0.0553 g, 89%). mp 193-194 °C; 1H NMR (400 MHz, CDCl3): δ  10.78 (s, 

1 H), 8.16 (d, J = 8.70 Hz, 1 H), 7.88 (d, J = 8.70 Hz, 1 H), 7.54 (t, J = 7.33 Hz, 1 H), 

7.20-7.19 (m, 1 H), 7.15-7.14 (m, 1 H), 6.99-6.94 (m, 1 H), 6.86 (t, J = 7.33 Hz, 1 H), 

4.98 (d, J = 11.45 Hz, 1 H), 4.13 (td, J = 10.76 Hz, 3.66 Hz, 1 H), 3.50 (t, J = 10.53 Hz, 1 

H), 2.77-2.72 (m, 1 H), 2.53-2.39 (m, 2 H), 2.19-2.14 (m, 2 H), 1.80-1.69 (m, 2 H), 1.37-

1.27 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ  174.7, 148.2, 142.0, 137.9, 136.5, 131.5, 

126.9, 126.3, 126.0, 125.0, 118.7, 115.9, 81.8, 57.2, 43.6, 35.0, 31.0, 24.8, 23.1; HRMS-

ESI: m/z calcd. for C19H19N3O4S [M+Na]+: 408.0988, found 408.0992. 
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(E)-4-(2-(2-nitrophenyl)hydrazono)-3-phenyloctahydro-2H-

cyclohepta[b]furan-2-one (2.29). Hydrazone (SI1) (0.065 g, 0.248 mmol) was treated 

following general procedure M. Flash chromatography (20:80 EtOAc-Hexanes) gave an 

orange solid (0.0647 g, 69%). mp 220-222 °C; 1H NMR (400 MHz, CDCl3): δ  10.70 (s, 

1 H), 8.16 (d, J = 8.24 Hz, 1 H), 7.82 (d, J = 8.70 Hz, 1 H), 7.57 (t, J = 8.70 Hz, 1 H), 

7.39-7.33 (m, 4 H), 7.30-7.26 (m, 1 H), 6.86 (t, J = 6.87 Hz, 1 H), 4.72 (d, J = 11.91 Hz, 

1 H), 4.16 (td, J = 10.53 Hz, 3.66 Hz, 1 H), 3.54 (t, J = 10.53 Hz, 1 H), 2.70-2.65 (m, 1 

H), 2.57-2.53 (m, 1 H), 2.45-2.53 (m, 1 H), 2.21-2.10 (m, 2 H), 1.82-1.69 (m, 2 H), 1.38-

1.24 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ  176.3, 148.8, 142.1, 136.5, 136.4, 131.4, 

128.9, 128.8, 127.8, 126.1, 118.6, 115.7, 81.9, 56.6, 48.8, 35.2, 31.1, 24.9, 23.1; HRMS-

ESI: m/z calcd. for C21H21N3O4 [M+H]+: 380.1605, found 380.1604. 

 

(E)-methyl 4-(2-(2-nitrophenyl)hydrazono)-2-oxooactahydrobenzofuran-3-

carboxylate (2.25). Hydrazone (2.16) (0.051 g, 0.206 mmol) was treated following 

general procedure M. Dimethyl malonate was used in place of aryl acetic acid methyl 

ester. Flash chromatography (40:60 EtOAc- Hexanes) gave a yellow solid (0.047 g, 

67%). mp 161-163 °C; 1H NMR (400 MHz, CDCl3): δ 10.84 (s, 1 H), 8.13 (d, J = 8.24 

Hz, 1 H), 7.69 (d, J = 8.70 Hz, 1 H), 7.51 (t, J = 7.79 Hz, 1 H), 6.82 (t, J = 8.70 Hz, 1 H), 

3.98 (td, J = 11.45 Hz, 3.66 Hz, 1 H), 3.93 (d, J = 12.82 Hz, 1 H), 3.85 (s, 3 H), 3.38 (m, 

1 H), 2.91-2.86 (m, 1 H), 2.47-2.43 (m, 1 H), 2.27-2.23 (m, 1 H), 2.17-2.10 (m, 1 H), 
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1.89 (qd, J - 11.91 Hz, 4.12 Hz, 1 H), 1.71-1.63 (m, 1 H); 13C NMR (100 MHz, CDCl3): 

δ 170.8, 167.5, 147.3, 142.1, 136.4, 131.2, 126.0, 118.5, 115.4, 81.4, 53.25, 53.22, 49.1, 

29.1, 25.0, 22.0; HRMS-ESI: m/z calcd. for C16H17N3O6 [M+Na]+: 370.1010, found 

370.1015. 

 

(E)-methyl-4-(2-(2-nitrophenyl)hydrazono)-2-oxooctahydro-2H-

cyclohepta[b]furan-3- carboxylate (2.31). Hydrazone (SI1) (0.055 g, 0.463 mmol) was 

treated following general procedure M. Dimethyl malonate was used in place of aryl 

acetic acid methyl ester. Flash chromatography (45:55 EtOAc-Hexanes) gave an orange 

solid (0.0699 g, 92%). mp 220-222 °C; 1H NMR (400 MHz, CDCl3): δ  10.69 (s, 1 H), 

8.15 (d, J = 8.70 Hz, 1 H), 7.75 (d, J = 8.70 Hz, 1 H), 7.53 (t, J = 7.79 Hz, 1 H), 6.85 (t, J 

= 7.79 Hz, 1 H), 4.38 (d, J = 11.91 Hz, 1 H), 4.11 (td, J = 10.99 Hz, 3.20 Hz, 1 H), 3.88 

(t, J = 10.99 Hz, 1 H), 3.85 (s, 3 H), 2.82-2.77 (m, 1 H), 2.51-2.47 (m, 1 H), 2.38-2.30 

(m, 1 H), 2.21-2.13 (m, 2 H), 1.84-1.71 (m, 2 H), 1.35-1.27 (m, 1 H); 13C NMR (100 

MHz, CDCl3): δ  170.5, 167.7, 148.0, 141.9, 136.5, 131.5, 126.0, 118.8, 115.6, 82.1, 

53.2,  52.6,  50.1,  34.7,  30.7,  24.9,  23.2;  HRMS-ESI:  m/z  calcd.  for  C17H19N3O6 

[M+H]+: 362.1347, found 362.1350. 
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(E)-3-methyl-4-(2-(2-nitrophenyl)hydrazono)hexahydrobenzofuran-2(3H)-

one (2.26). To a cooled (–78 °C) solution of KHMDS (0.59 mL, 0.596 mmol, 1.0 M soln 

in THF) in THF (5 mL) was added drop-wise over a period of ca. 5 min a solution of 1-

(1H-pyrrol-1-yl)propan-1-one193 (0.067 g, 0.586 mmol) in THF (1 mL). The reaction 

mixture was stirred at –78 °C for 10 min, warmed to 0 °C (ice-bath) for 30 min, and 

cooled back down to –78 °C for 10 min. A solution of hydrazone 2.16 (0.054 g, 0.218 

mmol) in THF (1 mL) was cooled to –78 °C and added dropwise over a period ca. 5 min 

to the preformed enolate solution followed by the addition of a THF wash (0.5 mL). The 

resulting deep purple solution was stirred 5 min at –78 °C and subsequently warmed to 0 

°C (ice-bath) and stirred 1 h. The reaction was quenched with aq. 10% NH4OH saturated 

with NH4Cl (5 mL). The orange biphasic solution was partitioned between CH2Cl2 and 

H2O, and the aq. phase extracted with CH2Cl2 (3 X 15 mL). The combined organic 

extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, and concentrated in 

vacuo. Flash chromatography (20:80 EtOAc-Hexanes) over silica gel gave an orange 

solid (0.032 g, 48%). mp 213-215 °C; 1H NMR (400 MHz, CDCl3):  δ 10.89 (s, 1 H), 

8.16 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.78 (dd, J = 8.70 Hz, 0.92 Hz, 1 H), 7.58-7.51 (m, 

1 H), 6.85-6.81 (m, 1 H), 3.88 (td, J = 11.22 Hz, 4.12 Hz, 1 H), 3.01-2.89 (m, 2 H), 2.48 

(t, J = 11.45 Hz, 1 H), 2.44-2.39 (m, 1 H), 2.24-2.18 (m, 1 H), 2.12-2.03 (m, 1 H), 1.79 

(qd, J = 11.91 Hz, 4.12 Hz, 1 H), 1.72-1.63 (m, 1 H), 1.42 (d, J = 6.87, 3 H); 13C NMR 
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(125 MHz, CDCl3): δ  178.5, 149.2, 142.3, 136.4, 131.1, 126.1, 118.3, 115.4, 81.2, 56.4, 

37.8, 29.3, 25.5, 22.3, 13.5; HRMS-ESI: m/z calcd. for C15H17N3O4 [M+Na]+: 326.1111, 

found 326.1116. 

 

(E)-1-(2-ethylthio)cyclohex-2-en-1-ylidene)-2-(2-nitrophenyl)hydrazine 

(2.33). To a cooled (– 78 °C) solution of KHMDS (0.46 mL, 0.463 mmol, 1.0 M soln in 

THF) in THF (1 mL) was added drop-wise over a period of ca. 5 min a solution of S-

ethyl propanethioate (0.054 g, 0.453 mmol) in THF (1 mL). The reaction mixture was 

stirred at –78 °C for 10 min, warmed to 0 °C (ice-bath) for 30 min, and cooled back down 

to –78 °C for 10 min. A solution of hydrazone 2.16 (0.051 g, 0.206 mmol) in THF (1 mL) 

was cooled to –78 °C and added dropwise over a period ca. 5 min to the preformed 

enolate solution followed by the addition of a THF wash (0.5 mL). The resulting deep 

purple solution was stirred 5 min at –78 °C and subsequently warmed to 0 °C (ice- bath) 

and stirred 1 h. The reaction was quenched with aq. 10% NH4OH saturated with NH4Cl 

(5 mL). The orange biphasic solution was partitioned between EtOAc and H2O, and the 

aq. phase extracted with EtOAc (3 X 15 mL). The combined organic extracts were 

washed with sat. aq. NaCl, dried over MgSO4, filtered, and concentrated in vacuo. Flash 

chromatography (20:80 EtOAc-Hexanes) over silica gel gave an red solid (0.047 g, 78%). 

1H NMR (500 MHz, CDCl3):  δ 10.93 (s, 1 H), 8.14 (d, J = 8.59, 1 H), 7.96 (d, J = 8.59 

Hz, 1 H), 7.54 (t, J = 6.87, 1 H), 6.83-6.80 (m, 1 H), 6.10 (t, J = 4.58 Hz, 1 H), 7.45 (q, J 

= 7.45 Hz, 2 H), 2.61 (t, J = 6.30, 2 H), 2.35 (q, J = 5.15 Hz, 2 H), 1.92 (quin., J = 6.87 
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Hz, 2 H), 1.34 (t, J = 7.45 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ 147.2, 142.2, 136.4, 

133.1, 131.3, 129.5, 125.8, 118.3, 116.4, 26.1, 24.8, 24.6, 21.1, 13.6; MS-EI: m/z calcd. 

for C14H17N3O2S [M]+: 291.10, found 291.20. 

 

1-(1H-pyrrol-1-yl)butan-1-one (SI5). To a solution of freshly distilled pyrrole 

(1.4 mL, 20.21 mmol) in THF (20 mL) at 0 °C was added n-BuLi (7.70 mL, 19.25 mmol, 

2.5 M hexanes). This solution was stirred 20 min at 0 °C and cooled to –78 °M. Butyryl 

chloride was added as a solution in THF (10 mL) via cannula, and the reaction was 

stirred at –78 °C for 30 min then warmed to rt. After 4 h, the reaction was poured into a 

separatory funnel containing Et2O (20 mL) and H2O (20 mL). The aqueous phase was 

extracted with Et2O (3 X 20 mL). The combined organic extracts were washed with sat. 

aq. NaCl (20 mL), dried over MgSO4, filtered, and concentrated in vacuo. The crude 

material was purified by fractional distillation (102-105 °C, 30 mm Hg) to provide a 

colorless liquid (1.8 g, 69 %). 1H NMR (400 MHz, CDCl3): δ 7.31 (brs, 2 H), 6.28 (t J = 

2.29 Hz, 2 H), 2.80 (t, J = 7.33 Hz, 2 H), 1.81 (sext, J = 7.79 Hz, 2 H), 1.03 (t, J = 7.33 

Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ 170.6, 119.6, 113.0, 36.4, 18.1, 13.8; HRMS-

CI: m/z calcd. for C8H11NO [M]+: 137.0841, found 137.0839. 
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(E)-3-ethyl-4-(2-(2-nitrophenyl)hydrazono)hexahydrobenzofuran-2(3H)-one 

(2.27). To a  cooled (–78 °C) solution of KHMDS (0.52 mL, 0.525 mmol, 1.0 M soln in 

THF) in THF (5 mL) was added drop-wise over a period of ca. 5 min a solution of 1-(1H-

pyrrol-1-yl)butan-1-one (SI5) (0.070 g, 0.515 mmol) in THF (1 mL). The reaction 

mixture was stirred at –78 °C for 10 min, warmed to 0 °C (ice-bath) for 30 min, and 

cooled back down to –78 °C for 10 min. A solution of hydrazone 2.16 (0.051 g, 0.206 

mmol) in THF (1 mL) was cooled to –78 °C and added dropwise over a period ca. 5 min 

to the preformed enolate solution followed by the addition of a THF wash (0.5 mL). The 

resulting deep purple solution was stirred 5 min at –78 °C and subsequently warmed to 0 

°C (ice-bath) and stirred 1 h. The reaction was quenched with aq. 10% NH4OH saturated 

with NH4Cl (5 mL). The orange biphasic solution was partitioned between CH2Cl2 and 

H2O, and the aq. phase extracted with CH2Cl2 (3 X 15 mL). The combined organic 

extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, and concentrated in 

vacuo. Flash chromatography (20:80 EtOAc-Hexanes) over silica gel gave an orange 

solid (0.035 g, 54%). mp 152-154 °C; 1H NMR (400 MHz, CDCl3):  δ 10.90 (s, 1 H), 

8.15 (d, J = 8.24 Hz, 1 H), 7.77 (d, J = 7.77 Hz, 1 H), 7.55 (t, J = 7.79 Hz, 1 H), 6.86-

6.80 (m, 1 H), 3.86 (td, J = 10.99 Hz, 3.66 Hz, 1 H), 2.99 (dt, J = 12.36 Hz, 5.50 Hz, 1 

H), 2.92 (dq, J = 15.11 Hz, 3.66 Hz, 1 H), 2.61 (t, J = 11.45 Hz, 1 H), 2.41 (dq, J = 11.68 

Hz, 3.66 Hz, 1 H), 2.25-2.19 (m, 1 H), 2.11-2.04 (m, 1 H), 2.00-1.75 (m, 3 H), 1.72-1.63 

(m, 1 H), 1.06 (t, J = 7.33 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ 177.8, 149.5, 142.3, 

136.4, 131.0, 126.1, 118.2, 115.4, 81.1, 53.4, 43.2, 29.4, 25.7, 22.3, 21.2, 11.2; HRMS-

ESI: m/z calcd. for C16H19N3O4 [M+Na]+: 340.1268, found 340.1276. 
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(E)-3a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-

phenylhexahydrobenzofuran-2(3H)-one (2.36). Hydrazone (SI2) (0.0506 g, 0.193  

mmol) was treated following general  procedure  M. Flash chromatography (30:70 

EtOAc-Hexanes) gave an orange solid (0.048 g, 65%). mp 77-79 °C;  1H  NMR (500 

MHz, CDCl3):  δ 10.82 (s,  1 H), 8.16 (d,  J = 8.59 Hz, 1H), 7.82 (d,  J = 8.59 Hz, 1 H), 

7.59-7.54 (m, 3 H), 7.39-7.36 (m, 2 H), 7.35-7.30 (m, 1 H), 6.85 (t, J = 8.02 Hz, 1 H), 

4.47 (s, 1 H), 4.15 (dd, J = 12.60 Hz, 4.01 Hz, 1 H), 2.84-2.79 (m, 1 H), 2.33-2.19 (m, 3 

H), 2.06 (qd, J = 12.60 Hz, 5.15 Hz, 1 H), 1.79-1.70 (m, 1 H), 1.16 (s, 3 H); 13C NMR 

(125 MHz, CDCl3): δ 176.2, 154.7, 142.4, 136.3, 133.1, 131.5, 131.3, 128.0, 127.8, 

126.2, 118.3, 115.9, 83.1, 55.9, 53.1, 22.7, 22.0, 21.3, 15.0; HRMS-ESI: m/z calcd. for 

C21H21N3O4 [M+Na]+: 402.1424, found 402.1428. 

 

(E)-3a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(p-

tolyl)hexahydrobenzofuran-2(3H)-one (2.37). Hydrazone (SI2) (0.0608 g, 0.232  

mmol) was treated following general  procedure  M. Flash chromatography (25:75 

EtOAc-Hexanes) gave a yellow solid (0.049 g, 54%). mp 216-218 °C;  1H  NMR (500 
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MHz, CDCl3):  δ 10.81 (s,  1 H), 8.16 (d,  J = 8.59 Hz, 1H), 7.84 (d,  J = 8.59 Hz, 1 H), 

7.58 (t, J = 6.87 Hz, 1 H), 7.43 (d, J =8.59 Hz, 2 H), 7.18 (d, J = 8.02  Hz, 2 H), 6.85 (t, J 

= 6.87 Hz, 1 H), 4.43 (s, 1 H), 4.13 (dd, J = 12.60 Hz, 4.01 Hz, 1 H), 2.83-2.79 (m, 1 H), 

2.34 (s, 3 H), 2.32-2.18 (m, 3 H), 2.05 (qd, J = 11.74 Hz, 5.15 Hz, 1 H), 1.77-1.69 (m, 1 

H), 1.15 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ 176.4, 154.8, 142.4, 137.5, 136.3, 

131.4, 131.2, 130.0, 128.7, 126.1, 118.3, 116.0, 83.0, 55.7, 53.1, 22.7, 22.0, 21.3, 21.2, 

15.0; HRMS-ESI: m/z calcd. for C22H23N3O4 [M+Na]+: 416.1581, found 416.1584. 

 

(E)-3-(4-bromophenyl)-3a-methyl-4-(2-(2-nitrophenyl)hydrazono)hexahydro-

benzofuran-2(3H)- one (2.38). Hydrazone (SI2) (0.060 g, 0.229 mmol) was treated 

following general procedure M. Flash chromatography (20:80 EtOAc-Hexanes) gave an 

orange solid (0.057 g, 55%). mp 225- 227 °C; 1H NMR (400 MHz, CDCl3): δ 10.81 (s, 1 

H), 8.17 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.73 (dd, J = 8.70 Hz, 0.92 Hz, 1 H), 7.58 (td, J 

= 7.33 Hz, 1.37 Hz, 1 H), 7.51-7.43 (m, 4 H), 6.88- 6.84 (m, 1 H), 4.43 (s, 1 H), 4.14 (dd, 

J = 12.36 Hz, 4.12 Hz, 1 H), 2.82 (ddd, 15.8 Hz, 6.64 Hz, 0.92 Hz, 1 H), 2.33-2.17 (m, 3 

H), 2.05 (dq, J 13.05 Hz, 4.35 Hz, 1 H), 1.79-1.67 (m, 1 H), 1.12 (s, 3 H); 13C NMR (100 

MHz, CDCl3): δ 175.7, 154.6, 142.2, 136.3, 133.1, 132.2, 131.4, 131.1, 126.2, 122.0, 

118.5, 115.7, 83.1, 55.3, 53.1, 22.7, 22.1, 21.3, 14.9; HRMS-ESI: m/z calcd. for 

C21H20BrN3O4 [M+Na]+: 480.0529, found 480.0570. 
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(E)-3a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-yl)hexahydro-

benzofuran-2(3H)- one (2.39). Hydrazone (SI2) (0.062 g, 0.237 mmol) was treated 

following general procedure M. Flash chromatography (30:70 EtOAc-Hexanes) gave an 

orange solid (0.074 g, 81%). mp 155- 156 °C; 1H NMR (500 MHz, CDCl3): δ 10.93 (s, 1 

H), 8.17 (d, J = 8.59 Hz, 1H), 8.05 (d, J = 8.02 Hz, 1 H), 7.58 (t, J = 8.02 Hz, 1 H), 7.34 

(d, J =3.44 Hz, 1 H), 7.27-7.25 (m, 1 H), 7.01 (dd, J = 5.15 Hz, 3.44 Hz, 1 H), 6.85 (t, J = 

8.02 Hz, 1 H), 4.73 (s, 1 H), 4.07 (dd, J = 12.60 Hz, 4.01 Hz, 1 H), 2.85 (dd, J = 14.89 

Hz, 5.73 Hz, 1 H), 2.34-2.19 (m, 3 H), 2.06 (qd, J = 12.03 Hz, 5.15 Hz, 1 H), 1.75-1.65 

(m, 1 H), 1.09 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 174.8, 153.5, 142.2, 36.5, 134.5, 

131.2, 128.5,126.6, 126.1, 125.7, 118.4, 116.1, 83.2, 53.4, 50.4, 22.9, 22.0, 21.8, 14.1; 

HRMS-ESI: m/z calcd. for C19H19N3O4S [M+Na]+: 408.0988, found 408.0990.  

 

(E)-ethyl 3-methyl-4-(2-(2-nitrophenyl)hydrazono)-2-oxooactahydro-

benzofuran-3-carboxylate (2.40). Hydrazone (2.16) (0.086 g, 0.347 mmol) was treated 

following general procedure M. Diethyl methylmalonate was used in place of aryl acetic 

acid methyl ester. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange solid 
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(0.0762 g, 58%). mp 144-146 °C; 1H NMR (400 MHz, CD2Cl2):  δ 10.78 (s, 1 H), 8.10 

(dd, J = 8.47 Hz, 1.37 Hz, 1 H), 7.69 (dd, J = 8.70 Hz, 0.92 Hz, 1 H), 7.56-7.52 (m, 1 H), 

6.83-6.79 (m, 1 H), 4.70 (td, J = 11.45 Hz, 4.12 Hz, 1 H), 4.29-4.07 (m, 2 H), 2.85 (ddd, 

J = 15.68 Hz, 5.04 Hz, 2.75 Hz, 1 H), 2.79 (d, J = 11.45 Hz, 1 H), 2.47-2.42 (m, 1 H), 

2.21-2.15 (m, 1 H), 2.12-2.03 (m, 1 H), 1.75-1.65 (m, 2 H), 1.57 (s, 3 H), 1.16 (t, J = 7.33 

Hz, 3 H); 13C NMR (100 MHz, CD2Cl2): δ  174.7, 168.3, 146.9, 142.3, 136.4, 131.0, 

125.7, 118.2, 115.7, 80.1, 61.9, 60.0, 51.6, 29.7, 25.0, 21.6, 20.0, 13.9; HRMS-ESI: m/z 

calcd. for C18H21N3O6 [M+Na]+: 398.1323, found 398.1332.  

General procedure D: Anti-selective formation of β,γ-fused bicyclic γ-lactone 

hydrazones from 6- membered- α-epoxy-β-methyl-(2-nitro)phenyl hydrazones 

To a stirred solution of the aryl acetic methyl ester (2.20 equiv) in THF (0.5 mL) 

was added KHMDS (2.25 equiv, 1.0 M soln. in THF) at –78 °C. The mixture was stirred 

for 30 min. Separately, the α-epoxy-β-methyl (2-nitro)phenylhydrazone (SI3) (1.0 equiv) 

was dissolved in THF (1.0 mL) and cooled to –78 °C. This solution was added dropwise 

over a period ca. 1 min to the preformed enolate solution followed by the addition of a 

THF wash (0.5 mL). The resulting deep purple solution was stirred 5 min at –78 °C, 

warmed to –40 °C and stirred for 20 h, and subsequently warmed to 0 °C (ice-bath) and 

stirred 1 h. The reaction was quenched with aq. 10% NH4OH saturated with NH4Cl (5 

mL). The orange biphasic solution was partitioned between EtOAc and H2O, and the aq. 

phase extracted with EtOAc (3 X 15 mL). The combined organic extracts were washed 

with sat. aq. NaCl, dried over MgSO4, filtered, and concentrated in vacuo. Flash   

chromatography   over   silica   gel   provided   the   desired   β,γ-fused   bicyclic   γ-

lactone hydrazones. 
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(E)-7a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-

phenylhexahydrobenzofuran-2(3H)-one (2.41). Hydrazone (SI3) (0.053 g, 0.202 

mmol) was treated following general procedure D. Flash chromatography (20:80 EtOAc-

Hexanes) gave an orange solid (0.039 g, 51%, 8:1 dr). Major diastereomer [1H NMR 

(400 MHz, CDCl3): δ 10.83 (s, 1 H), 8.14 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.74 (dd, J = 

8.24 Hz, 0.92 Hz, 1 H), 7.54 (t, J = 7.33 Hz, 1 H), 7.41-7.26 (m, 5 H), 6.84-6.80 (m, 1 H), 

4.28 (d, J = 12.82 Hz, 1 H), 3.19 (d, J = 12.82 Hz, 1 H), 2.85 (ddd, J = 14.31 Hz, 6.87 

Hz, 2.75 Hz, 1 H), 2.29-2.07 (m, 4 H), 1.93-1.79 (m, 1 H), 1.32 (s, 3H); 13C NMR (100 

MHz, CDCl3): δ 176.3, 148.4, 142.3, 136.3, 136.0, 130.6, 129.0, 128.7, 127.8, 126.0, 

118.2, 115.6, 83.9, 59.9, 46.8, 36.1, 25.3, 21.3, 20.1]; HRMS-ESI: m/z calcd. for 

C21H21N3O4  [M+Na]+: 402.1424, found 402.1427. 

 

(E)-7a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(p-

tolyl)hexahydrobenzofuran-2(3H)-one (2.42). Hydrazone (SI3) (0.0492 g, 0.188  

mmol) was treated following general  procedure  D. Flash chromatography (30:70 

EtOAc-Hexanes) gave an orange solid (0.0496 g, 67%, 13.5:1 dr). Major diastereomer 
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[1H NMR (400 MHz, CDCl3): δ 10.82 (s, 1 H), 8.13 (dd, J = 8.70 Hz, 1.37 Hz, 1H), 7.76 

(dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.55 (t, J = 7.79 Hz, 1 H), 7.27 (d, J =8.24 Hz, 2 H), 7.17 

(d, J = 8.24 Hz, 2 H), 6.84-6.80 (m, 1 H), 4.24 (d, J = 12.82 Hz, 1 H), 3.17 (d, J = 12.82 

Hz, 1 H), 2.84 (ddd, J = 15.46 Hz, 6.18 Hz, 2.75 Hz, 1 H), 2.31 (s, 3 H), 2.28-2.01 (m, 4 

H), 1.88-1.77 (m, 1 H), 1.33 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 176.6, 148.5, 

142.3, 137.6, 136.4, 133.0, 131.0, 129.5, 128.8, 126.0, 118.2, 115.6, 83.8, 60.0, 46.5, 

36.1, 25.3, 21.3, 21.2, 20.0]; HRMS-ESI: m/z calcd. for C22H23N3O4 [M+H]+: 394.1761, 

found 394.1765. 

 

(E)-7a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-

yl)hexahydrobenzo-furan-2(3H)- one (2.43). Hydrazone (SI3) (0.0604 g, 0.231 mmol) 

was treated following general procedure C. Flash chromatography (30:70 EtOAc-

Hexanes) gave an orange foam (0.063 g, 70%, 3:1 dr). 1H NMR (500 MHz, CDCl3): δ 

10.90 (s, 1 H) major, 10.87 (s, 1 H) minor, 8.14 (d, J = 7.45 Hz, 1 H) major, 8.13 (d, J = 

8.02   Hz, 1H)  minor,   7.84 (dd,  J = 8.59 Hz, 1.15 Hz, 1  H) major,  7.75 (dd, J = 8.59 

Hz, 1.15 Hz, 1 H) minor,  7.55-7.48 (m, 1 H), 7.27 (dd, J = 5.15 Hz, 1.15 Hz, 1 H) minor, 

7.23 (dd, J = 5.15 Hz, 1.15 Hz, 1 H) major, 7.17-7.16 (m, 1 H) major, 7.13-7.12 (m, 1 H) 

minor, 6.99-6.97 (m, 1 H), 6.82 (t, J =7.45 Hz, 1 H), 4.55 (d, J = 12.03 Hz, 1 H) major,  

4.32 (d, J = 10.88 Hz, 1 H) minor, 3.46 (d, J = 10.88 Hz, 1 H) minor, 3.19 (d, J = 12.60 

Hz, 1 H) major, 2.92-2.86 (m, 1 H) major, 2.77 (dt, J = 16.61 Hz, 5.15 Hz, 1 H) minor, 
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2.41-2.35 (m, 1 H)  minor, 2.26-2.15 (m, 2 H), 2.10-1.92 (m, 1 H), 1.87-1.80 (m, 1 H) 

major, 1.72-1.69 (m, 1 H) minor, 1.59 (s, 3 H) minor, 1.31 (s, 3 H) major; 13C NMR (125 

MHz, CDCl3): major δ 174.8, 147.8, 142.2, 137.5, 136.4, 131.1, 126.9, 126.5, 126.0, 

125.1, 118.3, 115.8, 83.9, 60.1, 41.6, 36.0, 25.3, 21.3, 20.0;  minor  δ  173.6,  148.5,  

141.9,  137.1,  136.4,  131.2,  126.9,  126.4,  125.9,  125.6,  118.5, 115.9,84.5, 57.4, 46.9, 

35.2, 26.8, 23.2, 19.4; HRMS-ESI: m/z calcd. for C19H19N3O4S  [M+Na]+: 408.0988, 

found 408.0989. 

General procedure E: Syn-selective formation of β,γ-fused bicyclic γ-lactone 

hydrazones from 6- membered-α-epoxy-(2-nitro)phenyl hydrazones 

To a stirred solution of the aryl acetic methyl ester (2.20 equiv) in THF (0.5 mL) 

was added LiHMDS (2.25 equiv, 1.0 M soln. in THF) at –78 °C. The mixture was stirred 

for 30 min. Separately, α-epoxy (2-nitro)phenylhydrazone 2.16 (1.0 equiv) was dissolved 

in THF (1.0 mL) and cooled to –78 °C. This solution was added dropwise over a period 

ca. 1 min to the preformed enolate solution followed by the addition of a THF wash (0.5 

mL). The resulting deep purple solution was stirred 3 h at –78 °C and subsequently 

warmed to rt and stirred 2 h. The reaction was quenched with aq. 10% NH4OH saturated 

with NH4Cl (5 mL). The orange biphasic solution was partitioned between EtOAc and 

H2O, and the aq. phase extracted with EtOAc (3 X 15 mL). The combined organic 

extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, and concentrated  in  

vacuo.  Flash  chromatography  over  silica  gel  provided  the  desired  β,γ-fused bicyclic 

γ-lactone hydrazones. 
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(E)-4-(2-(2-nitrophenyl)hydrazono)-3-phenylhexahydrobenzofuran-2(3H)-

one (2.47). Hydrazone (2.16) (0.064 g, 0.258 mmol) was treated following general 

procedure E. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange foam (0.053 

g, 56%, 6.5:1 dr). 1H NMR (500 MHz, CDCl3): δ major diastereomer 10.86 (s, 1 H), 8.14 

(dd, J = 8.59 Hz, 1.15 Hz, 1 H), 7.61 (dd, J = 8.59 Hz, 1.15 Hz, 1 H), 7.48-7.45 (m, 1 H), 

7.39-7.36 (m, 2 H), 7.32-7.28 (m, 3 H), 6.83-6.80 (m, 1 H), 4.97 (ddd, J = 6.30 Hz, 6.30 

Hz, 6.87 Hz, 1 H), 4.40 (d, J = 6.87 Hz, 1 H), 3.55 (t, J = 6.87 Hz, 1 H), 2.64-2.58 (m, 1 

H), 2.55-2.49 (m, 1 H), 2.16-2.10 (m, 1 H), 2.07-1.90 (m, 2 H), 1.79-1.69 (m, 1 H); 13C 

NMR (100 MHz, CDCl3): δ major diastereomer 176.1, 149.0, 142.0, 136.4, 135.8, 131.2, 

129.1, 128.2, 127.8, 125.9, 118.5, 115.8, 77.3, 50.0, 49.8, 28.2, 24.7, 18.2; HRMS-ESI: 

m/z calcd. for C20H19N3O4 [M+Na]+: 388.1268, found 388.1282. 

 

(E)-3-(4-bromophenyl)-4-(2-(2-nitrophenyl)hydrazono)-

hexahydrobenzofuran-2(3H)-one (2.48). Hydrazone (2.16) (0.062 g, 0.250 mmol) was 

treated following general procedure E. Flash chromatography (30:70 EtOAc-Hexanes) 

gave an orange foam (0.0401 g, 36%, 1.3:1 dr). 1H NMR (500 MHz, d6-DMSO): δ  
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major diastereomer 10.49 (s, 1 H), 8.03-8.01 (m, 1 H), 7.61-7.46 (m, 4 H), 7.37 (d, J = 

8.59 Hz, 1 H), 7.29-7.26 (m, 1 H), 6.84-6.80 (m, 1 H), 4.94 (ddd, J = 8.16 Hz, 8.02 Hz, 

6.30 Hz, 1 H), 4.43 (d, J = 11.46 Hz, 1 H), 3.68 (dd, J = 11.17 Hz, 8.02 Hz, 1 H), 2.61 

(td, J = 16.61 Hz, 4.58 Hz, 1 H), 2.51-2.48 (m, 1 H), 2.15-2.01 (m, 1 H), 1.92-1.86 (m, 1 

H),  1.83-1.74  (m,  1  H),  1.59-1.48  (m,  1  H);  13C  NMR  (125  MHz,  d6-DMSO):  δ  

major diastereomer 175.8, 152.5, 142.0, 136.9, 136.1, 131.8, 131.7, 131.1, 126.1, 121.1, 

118.7, 115.7, 77.5, 49.8, 48.5, 28.3, 23.8, 18.7; HRMS-ESI: m/z calcd. for 

C20H18BrN3O4 [M+Na]+: 466.0373, found 466.0377. 

 

(E)-3-(4-methoxyphenyl)-4-(2-(2-nitrophenyl)hydrazono)-

hexahydrobenzofuran-2(3H)-one (2.49). Hydrazone (2.16) (0.058 g, 0.234 mmol) was 

treated following general procedure E. Flash chromatography (30:60 EtOAc-Hexanes)  

gave  an  orange  foam (0.042 g, 45%, 2.8:1  dr). 1H  NMR (400 MHz, CDCl3): δ major 

diastereomer  10.85 (s,  1 H),   8.14  (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.62 (dd, J = 8.70 

Hz, 1.37 Hz, 1 H), 7.49-7.44 (m, 1 H), 7.21 (d, J = 8.70 Hz, 2 H), 6.89 (d, J = 8.70 Hz, 2 

H), 6.83-6.79 (m, 1 H),  4.95 (ddd,  J = 6.18 Hz, 6.41 Hz, 6.87 Hz, 1 H), 4.30 (d, J = 7.33 

Hz, 1 H), 3.79 (s, 3 H), 3.52 (t, J = 7.33 Hz, 1 H), 2.58-2.54 (m, 2 H), 2.16-2.10 (m, 1 H), 

2.03-1.89 (m, 2 H), 1.78-1.68 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ 176.6, 159.1, 

149.1, 142.0, 136.4, 130.0, 129.3, 127.6, 125.9, 118.5, 115.9, 114.4, 77.2, 55.4, 50.1, 
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49.0, 28.3, 24.6, 18.3; HRMS-ESI: m/z calcd. for C21H21N3O5 [M+Na]+: 418.1373, 

found 418.1384. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-(p-tolyl)-hexahydrobenzofuran-2(3H)-

one (2.50). Hydrazone (2.16) (0.065 g, 0.265 mmol) was treated following general 

procedure E. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange foam 

(0.0486 g, 49%, 3:1 dr). 1H NMR (400 MHz, CDCl3): δ  major diastereomer 10.85 (s, 1 

H), 8.14 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.63 (dd, J = 8.01 Hz, 1.37 Hz, 1 H), 7.49-7.45 

(m, 1 H), 7.18 (m, 4 H), 6.84-6.79 (m, 1 H), 4.96 (ddd, J = 5.95 Hz, 6.29 Hz, 6.64 Hz, 1 

H), 4.36 (d, J = 6.87 Hz, 1 H), 3.52 (t, J = 6.87 Hz, 1 H), 2.63-2.47 (m, 2 H), 2.34 (s, 3 

H), 2.13-2.09 (m, 1 H), 2.01-1.89 (m, 2 H), 1.77-1.72 (m, 1 H);  13C NMR (125 MHz, 

CDCl3): δ major diastereomer 176.3, 149.2, 142.0, 137.5, 136.3, 132.7, 131.2, 129.7, 

128.0, 125.9, 118.4, 115.9, 77.3, 50.0, 49.4, 28.2, 24.7, 21.2, 18.2; HRMS-ESI: m/z 

calcd. for C21H21N3O4 [M+Na]+: 402.1424, found 402.1432. 

 

(E)-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-yl)hexahydrobenzofuran-

2(3H)-one (2.51). Hydrazone (2.16) (0.0495 g, 0.200 mmol) was treated following 
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general procedure E. Flash chromatography (30:70 EtOAc-Hexanes) gave an orange 

foam (0.044 g, 60%, 2:1 dr). 1H NMR (400 MHz, CDCl3): δ major diastereomer 10.89 

(s, 1 H), 8.14 (d, J = 8.70 Hz, 1 H), 7.75 (d, J = 7.33 Hz, 1 H), 7.53-7.49 (m, 1 H), 7.28 

(dd, J = 5.04 Hz, 0.92 Hz, 1 H), 7.10-7.09 (m, 1 H), 7.02-6.99 (m, 1 H), 6.86-6.80 (m, 1 

H), 5.01 (ddd, J = 6.53 Hz, 6.18 Hz, 5.50 Hz, 1 H), 4.64 (d, J = 6.87 Hz, 1 H), 3.65 (t, J = 

6.41 Hz, 1 H), 2.66-2.58 (m, 1 H), 2.53-2.47 (m, 1 H), 2.14-2.08 (m, 1 H), 2.00-1.90 (m, 

2 H), 1.83-1.72 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ major diastereomer 174.7, 

148.4, 142.0, 137.2, 136.5, 131.3, 127.2, 126.3, 125.9, 125.5, 118.6, 115.8, 77.7, 50.0, 

45.0,  28.2,  24.8,  18.4;  HRMS-ESI:  m/z  calcd.  for  C18H17N3O4S  [M+Na]+:  

394.0832, found 394.0841. 

General procedure F: Syn-selective formation of β,γ-fused bicyclic γ-lactone 

hydrazones from 5- membered-α-epoxy-β-methyl-(2-nitro)phenyl hydrazone 

To a stirred solution of the aryl acetic methyl ester (2.20 equiv) in THF (0.5 mL) 

was added LiHMDS (2.25 equiv, 1.0 M soln. in THF) at –78 °C. The mixture was stirred 

for 30 min. Separately, α-epoxy-β-methyl (2-nitrophenyl)hydrazone (SI4) (1.0 equiv) 

was dissolved in THF (1.0 mL) and cooled to –78 °C. This solution was added dropwise 

over a period ca. 1 min to the preformed enolate solution followed by the addition of a 

THF wash (0.5 mL). The resulting deep purple solution was stirred 4 h at –78 °C and 

subsequently warmed to 0 °C (ice-bath) and stirred 1 h. The reaction was quenched with 

aq. 10% NH4OH saturated with NH4Cl (5 mL). The orange biphasic solution was 

partitioned between EtOAc and H2O, and the aq. phase extracted with EtOAc (3 X 15 

mL). The combined organic extracts were washed with sat. aq. NaCl, dried over MgSO4, 
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filtered, and concentrated in vacuo. Flash chromatography over silica gel provided the 

desired β,γ-fused bicyclic γ-lactone hydrazones. 

