
SAMPLING OF RANDOM GRAPHS WITH

PRESCRIBED DEGREE SEQUENCE

A Dissertation Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Weibin Zhang

May 2019

SAMPLING OF RANDOM GRAPHS WITH

PRESCRIBED DEGREE SEQUENCE

Weibin Zhang

APPROVED:

Dr. Kevin E. Bassler, Chairman
Department of Physics

Dr. Gemunu Gunaratne
Department of Physics

Dr. Arthur Weglein
Department of Physics

Dr. Krešimir Josić
Department of Mathematics

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

I would like to first sincerely thank my advisor, Dr. Kevin E. Bassler, for his guidance

and support throughout my Ph.D. study. It’s my fortune to have met and become

a student of such a kind, responsible and intellectual professor. He not only teaches

me knowledge, skills, and way of thinking, but also shows me the beauty of math,

science, and life. I also gratefully acknowledge Dr. Royce K.P. Zia, Dr. Gemunu

Gunaratne, Dr. George Reiter, Dr. Arthur Weglein, Dr. Krešimir Josić and Dr.

Zoltán Toroczkai for their useful advice to my research. Besides, I appreciate the

help and discussions from past and current members in my research group Dr. Charo

del Genio, Dr. Florian Greil, Dr. Amy Nyberg, Dr. Shabnam Hossein, Dr. Tianlong

Chen, Dr. Pramesh Singh, Mohammadmehdi Ezzatabadipour, Jiahao Guo, Vidushi

Adlakha, Negin Alizadeh, Zhenyu Dai, and Erich McMillan. I also want to thank Dr.

Lijian Chen, Dr. Jianfa Chen, Dr. Lei Sun, Dr. Xiang Zhang, Dr. Parth Singh, Dr.

Fabio Zegarra, Hanming Yuan, Ziping Ye, Le Fang and many other good friends I

met here for their support and accompany in both life and study. Finally, I would like

to especially thank my parents for their love, care, understanding, and unconditional

support to help me pursue my dream.

iii

SAMPLING OF RANDOM GRAPHS WITH

PRESCRIBED DEGREE SEQUENCE

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Weibin Zhang

May 2019

iv

Abstract

Random graph generation is the foundation of the statistical study of complex net-

works, which are commonly found in social, technological, and biological systems. In

empirical studies, often only limited information about the topological structure of

a network is available. In order to make the best use of this information, one must

sample the ensemble of graphs that satisfy the constraint of the known structure, but

are otherwise as random as possible.

Similar to the microcanonical ensemble and canonical ensemble in statistical physics,

there are two types of methods to generate an ensemble of graphs with prescribed

topological constraints. A hard constraint method generates an ensemble of graphs

in which each graph satisfies the constraints exactly. On the other hand, a soft con-

straint method generates an ensemble of graphs in which the constraints are satisfied

only on average within the ensemble.

In this dissertation, inspired by the idea of maximizing entropy, improvements in

a hard constraint method called Sequential Importance Sampling (SIS) are developed

for the case when the number of connections of each node, the degree sequence, is

prescribed. Among the improvements is a more stable method of calculating ensem-

ble averages that allows much larger networks to be sampled. With the improved

methods, results from hard constraint methods are compared with those of soft con-

straint methods. It is found that soft constraint methods significantly overestimate

the global clustering coefficient for both regular random graphs and scale-free graphs.

This implies that problems exist with many network analyses and that care must be

taken about the assumptions of network statistical analyses.

A dynamical model to generate random graphs with prescribed degrees is also

considered. The graphs resulting from this model are split graphs. We develop a

linear complexity algorithm to decompose any graph into a series of split graphs,

v

which can potentially be used to improve the efficiency of hard constraint sampling

methods.

vi

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Networks . 3

1.2.1 Real world examples . 3

1.2.2 Definition . 4

1.2.3 Representation . 4

1.2.4 Notation . 5

1.2.4.1 Degree, degree distribution and degree correlation . . 5

1.2.4.2 Path and cycle . 5

1.2.4.3 Clustering coefficient 6

1.2.4.4 Others metrics . 6

1.3 Random graph generation . 7

1.3.1 History and models . 7

1.3.1.1 The Erdos-Renyi random graph 7

1.3.1.2 Small-world phenomena and the Watts-Strogatz model 8

1.3.1.3 Scale-free network and the Barabasi-Albert model . . 10

1.3.2 Null model . 12

1.3.2.1 Dk series . 12

1.3.3 Hard constraint methods . 13

1.3.3.1 Graphicality and Erdos-Gallai theorem 14

1.3.3.2 Configuration model (CM) 14

vii

1.3.3.3 Sequential importance sampling (SIS) 15

1.3.3.4 Markov chain Monte Carlo method (MCMC) 17

1.3.4 Soft constraint methods . 18

1.3.4.1 Exponential random graph model (ERGM) 19

1.3.4.2 Chung-Lu model . 21

1.3.4.3 Preferred degree extreme dynamics, XIE and GIE . . 22

1.3.5 Digression: Graph sampling in graph simplification 23

1.4 Dissertation organization . 23

2 Sequential importance sampling 25

2.1 Introduction . 25

2.2 Sequential importance sampling . 29

2.3 Optimized sequential importance sampling 33

2.4 Sampling large graphs . 42

2.5 An example with 106 nodes . 54

2.6 Discussion . 58

2.7 Acknowledgements . 59

2.8 Derivation of Eq. 2.6 . 59

3 Comparison between hard and soft constraint methods 62

3.1 Introduction . 62

3.2 Methods . 64

3.3 Results for scale-free networks . 67

3.4 Result for regular random graphs . 76

3.5 Theoretical explanation of Table 3.1 for regular random graphs 79

3.5.1 Theory for hard constraint methods 79

3.5.2 Theory for soft constraint methods 81

3.6 Conclusion . 85

4 Preferred degree extreme dynamics 87

viii

4.1 Introduction . 87

4.2 XIE will reach equilibrium . 89

4.2.1 Ergodicity . 89

4.2.2 Detailed balance . 90

4.2.2.1 General idea . 90

4.2.2.2 Definition . 90

4.2.2.3 Combination of loops 90

4.2.2.4 XIE basic loops . 91

4.2.2.5 Induction . 92

4.3 XIE: degree distribution, cross-link distribution and correlation. . . . 93

4.3.1 fXIE degree distribution is truncated Poisson 94

4.3.2 Correlation between cross links in fXIE 96

4.3.2.1 Truncated Poisson degree distribution 96

4.3.2.2 fXIE cross-link correlation 97

4.3.2.3 Asymptotic Behaviour when f → 1, ρ(0)→ 0 98

4.3.2.4 Asymptotic Behaviour when f → 0, ρ(0)→ 1 101

4.3.2.5 Cross point . 102

4.3.3 From fXIE to XIE . 104

4.4 A special case of GIE similar to XIE 104

4.5 All loops of length 4 are reversible if preferred degrees are integers . . 105

4.5.1 Proof that all loops of length 4 are reversible 105

4.5.2 Configurations for preferred degree sequence can be not ergodic 111

4.5.3 Conjecture that the system will reach equilibrium. 113

4.6 Summary . 115

5 Split graph and deeply nested network 116

5.1 Introduction . 116

5.1.1 Split graph . 116

5.1.2 Graph decomposition . 117

ix

5.1.3 Canonical decomposition . 119

5.1.4 Graph composition . 119

5.1.5 Deeply nested network . 120

5.2 Nodes with the same degree separate together in canonical decomposition122

5.3 Canonical decomposition algorithm with linear complexity 123

5.3.1 Idea . 123

5.3.2 Algorithm . 124

5.3.3 Computational complexity . 126

5.4 Theoretical results on graph composition 126

5.4.1 Degree distribution of composed graph 126

5.4.2 Composed graphs are dense. 127

5.5 Random power-law graphs are not deeply nested 131

5.6 Summary . 134

6 Conclusion 135

Bibliography 138

x

List of Figures

1.1 Average component size < s > excluding giant component (solid line)
and size of giant component S (dashed line) as a function of average
degree z in ER graph [113, 54]. Reprinted from “The structure and
function of complex networks”[113], by M. E. Newman, 2003, SIAM
review, 45(2), p. 199. Copyright 2003 by Society for Industrial and
Applied Mathematics. 9

1.2 Normalized clustering coefficient C/Cmax and normalized average short-
est distance l/lmax as a function of rewiring probability p in WS model
[113, 158]. Reprinted from “The structure and function of complex
networks”[113], by M. E. Newman, 2003, SIAM review, 45(2), p. 210.
Copyright 2003 by Society for Industrial and Applied Mathematics. . 11

2.1 Running weighted average of the global clustering coefficient CCg using
SIS. Results of 10 different runs for average of an ensemble of graphs
with the same prescribed degree sequence are shown. The sequence
is of length N = 100 and the degrees were chosen randomly from a
power-law distribution with γ = 2. 31

2.2 Comparison of standard deviation σ of the log-weight distribution for
different freedom choices in SIS sampling. Each red dot shows the
results for one random power-law distributed degree sequence with
N = 1000 nodes. A: node sampling with choosing the smallest vs.
largest nodes as hubs; B: stub Sampling with choosing the smallest vs.
largest nodes as hubs; C: node sampling with smallest nodes as hub vs.
stub sampling with largest nodes as hubs; D: efficient stub sampling
vs. stub sampling with largest node chosen as hubs in both cases. . . 34

xi

2.3 Weighted average of the global clustering coefficient CCg for 10 dif-
ferent random power-law distributed degree sequences with N = 1000
nodes, calculated directly, using different sampling methods. Results
are shown in black for node sampling with smallest nodes as hubs,
blue for stub sampling with largest nodes as hubs, and red for efficient
stub sampling with largest nodes as hubs. Purple shows the results
for MCMC. (Error bars are 95% confidence interval calculated using
bootstrapping method. [64, 44]) . 37

2.4 Distribution range of the standard deviation of log-weight for SIS using
different freedom choices. Black is for node sampling, blue is for stub
sampling, and red is for efficient stub sampling. For each sequence
length N and for each method, the minimum (bottom of bar), 25%
quantile (lower wide error bar), median (circle), 75% quantile (upper
wide error bar) and maximum (top of bar) of distribution is shown.
The dashed grey line indicates where 1000 samples would produce one
effective unweighted sample. 40

2.5 Minimum sample size n that the largest weight no longer dominates.
(sample size that the expected largest weight equals to half the ex-
pected total weight.) Red dots are the minimum sample sizes. Blue
line is a linear fit with formula log10 n = 0.076σ2 + 1.009. 41

2.6 Joint distribution of the logarithm of the sample weights (log-weights)
and the CCg of an ensemble for a prescribed degree sequence with
N = 1000. Note the approximate bivariate normal form of the joint
distribution shown in the central plot and the approximate normal
form of the marginal distributions of the log-weights and of the CCg
shown as projections at the edges of the figure. 43

2.7 Probability that the joint probability distribution of sample log-weight
and CCg has a bivariate normal form as a function of prescribed degree
sequence length. Fraction of sequences satisfying the Henze-Zirkler test
[72], the Royston test [135] and Mardia test [105] are shown in blue,
red, and gold respectively. (Error bars show 95% confidence interval.
For each system size N 1000 degree sequences are tested and 1000
graphs per sequence are generated.) 45

2.8 Bivariate normal probability of a sequence with different sample size.
Blue for Henze-Zirkler test, red for Royston Test, and gold for Mardia
test. It seems that as the sample size increases, it is less and less
likely that the joint distribution passes the bivariate normal test. (For
this specific degree sequence with 1000 nodes, a pool of 106 graphs are
generated and for each sample size n we resampled 100 times from this
pool.) . 46

xii

2.9 Weighted average of the global clustering coefficient CCg for the same
10 random power-law distributed degree sequences with N = 1000
nodes considered in Figure 2.3, calculated by assuming a bivariate
normal form of the CCg-log-weight joint probability distribution JPD
and estimating the parameters of the JPD by using different sampling
methods. Results are shown in black for node sampling with smallest
nodes as hubs, blue for stub sampling with largest nodes as hubs, and
red for efficient Stub sampling with largest nodes as hubs. Purple shows
the results for MCMC. (Error bars show 95% confidence interval.) . 49

2.10 Running ensemble average of the CCg for a prescribed random power-
law distributed sequence. Results for twenty independent runs of n =
1000 samples are shown. Direct weighted averages are shown in blue
and distribution estimation averages are shown in red. MCMC results
are shown in purple at the right edge for comparison. 51

2.11 Quantile of ensemble average for different sample size using bivariate
normal assumption. Black lines are theoretical results. Grey dash lines
are MCMC result with 95% confidence interval. The quantiles are the
same as quantiles for standard normal distribution with {-2, -1, 0, 1,
2} standard deviations, i.e. approximately {0.02, 0.16, 0.5, 0.84, and
0.98}. 52

2.12 Quantile of ensemble average for different sample size using direct aver-
age when the underlying joint distribution is actually bivariate normal.
Black lines are theoretical results. Grey dash lines are MCMC result
with 95% confidence interval. The quantiles are the same as quan-
tiles for standard normal distribution with {-2, -1, 0, 1, 2} standard
deviations, i.e. approximately {0.02, 0.16, 0.5, 0.84, and 0.98}. 53

2.13 Degree distribution of the YoutubeNet. The red line is a decaying
power-law function with exponent 2.3. 55

2.14 Weighted distribution of the global clustering coefficient Pw(CCg) for
graphs with the degree sequence of the YoutubeNet. Graphs were
sampled using efficient stub sampling, and then analyzed directly as
a weighted sum (blue circles) and with distribution estimation (red
line). The distribution was also calculated for link-swap, analyzing
the results directly as an unweighted sum (black squares). The line
connecting the blue circles and the one connecting the black squares
are simply guides to the eye. The red line is a Gaussian function. Inset
shows the same data, but plots density in log-scale. 57

xiii

3.1 Approximations and numerical solutions of Lagrange multipliers βi for
exponential random graph model for scale-free degree sequences from
various exponents γ. Network size is 316. The panels show the approx-
imate values in Eq. 3.4 (black dashed) and the numerical solutions of
Eq. 3.2 (blue) at different γ values. 66