 

(E)-6a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-phenylhexahydro-2H-cyclo-

penta[b]furan-2-one (SI4). Hydrazone (2.52) (0.065 g, 0.262 mmol) was treated 

following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave an 

orange solid (0.059 g, 61%). mp 166-167 °C; 1H NMR (400 MHz, CDCl3): δ 10.60 (s, 1 

H), 8.17 (dd, J = 8.70 Hz, 1.37 Hz, 1H), 7.79 (dd, J = 8.24 Hz, 0.92 Hz, 1 H), 7.52 (t, J = 

7.56 Hz, 1 H), 7.45-7.36 (m, 4 H), 7.36-7.31 (m, 1 H), 6.87-6.82 (m, 1 H), 4.25 (d, J = 

2.75 Hz, 1 H), 3.42 (t, J = 2.29 Hz, 1 H), 2.79-2.63 (m, 2 H), 2.55-2.48 (m, 1 H), 2.12 (dt, 

J = 14.32 Hz, 9.16 Hz, 1 H), 1.52 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ 175.6, 158.7, 

141.9, 136.3, 131.2, 129.1, 127.7, 127.6, 126.0, 118.5, 115.7, 91.2, 57.1, 54.4,  35.8,  

26.0,  25.6;  HRMS-ESI:  m/z  calcd.  for  C20H19N3O4 [M+Na]+:  388.1268,  found 

388.1274. 

 

(E)-3-(4-bromophenyl)-6a-methyl-4-(2-(2-nitrophenyl)hydrazono)-

hexahydro-2H- cyclopenta[b]furan-2-one (SI4). Hydrazone (2.53) (0.0474 g, 0.191 
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mmol) was treated following general procedure N. Flash chromatography (20:80 EtOAc-

Hexanes) gave a yellow solid (0.036 g, 42%). mp 174-176 °C; 1H NMR (500 MHz, 

CDCl3): δ 10.60 (s, 1 H), 8.16 (dd, J = 8.59 Hz, 1.72 Hz, 1 H), 7.76 (dd, J = 9.00 Hz, 

1.15 Hz, 1 H), 7.55-7.51 (m, 3 H), 7.32 (d, J = 8.51 Hz, 2 H), 6.84 (m, 1 H), 4.26 (d, J = 

3.34 Hz, 1 H), 3.37-3.36 (m, 1 H), 2.76-2.65 (m, 2 H), 2.53-2.47 (m, 1  H),   2.14 (dt,  J = 

14.32 Hz, 9.16 Hz,  1 H), 1.51 (s, 3 H);  13C NMR (125  MHz, CDCl3): δ 175.1, 158.2, 

141.8, 136.4, 135.2, 132.2, 131.2, 129.3, 126.0, 121.8, 118.6, 115.6, 91.1, 57.1, 53.7, 

35.8, 26.0, 25.6; HRMS-ESI: m/z calcd. for C20H18BrN3O4 [M+Na]+: 466.0373, found 

466.0375. 

 

(E)-6a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(p-tolyl)hexahydro-2H-

cyclo-penta[b]furan-2- one (SI4). Hydrazone (2.54) (0.0543 g, 0.219 mmol) was treated 

following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a 

yellow solid (0.045 g, 54%). mp 177- 179 °C; 1H NMR (400 MHz, CDCl3): δ 10.59 (s, 1 

H), 8.16 (d, J = 8.70 Hz, 1 H), 7.79 (d, J = 8.70 Hz, 1 H), 7.52 (t, J = 7.52 Hz, 1 H), 7.31 

(d, J = 8.24 Hz, 2 H), 7.21 (d, J = 7.79 Hz, 2 H), 6.84 (t, J = 7.79 Hz, 1 H), 4.24 (d, J = 

2.75 Hz, 1 H), 3.40 (t, J = 2.29 Hz, 1 H), 2.78-2.63 (m, 2 H), 2.54-2.47 (m, 1 H), 2.36 (s, 

3 H), 2.10 (dt, J = 14.20 Hz, 9.16 Hz, 1 H), 1.51 (s, 3 H); 13C NMR (100 MHz, CDCl3): 

δ 175.9, 158.9, 141.9, 137.4, 136.3, 133.2, 131.1, 129.8, 127.4, 126.0, 118.5, 115.7, 91.2, 
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57.2, 54.1, 35.8, 25.9, 25.6, 21.1; HRMS-ESI: m/z calcd. for C21H21N3O4 [M+Na]+: 

402.1424, found 402.1432.  

 

(E)-6a-methyl-4-(2-(2-nitrophenyl)hydrazono)-3-(thiophen-2-yl)hexahydro-

2H-cyclopenta[b]- furan-2-one (SI4). Hydrazone (2.55) (0.049 g, 0.198 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave an orange solid (0.047 g, 64%). mp 168-169 °C; 1H NMR (400 MHz, CDCl3): δ 

10.60 (s, 1 H), 8.17 (dd, J = 8.70 Hz, 1.37 Hz, 1 H), 7.80 (d, J = 8.70 Hz,  1 H), 7.54-7.50 

(m, 1 H), 7.30 (d, J = 4.58 Hz,1 H), 7.14-7.13 (m, 1 H), 7.02 (dd, J = 5.04 Hz, 3.66 Hz, 1 

H),  6.87-6.83 (m, 1 H), 4.41 (d, J = 1.37 Hz, 1 H), 3.53 (t, J = 2.29 Hz, 1 H) 2.78-2.62 

(m, 2 H), 2.55-2.48 (m, 1 H), 2.14 (dt, J = 14.20 Hz, 9.62 Hz, 1 H), 1.56 (s, 3 H); 13C 

NMR (100 MHz, CDCl3): δ 174.5, 157.8, 141.8, 138.1, 136.4, 131.2, 127.3, 126.0, 

125.6, 125.5, 118.6, 115.7, 91.8, 57.3, 49.9, 35.6, 25.9, 25.4; HRMS-ESI: m/z calcd. for 

C18H17N3O4S [M+Na]+: 394.0832, found 394.0837. 

General procedure G: Hydrolysis of β,γ-fused bicyclic γ-lactone hydrazones. 

To a stirred solution of the β,γ-fused bicyclic γ-lactone hydrazone (1.0  equiv) in  

acetone/H2O (9:1, 0.1 M) at rt was added p-TsOH·H2O (3.0 equiv). The reaction was 

monitored by TLC, typically taking 24-72 h. Upon completion, the reaction was diluted 

with CH2Cl2 (10 mL) and washed sequentially with sat. aq. NaHCO3 (5 mL) and sat. aq. 
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NaCl (5 mL). The organic phase was then dried over MgSO4, filtered, and concentrated 

in vacuo. Flash chromatography over silica gel gave the desired ketones. 

 

3-phenylhexahydrobenzofuran-2,4-dione (2.57). Hydrazone (2.36) (0.0151 g, 

0.041 mmol) was treated following general procedure P. Flash chromatography (30:70 

EtOAc-Hexanes) gave a white solid (0.007 g, 73%). mp 149-151 °C; 1H NMR (500 

MHz, CDCl3): δ 7.37-7.27 (m, 5 H), 4.08 (d, J = 12.03 Hz, 1 H), 4.06 (td, J = 11.74 Hz, 

4.01 Hz, 1 H), 3.21 (t, J = 12.03 Hz, 1 H), 2.56-2.51 (m, 1 H), 2.44-2.35 (m, 2 H), 2.28-

2.22 (m, 1 H), 1.99 (qd J = 12.03 Hz, 4.58 Hz, 1 H), 1.80-1.70 (m, 1 H); 13C NMR (125 

MHz, CDCl3): δ 203.2, 175.0, 134.8, 128.9, 1286.6, 127.9, 80.1,  63.5,  47.0,  40.4,  29.6,  

22.0;  HRMS-ESI:  m/z  calcd.  for  C14H14O3 [M+Na]+: 253.0835, found 253.0844. 

 

3-(4-methoxyphenyl)hexahydrobenzofuran-2,4-dione (2.58). Hydrazone (2.23) 

(0.046 g, 0.118 mmol) was treated following general procedure P. Flash chromatography 

(40:60 EtOAc- Hexanes) gave a white solid (0.024 g, 80%). mp 145-147 °C; 1H NMR 

(400 MHz, CDCl3): δ 7.25-7.21 (m, 2 H), 6.89-6.86 (m , 2 H), 4.02 (m, 2 H with app. d, J 

= 11.91 Hz), 3.78 (s, 3 H), 3.16 (t, J = 11.91 Hz, 1 H), 2.52-2.39 (m, 1 H), 2.41-2.36 (m, 

2 H), 2.26-2.22 (m, 1 H), 1.97 (qd J = 12.36 Hz, 4.12 Hz, 1 H), 1.80-1.69 (m, 1 H);  13C 
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NMR (100 MHz, CDCl3): δ 203.4, 175.4, 159.2, 129.7, 126.8, 114.3, 80.0, 63.5, 55.4, 

46.4, 40.4, 29.6, 22.0; HRMS-ESI: m/z calcd. For C15H16O4 [M+Na]+: 283.0941, found 

283.0946.  

 

3-(thiophen-2-yl)hexahydro-2H-cyclohepta[b]furan-2,4(5H)-dione (2.59). 

Hydrazone (2.30) (0.0312 g, 0.083 mmol) was treated following general procedure G 

(after stirring at rt for 72 h, the reaction was heated to 50 °C for 6 h for consumption of 

the starting material). Flash chromatography (30:70 EtOAc-Hexanes) gave a yellow solid 

(0.0174 g, 86%). mp 95-97 °C; 1H NMR (400 MHz, CDCl3): δ 7.23 (dd, J = 5.27 Hz, 

1.37 Hz, 1 H), 7.02 (d, J = 3.66 Hz, 1 H), 6.96 (dd, J = 5.04 Hz, 3.66 Hz, 1 H), 4.66 (d, J 

= 11.45 Hz, 1 H), 4.09 (td, J = 10.76 Hz, 3.66 Hz, 1 H), 3.67 (t, J = 11.45 Hz, 1 H), 2.72-

2.64 (m, 1 H), 2.54 (dq, J = 13.28 Hz, 3.66 Hz, 1 H), 2.46-2.37 (m, 1 H), 2.20-2.10  (m, 1 

H), 2.08-1.97 (m, 1 H), 1.88-1.77 (m, 2 H), 1.37 (qdd, J = 13.05 Hz, 3.21 Hz, 1.37 Hz, 1 

H); 13C NMR (100 MHz, CDCl3): δ 205.9, 174.1, 137.0, 127.1, 126.7, 125.4, 78.4, 63.4, 

43.1, 42.8, 35.3, 24.6, 22.5;  HRMS-ESI: m/z calcd. for C13H14O3S [M+Na]+: 273.0556, 

found 273.0563. 

 

3-phenylhexahydro-2H-cyclohepta[b]furan-2,4(5H)-dione  (2.60).  Hydrazone  

(3.29) (0.030 g, 0.079 mmol) was treated following general procedure G (after stirring at 
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rt for 72 h, the reaction was heated to 50 °C for 6 h for consumption of the starting 

material). Flash chromatography (30:70 EtOAc-Hexanes) gave a yellow foam (0.0184 g, 

95%). mp 75-76 °C; 1H NMR (400  MHz, CDCl3): δ 7.36-7.32 (m, 2 H), 7.29-7.26 (m, 3 

H), 4.41 (d, J = 11.91 Hz, 1 H), 4.10 (td, J = 10.99 Hz, 3.66 Hz, 1 H), 3.63 (t, J = 11.45 

Hz, 1 H), 2.63-2.53 (m, 2 H), 2.37 (ddd, J = 19.42 Hz, 12.72 Hz, 4.12 Hz, 1 H), 2.20-2.12 

(m, 1 H), 2.00-1.93 (m, 1 H), 1.89-1.73 (m, 2 H), 1.37 (qdd, J = 13.28 Hz, 3.21 Hz, 1.37 

Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ 206.1, 175.6, 135.9, 128.9, 128.8,  127.9,  

78.4,  63.6, 47.8,  43.1,  35.5,  24.7,  22.5;   HRMS-ESI:  m/z  calcd.  for C15H16O3 

[M+Na]+: 267.0992, found 267.0999. 

 

3a-methyl-3-(p-tolyl)hexahydrobenzofuran-2,4-dione (2.61). Hydrazone (2.37) 

(0.0256 g, 0.065 mmol) was treated following general procedure P. Flash 

chromatography (30:70 EtOAc- Hexanes) gave a white solid (0.0136 g, 81%). mp 166-

168 °C; 1H NMR (400 MHz, CDCl3): δ 7.35 (d, J = 8.24 Hz, 2 H), 7.14 (d, J = 8.24 Hz, 

2 H), 4.30 (s, 1 H), 4.05 (dd, J = 12.59 Hz, 3.66 Hz, 1 H), 2.66-2.60 (m, 1 H), 2.32-2.25 

(m, 5 H, apparent singlet at 2.32), 2.20-2.05 (m, 2 H), 1.79-1.71 (1 H), 3.19 (s, 3 H); 13C 

NMR (100 MHz, CDCl3): δ 208.2, 175.0, 137.5, 130.5, 129.1, 128.9, 81.7, 59.4, 53.0, 

36.5, 22.6, 21.2, 13.7; HRMS-ESI: m/z calcd. for C16H18O3 [M+Na]+:  281.1148, found 

281.1155. 
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3a-methyl-3-(thiophen-2-yl)hexahydrobenzofuran-2,4-dione (2.62). 

Hydrazone (2.39) (0.0515 g, 0.133 mmol) was treated following general procedure P. 

Flash chromatography (30:70 EtOAc- Hexanes) gave a white solid (0.028 g, 85%). mp 

134-136 °C; 1H NMR (400 MHz, CDCl3): δ 7.27-7.24 (m, 2 H), 7.00-6.97 (m, 1 H), 4.51 

(s, 1 H), 4.06 (dd, J = 12.59 Hz, 3.66 Hz, 1 H), 2.68-2.63 (m, 1 H), 2.36-2.05 (m, 4 H), 

1.80-1.69 (m, 1 H), 1.09 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ   207.8, 173.8, 133.5, 

128.5, 126.7, 125.8, 81.7, 59.7, 48.7, 36.4, 22.5, 21.1, 13.3; HRMS-ESI: m/z calcd. for 

C13H14O3S [M+Na]+: 273.0556, found 273.0564. 

 

6a-methyl-3-phenyltetrahydro-2H-cyclopenta[b]furan-2,4 (5H)-dione (2.63). 

Hydrazone (SI4) (0.046 g, 0.125 mmol) was treated following general procedure P. Flash 

chromatography (30:70 EtOAc-Hexanes) gave a white solid (0.028 g, 96%). mp 58-59 

°C; 1H NMR (400 MHz, CDCl3): δ 7.38-7.28 (m, 5 H), 4.10 (d, J = 2. 86 Hz, 1 H), 2.86 

(d, J = 2.86 Hz, 1 H), 2.56-2.47 (m, 3 H), 2.16-2.08 (m, 1 H), 1.54 (s, 3 H); 13C NMR 

(125 MHz, CDCl3): δ 215.8, 174.9, 136.0, 129.2, 127.8, 127.4, 89.8, 60.2, 51.0, 36.5, 

33.8, 26.3;   HRMS-ESI:  m/z  calcd. for C14H14O3 [M+Na]+: 253.0835, found 253.0846. 
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3-phenylhexahydrobenzofuran-2,4-dione (2.64). Hydrazone (2.47) (0.050 g, 

0.136 mmol) was treated following general procedure P. Flash chromatography (30:70 

EtOAc-Hexanes) gave a white solid (0.024 g, 77%). mp 96-98 °C; 1H NMR (500 MHz, 

CDCl3): δ 7.37-7.34 (m, 2 H), 7.31-7.28 (m, 1 H), 7.25-7.23 (m, 2 H), 5.10 (ddd, J = 6.30 

Hz, 5.15 Hz, 4.01 Hz, 1 H), 4.55 (d,  J = 2.86 Hz, 1 H), 3.11 (dd, J = 6.30 Hz, 3.44 Hz, 1 

H), 2.62-2.58 (dt, J = 15.46 Hz, 4.58 Hz, 1 H), 2.44-2.38 (m, 1 H), 2.26-2.22 (m, 1 H), 

2.11-1.92 (m, 3 H); 13C NMR (125 MHz, CDCl3): δ 206.4, 175.7, 135.4, 129.2, 127.9, 

127.5, 78.8, 56.2, 48.1, 40.0, 27.5, 19.3; HRMS-ESI: m/z calcd. for C14H14O3 [M+Na]+: 

253.0835, found 253.0842. 

 

Mechanistic Studies 

 

To a stirred solution of phenyl methyl acetate (0.033 g, 0.218 mmol) in THF (0.5 

mL) was added KHMDS (0.20 mL, 0.207 mmol, 1.0 M soln. in THF) at –78 °C. The 

mixture was stirred for 30 min. Separately, hydrazone 2.16 (0.054 g, 0.218 mmol) was 

dissolved in THF (1.0 mL) and cooled to –78 °C. This solution was added in one portion 

to the preformed enolate solution, and the resulting deep purple solution was quenched 

immediately with aq. 10% NH4OH saturated with NH4Cl (5 mL). The orange biphasic 

O

O
O

H

H

ArNHN

O

KHMDS (0.95 equiv),
THF, –78 °C

Ar = (2-nitro)phenyl

N
ArHN

O
O

H Ph NArN

OH
+

N
ArHN

CO2Me
H

Ph

OH
+

H

Ph CO2Me



 

 
105 

solution was partitioned between EtOAc and H2O, and the aq. phase extracted with 

EtOAc (3 X 15 mL). The combined organic extracts were washed with sat. aq. NaCl, 

dried over MgSO4, filtered, and concentrated in vacuo. 1H NMR of the crude reaction 

mixture displayed a 4:2.7:1 mixture of azoalkene 2.66, uncyclized product 2.65, and β,γ-

fused bicyclic γ-lactone 2.20, respectively. The 1H NMR signals of the crude reaction 

material were compared to authentic samples of 2.66, 2.65, and 2.22. 

 

Methyl 2-((1,2,E)-2-hydroxy-6-(2-(2-nitrophenyl)hydrazono)cyclohexyl-2-

phenyl-acetate (2.65). To a stirred solution of phenyl methyl acetate (0.036 g, 0.242 

mmol) in THF (0.75 mL) at –78 °C was added KHMDS (0.25 mL, 0.252 mmol, 1.0 M 

soln. in THF). The mixture was stirred for 45 min. Separately, n-BuLi (0.084 mL, 0.212 

mmol, 2.5 M soln. in hexanes) was added to a stirred solution of α-epoxy (2-

nitro)phenylhydrazone (2.16) (1.0 equiv) in THF (1.0 mL) at –78 °C and stirred 10 min. 

The preformed enolate was then added to the preformed azoalkene dropwise over a 

period ca. 1 min. The reaction was stirred at –78 °C for 45 min and quenched with aq. 

10% NH4OH saturated with NH4Cl (5 mL). The orange biphasic solution was partitioned 

between Et2O and H2O, and the aq. phase extracted with Et2O (3 X 15 mL). The 

combined organic extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, 

and concentrated in vacuo. Flash chromatography over silica gel (40:60 EtOAc-Hexanes) 

gave an orange solid (0.032 g, 40%). mp 156-158 °C; 1H NMR (400 MHz, CDCl3): δ 

10.90 (s, 1 H), 8.15 (dd, J = 8.24 Hz, 1.37 Hz, 1 H), 7.90 (dd, J = 8.24 Hz, 0.92 Hz, 1 H), 
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7.54-7.48 (m, 3 H), 7.41-7.32 (m, 3 H), 6.82-6.78 (m, 1 H), 4.14 (d, J = 10.53 Hz, 1 H), 

3.78-3.79 (m, 1 H), 3.57 (s, 3 H), 3.32 (dd, J = 10.53 Hz, 6.87 Hz, 1 H), 2.70-2.63 (m, 1 

H), 2.37-2.30 (m, 1 H), 2.04-1.96 (m, 1 H), 1.88-1.82 (m, 1 H), 1.68-1.57 (m, 3 H); 13C 

NMR (100 MHz, CDCl3): δ 173.6, 153.5, 142.5, 136.6, 136.3, 130.9, 129.4, 128.8, 

128.4, 126.0, 117.9, 115.7, 71.9, 54.5, 52.9, 52.1, 32.3, 26.1, 20.0; HRMS-ESI: m/z calcd 

for C21H23N3O5 [M+H]+: 398.1710, found 398.1711. 

 

Following general procedure C using azoalkene 2.66 (0.0316 g, 0.127 mmol) in 

place of hydrazone 2.16, 2.20 was isolated after flash chromatography 

(30:70::EtOAc:Hexanes) as an orange solid (0.0291 g, 63%). 
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1.7.2 Synthesis of lactams mechanism  

The following procedures are representative of the preparation of α-aziridino 

ketones 

 

7-phenethyl-7-azabicyclo[4.1.0]heptan-2-one (S5). A mixture of -iodocyclohex-2-en-1-

one (4.51 mmol), anhydrous Cs2CO3 (4.96 mmol), 1,10-phenanthroline (4.51 mmol), and 

benzylamine (6.77 mmol) in CH2Cl2 (34 mL) was stirred at rt for 4 h. The reaction was 

partitioned between CH2Cl2 and H2O.165  The aqueous layer was extracted with CH2Cl2 

(3 x 10mL). The combined organic phase was washed with H2O (2 x 10 mL), dried over 

MgSO4 and evaporated. Flash chromatography over silica gel, using 1:3 EtOAc-hexane 

gave 7-phenethyl-7-azabicyclo[4.1.0]heptan-2-one as a pale yellow oil (0.6366 g; 70%). 

Spectroscopic data was identical to that previously reported.165 

 

 

7-allyl-1-methyl-7-azabicyclo[4.1.0]heptan-2-one (S6). To a stirred solution of 

1-methyl-7-azabicyclo[4.1.0]heptan-2-one (300.0 mg, 2.397 mmol) in CH3CN (3 ml) 

added allyl bromide (869.9 mg, 7.190 mmol), followed by addition of K2CO3 (662.5 mg, 

4.793 mmol).166 The mixture was stirred for 5 h at 65 oC. Solvent was evaporated under 

reduced pressure to give brown oil. Flash chromatography over silica gel using 10:90 

EtOAc-hexanes gave S1 as light yellow oil (262.6 mg, 66%). 1H NMR (CDCl3, 400 

MHz): δ 5.94-5.86 (m, 1 H), 5.22-5.17 (m, 1 H), 5.10-5.06 (m, 1 H), 3.22-3.17(m, 1 H), 
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3.06-3.00 (m, 1 H), 2.55-2.50 (m, 1 H), 2.03-1.97 (m, 4 H), 1.82-1.77 (m, 1 H), 1.60-1.50 

(s, 3 H), 1.29 (s, 3 H); 13C NMR (CDCl3, 100 MHz): δ 209.7,136.7, 115.6, 54.7, 49.5, 

45.8, 36.8, 23.7, 20.3, 10.0; HRMS-ESI: m/z calcd. for C10H15NO [M+H]+:166.1226, 

found: 166.1228. 

 

7-benzyl-1-methyl-7-azabicyclo[4.1.0]heptan-2-one (S7). Yield: 48% Procedure 

is same as S6, benzyl bromide was used instead. 1H NMR (CDCl3, 400 MHz): δ 7.32-

7.22 (m, 4 H), 3.85 (d, 1 H, J = 14.20 Hz), 3.59 (d, 1 H, J = 14.65 Hz), 2.15-2.14 (t, 1 H, 

J = 1.83 Hz), 2.06-1.95 (m, 3 H), 1.84-1.79 (m, 1 H), 1.65-1.58 (m, 1 H), 1.36 (s, 3 H); 

13C NMR (CDCl3, 100 MHz): δ209.7, 139.6, 128.4, 127.3, 126.9, 56.0, 50.0, 46.0, 36.9, 

23.7, 20.3, 10.3; HRMS-ESI: m/z calcd. for C14H17NO [M+H]+: 216.1383, found: 

216.1386. 

The following procedures are representative of the preparation of α-aziridino 

TBS-oxime 

 

(E)-7-tosyl-7-azabicyclo[4.1.0]heptan-2-one O-(tert-butyldimethylsilyl) oxime 

(3.7). The solution of α-aziridino ketone (449.1 mg, 1.693 mmol) in MeOH (5 ml) was 

cooled in ice-bath. Followed by addition of TBSONH2 (249.3 mg, 1.693 mmol). The 

reaction mixture was continued to stir at room temperature for 90 min. The solvent was 

evaporated under reduced pressure to give colorless gel. Flash chromatography over 

silica gel using 1:4 EtOAc-hexanes gave 2.40, E/Z mixture (520.9 mg, 78%) as a 

O

NBn

NOTBS

NTs



 

 
109 

colorless gel. 1H NMR (CDCl3, 400 MHz): δ 7.74 (m, 2H), 7.40 (m, 2H), 2.34 (s, 3H), 

1.62 (m, 1H), 1.60 (m, 1H), 1.56-1.18 (m, 6H), 0.98 (s, 9H), 0.21 (s, 6H); 13C NMR 

(CDCl3, 100 MHz): δ 149.4, 137.6, 136.7, 129.3, 129.2, 128.3, 128.2, 43.8, 30.6, 30.8, 

28.2, 27.1, 25.6, 25.5, 25.4, 21.3, 18.8, -4.7, -4.6; LCMS m/z calcd. for C19H30N2O3SSi 

[M+H]+: 395.175, found: 395.170. 

 

(E)-1-methyl-7-tosyl-7-azabicyclo[4.1.0]heptan-2-one-O-(tert-

butyldimethylsilyl) oxime (3.11). Colorless solid. Yield is 72%. 1H NMR (CDCl3, 400 

MHz): δ 7.74 (m, 2H), 7.40 (m, 2H), 2.34 (m, 3H), 1.6 (m, 1H), 1.50-1.18 (6H), 1.36 (s, 

3H), 0.98 (s, 9H), 0.21 (s, 6H); 13C NMR (CDCl3, 100 MHz): δ 162.0, 137.6, 136.7, 

129.3, 129.2, 128.3, 128.2, 45.9, 37.5, 28.3, 28.2, 26.6, 25.5, 25.4, 24.6, 21.3, 20.0, 19.1, 

0.21, .22; LCMS m/z calcd. for C20H32N2O3SSi [M+H]+: 409.190, found: 409.183 

The following procedures are representative of the preparation of α-alkylated 

TBS-oxime 

 

dimethyl-2-((1S,6S,E)-2-(hydroxyimino)-6-(4-

methylphenylsulfonamido)cyclohexyl)malonate (3.9). The solution of dimethyl 

malonate (33.5 mg, 0.253 mmol) in THF (2 ml) was cooled to –78 °C followed by 

dropwise addition of KHMDS (1.0 M, 0.25 ml, 0.253 mmol). The reaction mixture 

continued to stir at – 78 oC for 45 min. At this time the solution of 2.40 (50 mg, 0.127 

mmol) in THF (2 ml) was added all at once followed by dropwise addition of TBAF (1.0 

NOTBS
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M, 0.25 ml, 0.253 mmol). Reaction mixture was continued to stir at –78 °C for another 2 

hours. At this time sat. NH4Cl was added to quench the reaction. After warming up the 

reaction mixture to room temperature, it was extracted with EtOAc (3 x 10 mL), 

combined organic extracts were washed with saturated aqueous NaCl, dried (MgSO4), 

and evaporated under reduced pressure to give colorless oil. Flash chromatography over 

silica gel using 50:50 EtOAc-hexanes gave 2.41 (40.0 mg, 77%) as a colorless solid and 

singe diastereomer. 1H NMR (CDCl3, 400 MHz): δ 7.74 (m, 3H), 7.40 (m, 2H), 3.68 (s, 

6H), 3.10 (m, 1H), 2.68 (m, 1H), 2.60 (m, 1H)1.64-1.18 (6H); 13C NMR (CDCl3, 100 

MHz): δ 169.0, 169.1, 162.6, 141.5, 137.6, 129.3, 129.4, 128.3, 128.4, 51.9, 51.8, 45.4, 

43.6, 34.9, 28.3, 24.8, 19.1; LCMS m/z calcd. for C18H24N2O7S [M+H]+: 413.130, found: 

413.120 

 

methyl-2-((1S,6S,E)-2-(hydroxyimino)-6-(4- 

methylphenylsulfonamido)cyclohexyl)-2-phenylacetate (3.10). Colorless solid. 

Yield is 82%, dr 2:1. 1H NMR (CDCl3, 400 MHz): δ 7.74 (s, 3H), 7.40 (m, 4H), 7.29 (m, 

2H), 7.27 (m 1H), 3.68 (s, 3H), 3.6 (m, 1H), 2.6 (m, 1H), 2.43 (m, 1H), 2.34 (s, 3H), 

1.64-1.18 (m, 6H); 13C NMR (CDCl3, 100 MHz): δ 172.1, 162.6, 137.6, 129.3, 129.4, 

128.5, 128.6, 128.1, 128.2, 128.3, 128.4, 125.9, 141.4, 134.5, 43.8, 41.9, 25.1, 19.1, 28.6, 

52.2 ; LCMS m/z calcd. for C22H26N2O5S [M+H]+: 431.156, found: 431.150 
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dimethyl-2-((1S,6S,E)-2-(hydroxyimino)-1-methyl-6-(4-

methylphenylsulfonamido)cyclohexyl)malonate (3.12) Colorless solid. Yield is 82%, 

dr >25:1. 1H NMR (CDCl3, 400 MHz): δ 7.74 (m, 3H), 7.40 (m, 2H), 3.68 (s, 6H), 4.03 

(m, 1H), 2.6 (m 1H), 2.34 (s, 3H), 1.64-1.18 (m, 6H), 1.28 (s, 3H); 13C NMR (CDCl3, 

100 MHz): δ 169.9, 169.8, 162.4, 141.5, 129.3, 129.4, 128.3, 128.4, 51.9, 51.8, 51.5, 

38.0, 36.2, 25.8, 19.4, 12.2; LCMS m/z calcd. for C19H26N2O7S [M+H]+: 427.146, found: 

427.144 

 

methyl-2-((1S,6S,E)-2-(hydroxyimino)-1-methyl-6-(4-

methylphenylsulfonamido)cyclohexyl)-2-phenylacetate (3.13). Colorless solid. Yield 

is 82%, dr 2:1. 1H NMR (CDCl3, 400 MHz): δ7,74 (m, 3H), 7.40 (m, 4H), 7.29 (m, 2H), 

3.68 (s, 3H), 3.60 (s, 1H), 2.60 (m, 1H), 1.64-1.18 (6H), 1.28 (s, 3H); 13C NMR 

(CDCl3, 100 MHz): δ; LCMS m/z calcd. for C23H28N2O5S [M+H]+: 445.171, found: 

445.168.   

The following is representative for the synthesis of amides 

General procedure H: Anti-selective formation of β,γ-fused bicyclic γ-lactam 

hydrazones and hydrolysis to anti-β,γ-fused bicyclic γ-lactam ketone from 3-amino-1-

azopropenes 

To a stirred solution of methyl ester acetate (53.2 mg, 0.288 mmol) in THF (0.6 

mL) at – 78 oC was added 1.0 M KHMDS (0.29 ml, 0.288 mmol), stirred for 40 min at – 

78 oC, then a solution of 3.23 (40.0 mg, 0.137 mmol) in THF (0.8 mL) was added 

dropwise continued to stir in ice-bath for 1.5 hour.  At this time saturated aqueous 
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NH4Cl/10% NH4OH (2 mL) was added and the mixture was warmed to room 

temperature. The aqueous layer was extracted with EtOAc (3 x 20 mL), and the 

combined organic extracts were washed with saturated aqueous NaCl, dried (MgSO4), 

and evaporated under reduced pressure to give brown oil. The resulting dark yellow oil 

was dissolved in acetone/water 7:1 (1.4 mL) at room temperature and added TsOH H2O 

(78.3 mg, 0.412 mmol). Reaction was monitored by TLC (usually done within 24 hours). 

At this time reaction mixture was diluted with EtOAc (20 ml) and washed with saturated 

aqueous NaHCO3, saturated aqueous NaCl, dried over (MgSO4), and solvent was 

evaporated under reduced pressure. Following flash chromatography over silica gel to 

give anti-β,γ-fused bicyclic γ-lactam. 

 

(3S,3aR,7aS)-1-benzyl-3-(4-chlorophenyl)hexahydro-1H-indole-2,4-dione 

(3.35). AAP (2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. 

Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 64%).1H 

NMR (CDCl3, 400 MHz): δ 7.35-7.25 (m, 9 H), 4.82 (d, 1 H, J = 14.89 Hz), 4.34 (d, 1 H, 

J = 14.89 Hz), 3.85 (d, 1 H, J = 11.46 Hz), 3.23-3.18 (m, 1 H), 2.88 (t, 1 H, J = 11.46 

Hz), 2.33-2.12 (m, 4 H), 1.66-1.59 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 205.3, 

174.5, 136.5, 135.7, 133.3, 130.3, 128.9, 128.8, 128.0, 127.9, 61.2, 60.9, 47.3, 45.5, 40.8, 

29.3, 24.0; HRMS-ESI: calcd. for C21H20ClNO2 [M+Na]+: 376.1075, found: 376.1075. 
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(3S,3aR,7aS)-1-allyl-3-phenylhexahydro-1H-indole-2,4-dione (3.36). AAP 

(2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 68%). 1H NMR 

(CDCl3, 400 MHz): δ 7.32-7.22 (m, 5 H), 5.79-5.75 (m, 1 H), 5.26-5.20 (m, 2 H), 4.22-

4.18 (m, 1 H), 3.86-3.81 (m, 2 H), 3.35-3.30 (m, 1 H), 2.91 (t, 1 H, J = 11.46 Hz), 2.38-

2.32 (m, 3 H), 2.23-2.20 (1 H), 1.76-1.68 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 

205.5, 174.7, 137.4, 132.8, 128.9, 128.7, 127.3, 118.2, 61.4, 61.3, 47.8, 44.3, 40.9, 29.3, 

24.2; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 270.1489, found: 270.1493. 

 

(3S,3aR,7aS)-1-allyl-3-(4-chlorophenyl)hexahydro-1H-indole-2,4-dione 

(3.37).  AAP (2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. 

Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 57%). 1H 

NMR (CDCl3, 400 MHz): δ 7.29-7.23 (m, 4 H), 5.76-5.75 (m, 1 H), 5.25-5.20 (m, 2 H), 

4.20 (dd, 1 H, J = 5.15 Hz, J = 10.31 Hz), 3.83-3.79 (m, 2 H), 3.32 (td, 1 H, J = 2.86  Hz, 

J = 8.59 Hz), 2.85 (t, 1 H, J = 11.46 Hz), 2.38-2.31 (m, 3 H), 2.24-2.20 (m, 1 H), 1.72-

1.67 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 205.4, 174.1, 135.8, 133.2, 132.6, 130.3, 
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128.8, 118.4, 61.3, 61.2, 47.2, 44.3, 40.8, 29.3, 24.1; HRMS-ESI: calcd. for 

C17H18ClNO2 [M+Na]+: 326.0918, found: 326.0922. 

 

(3R,3aR,7aS)-1-allyl-3-benzylhexahydro-1H-indole-2,4-dione (3.41).  AAP 

(2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 72%). dr. 5:1 as 

judged by 1H NMR of the crude material, isolated single diastereomer. 1H NMR (CDCl3, 

400 MHz): δ 7.26-7.11 (m, 5 H), 5.72-5.63 (m, 1 H), 5.13-5.06 (m, 2 H), 4.09-4.04 (m, 1 

H), 3.73-3.67 (m, 1 H), 3.24-3.16 (m, 2 H), 3.02-2.87 (m, 2 H), 2.33-2.10 (m, 5 H), 1.70-

1.63 (m, 1 H), 1.45-1.41 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 206.2, 175.3, 138.2, 

132.7, 129.8, 128.5, 126.5, 117.7, 61.1, 55.9, 43.9, 42.9, 40.6, 33.3, 28.9, 24.0; HRMS-

ESI: calcd. for C18H21NO2 [M+Na]+: 306.1465, found: 306.1469. 

 

(3S,3aR,7aS)-1-allyl-3-(naphthalen-1-yl)hexahydro-1H-indole-2,4-dione 

(3.39).  AAP (2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. 

Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 74%). 1H 

NMR (CDCl3, 400 MHz): δ 7.81-7.78 (m, 4 H), 7.44-7.41 (m, 3 H), 5.84-5.79 (m, 1 H), 

5.29-5.22 (m, 2 H), 4.27-4.23 (m, 1 H), 4.04 (d, 1 H, J = 12.03 Hz), 3.89-3.84 (m, 1 H), 

3.38 (td, 1 H, J = 2.86 Hz, J = 11.46 Hz), 3.01 (t, 1 H, J = 11.46 Hz), 2.42-2.32 (m, 3 H), 
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2.26-2.22 (m, 1 H), 1.83-1.71 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 205.5, 174.7, 

134.8, 133.5, 132.8, 132.7, 128.5, 128.0, 127.9, 127.7, 126.6, 126.1, 125.9, 118.3, 61.5, 

61.4, 47.9, 44.4, 40.9, 29.4, 24.2; HRMS-ESI: calcd. for C21H21NO2 [M+H]+: 320.1645, 

found: 320.1654. 

 

(3R,3aR,7aS)-1-allyl-3-(thiophen-2-yl)hexahydro-1H-indole-2,4-dione (3.28).  

AAP (2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 61%). 1H NMR 

(CDCl3, 400 MHz): δ 7.21-7.19 (m, 1 H), 7.02-7.01 (m, 1 H), 7.01-6.93 (m, 1 H), 5.80-

5.70 (m, 1 H), 5.24-5.18 (m, 2 H), 4.22-4.17 (m, 1 H), 4.08 (d, 1 H, J = 11.91 Hz), 3.82-

3.76 (m, 1 H), 3.33 (td, 1 H, J = 3.21 Hz, J = 8.24 Hz), 2.98 (t, 1 H, J = 11.91 Hz), 2.46-

2.42 (m, 2 H), 2.34-2.22 (m, 2 H), 1.80-1.67 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 

205.3, 173.2, 138.8, 132.5, 126.8, 126.2, 124.9, 118.4, 61.15, 61.12, 44.3, 42.6, 40.9, 

29.2, 24.1; HRMS-ESI: calcd. for C15H17NO2S [M+H]+: 276.1053, found: 276.1055. 

 

(3R,3aR,7aS)-1-allyl-3-methylhexahydro-1H-indole-2,4-dione (3.40).  AAP 

(2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 28%). 1H NMR 

(CDCl3, 400 MHz): δ 5.76-5.66 (m, 1 H), 5.20-5.14 (m, 2 H), 4.16-4.10 (m, 1 H), 3.74-

3.69 (m, 1 H), 3.21 (td, 1 H, J = 3.21 Hz, J = 8.24 Hz), 2.59-2.53 (m, 1 H), 2.42-2.40 (m, 
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2 H), 2.28-2.19 (m, 2 H), 1.77-1.57 (m, 4 H), 1.21 (d, 3 H, J = 6.87 Hz); 13C NMR 

(CDCl3, 100 MHz): δ 206.5, 176.9, 132.8, 117.9, 61.2, 60.5, 43.8, 40.7, 36.6, 29.1, 24.0, 

14.2; HRMS-ESI: calcd. for C25H23NO2 [M+H]+: 208.1332, found: 208.1329. 

 

(3S,3aR,8aS)-1-allyl-3-phenyloctahydrocyclohepta[b]pyrrole-2,4-dione (3.43).  

AAP (2.23) (0.050 g, 0.136 mmol) was treated following general procedure H. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (0.024 g, 65%). 1H NMR 

(CDCl3, 400 MHz): δ 7.32-7.23 (m, 5 H), 5.72-5.67 (m, 1 H), 5.22-5.19 (m, 2 H), 4.37-

4.25 (m, 2 H), 3.74-3.68 (m, 1 H), 3.32-3.27 (m, 2 H), 2.60-2.38 (m, 3 H), 2.16-2.12 (m, 

1 H), 1.92-1.90 (m, 1 H), 1.77-1.73 (m, 1 H), 1.51-1.47 (m, 1 H), 1.39-1.32 (m, 1 H); 13C 

NMR (CDCl3, 100 MHz): δ 208.4, 174.1, 138.9, 132.5, 128.9, 128.8, 127.3, 118.3, 61.0, 

58.2, 48.1, 43.7, 43.2, 35.0, 26.4, 22.8; HRMS-ESI: calcd. for C18H21NO2 [M+H]+: 

270.1489, found: 270.1493. 

General procedure I: Formation of 3-amido-1-azopropenes from 3-amino-1-

azopropenes 

To a stirred solution of 3.33 (50.0 mg, 0.171 mmol) in CH2Cl2 (1.5 mL) at room 

temperature was added phenylacetic acid (28.3 mg, 0189 mmol), EDCI (31.9 mg, 0.206 

mmol), HOBt (27.8 mg, 0.206 mmol) and Et3N (0.06 ml, 0.429 mmol). The mixture 

stirred for 16 hours at room temperature. At this time DI water (3 mL) was added. The 

aqueous layer was extracted with EtOAc (3 x 20 mL), and the combined organic extracts 

were washed with saturated aqueous NaHCO3 (10 ml) followed by washing with 
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saturated aqueous NaCl, dried (MgSO4), and solvent was evaporated under reduced 

pressure to give dark red-brown oil. Flash chromatography over silica gel using 20:80 

EtOAc-hexanes gave 3-amido-1-azopropenes. 

 

N-benzyl-2-phenyl-N-(3-(phenyldiazenyl)cyclohex-2-en-1-yl)acetamide (3.45). 

3.23 (0.050 g, 0.136 mmol) was treated following general procedure I. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 84%) consisting of 

mixture of rotamers. 1H NMR (CDCl3, 400 MHz): δ 7.73-7.69 (m, 2 H), 7.45-7.18 (m, 

13 H), 6..68 (br. s, 1 H), 5.75 (br. s, 1 H), 4.60 (d, 1 H, J = 17.76 Hz), 4.44 (d, 1 H, J = 

17.76 Hz), 3.62 (d, 1 H, J = 2.86 Hz), 2.60-2.56 (m, 1 H), 2.21-2.08 (m, 2 H), 1.99-1.92 

(m, 1 H), 1.74-1.64 (m, 1 H), 1.53-1.46 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 172.3, 

157.6, 152.6, 140.6, 138.4, 134.9, 130.6, 129.08, 129.05, 128.8, 128.7, 127.5, 127.0, 

125.8, 122.5, 53.1, 48.3, 41.5, 27.6, 22.3, 20.9; HRMS-ESI: m/z calcd. for C27H27N3O 

[M+H]+: 410.2227, found: 410.2235. 

 

N-benzyl-2-(4-chlorophenyl)-N-(3-(phenyldiazenyl)cyclohex-2-en-1-

yl)acetamide (3.46). 3.23 (0.050 g, 0.136 mmol) was treated following general procedure 

I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 95%) major 

rotomer: 1H NMR (CDCl3, 400 MHz): δ 7.74-7.70 (m, 2 H), 7.44-7.37 (m, 4 H), 7.32-

7.24 (m, 6 H), 7.11-7.09 (m, 2 H), 6.68 (br. s, 1 H), 5.74 (br. s, 1 H), 4.60 (d, 1 H, J = 
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17.76 Hz), 4.46 (d, 1 H, J = 17.76 Hz), 3.56 (s, 2 H), 2.61-2.57 (m, 1 H), 2.21-1.97 (m, 2 

H), 1.74-1.48 (m, 3 H); 13C NMR (CDCl3, 100 MHz): δ 171.9, 157.7, 152.6, 140.3, 

138.3, 133.4, 130,6, 130.3, 129.1, 129.0, 128,8, 127.6, 127.3, 125.8, 122.5, 53.2, 48.4, 

40.6, 27.7, 22.3, 20.9; HRMS-ESI: calcd. for C27H26ClN3O [M+H]+: 444.1837, found: 

444.1842. 

 

N-benzyl-2-(4-methoxyphenyl)-N-(3-(phenyldiazenyl)cyclohex-2-en-1-

yl)acetamide (3.47). 3.23 (0.050 g, 0.136 mmol) was treated following general procedure 

I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 92%). 1H 

NMR (CDCl3, 400 MHz): δ 7.75-7.69 (m, 2 H), 7.45-7.37 (m, 4 H), 7.32-7.22 (m, 4 H), 

7.12-7.10 (m, 2 H), 6.91-6.84 (m, 2 H), 6.68 (br. s, 1 H), 5.76-5.73 (m, 1 H), 4.60 (d, 1 H, 

J = 18.32 Hz), 4.43 (d, 1 H, J = 18.32 Hz), 3.80 (s, 3 H), 3.54 (s, 2 H), 2.60-2.55 (m, 1 

H), 2.20-1.96 (m, 3 H), 1.73-1.69 (m, 1 H), 1.53-1.47 (m, 1 H); 13C NMR (CDCl3, 100 

MHz): δ 172.7, 158.6, 157.6, 152.6, 140.7, 138.5, 130.6, 129.8, 129.1, 129.0, 127.5, 

125.8, 122.5, 114.2, 55.4, 53.1, 48.3, 40.6, 27.6, 22.3, 20.9; HRMS-ESI: m/z calcd. for 

C28H29N3O2 [M+H]+: 440.2333, found: 440.2342. 

 

N-benzyl-2-(naphthalen-2-yl)-N-(3-(phenyldiazenyl)cyclohex-2-en-1-

yl)acetamide (3.48). 3.23 (0.050 g, 0.136 mmol) was treated following general procedure 

I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 85%). 1H 
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NMR (CDCl3, 400 MHz): δ 7.85-7.76 (m, 3 H), 7.70-7.68 (m, 2 H), 7.58 (br. s, 1 H), 

7.47-7.24 (m, 11 H), 6.69 (s, 1 H), 5.78 (br. s, 1 H), 4.63 (d, 1 H, J = 17.76 Hz), 4.46 (d, 

1 H, J = 18.33 Hz), 4.10 (s, 1 H), 3.78 (d, 2 H, J = 1.15 Hz), 2.59-2.53 (m, 1 H), 2.18-

2.10 (m, 2 H), 1.99-1.97 (m, 1 H), 1.75-1.71 (m, 1 H), 1.53-1.46 (m, 1 H); 13C NMR 

(CDCl3, 100 MHz): δ 172.3, 157.6, 152.6, 140.5, 132.5, 130.6, 129.09, 129.06, 128.5, 

127.7, 127.5, 127.3, 127.1, 126.2, 125.9, 125.8, 122.6, 53.2, 48.4, 41.727.7, 22.3, 20.9; 

HRMS-ESI: m/z calcd. for C31H29N3O [M+H]+: 460.2392, found: 460.2383. 

 

Methyl 3-(benzyl(3-(phenyldiazenyl)cyclohex-2-en-1-yl)amino)-3-

oxopropanoate (3.49). 3.23 (0.050 g, 0.136 mmol) was treated following general 

procedure I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 

77%). 1H NMR (CDCl3, 400 MHz): δ 7.76-7.70 (m, 2 H), 7.44-7.35 (m, 4 H), 7.29-7.23 

(m, 4 H), 6.74 (br. s, 1 H), 5.73-5.70 (m, 1 H), 4.64 (d, 1 H, J = 17.86 Hz), 4.52 (d, 1 H, J 

= 18.32 Hz), 3.73 (s, 3 H), 3.40-3.31 (m, 2 H), 2.62-2.56 (m, 1 H), 2.23-1.99 (m, 3 H), 

1.71-1.51 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 186.1, 167.6, 157.8, 152.6, 152.5, 

139.9, 137.6, 130.6, 129.1, 129.0, 125.8, 122.6, 53.3, 52.6, 48.7, 41.7, 27.6, 22.3, 20.8; 

HRMS-ESI: m/z calcd. for C23H25N3O3 [M+H]+: 392.1964, found: 392.69. 

 

N-benzyl-N-(3-(phenyldiazenyl)cyclohex-2-en-1-yl)-2-(thiophen-2-

yl)acetamide (3.50). 3.23 (0.050 g, 0.136 mmol) was treated following general procedure 
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I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 89%). 1H 

NMR (CDCl3, 400 MHz): δ 7.72-7.70 (m, 2 H), 7.45-7.37 (m, 5 H), 7.26-7.21 (m, 5 H), 

6.95-6.93 (m, 1 H), 6.80-6.79 (m, 1 H), 6.70 (br. s, 1 H), 5.76 (br. s, 1 H), 4.66 (d, 1 H, J 

= 17.76 Hz), 4.51 (d, 1 H, J = 17.76 Hz), 3.78 (s, 2 H), 2.61-2.57 (m, 1 H), 2.20-2.09 (m, 

2 H), 1.98-1.97 (m, 1 H), 1.80-1.45 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 171.3, 

157.7, 152.6, 140.2, 138.2, 136.4, 130.6, 129.1, 129.0, 127.5, 126.8, 126.0, 125.8, 125.1, 

122.6, 53.2, 48.4, 35.9, 27.6, 22.3, 20.9; HRMS-ESI: m/z calcd. for C25H25N3OS 

[M+H]+: 416.1791, found: 416.1798. 

 

 

N-allyl-N-(2-methyl-3-(phenyldiazenyl)cyclohex-2-en-1-yl)-2-

phenylacetamide (3.51). 3.26 (0.050 g, 0.136 mmol) was treated following general 

procedure I. Flash chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 

76%). 1H NMR (CDCl3, 400 MHz): δ 7.76-7.72 (m, 2 H), 7.47-7.24 (m, 8 H), 5.90-5.85 

(m, 1 H), 5.30-5.25 (m, 2 H), 4.00-3.88 (m, 1 H), 3.77 (s, 2 H), 3.59-3.55 (m, 1 H), 2.61-

2.58 (m, 1 H), 2.22-2.18 (m, 1 H), 2.06-1.98 (m, 5 H), 1.65-1.61 (m, 3H); 13C NMR 

(CDCl3, 100 MHz): δ 172.4, 153.2, 145.8, 135.3, 135.1, 130.4, 130.2, 129.1, 129.0, 

128.7, 127.0, 122.6, 116.8, 60.6, 42.3, 41.4, 27.9, 23.3, 20.8, 14.3; HRMS-ESI: m/z 

calcd. for C24H27N3O [M+H]+: 374.2228, found: 374.2227. 
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N-benzyl-2-phenyl-N-(3-(phenyldiazenyl)cyclopent-2-en-1-yl)acetamide 

(3.52). 3.28 (0.050 g, 0.136 mmol) was treated following general procedure I. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 69%). 1H NMR 

(CDCl3, 400 MHz): δ 7.78-7.76 (m, 1 H), 7.63-7.57 (m, 2 H), 7.50-7.46 (m, 1 H), 7.41-

7.33 (m, 4 H), 7.29-7.27 (m, 1 H), 7.11 (d, 1 H, J = 0.92), 4.03-3.99 (d, 2 H, J = 4.58), 

3.67-3.63 (m, 1 H), 2.51-2.46 (m, 1 H), 2.36-2.34 (m, 1 H), 2.09-1.94 (m, 2 H), 1.07-1.53 

(m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 172.2, 171.3, 161.7, 160.9, 152.9, 152.8, 

138.8, 131.1, 129.2, 129.1, 129.0, 128.9, 128.8, 128.5, 127.6, 127.4, 127.0, 125.8, 122.9, 

122.8, 63.3, 60.2, 47.9, 46.2, 42.0, 41.4, 28.5, 28.2, 27.0, 26.9; HRMS m/z calcd. for 

C26H25N3O [M+H]+: 396.2070, found: 396.2065. 

 

N-benzyl-2-phenyl-N-(3-(phenyldiazenyl)cyclohept-2-en-1-yl)acetamide 

(5.53).  3.30 (0.050 g, 0.136 mmol) was treated following general procedure I. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a brown oil (59.0 mg, 75%). 1H NMR 

(CDCl3, 400 MHz): δ 7.73-7.69 (m, 3 H), 7.47-7.20 (m, 12 H), 6.87 (d, 2 H, J = 3.44 Hz), 

5.53 (br. s, 1 H), 4.63 (dd, 2 H, J = 17.76 Hz, J = 38.95 Hz), 3.65 (s, 2 H), 3.21-3.16 (m, 

1 H), 2.30-2.25 (m, 1 H), 1.89-1.82 (m, 3 H), 1.77-1.71 (m, 2 H), 1.39-1.24 (m, 2 H); 13C 

NMR (CDCl3, 100 MHz): δ 171.8, 159.3, 146.9, 134.9, 130.3, 129.1, 129.0, 128.9, 

N

N
Bn

O

PhN

N

N
Bn

O

PhN



 

 
122 

128.86, 128.81, 128.5, 127.5, 127.0, 126.1, 122.6, 49.4, 42.4, 41.5, 32.6, 28.5, 24.9, 23.8; 

HRMS-ESI: calcd. for C28H29N3O [M+H]+: 424.2383, found: 424.2388. 

General procedure J: Syn-selective formation of β,γ-fused bicyclic γ-lactam 

hydrazones and hydrolysis to syn-β,γ-fused bicyclic γ-lactam ketone from 3-amido-1-

azopropenes 

To a stirred solution of 3.44 (59 mg, 0.144 mmol) in THF (1.4 mL) at – 78 o C 

was added 1.0 M KHMDS (0.16 ml, 0.158 mmol), stirred for 30 min at – 78 oC, then 

continued to stir in ice-bath for 1.5 hour.  At this time saturated aqueous NH4Cl/10% 

NH4OH (3 mL) was added and the mixture was warmed to room temperature. The 

aqueous layer was extracted with EtOAc (3 x 20 mL), and the combined organic extracts 

were washed with saturated aqueous NaCl, dried (MgSO4), and evaporated under reduced 

pressure to give brown oil. The resulting brown oil was dissolved in acetone/water 7:1 

(1.4 mL) at room temperature and added TsOH H2O (82.2 mg, 0.432 mmol). Reaction 

completion was monitored by TLC (usually done within 24 hours). At this time reaction 

mixture was diluted with EtOAc (20 ml) and washed with saturated aqueous NaHCO3, 

saturated aqueous NaCl, dried over (MgSO4), and solvent was evaporated under reduced 

pressure to give brown oil. Flash chromatography over silica gel using 20:80 EtOAc-

hexanes gave syn-β,γ-fused bicyclic γ-lactam ketone. 

 

(3S,3aS,7aS)-1-benzyl-3-phenylhexahydro-1H-indole-2,4-dione (3.57). 3.45 

(0.050 g, 0.136 mmol) was treated following general procedure J. Flash chromatography 
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(20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 79%). 1H NMR (CDCl3, 400 

MHz): δ 7.34-7.16 (m, 10 H), 5.05 (d, 1 H, J = 14.89 Hz), 4.20 (d, 1 H, J = 6.30 Hz), 

4.04-3.96 (m, 2 H), 2.97 (t, 1 H, J = 7.45 Hz), 2.47-2.45 (m, 1 H), 2.40-2.38 (m, 1 H), 

2.06-2.03 (m, 1 H), 1.83-1.79 (m, 1 H), 1.70-1.66 (m, 2 H); 13C NMR (CDCl3, 100 

MHz): δ 207.9, 173.7, 138.0, 136.2, 128.98, 128.95, 128.3, 128.1, 127.9, 127.5, 56.6, 

53.9, 49.1, 44.7, 39.2, 26.9, 19.4; HRMS-ESI: calcd. for C21H21NO2 [M+H]+: 320.1654, 

found: 320.1651. 

 

(3R,3aS,7aS)-1-benzyl-3-(4-chlorophenyl)hexahydro-1H-indole-2,4-dione 

(3.60). 3.46 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 70%). 1H NMR 

(CDCl3, 400 MHz): δ 7.36-7.25 (m, 7 H), 7.12-7.11 (m, 2 H), 5.06 (d, 1 H, J = 14.89 Hz), 

4.14 (d, 1 H, J = 6.87 Hz), 4.03 (d, 1 H, J = 14.89 Hz), 3.96-3.94 (m, 1 H), 2.95 (t, 1 H, J 

= 7.45 Hz), 2.48-2.42 (m, 2 H), 2.11-2.05 (m, 1 H), 1.90-1.84 (m, 1 H), 1.70-1.62 (m, 2 

H); 13C NMR (CDCl3, 100 MHz): δ 207.8, 173.1, 136.5, 136.1, 133.4, 129.6, 129.1, 

129.0, 128.3, 128.1, 56.6, 53.7, 48.6, 44.8, 39.1, 27.0, 19.4; HRMS-ESI: calcd. for 

C21H20ClNO2 [M+Na]+: 376.1075, found: 376.1075. 
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(3R,3aS,7aS)-1-benzyl-3-(4-methoxyphenyl)hexahydro-1H-indole-2,4-dione 

(3.59). 3.47 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 66%). 1H NMR 

(CDCl3, 400 MHz): δ 7.36-7.25 (m, 5 H), 7.10-7.08 (m, 2 H), 6.86-6.84 (m, 2 H), 5.07 (d, 

1 H, J = 14.89 Hz), 4.10 (d, 1 H, J = 6.87 Hz), 4.03 (d, 1 H, J = 14.89 Hz), 3.95-3.93 (m, 

1 H), 3.78 (s, 3 H), 2.96 (t, 1 H, J = 7.45 Hz), 2.49-2.41 (m, 2 H), 2.07-2.02 (m, 1 H), 

1.87- 1.83 (m, 1 H), 1.70-1.66 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 208.1, 173.8, 

158.9, 136.3, 129.9, 129.2, 128.9, 128.3, 128.0, 114.4, 56.5, 55.4, 54.2, 48.6, 44.8, 39.1, 

27.0, 19.5; HRMS-ESI: calcd. for C22H23NO3 [M+Na]+: 372.1570, found: 372.1574. 

 

(3R,3aS,7aS)-1-benzyl-3-(naphthalen-2-yl)hexahydro-1H-indole-2,4-dione 

(3.58). 3.48 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 74%). 1H NMR 

(CDCl3, 400 MHz): δ 7.81-7.78 (m, 2 H), 7.72-7.71 (m, 1 H), 7.59 (s, 1 H), 7.45-7.43 (m, 

2 H), 7.43-7.28 (m, 6 H), 5.13 (d, 1 H, J = 14.89 Hz), 4.39 (d, 1 H, J = 6.30 Hz), 4.06-

4.04 (m, 2 H), 3.05 (t, 1 H, J = 6.87 Hz), 2.56-2.50 (m, 1 H), 2.43-2.38 (m, 1 H), 2.08-

2.04 (m, 1 H), 1.87-1.75 (m, 3 H); 13C NMR (CDCl3, 100 MHz): δ 207.9, 173.9, 136.3, 

135.5, 133.5, 132.7, 129.0, 128.9, 128.5, 128.0, 127.9, 127.7, 126.9, 126.3, 126.0, 56.6, 

53.9, 49.5, 44.7, 39.4; HRMS-ESI: calcd. for C25H23NO2 [M+H]+: 370.1802, found: 

370.1830. 
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(3S,3aS,7aS)-1-benzyl-3-(thiophen-2-yl)hexahydro-1H-indole-2,4-dione 

(3.61).  3.50 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 81%). 1H NMR 

(CDCl3, 400 MHz): δ 7.34-7.28 (m, 3 H), 7.24-7.22 (m, 3 H), 6.98-6.94 (m, 2 H), 5.07-

5.03 (d, 1 H, J = 15.11), 4.54-4.53 (d, 1 H, J = 5.04), 4.08-4.06 (q, 1 H, J = 5.50), 4.00-

3.96 (d, 1 H, J = 15.11), 3.08-3.05 (t, 1 H, J = 6.41), 2.55-2.49 (m, 1 H), 2.45-2.37 (m, 3 

H), 2.06-1.98 (m, 1 H), 1.82-1.76 (m, 3 H); 13C NMR (CDCl3, 100 MHz): δ 207.4, 173.0, 

139.7, 135.9, 128.9, 128.2, 128.0, 127.0, 125.9, 125.0, 56.7, 53.8, 51.3, 44.6, 44.4, 39.6, 

26.6, 19.5; HRMS-ESI: calcd. for C19H19NO2S [M+Na]+: 348.1029, found: 348.1029. 

 

(3S,3aS,7aS)-methyl 1-benzyl-2,4-dioxooctahydro-1H-indole-3-carboxylate 

(3.62). 3.49 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 74%). 1H NMR 

(CDCl3, 400 MHz): δ 7.33-7.27 (m, 3 H), 7.21-7.20 (m, 2 H), 4.97 (d, 1 H, J = 14.89 Hz), 

4.14-4.10 (m, 2 H), 3.97 (d, 1 H), 3.79 (s, 3 H), 3.28-3.26 (m, 1 H), 2.47-2.39 (m, 2 H), 

1.97-1.96 (m, 1 H), 1.80-1.77 (m, 1 H), 1.72-1.66 (m, 2 H); 13C NMR (CDCl3, 100 

MHz): δ 207.0, 169.7, 169.4, 135.5, 128.9, 128.0, 127.9, 57.1, 53.1, 49.2, 48.6, 44.7, 

39.6, 26.4, 19.0; HRMS-ESI: calcd. for C17H19NO4 [M+Na]+: 324.1206, found: 

324.1208. 
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(3S,3aS,7aS)-1-allyl-3a-methyl-3-phenylhexahydro-1H-indole-2,4-dione 

(3.65).  3.51 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 61%). 1H NMR 

(CDCl3, 400 MHz): δ 7.29-7.24 (m, 3 H), 7.04-7.02 (m, 2 H), 5.86-5.82 (m, 1 H), 5.35-

5.5.28 (m, 2 H), 4.60-4.56 (m, 1 H), 4.32 (s, 1 H), 3.77 (t, 1 H, J = 4.58 Hz), 3.49-3.45 

(m, 1 H), 2.54 (t, 2 H, J = 5.73 Hz), 2.05-2.00 (m, 2 H), 1.86-1.82 (m, 2 H), 0.82 (s, 3 H); 

13C NMR (CDCl3, 100 MHz): δ 210.9, 174.6, 135.0, 132.4, 129.6, 128.6, 127.5, 119.4, 

62.9, 53.7, 53.2, 43.4, 38.1, 24.4, 19.8, 19.2; HRMS-ESI: calcd. for C18H21NO2 [M+H]+: 

284.1689, found: 284.1678. 

 

(3R,3aS,6aS)-1-benzyl-3-phenylhexahydrocyclopenta[b]pyrrole-2,4-dione 

(3.63). 3.52 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 73%). 1H NMR 

(CDCl3, 400 MHz): δ 7.37-7.23 (m, 8 H), 7.18-7.16 (m, 2 H), 5.00-4.97 (d, 1 H), 4.36-

4.33 (t, 1 H), 4.21-4.18 (d, 1 H), 3.88-3.86 (m, 1 H), 2.82-2.80 (m, 1 H), 2.39-2.17 (m, 3 

H), 2.04-1.94 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 217.0, 174.2, 138.9, 136.1, 

129.1, 129.0, 128.4, 128.1, 127.5, 127.4, 59.0, 53.3, 51.3, 44.8, 34.4, 24.1; HRMS-ESI: 

calcd. for C20H19NO2 [M+H]+:328.1308, found: 328.1307. 
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(3R,3aS,8aS)-1-benzyl-3-phenyloctahydrocyclohepta[b]pyrrole-2,4-dione 

(3.64). 3.53 (0.050 g, 0.136 mmol) was treated following general procedure J. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a a yellow oil (36.4 mg, 79%). dr. 1:1 1H 

NMR (CDCl3, 400 MHz): δ 7.39-7.24 (m, 10 H), 5.20 (d, 1 H, J = 14.89 Hz), 4.33-4.22 

(m, 2 H), 3.80-3.76 (m, 1 H), 3.47 (t, 1 H, J = 9.16 Hz), 2.55-2.42 (m, 2 H), 2.13-2.09 (m, 

1 H), 1.90-1.86 (m, 2 H), 1.53-1.19 (m, 3 H).  13C NMR (CDCl3, 100 MHz): δ 208.4, 

174.5, 139.6, 136.4, 129.1, 128.9, 128.8, 128.2, 127.7, 127.3, 60.9, 57.9, 48.3, 44.8, 43.2, 

35.1, 26.6, 22.7; HRMS-ESI: calcd. for C22H23NO2 [M+Na]+: 356.1621, found: 

356.1628. 

 

(3'R,3a'S,7a'S)-1'-benzyl-3'-phenylhexahydrospiro[[1,3]dioxolane-2,4'-indol]-

2'(1'H)-one (3.101). To a stirred solution of 3.66 (87.8 mg, 0.275 mmol) in Toluene (4 

mL) at room temperature was added ethylene glycol (0.15 ml, 2.749 mmol) and TsOH 

H2O (156.9 mg, 0.825 mmol). The mixture was stirred for 24 hours. At this time reaction 

mixture was diluted with EtOAc (20 ml) and washed with saturated aqueous NaHCO3, 

saturated aqueous NaCl, dried over MgSO4, and evaporated under reduced pressure to 

give yellow oil. Flash chromatography over silica gel using 40:60 EtOAc-hexanes gave 

3.101 as off-white solid (93.9 mg, 94%) consisting of  >25:1 dr. 1H NMR (CDCl3, 400 
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MHz): δ 7.37-7.21 (m, 10 H), 5.07 (d, 1 H, J = 15.11 Hz), 4.01 (d, 1 H, J = 14.65 Hz), 

3.80 (m, 2 H), 3.69-3.57 (m, 3 H), 3.17 (q, 1 H, J = 6.87 Hz, J = 7.79 Hz), 2.62-2.58 (m, 

1 H), 2.01-1.95 (m, 1 H), 1.85-1.78 (m, 1 H), 1.70-1.57 (m, 2 H), 1.51-1.42 (m, 1 H), 

1.37-1.24 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 174.5, 139.7, 136.8, 128.9, 128.8, 

128.5, 128.3, 127.7, 126.8, 109.3, 64.6, 64.2, 54.9, 50.2, 49.3, 44.8, 32.1, 27.2, 19.1; 

HRMS-ESI: calcd. for C23H25NO3 [M+H]+: 364.1907, found: 364.1915. 

 

(3'R,3a'S,7a'S)-1'-benzyl-3'-phenyloctahydrospiro[[1,3]dioxolane-2,4'-indole] 

(3.104). To a stirred solution of 3.101 (33.5 mg, 0.092 mmol) in THF (2 mL) in ice-bath 

was added LAH (3.5 mg, 0.246 mmol) in small portions. The mixture continued to stir in 

ice-bath for 5 min then heat to reflux for 80 min. At this time saturated aqueous NH4Cl (3 

mL) was added and the mixture was warmed to room temperature. The aqueous layer 

was extracted with EtOAc (3 x 20 mL), and the combined organic extracts were washed 

with saturated aqueous NaCl, dried (MgSO4), and evaporated under reduced pressure to 

give brown oil. Flash chromatography over silica gel using 40:60 EtOAc-hexanes gave 

3.104 as off-white solid (17.5 mg, 54%) consisting of  >25:1 dr. 1H NMR (CDCl3, 400 

MHz): δ 7.39-7.32 (m, 2 H), 7.32-7.21 (m, 7 H), 7.15-7.13 (m, 1 H), 3.81-3.63 (m, 5 H), 

3.27-3.15 (m, 4 H), 2.72-2.69 (m, 1 H), 2.62-2.59 (m, 1 H), 1.90-1.67 (m, 3 H), 1.58-1.46 

(m, 3 H); 13C NMR (CDCl3, 100 MHz): δ 146.9, 139.6, 128.7, 128.3, 128.2, 127.9, 

126.8, 125.7, 110.9, 64.3, 64.1, 62.6, 60.5, 56.1, 54.5, 44.9, 31.6, 21.7, 19.7; HRMS-

ESI: calcd. for C23H27NO2 [M+H]+: 350.2119, found: 350.2115. 
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(3R,3aS,7aS)-1-benzyl-3-phenylhexahydro-1H-indol-4(2H)-one (3.105). To a 

stirred solution of 3.104 (30.2 mg, 0.086 mmol) in CH2Cl2 (1.5 mL) at room temperature 

was added FeCl3 6H2O (81.7 mg, 0.302 mmol). The mixture refluxed for 1 hour. At this 

time mixture was warmed to room temperature and DI water (3 mL) was added. The 

aqueous layer was extracted with EtOAc (3 x 20 mL), and the combined organic extracts 

were washed with saturated aqueous NaCl, dried (MgSO4), and evaporated under reduced 

pressure to give yellow oil. Flash chromatography over silica gel using 10:90 EtOAc-

hexanes gave 3.105 as a colorless oil (17.9 mg, 68%) consisting of  >25:1 dr. 1H NMR 

(CDCl3, 400 MHz): δ 7.30-7.15 (m, 10 H), 4.05 (d, 1 H, J = 12.82 Hz), 3.88-3,83 (m, 1 

H), 3.29 (t, 1 H, J = 8.70 Hz), 3.23-3.17 (m, 2 H), 2.80-2.78 (m, 1 H), 2.54-2.47 (m, 1 H), 

2.38-2.30 (m, 1 H), 2.25 (t, 1 H, J = 9.16 Hz), 2.11-1.94 (m, 3 H), 1.84-1.80 (m, 1 H); 

13C NMR (CDCl3, 100 MHz): δ 211.2, 144.2, 138.9, 128.7, 128.6, 128.3, 127.7, 127.1, 

126.4, 65.4, 61.1, 59.5, 57.4, 41.9, 40.8, 26.5, 20.2; HRMS-ESI: calcd. for C21H23NO 

[M+H]+: 306.1858, found: 306.1852. 

 

(3'S,3a'S,7a'S)-3'-allyl-1'-benzyl-3'-phenylhexahydrospiro[[1,3]dioxolane-

2,4'-indol]-2'(1'H)-one (3.102). n-BuLi (2.5 M, 0.099 mmol) was added to a solution of 

i-Pr2NH (0.015 ml, 0.107 mmol) in THF (0.3 ml) at – 78 oC. Stirred at – 78 oC for 5 min 
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then at 0 oC for 30 min. At this time cooled back to – 78 oC and solution of 3.101 (30 mg, 

0.082 mmol) in THF (0.6 ml) was added dropwise over 2 min. Reaction mixture was 

stirred for 10 min at – 78 oC, then at 0 oC for 30 min.  At this time cooled back to – 78 oC 

and solution of allyl bromide (0.021 ml, 0.248 mmol) in THF (0.3 ml) was added 

dropwise. Reaction mixture was stirred at – 78 oC for 1 h then at 0 oC for 1 hour. At this 

time reaction mixture was quenched with sat. NH4Cl (2 ml), diluted with EtOAc (20 ml) 

and washed saturated aqueous NaCl, dried over MgSO4, and evaporated under reduced 

pressure to give yellow oil. Flash chromatography over silica gel using 30:70 EtOAc-

hexanes gave 3.102 as off-white solid (22.7 mg, 68%) consisting of  >18:1 dr. 1H NMR 

(CDCl3, 400 MHz): δ 7.52-7.51 (m, 2 H), 7.36-7.20 (M, 8 H), 5.86-5.81 (m, 1 H), 5.25-

5.16 (m, 3 H), 4.12 (d, 1 H, J = 14.89 Hz), 4.09-4.06 (m, 1 H), 3.97-3.94 (m, 1 H), 3.86-

3.84 (m, 1 H), 3.83-3.75 (m, 1 H), 3.43-3.39 (m, 1 H), 3.05-3.00 (m, 1 H), 2.91-2.87 (m, 

1 H), 2.66-2.64 (m, 1 H), 1.79-1.72 (m, 1 H), 1.33-1.12 (m, 5 H); 13C NMR (CDCl3, 100 

MHz): δ 175.5, 141.5, 136.8, 135.8, 129.9, 128.8, 128.3, 127.8, 127.7, 126.9, 119.1, 

110.3, 65.5, 63.6, 55.8, 55.5, 48.3, 44.8, 43.1, 32.0, 26.9, 19.9; HRMS-ESI: calcd. for 

C26H29NO3 [M+Na]+: 426.2040, found: 426.2043. 

 

(3S,3aS,7aS)-3-allyl-1-benzyl-3-phenylhexahydro-1H-indole-2,4-dione 

(3.103). The procedure is the same as for compound 3.105. Flash chromatography over 

silica gel using 20:80 EtOAc-hexanes gave 3.103 as colorless oil. (Yield: 89%) consisting 

of  >25:1 dr. 1H NMR (CDCl3, 400 MHz): δ 7.36-7.16 (m, 10 H), 5.87-5.81 (m, 1 H), 

5.37-5.26 (m, 3 H), 4.15 (d, 1 H, J = 15.11 Hz), 3.57-3.50 (m, 1 H), 3.23 (d, 1 H, J = 8.70 
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Hz), 2.96-2.86 (m, 2 H), 2.09-2.00 (m, 2 H), 1.65-1.61 (m, 1 H), 1.32-1.22 (m, 2 H), 

0.92-0.84 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 210.3, 173.8, 140.1, 136.2, 133.9, 

128.9, 128.7, 128.2, 127.9, 127.5, 121.2, 56.9, 56.5, 52.3, 44.9, 41.9, 41.1, 27.4, 19.8; 

HRMS-ESI: calcd. for C24H25NO2 [M+H]+: 360.1958, found: 360.1962. 

 

rel-(1S,2S,E)-N-benzyl-2-(phenylthio)-3-(2-(2-

(trifluoromethyl)phenyl)hydrazono) cyclohexanamine (3.108). To a stirred solution of 

3.80 (35 mg, 0.0974 mmol) in CH2Cl2 (1.5 ml) was added PhSH (0.022 ml, 0.2142 

mmol). Reaction mixture was cooled in ice-bath followed by a dropwise addition of 

diisopropyl amine (0.027 ml, 0.1948 mmol). Reaction mixture was stitrred for 1 h. At this 

time saturated aqueous NH4Cl/10% NH4OH (2 mL) was added and the mixture was 

warmed to room temperature. After 3 min, the aqueous layer was extracted with EtOAc 

(3 x 20 mL), and the combined organic extracts were washed with saturated aqueous 

NaCl, dried (MgSO4), and evaporated under reduced pressure to give brown oil. Flash 

chromatography over silica gel using 10:90 EtOAc-hexanes gave 3.108 as yellow solid 

(27.7 mg, 61%). 1H NMR (CDCl3, 400 MHz): δ 7.64  (br. s, 1 H), 7.52-7.50 (m, 2 H), 

7.44-7.19 (m, 10 H), 6.86-6.83 (m, 1 H), 4.43 (d, 1 H, J = 4.12), 3.92 (d, 1 H, J = 12.82), 

3.74 (d, 1 H, J = 12.82), 3.11-3.07 (m, 1 H), 2.48-2.44 (m, 2 H), 2.02-1.97 (m, 1 H), 1.91-

1.87 (m, 1 H), 1.78-1.68 (m, 1 H), 1.52-1.44 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 

149.4, 142.7, 139.9, 134.7, 133.1, 132.5, 128.9, 128.5, 128.3, 127.2, 127.1, 126.1, 126.0, 
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118.7, 114.6, 58.7, 58.5, 50.3, 29.0, 22.6, 21.3; HRMS m/z calcd. for C26H26F3N3S 

[M+Na]+: 492.1692, found: 492.1694. 

 

4-methyl-N-((1S,2S,E)-3-(2-(3-nitrophenyl)hydrazono)-2-vinylcyclohexyl) 

benzenesulfonamide (3.109).  To a stirred solution of 3.81 (50.0 mg, 0.12 mmol) in THF 

(1.2 mL) at –78 °C was added vinylMgCl (0.23 mL of a 1.6 M solution in THF, 0.37 

mmol).  The resulting mixture was stirred for 2 h at –78 °C.  At this time saturated 

aqueous NH4Cl/10% NH4OH (2 mL) was added and the mixture was warmed (rt water 

bath).  After 3 min, the aqueous layer was extracted with EtOAc (3 x 20 mL), and the 

combined organic extracts were washed with saturated aqueous NaCl, dried (MgSO4), 

and evaporated under reduced pressure to give brown solid.  Flash chromatography over 

silica gel using 40:60 EtOAc-hexanes gave 3.109 as a yellow solid (84.9 mg, 61%) 

consisting of a >25:1 mixture of syn and anti diastereomers. 1H NMR (CDCl3, 400 

MHz): δ 7.80 (s, 1 H), 7.75-7.73 (m, 2 H), 7.62-7.76 (m, 2 H), 7.42 (br. s, 1 H), 7.33-7.30 

(m, 3 H), 7.23-7.21 (m, 1 H), 5.93-5.86 (m, 1 H), 5.14-5.12 (d, 1 H, J = 10.31), 5.00-4.97 

(d, 1 H, J = 17.18), 4.76-4.75 (d, 1 H, J = 8.02), 3.54-3.50 (m, 1 H), 3.04-3.02 (m, 1 H), 

2.44 (s, 3 H), 2.42-2.36 (m, 1 H), 2.18-2.13 (m, 1 H), 1.89-1.77 (m, 2 H), 1.70-1.65 (m, 1 

H), 1.51-1.49 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 149.4, 149.0, 146.4, 143.8, 

137.7, 132.5, 129.9, 129.8, 127.1, 120.2, 118.6, 114.3, 107.4, 55.2, 53.3, 29.8, 22.6, 22.0, 

21.6; HRMS m/z calcd. for C21H24N4O4S [M+H]+: 429.1518, found: 429.1514. 
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rel-(3aS,7aS,E)-3-benzyl-7-(2-(2-

(trifluoromethyl)phenyl)hydrazono)hexahydrobenzo[d]thiazole-2(3H)-thione 

(3.110). To a stirred solution of 3.80 (35 mg, 0.0974 mmol) in CH2Cl2 (1.5 ml) was 

added PhSH (0.022 ml, 0.2142 mmol). Reaction mixture was cooled in ice-bath followed 

by a dropwise addition of diisopropyl amine (0.027 ml, 0.1948 mmol). Reaction mixture 

was stirred for 1 h. At this time saturated aqueous NH4Cl/10% NH4OH (2 mL) was added 

and the mixture was warmed to room temperature. After 2 min, the aqueous layer was 

extracted with EtOAc (3 x 20 mL), and the combined organic extracts were washed with 

saturated aqueous NaCl, dried (MgSO4), and evaporated under reduced pressure to give 

brown oil. Flash chromatography over silica gel using 10:90 EtOAc-hexanes gave 3.110 

as yellow solid (27.7 mg, 61%). 1H NMR (CDCl3, 400 MHz): δ 7.80 (br. s, 1 H), 7.60-

7.57 (m, 1 H), 7.46-7.33 (m, 7 H), 6.92-6.88 (m, 1 H), 5.81 (d, 1 H, J = 15.11), 4.90 (d, 1 

H, J = 7.79), 4.24 (d, 1 H, J = 14.65), 4.18-4.14 (m, 1 H), 2.59-2.53 (m, 1 H), 2.34-2.26 

(m, 1 H), 2.08-1.88 (s, 3 H), 1.45-1.39 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 196.3, 

141.8, 141.4, 135.5, 133.3, 129.1, 128.4, 128.0, 126.2, 126.1, 119.6, 114.5, 112.7, 65.9, 

50.9, 50.7, 24.8, 22.1, 19.4; HRMS m/z calcd. for C21H20F3N3S2 [M+H]+: 436.1124, 

found: 436.1135. 
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2,5-diphenyl-2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline 

(3.111). To a scintillated vial added 2.52 (63.0 mg, 0.261 mmol), benzyne precursor 

(116.8 mg, 0.392 mmol) and CH3CN/Toluene (0.6ml, 1:1). After quick addition of CsF 

(237.9 mg, 1.566 mmol) all at once, the vial was capped and stirred for 1.5 h at 115 oC. 