3.2 Cumulative distribution function (CDF) of transitivity for scale-free
graphs with various exponents,γ and network size 316. The figures
show transitivity distributions generated by SC (blue dashed) and pre-
dicted by HC (red) for different γ values. 70

3.3 Probability density function (PDF) of transitivity for scale-free graphs
with various exponents,γ and network size 316. The figures show
transitivity distributions generated by SC (blue dashed) and HC (red
points) for different γ values. 71

3.4 z-score distribution for different system size and exponents. Here z =
(µsoftCCg

−µhardCCg
)/σhardCCg

. In order to compare different parameters in same
scale, distribution is truncated so that only bulk part is shown. 72

3.5 z-score of degree mixing matrix. zjk = (phardjk − psoftjk)/σsoftjk To reduce
noise, only elements with |z| > 6 are shown. N = 1000, γ = 2.0 . . . 73

3.6 Graphs with same expected degree sequence but generated with differ-
ent methods. N = 316, γ = 2.0 . 75

3.7 PDF for transitivity measured on regular random graphs with degree,
k, and size 316. Figures display various k, and the resulting SC (blue
dashed) and HC (red) distributions. 77

3.8 CCg minus baseline p = d/(N − 1) for regular random graph with
number of nodes N = 316 and degree d using hard (red) and soft (blue)
constraint methods. Thick colored lines are the mean value. Thin
colored lines show standard deviation of the CCg distribution. Black
continuous lines show theoretical prediction using Table 3.1. Black
dashed line is from Eq. 3.25. The inset figure shows mean CCg instead
of CCg − p. 78

4.1 Scaling behaviour of χEE for different N when f is large. Black line is
asymptotic result using Eq.4.40 . 99

4.2 Scaling behaviour of χEE for different N when f is large. Black line is
asymptotic result using Eq.4.40 . 100

4.3 Behaviour of χEE for different N when f is small. Black line is asymp-
totic result in Eq.4.49 . 103

xiv

4.4 A counterexample showing that there exist irreversible loops even if all
loops of length 4 are reversible. Each node represents a configuration.
The transition probability is 1 along the directed edge and 0 otherwise.
For any loop of length 4, the product of forward probabilities and
backward probabilities are equally 0. Thus, any loop of length 4 is
reversible. However, following the loop 2 → 4 → 3 → 7 → 5 →
6 → 2, the product of forward probabilities is 16 = 1 but the product
of backward probabilities is 06 = 0. Thus, this loop of length 6 is
irreversible. 112

4.5 (a) and (b) are two topologically different configurations for degree
sequence {2, 2, 2, 1, 1}. (c) and (d) are two disjoint basins for degree
sequence {6, 3, 3, 3, 2, 2, 0} where XI (Node 7) and XE (Node 1) are
connected. In each basin of configurations, the connection between XI
and XE can be changed. However, once reaches one of the two basins,
the system cannot jump to the other basin. 114

5.1 An example of split graph. The 5 nodes on the left form a clique,
a.k.a. a complete graph, where every node is connected with every
other node. The 5 nodes on the right form an independent set, where
there’s no connection between any pair of nodes. 117

5.2 Graph decomposition. U is a clique, thus, U ×U part of the adjacency
matrix will be 1− I. W is an independent set, thus, the W ×W part
of the adjacency matrix will be 0. All nodes in V are connected with
all nodes in U , thus, the U × V part of the adjacency matrix will be
1. No node in V is connected to any node in W , thus, the V × W
part of the adjacency matrix will be 0. The connections between U
and W are represented by matrix X. And the connections within V
are represented by matrix S. 118

5.3 An example of deeply nested network. The building block is a split
graph 〈u,w〉 with degree sequence {4, 2; 1, 1, 1, 1}. The number of it-
erations N = 10. 121

5.4 Degree distribution of composed graphs. (a) Degree distribution of
a composed graph from a single unit split graph with |u| = 2 and
|w| = 4, iterated 1000 times. (b) Single unit with |u| = 4 and |w| = 2.
(c) Random mixture of two units with average ¯|u| = 2.5 and ¯|w| = 3.5.
(d) Random mixture with ¯|u| = 3 and ¯|w| = 3. Red lines are theoretical
predictions. 128

xv

5.5 Adjacency matrices of composed graphs. Nodes are ordered by degree.
Number of iterations N = 100. At each time step a random unit split
graph is chosen. (a) ¯|u| = 2.5, ¯|w| = 3.5. (b) ¯|u| = 3, ¯|w| = 3. (c)
¯|u| = 4, ¯|w| = 2. (d) ¯|u| = 3, ¯|w| = 3. The overall wedge shape is only

decided by ¯|u| and ¯|w|. The degree sequence of unit split graph only
affects the detailed shape at the boundary. 129

5.6 Adjacency matrices of composed graphs. Nodes are ordered by degree.
The graph is composed by first using the first unit split graph for N
times and then using the second unit split graph for another N times.
Here we choose a small number of iterations N = 10 to see the details
at the boundary. 130

5.7 Adjacency matrices of graph from power-law degree distribution P (k) ∝
k−γ. Nodes are ordered by degree. Number of nodes is 600. (a) γ = −2.
(b) γ = −1. (c) γ = 0. (d) γ = 2. 132

5.8 (a) Histogram of number of nodes left in the non-split graph n0 af-
ter canonical decomposition. Number of nodes N = 1000. Degree
sequence follows power law P (k) ∝ k−γ with exponent γ = 0. 1000
degree sequences are generated for better statistics. (b) Histogram of
number of canonical decomposition steps performed sc for γ = 0. (c)
Histogram of n0 for γ = −1 with same system size and number of
degree sequences. (d) Histogram of sc for γ = −1. 133

xvi

List of Tables

2.1 Statistics for different methods and corresponding z-score of YoutubeNet 56

3.1 Comparison between hard and soft constraint methods on regular ran-
dom graphs . 76

4.1 di ≤ d̂i − 2, dj ≤ d̂j − 1, dl ≤ d̂l − 1 106

4.2 di = d̂i − 1, dj ≤ d̂j − 1, dl ≤ d̂l − 1 107

4.3 di ≥ d̂i, dj ≤ d̂j − 1, dl ≤ d̂l − 1 . 107

4.4 di ≤ d̂i − 2, dj ≤ d̂j − 1, dl ≥ d̂l . 108

4.5 di = d̂i − 1, dj ≤ d̂j − 1, dl ≥ d̂l . 108

4.6 di ≥ d̂i, dj ≤ d̂j − 1, dl ≥ d̂l . 109

4.7 di ≤ d̂i − 2, dj ≥ d̂j, dl ≥ d̂l . 109

4.8 di = d̂i − 1, dj ≥ d̂j, dl ≥ d̂l . 110

4.9 di ≥ d̂i, dj ≥ d̂j, dl ≥ d̂l . 110

xvii

Chapter 1

Introduction

1.1 Introduction

A network, or graph, can be a useful way to represent relations between different

entities [21]. However, due to the difficulty of conducting an exhaustive survey or

privacy concerns [97], the complete structure of a graph is not always available. Often

only partial information, like the number of neighbors for each node, i.e. degree, is

available. In order to make the best use of the information we have, we want to

generate an ensemble of graphs using the known information as structural constraints.

But enumeration [89] of all possible graphs satisfying these constraints is too costly

[107] for any reasonable size of the graph: given N nodes, there are at most ∼

O(2N(N−1)/2) possible configurations for undirected, unweighted simple graph. Thus,

we have to sample graphs from this ensemble of possible graphs, which in general is a

difficult problem [125]. While different properties, like degree correlation or spectrum,

can be used as constraints of the ensemble, in this dissertation, we focus on degree

1

sequence, which is a simple local measurement of a graph. Even for such a seemingly

simple constraint, it turns out to be a non-trivial problem to sample graphs that

satisfy this constraint effectively.

There are two types of methods to generate an ensemble of graphs satisfying some

constraints. Hard constraint methods sample from an ensemble of graphs in which

every graph in this ensemble satisfies the constraint exactly, which reminds us of the

micro-canonical ensemble in statistical physics [120]. Among this category there are

Markov chain Monte Carlo method (MCMC) [155] and direct construction methods

including the configuration model (CM) [16] and Sequential Importance Sampling

(SIS) [46]. On the other hand, soft constraint methods define an ensemble of graphs

in which the ensemble average of the graph property agrees with the constraint, which

is very similar to the canonical ensemble [120]. Here there is the Exponential Random

Graph Model (ERGM) [145], which is inspired by the principle of maximizing entropy

[80, 81], and the Chung-Lu model [37], which can be seen as a simplified version of the

ERGM when the maximum degree is small enough. Another way is to let the graph

evolve to satisfy the constraints following some dynamics [12]. While the statistical

property of the evolved ensemble is known only for limited cases [98], this ensemble

has some interesting properties [14].

While many methods exist, they all have room for improvement. In this dis-

sertation we will discuss ways to improve the efficiency of SIS [46], the statistical

difference between soft and hard constraint methods, the statistical properties of a

dynamic model called preferred degree extreme dynamics [168], and a potential way to

improve the efficiency of MCMC using canonical decomposition of graph split graphs

[55].

2

In the rest of this chapter, we’ll give a brief introduction of complex networks, and

different ways to generate random graphs. More detailed description of the algorithms

can be found in the corresponding chapters.

1.2 Networks

Graph or complex network is a useful representation of many kinds of systems we

want to study [114, 113, 4, 50, 47, 21]. A graph contains a set of nodes and a set

of edges connecting the nodes. A node can represent an entity in a system and an

edge can represent the relationship or interaction between entities. In general, both

nodes and edges can have their own properties [15, 167, 166, 161]. For any system, if

we can abstract the system into a graph, we can use graph theory and knowledge of

complex network to describe [146, 157, 119], predict [103, 102] and even control [100]

the system.

1.2.1 Real world examples

Many systems can be described as networks [42, 96]. Based on what the network

represents, we can roughly classify networks into the following categories: In social

networks [26, 30], nodes represent people, and edges can represent whether two per-

sons are friends [110], call each other [148], exchange email [93], or interact on social

media [127]. Nodes can also represent organizations. In company ownership network

[134, 156, 122] node is company and edge means how much each company owns an-

other company. In the network of financial institutions like banks [27], the edges

can represent how much money is transferred between banks. We can also think of

3

technological networks like transportation networks (road [83], railway [138], airline

[68], and sea [84]). Similarly, considering the transportation of energy and informa-

tion, there are power grid [2, 126], the telephone network [162], and the Internet [53].

When it comes to information networks, there are semantic networks [108], citation

networks [70], and web page graphs, in which the most famous one is WWW (World

Wide Web) [5]. If we consider networks with different types of nodes [67], we have

collaboration network [115] and recommendation network [130]. When considering

the biological system, we can find networks in all scales, like gene regulatory network

[38], protein interaction network [28] and metabolic network [9] in a microscopic level,

neural networks [144, 143] in mesoscopic level, and food web [11] in macroscopic level.

1.2.2 Definition

A graph [114, 24, 37], or network G(V,E) contains a set V of nodes (also called

vertices) and a set E of edges (also called links) connecting pairs of nodes. In general,

edges can have direction, sign, and weight. If multiple edges exist for the same pair of

nodes, they are called multi-edges. If the two ends of an edge point to the same node,

this is called a self-loop. A graph is called a simple graph if there are no self-loops

and no multi-edges.

In this dissertation, we will focus on undirected, unweighted, simple networks.

1.2.3 Representation

Given a graph G(V,E), we can label the nodes V = {1, 2, · · · , N}, where N = |V |

is the number of nodes. Then the edge set E can be described as a list of edges

4

{(i, j) ∈ E}. This is called edgelist. Equivalently we can define adjacency matrix A,

where Aij 6= 0 if i and j are connected, i.e. (i, j) ∈ E, and Aij = 0 otherwise. This

is a better representation for linear algebra. For undirected graph, Aij = Aji. For

unweighted graph without multi-edges, Aij ∈ {0, 1}. For graph with no self-loops,

Aii = 0.

1.2.4 Notation

1.2.4.1 Degree, degree distribution and degree correlation

The degree di of a node i is the number of neighbors it connects to. For an undirected

simple graph, using the expression of the adjacency matrix, we can write degree as

di =
∑
j

Aij . (1.1)

Degree distribution P (d) is the probability of a node having degree d. Degree correla-

tion between different degrees di and dj can be characterized by the joint probability

P (di, dj), i.e. the probability that a node of degree di and a node of degree dj are

connected.

1.2.4.2 Path and cycle

A path is a sequence of nodes in which every consecutive pair of nodes is connected

by an edge. The length of a path is the number of edges traversed along the path.

The number of paths of length r from node i to node j is [Ar]ij. A path with its end

node the same as its starting node is a cycle. The total number of cycles of length r

5

is ∑
i

[Ar]ii = Tr(Ar) . (1.2)

1.2.4.3 Clustering coefficient

Global clustering coefficient, also known as transitivity, describes the probability that

node i connects to j given the condition that i connects to k and k connects to j,

CCg =
3N∆

NV

, (1.3)

where CCg is the global clustering coefficient, N∆ is number of triangles, and NV is

number of connected triples.

A similar definition is local clustering coefficient, which describes the probability

that the neighbors of a certain node are connected.

CCl(i) =

∑
j,k AijAikAjk

di(di − 1)
. (1.4)

In this dissertation, we only consider global clustering coefficient.