At this time reaction was stopped and solvent was removed under the vacuum. Flash 

chromatography over silica gel using 0:100 to 5:95 EtOAc-hexanes gave 2.94 as a off 

yellow solid (82.9 mg, 70%). 1H NMR (CDCl3, 400 MHz): δ 7.31-7.26 (m, 4 H), 7.21-

7.19 (m, 2 H), 6.87-6.84 (m, 1 H), 6.77-6.74 (m, 1 H), 6.69-6.68 (m, 1 H), 3.84-3.81 (m, 

3 H), 3.68-3.63 (m, 1 H), 3.00-2.97 (m, 1 H), 2.72-2.68 (m, 1 H), 2.60-2.34 (m, 3 H), 

1.99-1.97 (m, 1 H), 1.74-1.69 (m, 1 H), 1.18-1.14 (m, 1 H); 13C NMR (CDCl3, 100 

MHz): δ 151.2, 148.2, 148.0, 129.5, 129.1, 119.1, 116.7, 112.6, 112.0, 58.6, 52.1, 50.0, 

42.8, 36.5, 28.5, 27.5, 20.0; HRMS m/z calcd. for C21H23N3 [M+H]+: 318.1868, found: 

318.1965. 
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1.7.3 Synthesis of hydroxy azoalkenes 

General procedure K: Formation of HAP from α-epoxy ketones 

To a stirred solution of α-epoxy ketone (1.2 equiv) in Et2O (1.0 M) at rt was 

added phenyl hydrazine (1.0 equiv). The reaction was stirred 14 h and concentrated in 

vacuo. Flash chromatography over silica gel gave the desired HAPs. 

 

General procedure L: Formation of HAP from α-epoxy ketones 

To a stirred solution of α-epoxy ketone (1.2 equiv) in THF (1.0 M) at rt was 

added aryl hydrazine (1.2 equiv), followed by i-Pr2NEt (1.2 equiv). The reaction was 

stirred 14 h and poured into a separatory funnel. The reaction was then partitioned 

between EtOAc (20 mL) and H2O (5 mL). The organic phase was washed with sat. NaCl 

(10 mL), dried over MgSO4, filtered and concentrated in vacuo. Flash chromatography 

over silica gel gave the desired HAPs. 

 

General procedure M: Formation of HAP from α-epoxy ketones 

To a stirred solution of α-epoxy ketone (1.2 equiv) in THF (1.0 M) at rt was 

added aryl hydrazine (1.2 equiv). The reaction was stirred 14 h and cooled to 0 °C (ice-

bath). 1 M NaOH (7 mL, 1.5 equiv) was added, and the reaction was stirred 10 min. The 

reaction was then poured into a separatory funnel and partitioned between Et2O (20 mL) 

and H2O (5 mL). The organic phase was washed with sat. NaCl (10 mL), dried over 

MgSO4, filtered and concentrated in vacuo. Flash chromatography over silica gel gave 

the desired HAPs. 
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 (E)-3-((2-nitrophenyl)diazenyl)cyclohex-2-enol (2.66). To a solution of 

hydrazone 2.16 (0.045 g, 0.182 mmol) in THF (2 mL) at 0 °C was added 1 M aq. NaOH 

(0.54 mL, 0.546 mmol). The reaction was stirred 10 min and then partitioned between 

Et2O and H2O. The aqueous phase was then extracted with Et2O (3 X 10 mL), and the 

combined organic extracts were washed with sat. aq. NaCl, dried over MgSO4, filtered, 

and concentrated in vacuo to provide an orange solid in quantitative yield. mp 75-77 °C; 

1H NMR (400 MHz, CDCl3): δ 7.83 (dd, J = 7.33 Hz, 0.92 Hz, 1 H), 7.63-7.59 (m, 1 H), 

7.52-7.46 (m, 2 H), 7.01 (d, 0.92 Hz, 1 H), 4.65 (brs, 1 H), 2.40-2.26 (m, 2 H), 2.12-2.02 

(m, 1 H), 1.97-1.82 (m, 2 H), 1.76-1.60 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ 156.7,  

147.3,  145.6, 144.2, 135.1, 130.1, 124.0, 118.3,  66.9, 31.9, 22.4, 18.7;  HRMS-ESI:  

m/z calcd for C12H13N3O3 [M+H]+: 248.1030, found 248.1039.  

 

 

(E)-3-(phenyldiazenyl)cyclohex-2-enol (3.68). 7-oxabicyclo[4.1.0]heptan-2-one 

(0.998 g, 8.90 mmol) was treated following general procedure (K). Flash 

chromatography (20:80 EtOAc-Hexanes) gave an orange solid (1.42 g, 79%). mp 59-61 

°C; 1H NMR (400 MHz, CDCl3): δ 7.77-7.74 (m, 2 H), 7.48-7.39 (m, 3 H), 6.90-6.89 (m, 
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1 H), 4.64 (brs, 1 H), 2.44-2.39 (m, 2 H), 2.10-2.01 (m, 1 H), 1.98-1.90 (m, 1 H), 1.76-

1.66 (m, 3 H); 13C NMR (100 MHz, CDCl3): δ 156.0, 152.6, 140.6, 130.6, 129.0, 122.5, 

68.8, 32.1, 22.6, 18.8;  IR (neat): 3311, 2944, 1638, 1463, 1135, 1058, 1032, 764, 687 

cm-1. HRMS-CI: m/z calcd. for C12H14N2O [M]+: 202.1106, found 202.1101. 

 

(E)-3-((4-nitrophenyl)diazenyl)cyclohex-2-enol (3.69). 7-

oxabicyclo[4.1.0]heptan-2-one (0.250 g, 2.23 mmol) was treated following general 

procedure L. Flash chromatography (35:65 EtOAc-Hexanes) gave a red solid (0.082 g, 

15%). mp 125-127 °C; 1H NMR (500 MHz, CDCl3): δ 8.31 (d, J = 8.59 Hz, 2 H), 7.85 

(d, J = 8.59 Hz, 2 H), 7.05-7.04 (m, 1 H), 4.68 (brs, 1 H), 2.41-2.37 (m, 2 H), 2.11-2.06 

(m, 1 H), 2.00-1.82 (m, 2 H), 1.76-1.60 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ  15.64, 

155.8, 148.8, 144.7, 124.7, 123.2, 66.9, 31.9, 22.5, 18.8; HRMS-ESI: m/z calcd. for 

C12H13N3O3 [M+H]+: 248.1030, found 248.1024. 

 

(E)-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclohex-2-enol (3.70). 7-

oxabicyclo[4.1.0]heptan-2-one (0.544 g, 4.85 mmol) was treated following general 

procedure C. Flash chromatography (20:80 EtOAc-Hexanes) gave a orange solid (1.10 g, 
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84%). mp 99-100 °C; 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 7.79 Hz, 1 H), 7.64-

7.57 (m, 2 H), 7.50 (t, J = 7.33 Hz, 1 H), 7.00-6.99 (m, 1 H), 4.68-4.64 (m, 1 H), 2.42-

2.39 (m, 2 H), 2.10-2.04 (m, 1 H), 1.99-1.91 (m, 1 H), 1.77-1.63 (m, 3 H); 13C NMR 

(100 MHz, CDCl3): δ 156.8, 149.5, 142.9, 132.6, 130.0, 128.2 (q, JC-F = 31 Hz), 126.5 (q, 

JC-F = 5 Hz) 124.0 (q, JC-F = 273 Hz), 116.0, 67.0, 32.0, 22.4, 18.8; 19F NMR (376 MHz, 

CDCl3): δ –58.0 (s, 3 F); HRMS-ESI: m/z calcd. for C13H13F3N2O [M+H]+: 271.1053, 

found 271.1049. 

 

(E)-3-((3-(trifluoromethyl)phenyl)diazenyl)cyclohex-2-enol (3.71). 7-

oxabicyclo[4.1.0]heptan-2-one (0.220 g, 1.96 mmol) was treated following general 

procedure L. Flash chromatography (20:80 EtOAc-Hexanes) gave a orange solid (0.360 

g, 68%). mp 52-54 °C;  1H NMR (500 MHz, CDCl3): δ 8.02 (s, 1 H), 7.93 (d, J = 8.02 

Hz, 1 H), 7.67 (d, J = 7.45 Hz, 1 H), 7.58 (t, J = 8.02 Hz, 1 H), 6.98-6.97 (m, 1 H), 4.68-

4.66 (m, 1 H), 2.41-2.38 (m, 2 H), 2.09-2.04 (m, 1 H), 1.99-1.93 (m, 1 H), 1.76-1.65 (m, 

3 H with apparent doublet at 1.73 ppm (J = 6.87 Hz)); 13C NMR (100 MHz, CDCl3): δ 

155.9, 152.5, 142.6, 131.6 (q, JC-F = 32 Hz), 129.6, 126.8 (q, JC-F = 4 Hz), 125.7, 123.9 

(q, JC-F = 272 Hz), 119.5 (q, JC-F = 4 Hz), 66.8, 32.0, 22.5, 18.8; 19F NMR (376 MHz, 

CDCl3): δ –62.5 (s, 3 F); HRMS-ESI: m/z calcd. for C13H13F3N2O [M+H]+: 271.1053, 

found 271.1063. 
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(E)-3-((4-(trifluoromethyl)phenyl)diazenyl)cyclohex-2-enol (3.72). 7-

oxabicyclo[4.1.0]heptan-2-one (0.398 g, 3.55 mmol) was treated following general 

procedure L. Flash chromatography (20:80 EtOAc-Hexanes) gave a orange solid (0.652 

g, 68%). mp 81-83 °C; 1H NMR (500 MHz, CDCl3): δ 7.83, 7.72 (ABq, JAB 8.59 Hz, 4 

H), 6.98-6.98 (m, 1 H), 4.71-4.65 (m, 1 H), 2.41-2.39 (m, 2 H), 2.10-2.04 (m, 1 H), 1.99-

1.93 (m, 1 H), 1.76-1.65 (m, 3 H with apparent doublet at 1.73 ppm (J = 6.30 Hz)); 13C 

NMR (100 MHz, CDCl3): δ 156.1, 154.4, 143.0, 131.8 (q, JC-F = 32 Hz), 126.2 (q, JC-F = 

3 Hz), 124.0 (q, JC-F = 272 Hz), 122.7, 66.9, 32.0, 22.5, 18.8; 19F NMR (376 MHz, 

CDCl3): δ –62.3 (s, 3 F); HRMS-ESI: m/z calcd. for C13H13F3N2O [M+H]+: 271.1053, 

found 271.1050. 

 

(E)-3-((4-methoxyphenyl)diazenyl)cyclohex-2-enol (3.73). To a stirred solution 

of 7-oxabicyclo[4.1.0]heptan-2-one (0.416 g, 4.07 mmol) in Et2O (1.0 M) at rt was added 

4-methoxyphenylhydrazine (0.512 g, 3.70 mmol). The reaction was stirred 14 h and 

concentrated in vacuo. Flash chromatography (1:4 EtOAc-Hexanes) gave an orange solid 
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(0.510 g, 59%). 1H NMR (500 MHz, CDCl3): δ 7.75 (d, J = 8.6 Hz, 2 H), 6.95 (d, J = 8.7 

Hz, 2 H), 6.79 (s, 1 H),  4.61 (s, 1 H), 3.84 (s, 3 H), 2.37 (m, 2H), 2.20 (s, 1H), 2.02 (m, 

11.5 Hz, 1H), 1.91 (m, 6.3 Hz, 1H), 1.75-1.60 (m, 2H) ; 13C NMR (125 MHz, CDCl3): δ 

161.7, 155.7, 146.9, 139.0, 124.4, 114.2, 66.8, 55.6, 32.1, 22.6, 18.9; HRMS-CI: m/z 

calcd. for C13H16N2O2 [M]+: 232.165, found 232.168. 

 

 

(E)-3-(phenyldiazenyl)cyclopent-2-enol (3.74). 6-oxabicyclo[3.1.0]hexan-2-one 

(0.332 g, 3.38 mmol) was treated following general procedure A. Flash chromatography 

(35:65 EtOAc-Hexanes) gave a orange solid (0.457 g, 72%). mp 91-93 °C; 1H NMR 

(400 MHz, CDCl3): δ 7.79-7.76 (m, 2 H), 7.49-7.42 (m, 3 H), 6.85-6.84 (m, 1 H), 5.13-

5.09 (m, 1 H), 2.86-2.80 (m, 1 H), 2.60-2.48 (m, 2 H), 1.93-1.87 (m, 1 H), 1.73 (d, J = 

7.45 Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ 161.1, 152.9, 140.3, 131.1, 129.1, 122.8, 

75.9, 32.8, 26.6; HRMS-ESI: m/z calcd. for C11H12N2O [M+H]+: 189.1022, found 

189.1017. 
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(E)-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclopent-2-enol (3.75). 6-

oxabicyclo[3.1.0]hexan-2-one (0.257 g, 2.57 mmol) was treated following general 

procedure C. Flash chromatography (20:80 EtOAc-Hexanes) gave a bright orange solid 

(0.343 g, 52%). 1H NMR (400 MHz, CDCl3): δ 7.78 (d, J = 7.56 Hz, 1 H), 7.64 (d, J = 

7.56 Hz, 1 H), 7.60 (t, J = 6.87 Hz, 1 H), 7.51 (t, J = 7.56 Hz, 1 H), 6.94 (s, 1 H), 5.15-

5.11 (m, 1 H), 2.85-2.81 (m, 1H), 2.60-2.50 (m, 2 H), 1,91-1.88 (m, 1 H), 1.72 (d, J = 

7.56 Hz, 1 H);  13C NMR (100 MHz, CDCl3): δ 161.1, 149.7, 142.2, 132.5 130.5, 128.7, 

128.5, 126.6 (q, JC-F = 5 Hz), 125.0, 122.8, 115.9, 76.0, 32.7, 26.6; 19F NMR (470 MHz, 

CDCl3): δ –57.9 (s, 3 F); HRMS-ESI: m/z calcd. for C12H11F3N2O [M+Na]+: 

279.0716, found 279.0725. 

 

(E)-3-(phenyldiazenyl)cyclohept-2-enol (3.76). 8-oxabicyclo[5.1.0]octan-2-

one10 (0.325 g, 2.57 mmol) was treated following general procedure (K). Flash 

chromatography (20:80 EtOAc-Hexanes) gave a orange solid (0.434 g, 78%). mp 92-94 

°C; 1H NMR (400 MHz, CDCl3): δ 7.76-7.73 (m, 2 H), 7.47-7.38 (m, 3 H), 6.97-6.96 (m, 

1 H), 4.80-4.77 (m, 1 H), 3.27 (dd, J = 15.80 Hz, 5.95 Hz, 1 H), 2.19-2.12 (m, 1 H), 2.04-

1.99 (m, 2 H), 1.83-1.69 (m, 4 H), 1.38-1.28 (m, 1 H);  13C NMR (125 MHz, CDCl3): δ 

157.3, 152.3, 149.9, 130.3, 129.0, 122.5, 71.5, 36.4, 27.5, 25.1, 23.8; HRMS-ESI: m/z 

calcd. for C13H16N2O [M+H]+: 217.1335, found 217.1339. 
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(E)-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclohept-2-enol (3.77). 8-

oxabicyclo[5.1.0]octan-2-one  (0.578 g, 4.60 mmol) was treated following general 

procedure C. Flash chromatography (20:80 EtOAc-Hexanes) gave a bright orange solid 

(1.302 g, 78%). 1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.0 

Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.07 (d, J = 2.4 Hz, 1H), 4.81 

(d, J = 9.5 Hz, 1H), 3.26 (dd, J = 15.6, 6.8 Hz, 1H), 2.24-2.10 (m, 1H), 2.07-1.91 (m, 

3H), 1.91-1.68 (m, 3H),  1.41-1.22 (m, 1H);  13C NMR (100 MHz, CDCl3): δ 158.2, 

152.3, 149.3, 132.6, 129.7, 126.5, 126.4, 116.3, 71.6, 36.5, 27.4, 24.9, 24.0; 19F NMR 

(470 MHz, CDCl3): δ –58.0 (s, 3 F); HRMS-ESI: m/z calcd. for C14H15F3N2O [M+Na]+: 

307.1034, found 307.1031. 

 

(E)-1-phenyl-3-((E)-phenyldiazenyl)but-2-en-1ol (3.86). 1-(3-phenyloxiran-2-

yl)ethanone (0.354 g, 2.18 mmol) was treated following general procedure (K). Flash 

chromatography (15:85 EtOAc-Hexanes) gave a red oil (0.131 g, 24%). 1H NMR (600 

MHz, CDCl3): δ 7.76 (d, J = 7.56 Hz, 2 H), 7.47-7.44 (m, 4 H), 7.42-7.36 (m, 3 H), 7.32-

7.29 (m, 1 H), 6.93 (d, J = 9.62 Hz, 1 H), 5.78 (d, J = 8.94 Hz, 1 H), 2.63-2.56 (brs, 1 H), 
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2.07 (S, 3 H);  13C NMR (100 MHz, CDCl3): δ 152.9, 152.4, 144.0, 142.5, 130.6, 129.1, 

128.9, 128.2, 126.4, 122.6, 71.0, 11.1; HRMS-ESI: m/z calcd. for C16H16N2O [M+H]+: 

253.1335, found 253.1339. 

 

(E)-1-phenyl-3-((E)-phenyldiazenyl)pent-2-en-1ol (3.87). 1-(3-phenyloxiran-2-

yl)propan-1-one (0.118 g, 0.669 mmol) was treated following general procedure (K).  

Flash chromatography (15:85 EtOAc-Hexanes) gave a red oil (0.071 g, 40%). 1H NMR 

(500 MHz, CDCl3): δ 7.70-7.74 (m, 2 H), 7.51-7.50 (m, 2 H), 7.47-7.44 (m, 2 H), 7.42-

7.38 (m, 3 H), 7.33-7.30 (m, 1 H), 6.83 (d, J = 9.16 Hz, 1 H), 5.80 (dd, J = 9.16 Hz, 3.44 

Hz, 1 H), 2.72-2.63 (m, 2 H), 2.10 (d, J = 4.10 Hz, 1 H), 1.02 (t, J = 7.45 Hz, 3 H); 13C 

NMR (100 MHz, CDCl3): δ 158.2, 152.5, 142.6, 130.6, 129.0, 128.9, 128.2, 126.5, 

122.6, 70.9, 18.2, 12.9; HRMS-CI: m/z calcd. for C17H18N2O [M]+: 266.1419, found 

266.1415. 

 

(E)-3-((E)-phenyldiazenyl)-1-(p-tolyl)but-2-en-1ol (3.88). 1-(3-(p-tolyl)oxiran-

2-yl)ethanone (0.127 g, 0.720 mmol) was treated following general procedure (K).  Flash 
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chromatography (10:90 EtOAc-Hexanes) gave a red oil (0.92 g, 48%). 1H NMR (400 

MHz, CDCl3): δ 7.77 (d, J = 8.70 Hz, 2 H), 7.48-7.36 (m, 5 H), 7.20 (d, J = 7.79 Hz, 2 

H), 6.95 (d, J = 9.16 Hz, 1 H), 5.77 (dd, J = 8.93 Hz, 3.21 Hz, 1 H), 2.51-2.35 (m, 4 H 

with apparent singlet at 2.35 ppm), 2.07 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ 158.8, 

152.5, 144.2, 139.6, 138.0, 130.5, 129.6, 129.1, 126.3, 122.6, 71.0, 21.3, 11.1; HRMS-

ESI: m/z calcd. for C17H18N2O [M+H]+: 267.1492, found 267.1488. 

 

(E)-1-(p-tolyl)-3-((E)-(2-(trifluoromethyl)phenyl)diazenyl)but-2-en-1-ol 

(3.89). 1-(3-(p-tolyl)oxiran-2-yl)ethanone (0.140 g, 0.794 mmol) was treated following 

general procedure (K).  Flash chromatography (10:90 EtOAc-Hexanes) gave a orange oil 

(0.223 g, 84%). 1H NMR (500 MHz, CDCl3): δ 7.78 (d, J = 7.68 Hz, 1 H), 7.68-7.53 (m, 

2 H), 7.48 (t, J = 7.48 Hz, 1 H), 7.37 (d, J = 8.03 Hz, 2 H), 7.20 (d, J = 7.92 Hz, 2 H), 

7.05 (d, J = 9.15 Hz, 1 H), 5.77 (dd, J = 3.25 Hz, 8.89 Hz, 1 H), 2.77 (d, J = 3.47 Hz, 1 

H), 2.35 (s, 3 H), 2.06 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ 153.5, 149.3, 146.4, 

139.3, 138.1, 132.5, 130.0, 129.6, 126.5, 125.4, 122.7, 116.0, 70.9, 21.2, 14.2, 11.0; 19F 

NMR (470 MHz, CDCl3): δ –58.0 (s, 3 F); HRMS-ESI: m/z calcd. for C18H17F3N2O 

[M+H]+: 335.1371, found 335.1369. 
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(E)-1-(4-(trifluoromethyl)phenyl)-3-((E)-(2-

(trifluoromethyl)phenyl)diazenyl)but-2-en-1-ol (3.90).  1-(3-(4-

(trifluoromethyl)phenyl)oxiran-2-yl)ethanone (0.306 g, 1.30 mmol) was treated following 

general procedure C. Flash chromatography (10:90 EtOAc-Hexanes) gave a orange oil 

(0.229 g, 44%). 1H NMR (500 MHz, CDCl3): δ 7.78 (d, J = 7.69 Hz, 1 H), 7.68-7.53 (m, 

6 H), 7.50 (t, J = 7.47 Hz, 1 H), 6.94 (d, J = 9.17 Hz, 1 H), 5.86 (dd, J = 8.8 Hz, 1.28 Hz, 

1 H), 3.04 (d, J = 2.69 Hz, 1 H), 2.10 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ 154.2, 

149.1, 146.0, 144.7, 132.6, 130.4, 130.3, 126.6, 126.5, 125.8, 115.9, 70.3, 11.1; 19F NMR 

(470 MHz, CDCl3): δ –57.9 and -62.4 (two s, 6 F); HRMS-ESI: m/z calcd. for 

C18H14F6N2O [M+H]+: 389.1088, found 389.1090. 

 

(E)-1-phenyl-3-((E)-(2-trifluoromethyl)phenyldiazenyl)pent-2-en-1ol (3.91). 

1-(3-phenyloxiran-2-yl)propan-1-one12 (0.447 g, 2.53 mmol) was treated following 

general procedure C. Flash chromatography (10:90 EtOAc-Hexanes) gave a red oil 

(0.543 g, 64%). 1H NMR (500 MHz, CDCl3): δ 7.78 (d, J = 8.02 Hz, 1 H), 7.65 (d, J = 
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8.02 Hz, 1 H), 7.58 (t, J = 7.45, 1 H), 7.51-7.48 (m, 3 H), 7.42-7.38 (m, 2 H), 7.34-7.32 

(m, 1 H), 6.95 (d, J = 9.16 Hz, 1 H), 5.81 (dd, J = 9.16 Hz, 3.44 Hz, 1 H), 2.71-2.58 (m, 2 

H), 2.23 (d, J = 3.44 Hz, 1 H), 1.01 (t, J = 7.45 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ 

159.0, 149.2, 145.2, 142.4, 132.5, 130.1, 129.0, 128.4 (q, JC-F = 30 Hz), 128.2, 126.6 (q, 

JC-F = 5 Hz), 126.5, 124.0 (q, JC-F = 274 Hz), 115.9, 71.0, 18.4, 12.4; 19F NMR (470 

MHz, CDCl3): δ –57.9 (s, 3 F); HRMS-X: m/z calcd. for C18H17F3N2O [M+Na]+: 

357.1191, found 357.1190. 

 

(E)-1-phenyl-3-((E)-(2-(trifluoromethyl)phenyl)diazenyl)but-2-en-1-ol 

(3.86a). 1-(3-phenyloxiran-2-yl)ethanone. (0.414 g, 2.56 mmol) was treated following 

general procedure C. Flash chromatography (15:85 EtOAc-Hexanes) gave an orange oil 

(0.177 g, 42%). 1H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7.7 Hz, 1 H), 7.65 (d, J = 8.0 

Hz, 1 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.52-7.43 (m, 3 H), 7.43 -7.28 (m, 3 H), 7.06 (dd, J = 

9.1, 0.7 Hz, 1 H), 5.78 (dd, J = 9.0, 3.5 Hz, 1 H), 3.33 (d, J = 3.6 Hz, 1 H), 2.08 (S, 3 H);  

13C NMR (100 MHz, CDCl3): δ 153.7, 149.2, 146.2, 142.3, 132.6, 130.1, 129.0, 128.5, 

128.2, 126.4, 125.5, 122.8, 116.0, 71.0, 11.0; 19F NMR (470 MHz, CDCl3): δ –57.8 (s, 3 

F); HRMS-ESI: m/z calcd. for C17H15F3N2O [M+Na]+: 343.1034, found 343.1029. 
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(E)-1-phenyl-3-((E)-(2-(trifluoromethyl)phenyl)diazenyl)prop-2-en-1-ol 

(3.92). 3-phenyloxirane-2-carbaldehyde (0.250 g, 1.69 mmol) was treated following 

general procedure (K).  Flash chromatography (10:90 EtOAc-Hexanes) gave an orange 

oil (0.0851 g, 16%). 1H NMR (500 MHz, CDCl3): δ 7.79 (d, J = 7.7 Hz, 1 H), 7.68-7.53 

(m, 2 H), 7.53-7.32 (m, 7 H), 7.17 (dd, J = 13.5, 6.1 Hz, 1 H), 5.60 (m, 1 H), 2.76 (d, J = 

3.6 Hz, 1 H);  13C NMR (125 MHz, CDCl3): δ 149.7, 147.9, 147.4, 141.4, 132.5, 130.3, 

129.0, 128.5, 126.7, 126.5, 125.0, 122.9, 116.4, 73.0; 19F NMR (470 MHz, CDCl3): δ –

57.5 (s, 3 F); ESI: m/z calcd. for C16H13F3N2O [M+H]+: 307.1058, found 307.1055.  

 

(E)-3-((E)-(2-(trifluoromethyl)phenyl)diazenyl)but-2-en-1-ol (3.93). 1-(oxiran-

2-yl)ethanone (0.0831 g, 0.944 mmol) was treated following general procedure (K).  

Flash chromatography (15:85 EtOAc-Hexanes) gave an orange oil (0.075 g, 33%). 1H 

NMR (500 MHz, CDCl3): δ 7.76 (d, J = 7.8 Hz, 1 H), 7.65-7.52 (m, 2 H), 7.47 (t, 1 H), 

4.61 (t, J = 6.1 Hz, 2 H), 2.33 (t, J = 5.6 Hz, 1 H), 1.95 (s, 3 H) ;  13C NMR (125 MHz, 

CDCl3): δ 154.2, 149.4, 143.5, 132.5, 129.9, 126.5, 126.4, 125.1, 122.9, 116.0, 59.6, 
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10.7; 19F NMR (470 MHz, CDCl3): δ –58.0 (s, 3 F); HRMS-ESI: m/z calcd. For 

C11H11F3N2O [M+H]+: 245.0901, found 245.0901. 

 

(E)-4-((E)-(2-(trifluoromethyl)phenyl)diazenyl)hex-3-en-2-ol (3.94). 1-(3-

methyloxiran-2-yl)propan-1-one (0.182 g, 1.60 mmol) was treated following general 

procedure C. Flash chromatography (15:85 EtOAc-Hexanes) gave an orange oil (0.090 g, 

21%). 1H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7.7 Hz, 1 H), 7.71-7.55 (m, 2 H), 7.50 

(t, J = 7.5 Hz, 1 H), 6.72 (d, J = 9.0 Hz, 1 H), 4.95 (m, 1 H), 2.62-2.45 (m, 2 H), 1.74 ( d, 

J = 3.7 Hz, 1 H), 1.47 ( d, J = 6.3 Hz, 3 H), 1.03 ( t, J = 7.5 Hz, 3 H);  13C NMR (100 

MHz, CDCl3): δ 158.5, 149.2, 147.5, 132.5, 130.0, 125.4, 122.7, 115.9, 64.8, 23.5, 18.3, 

12.8; 19F NMR (470 MHz, CDCl3): δ –57.9 (s, 3 F); HRMS-ESI: m/z calcd. for 

C13H15F3N2O [M+H]+: 273.1214, found 273.1219.  

 

(E)-2-methyl-4-((E)-(2-(trifluoromethyl)phenyl)diazenyl)pent-3-en-2-ol 

(3.95). 1-(3,3-dimethyloxiran-2-yl)ethanone (0.543 g, 4.76 mmol) was treated following 

general procedure C. Flash chromatography (10:90 EtOAc-Hexanes) gave an orange oil 

(0.205 g, 16%). 1H NMR (400 MHz, CDCl3): δ7.77 (d, J = 7.8 Hz, 1H), 7.63 – 7.55 (m, 
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2H), 7.48 (t, J = 7.1 Hz, 1H), 6.94 (s, 1H), 2.19 (s, 3H), 1.70 (s, 1H), 1.58 (s, 6H);  13C 

NMR (125 MHz, CDCl3): δ 154.3, 153.0, 149.5, 132.5, 129.6, 125.2, 123.0, 116.1, 71.0, 

30.7, 11.1; 19F NMR (470 MHz, CDCl3): δ –58.0 (s, 3 F);HRMS-ESI: m/z calcd. for 

C13H15F3N2O [M+H]+: 273.1214, found 273.1215.  
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1.7.5 Synthesis of amino azoalkenes 

General procedure for the formation of AAP from α-aziridino ketones 

To a stirred solution of α-aziridino ketone (1.2 equiv) in Et2O (1.0 M) at rt was 

added aryl hydrazine (1.0 equiv). The reaction was stirred 14 h and concentrated in 

vacuo. 1 M NaOH (7 mL, 1.5 equiv) was added, and the reaction was stirred 10 min. The 

reaction was then poured into a separatory funnel and partitioned between Et2O (20 mL) 

and H2O (5 mL). The organic phase was washed with sat. NaCl (10 mL), dried over 

MgSO4, filtered and concentrated in vacuo. Flash chromatography over silica gel gave 

the desired HAPs. 

 

(E)-4-methyl-N-(3-((3-nitrophenyl)diazenyl)cyclohex-2-en-1-

yl)benzenesulfonamide (3.81). ArNHNH2 HCl (153.3 mg, 0.8088 mmol) was added to a 

stirred solution of 7-tosyl-7-azabicyclo [4.1.0] heptan-2-one (195.1 mg, 07353 mmol) in 

THF (4 mL), followed by addition of N,N-Diisopropylethylamine (0.25 ml, 1.4706 

mmol). The mixture was stirred for 12 h. Solvent was evaporated under reduced pressure 

to give orange solid. Flash chromatography over silica gel using 10:90 EtOAc-hexanes 

gave 2.51 as orange solid (218.2 mg, 74 %). 1H NMR (CDCl3, 400 MHz): δ 8.49-8.51 

(m, 1 H), 8.24-8.26 (m, 1 H), 8.03-8.06 (m, 1 H), 7.83-7.85 (m, 2 H), 7.60-7.64 (m, 1 H), 

7.33-7.35 (m, 2 H), 6.68-6.69 (m, 1 H), 5.06-5.08 (d, 1 H, J = 9.16), 4.25-4.26 (m, 1 H) 

2.44 (s, 3 H), 2.30-2.33 (m, 2 H), 1.83-1.95 (m, 2 H), 1.57-1.69 (m, 3 H); 13C NMR 

NHTs
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(CDCl3, 100 MHz): δ 156.6, 152.8, 148.9, 143.8, 141.3, 137.9, 130.05, 130.01, 129.1, 

127.2, 124.8, 116.9, 50.3, 30.4, 22.1, 21.7, 19.3; HRMS m/z calcd. for C19H20N4O4S 

[M+H]+: 401.1205, found: 401.1200.  

 

 

(E)-N-benzyl-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclohex-2-enamine 

(3.80). ArNHNH2 (192.5 mg, 1.0928 mmol) was added to a stirred solution of 7-benzyl-

7-azabicyclo [4.1.0]heptan-2-one (200 mg,  0.9935 mmol) in Et2O (2 mL). The mixture 

was stirred for 12 h. Solvent was evaporated under reduced pressure to give orange oil. 

Flash chromatography over silica gel using 10:90 EtOAc-hexanes gave 3.80 as dark red 

oil (178.5 mg, 50 %). 1H NMR (CDCl3, 400 MHz): δ 7.78-7.76 (m, 1 H), 7.63-7.57 (m, 2 

H), 7.50-7.46 (m, 1 H), 7.41-7.33 (m, 4 H), 7.29-7.27 (m, 1 H), 7.11 (d, 1 H, J = 0.92), 

4.03-3.99 (d, 2 H, J = 4.58), 3.67-3.63 (m, 1 H), 2.51-2.46 (m, 1 H), 2.36-2.34 (m, 1 H), 

2.09-1.94 (m, 2 H), 1.07-1.53 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 156.6, 149.8, 

144.4, 140.3, 132.5, 129.7, 128.6, 128.3, 128.1, 127.2, 126.5, 126.4, 116.0, 53.7, 51.2, 

29.8, 22.8, 19.9; HRMS m/z calcd. for C20H20N3F3 [M+H]+: 360.1687, found: 360.1690 

 

N-benzyl-3-(phenyldiazenyl)cyclohex-2-enamine (3.24). PhNHNH2 (475.5 mg, 

4.398 mmol) was added to a stirred solution of 7-benzyl-7-azabicyclo[4.1.0]heptan-2-
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one2 (737.7 g, 3.665 mmol) in Et2O (10 mL). The mixture was stirred for 16 h. Solvent 

was evaporated under reduced pressure to give orange oil. Flash chromatography over 

silica gel using 20:80 EtOAc-hexanes gave 13 as dark red oil (1.00 g, 94%). 1H NMR 

(CDCl3, 400 MHz): δ 7.76-7.72 (m, 2 H), 7.46-7.25 (m, 8 H), 7.01 (d, 1 H, J = 1.09),  

4.03-3.95 (m, 2 H), 3.65-3.62 (m, 1 H), 2.51-2.45 (m, 1 H), 2.38-2.31 (m, 1 H), 2.08-1.94 

(m, 2 H), 1.70-1.64 (m, 1 H), 1.59-1.48 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 155.6, 

152.8, 142.2, 140.4, 130.3, 129.0, 128.5, 128.2, 127.1, 122.5, 122.4, 53.6, 51.1, 29.9, 

22.9, 20.1; HRMS-ESI: m/z calcd. for C19H21N3 [M+H]+: 292.1808, found: 292.1812. 

 

N-allyl-3-(phenyldiazenyl)cyclohex-2-enamine (15). Yield: 72% 1H NMR 

(CDCl3, 400 MHz): δ 7.75-7.72 (m, 2 H), 7.47-7.39 (m, 3 H), 6.96 (br s, , 1 H),  6.00-

5.92 (m, 1 H), 5.27-5.22 (m, 1 H), 5.14-5.12 (m, 1 H), 3.63-3.60 (m, 1 H), 3.49-3.3.42 

(m, 1 H), 2.51-2.45 (m, 1 H), 2.35-2.32 (m, 1H), 2.05-2.02 (m, 1H), 1.95-1.93 (m, 1 H), 

1.69-1.66 (m, 1 H), 1.52-1.48 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 155.6, 152.8, 

142.1, 136.9, 130.3, 129.0, 122.5, 122.4, 122.2, 53.6, 49.8, 30.0, 22.9, 20.0; HRMS-ESI: 

m/z calcd. for C15H19N3 [M+H]+: 242.1652, found:242.1654. 

 

N-benzyl-2-methyl-3-(phenyldiazenyl)cyclohex-2-enamine (3.25). Yield: 85% 

1H NMR (CDCl3, 400 MHz): δ 7.76-7.74 (m, 2 H), 7.46-7.7.32 (m, 7 H), 7.28-7.24 (m, 1 

H), 3.97 (d, 1 H, J = 12.82 Hz), 3.84 (d, 1 H, J = 13.28 Hz), 3.38 (t, 1 H, J = 4.03 Hz ), 

N
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2.49-2.47 (m, 1 H), 2.43 (s, 3 H), 2.33-2.29 (m, 1 H), 1.88-1.68 (m, 4 H); 13C NMR 

(CDCl3, 100 MHz): δ 153.4, 149.9, 148.2, 140.8, 129.8, 129.0, 128.5, 128.3, 127.0, 

122.557.5, 51.5, 27.4, 23.5, 18.4, 16.1; HRMS-ESI: m/z calcd. for C20H23N3 [M+H]+: 

306.1965, found: 306.1966. 

 

N-allyl-2-methyl-3-(phenyldiazenyl)cyclohex-2-enamine (3.26). Yield: 76% 1H 

NMR (CDCl3, 400 MHz): δ 7.76-7.73 (m, 1 H), 7.46-7.42 (m, 2 H), 7.39-7.35 (m, 1 H), 

6.01-5.91 (m, 1 H), 5.27-5.21 (m, 1 H), 5.13-5.10 (m, 1 H), 3.44-3.28 (m, 3 H), 2.47-2.46 

(m, 1 H), 2.43 (s, 3 H), 2.33-2.29 (m, 1 H), 1.83-1.65 (m, 4 H); 13C NMR (CDCl3, 100 

MHz): δ 153.4, 149.8, 148.1, 137.4, 129.9, 129.0, 122.5, 116.0, 57.4, 50.2, 27.6, 23.5, 

18.4, 16.1; HRMS-ESI: m/z calcd. for C16H21N3 [M+H]+: 256.1808, found: 256.1813. 

 

N-benzyl-1-methyl-3-(phenyldiazenyl)cyclohex-2-enamine (3.27). PhNHNH2 

(0.45 ml, 4.5 mmol) and BnNH2 (0.50 ml, 4.5 mmol) were added to a stirring suspension 

of K2CO3 (2.2539 g, 16.3 mmol) and 2-Iodo-3-methyl-2-cyclohexen-1-one (962.6 mg, 

4.1 mmol) in THF (24 mL) at RT under Ar. The mixture was stirred for 3 days. Solvent 

was evaporated under reduced pressure to give dark red past. Product was diluted with 

EtOAc and washed with DI H2O, the organic phase was dried over MgSO4 and 

concentrated. Flash chromatography over silica gel using 10:90 EtOAc-hexanes gave 18 

as dark red oil (98 %). 1H NMR (CDCl3, 400 MHz): δ 7.77-7.75 (m, 2 H), 7.47-7.26 (m, 
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8 H), 6.89 (s, 1 H), 3.91-3.88 (d, 1 H, J = 13.28), 3.83-3.80 (d, 1 H, J = 13.74), 2.55-2.48 

(m, 1 H), 2.38-2.30 (m, 1 H), 1.98-1.91 (m, 2 H), 1.84-1.68 (m, 2 H), 1.42 (s, 3 H); 13C 

NMR (CDCl3, 400 MHz): δ 155.1, 152.8, 147.3, 141.0, 130.4, 129.1, 128.6, 128.4, 

127.1, 122.5, 54.4, 47.3, 34.8, 27.3, 22.7, 19.5; HRMS-ESI: m/z calcd. for C20H23N3 

[M]+: 305.1892, found: 305.1898. 

 

(E)-N-benzyl-3-(phenyldiazenyl)cyclopent-2-enamine (3.28). Yield: 87% 1H 

NMR (CDCl3, 400 MHz): δ 7.78-7.76 (m, 2 H), 7.49-7.32 (m, 7 H), 7.29-7.24 (m, 1 H), 

6.97-6.95 (m, 1 H), 4.17-4.13 (m, 1 H), 3.93 (s, 2 H), 2.83-2.75 (m, 1 H), 2.61-2.42 (m, 2 

H), 1.86-1.77 (m, 1 H); 13C NMR (CDCl3, 100 MHz): δ 160.5, 153.1, 141.8, 140.3, 

130.8, 129.1, 129.0, 128.6, 128.4, 128.2, 127.2, 62.7, 52.0, 30.7, 26.9; HRMS-ESI: m/z 

calcd. for C18H19N3 [M+H]+: 278.1652, found: 278.1648. 

 

(E)-N-benzyl-3-(phenyldiazenyl)cyclohept-2-enamine (3.29). Yield: 92% 1H 

NMR (CDCl3, 400 MHz): δ 7.78-7.76 (m, 2 H), 7.48-7.45 (m, 2 H), 7.41-7.24 (m, 6 H), 

7.03 (d, 1 H, J = 4.12 Hz), 3.99 (d, 1 H, J = 13.28 Hz), 3.88 (d, 1 H, J = 13.28 Hz), 3.79-

3.76 (m, 1 H), 3.35-3.30 (m, 1 H), 2.22-2.15 (m, 1 H), 2.05-2.03 (m, 1 H), 1.94-1.91 (m, 

1 H), 1.81-1.67 (m, 3 H), 1.31-1.29 (m, 1 H) ; 13C NMR (CDCl3, 100 MHz): δ 159.0, 

152.5, 150.4, 140.2, 130.1, 129.0, 128.6, 128.3, 127.1, 122.5, 57.9, 51.8, 33.9, 29.2, 25.2, 

23.6; HRMS-ESI: m/z calcd. for C20H23N3 [M+H]+: 306.1965, found: 306.1971. 
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(E)-N-benzyl-3-(phenyldiazenyl)cyclohept-2-enamine (3.30). Yield: 56% 1H 

NMR (CDCl3, 400 MHz): δ 7.76-7.73 (m, 2 H), 7.46-7.43 (m, 2 H), 7.40-7.37 (m, 1 H), 

6.93-6.92 (m, 1 H), 6.00-5.92 (m, 1 H), 5.25-5.24 (m, 1 H), 5.15-5.12 (m, 1 H), 3.77-3.73 

(m, 1 H), 3.46-3.42 (m, 1 H), 3.37-3.29 (m, 2 H), 2.22-2.21 (m, 1 H), 2.05-2.01 (m, 1 H), 

1.91-1.88 (m, 1 H), 1.80-1.63 (m, 3 H), 1.30-1.24 (m, 1 H); 13C NMR (CDCl3, 100 

MHz): δ 158.9, 152.5, 150.3, 136.6, 130.1, 129.1, 122.5, 116.3, 57.9, 50.3, 33.9, 29.2, 

25.2, 23.6; HRMS-ESI: m/z calcd. for C16H21N3 [M+H]+: 256.1808, found: 256.1807. 

 

 

(E)-N-benzyl-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclopent-2-enamine 

(3.28a). 6-benzyl-6-azabicyclo[3.1.0]hexan-2-one (0.101 g, 0.54 mmol) was treated 

following general procedure D. Flash chromatography over silica gel using (20:80 

EtOAc-hexanes) gave a  dark red oil (0.122 g, 65%). 1H NMR (400 MHz, CDCl3): δ 7.78 

(d, J = 7.79 Hz, 1 H), 7.64-7.57 (m, 2 H), 7.51 (t, J = 7.33 Hz, 1 H), 7.39-7.25 (m, 4 H), 

7.05 (s, 1 H), 4.17-4.15 (m, 1 H), 3.93 (s, 2 H), 2.83-2.77 (m, 1 H), 2.62-2.54 (m, 1 H), 

2.51-2.43 (m, 1 H), 1.85-1.78 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 161.2, 149.9, 

143.8, 140.2, 132.5, 130.2, 128.6, 128.3, 128.2, 127.2, 126.5 (q, JC-F = 5 Hz), 115.9, 62.8, 
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52.0 30.5, 26.9; 19F NMR (564 MHz, CDCl3): δ –57.7 (s, 3 F); HRMS-ESI: m/z calcd. 

for C19H18F3N3 [M+H]+: 346.1526, found 346.1532. 

 

(E)-N-benzyl-3-((2-(trifluoromethyl)phenyl)diazenyl)cyclohept-2-enamine 

(3.29a). 8-benzyl-8-azabicyclo[5.1.0]octan-2-one (0.104 g, 0.48 mmol) was treated 

following general procedure D. Flash chromatography over silica gel using (20:80 

EtOAc-hexanes) gave a  dark red oil (0.148 g, 81%). 1H NMR (500 MHz, CDCl3): δ7.78 

(d, J = 7.7 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.48 (t, J = 7.4 Hz, 

1H), 7.38 (m, 4H), 7.32-7.27 (m, 1H), 7.22 (m, 1H), 7.15 (d, J = 4.0 Hz, 1H), 3.95 (dd, J 

= 51.5, 13.1 Hz, 2H), 3.82 (m, 1H), 3.33 (dd, J = 15.4, 6.9 Hz, 1H), 2.27-2.17 (m, 1H), 

2.03 (m, 1H), 1.95 (m, 1H), 1.86-1.66 (m, 3H), 1.29 (m, 1H);  13C NMR (125 MHz, 

CDCl3): δ159.9, 152.9, 149.6, 140.1, 132.6, 129.5, 128.6, 128.3, 127.7, 127.2, 126.5, 

117.4, 58.0, 51.8, 33.9, 29.1, 25.0, 23.8; 19F NMR (470 MHz, CDCl3): δ –58.0 (s, 3 F); 

HRMS-ESI: m/z calcd. for C14H15F3N2O [M+H]+: 374.1844, found 374.1833. 

 

(E)-tert-butyl-(3-(phenyldiazenyl)cyclohex-2-en-1-yl)carbamate (3.82). 2-oxo-

7-aza-bicyclo[4.1.0]heptane-7-carboxylic acid tert-butyl ester14 (0.398 g, 1.32 mmol) was 

treated following general procedure D. Flash chromatography (20:80 EtOAc-Hexanes) 

gave an orange solid (0.331 g, 58%). 1H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 6.87 
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Hz, 2 H), 7.47-7.38 (m, 3 H), 6.80 (s, 1 H), 4.75-4.57 (m, 2 H), 2.49-2.30 (m, 2 H), 2.10-

2.01 (m, 1 H), 1.93-1.82 (m, 1 H), 1.81-1.69 (m, 1 H), 1.60-1.45 (m, 10 H); 13C NMR 

(100 MHz, CDCl3): δ 156.1, 155.3, 152.6, 140.0, 130.5, 129.1, 122.5, 79.7, 47.2, 29.9, 

28.5, 22.4, 19.7; HRMS-CI: m/z calcd. for C17H23N3O2 [M+Na]+: 324.1682, found 

324.1682. 

 

 (E)-N-benzyl-1-phenyl-3-((E)-(2-(trifluoromethyl)phenyl)diazenyl)but-2-en-

1-amine (3.96).  1-(1-benzyl-3-phenylaziridin-2-yl)ethanone15 (0.125 g, 0.50 mmol) was 

treated following general procedure D. Flash chromatography (10:90 EtOAc-Hexanes) 

gave an orange oil (0.147, 71%). 1H NMR (400 MHz, CDCl3): δ 7.78 (d, J = 7.8 Hz, 

1H), 7.65 (d, J = 8.0 Hz, 1H), 7.57 (m, 2H), 7.55-7.44 (m, 4H), 7.44-7.19 (m, 11H), 7.02 

(d, J = 9.6 Hz, 1H), 4.87 (d, J = 9.6 Hz, 1H), 3.86 (q, J = 13.3 Hz, 2H), 2.03 (s, 3H), 1.88 

(s, 1H);  13C NMR (100 MHz, CDCl3): δ 152.4, 147.5,146.4, 140.2, 138.2, 130.7, 128.0, 

127.1, 126.9, 126.7, 126.4, 126.0, 125.7, 125.4, 124.8, 124.6, 114.2, 58.1, 49.7, 9.3; 19F 

NMR (470 MHz, CDCl3): δ –58.1; HRMS-ESI: m/z calcd. for C24H22F3N3  [M+Na]+: 

432.1658, found 432.1670. 
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(E)-N-benzyl-2-methyl-4-((E)-(2-(trifluoromethyl)phenyl)diazenyl)pent-3-en-

2-amine (3.97). 1-(1-benzyl-3,3-dimethylaziridin-2-yl)ethanone (0.270 g, 1.33 mmol) 

was treated following general procedure L. Flash chromatography (10:90 EtOAc-

Hexanes) gave an orange oil (0.059 g, 12%). 1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 

7.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 

7.39 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.30 – 7.25 (m, 1H), 6.96 (s, 1H), 3.80 

(s, 2H), 2.27 (s, 3H), 1.54 (s, 6H);  13C NMR (100 MHz, CDCl3): δ 153.2, 152.6, 147.7, 

139.2, 130.7, 127.7, 126.7, 126.5, 126.3, 125.2, 124.7, 124.6, 114.3, 52.8, 46.3, 27.4, 9.4; 

19F NMR (470 MHz, CDCl3): δ –58.0; HRMS-ESI: m/z calcd. for C20H22F3N3 [M+H]+: 

253.1335, found 253.1339.  
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1.7.6 Synthesis of carbono azoalkenes 

 

(E)-dimethyl 2-(3-(phenyldiazenyl)cyclohex-2-enyl)malonate (3.102). 

Cyclopropane (0.22 mmol) and phenylhydrazine ( 0.23 mmol) were dissolved in THF 

(1.0 mL). The reaction mixture was stirred at room temperature for 2 h. Then Et3N was 

added with MgI2. Solution turns an orange color, after 2 h solvent was then removed by 

rotavap. Flash chromatography (hexane:EtOAc = 1:10) was performed to isolate the 

product 3.41 as an orange solid (0.516 g, 71%). 1H NMR (400 MHz, CDCl3) δ 7.74-7.72 

(m, 2 H), 7.46-7.37 (m, 3 H), 6.83 (s, 1 H), 3.78 (d, J = 4.12 Hz, 6 H), 3.48 (d, J = 9.62 

Hz, 1 H), 3.39-3.32 (m, 1 H), 2.57-2.52 (m, 1 H), 2.33-2.23 (m, 1 H), 1.99-1.87 (m, 2 H), 

1.74-1.64 (m, 1 H), 1.52-1.40 (m, 1 H); 13C NMR (100 MHz, CDCl3) δ 168.7, 168.6, 

150.5, 137.4, 135.0 129.3, 129.2, 124.7, 122.2, 122.1, 54.9, 52.1 52.0, 38.5. 28.3, 25.4, 

19.3. HRMS-ESI: m/z calcd. for C17H20N2O4 [M + H]+: 316.14 
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1.7.7 Synthesis of fused tetrahydrofuran- or pyrrolidine-
tetrahydropyridazine 

Synthesis of allylic t-butyl carbonates 

 

(E)-tert-butyl (3-(2-trifluoromethyl)phenyl)allyl) carbonate (S8). To a –78 °C 

solution of (E)-ethyl 3-(2-trifluoromethyl)phenyl)acrylate7 (1.20 g, 4.91 mmol) in PhMe 

(50 mL) was added DIBAL (14.7 mL, 14.73 mmol, 1.0 M soln. in PhMe). The reaction 

was stirred at –78 °C for 30 min, warmed to rt, and stirred 2 additional hours. The 

reaction was cooled to 0 °C (ice-bath), diluted with Et2O (50 mL) and added sequentially 

H2O (0.5 mL), 15% aq. NaOH (0.5 mL), and H2O (1.4 mL). The reaction was warmed to 

rt, MgSO4 was added and stirred 20 min. The reaction was filtered and concentrated in 

vacuo. The crude allylic alcohol (0.750 g, 3.70 mmol), used without purification, was 

dissolved in THF (30 mL) and cooled to 0 °C (ice-bath). n-BuLi (1.42 mL, 3.55 mmol, 

2.5 M soln. in hexane) was added dropwise, and the reaction was stirred for 20 min. A 

solution of Boc2O (0.842 g, 3.85 mmol) in THF (5 mL) was added to the reaction (2 mL 

THF wash). The reaction was allowed to warm to rt and stirred 12 h. The reaction was 

quenched by the addition of sat. NH4Cl (5 mL) and partitioned between H2O and EtOAc. 

The aqueous phase was extracted with EtOAc (3 X 15 mL), and the combined organic 

phases were washed with sat. NaCl (20 mL), dried over MgSO4, and concentrated in 

vacuo. Flash chromatography (8:92 EtOAc-Hexanes) gave a colorless oil (0.942 g, 63% 

over 2 steps). 1H NMR (500 MHz, CDCl3): δ 7.61 (t, J = 7.45 Hz, 2 H), 7.49 (t, J = 7.45 

Hz, 1 H), 7.35 (t, J = 7.45 Hz, 1 H), 7.02 (dd, J = 15.75 Hz, 1.72 Hz, 1 H), 6.26 (dt, J = 

15.46 Hz, 6.30 Hz, 1 H), 4.74 (dd, J = 6.30 Hz, 1.72 Hz, 2 H), 1.50 (s, 9 H); 13C NMR 
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(125 MHz, CDCl3): δ 153.3, 135.3, 131.9, 129.9, 127.8, 127.7,127.5 (q, JC-F = 29 Hz), 

127.4, 125.8 (q, JC-F = 5 Hz), 124.2 (q, JC-F = 273 Hz), 82.5, 67.1, 27.8; 19F NMR (470 

MHz, CDCl3): δ –59.3 (s, 3 F); HRMS-ESI: m/z calcd. for C15H17F3O3 [M + Na]+: 

325.1028, found 325.1022. 

 

(E)-tert-butyl (3-pyrimidin-2-yl)allyl) carbonate (S9). To a –78 °C solution of 

(E)-ethyl 3-(pyrimidin-2-yl)acrylate167 (0.604 g, 3.39 mmol) in THF (25 mL) was added 

DIBAL (7.8 mL, 7.80 mmol, 1.0 M soln. in PhMe). The reaction was stirred at –78 °C 

for 30 min, warmed to rt, and stirred 2 additional hours. The reaction was quenched by 

the addition of sat. aq. sodium potassium tartrate (15 mL) and stirred 1 h. 2 M NaOH (7.8 

mL) was added, and the reaction was stirred 15 min. The mixture was poured into a 

separatory funnel and partitioned between H2O and THF. The aqueous phase was 

extracted with Et2O (3 X 15 mL), and the combined organic phases were washed with 

sat. NaCl (20 mL), dried over MgSO4, and concentrated in vacuo. The crude allylic 

alcohol (0.347 g, 2.55 mmol), used without purification, was dissolved in CH2Cl2 (6 mL). 

Bu4NHSO4 (0.026 g, 0.076 mmol) was added followed by 30% NaOH (1.2 mL, 8.92 

mmol) and the reaction was stirred 15 min. A solution of Boc2O (0.667 g, 3.06 mmol) in 

CH2Cl2 (1 mL) was added to the reaction (1 mL CH2Cl2 wash). The reaction was allowed 

to warm to rt and stirred 12 h. The reaction was diluted with CH2Cl2 (10 mL) and 

partitioned between H2O and CH2Cl2. The aqueous phase was extracted with CH2Cl2 (3 

X 10 mL), and the combined organic phases were washed with sat. NaCl (20 mL), dried 

over MgSO4, and concentrated in vacuo. Flash chromatography (40:60 EtOAc-Hexanes) 

gave a colorless oil (0.449 g, 56% over 2 steps). (1H NMR (500 MHz, CDCl3): δ 8.67 (d, 
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J = 4.87 Hz, 2 H), 7.16 (dt, J = 15.75 Hz, 5.44 Hz, 1 H), 7.10 (t, J = 4.87 Hz, 1 H), 6.79 

(d, J = 15.75 Hz, 1 H), 4.82 (d, J = 5.15 Hz, 2 H), 1.49 (s, 9 H); 13C NMR (125 MHz, 

CDCl3): δ 163.9, 157.1, 153.3, 133.7, 131.6, 119.1, 82.5, 66.1, 27.8; HRMS-APPI: m/z 

calcd. for C12H16N2O3 [M+H]+: 237.1234, found 237.1239. 

General procedure N: Cascading Tsuji-Trost [4+2] cycloaddition 

To a flame dried 1 dram vial with stir bar was added Pd(OAc)2 (2.5 mol %) and 

BINAP (5.0 mol %), and the vial was placed under an Ar atmosphere. PhMe (1.5 mL) 

was added, and the solution was stirred at rt for 20 min. Diallyl carbonate (1.7 equiv) or 

aryl substituted allylic carbonate (1.7 equiv) in PhMe (0.5 mL) was then added to the 

vial, followed by addition of the HAP or AAP (1.0 equiv). For solid HAPs, the addition is 

done in one portion. For oil HAPs, the addition is executed as a solution in PhMe (0.5 

mL). The vial is then capped, placed in a pre-heated oil-bath (100 °C), and stirred for 2 h. 

After 2 h, the reaction is cooled to rt, diluted with EtOAc (10 mL), and washed with sat. 

NaCl (5 mL). The organic phase is then dried over MgSO4, filtered, and concentrated in 

vacuo. Flash chromatography over silica gel provided the desired fused furan- or 

pyrrolidine-tetrahydropyridazine derivatives. 

 

General procedure O: Cascading Tsuji-Trost [4+2] cycloaddition 

To a flame dried 1 dram vial with stir bar was added Pd(OAc)2 (2.5 mol %) and 

BINAP (5.0 mol %), and the vial was placed under an Ar atmosphere. PhMe (1.5 mL) 

was added, and the solution was stirred at rt for 20 min. LiBr (1 equiv) was added 

followed by diaryl substituted allylic carbonate (1.7 equiv) in PhMe (0.5 mL) was then 

added to the vial, followed by addition of the HAP or AAP (1.0 equiv), the addition is 
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executed as a solution in PhMe (0.5 mL). The vial is then capped, placed in a pre-heated 

oil-bath (100 °C), and stirred for 2 h. After 2 h, the reaction is cooled to rt, diluted with 

EtOAc (10 mL), and washed with sat. NaCl (5 mL). The organic phase is then dried over 

MgSO4, filtered, and concentrated in vacuo. Flash chromatography over silica gel 

provided the desired fused furan- or pyrrolidine-tetrahydropyridazine derivatives. 

General procedure P: Cascading Tsuji-Trost [4+2] cycloaddition 

To a flame dried 1 dram vial with stir bar was added Pd(allyl)2 (2.5 mol %) and 

BINAP (5.0 mol %), and the vial was placed under an Ar atmosphere. THF (1.5 mL) was 

added, and the solution was stirred at rt for 20 min. allyl carbonate (1.01 equiv) or aryl 

substituted allylic carbonate (1.7 equiv) in PhMe (0.5 mL) was then added to the vial, 

followed by addition of the HAP or AAP (1.0 equiv), the addition is executed as a 

solution in THF (0.5 mL). The vial is then capped, placed in a pre-heated oil-bath (65 

°C), and stirred for 8 h. The reaction is cooled to rt, diluted with EtOAc (10 mL), and 

washed with sat. NaCl (5 mL). The organic phase is then dried over MgSO4, filtered, and 

concentrated in vacuo. Flash chromatography over silica gel provided the desired fused 

furan- or pyrrolidine-tetrahydropyridazine derivatives. 

Furan-tetrahydropyridazine derivatives 

 

2-phenyl-3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-de]cinnoline (4.10). 

HAP (3.68) (0.035 g, 0.173 mmol) was treated following general procedure N. Flash 

chromatography (25:75 EtOAc-Hexanes) gave a tan solid (0.036 g, 86%). Scaled up 
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reaction (0.700 g, 3.46 mmol) was treated following general procedure E, gave (0.658 g, 

78%). mp: 130-131 °C; 1H NMR (500 MHz, CDCl3): δ 7.29-7.26 (m, 2 H), 7.16-7.15 (m, 

2 H), 6.84 (t, J = 7.45 Hz, 1 H), 4.26 (ddd, J = 10.31 Hz, 9.16 Hz, 5.43 Hz, 1 H), 4.21 

(dd, J = 7.45 Hz, 6.30 Hz, 1 H), 3.69-3.59 (m, 2 H), 3.49 (dd, J = 10.88 Hz, 7.45 Hz, 1 

H), 2.64-2.59 (m, 1 H), 2.52-2.44 (m, 2 H), 2.12-2.04 (m, 2 H), 1.91-1.85 (m, 1 H), 1.52-

1.46 (m, 1 H), 1.14 (qd, J = 10.88 Hz, 2.86 Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ 

151.8, 148.2, 129.0, 119.1, 112.6, 75.2, 70.7, 49.2, 44.0, 39.4, 30.1, 27.3, 19.1; HRMS-

ESI: m/z calcd. for C15H18N2O [M+H]+: 243.1492, found 243.1492. 

 

6-phenyl-1,2,2a,2a1,4,4a,5,6-octahydro-3-oxa-6,7-diazacyclopenta[cd]indene 

(4.20a). HAP (3.74) (0.040 g, 0.212 mmol) was treated following general procedure N. 

Flash chromatography (20:80 EtOAc-Hexanes) gave a tan solid (0.034 g, 71%). mp 107-

109 °C; 1H NMR (400 MHz, CDCl3): δ 7.30-7.25 (m, 2 H), 7.20-7.18 (m, 2 H), 6.88 (t, J 

= 7.33 Hz, 1 H), 4.57 (td, J = 5.50 Hz, 1.37 Hz, 1 H), 3.91 (t, J = 8.24 Hz, 1 H), 3.70-3.65 

(m, 1 H), 3.59 (dd, J = 8.70 Hz, 6.41 Hz, 1 H), 3.18-3.10 (m, 2 H), 2.76-2.75 (m, 1 H), 

2.71-2.66 (m, 2 H), 2.21-2.12 (m, 1 H), 1.98-1.90 (m, 1 H); 13C NMR (100 MHz, 

CDCl3): δ 155.5, 148.6, 129.0, 120.0, 114.3, 83.4, 71.1, 43.9, 42.6, 36.6, 31.0, 28.7; 

HRMS-ESI: m/z calcd. for C14H16N2O [M+H]+: 229.1335, found 229.1333. 
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4-phenyl-2,2a,2a1,3,4,6,7,8,9,9a-decahydro-1-oxa-4,5-diazabenzo[cd]azulene 

(4.21a). HAP (3.76) (0.040 g, 0.212 mmol) was treated following general procedure N. 

Flash chromatography (20:80 EtOAc-Hexanes) gave a tan solid (0.034 g, 71%, 9:1 dr). 

Major diastereomer: mp: 129-130 °C; 1H NMR (400 MHz, CDCl3): δ 7.29-7.25 (m, 2 H), 

7.20-7.18 (m, 2 H), 6.83 (t, J = 7.33 Hz, 1 H), 4.35-4.30 (m, 1 H), 4.24-4.20 (m, 1 H), 

3.97-3.93 (m, 1 H), 3.50-3.40 (m, 2 H), 2.67 (dd, J = 13.74 Hz, 5.95 Hz, 1 H), 2.58-2.40 

(m, 2 H), 2.20 (t, J = 11.91 Hz, 1 H), 1.96-1.82 (m, 3 H), 1.44-1.31 (m, 3 H); 13C NMR 

(100 MHz, CDCl3): δ 147.5, 144.5, 129.0, 119.1, 112.6, 79.9, 70.3, 48.1, 45.7, 38.0, 35.5, 

35.2, 29.8, 25.9; HRMS-ESI: m/z calcd. for C16H20N2O [M+H]+: 257.1648, found 

257.1646. 

 

2-(2-(trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-

de]cinnoline (4.13). HAP (3.70) (0.045 g, 0.160 mmol) was treated following general 

procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam (0.040 

g, 78%). 1H NMR (600 MHz, CDCl3): δ 7.62 (d, J = 7.79, 1 H), 7.55 (t, J = 7.79, 1 H) 

7.47 (d, J = 7.79 Hz, 1 H), 7.24 (t, J = 7.79 Hz, 1 H), 4.32-4.25 (m, 1 H), 4.13 (dd, J = 

7.79 Hz, 5.95 Hz, 1 H), 3.66 (dd, J = 11.68 Hz, 10.07 Hz, 1 H), 3.48 (dd, J = 10.99 Hz, 

7.79 Hz, 1 H), 3.31 (t, J = 8.24 Hz, 1 H), 2.60-2.53 (m, 2 H), 2.47-2.37 (m, 1 H), 2.10-

1.84 (m, 3 H), 1.55-1.45 (m, 1 H), 1.16 (dq, J = 2.75 Hz, 13.05 Hz, 1 H); 13C NMR (100 

MHz, CDCl3): δ 154.2, 150.2, 133.2, 126.9 (q, JC-F = 6 Hz), 125.4 125.1, 75.0, 70.8, 54.5, 
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43.7, 39.7, 30.1, 27.1, 19.2; 19F NMR (470 MHz, CDCl3): δ –59.5 (s, 3 F); HRMS-ESI: 

m/z calcd. for C16H17F3N2O [M+H]+: 311.1366, found 311.1368. 

 

2-(4-methoxyphenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-

de]cinnoline (4.18). HAP (3.73) (0.060 g, 0.258 mmol) was treated following general 

procedure N. Flash chromatography (1:2:7 EtOAc-Hexanes- CH2Cl2) gave an off-white 

solid (0.050 g, 71%) 1H NMR (400 MHz, CDCl3): δ 7.08 (d, J = 9.1 Hz, 2H), 6.84 (d, J = 

9.1 Hz, 2H), 4.28-4.19 (m, 1H), 4.17 (dd, J = 7.5, 6.2 Hz, 1H), 3.75 (s, 3H), 3.56 (d, J = 

9.7 Hz, 2H),  3.45 (dd, J = 10.8, 7.8 Hz, 1H), 2.58 (dd, J = 18.5, 5.9 Hz, 1H), 2.50-2.36 

(m, 2H),  2.11-1.94 (m, 2H), 1.85 (ddd, J = 9.5, 7.2, 4.5 Hz, 1H), 1.56-1.38 (m, 1H), 1.12 

(qd, J = 13.1, 2.7 Hz, 1H);  13C NMR (125 MHz, CDCl3): δ 153.1, 151.1, 143.0, 114.5, 

113.9, 75.2, 70.8, 55.7, 49.5, 43.9, 39.4, 30.1, 27.2, 19.2.; HRMS-CI: m/z calcd. for 

C16H20N2O2 [M+Na]+: 295.1417, found 295.1427. 

 

6-(2-(trifluoromethyl)phenyl)-1,2,2a,2a1,4,4a,5,6-octahydro-3-oxa-6,7-

diazacyclopenta[cd]indene (4.20). HAP (3.75) (0.057 g, 0.222 mmol) was treated 
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following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a 

yellow foam (0.051 g, 78%). 1H NMR (400 MHz, CDCl3): δ 7.61 (dd, J = 3.44 Hz, 8.02 

Hz, 2 H), 7.56 (t, J = 7.45 Hz, 1 H), 7.26 (t, J = 8.02 Hz, 1 H), 4.44 (dd, J = 4.58 Hz, 6.30 

Hz, 1 H), 3.79-3.76 (m, 1 H), 3.42 (dd, J = 8.53 Hz, 10.91 Hz, 1 H), 3.32-3.24 (m, 1 H), 

2.76-2.67 (m, 1 H), 2.27-2.20 (m, 1 H), 2.01 (p, J = 8.02 Hz, 1 H); 13C NMR (125 MHz, 

CDCl3): δ 166.6, 150.6, 133.0, 126.7 (q, JC-F = 6 Hz), 125.8, 125.5, 125.4, 125.3, 83.8, 

72.9, 58.2, 43.0, 40.6, 30.7, 27.8; 19F NMR (564 MHz, CDCl3): δ –59.3 (s, 3 F); HRMS-

ESI: m/z calcd. for C15H15F3N2O [M+Na]+: 319.1029, found 319.1042. 

 

4-(2-(trifluoromethyl)phenyl)-2,2a,2a1,3,4,6,7,8,9,9a-decahydro-1-oxa-4,5-

diazabenzo[cd]azulene (4.21). HAP (3.77) (0.058 g, 0.205 mmol) was treated following 

general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam 

(0.045 g, 68%). 1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 5.73 Hz, 1 H), 7.48 (t, J = 

7.45 Hz, 1 H), 7.29 (d, J = 8.02 Hz, 1 H), 7.17 (t, J = 8.02 Hz, 1 H), 4.34-3.29 (m, 1 H), 

4.13 (t, J = 7.45 Hz, 1 H), 3.70 (dd, J = 5.15 Hz, 10.60 Hz, 1 H), 3.62 (t, J = 10.88 Hz, 1 

H), 3.41 (dd, J = 8.02 Hz, 10.31 Hz, 1 H), 2.67-2.48 (m, 3 H), 2.17 (t, J = 12.13 Hz, 1 H), 

1.94-1.82 (m, 3 H), 1.44-1.26 (m, 3 H); 13C NMR (125 MHz, CDCl3): δ 148.6, 146.2, 

132.6, 127.7 (q, JC-F = 5 Hz), 125.2, 124.1, 79.7, 69.9, 53.3, 45.8, 37.6, 35.5, 34.9, 29.8, 

25.9; 19F NMR (564 MHz, CDCl3): δ –59.1 (s, 3 F); HRMS-ESI: m/z calcd. for 

C17H19F3N2O [M+H]+: 325.1522, found 325.1536. 
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4-(4-fluorophenyl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (2.26). HAP (3.70) (0.094 g, 0.35 mmol) was 

treated following general procedure N. Flash chromatography (25:75 EtOAc-Hexanes) 

gave a yellow foam (0.118 g, 84%). 1H NMR (500 MHz, CDCl3): δ 7.45 (d, J = 7.45 Hz, 

1 H), 7.22-7.15 (m, 2 H), 7.00-6.97 (3 H), 6.82 (t, J = 8.59 Hz, 2 H), 4.95 (d, J = 10.88 

Hz, 1 H), 4.35 (ddd, J = 10.31 Hz, 9.16 Hz, 5.73 Hz, 1 H), 3.86 (dd, J = 7.73 Hz, 5.73 

Hz, 1 H), 6.57 (dd, J = 10.88 Hz, 8.02 Hz, 1 H), 2.92 (t, J = 10.88 Hz, 1 H), 2.65-2.60 (m, 

1 H), 2.55-2.47 (m, 1 H), 2.29 (qd, J = 11.74 Hz, 5.73 Hz, 1H), 2.13-2.11 (m, 1 H), 1.94-

1.87 (m, 1 H), 1.58-1.49 (m, 1 H), 1.27-1.20 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 

162.1 (d, JC-F = 247 Hz), 156.1, 145.9, 135.8 (d, JC-F = 2 Hz), 132.0, 129.5, 129.4 (d, JC-F 

= 9 Hz), 126.8 (q, JC-F = 6 Hz), 125.1 (q, JC-F = 28 Hz), 124.4, 124.3 (q, JC-F = 272 Hz), 

115.3 (d, JC-F = 21 Hz), 75.1, 70.6, 67.2, 50.0, 43.7, 30.3, 27.2, 19.3; 19F NMR (470 

MHz, CDCl3): δ –59.5 (s, 3 F), -114.0 (m, 1 F); HRMS-ESI: m/z calcd. for C22H20F4N2O 

[M+H]+: 405.1585, found 405.1589. 
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4-phenyl-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnoline (4.22). HAP (3.70) (0.050 g, 0.185 mmol) was treated following 

general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam 

(0.062 g, 72%). 1H NMR (600 MHz, CDCl3): δ 7.44 (d, J = 7.56, 1 H), 7.16 (d, J = 4.12, 

2 H) 7.14-7.08 (m, 3 H), 7.00 (d, J = 6.87 Hz, 2 H), 6.97-6.94 (m, 1 H), 4.94 (d, J = 10.31 

Hz, 1 H), 4.33 (td, J = 9.62 Hz, 5.50 Hz, 1 H), 3.86 (t, J = 6.19 Hz, 1 H), 3.57 (dd, J = 

10.65 Hz, 7.90 Hz, 1 H), 2.93 (t, J = 11.00 Hz, 1 H), 2.65-2.61 (m, 1 H), 2.55-2.48 (m, 1 

H), 2.33 (qd, J = 11.34 Hz, 5.50 Hz, 1 H), 2.12-2.10 (m, 1 H), 1.92-1.88 (m, 1 H), 1.57-

1.49 (m, 1 H), 1.23 (dq, J = 10.31 Hz, 2.75 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ 

156.1, 146.0, 140.1, 131.9, 129.4, 128.4, 127.8, 127.7, 126.7 (q, JC-F = 5 Hz), 125.0 (q, 

JC-F = 30 Hz), 124.3 (q, JC-F = 272 Hz), 124.2, 75.2, 70.7, 68.0, 50.0, 43.7, 30.4, 27.2, 

19.3; 19F NMR (470 MHz, CDCl3): δ –59.4 (s, 3 F); HRMS-ESI: m/z calcd. for 

C22H21F3N2O [M+H]+: 387.1679, found 387.16800. 

 

2-(2-trifluoromethyl)phenyl)-4-(4-(trifluoromethyl)phenyl)-

3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-de]cinnoline (4.23). HAP (3.70) (0.040 g, 

0.148 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow foam (0.053 g, 79%). 1H NMR (400 MHz, CDCl3): δ 

7.46 (d, J = 7.33, 1 H), 7.40 (d, J = 8.24, 2 H) 7.21 (d, J = 4.21 Hz, 2 H), 7.14 (d, J = 

7.79 Hz, 2 H), 7.01-6.97 (m, 1 H), 5.04 (d, J = 10.53 Hz, 1 H), 4.36 (td, J = 9.16 Hz, 5.95 
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Hz, 1 H), 3.85 (dd, J = 10.76 Hz, 5.95 Hz, 1 H), 3.59 (dd, J = 10.53 Hz, 7.79 Hz, 1 H), 

2.94 (t, J = 10.99 Hz, 1 H), 2.68-2.62 (m, 1 H), 2.57-2.48 (m, 1 H), 2.27 (qd, J = 11.33 

Hz, 5.95 Hz, 1 H), 2.16-2.11 (m, 1 H), 1.95-1.88 (m, 1 H), 1.60-1.48 (m, 1 H), 1.22 (dq, J 

= 10.53 Hz, 2.75 Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ 156.6, 145.6, 144.5, 132.1, 

129.9 (q, JC-F = 33 Hz), 128.9, 128.0, 127.0 (q, JC-F = 5 Hz), 125.4 (q, JC-F = 4 Hz), 124.6 

(q, JC-F = 30 Hz), 124.4, 124.3 (q, JC-F = 273 Hz), 123.9 (q, JC-F = 272 Hz), 75.1, 70.4, 

67.4, 50.3, 43.6, 30.3, 27.2, 19.2; 19F NMR (564 MHz, CDCl3): δ –59.5 (s, 3 F), –62.5 (s, 

3 F); HRMS-ESI: m/z calcd. for C23H20F6N2O [M+H]+: 455.1553, found 455.1557. 

 

4-(p-tolyl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnoline (4.24). HAP (3.70) (0.045 g, 0.166 mmol) was treated following 

general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam 

(0.053 g, 79%). 1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 7.79 Hz, 1 H), 7.21-7.15 (m, 

2 H), 6.98-6.88 (m, 5 H), 4.92 (d, J = 10.99 Hz, 1 H), 4.33 (td, J = 9.85 Hz, 5.26 Hz, 1 

H), 3.86 (dd, J = 7.79 Hz, 5.95 Hz, 1 H), 3.56 (dd, J = 10.76 Hz, 8.01 Hz, 1 H, 2.92 (t, J 

= 10.99 Hz, 1 H), 2.64-2.60 (m, 1 H), 2.56-2.27 (m, 2 H), 2.21 (s, 3 H), 2.12-2.09 (m, 1 

H), 1.94-1.87 (m, 1 H), 1.59-1.47 (m, 1 H), 1.28-1.88 (m, 1 H); 13C NMR (100 MHz, 

CDCl3): δ 155.7, 146.1, 137.3, 137.1, 131.9, 129.4, 129.0, 127.6, 126.7 (q, JC-F = 5 Hz), 

125.0 (q, JC-F = 29 Hz), 124.3 (q, JC-F = 272 Hz), 124.1, 75.2, 70.7, 67.7, 50.0, 43.7, 30.3, 
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27.1, 21.1, 19.3; 19F NMR (470 MHz, CDCl3): δ –59.4 (s, 3 F); HRMS-ESI: m/z calcd. 

for C23H23F3N2O [M+H]+: 401.1835, found 401.1836. 

 

4-(4-methoxyphenyl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.25). HAP (3.70) (0.045 g, 0.166 mmol) was 

treated following general procedure N. Flash chromatography (25:75 EtOAc-Hexanes) 

gave a yellow foam (0.044 g, 64%). 1H NMR (400 MHz, CDCl3): δ  7.45 (d, J = 7.79 

Hz, 1 H), 7.197.3 (m, 2 H), 6.97 (t, J = 7.33 Hz, 1 H), 6.92 (d, J = 8.70, 2 H), 6.65 (d, J = 

8.70 Hz, 2 H), 4.90 (d, J = 10.99 Hz, 1 H), 4.33 (td, J = 9.62 Hz, 5.50 Hz, 1 H), 3.89-3.84 

(m, 1 H), 3.69 (s, 3 H), 3.56 (dd, J = 10.53 Hz, 7.79 Hz, 1 H), 2.92 (t, J = 10.99 Hz, 1 H), 

2.68-2.60 (m, 1 H), 2.55-2.46 (m, 1 H), 2.32 (qd, J = 11.45 Hz, 5.95 Hz, 1 H), 2.13-2.10 

(m, 1 H), 1.94-1.88 (m, 1 H), 1.56-1.51 (m, 1 H), 1.29-1.25 (m, 1 H); 13C NMR (150 

MHz, CDCl3): δ 158.9, 155.6, 146.1, 132.0, 131.9, 129.7, 128.9, 126.6 (q, JC-F = 5 Hz), 

125.2 (q, JC-F = 29 Hz), 124.3 (q, JC-F = 270 Hz), 124.2, 113.6, 75.2, 70.8, 67.5, 55.2, 

49.8, 43.7, 30.4, 27.2, 19.3; 19F NMR (376 MHz, CDCl3): δ –59.5 (s, 3 F); HRMS-ESI: 

m/z calcd. for C23H23F3N2O2 [M+H]+: 417.1784, found 417.1772. 
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2,4-bis(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnoline (4.27). HAP (3.70) (0.045 g, 0.166 mmol) was treated following 

general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam 

(0.051 g, 68%). 1H NMR (500 MHz, CDCl3): δ 7.61-7.60 (m, 1 H), 7.55-7.52 (m, 2 H), 

7.44 (d, J = 7.45 Hz, 1 H), 7.28 (t, J = 7.45 Hz, 1 H), 7.17-7.13 (m, 1 H), 7.08-7.03 (m, 2 

H), 5.36 (d, J = 9.74 Hz, 1 H), 4.33 (ddd, J = 10.45 Hz, 9.16 Hz, 5.73 Hz, 1 H), 3.88 (dd, 

J = 8.02 Hz, 5.73 Hz, 1 H), 3.65 (dd, J = 10.60 Hz, 8.02 Hz, 1 H), 3.06 (t, J = 10.31 Hz, 1 

H), 2.72-2.67 (m, 1 H), 2.58-2.50 (m, 1 H), 2.25 (qd, J = 12.31 Hz, 6.30 Hz, 1 H), 2.14-

2.11 (m, 1 H), 1.94-1.88 (m, 1 H), 1.60-1.50 (m, 1 H), 1.25-1.79 (m, 1 H); 13C NMR 

(125 MHz, CDCl3): δ 159.7, 145.3, 141.3, 132.1, 131.8, 129.6, 128.5, 128.2 (JC-F = 30 

Hz), 127.6, 127.2 (q, JC-F = 6 Hz), 126.7 (JC-F = 29 Hz), 125.5, (JC-F = 6 Hz), 125.0, 

124.1 (JC-F = 271 Hz), 123.9 (JC-F = 274 Hz), 74.5, 70.1, 62.4, 53.2, 43.9, 30.4, 27.2, 

19.3; 19F NMR (470 MHz, CDCl3): δ –57.9 (s, 3 F), –58.7 (s, 3 F); HRMS-ESI: m/z 

calcd. for C23H20F6N2O [M+H]+: 455.1553, found 455.1544. 