1.2.4.4 Others metrics

There are many other metrics [43] to describe a graph, like node and edge centrality

[101], motif [6], community structure [119, 104, 60, 61, 34], connected component, cut

set and graph spectrum [123]. While each of them captures the important properties

of a graph, they are not the focus of this dissertation.

6

1.3 Random graph generation

1.3.1 History and models

1.3.1.1 The Erdos-Renyi random graph

A straight forward way to generate random graphs is to connect pairs of nodes ran-

domly. Erdos and Renyi (ER) [57, 23] developed and carefully analyzed a model

G(N,M) in which M pairs of nodes are chosen uniformly to be connected from all

the N(N − 1)/2 possible pairs of nodes. In other words, for all the
((N2)
M

)
possible

graphs having N nodes and M edges, ER model picks up one of them with equal

probability. A similar model is the G(N, p) model, which connects any pair of nodes

with independent and identical probability 0 < p < 1. These two versions of ER

model are asymptotically the same if N goes to infinity and Np is fixed. Nowadays

both G(N,M) and G(N, p) are called ER model. In this dissertation, we focus on

G(N, p) because it is easier to analyze.

Since the elements of the adjacency matrix are independent and identically dis-

tributed (i.i.d.), the degree distribution of G(N, p) can be written as [54, 23]

P (d) =

(
N − 1

d

)
pd(1− p)N−1−d . (1.5)

In the limit of large N and fixed d̄ = (N − 1)p, the degree distribution becomes

Poisson distribution

P (d) =
d̄d

d!
e−d̄ . (1.6)

Thus, the ER graphs are sometimes also called Poisson random graphs.

Since each node connects to d̄ neighbors randomly, a node can reach around d̄l

after l hops. Thus, in order to reach any other node in a network of size N , only

7

L ≈ lnN/ ln d̄ ∝ lnN is needed [23, 158].

Also because of the i.i.d. connection probability, the global clustering coefficient

for G(N, p) is just p.

An interesting fact of the ER model is the emergence of the giant component

[54, 23], as shown in Figure 1.1. For small p < 1/N , almost surely (with probability

tending to 1 as N → ∞) the graph doesn’t contain any component of size bigger

than O(lnN). However, when p = 1/N , a component of size O(N2/3) emerges. For

p > 1/N , there exists a unique giant component having size O(N) and no other

component has a size bigger than O(lnN). As p increases further to p ≥ lnN/N , the

graph becomes totally connected.

1.3.1.2 Small-world phenomena and the Watts-Strogatz model

Many real-world networks have the so-called “small world” property, which means

the network is sparse, the typical distance between any pair of nodes is small, and the

network has a relatively high clustering coefficient. To be more specific, it requires

the average distance L ∝ lnN and the clustering coefficient remains finite as N →∞.

While ER graph has a small average shortest distance L ∝ lnN , its clustering

coefficient CCg = p = d̄/(N − 1) → 0 for fixed d̄ and infinite N . In order to deal

with this problem, Watts and Strogatz (WS) [158] proposed the small-world model.

In WS model, the random graph is constructed by first placing N nodes uniformly on

a low dimensional lattice and connecting each node with all of its neighbors within

certain distance k, and then rewiring [158] or adding [121] the edges randomly with

certain probability p. For p = 0, the graph is just a lattice with high average shortest

distance and high clustering coefficient. For p = 1, the graph is almost an ER random

8

Figure 1.1: Average component size < s > excluding giant component (solid line) and
size of giant component S (dashed line) as a function of average degree z in ER graph
[113, 54]. Reprinted from “The structure and function of complex networks”[113], by
M. E. Newman, 2003, SIAM review, 45(2), p. 199. Copyright 2003 by Society for
Industrial and Applied Mathematics.

9

graph with low average shortest distance and low clustering coefficient. However, as

p goes from 0 to 1, the average shortest distance drops quickly while the clustering

coefficient remains high [158, 121, 10], as shown in Figure 1.2.

1.3.1.3 Scale-free network and the Barabasi-Albert model

Many real-world networks are observed to show the scale-free property [8, 129, 128,

140], i.e. the degree distribution follows power-law P (d) ∝ d−γ, where typically 2 <

γ < 3. Since neither ER model nor WS model has a power-law degree distribution,

a lot of new mechanisms, such as the fitness model and the gradient network, are

proposed to explain the scale-free property. The most famous one among those is the

growth and preferential attachment model, in particular, the Barabasi-Albert (BA)

model [8], which mimics the dynamics through which the real world networks are

formed.

BA model starts with m0 isolated nodes. At each time step, we add a new node

and randomly connect it with m < m0 old nodes. We keep adding new nodes until

there are N nodes in total. The probability of connecting the new node with any old

node is linearly proportional to the current degree of the old node.

BA model generates graphs with power-law degree distribution where the expo-

nent γ = 3 [8, 48, 94]. Its average shortest path scales as L ∼ lnN/ ln lnN [25] and

its clustering coefficient scales as CCg ∼ N−0.75. Many variants [51, 94, 49, 65, 3, 48,

131, 75, 92] have been proposed to generate more realistic graphs with a wider range

of γ and larger clustering coefficient.

Another family of models to generate scale-free graphs, inspired by protein in-

teractions, is the node copying model [142, 153], which increase the network size by

10

Figure 1.2: Normalized clustering coefficient C/Cmax and normalized average short-
est distance l/lmax as a function of rewiring probability p in WS model [113, 158].
Reprinted from “The structure and function of complex networks”[113], by M. E.
Newman, 2003, SIAM review, 45(2), p. 210. Copyright 2003 by Society for Indus-
trial and Applied Mathematics.

11

adding a copy of a node (whose neighbors are the same as the original node) and then

mutating the copy.

1.3.2 Null model

While the WS model, BA model, and their different variants can explain part of the

properties we observed in real-world networks, it’s difficult to tell which model makes

more sense in general. After all, even if a model can reproduce all the properties we

measured, it still doesn’t mean it is the only possible explanation of the real world

data. Instead of assuming the network is explicitly generated from a certain dynamics

and worrying about the causation, sometimes we just want to use the information we

already have and least extra assumptions to generate random graphs. Once we have

this ensemble of random graphs, we can infer the conditional probability distribution

of unknown properties. In other words, we need a null model which generates graphs

satisfying certain constraints but otherwise as random as possible.

1.3.2.1 Dk series

The properties of a graph can range from local properties like degree and degree

correlation to global properties like distance and spectrum. A systematic way to

describe different levels of constraints is dk-series [125]. A dk-distribution is the joint

degree distribution of simple connected subgraphs of size d. A dk-graph is a random

graph that has same ik-distribution as the original graph for all i ≤ d. Thus, compared

with the original graph, a 0k-graph has the same average degree d̄, a 1k-graph has

the same degree distribution P (d), a 2k-graph has the same joint degree distribution

P(i,j)∈E(di, dj), and 3k-graph has the same three body correlation PV (di, dj, dk) and

12

P∆(di, dj, dk). If d = N , then Nk-graph is just the original graph.

0k-graphs are basically ER model G(N,M), which is relatively easy to generate.

However, generating 1k-graph is already a non-trivial task. While there already exists

several ways to generate random graphs with certain degree sequence [16, 145, 111,

112, 7, 35, 118, 106, 154, 89, 46, 88], all of them suffer from some problems [91].

The goal of this dissertation is to analyze, compare and improve the performance of

those methods. 2k-graphs are more difficult to generate [13], with very few algorithms

available, such as link-swap that preserves degree correlation. Even for this algorithm,

there is no theoretical bound for the mixing time. For dk-graphs where d > 2,

basically the only available method is simulated annealing, which can be not only

slow but also inaccurate [17].

The rest of this chapter gives a brief introduction of different methods to generate

random graphs with prescribed degree sequence. Depending on whether we require

the constraints to be satisfied exactly or approximately, we can classify those methods

into two categories: hard constraint methods and soft constraint methods.

1.3.3 Hard constraint methods

Hard constraint method requires every graph generated to have exactly the same

degree sequence as the prescribed degree sequence. In analogy to statistical physics,

it’s similar to micro-canonical ensemble where every state has exactly the same energy.

In order to do statistical inference from this ensemble of random graphs, we prefer

the graphs to be sampled uniformly from all possible graphs satisfying the constraints.

If uniform sampling is not practical, at least we need to know the relative probability

to pick up each graph.

13

1.3.3.1 Graphicality and Erdos-Gallai theorem

Before we look for simple graphs satisfying a specific degree sequence, we want to

make sure such graph exits. A degree sequence is called graphical if there exists

at least one simple graph that realizes this degree sequence. To verify whether a

sequence is graphical, we can use the Erdos-Gallai theorem [56], which says:

A finite non-increasing sequence of non-negative integers d1 ≥ d2 ≥ · · · ≥ dN is

graphical if and only if
∑N

i=1 di is even and

k∑
i=1

di − k(k − 1) ≤
N∑

j=k+1

min(dj, k) (1.7)

for all 1 ≤ k ≤ N .

A related theorem is the Havel-Hakimi theorem [71, 69], which says:

A finite non-increasing sequence of non-negative integers d1 ≥ d2 ≥ · · · ≥ dN is

graphical if and only if sequence (d2 − 1, d3 − 1, · · · , dd1+1 − 1, dd1+2, · · · , dN) is also

graphical.

For a graphical degree sequence, Havel-Hakimi theorem can be used to construct

a graph that realizes the degree sequence deterministically.

1.3.3.2 Configuration model (CM)

Configuration model [16, 111, 120] picks up pairs of stubs, or half-edges and connects

them randomly. Given a degree sequence d1, · · · , dN , we first create N nodes and for

each node i give it di stubs. Then we randomly pick up two stubs from all the stubs

and connect them. We keep doing this until there are no more stubs.

14

Configuration model generates graph uniformly [111], i.e. with the same probabil-

ity for all possible graphs having a degree sequence. However, it doesn’t guarantee the

generated graph to be simple. Since we connect stubs randomly, it’s possible that two

stubs from the same node are connected (self-loop), or a pair of nodes is connected

multiple times (multi-edge). While the proportion of self-loops and multi-edges might

be small compared to the total number of edges, it is also unlikely that none of those

two situations happens at all [46].

To generate a simple graph, one way is to use configuration model first and delete

the self-loops and multi-edges afterward. But then the degree sequence is not pre-

served. Another way is to revert the last step and do backtracking once a violation

of simple graph is detected. However, besides the poor performance of backtrack-

ing, the resulting graph is no longer uniformly sampled from the population [109].

Even worse, we lose track of the relative probability of generating that graph. Yet

another way is to stop and restart generating a new graph immediately after finding

any self-loop or multi-edge. By doing this, the finally generated graph is still sampled

uniformly from the population. But since configuration model is unlikely to generate

a simple graph, this method could be very slow [20, 16].

1.3.3.3 Sequential importance sampling (SIS)

In order to directly construct graphs without backtracking or rejection, [46] and [20]

developed a sequential importance sampling algorithm. The idea of this algorithm

is, during the construction of a graph, when we connect a pair of stubs, we want to

make sure that after this operation the remaining stubs can still realize a graph.

The SIS algorithm works as follows [46]: Given a degree sequence, we first choose

15

an arbitrary node and refer to it as Hub. Then we find the Allowed Set of this Hub so

that after connecting any node in the Allowed Set with the Hub, the residual degree

sequence is still graphical. Once we have the Hub and the Allowed Set, we assign

non-zero probability to all the nodes in the Allowed Set and pick up one of them

randomly to connect with the Hub. For this same Hub, we keep finding Allowed Set

and connecting the Hub with a node in the Allowed Set randomly until the Hub’s

residual degree reaches 0. Then we can pick up a new Hub and do the same thing.

We keep doing this until all the nodes reach zero residual degree.

Define the number of Hubs picked m, the residual degree of Hub i when being

picked d̃i, and probability for Hub i to connect node j in i’s Allowed Set pij. Then

the probability to follow this trajectory is just
∏m

i=1

∏
j pij. Since for any Hub i, there

are d̃i! different orders to connect the same set of neighbors, the probability to reach

a certain graph G is

P (G) =
m∏
i=1

d̃i!
∏
j

pij . (1.8)

But different graphs should have same importance as long as they all satisfy the

constraints, we should compensate for that with weight

W (G) =
1

P (G)
= (

m∏
i=1

d̃i!
∏
j

pij)
−1 . (1.9)

SIS can generate independent random graphs efficiently without backtracking or

rejection. However, since the weight is a product of at least O(M) terms, where M

is the number of edges, this weight can have a wide distribution for a large system.

In the worst case, a single largest weight can dominate the distribution and make the

statistics very unstable.

Usually, the largest weight problem in SIS can be mitigated by resampling [52]

the ensemble of samples every now and then. In this way, the difference between the

16

largest and smallest weight can be bounded. However, in graph sampling problem,

different samples may choose different Hubs, making it not clear how to do resampling

correctly.

1.3.3.4 Markov chain Monte Carlo method (MCMC)

Instead of constructing a graph from scratch, we can randomize a graph we already

have to get a new random graph. This idea leads us to the Markov chain Monte Carlo

method (MCMC) [41, 85, 155].

In general, MCMC works as follows. Our goal is to sample states s ∈ S with

distribution P (s). We can achieve this by walking randomly between different states

for a long time. If S is ergodic, i.e. there exist path to go from any state to any

other state in S with non-zero probability, and the transition probability T (s → s′)

satisfies detailed balance P (s)T (s → s′) = P (s′)T (s′ → s) for any pair of states

(s, s′), then after enough time steps the probability to reach state s is P (s) regardless

of the starting point s0.

Here in hard constraint graph sampling, since the constraints are hard, all states

connected by valid moves have the same probability. Thus, we can set the transition

probability to be 1, i.e. always accept a move.

If the constraint is degree sequence, a valid move can be degree-preserving link-

swap. This is done by picking up two edges randomly, say (a, b) and (c, d), cut them,

swap the endpoints and reconnect them. Then we have two new edges (a, d) and (c, b).