 

4-(o-tolyl-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnoline (4.28). HAP (3.70) (0.045 g, 0.166 mmol) was treated following 

general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a off-white 

foam (0.058 g, 86%). 1H NMR (500 MHz, CDCl3): δ 7.51 (d, J = 8.02 Hz, 1 H), 7.26-

7.25 (m, 1 H), 7.19-7.12 (m, 2 H), 7.06-6.99 (m, 3 H), 6.91 (d, J = 7.45 Hz, 1 H), 5.27 (d, 
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J = 10.31 Hz, 1 H), 4.33 (ddd, J = 10.31 Hz, 9.16 Hz, 5.73 Hz, 1 H), 3.94 (dd, J = 7.45 

Hz, 6.30 Hz, 1 H), 3.66 (dd, J = 10.88 Hz, 7.45 Hz, 1 H), 3.00 (t, J = 10.31 Hz, 1 H), 

2.69-2.65 (m, 1 H), 2.57-2.50 (m, 1 H), 2.33-2.29 (m, 1 H), 2.12-2.10 (m, 1 H), 2.01 (s, 3 

H), 1.93-1.88 (m, 1 H), 1.56-1.52 (m, 1 H), 1.26-1.21 (m, 1 H); 13C NMR (125 MHz, 

CDCl3): δ 158.2, 145.8, 139.1, 135.6, 131.8, 130.4, 128.5, 127.3, 127.1 (q, JC-F = 5Hz), 

126.4, 125.2 (JC-F = 29 Hz), 124.4 (JC-F = 271 Hz), 124.2, 74.8, 70.4, 62.7, 52.0, 43.9, 

30.4, 27.1, 19.4, 19.0; 19F NMR (376 MHz, CDCl3): δ –58.4 (s, 3 F); HRMS-ESI: m/z 

calcd. for C23H23F3N2O [M+H]+: 401.1835, found 401.1840. 

 

4-(napthalen-2-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.34). HAP (3.70) (0.045 g, 0.166 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.059 g, 82%). 1H NMR (400 MHz, CDCl3): δ  7.73-7.71 (m, 1 H), 

7.68-7.65 (m, 2 H), 7.43-7.38 (m, 4 H), 7.28-7.22 (m, 2 H), 7.10 (t, J = 7.79 Hz, 1 H), 

6.85 (t, J = 7.33 Hz, 1 H), 5.14 (d, J = 10.99 Hz, 1 H), 4.36 (td, J = 9.62 Hz, 5.50 Hz, 1 

H), 3.83 (dd, J = 7.56 Hz, 5.59 Hz, 1 H), 3.61 (dd, J = 10.76 Hz, 7.79 Hz, 1 H), 2.98 (t, J 

= 10.99 Hz, 1 H), 2.70-2.64 (m, 1 H), 2.61-2.52 (m, 1 H), 2.42 (qd, J = 11.45 Hz, 5.95 

Hz, 1 H), 2.14-2.11 (m, 1 H), 1.97-1.89 (m, 1 H), 1.62-1.50 (m, 1 H), 1.31-1.21 (m, 1 H); 

13C NMR (100 MHz, CDCl3): δ 156.0, 145.9, 137.7, 133.0, 132.8, 132.0, 129.2, 128.3, 

127.8, 127.6, 127.1, 126.8 (q, JC-F = 5 Hz), 126.2, 126.1, 125.0,124.9 (q, JC-F = 29 Hz), 
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124.4 (q, JC-F = 272 Hz), 124.2, 75.2, 70.7, 68.1, 50.1, 43.7, 30.4, 27.2, 19.3; 19F NMR 

(376 MHz, CDCl3): δ –59.4 (s, 3 F); HRMS-ESI: m/z calcd. for C26H23F3N2O2 [M+H]+: 

437.1835, found 437.1834. 

 

4-(benzo[d][1,3]dioxol-5-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.33). HAP (3.70) (0.045 g, 0.166 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.050 g, 70%, isolated with a trace amount unidentifiable material). 

1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 7.86 Hz, 1 H), 7.27-7.21 (m, 2 H), 7.01 (t, J 

= 6.87 Hz, 1 H), 6.56-6.52 (m, 2 H), 6.44 (dd, J = 8.01 Hz, 1.37 Hz, 1 H), 5.86 (dd, J = 

8.70 Hz, 1.37 Hz, 2 H), 4.87 (d, J = 10.99 Hz, 1 H), 4.33 (td, J = 9.85 Hz, 5.95 Hz, 1 H), 

3.87 (dd, J = 7.56 Hz, 5.95 Hz, 1 H), 3.55 (dd, J = 10.99 Hz, 7.79 Hz, 1 H), 2.90 (t, J = 

10.53 Hz, 1 H), 2.65-2.59 (m, 1 H), 2.54-2.45 (m, 1 H), 2.27 (qd, J = 11.91 Hz, 5.95 Hz, 

1 H), 2.12-2.09 (m, 1 H), 1.93-1.87 (m, 1 H), 1.58-1.49 (m, 1 H), 1.28-1.18 (m, 1 H); 13C 

NMR (100 MHz, CDCl3): δ 156.0, 147.7, 147.0, 146.0, 134.0, 132.0, 129.4, 126.8 (q, JC-

F = 5 Hz), 125.1 (q, JC-F = 29 Hz),124.4 (q, JC-F = 272 Hz), 124.3, 121.5, 107.9, 107.6, 

101.1, 75.2, 70.7, 67.7, 50.0, 43.6, 30.3, 27.1, 19.3; 19F NMR (376 MHz, CDCl3): δ –

59.5 (s, 3 F); HRMS-ESI: m/z calcd. for C23H21F3N2O3 [M+H]+: 431.1577, found 

431.1576. 
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4-(pyridin-2-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-

2H-furo[4,3,2-de]cinnoline (4.31). HAP (3.70) (0.045 g, 0.166 mmol) was treated 

following general procedure N. Flash chromatography (60:40 EtOAc-Hexanes) gave an 

off-white foam (0.048 g, 75%). 1H NMR (400 MHz, CDCl3): δ 8.50 (d, J = 4.58 Hz, 1 

H), 7.45 (d, J = 6.87 Hz, 1 H), 7.35 (td, J = 7.45 Hz, 1.72 Hz, 1 H), 7.15-7.09 (m, 2 H), 

7.02-6.95 (m, 2 H), 6.83 (d, J = 8.02 Hz, 1 H), 5.04 (d, J = 10.88 Hz, 1 H), 4.34 (td, J = 

9.74 Hz, 4.58 Hz, 1 H), 3.87 (dd, J = 7.73 Hz, 6.30 Hz, 1 H), 3.60 (dd, J = 10.88 Hz, 8.02 

Hz, 1 H), 2.90 (t, J = 12.03 Hz, 1 H), 2.76-2.68 (m, 1 H), 2.64-2.53 (m, 2 H), 2.12-2.08 

(m, 1 H), 1.94-1.87 (m, 1 H), 1.57-1.47 (m, 1 H), 1.33-1.24 (m, 1 H); 13C NMR (125 

MHz, CDCl3): δ 159.0, 155.7, 149.5, 146.3, 136.3, 132.0, 129.9, 126.4 (q, JC-F = 5 Hz), 

125.4 (q, JC-F = 29 Hz), 124.4, 124.3 (q, JC-F = 273 Hz), 123.5, 122.6, 75.2, 70.5, 68.8, 

47.3, 43.4, 30.2, 27.1, 19.3; 19F NMR (470 MHz, CDCl3): δ –59.4 (s, 3 F); HRMS-ESI: 

m/z calcd. for C21H20F3N3O [M+H]+: 388.1631, found 388.1631. 

 

4-(pyrimidin-2-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.32). HAP (3.70) (0.081 g, 0.30 mmol) was 
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treated following general procedure N. Flash chromatography (80:20 EtOAc-Hexanes) 

gave an off-white foam (0.084 g, 72%). 1H NMR (400 MHz, CDCl3): δ 8.53 (d, J = 4.58 

Hz, 2 H), 7.48 (d, J = 8.24 Hz, 1 H), 7.17-7.14 (m, 2 H), 7.05-7.00 (m, 2 H), 5.18 (d, J = 

10.53 Hz, 1 H), 4.36 (td, J = 10.07 Hz, 5.95 Hz, 1 H), 3.92 (dd, J = 7.79 Hz, 6.41 Hz, 1 

H), 3.67 (dd, J = 10.99 Hz, 7.79 Hz, 1 H), 2.94 (t, J = 11.91 Hz, 1 H), 2.74-2.60 (m, 3 H), 

2.16-2.10 (m, 1 H), 1.94-1.89 (m, 1 H), 1.59-1.48 (m, 1 H), 1.35-1.25 (m, 1 H); 13C 

NMR (150 MHz, CDCl3): δ 168.3, 156.5, 156.3, 145.7, 131.3, 129.8, 125.9 (q, JC-F = 4 

Hz), 125.8 (q, JC-F = 29 Hz), 124.4, 123.4 (q, JC-F = 273 Hz), 118.9, 74.2, 69.8, 69.3, 

47.1, 42.7, 29.7, 26.5, 18.7; 19F NMR (376 MHz, CDCl3): δ –59.7 (s, 3 F); HRMS-ESI: 

m/z calcd. for C20H19F3N4O [M+H]+: 389.1584, found 389.1587. 

 

 

4-(thiophen-2-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-

2H-furo[4,3,2-de]cinnoline (4.29). HAP (3.70) (0.045 g, 0.166 mmol) was treated 

following general procedure N. Flash chromatography (15:85 EtOAc-Hexanes) gave a 

yellow foam (0.047 g, 72%). 1H NMR (500 MHz, CDCl3): δ 7.51 (d, J = 8.02 Hz, 1 H), 

7.21 (t, J = 8.02 Hz, 1 H), 7.12 (d, J = 8.02 Hz, 1 H), 7.09-7.06 (m, 2 H), 6.67 (dd, J = 

5.15 Hz, 3.44 Hz, 1 H), 6.51 (d, J = 3.44 Hz, 1 H), 5.19 (d, J = 11.46 Hz, 1 H), 4.36 (td, J 

= 9.74 Hz, 5.73 Hz, 1 H), 4.02 (dd, J = 7.73 Hz, 6.30 Hz, 1 H), 3.59 (dd, J = 10.88 Hz, 

8.02 Hz, 1 H), 2.92 (t, J = 10.31 Hz, 1 H), 2.64-2.60 (m, 1 H), 2.57-2.50 (m, 1 H), 2.33 
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(qd, J = 11.74 Hz, 6.30 Hz, 1 H), 2.16-2.13 (m, 1 H), 1.94-1.88 (m, 1 H), 1.58-1.49 (m, 1 

H), 1.33-1.24 (m, 1H); 13C NMR (125 MHz, CDCl3): δ 157.3, 146.1, 143.0, 132.2, 130.5, 

127.7, 126.5, 125.3 (q, JC-F = 29 Hz), 126.1 (q, JC-F = 5 Hz), 125.2, 124.1, 124.3 (q, JC-F 

= 273 Hz), 75.0, 70.8, 62.7, 50.5, 44.0, 30.4, 27.2, 19.3; 19F NMR (470 MHz, CDCl3): δ 

–59.7 (s, 3 F); HRMS-ESI: m/z calcd. for C20H19F3N2OS [M+H]+: 393.1243, found 

393.1234. 

 

4-(furan-2-yl)-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnoline (4.30). HAP (3.70) (0.045 g, 0.166 mmol) was treated following 

general procedure N. Flash chromatography (25:75 EtOAc-Hexanes) gave a yellow foam 

(0.038 g, 61%). 1H NMR (500 MHz, CDCl3): δ 7.52-7.50 (m, 1 H), 7.29-7.25 (m, 1 H), 

7.19 (d, J = 1.72 Hz, 1 H), 7.13-7.10 (m, 2 H), 6.02 (dd, J = 3.15 Hz, 1.72 Hz, 1 H), 5.84 

(d, J = 2.86 Hz, 1 H), 4.90 (d, J = 10.88 Hz, 1 H), 4.35 (td, J = 8.88 Hz, 6.30 Hz, 1 H), 

3.98 (dd, J = 7.73 Hz, 6.30 Hz, 1 H), 3.54 (dd, J = 10.88 Hz, 8.02 Hz, 1 H), 2.85 (t, J = 

10.88 Hz, 1 H), 2.64-2.58 (m, 1 H), 2.57-2.46 (m, 2 H), 2.16-2.11 (m, 1 H), 1.93-1.87 (m, 

1 H), 1.57-1.48 (m, 1 H), 1.32-1.23 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 156.6, 

151.6, 146.9, 142.2, 132.4, 130.4, 126.7 (q, JC-F = 29 Hz), 125.9 (q, JC-F = 4 Hz), 125.5, 

124.2 (q, JC-F = 273 Hz), 110.1, 110.0, 75.0, 70.8, 61.1, 45.1, 43.6, 30.4, 27.2, 19.3; 19F 

NMR (470 MHz, CDCl3): δ –60.0 (s, 3 F); HRMS-ESI: m/z calcd. for C20H19F3N2O2 

[M+H]+: 377.1471, found 377.1464. 
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tert-butyl 3-2-(2-trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-

furo[4,3,2-de]cinnolin-4-yl)-1H-indole-1-carboxylate (4.35). HAP (3.70) (0.045 g, 

0.166 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a off-white foam (0.68 g, 78%). 1H NMR (500 MHz, CDCl3): δ 

8.01 (brs, 1 H), 7.47 (dd, J = 7.73 Hz, 1.72 Hz, 1 H), 7.43 (dd, J = 7.45 Hz, 1 H), 7.28-

7.19 (m, 4 H), 7.02 (t, J = 7.45 Hz, 1 H), 6.96 (t, J = 7.45 Hz, 1 H), 5.14 (d, J = 10.88 Hz, 

1 H), 4.37 (td, J = 9.74 Hz, 5.73 Hz, 1 H), 3.88 (dd, J = 8.02 Hz, 6.30 Hz, 1 H), 3.58 (dd, 

J = 10.31 Hz, 8.02 Hz, 1 H), 2.98 (t, J = 10.88 Hz, 1 H), 2.75-2.56 (m, 3 H), 2.15-2.12 

(m, 1 H), 1.97-1.92 (m, 1 H), 1.64-1.53 (m, 10 H with an apparent s at 1.61 ppm), 1.29-

1.22 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 157.2, 149.4, 146.2, 135.7, 132.2, 129.5, 

128.3, 126.4 (q, JC-F = 5 Hz), 125.6 (q, JC-F = 30 Hz), 124.9, 124.5, 124.4 (q, JC-F = 274 

Hz), 122.7, 120.0, 119.8, 115.4, 84.1, 75.0, 71.2, 60.4, 46.8, 43.8, 30.5, 28.2, 27.4, 19.4; 

19F NMR (376 MHz, CDCl3): δ –59.7 (s, 3 F); HRMS-ESI: m/z calcd. for C29H30F3N3O3 

[M+H]+: 526.2312, found 526.2322. 
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2-(4-methoxyphenyl)-3-phenyl-3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-

de]cinnoline (4.18a). HAP (3.73) (0.046 g, 0.20 mmol) was treated following general 

procedure N. Flash chromatography (1:2:7 EtOAc-Hexanes- CH2Cl2) gave a yellow oil 

(0.049 g, 71%). 1H NMR (400 MHz, CDCl3): δ 7.25-7.22 (m, 3 H), 7.16 (t, J = 7.21, 1 

H), 7.05 (d, J = 6.87, 2 H), 6.88 (d, J = 9.16, 2 H), 6.66 (d, J = 9.36, 2 H), 5.04 (d, J = 

10.88 Hz, 1 H), 4.33-4.26 (m, 1 H), 3.98 (t, J = 7.45 Hz, 1 H), 3.69-3.65 (m, 4 H), 2.77-

2.70 (m, 2 H), 2.59-2.51 (m, 1 H), 2.13-2.06 (m, 2 H), 1.92-1.86 (m, 1 H), 1.53-1.44 (m, 

1 H), 1.13 (dq, J = 2.29 Hz, 12.03 Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ 157.2, 

152.4, 142.5, 140.5, 129.0, 127.2, 125.7, 115.3, 114.0, 75.2, 70.6, 64.8, 55.5, 52.6, 43.4, 

30.3, 27.2, 19.2; HRMS-ESI: m/z calcd. for C22H24N2O2 [M+H]+: 349.1911, found 

349.1921. 

 

4-methyl-2-(2-(trifluoromethyl)phenyl)-5-(4-(trifluoromethyl)phenyl)-

1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine (4.57). HAP (3.90) (0.084 g, 0.222 

mmol) was treated following general procedure N. Flash chromatography (20:80 EtOAc-

Hexanes) gave a yellow foam (0.029 g, 31%). 1H NMR (400 MHz, CDCl3): δ 7.64 (t, J = 

9.16 Hz, 3 H), 7.56 (d, J = 8.24 Hz, 2 H), 7.52 (t, J = 7.33 Hz, 1 H), 7.34 (d, J = 7.79 Hz, 

2 H), 7.21 (t, J = 7.79 Hz, 1 H), 4.88 (d, J = 9.62 Hz, 1 H), 4.31 (t, J = 7.33 Hz, 1 H), 

3.83 (dd, J = 7.79 Hz, 10.07 Hz, 1 H), 3.73-3.61 (m, 2 H), 2.73-2.56 (m, 2 H), 1.80 (s, 3 
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H); 13C NMR (125 MHz, CDCl3): δ 148.8, 145.0, 142.5, 132.9, 130.7 (q, J = 33 Hz), 

128.1, 127.8, 127.5 (q, J = 5 Hz), 126.0, 125.7 (q, J = 3 Hz), 125.1, 124.8, 124.3 (q, J = 

31 Hz), 123.0, 81.0, 70.8, 53.7, 50.8, 39.5, 21.3; 19F NMR (564 MHz, CDCl3): δ –59.3 

(s, 3 F), –62.4 (s, 3 F); HRMS-ESI: m/z calcd. for C21H18F6N2O [M+H]+: 429.1396, 

found 429.1391. 

 

(4aS,5R,7aS)-4-methyl-5-(p-tolyl)-2-(2-(trifluoromethyl)phenyl)-1,2,4a,5,7,7a-

hexahydrofuro[3,4-d]pyridazine (4.58). HAP (3.89) (0.074 g, 0.222 mmol) was treated 

following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a 

yellow foam (0.055 g, 67%). 1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 8.02 Hz, 1 H), 

7.51 (t, J = 7.45 Hz, 1 H), 7.34 (d, J = 8.02 Hz, 1 H), 7.32 (d, J = 8.02 Hz, 2 H), 7.22-

7.18 (m, 3 H), 4.80 (d, J = 9.74 Hz, 1 H), 4.26 (t, J = 7.45 Hz, 1 H), 3.79 (dd, J = 8.02 

Hz, 10.02 Hz, 1 H), 3.69 (t, J = 10.88 Hz, 1 H), 3.63-3.60 (m, 1 H), 2.65-2.58 (m, 2 H), 

2.36 (s, 3 H) 1.78 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ149.0, 143.7, 138.3, 137.6, 

132.8, 129.4, 127.6, 127.5, 127.5, 127.4, 125.9, 125.2, 124.6, 124.2, 124.0, 123.0, 81.6, 

70.5, 53.9, 50.1, 39.3, 21.3, 21.2; 19F NMR (564 MHz, CDCl3): δ –59.2 (s, 3 F); HRMS-

ESI: m/z calcd. for C21H21F3N2O [M+H]+: 375.1679, found 375.1676. 
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(4aS,5R,7R,7aS)-4-ethyl-7-(naphthalen-2-yl)-5-phenyl-2-(2-

(trifluoromethyl)phenyl)-1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine (4.56). HAP 

(3.87) (0.042 g, 0.125 mmol) was treated following general procedure N. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a pale yellow oil (0.0382 g, 29%). 1H 

NMR (400 MHz, CDCl3): δ 7.79-7.68 (m, 1H), 7.65 (s, 1H), 7.55-7.32 (m, 3H), 7.10 (t, J 

= 7.3 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 5.22 (d, J = 10.4 Hz, 

1H), 4.89 (d, J = 9.9 Hz, 1H), 3.88 (dd, J = 10.5, 7.9 Hz, 1H), 3.79 (t, J = 7.4 Hz, 1H), 

3.16-2.94 (m, 2H), 2.19 (dq, J = 15.0, 7.4 Hz, 1H), 2.08-1.94 (m, 1H), 0.88 (t, J = 6.8 Hz, 

3H); 13C NMR (125 MHz, CDCl3): δ 150.8; 19F NMR (470 MHz, CDCl3): δ –58.0; 

HRMS-ESI: m/z calcd. for C31H27F3N2O [M+Na]+: 523.1968, found 523.1982. 

 

4-ethyl-2,5,7-triphenyl-1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine (4.55). 

HAP (3.87) (0.047 g, 0.176 mmol) was treated following general procedure N. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a colorless foam (0.046 g, 68%). 1H NMR 

(400 MHz, CDCl3): δ 7.45-7.25 (m, 7 H), 7.21-7.16 (m, 3 H), 7.10-7.06 (m, 2 H), 7.03-
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7.01 (m, 2 H), 6.69 (t, J = 7.33 Hz, 1 H), 5.05 (d, J = 10.53 Hz, 1 H), 4.89 (d, J = 10.07 

Hz, 1 H), 4.09-4.01 (m, 2 H), 2.83 (dd, J = 11.68 Hz, 10.53 Hz, 1 H), 2.67-2.57 (m, 1 H), 

2.44-2.35 (m, 1 H), 2.21-2.12 (m, 1 H), 1.06 (t, J = 7.33 Hz, 3 H); 13C NMR (100 MHz, 

CDCl3): δ 150.7, 146.2, 142.2, 140.5, 129.1, 128.8, 128.6, 128.4, 127.4, 125.5, 118.8, 

115.1, 81.7, 71.4, 64.7, 51.6, 49.8, 27.5, 10.2; HRMS-ESI: m/z calcd. for C26H26N2O 

[M+H]+: 383.2118, found 383.2119. 

 

4-methyl-2,5-diphenyl-1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine (4.52). 

HAP (3.86) (0.029 g, 0.115 mmol) was treated following general procedure N. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a yellow foam (0.008 g, 23%). 1H NMR 

(400 MHz, CDCl3): δ 7.44-7.31 (m, 5 H), 7.30-7.25 (m, 2 H), 7.19-7.19 (m, 2 H), 6.84 (t, 

J = 7.33 Hz, 1 H), 4.85 (d, J = 10.07 Hz, 1 H), 4.37 (t, J = 7.33 Hz, 1 H), 3.94-3.86 (m, 2 

H), 3.60 (t, J = 10.99 Hz, 1 H), 2.70-2.57 (m, 2 H), 1.87 (s, 3 H); 13C NMR (100 MHz, 

CDCl3): δ 147.6, 141.3, 140.6, 129.1, 128.7, 128.6, 127.4, 119.2, 112.7, 81.9, 71.1, 50.4, 

48.5, 39.4, 21.3; HRMS-ESI: m/z calcd. for C19H20N2O [M+H]+: 293.1648, found 

293.1652. 
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4-methyl-2-phenyl-5-(p-tolyl)-1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine 

(4.53). HAP (3.88) (0.031 g, 0.116 mmol) was treated following general procedure N. 

Flash chromatography (10:90 EtOAc-Hexanes) gave a colorless solid (0.018 g, 51%). 1H 

NMR (400 MHz, CDCl3): δ 7.32-7.25 (m, 4 H), 7.19-7.17 (m, 4 H), 6.84 (t, J = 7.73 Hz, 

1 H), 4.81 (d, J = 9.62 Hz, 1 H), 4.35 (t, J = 6.87 Hz, 1 H), 3.98-3.84 (m, 2 H), 3.59 (t, J 

= 10.53 Hz, 1 H), 2.68-2.55  (m, 2 H), 2.36 (s, 3 H), 1.86 (s, 3 H);  13C NMR (100 MHz, 

CDCl3): δ 147.6, 141.5, 138.3, 137.5, 129.4, 129.0, 127.3, 119.2, 112.6, 81.7, 70.9, 50.1, 

48.5, 39.4, 21.3; HRMS-ESI: m/z calcd. for C20H22N2O [M+H]+: 307.1805, found 

307.1809. 

 

4-ethyl-2,5-diphenyl-1,2,4a,5,7,7a-hexahydrofuro[3,4-d]pyridazine (4.54). 

HAP (3.87) (0.030 g, 0.113 mmol) was treated following general procedure N. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a yellow foam (0.018 g, 53%). 1H NMR 

(500 MHz, CDCl3): δ 7.44-7.42 (m, 2 H), 7.40-7.37 (m, 2 H), 7.35-7.32 (m, 1 H), 7.29-

7.26 (m, 2 H), 7.21-7.19 (m, 2 H), 6.84 (t, J = 7.45 Hz, 1 H), 4.85 (d, J = 9.74 Hz, 1 H), 
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4.37-4.34 (m, 1 H), 3.96-3.93 (m, 1 H), 3.85 (dd, J = 9.74 Hz, 8.02 Hz, 1 H), 3.59 (t, J = 

11.46 Hz, 1 H), 2.68-2.60  (m, 2 H), 2.29-2.21 (m, 1 H), 2.67-1.99 (m, 1 H), 0.94 (t, J = 

7.45 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ 147.8, 144.7, 140.7, 129.0, 128.7, 128.6, 

127.5, 119.1, 112.6, 81.8, 70.9, 49.9, 48.5, 39.6, 28.0, 10.2; HRMS-ESI: m/z calcd. for 

C20H22N2O [M+H]+: 307.1805, found 307.1803. 

 

4-ethyl-7-(napthalen-2-yl)-2,5-diphenyl-1,2,4a,5,7,7a-hexahydrofuro-[3,4-

d]pyridazine (4.59). HAP (3.87) (0.036 g, 0.135 mmol) was treated following general 

procedure N. Flash chromatography (10:90 EtOAc-Hexanes) gave a colorless foam 

(0.029 g, 50%). 1H NMR (500 MHz, CDCl3): δ 7.76 (t, J = 9.16 Hz, 3 H), 7.67 (s, 1 H), 

7.48-7.28 (m, 7 H), 7.25 (dd, J = 8.59 Hz, 1.72 Hz, 1 H), 7.09-7.02 (m, 4 H), 6.65 (tt, J = 

7.45 Hz, 1.72 Hz, 1 H), 5.22 (d, J = 10.88 Hz, 1 H), 4.90 (d, J = 10.31 Hz, 1 H), 4.11-

4.03 (m, 2 H), 2.88 (t, J = 12.03 Hz, 1 H), 2.75-2.66 (m, 1 H), 2.45-2.38 (m, 1 H), 2.23-

2.17 (m, 1 H), 1.08 (t, J = 7.45 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ 150.8, 146.2, 

140.5, 139.8, 133.6, 132.9, 129.3, 128.8, 128.6, 128.5, 127.9, 127.8, 127.4, 126.3, 125.9, 

124.5, 123.4, 118.9, 115.2, 81.8, 71.4, 65.0, 51.6, 49.9, 27.6, 10.3; HRMS-ESI: m/z 

calcd. for C30H28N2O [M+H]+: 433.2274, found 433.2276. 
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1.7.8 Pyrrolidine-tetrahydropyridazine derivatives 

 

5-benzyl-2-phenyl-2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]-

cinnoline (4.37a).  HAP (3.23) (0.047 g, 0.161 mmol) was treated following general 

procedure N. Flash chromatography (40:60 EtOAc-Hexanes) gave a yellow foam (0.049 

g, 92%). 1H NMR (400 MHz, CDCl3): δ 7.36-7.30 (m, 4 H), 7.25-7.23 (m, 3 H), 7.15-

7.12 (m, 2 H), 6.81 (t, J = 8.24 Hz, 1 H), 3.85 (q, J = 12.82 Hz, 2 H), 3.65-3.61 (m, 1 H), 

3.57-3.51 (m, 1 H), 3.22 (dd, J = 8.01 Hz, 4.81 Hz, 1 H), 2.96 (td, J = 9.85 Hz, 5.27 Hz, 1 

H), 2.59-2.53 (m, 1 H), 2.49-2.28 (m, 3 H), 2.17-2.08 (m, 1 H), 1.81-1.70 (m, 2 H), 1.48-

1.38 (m, 1 H), 1.16-1.06 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 152.9, 148.3, 139.6, 

129.1, 129.0, 128.3, 127.1, 118.6, 112.3, 60.4, 59.7, 57.4, 50.3, 42.8, 37.6, 30.8, 28.2, 

20.4; HRMS-ESI: m/z calcd. for C22H25N3 [M+H]+: 332.2121, found 332.2124. 

 

5-benzyl-2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-

decahydropyrrolo[4,3,2-de]cinnoline (4.37). HAP (3.77) (0.040 g, 0.111 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.042 g, 96%). 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 7.45 Hz, 

1 H), 7.52 (t, J = 8.02 Hz, 1 H), 7.44 (d, J = 8.02 Hz, 1 H), 7.36-7.30 (m, 3 H), 7.25 (t, J 
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= 7.45 Hz, 1 H), 7.20 (t, J = 7.45 Hz, 1 H), 3.93 (d, J = 13.17 Hz, 1 H), 3.78 (d, J = 12.60 

Hz, 1 H), 3.61 (t, J = 10.31 Hz, 1 H), 3.29 (t, J = 7.45 Hz, 1 H), 3.13 (dd, J = 5.15 Hz, 

8.02 Hz, 1 H), 2.99 (d, J = 5.15 Hz, 1 H), 2.53-2.36 (m, 3 H), 2.29 (dd, J = 8.59 Hz, 

10.31 Hz, 1 H), 2.04-1.98 (m, 1 H), 1.76-1.73 (m, 2 H) 1.49-1.40 (m, 1 H) 1.17-1.09 (m, 

1 H); 13C NMR (125 MHz, CDCl3): δ 153.1, 148.7, 137.2, 131.2, 127.3, 126.5, 125.3, 

125.2 (q, JC-F = 6 Hz), 125.1, 123.7, 123.2, 122.8, 121.0, 58.5, 57.9, 55.5, 53.7, 40.5, 

35.9, 28.9, 26.1, 18.6; 19F NMR (564 MHz, CDCl3): δ –59.3 (s, 3 F); HRMS-ESI: m/z 

calcd. for C23H24F3N3 [M+Na]+: 422.1815, found 422.1822. 

 

3-benzyl-6-(2-(trifluoromethyl)phenyl)-2,2a,2a1,3,4,4a,5,6-octahydro-1H-

3,6,7-triazacyclopenta[cd]indene (4.38). AAP (3.78) (0.076 g, 0.222 mmol) was treated 

following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a 

yellow foam (0.037 g, 44%). 1H NMR (400 MHz, CDCl3): δ 7.69 (d, J = 7.79 Hz, 1 H), 

7.60 (d, J = 7.79 Hz, 1 H), 7.55 (t, J = 7.79 Hz, 1 H), 7.31-7.21 (m, 6 H), 3.98 (d, J = 

13.74 Hz, 1 H), 3.30 (t, J = 8.70 Hz, 1 H), 3.21 (t, J = 13.28 Hz, 1 H), 3.10-3.01 (m, 2 H), 

2.77-2.70 (m, 2 H), 2.66-2.61 (m, 2 H) 2.28 (dd, J = 7.79 Hz, 9.62 Hz, 1 H), 2.13 (t, J = 

10.99 Hz, 1 H), 2.06-1.90 (m, 2 H); 13C NMR (125 MHz, CDCl3): δ 169.3, 151.2, 139.0, 

132.9, 128.5, 128.2, 126.9, 126.6 (q, JC-F = 5 Hz), 125.7, 125.1, 67.8, 59.8, 58.1, 56.7, 

43.0, 37.3, 30.2, 25.6; 19F NMR (564 MHz, CDCl3): δ –59.2 (s, 3 F); HRMS-ESI: m/z 

calcd. for C22H22F3N3 [M+Na]+: 408.1658, found 408.1672. 
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1-benzyl-4-(2-(trifluoromethyl)phenyl)-2,2a,2a1,3,4,6,7,8,9,9a-decahydro-1H-

1,4,5-triazabenzo[cd]azulene (4.39). AAP (3.79) (0.073 g, 0.197 mmol) was treated 

following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a 

yellow foam (0.071 g, 88%). 1H NMR (400 MHz, CDCl3): δ 7.60 (d, J = 7.79 Hz, 1 H), 

7.45 (t, J = 7.79 Hz, 1 H), 7.35-7.30 (m, 4 H), 7.25-7.21 (m, 2 H), 7.13 (t, J = 7.33 Hz, 1 

H), 3.94 (d, J = 12.82 Hz, 1 H), 3.76 (d, J = 12.82 Hz, 1 H), 3.67 (d J = 10.53 Hz, 1 H), 

3.44 (t, J = 10.07 Hz, 1 H), 3.12-3.03 (m, 2 H), 2.53-2.45 (m, 3 H), 2.20-2.10 (m, 2 H) 

1.88 (d, 10.99 Hz, 1 H), 1.79-1.60 (m, 3 H), 1.40-1.17 (m, 3 H); 13C NMR (125 MHz, 

CDCl3): δ 146.7, 146.4, 137.6, 130.5, 127.1, 126.4, 125.8 (q, JC-F = 5 Hz), 125.2, 123.6, 

122.8, 121.7, 121.4 (q, JC-F = 30 Hz), 63.2, 58.3, 54.2, 52.0, 43.6, 35.7, 34.2, 32.0, 27.9, 

25.7; 19F NMR (564 MHz, CDCl3): δ –58.9 (s, 3 F); HRMS-ESI: m/z calcd. for 

C24H26F3N3 [M+Na]+: 436.1971, found 436.1987. 

 

5-benzyl-3-phenyl-2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-

decahydropyrrolo[4,3,2-de]cinnoline (4.40). AAP (3.77) (0.055 g, 0.139 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 
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gave a yellow foam (0.065 g, 90%). 1H NMR (600 MHz, CDCl3): δ 7.44 (d, J = 7.79, 1 

H), 7.29-6.93 (m, 12 H), 4.90 (d, J = 10.07 Hz, 1 H), 3.93 (d, J = 12.82 Hz, 1 H), 3.75 (d, 

J = 12.82 Hz, 1 H), 3.07-3.04 (m, 1 H), 2.87-2.77 (m, 2 H), 2.59-2.32 (m, 4 H), 1.80-1.79 

(m, 2 H), 1.53-1.44 (m, 1 H), 1.27-1.17 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ 157.0, 

146.4, 140.6, 139.6, 131.8, 129.1 (q, JC-F = 5 Hz), 129.0, 128.3, 128.2, 127.9, 127.4, 

127.0, 126.8, 126.7. 123.7, 69.0, 60.3, 59.8, 57.3, 48.5, 42.4, 31.1, 28.1, 20.5; 19F NMR 

(470 MHz, CDCl3): δ –59.4 (s, 3 F); HRMS-ESI: m/z calcd. for C29H28F3N3 [M+H]+: 

476.2308, found 476.2319. 

 

5-benzyl-2-(2-(trifluoromethyl)phenyl)-3-(4-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.41). AAP (3.77) (0.045 

g, 0.125 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow foam (0.050 g, 72%). 1H NMR (400 MHz, CDCl3): δ 

7.46 (d, J = 7.79, 1 H), 7.37 (d, J = 8.24, 2 H), 7.30-7.17 (m, 7 H), 7.13 (d, J = 8.24 Hz, 2 

H), 6.99-6.93 (m, 1 H), 5.00 (d, J = 10.53 Hz, 1 H), 3.94 (d, J = 13.28 Hz, 1 H), 3.75 (d, J 

= 12.82 Hz, 1 H), 3.13-2.99 (m, 1 H), 2.84-2.78 (m, 2 H), 2.60-2.39 (m, 3 H), 2.34-2.17 

(m, 1 H), 1.83-1.79 (m, 1 H), 1.55-1.42 (m, 1 H), 1.34-1.15 (m, 1 H), 0.97-0.83 (m, 1 H); 

13C NMR (125 MHz, CDCl3): δ 158.2, 148.8, 139.6, 132.1, 129.4, 129.0, 128.3 (q, JC-F = 

4 Hz), 127.0, 126.1, 124.8, 124.5 (q, JC-F = 5 Hz), 124.3, 122.5, 120.3, 115.3, 61.4, 60.2, 

59.8, 57.9, 42.5, 34.7, 31.2, 28.4, 28.2, 20.7; 19F NMR (564 MHz, CDCl3): δ –59.4 (s, 3 
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F), –62.4 (s, 3 F); HRMS-ESI: m/z calcd. for C30H27F6N3 [M+H]+: 544.2182, found 

544.2193. 

 

5-benzyl-3-(4-methoxyphenyl)-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.42). AAP (3.77) (0.044 

g, 0.124 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow foam (0.054 g, 86%). 1H NMR (600 MHz, CDCl3): δ 

7.45 (d, J = 7.79, 1 H), 7.33-7.12 (m, 6 H), 6.96-6.89 (m, 3 H), 6.63 (d, J = 8.70, 1 H), 

4.86 (d, J = 10.53 Hz, 1 H), 3.93 (d, J = 12.82 Hz, 1 H), 3.77-3.74 (m, 1 H), 3.67 (s, 3 H), 

3.04-2.97 (m, 1 H), 2.87-2.76 (m, 2 H), 2.58-2.31 (m, 3 H), 1.80-1.79 (m, 2 H), 1.53-1.42 

(m, 1 H), 1.34-1.17 (m, 2 H), 0.97-0.83 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ 158.7, 

156.5, 147.9 146.5 139.8, 131.9, 129.4, 129.1, 128.3, 127.0, 126.7 (q, JC-F = 5 Hz), 124.9, 

123.8, 113.5, 77.3, 68.5, 60.4, 59.8, 57.4, 55.1, 48.2, 42.4, 31.0, 28.1, 20.5; 19F NMR 

(470 MHz, CDCl3): δ –59.3 (s, 3 F); HRMS-ESI: m/z calcd. for C30H30F3N3O 

[M+H]+: 506.2414, found 506.2413. 
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5-benzyl-2-phenyl-3-(p-tolyl)-2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-

de]cinnoline (4.43). AAP (3.77) (0.071 g, 0.199 mmol) was treated following general 

procedure N. Flash chromatography (20:80 EtOAc-Hexanes) gave a yellow foam (0.072 

g, 74%). 1H NMR (400 MHz, CDCl3): δ 7.43 (d, J = 8.24 Hz, 1 H), 7.32-7.15 (m, 8 H), 

6.94-6.88 (m, 5 H), 4.86 (d, J = 10.07 Hz, 1 H), 3.91 (d, J = 13.28 Hz, 1 H), 3.72 (d, J = 

12.82 Hz, 1 H), 3.06-3.00 (m, 1 H), 2.99-2.84 (m, 1 H), 2.77 (t, J = 10.99 Hz, 1 H), 2.60-

2.43 (m, 2 H) 2.39-2.29 (m, 1 H), 2.17 (s, 3 H), 1.83-1.74 (m, 1 H), 1.53-1.42 (m, 1 H), 

1.29-1.17 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 156.3, 146.3, 137.0, 131.8, 129.8, 

129.2, 129.1, 128.9, 128.8, 128.4, 128.2, 127.9, 127.8, 127.4, 126.7, (q, JC-F = 6 Hz), 

125.5, 123.8, 68.7, 60.8, 59.7, 57.4, 48.3, 42.3, 30.8, 28.0, 21.1, 20.5; 19F NMR (564 

MHz, CDCl3): δ –60.5 (s, 3 F); HRMS-ESI: m/z calcd. for C30H30F3N3 [M+Na]+: 

512.2284, found 512.2294. 

 

5-benzyl-3-(naphthalen-2-yl)-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.47). AAP (3.77) (0.044 

g, 0.124 mmol) was treated following general procedure N. Flash chromatography (20:80 
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EtOAc-Hexanes) gave a yellow foam (0.057 g, 87%). 1H NMR (400 MHz, CDCl3): δ 

7.70-7.63 (m, 3 H), 7.42-7.36 (m, 4 H), 7.28-7.19 (m, 7 H), 7.08 (t, J = 7.79, 1 H), 6.85 

(t, J = 7.33, 1 H), 5.11 (d, J = 8.24 Hz, 1 H), 3.94 (d, J = 13.28 Hz, 1 H), 3.75 (d, J = 

12.82 Hz, 1 H), 3.15-2.99 (m, 1 H), 2.88-2.78 (m, 2 H), 2.64-2.43 (m, 4 H), 1.90-1.75 (m, 

2 H), 1.57-1.43 (m, 1 H), 1.33-1.12 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 156.8, 

146.3, 139.6, 138.4, 133.0, 132.7, 131.9, 129.0, 128.8, 128.3, 128.1, 127.8, 127.6, 127.0, 

126.9, 126.8  (q, JC-F = 5 Hz), 126.0, 125.8, 125.4, 123.8, 77.3, 69.1, 60.4, 59.8, 57.3, 

48.6, 42.4, 31.0, 28.1, 20.5; 19F NMR (564 MHz, CDCl3): δ –59.1 (s, 3 F); HRMS-ESI: 

m/z calcd. for C33H30F3N3 [M+H]+: 526.2465, found 526.2472. 

 

 

2-(2-trifluoromethyl)phenyl)-4-(4-(trifluoromethyl)phenyl)-

3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-de]cinnoline (4.46). AAP (3.77) (0.044 g, 

0.124 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow foam (0.047 g, 76%). 1H NMR (400 MHz, CDCl3): δ 

7.45 (d, J = 8.04, 1 H), 7.33-7.17 (m, 7 H), 6.97 (t, J = 6.87, 1 H), 6.54 (s, 1 H), 6.49 (d, 

J = 8.02 Hz, 1 H), 6.42 (d, J = 8.02 Hz, 1 H), 5.83 (d, J = 11.46 Hz, 2 H), 4.83 (d, J = 

10.88 Hz, 1 H), 3.92 (d, J = 13.17 Hz, 1 H), 3.72 (d, J = 12.60 Hz, 1 H), 3.05-3.00 (m, 1 

H), 2.88-2.85 (m, 1 H), 2.76 (t, 11.46 Hz, 1 H), 2.56-2.43 (m, 2 H), 2.35 (t, 10.31 Hz, 1 

H) 2.27-2.22 (m, 1 H), 1.81-1.78 (m, 2 H), 1.52-1.42 (m, 1 H), 1.27-1.18 (m, 1 H); 13C 
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NMR (125 MHz, CDCl3): δ 155.3, 145.7, 145.0, 144.4, 130.2, 127.4, 127.3, 126.6, 

126.5, 125.5, 125.0, 124.9 (q, JC-F = 5 Hz), 123.9, 123.2, 122.2, 119.8, 106.0, 99.2, 66.9, 

58.9, 57.9, 55.5, 46.4, 40.4, 28,9, 26.1, 18.7; 19F NMR (564 MHz, CDCl3): δ –59.6 (s, 3 

F); HRMS-ESI: m/z calcd. for C30H28F3N3O2 [M+H]+: 520.2206, found 520.2217. 

 

5-benzyl-3-(thiophen-2-yl)-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.44). AAP (3.77) (0.043 

g, 0.124 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow oil (0.043 g, 74%) 1H NMR (400 MHz, CDCl3): δ 7.51 

(d, J = 7.79, 1 H), 7.34-7.18 (m, 7 H), 7.13 (d, J = 7.79 Hz, 1 H), 7.07-7.02 (m, 2 H), 

6.64 (dd, J = 5.04 Hz, 3.21 Hz, 1 H), 6.50 (d, J = 2.75, 1 H), 5.16 (d, J = 10.53 Hz, 1 H), 

3.96 (d, J = 12.82 Hz, 1 H), 3.76 (d, J = 12.82 Hz, 1 H), 3.10-3.02 (m, 2 H), 2.82 (t, J = 

10.53 Hz, 1 H), 2.59-2.28 (m, 4 H), 1.90-1.76 (m, 2 H), 1.55-1.43 (m, 1 H), 1.35-1.22 (m, 

1 H), 0.97-0.83 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 156.3, 144.6, 141.6, 130.3, 

128.7, 127.4, 126.6, 125.6, 125.4, 124.5, 124.3 (q, JC-F = 5 Hz), 124.2, 123.8, 123.1, 

121.1, 61.9, 58.3, 57.9, 55.7, 47.1, 40.8, 28.9, 26.3, 18.7; 19F NMR (564 MHz, CDCl3): δ 

–59.6 (s, 3 F); HRMS-ESI: m/z calcd. for C27H26F3N3S [M+H]+: 482.1881, found 

482.1872. 
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5-benzyl-3-(furan-2-yl)-2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-

decahydropyrrolo[4,3,2-de]cinnoline (4.45). AAP (3.77) (0.044 g, 0.124 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.039 g, 67%). 1H NMR (400 MHz, CDCl3): δ 7.50-7.46 (m, 1 H), 

7.38-7.21 (m, 7 H), 7.14-7.07 (m, 3 H), 5.98 (dd, J = 2.00 Hz, 2.86 Hz, 1 H), 5.80 (d, J = 

2.86, 1 H), 4.86 (d, J = 11.46 Hz, 1 H), 3.95 (d, J = 12.60 Hz, 1 H), 3.74 (d, J = 12.60 Hz, 

1 H), 3.07-3.02 (m, 1 H), 2.92 (dd, J = 7.45 Hz, J = 8.02 Hz, 1 H), 2.74 (t, J = 10.88 Hz, 

1 H), 2.54-2.45 (m, 3 H), 2.37 (dd, J = 10.31 Hz, J = 8.02 Hz, 1 H), 1.87-1.75 (m, 2 H), 

1.53-1.42 (m, 2 H), 1.31-1.22 (m, 2 H); 13C NMR (125 MHz, CDCl3): δ 157.7, 152.3, 

147.3, 141.9, 139.6, 132.3, 130.5, 129.0, 128.3. 128.1, 127.1, 125.8 (q, JC-F = 5 

Hz),125.2, 119.9, 109.9, 109.6, 62.2, 60.0, 59.8, 57.4, 43.8, 42.3, 31.1, 28.2, 20.6; 19F 

NMR (564 MHz, CDCl3): δ –59.8 (s, 3 F); HRMS-ESI: m/z calcd. for C27H26F3N3O 

[M+H]+: 466.2101, found 466.2105. 

 

tert-butyl-3-5-benzyl-2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-

decahydropyrrolo[4,3,2-de]cinnolin-3-yl)-1H-indole-1-carboxylate (4.48). AAP (3.77) 
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(0.045 g, 0.125 mmol) was treated following general procedure N. Flash chromatography 

(20:80 EtOAc-Hexanes) gave a yellow foam (0.039 g, 52%). 1H NMR (400 MHz, 

CDCl3): δ 7.46 (d, J = 7.79, 2 H), 7.32-7.15 (m, 10 H), 7.02 (t, J = 7.33 Hz, 1 H), 6.95 (t, 

J = 7.79 Hz, 1 H), 5.09 (d, J = 10.53 Hz, 1 H), 3.94 (d, J = 12.82 Hz, 1 H), 3.73 (d, J = 

12.82 Hz, 1 H), 3.10-3.04 (m, 1 H), 2.88-2.81 (m, 2 H), 2.64-2.49 (m, 3 H), 2.37 (dd, J = 

8.24 Hz, 10.30 Hz, 1 H), 1.86-1.79 (m, 2 H), 1.59 (s, 9 H), 1.52-1.43 (m, 1 H), 1.30-1.19 

(m, 3 H); 13C NMR (125 MHz, CDCl3): δ 158.2, 149.5, 148.8, 139.6, 132.1, 129.4, 

129.0, 128.3, 127.0, 126.3, 124.5,  (q, JC-F = 4 Hz), 124.3, 122.5, 120.3, 115.3, 83.8, 61.4, 

60.2, 59.8, 57.9, 42.5, 34.7, 31.2, 28.4, 28.2, 20.7; 19F NMR (564 MHz, CDCl3): δ –59.6 

(s, 3 F); HRMS-ESI: m/z calcd. for C36H37F3N4O2 [M+H]+: 615.2941, found 

615.2951. 

 

5-benzyl-3-methyl-2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-

decahydropyrrolo[4,3,2-de]cinnoline (4.49). AAP (3.77) (0.088 g, 0.244 mmol) was 

treated following general procedure P. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.048 g, 48%). 1H NMR (400 MHz, CDCl3): δ 7.58 (d, J = 8.02 Hz, 

1 H), 7.53-7.48 (m, 2 H), 7.35-7.30 (m, 4 H), 7.27-7.24 (m, 1 H), 7.18 (t, J = 7.45 Hz, 1 

H), 4.00-3.94 (m, 1 H), 3.92 (d, J = 13.17 Hz, 1 H), 3.75 (d, J = 12.60 Hz, 1 H), 3.07 (dd, 

J = 4.58 Hz, 7.73 Hz, 1 H), 3.00-2.95 (m, 1 H), 2.58 (t, 11.17 Hz, 1 H), 2.49-2.43 (m, 1 

H), 2.39-2.33 (m, 1 H) 2.30 (dd, J = 8.02 Hz, 10.88 Hz, 1 H),, 1.78-1.70 (m, 3 H), 1.46-
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1.38 (m, 1 H), 1.14 (dd, J = 10.88 Hz, 22.05 Hz, 1 H), 0.84 (d, J = 6.30 Hz, 3 H); 13C 

NMR (125 MHz, CDCl3): δ 153.8, 146.7, 132.3, 130.3, 129.1, 129.0, 128.6, 128.3, 

128.1, 127.2, 126.8 (q, JC-F = 6 Hz), 126.1, 125.9, 125.7, 125.3, 124.6, 123.1, 65.9, 60.7, 

59.8, 59.0, 57.4, 46.8, 42.4, 30.8, 27.9, 20.5, 20.1, 15.3; 19F NMR (564 MHz, CDCl3): δ 

–60.5 (s, 3 F); HRMS-ESI: m/z calcd. for C24H26F3N3 [M+Na]+: 436.1971, found 

436.1982. 

 

6-benzyl-4-methyl-5-phenyl-2-(2-(trifluoromethyl)phenyl)-2,4a,5,6,7,7a-

hexahydro-1H-pyrrolo[3,4-d]pyridazine (4.60). AAP (3.96) (0.061 g, 0.148 mmol) was 

treated following general procedure N. Flash chromatography (20:80 EtOAc-Hexanes) 

gave a yellow foam (0.027 g, 40%). 1H NMR (400 MHz, CDCl3): δ 7.59 (d, J = 8.02 Hz, 

1 H), 7.53 (d, J = 7.45 Hz, 2 H), 7.47 (d, J = 7.75 Hz, 1 H), 7.38 (t, J = 7.45 Hz, 2 H), 

7.31 (d, J = 8.02 Hz, 2 H), 7.27-7.14 (m, 4 H), 3.82 (d, J = 13.75 Hz, 1 H), 3.75 (d, J = 

10.31 Hz, 1 H), 3.60 (t, J = 10.88 Hz, 1 H), 3.51 (dd, J = 5.73 Hz, 10.60 Hz, 1 H), 3.43 

(d, J = 13.75 Hz, 1 H), 2.98 (t, J = 9.74 Hz, 1 H), 2.83 (t, J = 9.16 Hz, 1 H), 2.64 (d, J = 

11.46 Hz, 1 H), 2.47-2.39 (m, 1 H), 1.65 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ 149.2, 

145.9, 141.9, 139.9, 132.7, 128.9, 128.5, 128.4, 128.2, 127.9, 127.4 (q, J = 5 Hz), 126.8, 

125.5, 124.1, 124.2, 69.7, 57.3, 55.6, 53.5, 50.2, 36.5, 21.4; 19F NMR (564 MHz, 

CDCl3): δ –59.2 (s, 3 F); HRMS-ESI: m/z calcd. for C27H26F3N3 [M+H]+: 450.2152, 

found 450.2149. 
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6-benzyl-4-methyl-5-phenyl-1-(p-tolyl)-2-(2-(trifluoromethyl)phenyl)-

2,4a,5,6,7,7a-hexahydro-1H-pyrrolo[3,4-d]pyridazine (4.61). AAP (3.96) (0.030 g, 

0.074 mmol) was treated following general procedure N. Flash chromatography (20:80 

EtOAc-Hexanes) gave a yellow foam (0.027 g, 67%). 1H NMR (400 MHz, CDCl3): δ 

7.54 (d, J = 7.45 Hz, 1 H), 7.49-7.44 (m, 1 H), 7.38 (t, J = 7.45 Hz, 2 H), 7.30 (t, J = 

7.45 Hz, 1 H), 7.23-7.12 (m, 6 H), 7.03 (d, J = 8.02 Hz, 2 H), 6.94-6.90 (m, 4 H), 4.90 (d, 

J = 10.31 Hz, 1 H), 3.79-3.76 (m, 2 H), 3.34 (d, J = 13.75 Hz, 1 H), 3.00 (t, J = 9.74 Hz, 

1 H), 2.91 (t, J = 11.17 Hz, 1 H), 2.72 (p, J = 9.74 Hz, 1 H), 2.43-2.40 (m, 1 H), 2.19 (s, 3 

H), 1.65 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ 144.0, 139.9, 137.2, 136.8, 131.3, 

129.4, 129.2, 129.1, 128.8, 128.7, 128.5, 128.3 (q, JC-F = 5 Hz), 128.2, 128.1, 127.9, 

127.3, 126.7, 125.4, 123.1, 70.4, 67.1, 57.2, 53.5, 50.3, 45.5, 21.2, 21.1; 19F NMR (564 

MHz, CDCl3): δ –60.5 (s, 3 F); HRMS-ESI: m/z calcd. for C34H32F3N3 [M+H]+: 

540.2621, found 540.2634. 

Highly substituted fused furans- and pyrrolidines-tetrahydropyridazine 

derivatives 
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Syn-3,4-diphenyl-2-(2-(trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.78). HAP (3.70) (0.054 g, 0.199 mmol) was 

treated following general procedure N. Flash chromatography (10:90 EtOAc-Hexanes) 

gave seperable diastereomers: yellow oil (0.030 g, 33%). 1H NMR (400 MHz, CDCl3): δ 

7.44 (t, J = 7.79, 1 H), 7.12-7.08 (m, 2 H), 6.98-6.93 (m, 6 H), 6.83-6.80 (m, 3 H), 6.71-

6.69 (m, 2 H), 5.00 (d, J = 10.53 Hz, 1 H), 4.80 (d, J = 10.07 Hz, 1 H), 4.53-4.46 (m, 1 

H), 3.25 (t, J = 10.99 Hz, 1 H), 2.73-2.67 (m, 1 H), 2.63-2.51 (m, 1 H), 2.35-2.26 (m, 1 

H), 2.04-1.95 (m, 1 H), 1.67-1.56 (m, 1 H), 1.54-1.42 (m, 1 H); 13C NMR (125 MHz, 

CDCl3): δ 157.0, 145.8, 138.9, 138.8 131.9, 130.1, 128.7, 128.0, 127.9, 127.8, 127.7, 

127.2, 126.6 (q, JC-F = 5 Hz), 126.3, 124.5, 84.6, 74.5, 68.3, 56.2, 44.8, 30.7, 27.3, 19.3; 

19F NMR (564 MHz, CDCl3): δ –59.2 (s, 3 F); HRMS-ESI: m/z calcd. for 

C28H25F3N2O [M+H]+: 463.1992, found 463.1987. 

 

Anti-3,4-diphenyl-2-(2-(trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-

octahydro-2H-furo[4,3,2-de]cinnoline (4.79).  Yellow oil (0.031 g, 34%). 1H NMR 

(400 MHz, CDCl3): δ 7.40 (t, J = 7.45, 2 H), 7.34 (t, J = 6.30, 2 H), 7.18-7.14 (m, 3 H), 
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7.09-7.01 (m, 4 H), 6.94-6.91 (m, 3 H), 5.11 (d, J = 7.45 Hz, 1 H), 4.79-4.73 (m, 1 H), 

4.29 (d, J = 10.31 Hz, 1 H), 3.17-3.13 (m, 1 H), 2.79-2.71 (m, 2 H), 2.63-2.56 (m, 1 H), 

2.30-2.28 (m, 1 H), 2.04-1.96 (m, 1 H), 1.72-1.62 (m, 1 H), 1.41-1.36 (m, 1 H); 13C 

NMR (125 MHz, CDCl3): δ 158.5, 145.7, 139.8, 131.8 130.0, 128.4, 127.9, 127.9, 126.4, 

126.4, 126.3 (q, JC-F = 5 Hz),126.0, 124.6, 81.0, 76.4, 66.3, 53.3, 40.7, 30.6, 27.1, 19.1; 

19F NMR (564 MHz, CDCl3): δ –60.2 (s, 3 F); HRMS-ESI: m/z calcd. for 

C28H25F3N2O [M+Na]+: 485.1811, found 485.1820. 

 

Syn-5-benzyl-3,4-diphenyl-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.80). AAP (3.77) (0.074 

g, 0.207 mmol) was treated following general procedure N. Flash chromatography (10:90 

EtOAc-Hexanes) gave seperable diastereomers: Yellow oil (0.029 g, 26%). 1H NMR 

(400 MHz, CDCl3): δ 7.42 (d, J = 7.79, 1 H), 7.26-7.21 (m, 5 H), 7.15 (d, J = 6.87, 2 H), 

7.10-7.05 (m, 2 H), 7.00-6.89 (m, 4 H), 6.77-6.76 (m, 3 H), 6.62-6.61 (m, 2 H), 4.88 (d, J 

= 10.07 Hz, 1 H), 3.84 (d, J = 13.28 Hz, 1 H), 3.78 (d, J = 9.16 Hz, 1 H), 3.47 (d, J = 

12.82 Hz, 1 H), 3.21-3.14 (m, 1 H), 2.97 (t, J = 11.28 Hz, 1 H), 2.62-2.57 (m, 2 H), 2.49-

2.40 (m, 1 H), 2.33-2.25 (dd, J = 10.07 Hz, 21.98 Hz, 1 H), 1.73-1.69 (m, 1 H), 1.42-1.38 

(m, 1 H), 1.21-1.13 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ 158.5, 140.1, 139.9, 139.8, 

131.8 129.5, 129.2, 128.1, 127.9, 127.7, 127.4, 127.2, 126.9, 126.7, 126.6, (q, JC-F = 5 

Hz), 123.9, 73.9, 68.9, 59.9, 57.1, 55.9, 42.1, 32.2, 28.0, 20.6; 19F NMR (564 MHz, 
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CDCl3): δ –59.2 (s, 3 F); HRMS-ESI: m/z calcd. for C35H32F3N3 [M+Na]+: 574.2441, 

found 574.2460. 

 

Anti-5-benzyl-3,4-diphenyl-2-(2-(trifluoromethyl)phenyl)-

2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-de]cinnoline (4.81). Yellow oil (0.032 

g, 28%). 1H NMR (400 MHz, CDCl3): δ 7.44-7.29 (m, 3 H), 7.20-7.15 (m, 2 H), 7.11-

7.08 (m, 6 H), 6.99 (m, 1 H), 6.87-6.82 (m, 2 H), 4.16 (d, J = 10.53 Hz, 1 H), 4.03 (d, J = 

6.41 Hz, 1 H), 3.93 (d, J = 13.74 Hz, 1 H), 3.98 (d, J = 14.20 Hz, 1 H), 3.68-3.62 (m, 1 

H), 3.29 (t, J = 12.06 Hz, 1 H), 2.74-2.65 (m, 2 H), 2.59-2.51 (m, 1 H), 2.10-2.04 (m, 1 

H), 1.92-1.86 (m, 1 H), 1.60-1.50 (m, 1 H), 1.31-1.20 (m, 1 H); 13C NMR (125 MHz, 

CDCl3): δ 157.6, 138.9, 138.8, 137.3 129.7, 127.4, 126.8 126.6, 126.5, 126.4, 126.2, 

125.5, 125.4, 124.7, 124.5 (q, JC-F = 6 Hz), 121.9, 75.4, 65.1, 64.7, 58.5, 51.4, 51.3, 38.1, 

29.8, 26.2, 18.3; 19F NMR (564 MHz, CDCl3): δ –60.1 (s, 3 F); HRMS-ESI: m/z calcd. 

for C35H32F3N3 [M+H]+: 552.2621, found 552.2612. 

Transformation of fused furans- and pyrrolidines-tetrahydropyridazine 

derivatives 

Hydrazone reduction, and Bz protection 

To a 0 °C (ice-bath) solution of hydrazone (1 equiv) in THF (0.1 M) was added 

LiAlH4 (2 equiv). The reaction was allowed to warm to rt and stirred for 14 h. The 

reaction was cooled to 0 °C (ice-bath), diluted with Et2O (10 mL) and added sequentially 
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H2O (1.2 mL), 15% aq. NaOH (1.2 mL), and H2O (3.6 mL). The reaction was warmed to 

rt, MgSO4 was added and stirred 20 min. The reaction was filtered and concentrated in 

vacuo and purifed by flash chromatography.  

To a solution the above amine (1 equiv) in CH2Cl2 (0.1 M) was added DMAP (5 

mol%), followed by Et3N (1.5 equiv) and BzCl (1.2 equiv). The reaction was stirred for 

14 h, diluted with CH2Cl2 (10 mL), and partitioned between H2O and CH2Cl2. The 

aqueous phase was extracted with CH2Cl2 (3 X 10 mL), and the combined organic phases 

were washed with sat. NaCl (20 mL), dried over MgSO4, and concentrated in vacuo and 

purifed by flash chromatography. 

 

phenyl((3a,3a1,5a,8a)2-phenyldecahydro-1H-furo[4,3,2-de]cinnolin-1-yl-

methanone (4.83). Hydrazone (4.10) (0.179 g, 0.738 mmol). Flash chromatography 

(40:60 EtOAc-Hexanes) gave a colorless oil (0.126 g, 70%). 1H NMR (400 MHz, 

CDCl3): δ 7.24-7.19 (m, 2 H), 7.11-7.08 (m, 2 H), 6.78-6.74 (m, 1 H), 4.20-4.06 (m, 3 H), 

3.47 (dd, J = 10.6 Hz, 7.79 Hz, 1 H), 3.36 (ddd, J = 5.95 Hz, 5.95 Hz, 5.95 Hz, 1 H), 3.29 

(brs, 1 H), 2.66 (t, J = 10.99 Hz, 1 H), 2.62-2.51 (m, 1 H), 1.95 (quin. J = 5.95 Hz, 1 H), 

1.85-1.74 (m, 2 H), 1.72-1.66 (m, 1 H), 1.57-1.46 (m, 1 H), 1.18-1.12 (m, 2 H); 13C 

NMR (100 MHz, CDCl3): δ 151.1, 128.9, 118.5, 114.2, 76.5, 69.7, 55.5, 51.7, 46.5, 35.2, 

29.8, 25.5, 21.8; HRMS-ESI: m/z calcd. for C15H20N2O [M+H]+: 245.1648, found 

245.1655. 
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Amine (0.184 g, 0.753 mmol). Flash chromatography (45:55 EtOAc-Hexanes) 

gave an off-white foam (4.85) (0.234 g, 89%). 1H NMR (500 MHz, CDCl3): δ 7.52 (d, J 

= 7.45 Hz, 2 H), 7.31-7.19 (m, 5 H), 6.85-6.81 (m, 3 H), 5.37-5.35 (m, 1 H), 4.24-4.16 

(m, 2 H), 4.12 (t, J = 7.45 Hz, 1 H), 3.44 (dd, J = 11.17 Hz, 8.02 Hz, 1 H), 2.94 (t, J = 

12.03 Hz, 1 H), 2.60-2.47 (m, 1 H), 2.23-2.21 (m, 1 H), 1.81-1.78 (m, 2 H), 1.62-1.59 (m, 

1 H), 1.30-1.01 (m, 3 H); 13C NMR (125 MHz, CDCl3): δ 174.0, 148.4, 135.6, 130.0, 

129.3, 127.7, 126.8, 119.8, 113.4, 76.3, 69.0, 53.4, 50.3, 46.2, 32.2, 29.6, 26.0, 21.7; 

HRMS-ESI: m/z calcd. for C22H24N2O2 [M+H]+: 349.1911, found 349.1912. 

 

 (2-(4-methoxyphenyl)decahydro-1H-furo[4,3,2-de]cinnolin-1-

yl)(phenyl)methanone (4.84). Hydrazone (4.18) (0.043 g, 0.158 mmol). Concentrated in 

vacuo to give off-white solid (0.038 g, 88%). 1H NMR (500 MHz, CDCl3): δ 7.05 (d, J = 

8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.21-4.13 (m, 1H), 4.10 (t, J = 7.2 Hz, 1H), 3.94 

(dd, J = 10.8, 2.9 Hz, 1H), 3.75 (s, 3H), 3.47 (dd, J = 10.8, 7.6 Hz, 1H),  3.39-3.29 (m, 

1H), 2.63 (m, 1H), 2.54 (t, J = 10.8 Hz, 1H), 1.91 (dt, J = 12.5, 6.4 Hz, 1H), 1.82 (d, J = 
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6.4 Hz, 1H), 1.79-1.69 (m, 2H), 1.64 (dd, J = 24.9, 12.4 Hz, 1H),  1.23-1.10 (m, 1H);  13C 

NMR (125 MHz, CDCl3): δ 153.2, 145.5, 116.6, 114.2, 69.7, 55.7, 55.5, 53.3, 46.6, 35.6, 

29.6, 25.3, 21.9.; HRMS-CI: m/z calcd. for C16H22N2O2 [M+H]+: 275.1754, found 

275.1761. 

 

White foam (4.86) (0.044 g, 84%). 1H NMR (500 MHz, CDCl3): δ 7.54 (d, J = 

7.2 Hz, 2H), 7.30 (m, 1H), 7.25 (d, J = 7.8 Hz, 2H), 6.77 (m, 4H), 5.31 (m, 1H), 4.26-

4.05 (m, 3H), 3.73 (s, 3H), 3.43 (dd, J = 10.8, 7.9 Hz, 1H),  2.95 (t, J = 12.4 Hz, 1H), 

2.54 (m, 1H), 2.29-2.14 (m, 1H), 1.76 (m, 2H), 1.59 (d, J = 13.0 Hz, 1H), 1.35-0.96 (m, 

3H); 13C NMR (125 MHz, CDCl3): δ 174.0, 153.3, 142.3, 135.8, 130.0, 127.7, 126.9, 

114.6, 114.6, 76.4, 69.1, 55.6, 53.2, 50.6, 46.3, 31.7, 29.7, 26.1, 21.8.; HRMS-CI: m/z 

calcd. for C23H26N2O3 [M+H]+: 379.2019, found 379.2027. 

N–N bond cleavage 

 

N-3-((phenylamino)methyl)octahydrobenzofuran-4-yl)benzamide (4.87). 

Following an adapted procedure,16 Amide (4.85) (0.0746 g, 0.214 mmol) was dissolved 

in MeOH-THF (2 mL-0.5 mL, respectively) and degassed using the freeze-pump-thaw 
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method. SmI2 (12.8 mL, 1.28 mmol, 0.1 M soln. in THF) was added, and the reaction was 

stirred at rt for 12 h. The reaction was poured onto sat. NaHCO3 and partitioned between 

H2O and EtOAc. The aqueous phase was extracted with EtOAc (3 X 10 mL), and the 

combined organic phases were washed with sat. NaCl (10 mL), dried over MgSO4, and 

concentrated in vacuo. Flash chromatography (60:40 EtOAc-Hexanes) gave an white 

foam (0.052 g, 69%). 1H NMR (500 MHz, CDCl3): δ 7.73 (dd, J = 8.02 Hz, 1.15 Hz, 2 

H), 7.48-7.43 (m, 2 H), 7.33 (t, J = 8.02 Hz, 2 H), 7.17 (dd, J = 8.59 Hz, 7.45 Hz, 2 H), 

6.75 (t, J = 6.87 Hz, 1 H), 6.61 (d, J = 8.02 Hz, 2 H), 4.51-4.47 (m, 1 H), 4.17 (t, J = 8.59 

Hz, 1 H), 4.01 (q, J = 4.01 Hz, 1 H), 3.71 (brs, 1 H), 3.52 (dd, J = 9.45 Hz, 6.30 Hz, 1 H), 

3.18 (dd, J = 11.50 Hz, 8.59 Hz, 1 H), 3.05 (dd, J = 11.50 Hz, 6.30 Hz, 1 H), 2.54-2.48 

(m, 1 H), 2.26 (q, J = 4.01 Hz, 1 H), 1.98-1.94 (m, 1 H), 1.78-1.60 (m, 4 H), 1.52-1.47 

(m, 1 H); 13C NMR (125 MHz, CDCl3): δ 166.7, 148.0, 134.4, 131.4, 129.4, 128.6, 

126.9, 118.5, 113.4, 77.4, 71.6, 47.9, 46.9, 45.7, 41.7, 28.9, 26.8, 16.4; HRMS-ESI: m/z 

calcd. for C22H26N2O2 [M+H]+: 351.2067, found 351.2067. 

 

N-(3-(((4-methoxyphenyl)amino)methyl)octahydrobenzofuran-4-

yl)benzamide (4.88). white foam (4.86) (0.042 g, 99%). 1H NMR (400 MHz, CDCl3): δ 

7.85 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.27 (t, J = 7.7 

Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 4.44 (m, 1H), 4.17 (t, J = 8.8 

Hz, 1H), 4.04 (m, 1H),  3.74 (s, 3H), 3.54-3.50 (m, 1H), 3.45 (s, 1H), 3.17-2.97 (m, 2H), 

2.49 (m, 1H), 2.27 (m, 1H), 1.82 (m, 1H), 1.78-1.61 (m, 4H), 1.47 (s, 1H);  13C NMR 
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(100 MHz, CDCl3): δ 165.3, 151.5, 140.5, 132.9, 129.8, 127.0, 125.4, 113.6, 113.4, 76.4, 

70.0, 54.3, 47.5, 45.4, 45.1, 39.7, 27.1, 25.5, 15.8.; HRMS-CI: m/z calcd. for C23H28N2O3 

[M+Na]+: 403.1992, found 403.2007. 

 

Oxidative cleavage of the 4-OMe-phenyl 

 

To a solution of amine in MeCN:H2O (1:1) was added TCICA (finely ground). 

After 16 hr the reaction was washed with CH2Cl2 (3 X). To the resulting aqueous phase 

was added KOH (0.5 M) until pH ≈ 10.5. The aqueous phase was then extracted with 

EtOAc (4 X), and the combined organic extracts dried over MgSO4, concentrated under 

vacuum to give the product. 

 

N-(3-(aminomethyl)octahydrobenzofuran-4-yl)benzamide (4.90). of amide 

(4.88) (0.0204 g, 0.053 mmol) gave brown solid (0.0114 g, 79%). 1H NMR (400 MHz, 

CDCl3): δ 9.66 (s, 1H), 7.83 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.4 

Hz, 2H), 4.36 (dt, J = 8.7, 4.6 Hz, 1H), 4.13 (m, 2H), 3.50-3.43 (m, 1H),  3.00 (dd, J = 

12.2, 3.6 Hz, 1H), 2.55 (dd, J = 12.1, 9.9 Hz, 1H), 2.42-2.33 (m, 1H), 2.23 (dd, J = 13.1, 

5.4 Hz, 1H), 1.91-1.81 (m, 1H),  1.80-1.66 (m, 2H), 1.65-1.48 (m, 3H), 1.48-1.36 (m, 

2H);  13C NMR (125 MHz, CDCl3): δ 165.3, 133.5, 129.1, 126.4, 125.4, 77.7, 69.2, 46.9, 

45.3, 42.8, 39.9, 26.0, 25.7, 17.8.; HRMS-CI: m/z calcd. for C16H22N2O2 [M+H]+: 

275.1754, found 275.1763. 
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Synthesis of dicarbonyls 

 

To a solution of furan-tetrahydropyridazine (1 equiv) in HFIP solvent (0.5 mL) 

under Ar atmosphere was added PIDA (2 equiv) and heated at 65 °C for 8 h. The reaction 

mixture was quenched with saturated NaHCO3 (2 mL) solution and extracted twice with 

CH2Cl2 (2 mL). The organic layer was dried over anhydrous Na2SO4, concentrated and 

purified by column chromatography (10:90 EtOAc-Hexanes) to afford the oxidation 

product. 

 

4-oxooctahydrobenzofuran-3-carbaldehyde (4.91). Furan-tetrahydropyridazine 

(4.13) (0.075 g, 0.24 mmol) was treated following general procedure H. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a yellow oil (0.021 g, 51%). 1H NMR 

(400 MHz, CDCl3): δ 9.74 (s, 1 H), 4.16-4.11 (m, 1 H), 4.02 (d, J = 6.87 Hz, 2 H), 3.95 

(dt, J = 1.30 Hz, 6.80 Hz, 1 H), 3.17 (d, J = 4.03 Hz, 1 H), 2.53-2.49 (m, 1 H), 2.41-2.35 

(m, 1 H), 2.10-2.08 (m, 1 H), 1.98-1.91 (m, 3 H); 13C NMR (125 MHz, CDCl3): δ 208.1, 

200.4, 79.8, 65.3, 52.2, 52.1, 41.2, 27.3, 21.0; HRMS-ESI: m/z calcd. for C9H12O3 

[M+Na]+: 191.0679, found 191.0672. 
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3-benzoylhexahydrobenzofuran-4(2H)-one (4.92). Furan-tetrahydropyridazine 

(4.22) (0.135 g, 0.35 mmol) was treated following general procedure H. Flash 

chromatography (10:90 EtOAc-Hexanes) gave a tanned solid (0.064 g, 74%). 1H NMR 

(400 MHz, CDCl3): δ 7.99 (d, J = 7.45 Hz, 2 H), 7.57 (t, J = 6.87 Hz, 1 H), 7.47 (d, J = 

8.45 Hz, 2 H), 4.85 (ddd, J = 1.72 Hz, 5.73 Hz, 9.27 Hz, 1 H), 4.27-4.26 (m, 1 H), 4.19 (t, 

J = 8.54 Hz, 1 H), 3.92 (dd, J = 5.15 Hz, 8.88 Hz, 1 H), 3.19 (d, J = 5.15 Hz, 1 H), 2.54-

2.51 (m, 1 H), 2.41-2.35 (m, 1 H), 2.16-2.11 (m, 1 H), 2.01-1.92 (m, 3 H); 13C NMR 

(125 MHz, CDCl3): δ 209.1, 199.0, 135.7, 133.6, 128.9, 128.8, 80.1, 68.4, 55.0, 46.8, 

41.5, 27.2, 21.2; HRMS-ESI: m/z calcd. for C15H16O3 [M+Na]+: 267.0992, found 

267.1002. 

Debenzylation 

 

2-(2-(trifluoromethyl)phenyl)-2,3,3a,3a1,4,5,5a,6,7,8-decahydropyrrolo[4,3,2-

de]cinnoline (4.93). To a suspension of hydrogenated methanol and 0.04 g of 10% Pd/C 

charcoal was added Proline-tetrahydropyridazine (4.37) (0.052 g, 0.13 mmol). Under a 

H2 balloon (1 atm) at 45° C the reaction ran for 30 mins. The catalyst is filtered, rinsed 

with methanol and the eluent vacuum evaporated. Flash chromatography (1:99 to 10:90 
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MeOH:CH2Cl2) to give a yellow oil (0.040 g, 99%). 1H NMR (400 MHz, CDCl3): δ 7.61 

(d, J = 7.45 Hz, 1 H), 7.53 (t, J = 7.45 Hz, 1 H), 7.45 (d, J = 8.02 Hz, 1 H), 7.21 (t, J = 

8.02 Hz, 1 H), 3.62 (t, J = 10.31 Hz, 1 H), 3.49 (bs, 1 H), 3.35 (dd, J = 7.45 Hz, 9.74 Hz, 

1 H), 3.23 (dd, J = 5.15 Hz, 9.16 Hz, 1 H), 2.68 (t, J = 9.16 Hz, 1 H), 2.58 (d, J = 7.45 

Hz, 1 H), 2.54 (d, J = 6.87 Hz, 1 H), 2.45-2.37 (m, 2 H), 1.97-1.95 (m, 1 H), 1.90-1.81 

(m, 2 H), 1.59-1.50 (m, 1 H), 1.06 (dq, J = 2.86 Hz, 11.74 Hz, 1 H); 13C NMR (125 

MHz, CDCl3): δ 182.8, 154.7, 150.4, 133.0, 127.0 (q, JC-F = 6 Hz), 126.8, 124.7, 55.6, 

54.0, 50.2, 43.3, 38.8, 31.9, 27.5, 20.5; 19F NMR (564 MHz, CDCl3): δ –59.3 (s, 3 F); 

HRMS-ESI: m/z calcd. for C16H18F3N3 [M+H]+: 310..1526, found 310.1516. 

 

Transformation of cis ring fusion to trans ring fusion 

 

2-(2-(trifluoromethyl)phenyl)-3,3a,3a1,4,5a,6,7,8-octahydro-2H-furo[4,3,2-

de]cinnoline (4.94). Furan-tetrahydropyridazine (4.13) (0.030 g, 0.10 mmol) in an over 

dried 1 dram vial under Ar atmosphere was heat to 100 °C in toluene for 3 days. Flash 

chromatography (20:80 EtOAc-Hexanes) gave a yellow foam (0.024 g, 80%). 1H NMR 

(400 MHz, CDCl3): δ 7.62 (d, J = 8.02 Hz, 1 H), 7.55 (t, J = 8.02 Hz, 1 H), 7.48 (d, J = 

8.02 Hz, 1 H), 7.26 (t, J = 8.02 Hz, 1 H), 4.31 (dd, J = 7.45 Hz, 9.45 Hz, 1 H), 3.48 (dd, J 

= 4.01 Hz, 9.74 Hz, 1 H), 3.35 (dd, J = 5.73 Hz, 11.74 Hz, 1 H), 3.26 (dt, J = 2.86 Hz, 

10.88 Hz, 1 H), 3.01-2.93 (m, 1 H), 2.57 (t, J = 13.17 Hz, 1 H), 3.23 (ddd, J = 1.72 Hz, 
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5.15 Hz, 13.89 Hz, 1 H), 2.32-2.24 (m, 2 H), 2.13-2.09 (m, 1H), 2.00 (dd, J = 8.59 Hz, 

10.88 Hz, 1 H), 1.71 (dt, J = 4.58 Hz, 7.45 Hz, 1 H), 1.64-1.54 (m, 1 H); 13C NMR (125 

MHz, CDCl3): δ 154.9, 150.3, 133.0, 126.9 (q, JC-F = 5 Hz), 126.3, 125.6, 125.2, 125.0, 

122.9, 83.3, 71.4, 54.6, 44.9, 33.2, 32.7, 30.3, 24.7; 19F NMR (564 MHz, CDCl3): δ –

59.3 (s, 3 F); HRMS-ESI: m/z calcd. for C16H17F3N2O [M+Na]+: 333.1185, found 

333.1198. 