We can do this as long as we don’t introduce self-loops or multi-edges. Otherwise, we

simply discard the change and pick up two new edges to try to swap. By performing

degree-preserving link-swap (link-swap in short), we changed the topology of the

17

graph while maintaining the degree sequence unchanged.

To sample random graphs using MCMC, we first get an original graph either from

real-world data or generated from some direct construction method like Havel-Hakimi

[71, 69] algorithm. Then we keep performing link-swaps for τeq steps until the system

reaches equilibrium. Now we can start sampling by saving graphs every τmix steps

to make sure the states are well mixed, and there is no correlation between different

samples.

MCMC is widely used in randomizing graphs. However, it has both theoretical and

practical problems. Theoretically, we can only get loose bound for the equilibrium

time τeq and mixing time τmix in a few cases [66, 41]. One general type of fast

mixing graph is a type of graph that can be decomposed into a series of split graphs

[59, 152] using canonical decomposition [151, 55], which will be discussed in Chapter

5. While we can measure τeq and τmix during the simulation, the result from a

finite number of time steps can be misleading especially if the state space S has

bottlenecks. In practice, depending on the degree sequence, if we simply pick up two

edges randomly, it may be unlikely that they can perform link-swap. This can slow

down the simulation.

1.3.4 Soft constraint methods

Instead of requiring every graph generated satisfies the constraints, we can require

the ensemble average of generated graphs to satisfy the constraint. Methods having

this property are called soft constraint methods.

If hard constraint methods remind us about the micro-canonical ensemble, then

soft constraint methods are more similar to canonical ensemble, where the energy of

18

individual states can fluctuate but the temperature remains the same.

If we decide to use soft constraint methods, then it’s no longer necessary to require

the degree sequence to be graphical. This may lead to new phenomena.

1.3.4.1 Exponential random graph model (ERGM)

For reader’s convenience, this section gives a brief introduction to ERGM. More

detailed description can be found in [145, 114, 39].

We want to generate random graph G from all possible graphs of same size with

probability PG, whose graph properties xi(G) satisfying some constraints on average.

That is, ∀i,
∑

G PGxi(G) = x̄i and
∑

G PG = 1.

If we want the graphs generated to be as random as possible, we can maximize

the entropy of distribution S = −
∑

G PG lnPG while keeping the constraints satisfied

on average. Using Lagrange multipliers, we have

L = −
∑
G

PG lnPG +
∑
i

βi(
∑
G

PGxi(G)− x̄i) + α(
∑
G

PG − 1) . (1.10)

To maximize L, we require ∂L/∂PG = 0 for any G, thus,

0 =
∂L

∂PG
= − lnPG − 1 +

∑
i

βixi(G) + α , (1.11)

PG =
e
∑
i βixi(G)

Z
, (1.12)

where

Z =
∑
G

e
∑
i βixi(G) . (1.13)

In this project, we consider simple, unweighted, undirected graph with the degree

sequence D = {d1, d2, . . . , dN} as constraints. Note that in order for ERGM to get

19

finite solution, 1 < di < N − 1 for all i. Expressing the graph in its adjacency matrix

A = {aij}, where aij = 1 when node i and node j are connected and aij = 0 when

they are not, we have ∀i, di =
∑

j 6=i aij. Thus,

PG = P (A) =
e
∑
i βi

∑
j 6=i aij

Z
=
e
∑
j 6=i βiaij

Z
. (1.14)

Since the graph is simple, the adjacency matrix is symmetric, aij = aji, thus,

P (A) =
e
∑
i<j(βi+βj)aij

Z
=

∏
i<j e

(βi+βj)aij

Z
, (1.15)

where

Z =
∑

aij∈{0,1}

∏
i<j

e(βi+βj)aij

=
∏
i<j

(
∑

aij∈{0,1}

e(βi+βj)aij)

=
∏
i<j

(1 + eβi+βj) . (1.16)

Thus,

P (A) =

∏
i<j e

(βi+βj)aij∏
i<j(1 + eβi+βj)

=
∏
i<j

e(βi+βj)aij

1 + eβi+βj
. (1.17)

Now let’s define

pij =
eβi+βj

1 + eβi+βj
=

1

1 + e−(βi+βj)
, (1.18)

which can be interpreted as the probability that aij = 1, then

P (A) =
∏
i<j

p
aij
ij (1− pij)1−aij , (1.19)

and the constraints are

di =
∑
j 6=i

aij =
∑
j 6=i

1

1 + e−(βi+βj)
(1.20)

20

for all i.

ERGM is mathematically beautiful. However, if we happen to choose a set of

properties with non-linear dependencies, then ERGM may suffer from degeneracy

problem, i.e. the distribution of a property become bimodal with low probability

near the expected value [76]. Luckily up to now, we haven’t observed this degeneracy

for degree sequence.

1.3.4.2 Chung-Lu model

ERGM gives us the probability to connect a pair of nodes in 1.18. In sparse case,

pij � 1, thus, pij ≈ eβieβj . For mathematical simplicity, for now, we temporarily

allow self-loops. Now di =
∑

j pij = eβi
∑

j e
βj . Since

∑
j e

βj is a constant, eβi ∝ di.

Let’s define eβi = Cdi. Since
∑

i,j pij =
∑

i di = 2M where M is the number of edges,

we have

2M =
∑
i,j

C2didj = C2(
∑
i

di)
2 = C2(2M)2 . (1.21)

Thus, C2 = 1
2M

,

pij =
didj
2M

. (1.22)

This is the Chung-Lu model [36].

Chung-Lu model generates graphs efficiently when the largest degree is small

enough. However, if the maximum degree d1 exceeds
√
d̄
√
N , then the probability to

connect two nodes with largest degree p11 >
Nd̄
2M

= 1. Since a probability should not

exceed 1, we should not use Chung-Lu model when d1 is larger than O(N
1
2).

This is exactly the case for power-law degree sequence P (d) ∝ d−γ where 2 < γ <

3. In this range the mean degree is finite but the variance grows as O(N3−γ), and the

21

maximum degree grows as O(N
1

γ−1) [45], which is larger than O(N
1
2).

1.3.4.3 Preferred degree extreme dynamics, XIE and GIE

Another way to generate a random graph is to define some kind of node dynamics

and let the system evolve [12]. In preferred degree extreme dynamics [168], each

node has its preferred degree. At each time step, a random node is chosen to make

itself happier, i.e. make its actual degree closer to its preferred degree. If this node

has more neighbors than preferred, it cuts one of its edges randomly. If it has fewer

neighbors than preferred, it adds a connection with one of the nodes not yet connect

to it randomly. If it happens to have the same number of neighbors as preferred,

it does nothing. We can then pick up graphs after the system settled in stationary

states.

While preferred degree extreme dynamics can be used to generate random graphs,

the exact probability of getting a specific graph is only known in XIE [98]. More

general cases are yet to be solved. On the other hand, the extreme dynamics itself

has some interesting properties.

If there are only two possible degrees, 0 (eXtreme Introverts) and N −1 (eXtreme

Extroverts), then we have the eXtreme Introvert Extrovert (XIE) dynamics. After

a sufficiently long time, the system reaches an equilibrium where all extroverts are

connected and all introverts are not connected [98, 169]. Thus, XIE results in split

graph [59, 152]. If we use the difference of number between extroverts and introverts

as a control parameter, and the number of crosslinks between extroverts and introverts

as order parameter, then the system has a mixed order phase transition [14].

22

If the introverts and extroverts are not so extreme, we have the Generalized In-

trovert Extrovert (GIE) dynamics. If the preferred degrees are integers, it seems the

system can still reach equilibrium. However, if the preferred degrees are non-integers,

the system will not reach equilibrium, and there exist probability current between

states [58].

1.3.5 Digression: Graph sampling in graph simplification

When we talk about graph sampling, we mean sampling random graphs from an

ensemble of all possible graphs satisfying certain constraints, for example, properties

of a real-world graph. This is also called graph generation in some literature [78].

On the other hand, some literature [95, 78] define graph sampling as sampling small

subgraphs from an original large graph, so that certain properties of the large graph

are preserved [99] in the small subgraphs. While this topic is interesting, it is not the

topic we study in this dissertation.

1.4 Dissertation organization

The rest of this dissertation is organized as follows. Chapter 2 talks about the im-

provement of efficiency and stability of the SIS method. This is a paper [164] prepared

for publication. Chapter 3 talks about the difference between ensembles generated

using hard constraint methods and soft constraint methods. This is also a paper

[165] prepared for publication. This work is done in collaboration with Erich McMil-

lan. Chapter 4 talks about degree distribution, cross-link distribution and correlation

in XIE model, and equilibrium in GIE model. This is a collaboration project with

23

Mohammadmehdi Ezzatabadipour and Dr. Royce K. P. Zia. Some of the results in

this chapter are published in [170] while others are in preparation for publication.

Chapter 5 talks about split graph and nested networks. Those results can potentially

improve the performance of MCMC. The work in this chapter is based on previous

work by Dr. Zoltán Toroczkai [55]. Chapter 6 is the conclusion.

24

Chapter 2

Sequential importance sampling

2.1 Introduction

Ensemble modeling of graphs is a widely used and important technique in Network

Science [18]. It is useful in empirical studies when there is limited and/or imperfect

knowledge of the structure of the graph [97]. It is also useful in theoretical studies that

seek to understand the influence of particular structural constraints on dynamical

or other structural properties of graphs [117]. In both cases, statistical analysis

of ensembles of graphs that have the known or assumed structural properties, but

otherwise vary randomly, is then used to model and predict the behavior of the graph

being studied [133, 114, 125]. A common case is to study an ensemble of networks

constrained to have prescribed node degrees, which for a graph with N nodes is

specified by the degree sequence D = {d1, d2, . . . , dN}. The number of graphs realized

by a given degree sequence, however, typically grows rapidly with N . Because of this,

taking explicit averages over an ensemble of graphs with prescribed degrees is usually

25

impossible, even numerically, when N ' 10 [107, 63]. For larger graphs, random

samples of graph realizations satisfying the degree constraints are used to calculate

ensemble averages. However, generating random graphs with prescribed degrees for

this purpose in an unbiased way is a non-trivial problem.

Many kinds of constraints were studied, like degree sequence in undirected graph

[46] and directed graph [88], degree correlation [13], and clustering coefficient [125] in

undirected graph.

Various methods exist to solve this problem. Soft-constraint methods generate

graphs that only satisfy the degree constraints on-average. These include the expo-

nential random graph model (ERGM) [113], and its approximation the Chung-Lu

model [36, 35]. Much more difficult hard-constraint methods generate graphs such

that each realization precisely satisfies the constraints. Methods in this category

include Markov chain Monte Carlo methods (MCMC) [155, 40, 147], and direct con-

struction methods. Among direct construction methods are the configuration model

(CM) [111, 113], and ones that use sequential importance sampling (SIS) [46, 20, 163].

However, every known method has problems [91]. Soft-constrained methods can

generate an ensemble of graphs that have very different, biased average properties

than one generated with hard-constrained methods [76]. MCMC generate samples by

performing link-swaps to randomize an initial configuration. The graphs thus gener-

ated are correlated and the mixing time needed to generate statistically independent

samples is generally not known. In fact, the mixing time is known to be “fast”,

i.e. increase only algebraically with N , only for a limited class of degree sequences

[66]. The CM assigns a number of stubs to each node, equal to the node’s degree,

and then connects them randomly to form links. This can result in self-loops and

26

multi-links. For the generation of simple graphs, this causes dead-ends that must be

rejected, otherwise uncontrolled sampling biases will occur. This can cause the CM

to be ineffective, even effectively useless [31].

SIS takes a similar approach to the CM model, except that they ensure only

links that still allow simple graphs to be generated from the remaining stubs to be

formed. Thus, SIS generates each graph independently, and it can do so efficiently,

without back-tracking or dead-ends, but in general it does not sample the ensemble

uniformly. Nevertheless, the relative probability of generating each particular graph

can be calculated in some SIS methods, allowing the ensemble to be uniformly sampled

by reweighting the samples. Unfortunately, the weights needed for uniform ensemble

sampling are generally log-normally distributed [46]. Because of the slow decay of the

tail of the log-normal distribution, the number of samples needed to reliably calculate

ensemble averages grows exponentially with N . This severely limits the size of the

graphs whose ensemble can be reliably sampled.

In this paper, we present methods to improve the efficiency of SIS of simple graphs

constrained to have a prescribed degree sequence. As we will see, existing SIS algo-

rithms for this purpose have certain freedoms that can be optimized to improve sam-

pling efficiency. These optimizations can substantially increase the size of the graphs

for which ensemble averages can be reliably calculated. Unfortunately, even with

these improvements, the size of the graphs whose ensemble can be reliably sampled

typically remains limited. For very large graphs, however, we show that a different

approach to calculating ensemble averages can be used. In this limit, central limit

theorem considerations often allow the joint distribution of the graph properties and

the log-weights of the samples to be well approximated as multivariate Gaussian.

27

When this is true, sampling to estimate the distribution parameters and then calcu-

lating the ensemble averages from the estimated distribution rather than directly can

produce reliable results.

Depending on the degree sequence D constraining the ensemble, the efficiency

of each of the various random graph generation methods will vary. For particular

classes of D one method may be preferred over another. Although our improvements

in SIS and methods of ensemble estimation are expected to be broadly applicable, we

focus our efforts in this paper on the especially challenging case of sparse scale-free

graphs near their graphicality transition [45]. Scale-free graphs have nodes with de-

grees that are randomly chosen from a power-law decaying distribution ρ(d) ∝ d−γ

[8]. In the limit of large N , graphs can be constructed for such randomly chosen

degree sequences only if γ ≥ 2. For large γ the CM can be used to generate random

graphs efficiently. However, as γ gets smaller, and especially for γ < 3, when struc-

tural correlations in the graphs become increasingly important [31], the CM becomes

increasingly inefficient. In fact, the problems with all known methods, with possibly

the exception of SIS, make generating random graphs near the transition at γ = 2

difficult. Even in this case though, our methods enable ensembles of large graphs to

be reliably sampled. We will demonstrate this by applying our methods to study the

global clustering coefficient in the ensemble of networks constrained to have the same

degree sequence as the Youtube user friendship network (YoutubeNet) [110]. This

network has over 106 nodes with degrees approximately distributed as a power-law

with γ ≈ 2.3.

The remainder of the paper is organized as follows: Section II gives a brief in-

troduction of SIS and the difficulties we may encounter when using it. Section III

28

introduces efficient stub sampling, an improvement to the original SIS method. Sec-

tion IV shows a new way to estimate the ensemble average by measuring the joint

distribution parameters. Section V demonstrates the strength of our methods by ap-

plying them to a large real-world network, i.e. YoutubeNet, with more than 1 million

nodes.

2.2 Sequential importance sampling

SIS algorithms for constructing random simple graphs constrained to have a pre-

scribed degree sequence D work by directly constructing the graph. They first assign

di stubs to each node i and then connect pairs of them sequentially to form links

until a graph is fully constructed. This can be done by choosing any node, called a

“hub”, and connecting all of its stubs first, then choosing any other node as hub and

connecting all of its unlinked stubs, and repeating until the graph is complete [46].

As long as D is graphical, i.e. as long as some graph can be constructed with degree

sequence D, then the algorithm can be sure to complete construction of a graph,

without backtracking. This is accomplished by requiring that the construction of a

simple graph can still be completed each time a pair of stubs are connected. This

requirement restricts the set of nodes that the hub can connect to. The set of nodes

that the hub is allowed to connect to is called the “Allowed Set.” The Allowed Set can

be efficiently determined by applying a type of Erdős-Gallai graphicality test on the

residual degree sequence D′ = {d′1, d′2, . . . , d′N} that lists the number of unconnected

stubs each node has. This test is an extension of the original Erdős-Gallai test [56]

that also works when some of the hub’s stubs have already been connected. The test

can be completed in a worst case algorithmic complexity of O(N). The formation of

29

each link can also be completed in a worst case algorithmic complexity of O(N). The

construction of each complete graph can be completed in a worst case algorithmic

complexity of O(NM), where M is the number of links.

At least for finite N , if the node chosen to connect the hub to is picked randomly

from the Allowed Set and each node in the Allowed Set has a finite probability of

being picked, then every member of the ensemble of graphs that realize the prescribed

degree sequence D has a finite probability of being constructed. Thus, the ensemble

will be sampled ergodically. However, generally it will not be sampled uniformly. The

probability of constructing the graphs in the ensemble is not uniform. Fortunately,

it can be made uniform by weighting the samples. Note that the relative probability

of constructing a particular graph g is

Pg =
m∏
i=1

d̄i!

d̄i∏
j=1

pij , (2.1)

where m is the number of hub nodes used in the construction, d̄i is the residual

degree of hub node i when it is chosen as a hub node, and pij is the probability

of choosing node j from the Allowed Set when it is picked to connect to hub i.

Therefore, an unbiased estimator of an observable Q from n randomly generated

samples {s1, s2, . . . , sn} is

〈Q〉 =

∑n
i=1 wsiQ(si)∑n

i=1wsi
, (2.2)

where wsi = P−1
si

are weights for each sample, and the denominator is a normalization

factor. In the limit of large n, 〈Q〉 is equivalent to the ensemble average of Q.

The generation of the sample weights is a random multiplicative process. As such,

by central limit theorem arguments, for large graphs at least, they nominally have a

30

0 2 4 6 8 10

0.
10

5
0.

11
5

0.
12

5

n / 105

<
C

C
g>

Figure 2.1: Running weighted average of the global clustering coefficient CCg using
SIS. Results of 10 different runs for average of an ensemble of graphs with the same
prescribed degree sequence are shown. The sequence is of length N = 100 and the
degrees were chosen randomly from a power-law distribution with γ = 2.

31

log-normal distribution [46]

P (w) =
1

σ
√

2πw
e−(ln(w)−µ)2/(2σ2) . (2.3)

Here, µ and σ are the mean and standard deviation of the log-weights, respectively.

Both µ and σ2 are expected to scale proportionally with M . Unfortunately, a log-

normal distribution decays very slowly, more slowly than an exponential, and thus

has a “fat tail.” Because of the slow decay, sample weights can vary by many orders

of magnitude in a typical run for even a modest size network with tens of nodes. This

spread of sample weights presents problems for convergence of ensemble averages.

For example, Figure 2.1 shows ten different runs that calculate the running weighted

average of the global clustering coefficient, CCg, for an ensemble of graphs with the

same prescribed degree sequence. The CCg is also known as the transitivity. It is

defined as CCg = (number of triangles)×3
(number of connected triples)

, where a “connected triple” means three

nodes uvw connected with links (u, v) and (v, w). The link (u,w) may or may not

be present. The factor of three in the numerator prevents over-counting as each tri-

angle gets counted three times when the possible connected triples are counted. The

triangle uvw for instance contains the triples uvw, vwu, and wuv [114]. The CCg

measures how likely that “the friend of my friend is also my friend.”

From the figure, clearly, it is difficult to know if and when convergence has oc-

curred, because the running average of an observable can jump when a sample with

large weight is suddenly included. In order to ensure convergence a large number of

samples n are required. To help estimate the error in a weighted average with sample

size n and weights {wi; i = 1, 2, . . . , n}, Kish’s Effective Sample Size neff =
(
∑n
i=1 wi)

2∑n
i=1 w

2
i

can be used to estimate the equivalent number of independent unweighted samples

[90]. For SIS, assuming a log-normal distribution of sample weights, Eq. 2.3, the

32

expected moments of the weight distribution are [82]

E[ws] = esµ+ 1
2
s2σ2

, (2.4)

and the expected effective sample size is

E[neff] =
n2E[w]2

nE[w2]
=
n2e2(µ+ 1

2
σ2)

ne2µ+2σ2 =
n

eσ2 . (2.5)

Since σ2 ∼M , E[neff] ∼ n/eM . That is, the number of samples required to calculate

reliable ensemble averages increases exponentially with the number of links M . This

limits the size of graphs that can be effectively sampled with SIS [91].

2.3 Optimized sequential importance sampling

Although the biased nature of SIS graph construction limits the size of graphs that

can be reliably sampled, by optimizing the sampling, it becomes possible to reliably

sample significantly larger ones. Since by Eq. 2.5 the estimated effective sample size

is n

eσ2 , the smaller the variance of log-weight, the larger the effective sample size and

the more efficient the algorithm is. Thus, SIS is optimized when σ is minimal.

Note that the SIS algorithm described in Section 2.2 has two freedoms. The first is

that when choosing a hub, any node can be picked. The second is that probabilities

of picking the various nodes in the Allowed Set to connect the hub to can be set

arbitrarily, as long as every node in the Allowed Set has a non-zero probability of

being chosen. Different choices for these two freedoms typically produce different

sample weight distributions. The ideal choices will minimize the variance of the

weight distribution.

The optimal choices may depend on the prescribed degree sequence D. Here we

focus on the difficult case of sequences with power-law distributed degrees ρ(d) ∝ d−γ

33

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●● ●
●

●
●

●●●
●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

20 30 40 50 60

20
30

40
50

60

σ (node sampling, largest hubs)

σ
(n

od
e

sa
m

pl
in

g,
 s

m
al

le
st

 h
ub

s)

 A
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●● ●
●●

●

●

●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

10 20 30 40 50

10
20

30
40

50

σ (stub sampling, largest hubs)

σ
(s

tu
b

sa
m

pl
in

g,
 s

m
al

le
st

 h
ub

s)

 B

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●
●

●
●

●●
●

● ●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

10 20 30 40

10
20

30
40

σ (stub sampling, largest hubs)

σ
(n

od
e

sa
m

pl
in

g,
 s

m
al

le
st

 h
ub

s)

 C

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

0 5 10 15 20 25

0
5

10
15

20
25

σ (stub sampling, largest hubs)

σ
(e

ffi
ci

en
t s

tu
b

sa
m

pl
in

g,
 la

rg
es

t h
ub

s)

 D

Figure 2.2: Comparison of standard deviation σ of the log-weight distribution for
different freedom choices in SIS sampling. Each red dot shows the results for one ran-
dom power-law distributed degree sequence with N = 1000 nodes. A: node sampling
with choosing the smallest vs. largest nodes as hubs; B: stub Sampling with choosing
the smallest vs. largest nodes as hubs; C: node sampling with smallest nodes as hub
vs. stub sampling with largest nodes as hubs; D: efficient stub sampling vs. stub
sampling with largest node chosen as hubs in both cases.

34

with γ = 2 and no artificial degree cutoff [31], so that the maximum degree possible

is N−1, the maximum for a simple graph. We have numerically explored a variety of

options for both of the freedoms. For choosing the hub node, we have explored either

choosing a node with the largest residual degree or one with the smallest residual

degree at the time of choosing during the graph construction process. For choosing

nodes in the Allowed Set to connect the hub to, we have also explored a number of

methods. Here we will discuss results for three: node sampling, where each node

in the allowed set is equally likely to be chosen, stub sampling, where each node

has a probability proportional to its residual degree d′i to be chosen, and efficient

stub sampling, where each node in the allowed set has a probability of being chosen

according to

pij ∝
(

1 +
d̄′(N ′ − 1− d′i)(N ′ − 1− d′j)

d′id
′
j(N

′ − 1− d̄′)

)−1

. (2.6)

For efficient stub sampling, d′i is the residual degree of the chosen node in the Allowed

Set, d′j is the residual degree of the hub node, N ′ is the number of nodes left that still

have stubs to be connected, and d̄′ is the average degree of the nodes left. All of these

choices can be implemented so that the SIS algorithm has a worst-case computational

complexity of O(NM).

Node sampling and stub sampling are obvious, simple choices. Node sampling

combined with choosing the largest residual degree node as hubs was suggested in

[46], while stub sampling combined with choosing the smallest residual degree node

as hubs was suggested in [20]. Efficient stub sampling is inspired by the probability

of connecting a pair of nodes in a soft-constrained exponential random graph model

(ERGM) with prescribed degrees [39]. The specific form in Eq. 2.6 is derived by

finding approximate solutions of ERGM using mean-field approach. More details can

be found in the appendix. We have also explored using probabilities for choosing

35

nodes from the Allowed Set, including ones that are proportional to a power of the

residual degree and ones that are an exponential function of the residual degree.

Results for these various methods are given in the supplemental information. The

most optimal choice we have found is efficient stub sampling.

To compare the different choices, we considered 1000 randomly chosen power-

law distributed degree sequences for N = 1000 nodes. We generated 1000 graphs for

each sequence using different algorithmic freedom choices and calculated the standard

deviation of the logarithm of the sample weights resulting from each different choice.

Figure 2.2 shows the results. Figure 2.2A compares choosing smallest vs. largest

nodes for hubs when using node sampling. Each of the red dots represents the results

from one degree sequence. When a dot lies below the diagonal line the standard

deviation of the log-weight of samples generated by choosing smallest hubs is less

that of those generated by choosing largest hubs. As almost all of the dots lie below

the diagonal, choosing the smallest hubs is generally better than choosing the largest

hubs for node sampling. Choosing the smallest hubs and node sampling gives an

assortative preference of connecting pairs of nodes with smaller residual degrees. This

result indicates that an assortative preference for link formation leads to a smaller

log-weight variance of the samples.

A similar analysis comparing choosing smallest vs. largest nodes for hubs when

using stub sampling is shown in Figure 2.2B. In this case, almost all of the dots

lie above the diagonal, indicating that choosing the largest hubs is generally better

than choosing the smallest hubs for stub sampling. This result also indicates that

an assortative preference for link formation leads to a smaller log-weight variance

of the samples, as choosing the largest hubs and stub sampling gives an assortative

preference of connecting pairs of nodes with larger residual degrees.

36

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

degree sequence

<
C

C
g> ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

Node

Stub

ESS

MCMC

Figure 2.3: Weighted average of the global clustering coefficient CCg for 10 different
random power-law distributed degree sequences with N = 1000 nodes, calculated di-
rectly, using different sampling methods. Results are shown in black for node sampling
with smallest nodes as hubs, blue for stub sampling with largest nodes as hubs, and
red for efficient stub sampling with largest nodes as hubs. Purple shows the results
for MCMC. (Error bars are 95% confidence interval calculated using bootstrapping
method. [64, 44])

37

Figure 2.2C analogously compares the best choices from Figure 2.2A and Fig-

ure 2.2B: choosing smallest nodes for hubs when using node sampling vs. choosing

largest nodes for hubs when using stub sampling. Almost all of the dots lie above the

diagonal, indicating that stub sampling generally has a smaller log-weight variance

and is better than node sampling. Simple stub sampling is, however, not the opti-

mal choice. Figure 2.2D compares efficient stub sampling vs. stub sampling when

choosing largest nodes for hubs. For all of the sequences studied the dots clearly lie

below the diagonal, indicating that efficient stub sampling is better than simple stub

sampling. Choosing largest nodes as hub combined with efficient stub sampling is the

most optimal method of SIS graph construction for power-law distributed sequences

we have found.

The improvement in sampling reliability that can be obtained by using efficient

stub sampling is shown by example in Figure 2.3. In the figure, ensemble averages

for the CCg for ten different power-law distributed degree sequences calculated using

different sampling methods are compared. The sequences each have N = 1000 nodes.