1.7.8 Synthesis of azapolycycles 

Synthesis of aziridino ketos 

A mixture of iodocyclohex-2-en-1-one (4.51 mmol), anhydrous Cs2CO3 (4.96 

mmol), 1,10-phenanthroline (4.51 mmol), and amino-terminal-alkene (6.77 mmol) in 

CH2Cl2 (34 mL) was stirred at rt for 4 h. The reaction was partitioned between CH2Cl2 

and H2O.  The aqueous layer was extracted with CH2Cl2 (3 x 10mL). The combined 

organic phase was washed with H2O (2 x 10 mL), dried over MgSO4 and evaporated. 

Flash chromatography over silica gel.  

 

7-(hex-5-enyl)-7-azabicyclo[4.1.0]heptan-2-one (5.9). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.6315 g, 86%).  1H NMR (CDCl3, 400 MHz): 

δ 5.68-5.62 (m, 1 H), 4.41-4.39 (m, 2 H), 5.26-5.20 (m, 2 H), 2.84 (t, 1 H, J = 2.72 Hz), 

2.38-2.32 (m, 3 H), 2.23-2.20 (1 H), 1.76-1.68 (m, 2 H); 13C NMR (CDCl3, 100 MHz): δ 

203.8, 138.5, 115.3, 51.4, 42.9, 41.9, 36.8, 33.5, 27.1, 26.3, 22.6, 17.2; HRMS-ESI: 

calcd. for C17H19NO2 [M+H]+: 194.1539, found: 194.1539. 
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6-(hex-5-enyl)-6-azabicyclo[3.1.0]hexan-2-one (5.10). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.2310 g, 42%). 1H NMR (CDCl3, 400 MHz): 

δ 5.67-5.55 (m, 1 H), 4.83-4.77 (m, 2 H), 2.96 (d, 1 H, J = 8.12 Hz), 2.84 (t, 2 H, J = 2.71 

Hz), 2.69 (dt, 1 H, J = 8.12, 1.72 Hz), 2.51 (t, 1 H, J = 7.84 Hz), 2.14-1.98 (m, 4 H), 

1.51-1.58 (m, 4 H); 13C NMR (CDCl3, 100 MHz): δ 194.4, 138.5, 115.3, 51.4, 41.1, 41.0, 

36.9, 33.5, 30.5, 27.1, 26.3; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 208.1696, 

found: 208.1697. 

 

8-(hex-5-enyl)-8-azabicyclo[5.1.0]octan-2-one (5.11). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.2310 g, 66%). Yield: 51% 1H NMR (CDCl3, 

400 MHz): δ 5.68-5.56 (m, 1 H), 4.84-4.74 (m, 2 H), 2.95 (d, 1 H, J = 8.1 Hz), 2.80 (t, 2 

H, J = 2.7 Hz), 2.65-2.37 (m, 3 H), 2.10-1.73 (m, 6 H), 1.62-1.44 (m, 6 H); 13C NMR 

(CDCl3, 100 MHz): δ 203.8, 138.5, 115.3, 51.4, 42.9, 42.1, 38.7, 33.5, 27.8, 27.1, 26.3, 

26.0, 25.2; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 270.1489, found: 270.1493. 

 

7-(but-3-enyl)-7-azabicyclo[4.1.0]heptan-2-one (5.13). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.2310 g, 40%). 1H NMR (CDCl3, 400 MHz): 

δ 5.57-5.50 (m, 1 H), 4.86-4.80 (m, 2 H), 3.40 (t, 2 H, J = 2.7 Hz), 2.69 (d, 1 H, J = 8.1 

Hz), 2.50-2.27 (m, 5 H), 2.00-1.73 (m, 4 H); 13C NMR (CDCl3, 100 MHz): δ 203.8, 
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133.3, 117.5, 49.2, 42.9, 41.9, 36.8, 22.6, 17.2; HRMS-ESI: calcd. for C17H19NO2 

[M+H]+: 166.1226, found: 166.1230. 

 

7-(pent-4-enyl)-7-azabicyclo[4.1.0]heptan-2-one (5.14). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.2310 g, 49%). 1H NMR (CDCl3, 400 MHz): 

δ 5.69-5.58 (m, 1 H), 4.85-4.76 (m, 2 H), 2.91 (t, 2 H, J = 2.7 Hz), 2.72 (d, 1 H, J = 8.1 

Hz), 2.49-2.32 (m, 3 H), 2.03-1.71 (m, 8 H); 13C NMR (CDCl3, 100 MHz): δδ (ppm) 

203.8, 135.0, 117.1, 53.4, 42.9, 41.9, 36.8, 26.3, 22.6, 17.2; HRMS-ESI: calcd. for 

C17H19NO2 [M+H]+: 180.1383, found: 180.1378.  

  

7-(hept-6-enyl)-7-azabicyclo[4.1.0]heptan-2-one (5.15). Flash chromatography 

(5:95 EtOAc-Hexanes) gave a yellow oil (0.1585 g, 77%). 1H NMR (CDCl3, 400 MHz): 

δ 5.67-5.56 (m, 1 H), 4.83-4.77 (m, 2 H), 2.74 (t, 2 H, J = 2.7 Hz), 2.59 (d, 1 H, J = 8.1 

Hz), 2.54-2.37 (m, 3 H), 2.05-1.73 (m, 6 H), 1.63-1.57 (m, 2 H), 1.49-1.30 (m, 4 H); 13C 

NMR (CDCl3, 100 MHz): δ 203.8, 138.5, 115.3, 51.4, 42.9, 41.9, 36.8, 34.0, 33.7, 26.7, 

26.3, 22.6, 17.2; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 208.1696, found: 208.1695. 

Cross metathesis using Grubbs Cat. 

To a solution of Aziridino keto (4.51 mmol) and ethyl acrylate (15 mmol) in 5 ml 

of CH2Cl2 was added 1 mol% Hoveyda-Grubbs Catalyst(TM) 2nd Generation. Solution was 

refluxed for 2 h. The reaction was then ran through a short bed of celite, and washed with 
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CH2Cl2.  Solvent was evaporated under reduced pressure. Flash chromatography over 

silica gel gave the Aziridino keto ester.  

 

 

(E)-ethyl 7-(2-oxo-7-azabicyclo[4.1.0]heptan-7-yl)hept-2-enoate (5.19). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.6932 g, 83%). 1H NMR 

(CDCl3, 400 MHz): δ 7.23 (dt, 1 H, J = 15.8, 6.8 Hz), 6.08 (d, 1 H, J = 15.8 Hz), 4.21 (q, 

2 H, J = 7.1 Hz), 2.78 (t, 2 H, J = 2.7 Hz), 2.59 (d, 2 H, J = 8.1 Hz), 2.53-2.37 (m, 3 H), 

2.24 (dd, 2 H, J = 8.1, 8.0 Hz), 2.07-1.77 (m, 4 H), 1.63-1.43 (m, 4 H), 1.25 (t, 3 H, J = 

7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 203.8, 166.1, 148.4, 122.2, 60.1, 51.4, 42.9, 

41.9, 36.8, 29.8, 27.1, 26.3, 22.6, 17.2, 14.1; HRMS-ESI: calcd. for C15H23NO3 

[M+Na]+: 288.1570, found: 288.1571. 

 

(3S,3aR,7aS)-1-allyl-3-phenylhexahydro-1H-indole-2,4-dione (5.20). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.1122 g, 62%). 1H NMR 

(CDCl3, 400 MHz): δ 7.30 (dt, 1 H, J = 15.8, 6.8 Hz), 6.14 (d, 1 H, J = 15.8 Hz), 4.11 (q, 

2 H, J = 7.1 Hz), 3.48 (d, 2 H, J = 8.1 Hz), 2.67 (d, 1 H, J = 8.1 Hz), 2.55-2.29 (m, 3 H), 

2.10-1.81 (m, 4 H), 1.18 (t, 3 H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 203.6, 

166.5, 126.1, 120.8, 60.1, 49.2, 42.9, 41.9, 36.8, 22.6, 17.2, 14.4; HRMS-ESI: calcd. for 

C17H19NO2 [M+H]+: 224.1281, found: 224.1285. 
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(E)-ethyl 4-(2-oxo-7-azabicyclo[4.1.0]heptan-7-yl)but-2-enoate (5.21). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.0451 g, 84%). 1H NMR 

(CDCl3, 400 MHz): δ 7.19 (dt, 1 H, J = 15.8, 6.8 Hz), 6.10 (d, 1 H, J = 15.8 Hz), 4.22 (q, 

2 H, J = 7.1 Hz), 3.05 (t, 2 H, J = 2.7 Hz), 2.70 (d, 1 H, J = 8.1 Hz), 2.54-2.38 (m, 5 H), 

2.03-1.68 (m, 4 H), 1.17 (t, 3 H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 203.7, 

166.1, 131.0, 122.2, 60.1, 53.4, 42.9, 41.9, 36.8, 26.3, 22.2, 17.4, 14.3; HRMS-ESI: 

calcd. for C17H19NO2 [M+H]+: 238.1438, found: 238.1437. 

 

(E)-ethyl 6-(2-oxo-7-azabicyclo[4.1.0]heptan-7-yl)hex-2-enoate (5.22). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.0389 g, 46%). 1H NMR 

(CDCl3, 400 MHz): δ 7.24 (dt, 1 H, J = 15.8, 6.8 Hz), 6.12 (d, 1 H, J = 15.8 Hz), 4.18 (q, 

2 H, J = 7.1 Hz), 2.81 (t, 2 H, J = 2.7 Hz), 2.69 (d, 1 H, J = 8.1 Hz), 2.51-2.38 (m, 3 H), 

2.13-1.98 (m, 2 H), 2.01-1.72 (m, 6 H), 1.28 (t, 3 H, J = 7.1 Hz);; 13C NMR (CDCl3, 100 

MHz): δ 203.9, 166.1, 149.0, 122.2, 60.1, 51.4, 42.9, 41.9, 36.8, 27.1, 26.3, 22.6, 17.4, 

14.2; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 252.1594, found: 252.1594. 

 

(E)-ethyl 8-(2-oxo-7-azabicyclo[4.1.0]heptan-7-yl)oct-2-enoate (5.23). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil  (0.0296 g, 94%). 1H NMR 

(CDCl3, 400 MHz): δ 7.23 (dt, 1 H, J = 15.8, 6.8 Hz), 6.09 (d, 1 H, J = 15.8 Hz), 4.22 (q, 
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2 H, J = 7.1 Hz), 2.84 (t, 1 H, J = 2.7 Hz), 2.69 (d, 2 H, J = 8.1 Hz), 2.51-2.38 (m, 3 H), 

2.22 (dd, 2 H, J = 8.1, 8.0 Hz), 2.05-1.73 (m, 4 H), 1.63-1.58 (m, 2 H), 1.52-1.32 (m, 4 

H), 1.20 (t, 3 H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 203.8, 166.1, 148.4, 122.2, 

60.1, 51.4, 42.9, 41.9, 36.8, 34.0, 33.1, 26.7, 26.3, 22.6, 17.2, 14.1; HRMS-ESI: calcd. 

for C17H19NO2 [M+H]+: 280.1907, found: 280.1902. 

 

(E)-ethyl 7-(2-oxo-8-azabicyclo[5.1.0]octan-8-yl)hept-2-enoate (5.24). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.0594 g, 66%). 1H NMR 

(CDCl3, 400 MHz): δ 7.24 (dt, 1 H, J = 15.8, 6.8 Hz), 6.12 (d, 1 H, J = 15.8 Hz), 4.24 (q, 

2 H, J = 7.1 Hz), 2.95 (d, 1 H, J = 8.1 Hz), 2.80 (t, 2 H, J = 2.7 Hz), 2.64-2.55 (m, 2 H), 

2.45-2.39 (m, 1 H), 2.25-2.07 (m, 3 H), 1.94-1.72 (m, 3 H), 1.62-1.44 (m, 6 H), 1.19 (t, 3 

H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 204.8, 166.1, 148.4, 122.2, 60.1, 51.4, 

42.9, 41.5, 38.1, 29.5, 27.7, 27.1, 26.2, 26.3, 25.6, 14.3; HRMS-ESI: calcd. for 

C17H19NO2 [M+H]+: 280.1907, found: 280.1907. 

  

(E)-ethyl 7-(2-oxo-6-azabicyclo[3.1.0]hexan-6-yl)hept-2-enoate (5.25). Flash 

chromatography (5:95 EtOAc-Hexanes) gave a yellow oil (0.0852 g, 75%). 1H NMR 

(CDCl3, 400 MHz): δ 7.23 (dt, 1 H, J = 15.8, 6.8 Hz), 6.09 (d, 1 H, J = 15.8 Hz), 4.20 (q, 

2 H, J = 7.1 Hz), 2.96 (d, 1 H, J = 8.1 Hz), 2.84 (t, 2 H, J = 2.7 Hz), 2.67-2.61 (m, 1 H), 

2.53-2.48 (m, 2 H), 2.34-2.10 (m, 4 H), 1.66-1.44 (m, 4 H), 1.18 (t, 3 H, J = 7.1 Hz); 13C 

NMR (CDCl3, 100 MHz): δ 194.4, 166.5, 148.2, 122.2, 60.3, 51.4, 41.8, 41.6, 36.7, 30.1, 

N
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CO2Et

N
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29.9, 27.1, 26.2, 14.7; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 270.1489, found: 

270.1493. 

Cyclization 

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1R,2R)-(-)-2-

(dimethylamino)cyclohexyl]thiourea (.001 mmol) was added to a solution of 4-

nitorphenylhydrazine (.10 mmol), aziridino keto ester (.10 mmol), and Hunig’s base (1.0 

mmol) in THF at room temperature. Solution was stirred for 12 h, and then solvent was 

evaporated under reduced pressure. Flash chromatography over silica gel gave the 

azapolycycle. 

 

(4aR,9aR,10S,10aR,E)-ethyl 1-(2-(4-

nitrophenyl)hydrazono)dodecahydropyrido[1,2-a]indole-10-carboxylate (5.27). Ester 

5.19 (0.0302 g, 0.08 mmol) was treated following general procedure x. Flash 

chromatography (15:85 EtOAc-Hexanes) gave an orange semisolid  (0.0296 g, 65%). 1H 

NMR (CDCl3, 400 MHz): δ 8.12 (d, 2 H, J = 8.4 Hz), 6.90 (d, 2 H, J = 8.4 Hz), 4.17 (q, 2 

H, J = 7.2 Hz), 3.25-3.17 (m, 1 H), 3.06-2.88 (m, 2 H), 2.87-2.70 (m, 2 H), 2.64-2.51 (m, 

1 H), 2.36-2.33 (m, 1 H), 2.07-1.40 (m, 10 H), 1.22 (t, 3 H, J = 7.2 Hz); 13C NMR 

(CDCl3, 100 MHz): δ 172.3, 164.0, 145.6, 140.4, 118.9, 118.8, 117.9, 117.2, 66.6, 66.4, 

61.2, 52.7, 41.9, 40.9, 31.0, 28.3, 26.9, 26.6, 26.3, 24.3, 14.8; HRMS-ESI: calcd. for 

C21H28N4O4 [M+H]+: 401.2183, found: 401.2189. 
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(3aR,8aR,9S,9aR,E)-ethyl 1-(2-(4-nitrophenyl)hydrazono)decahydro-1H-

cyclopenta[b]indolizine-9-carboxylate (5.28). Ester 5.25 (0.0302 g, 0.08 mmol) was 

treated following general procedure x. Flash chromatography (15:85 EtOAc-Hexanes) 

gave an orange semisolid (0.0296 g, 42%). 1H NMR (CDCl3, 400 MHz): δ 8.13 (d, 2 H, 

J = 8.4 Hz), 6.87 (d, 2 H, J = 8.4 Hz), 4.15 (q, 2 H, J = 7.1 Hz), 3.24-3.12 (m, 1 H), 3.22-

3.13 (m, 2 H), 3.04-2.98 (m, 1 H), 2.87-2.78 (m, 2 H), 2.61-2.56 (m, 2 H), 2.04-1.85 (m, 

4 H), 1.76-1.40 (m, 4 H), 1.24 (t, 3 H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 

172.5, 153.8, 145.4, 140.4, 119.3, 118.9, 117.9, 117.2, 67.1, 66.4, 61.2, 52.7, 41.9, 40.9, 

32.0, 31.3, 27.6, 26.6, 24.2, 14.1; HRMS-ESI: calcd. for C17H19NO2 [M+H]+: 387.3632, 

found: 387.3633. 

 

(4aR,8aR,9R,9aR,E)-ethyl 8-(2-(4-nitrophenyl)hydrazono)decahydro-1H-

pyrrolo[1,2-a]indole-9-carboxylate (5.29). Ester (5.22) (0.0294 g, 0.12 mmol) was 

treated following general procedure x. Flash chromatography (15:85 EtOAc-Hexanes) 

gave an orange semisolid (0.0223 g, 49%). 1H NMR (CDCl3, 400 MHz): 8.13 (d, 2 H, J 
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= 8.4 Hz), 6.89 (d, 2 H, J = 8.4 Hz), 4.13 (q, 2 H, J = 7.1 Hz), 3.50-3.43 (m, 1 H), 3.25-

3.03 (m, 3 H), 2.99-2.89 (m, 2 H), 2.37-1.51 (m, 8 H), 1.24 (t, 3 H, J = 7.1 Hz); 13C 

NMR (CDCl3, 100 MHz): δ 172.0, 164.2, 145.4, 140.4, 118.9, 118.2, 117.3, 117.1, 66.4, 

66.3, 61.2, 49.9, 41.9, 40.9, 33.7, 28.3, 26.9, 26.5, 23.4, 14.2; HRMS-ESI: calcd. for 

C17H19NO2 [M+H]+: 387.3632, found: 387.3633.  
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1.7.9 Single crystal x-ray diffraction data 

Data Collection: All measurements were made with a Bruker DUO platform 

diffractometer equipped with a 4K CCD APEX II detector and an Incoatec 30 Watt Cu 

microsource with compact multilayer optics. A hemisphere of data (2713 frames at 4 cm 

detector distance) was collected using a narrow-frame algorithm with scan widths of 

0.50\% in omega and an exposure time of 30 s/frame. The data were integrated using the 

Bruker-Nonius SAINT program, with the intensities corrected for Lorentz factor, 

polarization, air absorption, and absorption due to variation in the path length through the 

detector faceplate. The data were scaled, and an absorption correction was applied using 

SADABS. Redundant reflections were averaged. 
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Figure 1. Crystal structure of 2.38 

 
 Crystal data and structure refinement for 2.38 Table 29.

Empirical formula C21H20BrN3O4 

Formula weight 458.31 
Temperature 123(2) K 
Wavelength 1.54178 Å 
Crystal system, space group Triclinic, P-1 
Unit cell dimensions a = 9.844(2) Å α = 102.742(8)° 

 b = 10.223(2)Å β = 94.719(10)° 
 c = 10.396(2)Å γ = 107.032(7)° 

Volume 963.5(3) A3 
Z, Calculated density 2, 1.580 Mg/m3 
Absorption coefficient 3.204 mm-1 
F(000) 468 
Crystal color and shape Orange thin plate 
Crystal size 0.40 x 0.30 x 0.08 mm 
Theta range for data collection 4.42 to 66.60° 
Limiting indices -11<=h<=11, -12<=k<=11, 0<=l<=12 
Reflections collected / unique 6534 / 3163 [R(int) = 0.0310] 
Completeness to theta = 66.60° 92.8 % 
Absorption correction Empirical 
Max. and min. transmission 0.7528 and 0.5154 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3044 / 1 / 266 
Goodness-of-fit on F2 1.057 
Final R indices [I>4sigma(I)] R1 = 0.0359, wR2 = 0.0950 
R indices (all data) R1 = 0.0367, wR2 = 0.0972 
Largest diff. peak and hole 0.956 and -0.471 e.A-3 
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Figure 2. Crystal structure of 2.57 
 

 
 

 Crystal data and structure refinement for 2.57 Table 30.

Empirical formula C14H14O3 

Formula weight 230.25 
Temperature 123(2) K 
Wavelength 1.54178 Å 
Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 
Unit cell dimensions a = 6.0024(1) Å α = 90° 

 b = 9.6666(2) Å β = 90° 
 c = 19.4769(4) Å γ = 90° 

Volume 1130.10(4) A3 
Z, Calculated density 4, 1.353 Mg/m3 
Absorption coefficient 0.772 mm-1 
F(000) 488 
Crystal color and shape Orange thick plate 
Crystal size 0.40 x 0.30 x 0.15 mm 
Theta range for data collection 5.11 to 66.58 ° 
Limiting indices -7<=h<=7, 0<=k<=10, 0<=l<=22 
Reflections collected / unique 7707 / 1939 [R(int) = 0.0220 
Completeness to theta = 66.58° 97.0 % 
Absorption correction Empirical 
Max. and min. transmission 0.7528 and 0.6668 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1913 / 0 / 156 
Goodness-of-fit on F2 1.065 
Final R indices [I>4sigma(I)] R1 = 0.0231, wR2 = 0.0599 
R indices (all data) R1 = 0.0232, wR2 = 0.0602 
Absolute structure parameter 0.52(16) 
Extinction coefficient 0.0069(7) 
Largest diff. peak and hole 0.172 and -0.136 e.A-3 

 
 



 

 
220 

Figure 3. Crystal structure of 2.64 
 

 
 

 Crystal data and structure refinement for 2.64 Table 31.

Empirical formula C14H14O3 

Formula weight 230.25 
Temperature 173(2) K 
Wavelength 1.54178 Å 
Crystal system, space group Monoclinic, P2(1) 
Unit cell dimensions a = 6.3178(4) Å    α = 90° 

 b = 9.6038(5) Å β = 100.034(3)° 
 c = 9.8028(5) Å γ = 90° 

Volume 585.69(6) A3 
Z, Calculated density 2, 1.306 Mg/m3 
Absorption coefficient 0.744 mm-1 
F(000) 244 
Crystal color and shape Colorless plate 
Crystal size 0.35 x 0.35 x 0.05 mm 
Theta range for data collection 6.50 to 66.53° 
Limiting indices -7<=h<=7, -11<=k<=11, -11<=l<=11 
Reflections collected / unique 3856 / 2052 [R(int) = 0.0289] 
Completeness to theta = 66.53° 99.2 % 
Absorption correction Empirical 
Max. and min. transmission 0.7528 and 0.6456 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1984 / 1 / 126 
Goodness-of-fit on F2 1.055 
Final R indices [I>4sigma(I)] R1 = 0.0365, wR2 = 0.1007 
R indices (all data) R1 = 0.0391, wR2 = 0.1025 
Absolute structure parameter 0.2(2) 
Extinction coefficient 0.010(2) 
Largest diff. peak and hole 0.166 and -0.190 e.A-3 
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Figure 4. Crystal structure of 2.65 

 
 Crystal data and structure refinement for 2.65 Table 32.

Empirical formula  C21H23N3O5  
Formula weight  397.42  
Temperature  123(2) K  
Wavelength  1.54178 Å  
Crystal system, space group  Monoclinic, I2/a  
Unit cell dimensions  a = 22.6932(5) Å α = 90° 

b = 5.4053(1) Å β = 91.734(1)° 
c = 30.8647(9) Å γ = 90° 

Volume  3784.24(16) Å3  
Z, Calculated density  8, 1.395 Mg/m3  
Absorption coefficient  0.833 mm-1  
F(000)  1680  
Crystal color and shape  Orange flat column  
Crystal size  0.40 x 0.06 x 0.03 mm  
Theta range for data collection  2.86 to 66.66°  
Limiting indices  -26<=h<=26, 0<=k<=6, 0<=l<=36  
Reflections collected / unique  12937 / 3633 [R(int) = 0.0288]  
Completeness to theta = 66.66°  97.1 %  
Absorption correction  Empirical  
Max. and min. transmission  0.7528 and 0.6211  
Refinement method  Full-matrix least-squares on F2  
Data / restraints / parameters  2863 / 4 / 291  
Goodness-of-fit on F2  1.068  
Final R indices [I>4sigma(I)]  R1 = 0.0340, wR2 = 0.0924  
R indices (all data)  R1 = 0.0385, wR2 = 0.0978  
Largest diff. peak and hole  0.199 and -0.250 e. Å-3  
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Figure 5. Crystal structure of 3.60 
 

 
 

 Crystal data structure and refinement for 3.60 Table 33.

 

 
 

Empirical formula  C21H20ClNO2 
Formula weight  353.83 
Temperature                                     123(2) K  
Wavelength                                      1.54178  Å 
Crystal system, space group  Monoclinic, P2(1)/c 
Unit cell dimensions  a = 13.6557(4)  Å       α = 90° 
 b = 8.6833(2)  Å         β = 113.237(1)° 
 c = 16.1745(41)  Å     γ = 90° 
Volume  1762.34(8)  Å3 
Z, Calculated density  4, 1.334 Mg/m3 
Absorption coefficient  2.025 mm-1 
F (000)  744 
Crystal color and shape  Pale orange thick plate 
Crystal size  
Theta range for data collection 

0.40 x 0.20 x 0.15 mm  
3.52 to 66.67° 

Limiting indices -16<=h<=15, -10<=k<=10, -14<=l<=18 
Reflections collected /unique  11938 / 3055 [R (int) = 0.0228] 
Completeness to theta = 66.50  98.0 % 
Absorption correction  Empirical 
Max. and min. transmission             0.7528 and 0.5384 
Refinement method  Full-matrix least-squares on F2 
Data/restraints/parameters  2974 / 0 / 227 
Goodness-of-fit on F2  1.057 
Final R indices [I>4sigma(I)]  R1 = 0.0300, wR2 = 0.0781 
R indices (all data) R1 = 0.0306, wR2 = 0.0786 
Largest diff. peak and hole 0.273 and -0.222 e.Å-3 
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Figure 6.  Crystal structure of 3.35 

 
 

 Crystal data structure and refinement for 3.35 Table 34.

 
Empirical formula  C21H20ClNO2 
Formula weight  353.83 
Temperature                                     123(2) K  
Wavelength                                      1.54178  Å 
Crystal system, space group  Monoclinic, P2(1)/c 
Unit cell dimensions  a = 5.5366(1)  Å       α = 90° 
 b = 13.5954(3)  Å       β = 91.751(1)° 
 c = 22.9565(6)  Å    γ = 90° 
Volume  1727.18(7)  Å3 
Z, Calculated density  4, 1.361 Mg/m3 
Absorption coefficient  2.066 mm-1 
F (000)  744 
Crystal color and shape  Yellow rectangular column  
Crystal size  
Theta range for data collection 

0.40 x 0.30 x 0.20 mm   
3.78 to 66.62° 

Limiting indices -6<=h<=6, 0<=k<=16, 0<=l<=27 
Reflections collected /unique  11557 / 3077 [R (int) = 0.0238] 
Completeness to theta = 66.50  96.7 % 
Absorption correction  Empirical 
Max. and min. transmission             0.7528 and 0.5748 
Refinement method  Full-matrix least-squares on F2 
Data/restraints/parameters  2974 / 0 / 227 
Goodness-of-fit on F2  1.084 
Final R indices [I>4sigma(I)]  R1 = 0.0292, wR2 = 0.0747 
R indices (all data) R1 = 0.0295, wR2 = 0.0751 
Largest diff. peak and hole 0.246 and -0.237 e. Å-3 
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Figure 7. Crystal structure of 3.101 

  

 Crystal data structure and refinement for 3.101 Table 35.

 

  

Empirical formula  C21H23N3 
Formula weight  317.42 
Temperature                                     123(2) K  
Wavelength                                      1.54178  Å 
Crystal system, space group  Triclinic,  P-1 
Unit cell dimensions  a = 7.4425(3)   Å       α = 105.123(1)° 
 b = 8.0451(3)  Å       β = 91.538(2)° 
 c = 14.3142(5)  Å    γ = 92.074(2)° 
Volume  826.26(5)  Å3 

Z, Calculated density  2,  1.276 Mg/m3 

Absorption coefficient  0.586 mm-1 
F (000)  340 
Crystal color and shape  Colorless block 
Crystal size  
Theta range for data collection 

0.35 x 0.30 x 0.20 mm   
3.20 to 66.62° 

Limiting indices -8<=h<=8, -9<=k<=9, 0<=l<=17 
Reflections collected /unique  5540 / 2695 [R(int) = 0.0162] 
Completeness to theta = 66.62 92.3 % 
Absorption correction  Empirical 
Max. and min. transmission             0.7528 and 0.6671 
Refinement method  Full-matrix least-squares on F2 
Data/restraints/parameters  2591 / 0 / 218 
Goodness-of-fit on F2  1.055 
Final R indices [I>4sigma(I)]  R1 = 0.0348, wR2 = 0.0881 
R indices (all data) R1 = 0.0358, wR2 = 0.0893 
Largest diff. peak and hole 0.239 and -0.182 e. Å-3 



 

 
225 

Figure 8. Crystal structure of 4.26 
 

 
 Crystal data and structure refinement for 4.26. Table 36.

Empirical formula C22H20F4N2O 
Formula weight 404.40 
Temperature 123(2) K 
Wavelength 0.71073 Å 
Crystal system, space group Monoclinic, P2(1)/c 
Unit cell dimensions a = 15.431(3) Å   α = 90° 

b = 8.136(1) Å     β = 91.829(2)° 
c = 15.105(2) Å    γ = 90° 

Volume 1895.4(5) Å3 
Z, Calculated density 4, 1.417 Mg/m3 
Absorption coefficient 0.115 mm-1 
F(000) 840 
Crystal color and shape Colorless thick plate 
Crystal size 0.35 x 0.25 x 0.10 mm 
Theta range for data collection 1.32 to 25.02° 
Limiting indices -18<=h<=15, -9<=k<=7, -17<=l<=17 
Reflections collected / unique 11409 / 3336 [R(int) = 0.0117] 
Completeness to theta = 25.02° 99.6 % 
Absorption correction Empirical 
Max. and min. transmission 0.7452 and 0.6816 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2992 / 0 / 263 
Goodness-of-fit on F2 1.036 
Final R indices [I>4sigma(I)] R1 = 0.0350, wR2 = 0.0837 
R indices (all data) R1 = 0.0389, wR2 = 0.0871 
Largest diff. peak and hole 0.514 and -0.340 e. Å-3 
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Figure 9. Crystal structure of 4.55 

 

 
 Crystal data and structure refinement for 4.55. Table 37.

Empirical formula C26H26N2O 
Formula weight 382.49 
Temperature 123(2) K 
Wavelength 0.71073 Å 
Crystal system, space group Monoclinic, P2(1)/n 
Unit cell dimensions a = 16.586(2) Å    α = 90° 

b = 14.730(2) Å    β = 96.016(2)° 
c = 16.995(2) Å    γ = 90° 

Volume 4129.2(9) Å3 
Z, Calculated density 8, 1.231 Mg/m3 
Absorption coefficient 0.075 mm-1 
F(000) 1632 
Crystal color and shape Colorless thick plate 
Crystal size 0.35 x 0.20 x 0.15 mm 
Theta range for data collection 1.83 to 27.48° 
Limiting indices -21<=h<=21, 0<=k<=19, 0<=l<=22 
Reflections collected / unique 30232 / 9783 [R(int) = 0.0132] 
Completeness to theta = 27.48° 99.5 % 
Absorption correction Empirical 
Max. and min. transmission 0.7456 and 0.7062 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 7687 / 0 / 525 
Goodness-of-fit on F2 1.010 
Final R indices [I>4sigma(I)] R1 = 0.0338, wR2 = 0.0865 
R indices (all data) R1 = 0.0428, wR2 = 0.0951 
Largest diff. peak and hole 0.285 and -0.179 e. Å-3 
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Figure 10. Crystal structure of 3.71 

 

 
 Crystal data and structure refinement for 3.71. Table 38.

Empirical formula C13H13F3N2O 
Formula weight 270.25 
Temperature 123(2) K 
Wavelength 0.71073 Å 
Crystal system, space group Monoclinic, P2(1)/c 
Unit cell dimensions a = 12.260(2) Å   α = 90° 

b = 4.964(1) Å     β = 90.954(2)° 
c = 20.129(3) Å    γ = 90° 

Volume 1224.9(4) Å3 
Z, Calculated density 4, 1.466 Mg/m3 
Absorption coefficient 0.125 mm-1 
F(000) 560 
Crystal color and shape Red-orange thick plate 
Crystal size 0.25 x 0.25 x 0.10 mm 
Theta range for data collection 2.02 to 27.48° 
Limiting indices -15<=h<=15, -6<=k<=6, -26<=l<=24 
Reflections collected / unique 8818 / 2800 [R(int) = 0.0107] 
Completeness to theta = 27.48° 99.3 % 
Absorption correction Empirical 
Max. and min. transmission 0.7456 and 0.6900 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2446 / 2 / 178 
Goodness-of-fit on F2 1.045 
Final R indices [I>4sigma(I)] R1 = 0.0345, wR2 = 0.0943 
R indices (all data) R1 = 0.0388, wR2 = 0.0993 
Largest diff. peak and hole 0.361 and -0.262 e. Å-3 
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Figure 11. Crystal structure of 3.82 

 

 
 Crystal data and structure refinement for 3.82. Table 39.

Empirical formula C17H23N3O2 
Formula weight 301.38 
Temperature 123(2) K 
Wavelength 1.54178 Å 
Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 
Unit cell dimensions a = 5.0768(2) Å      α = 90° 

b = 10.5829(4) Å    β = 90° 
c = 30.0958(12) Å  γ = 90° 

Volume 1616.97(11) Å 3 
Z, Calculated density 4, 1.238 Mg/m3 
Absorption coefficient 0.661 mm-1 
F(000) 648 
Crystal color and shape Orange diamond column 
Crystal size 0.30 x 0.15 x 0.15 mm 
Theta range for data collection 4.43 to 66.60° 
Limiting indices -5<=h<=5, -12<=k<=12, -35<=l<=33 
Reflections collected / unique 11085 / 2782 [R(int) = 0.0227] 
Completeness to theta = 66.60° 98.7 % 
Absorption correction Empirical 
Max. and min. transmission 0.7528 and 0.6362 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2766 / 0 / 206 
Goodness-of-fit on F2 1.089 
Final R indices [I>4sigma(I)] R1 = 0.0229, wR2 = 0.0574 
R indices (all data) R1 = 0.0231, wR2 = 0.0576 
Absolute structure parameter 0.01(16) 
Extinction coefficient 0.0073(4) 
Largest diff. peak and hole 0.149 d -0.123 e. Å-3 
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Figure 12. Crystal structure of 5.27 

 
 Crystal data and structure refinement for 5.27. Table 40.

 
Empirical formula  C21H28N4O4  
Formula weight 400.47 
Temperature 123(2) K 
Wavelength 1.54178 Å 
Crystal system, space group Monoclinic,  C2/c  
Unit cell dimensions a = 16.6224(3) Å   α = 90° 

b = 10.7563(2) Å   β = 110.4145(7)° 
c = 23.6690(5) Å   γ = 90° 

Volume 3966.12(13) Å3 
Z, Calculated density 8,  1.341 Mg/m3 
Absorption coefficient 0.769 mm-1 
F(000) 1712 
Crystal color and shape Orange thin plate 
Crystal size 0.40 x 0.20 x 0.08 mm 
Theta range for data collection 3.99 to 66.67° 
Limiting indices -19<=h<=18, 0<=k<=11, 0<=l<=27 
Reflections collected / unique 13658 / 3567 [R(int) = 0.0244] 
Completeness to theta = 66.67 96.3 % 
Absorption correction Empirical 
Max. and min. transmission 0.7528 and 0.5328 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3149 / 0 / 266 
Goodness-of-fit on F^2 1.052 
Final R indices [I>4sigma(I)] R1 = 0.0314, wR2 = 0.0812 
R indices (all data) R1 = 0.0332, wR2 = 0.0835 
Largest diff. peak and hole 0.205 and -0.175 e. Å-3 
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1.7.10  Calculated relative energies mechanism  

All relative energies were calculated using Semi-Empirical PM3 on 
Spartan Student version 6.1.9, Wavefunction, Inc. 

The phenyl hydrazone CαH-CβH-anti-CβH-CγH-anti and CαH-CβH-
anti-CβH-CγH-syn diastereomers of compound 2.20 showed a relative 
energy difference of 25.78 kcal/mol. 

 
 

                                          
Figure 13. Calculated relative energies between the CαH-CβH-anti-CβH-CγH-anti and CαH-

CβH-anti-CβH-CγH-syn diastereomers of the phenyl hydrazone of compound 2.20. 
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The phenyl hydrazone CαH-CβH-syn-CβH-CγH-syn and CαH-CβH-
syn-CβH-CγH-anti diastereomers of compound 2.47 showed a relative 
energy difference of 29.94 kcal/mol. 

 
 

  

                                            
Figure 14. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-syn and CαH-

CβH-syn-CβH-CγH-anti diastereomers of the phenyl hydrazone of compound 2.47. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 2.57 showed a relative energy difference of 31.34 kcal/mol. 
 

 

                                           
Figure 15. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-anti-CβH-CγH-anti diastereomers of compound 2.57. 
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The CαH-CβH-anti-CβH-CγH-syn and CαH-CβH-syn-CβH-CγH-syn 
diastereomers of compound 2.64 showed a relative energy difference of 
31.75 kcal/mol. 

 
 
 

                                  
Figure 16. Calculated relative energies between CαH-CβH-anti-CβH-CγH-syn and CαH-

CβH-syn-CβH-CγH-syn diastereomers of compound 2.64. 
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The CαH-CβH-anti-CβH-CγH-syn and CαH-CβH-syn-CβH-CγH-syn 
diastereomers of compound 3.57 showed a relative energy difference of 
27.43 kcal/mol. 

 
                                                   

                                           
Figure 17. Calculated relative energies between CαH-CβH-anti-CβH-CγH-syn and CαH-

CβH-syn-CβH-CγH-syn diastereomers of compound 3.57. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 3.32 showed a relative energy difference of 30.38 kcal/mol. 

 
 

 

                                            
Figure 18. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-anti-CβH-CγH-anti diastereomers of compound 3.32. 
 
 

 

 

 

 

 

 

CαH-CβH-anti-CβH-CγH-syn
 131.60 kcal/mol

N
Bn

O

O
H

H

α

β

γ

CαH-CβH-syn-CβH-CγH-syn
 161.98 kcal/mol

N
Bn

O

O
H

H

α

β

γ



 

 
236 

The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 4.11 showed a relative energy difference of 13.06 kcal/mol. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
Figure 19. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti compound 

4.11 and C αH-CβH-anti-CβH-CγH-syn compound 4.94. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 5.27 showed a relative energy difference of 9.29 kcal/mol. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
Figure 20. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-syn-CβH-CγH-syn diastereomers of compound 5.27. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 5.29 showed a relative energy difference of 6.94 kcal/mol. 
 

 
 
 
 
 

                                            
Figure 21. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-syn-CβH-CγH-syn diastereomers of compound 5.29. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 5.28 showed a relative energy difference of 7.66 kcal/mol. 
 

 
 

                                          
Figure 22. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-syn-CβH-CγH-syn diastereomers of compound 5.28. 
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The CαH-CβH-syn-CβH-CγH-anti and CαH-CβH-anti-CβH-CγH-diastereomers of 
compound 5.27 intermediate showed a relative energy difference of 2.91 kcal/mol. 
 

 
 

                                       
Figure 23. Calculated relative energies between the CαH-CβH-syn-CβH-CγH-anti and C αH-

CβH-syn-CβH-CγH-syn intermediate diastereomers of compound 5.27. 
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