Results for SIS sampling using three different freedom choices are shown. For each

sequence, 1000 samples were generated, and weighted averages were calculated. Error

bar for each sequence is 95% confidence interval of the weighted average, calculated

using bootstrapping method. [64, 44]

To provide a comparison for the SIS results, we also used link-swap MCMC [149]

to calculate the CCg of the sequences. Simulation runs consisting of 1000 × 2M

link-swaps were performed for each sequence. Each run began with a Havel-Hakemi

graph [71, 69], but the use of other types of initial graphs was explored and found to

be statistically irrelevant to the sampling results. Graphs were sampled at intervals

of 2M link-swaps during the runs, producing 1000 samples for each sequence. The

38

mean and its standard error of the CCg for the 1000 were then calculated and are

shown in the figure.

In theory, all SIS methods will converge to same, correct result as long as there

are enough samples [46]. However, in practice, the number of samples that can be

generated is limited. The method that can give the most accurate result for a given

number of samples is, thus, preferred. Assuming that MCMC gives the correct result,

Figure 2.3 indicates that node sampling tends to underestimate the CCg, while stub

sampling tends to overestimate it. Efficient stub sampling, however, gives results that

are consistent with those of MCMC. The bias that the different sampling methods

demonstrate may, of course, be different for another quantity, but, at least for the

CCg, efficient stub sampling appears to give unbiased results that allow accurate

estimation for sequences as large as several thousand nodes.

In order to more accurately estimate the size of graphs that can be feasibly sampled

with the different SIS methods, the distribution of the standard deviation of the log-

weights for different degree sequence lengths must be known. For each SIS method

and sequence length, we generated 1000 random sequences and 1000 graph samples

for each sequence. From these results, the standard deviation of the log-weights σ was

calculated for each sequence, and the distribution of σ for each N and SIS method

compiled. Figure 2.4 shows the results. Generally, as expected, for all N , efficient stub

sampling performs best, followed by stub sampling, and then node sampling worst.

The dashed grey line indicates the value of σ = 2.6 for which 1000 weighted samples

have an effective sample size of unity, according to Eq. 2.5 where the effective sample

size is E[neff] = n/eσ
2

= 1000/e2.62 ≈ 1. This line provides a rough estimation of

the limits of the feasibility of SIS sampling. For node sampling, the maximum length

of sequences that can feasibly be sampled is only about 30. With stub sampling,

39

10 32 100 316 1000 10000

0.
1

1
10

10
0

N

σ

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Node

Stub

ESS

Figure 2.4: Distribution range of the standard deviation of log-weight for SIS using
different freedom choices. Black is for node sampling, blue is for stub sampling, and
red is for efficient stub sampling. For each sequence length N and for each method,
the minimum (bottom of bar), 25% quantile (lower wide error bar), median (circle),
75% quantile (upper wide error bar) and maximum (top of bar) of distribution is
shown. The dashed grey line indicates where 1000 samples would produce one effective
unweighted sample.

40

0 20 40 60 80

1
2

3
4

5
6

7

σ2

lo
g 1

0n

●●

●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●

●●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●
●●

●●●
●●●

●●●
●●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●

●●●
●●

●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●●
●●●

●●
●●

●●●
●●

●●●
●●●

●●
●●

●●●
●●

●●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●●

●●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●●

●●●
●●●

●●
●●●

●●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

minimum sample size

linear fit

Figure 2.5: Minimum sample size n that the largest weight no longer dominates.
(sample size that the expected largest weight equals to half the expected total weight.)
Red dots are the minimum sample sizes. Blue line is a linear fit with formula log10 n =
0.076σ2 + 1.009.

41

perhaps sequences with N ≤ 100 can be sampled. While for efficient stub sampling,

maybe sequences with N ≈ 300 can be feasibly sampled. Note that this estimate is

smaller than what the results in Figure 2.3 for the CCg indicate. Perhaps for certain

measurables, estimates can be feasibly made for longer degree sequences. However,

as Figure 2.4 shows, the distribution of σ is quite broad and can be very large for a

given sequence, even for smaller N . This suggests that caution must be used when

using SIS regardless of sequence length.

2.4 Sampling large graphs

Despite the significant improvement in the size of graphs that can be feasibly sampled

when efficient stub sampling is used, it is still not possible to use it to directly study

large graphs. This is due to the slow decay of the distribution of the sample weights.

The weight of a sample is inversely proportional to the relative probability of gener-

ating a particular graph, Eq. 2.1, which due to the random multiplicative nature of

the graph construction process, according to the central limit theorem [19], is gener-

ally expected to have a log-normal distribution in the limit of large graphs [46]. The

logarithm of the weights are normally distributed. As argued in Section 2.2, an expo-

nentially large number of samples is therefore required for direct weighted averages

of measurable quantities to reliably converge to their ensemble averages. This makes

using weighted sample averages to estimate ensemble averages impossible for large

graphs. A completely different approach is required to calculate ensemble averages

for large graphs.

Here we show that the knowledge that the sample weight distribution has a log-

normal form can be used advantageously to calculate ensemble averages for large

42

0.000

0.025

0.050

0.075

0.100

5600 5610 5620 5630

lgwt

de
ns

ity

0.051

0.054

0.057

0.060

5600 5610 5620 5630

lgwt

cc
g

0.051

0.054

0.057

0.060

0 100 200 300

density

cc
g

Figure 2.6: Joint distribution of the logarithm of the sample weights (log-weights)
and the CCg of an ensemble for a prescribed degree sequence with N = 1000. Note
the approximate bivariate normal form of the joint distribution shown in the central
plot and the approximate normal form of the marginal distributions of the log-weights
and of the CCg shown as projections at the edges of the figure.

43

graphs. That is, when the graph is large enough to assume that the sample weight

distribution is log-normal and that the joint distribution of the sample log-weights

and a measurable quantity of interest Q is a bivariate normal distribution, ensemble

averages can be estimated reliably indirectly, by using the graph sampling to first

estimate the parameters of the multivariate distribution and then using the estimated

distribution to make the ensemble average estimates. The validity of the bivariate

normal distribution assumption can be seen by example in Figure 2.6. The figure

shows the joint distribution of the sample log-weights and the CCg for the first degree

sequence studied in Figure 2.3. Although the degree sequence has only N = 1000,

the joint distribution has an approximate bivariate normal form. This can be clearly

seen by the form of the marginal distributions for the log-weights and the CCg that

are also shown in the figure.

Of course, the central limit only applies in the limit of large sequences. For a

finite length sequence, the joint probability distribution of sample log-weight and

Q need not have a bivariate normal form. However, as N increases, the likelihood

that it does have a bivariate normal distribution increases. Figure 2.7 shows this is

true when Q = CCg. In the figure, for each value of N , 1000 different power-law

distributed degree sequences were considered. For each sequence, 1000 sample graphs

were generated and the joint probability distribution (JPD) of the sample log-weight

and the CCg were calculated. The resulting JPDs were then tested to determine if

they had a bivariate normal form using Henze-Zirkler test [72], Royston test [135]

and Mardia test [105]. All tests were applied using a significance threshold of 0.05

for deviation from bivariate normal form. Error bars correspond to one σ standard

statistical error. As anticipated, the fraction of sequences with bivariate normal

JPDs increases toward unity with N . It should be noted, however, that for a given

44

10 50 500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

B
iv

ar
ia

te
 N

or
m

al
 P

ro
ba

bi
lit

y

● ● ● ●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

Royston test

HZ test

Mardia test

Figure 2.7: Probability that the joint probability distribution of sample log-weight
and CCg has a bivariate normal form as a function of prescribed degree sequence
length. Fraction of sequences satisfying the Henze-Zirkler test [72], the Royston test
[135] and Mardia test [105] are shown in blue, red, and gold respectively. (Error bars
show 95% confidence interval. For each system size N 1000 degree sequences are
tested and 1000 graphs per sequence are generated.)

45

0 1000 2000 3000 4000 5000

0.
7

0.
8

0.
9

1.
0

sample size n

B
iv

ar
ia

te
 N

or
m

al
 P

ro
ba

bi
lit

y

●

●

●
●●

●●

●

●
●
●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●●

●●
●

●
●●

●

●

●

●

●

●

●

Royston test

HZ test

Mardia test

Figure 2.8: Bivariate normal probability of a sequence with different sample size.
Blue for Henze-Zirkler test, red for Royston Test, and gold for Mardia test. It seems
that as the sample size increases, it is less and less likely that the joint distribution
passes the bivariate normal test. (For this specific degree sequence with 1000 nodes,
a pool of 106 graphs are generated and for each sample size n we resampled 100 times
from this pool.)

46

prescribed degree sequence, as the number of samples increases, the probability that

its JPD will be bivariate normal will decrease as the precision of the measurement

of the JPD begins to reveal deviation from bivariate normal form. JPDs are thus

typically found to be bivariate normal for a moderate number of samples. Whether

or not particular JPD is approximately bivariate normal should be tested.

If the JPD is assumed to be bivariate normal, then it is completely characterized

by five independent parameters: the mean Q̄ and variance σ2
Q of sampled value of the

measurable Q, the mean ȳ and variance σ2
y of the sample log-weight y ≡ lnw, and

VQy the covariance of Q and y. Each of these parameters can be estimated by simple,

unweighted sample averages:

Q̄ =
1

n

n∑
i=1

Q(si) , (2.7)

σ2
Q =

1

n− 1

n∑
i=1

[
Q(si)− Q̄

]2
, (2.8)

ȳ =
1

n

n∑
i=1

lnwsi , (2.9)

σ2
y =

1

n− 1

n∑
i=1

(lnwsi − ȳ)2 , (2.10)

and

VQy =
1

n− 1

n∑
i=1

[
Q(si)− Q̄

]
[lnwsi − ȳ] . (2.11)

In terms of these parameters, the JPD can be written [87]

P (Q, y) =
1

2πσQσy
√

1− ρ2
e−z/[2(1−ρ2)] , (2.12)

where

z =
(Q− Q̄)2

σ2
Q

− 2ρ(Q− Q̄)(y − ȳ)

σQ σy
+

(y − ȳ)2

σ2
y

, (2.13)

47

and correlation

ρ = cor(Q, y) =
VQy
σQ σy

. (2.14)

From estimates of these parameters, an estimate of 〈Q〉, the ensemble average of

Q, can be made. To do so note that 〈Q〉 is the weighted average of Q. The weight of

a point (Q, y) is ey, where y is a log-weight. Thus, the weighted distribution of Q is

Pw(Q) =

∫
P (Q, y)eydy∫ ∫
P (Q, y)eydQdy

, (2.15)

in which ∫
P (Q, y)eydy = eµy+σ2

y/2
1√

2πσQ
e−(Q−(Q̄+ρσQ σy))2/(2σ2

Q) , (2.16)

and ∫ ∫
P (Q, y)eydQdy = eµy+σ2

y/2 , (2.17)

thus,

Pw(Q) =
1√

2πσQ
e−(Q−(Q̄+ρσQ σy))2/(2σ2

Q) . (2.18)

Thus, the weighted distribution ofQ is a normal distribution. Its mean is the ensemble

average

〈Q〉 = Q̄+ ρ σQ σy = Q̄+ VQy. (2.19)

The ensemble average of Q is thus a function of not only the unweighted average of

Q but also of the covariance of Q and y. To determine the statistical error in the

estimation of 〈Q〉, note that since Q̄ and VQy are independent

V ar(〈Q〉) = V ar(Q̄) + V ar(VQy) , (2.20)

where

V ar(VQy) = σ2
Q σ

2
y (1 + ρ2) , (2.21)

48

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

degree sequence

<
C

C
g> ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

Node

Stub

ESS

MCMC

Figure 2.9: Weighted average of the global clustering coefficient CCg for the same
10 random power-law distributed degree sequences with N = 1000 nodes considered
in Figure 2.3, calculated by assuming a bivariate normal form of the CCg-log-weight
joint probability distribution JPD and estimating the parameters of the JPD by
using different sampling methods. Results are shown in black for node sampling with
smallest nodes as hubs, blue for stub sampling with largest nodes as hubs, and red
for efficient Stub sampling with largest nodes as hubs. Purple shows the results for
MCMC. (Error bars show 95% confidence interval.)

49

since covariance matrices of multivariate normal distributions have Wishart distribu-

tions [160]. Thus, the standard error in estimating 〈Q〉 is

SE(〈Q〉) =

√
σ2
Q + σ2

Q σ
2
y (1 + ρ2)

n
. (2.22)

Since typically σy � 1, the relative error

z =
SE(〈Q〉)

σQ
=

√
1 + σ2

y (1 + ρ2)

n
∼ σy√

n
. (2.23)

Thus, given z, the number of samples required will be n ∼ σ2
y

z2 , which is more scalable

than eσ
2
y in Eq. 2.5.

All of the independent parameters that characterize the JPD depend most strongly

on the center part of the distribution, and not on its tails. Thus, they can be accu-

rately estimated with a relatively small number of samples. Accurate estimates of

ensemble averages and their statistical error can then be made using Eqs. 2.19 and

2.22. Figure 2.9 shows results for ensemble average of the CCg calculated in this way

for the same 10 prescribed sequences studied in Figure 2.3. Again, results for SIS

sampling using three different freedom choices are shown. For each sequence and each

freedom choice, the same 1, 000 samples used for Figure 2.3 were reanalyzed, and the

mean and 95% confidence interval are shown. For each sequence improved results are

shown. The JPD for every set of samples, except those for sequence 6, were found to

be bivariate normal using both the Henze-Zirkler test and the Royston test.

The difference between calculating an ensemble average by a direct weighted av-

erage and by estimating the parameters of the bivariate normal JPD are shown

in Figure 2.10. The figure shows the running ensemble average CCg, calculated

with both methods, in twenty different runs for sequence 1 in Figure 2.3 and Fig-

ure 2.9. Efficient stub sampling was used in all runs. The figure shows that the

50

0 200 400 600 800 1000

0.
05

2
0.

05
4

0.
05

6
0.

05
8

n

<
C

C
g>

●

ESS−direct

ESS−bin

MCMC

Figure 2.10: Running ensemble average of the CCg for a prescribed random power-
law distributed sequence. Results for twenty independent runs of n = 1000 samples
are shown. Direct weighted averages are shown in blue and distribution estimation
averages are shown in red. MCMC results are shown in purple at the right edge for
comparison.

51

0 200 400 600 800 1000

0.
05

0
0.

05
2

0.
05

4
0.

05
6

n

C
C

g
(B

iv
ar

ia
te

 N
or

m
al

 A
ve

ra
ge

)

Figure 2.11: Quantile of ensemble average for different sample size using bivariate
normal assumption. Black lines are theoretical results. Grey dash lines are MCMC
result with 95% confidence interval. The quantiles are the same as quantiles for stan-
dard normal distribution with {-2, -1, 0, 1, 2} standard deviations, i.e. approximately
{0.02, 0.16, 0.5, 0.84, and 0.98}.

52

0 200 400 600 800 1000

0.
05

2
0.

05
3

0.
05

4
0.

05
5

0.
05

6
0.

05
7

n

C
C

g
(D

ire
ct

 A
ve

ra
ge

)

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●

●

●
●●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●
●●●

●

●
●
●
●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●
●
●

●
●
●

●
●
●●

●●
●

●
●●
●

●

●

●

●

●●

●

●

●●
●●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●
●●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●
●

●

●

●
●●
●●

●

●

●
●

●

●

●

●

●●●
●

●●

●
●●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●
●

●●

●

●
●
●
●
●●

●

●

●

●

●
●

●

●

●
●

●
●●
●

●

●

●

●

●
●●
●

●
●●

●●●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●
●

●

●
●
●
●
●

●

●

●●

●

●
●●
●
●
●

●

●

●
●

●

●

●●

●

●

●
●●

●●
●

●

●

●
●
●

●

●

●

●
●
●
●

●●

●●

●
●●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●
●
●●

●
●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●
●
●

●

●

●
●

●

●
●●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●
●

●

●
●
●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●
●●●●

●
●
●

●
●
●

●●

●

●

●●
●
●
●
●●●●

●●

●

●

●

●

●
●

●●

●
●
●

●●

●

●

●

●
●

●

●●

●●

●
●

●

●●

●

●

●
●
●●

●

●

●

●●

●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●

●

●
●

●●●

●
●
●
●

●

●

●
●●

●
●●

●

●

●
●

●
●
●●
●

●

●

●

●●

●

●
●
●●

●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●
●●

●●
●●

●
●●
●

●

●
●

●●
●●

●

●●
●

●

●

●
●

●

●
●●

●●
●
●

●

●

●
●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●●●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●
●
●●

●

●
●●

●

●
●

●

●

●●

●

●
●●●

●●
●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●
●

●
●
●
●

●●

●●
●

●

●

●
●
●

●
●●

●

●
●

●

●●●
●

●

●

●

●

●●●
●●

●
●●●●

●

●
●
●●
●
●
●●

●
●
●●●●●

●●

●
●

●

●
●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●
●
●

●

●

●●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●●●●
●
●●●

●●

●

●

●

●●●
●

●
●
●
●

●
●

●
●●
●

●

●
●

●

●
●●
●

●●●●

●

●
●●●●

●

●●
●●

●

●
●

●

●

●

●

●
●

●●

●●

●

●●

●●

●

●●
●

●
●
●●●

●

●●
●

●

●
●
●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●
●
●

●

●●
●

●
●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●
●●

●
●

●
●●
●●
●●

●
●
●
●●

●

●

●
●
●

●

●
●●
●

●

●●

●

●

●

●

●

●

●
●●●●

●●●
●●

●

●
●
●
●

●

●●●●●
●
●
●
●

●

●

●●

●●
●

●●
●●

●
●
●

●
●
●

●
●
●

●●

●
●●

●

●

●

●

●
●
●

●

●●●●
●

●

●
●●●

●
●
●

●
●
●●
●
●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●
●●

●
●●

●●●

●●

●

●
●●
●
●
●●

●●●
●

●

●

●
●
●●
●
●

●

●●

●●

●

●
●

●
●
●
●●
●

●

●●
●●●

●
●

●●

●
●
●●●

●
●

●

●

●●
●
●
●

●●
●
●

●
●●

●

●

●

●

●
●

●
●
●
●
●

●●●
●
●●

●

●

●

●

●●●
●

●
●●●

●

●●
●

●
●

●

●

●

●

●●●
●●●●

●●
●

●

●

●

●

●

●●●●●

●●

●

●
●

●●
●

●●

●

●

●

●

●●
●

●

●
●●●

●

●

●
●

●
●●●

●
●●

●

●

●

●
●

●
●

●

●●

●
●
●●●

●

●

●●

●

●

●●●
●

●●

●●

●
●
●●
●

●

●

●●
●
●●
●

●●

●●●●
●

●●

●
●●
●●●

●●●●●

●●
●
●●
●●
●
●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●
●
●

●
●

●
●●

●

●

●●
●

●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●
●●●●●

●
●

●

●●

●
●

●

●
●●

●

●●

●

●●

●●

●

●●
●

●
●
●●●●

●●
●
●●
●●
●

●

●●
●

●
●●

●●●

●
●

●

●●
●
●

●
●

●●
●●
●●

●●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●
●
●

●

●●●
●
●
●

●

●
●

●●
●●

●

●●
●
●●

●

●
●

●
●
●

●

●

●
●

●

●
●●

●●
●

●
●
●

●

●
●
●●
●●

●

●
●●●

●

●
●●
●●
●
●
●
●

●

●●
●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●●
●
●

●

●

●

●
●
●

●
●

●

●
●

●
●●●

●●
●
●
●●
●
●
●●

●

●●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●
●

●

●
●●

●

●●
●

●
●

●●

●
●●

●

●

●

●●
●●
●●
●

●

●●

●
●
●

●
●
●

●
●
●

●

●
●

●

●●●
●●
●
●

●
●

●●
●●

●

●

●

●
●
●
●
●●
●

●
●
●●●

●
●●

●

●●

●●
●

●

●

●
●
●

●
●●
●
●
●
●

●

●

●●●
●
●
●
●
●
●
●●
●

●
●

●●

●
●

●
●
●
●

●

●
●

●

●
●●●●

●
●●
●●
●
●
●

●

●●
●
●●●●

●

●●
●●●●●

●●
●
●
●

●

●●

●

●

●●

●
●
●

●

●
●
●

●●●
●

●

●●●

●●

●

●●●
●
●
●

●

●
●
●

●

●

●●

●●●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●

●●
●

●

●●

●

●

●

●
●●●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●
●
●●
●
●●
●
●

●

●

●

●
●●
●●●

●

●●
●

●

●●

●

●

●

●
●

●●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●
●●
●
●

●

●

●
●

●
●
●
●●

●

●

●

●●

●

●
●

●

●

●
●
●

●
●
●

●●
●●
●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●
●
●●

●
●

●
●
●

●

●
●●
●●

●
●●

●
●

●
●

●
●

●

●

●●●

●

●

●●

●
●●●

●

●
●
●
●●●

●●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●
●
●
●

●

●

●

●

●

●
●
●
●●

●

●●
●
●
●
●

●

●

●

●●●
●
●●
●
●

●

●●

●●

●
●
●●
●

●

●
●●

●

●

●
●
●
●

●●
●
●

●

●
●
●●
●●
●

●
●

●●●●●

●

●

●
●
●
●●

●

●

●

●
●

●●

●

●

●●

●
●●
●●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●
●
●
●●

●

●●

●●
●
●●●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●●

●

●●
●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●

●
●
●
●

●●

●●
●

●●

●●

●●

●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●●

●●

●

●●

●
●
●

●●●

●

●●●●●●

●
●

●
●
●

●

●

●

●●

●

●

●●
●

●

●
●●●●●

●

●
●

●

●
●

●●●
●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●●

●
●
●

●

●

●

●●●

●

●●

●

●●
●●

●●

●

●●●●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●
●
●
●●

●

●●

●●

●

●●

●

●
●
●

●

●

●

●●●

●

●

●●
●

●

●

●

●
●●

●
●

●
●●
●
●

●

●

●

●

●●

●
●

●

●
●
●

●

●
●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●●●
●

●
●
●

●

●

●
●

●
●
●

●

●●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●●●
●

●●
●●

●

●
●
●

●

●

●●

●

●

●

●

●
●●
●

●
●
●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●
●●
●

●●
●●
●●●

●

●
●

●

●

●

●
●●●

●
●

●●
●

●●

●

●

●
●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●●

●

●
●

●
●●
●
●
●●
●

●

●
●●

●

●

●
●

●
●
●
●

●

●●
●
●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●
●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Figure 2.12: Quantile of ensemble average for different sample size using direct average
when the underlying joint distribution is actually bivariate normal. Black lines are
theoretical results. Grey dash lines are MCMC result with 95% confidence interval.
The quantiles are the same as quantiles for standard normal distribution with {-2,
-1, 0, 1, 2} standard deviations, i.e. approximately {0.02, 0.16, 0.5, 0.84, and 0.98}.

53

direct weighted running averages have many step-like jumps as sample size increases

and converge slowly, while the bivariate normal JPD parameter estimation running

averages converge quickly around the MCMC value. The mean value of the twenty

runs after n = 1000 samples and the standard error of those twenty independent

measurements is 5.407 × 10−2 ± 1.07 × 10−3 for direct weighted averages and is

5.378×10−2±1.7×10−4 for averages using JPD parameter estimation. Using MCMC

the result was 5.388× 10−2 ± 5× 10−5.

2.5 An example with 106 nodes

In order to demonstrate the usefulness of our sampling methods in a practical real-

world problem involving a large graph, consider the Youtube user friendship network

(YoutubeNet) [96, 110]. Is the structure of this network somehow special, perhaps

due to some self-organizing process? Or, is it random? YoutubeNet is an undirected

graph with 1,134,890 nodes and 2,987,624 edges. As Figure 2.13 shows, it has a degree

distribution that decays approximately as a power-law with exponent γ ≈ 2.3. The

global clustering coefficient the graph is CCg = 0.00622. How random is the clustering

of the YoutubeNet? This is partially answered by determining how unusual it is for

a graph to have the CCg value that YoutubeNet has within the ensemble of graphs

that have the same degree sequence.

Using efficient stub sampling we constructed 1000 random graphs with the same

degree sequence as the YoutubeNet. We used the degree sequence of YoutubeNet to

generate random graphs using efficient stub sampling and link-swap method. Then

we analyze the data of ESS using directed weighted average and bivariate normal as-

sumption after verifying the (CCg, log-weight) JPD is really bivariate normal. Since

54

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

5 50 500 5000

10
−1

0
10

−7
10

−4
10

−1

k

pr
ob

ab
ili

ty γ ≈ 2.3

Figure 2.13: Degree distribution of the YoutubeNet. The red line is a decaying
power-law function with exponent 2.3.

55

the standard deviation of log-weight for this 1000 random graphs is around 9, ac-

cording to Eq. 2.23, z ∼ 9/
√

1000 ≈ 0.3. Thus, with 1000 samples, we can expect

estimation using bivariate normal assumption reasonably close to the actual result.

Figure 2.14 shows the CCg distribution. Note that the direct weighted distribution

has sharp peaks. This may be caused by outliers with extremely large weights. On

the other hand, the weighted distribution using bivariate normal assumption is closer

to the distribution using link-swap.

Table 2.1: Statistics for different methods and corresponding z-score of YoutubeNet

method mean CCg sd of CCg z-score
ESS-direct 3.69(1)× 10−3 3(3)× 10−6 791
ESS-normal 3.702(6)× 10−3 2.04(4)× 10−5 123
Link-swap 3.708(1)× 10−3 2.01(4)× 10−5 125

The number in the parentheses shows uncertainty of one standard error and applies to
least significant digit. In order to be consistent, uncertainty for different methods are all
calculated using bootstrapping method.

As shown in Table 2.1, all three methods give similar mean. This suggests that

they all converge to the real value. Efficient stub sampling with bivariate normal as-

sumption gives similar variance as link-swap. However, variance using direct weighted

method is much smaller than the other two methods and has very large uncer-

tainty. We believe this is because the largest weight dominates the distribution.

Also note that the z-score is very large in all three cases, which means the structure

of YoutubeNet cannot be explained by its degree sequence only.

56

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

0.00365 0.00370 0.00375

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

CCg

de
ns

ity
 / 1

05

ESS−direct

ESS−bin

MCMC
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●●

●

●●●●
●

●

●

●
●

●

●

●

●

0.00365 0.00375

10
−5

10
0

10
5

CCg
de

ns
ity

Figure 2.14: Weighted distribution of the global clustering coefficient Pw(CCg) for
graphs with the degree sequence of the YoutubeNet. Graphs were sampled using
efficient stub sampling, and then analyzed directly as a weighted sum (blue circles)
and with distribution estimation (red line). The distribution was also calculated for
link-swap, analyzing the results directly as an unweighted sum (black squares). The
line connecting the blue circles and the one connecting the black squares are simply
guides to the eye. The red line is a Gaussian function. Inset shows the same data,
but plots density in log-scale.

57

2.6 Discussion

In this paper, we found that using efficient stub sampling in Eq. 2.6 with large hub

first is an optimized way to assign probabilities to nodes in the allowed set for SIS

[46] algorithm.

If we further assume the measured property and log-weight JPD to be bivariate

normal, we can express the weighted average of this property in JPD parameters

using Eq. 2.19 and its standard error using Eq. 2.22. For log-normal weight distribu-

tion, estimating distribution parameters is more stable than doing weighted average

directly on weights with large fluctuation. Thus, by estimating JPD parameters, the

sample size required to estimate the weighted average would grow linearly as system

size grows, instead of exponentially when doing weighted average directly.

We also compared our method with MCMC. The fact that two independent meth-

ods converge to the same result indicates that both methods work, and the converged

value should be close to the real value.

Some ways might improve the current method. One is to get a more accurate

estimation of the number of possible graphs for a given residual degree sequence with

star constraint. This may help reduce the variance of log-weight [63]. Another way is

to run many simulations at the same time and use resampling at every hub-choosing

step. This may help control the variance of log-weight, preventing it from growing

too fast [109].

Also, it might be useful to use SIS and MCMC together. For example, we can use

SIS with different order to choose hub and different probability to connect nodes in

the Allowed Set to generate different initial graphs for MCMC [124]. Then we can

58

use MCMC to randomize those graphs. In this way, we can explore different parts

of the configuration space. And we can be more confident if MCMC results from all

different initial graphs converge.

In this paper we concentrate on degree sequence. But there is still a lot to explore

for the graph sampling problem in general. For example, it might be interesting

to sample random geometric graphs satisfying some constraint, or random graphs

satisfying some global constraint like spectrum [123].

2.7 Acknowledgements

This work was supported by the NSF through grant DMR-1507371. Simulation in

this project was run on the uHPC cluster managed by the University of Houston and

acquired through NFS Award Number 1531814. We are grateful for the support of

the Center for Advanced Computing and Data Science at the University of Houston

for assistance with the calculations carried out in this work.

2.8 Derivation of Eq. 2.6

We want to solve the Lagrange multipliers {βi} in Eq. 1.20. Since these equations

are difficult to solve analytically in general, we need to make some assumptions to

simplify the equations and get some idea of the relation between di and βi.

In the simplest case, assuming βi has a sharp distribution centered at β̄, then

using β̄ to represent all βj where j 6= i, we have

di ≈
N − 1

1 + e−(βi+β̄)
, (2.24)

59

thus,

βi ≈ ln(
di

N − 1− di
)− β̄ . (2.25)

Then if we define β̄ as the arithmetic mean of βi, we have

β̄ =
1

N

∑
i

βi ≈
∑

i ln
di

N−1−di
N

−
∑

i β̄

N
=

∑
i ln

di
N−1−di
N

− β̄ , (2.26)

β̄ ≈
∑

i ln
di

N−1−di
2N

=
1

2
ln(
∏
i

di
N − 1− di

)1/N , (2.27)

e2β̄ ≈ (
∏
i

di
N − 1− di

)1/N , (2.28)

where the right hand side is geometric mean of di
N−1−di .

In sequential importance sampling, it’s easier to update arithmetic mean degree

d̄ ≡
∑

i di/N than to update geometric mean Eq. 2.28, so let’s assume

e2β̄ ≈ d̄

N − 1− d̄
. (2.29)

In ERGM, the probability of connecting a pair of nodes i and j is 1.18. Substi-

tuting Eq. 2.25 and Eq. 2.29 into Eq. 1.18, we have

pij ≈
(

1 +
d̄(N − 1− di)(N − 1− dj)

(N − 1− d̄)didj

)−1

. (2.30)

Now let’s consider a few example cases:

• For regular graph, ∀i, di = d, thus, d̄ = d,

pij =
(

1 +
d(N − 1− d)2

(N − 1− d)d2

)−1

=
d

N − 1
, (2.31)

which gives us the correct probability.

60

• For very small di, dj, d̄� N , d
N−1−d � 1 for all di, dj and d̄,

pij ≈
(d̄(N − 1− di)(N − 1− dj)

(N − 1− d̄)didj

)−1

≈ didj
(N − 1)d̄

, (2.32)

which is the same as Chung-Lu model [35, 36].

• For very large di, dj, d̄ ∼ N , d
N−1−d � 1 for all di, dj and d̄,

pij ≈ 1, pij < 1 , (2.33)

which solves the Chung-Lu model’s problem that connection probability for a

pair of nodes can exceed 1 if the degrees of the nodes are too large.

Thus, Eq. 2.30 is a qualitatively reasonable probability of connecting a pair of

nodes.

If we change the variables in Eq. 2.30 to residual degree so that it is compatible

with sequential importance sampling, we can get Eq. 2.6.

61

Chapter 3

Comparison between hard and soft

constraint methods

3.1 Introduction

Complex systems are often modeled as networks. Networks contain a set of con-

nections (edges) linking a set of points (nodes), where degree measures the num-

ber of edges per node [114, 4, 113]. The number of edges which link to a node is

known as its degree. The empirical study of networks is confounded by incomplete

knowledge, which results from the network’s: size, non-static nature, or even pri-

vacy concerns [97]. Perhaps only one metric of the system, typically the degree, can

be easily measured. However, the way in which the network is connected remains

unknown. In graph enumeration problem, it is known that the number of config-

urations for regular random graph with n nodes and k neighbors for each node is

asymptotically Ω(n, k) = (nk)!

(nk/2)!2nk/2(k!)n
exp(−k2−1

4
− k3

12n
+ O(k2/n)) if k = o(n1/2)

62

[107]. Using this formula, a reasonably small regular graph with N = 30 and k = 3

has 2×1044 configurations. Thus, in general it’s not practical to generate all possible

configurations, and sampling method must be used. Sampling possible configurations

from this set can be accomplished using network modeling methods (null models)

[114, 111, 46, 1, 159, 33, 88]. Methods including Sequential Importance Sampling

(SIS) [46, 13], Degree-Preserving Link-Swap (link-swap) [46], Chung-Lu [1, 139, 159],

and the Exponential Random Graph Model (ERGM) [114, 32] are widely used in

graph sampling and fall into two main categories: soft-constraint methods (SC) and

hard-constraint methods (HC). Both use known information about the system as

guidelines (constraints) to generate graphs. HC meets these constraints with each

graph generated [132], while SC meets constraints on average over an ensemble of

graphs [45, 114, 1].

Despite the variance of individual graphs, SC are preferred for their speed and

simplicity for theoretical treatment as HC can be slow and difficult to analyze due to

their discrete nature [46, 159, 137]. HC’s main strength is they produce only graphs

which reflect possible configurations of the original system, while ensemble bias intro-

duced by SC is not well understood. Known problems with SC include degeneracy in

which the prescribed value is met on average, but values are not distributed around

the mean, and instead separate into two or more clusters of micro-states none of which

reflect the expected value [76, 62, 114]. A well-known example is the star triangle

problem [114, 76]

Our research focuses on network sampling methods on systems with scale-free

distributions. Scale-free network’s degree distribution conforms to P (k) ∼ k−γ. Ex-

amples of such degree distribution include: some social networks, protein-protein

interactions and disease transmission [4, 114, 139]. Several major scale-free systems

63

notably the Internet have 2 < γ < 3 [116]. In this region, scale-free networks have

several known graphical and structural constraints [45, 116, 77].

It was previously unclear what structural bias SC methods exhibit when used to

generate scale-free networks in the range 2 < γ < 3. Previous research indicates that

many SC methods do not capture community structure well [139]. We observe a bias

toward higher transitivity when utilizing SC for scale-free sequences. Further study

of SC on regular graphs as the degree k approaches its maximum possible value N−1

hints that SC may not perform as expected on many other types of graphs.

3.2 Methods

The main SC method used, ERGM, allows for great flexibility in the application of

constraints to the set of possible graphs [114, 150]. In the case where a prescribed

degree sequence ki is given, the constraints on the ensemble become,

〈ki〉 =
∑
G

P (G)ki(G) . (3.1)

Maximizing the entropy of the set of possible graphs minimizes the bias in the result-

ing ensemble. The derivation of this minimization is explained by Newman [114]. The

derivation includes a set of Lagrange multipliers, βi, for each constraint applied to

the system. Utilizing a prescribed degree sequence ki as a constraint, and restricting

the model to simple, undirected networks with no self-links, gives a non-linear system

of size N with the form,

〈ki〉 =
∑
j 6=i

1

1 + e−(βi+βj)
. (3.2)

64

For a network whose largest degree is small than O(N1/2),

〈ki〉 =
∑
j

eβieβj , if : e−(βi+βj) � 1 , (3.3)

enabling the β values to be estimated using,

βi = ln(
ki√∑
j kj

) . (3.4)

Here, the Chung-Lu model could be used as a simplification to avoid solving the

non-linear system of equations involving βi [114]. However,Chung-Lu is incapable of

producing networks where 2 < γ < 3 [22, 31] if we do not set an artificial cutoff for

maximum degree [113, 1, 159].

For ERGM, using the degree sequence as the constraint, the exact solutions can be

numerically evaluated; in many situations with more complex constraints these values

must be estimated using maximum likelihood estimation using Markov chain Monte

Carlo [79, 141, 73], although new methods are available that outperform Markov chain

methods [29].

Figure 3.1 shows the approximations in Eq. 3.4 and the numerical solutions to

Eq. 3.2. For large power-law exponents Eq. 3.4 can be used to estimate the Lagrange

multipliers, however for 2 < γ < 3 they must be numerically solved for the correct

solution.

The HC method used in this paper is Markov chain Monte Carlo method (MCMC),

i.e. degree-preserving link-swap method and sequential importance sampling (SIS)

[46, 164]. Before we decided to choose those methods, we also tested the configuration

model (CM) [114], which connects pairs of stubs, i.e. half-edges randomly. Theoreti-

cally, CM can sample independent graphs uniformly. However, in practice, CM is not

65

Figure 3.1: Approximations and numerical solutions of Lagrange multipliers βi for
exponential random graph model for scale-free degree sequences from various expo-
nents γ. Network size is 316. The panels show the approximate values in Eq. 3.4
(black dashed) and the numerical solutions of Eq. 3.2 (blue) at different γ values.

66

efficient when generating scale-free simple graphs with γ < 3 due to self-loops and

multi-edges.

In order to use MCMC [40] or link-swap in simulation, deciding how many steps we

need to run for each sample is an important factor. That is, knowing the equilibrium

time and correlation time is useful. However, this is a difficult theoretical question,

and we were unable to find any useful theoretical upper bound of correlation time for

our problem. So we make the step number to be the total degree for a degree sequence

and tried different hard-constraint methods (CM, SIS, and link-swap with different

initial configuration) on test sequences. We find that distributions from the different

methods converge, which suggests that the step number we choose for link-swap is

enough for our problem.

3.3 Results for scale-free networks

We examine the effectiveness of SC methods at reproducing the structural character-

istics of simple undirected scale-free graphs by comparing the results to HC methods.

Global clustering coefficient, also known as transitivity [116, 113, 114] , a feature

of much interest in many graphs, is the measurement we examine. Transitivity is a

measure of the connectivity of a graph, or a probability that if person X is friends

with persons Y and Z that Y and Z are likewise friends. The transitivity of a graph

may be measured as,

CCg =
number of closed triplets

number of connected triplets
=

3× (number of triangles)

number of connected triples
. (3.5)

HC methods are used as a benchmark for transitivity because the graphs they produce

accurately reflect possible configurations of the given constraints [46, 13].

67

We choose scale-free graphs P (k) ∝ k−γ due to structural transitions at γ = 3

and graphical transition at γ = 2 [45]. Following [114],

CCg =
1

N

[〈k2〉 − 〈k〉]2

〈k〉3
. (3.6)

Since for scale-free degree sequence,

1 ≈
∫ N

1

P (k)dk ⇒ P (k) ≈ γ − 1

1−N1−γ k
−γ , (3.7)

〈k〉 ≈
∫ N

1

kP (k)dk ≈ γ − 1

γ − 2

1−N2−γ

1−N1−γ , (3.8)

〈k2〉 ≈
∫ N

1

k2P (k)dk ≈ γ − 1

γ − 3

1−N3−γ

1−N1−γ . (3.9)

For graphs where γ ≥ 3, [〈k2〉−〈k〉]2
〈k〉3 is finite, CCg ∼ O(N−1), thus, asymptotically

no clustering is expected [114] and the network is connected in a locally tree-like

structure. However, it was previously unclear what effect structural correlations,

specifically those where 2 < γ < 3, would have on CCg.

We show that for two common graph types, SC methods are biased toward higher

transitivity and spread than is expected by HC results.

Figure 3.2 shows the SC and HC transitivity cumulative density functions. We

observe that for γ = 2.0 or 2.5, SC is biased toward much higher transitivity as much

as 18% higher (an order of 10−2 larger) than the HC value. As γ = 3.0 or 3.5, this

bias drops significantly to an order of 10−3 as the network becomes uncorrelated.

Although the exact transition point for structural correlation occurs at γ = 3.0, this

is only true in the limit of large network size [45]. For our results, a network size of

68

316 was too small to observe this transition cleanly, and we expect that in the limit

of large N and γ that SC will agree more closely with HC.

The probability density functions for the scale-free results are shown in Figure 3.3

and further displays the differences between SC and HC transitivity distributions. For

each γ the distributions between SC and HC differ, for larger values of γ transitivity

values are small, and a large majority of values are 0. This trend, which is expected

for scale-free networks will be more pronounced for larger γ and bigger networks.

Although the mean values for HC and SC appear to converge to zero, the HC and SC

distributions are still quite different in the shape of the tail for γ = 3.5, indicating

that SC may never exactly match the distribution of HC. Of particular interest in

both Figure 3.2 and Figure 3.3 is that for γ = 2.0 and 2.5 the SC distribution has a

larger spread than HC, however the opposite is true where γ = 3.0 and 3.5. γ = 3.0

appears to be the transition point where the spread of HC and SC are equal. Why

this occurs is unclear and should be the topic of further research.

As shown in Figure 3.4, when measuring the bias using z-score defined as z =

(µsoftCCg
− µhardCCg

)/σhardCCg
, the bias remains as system size increases and gets worse as

γ → 2.

In Figure 3.5, we also measured the z-score zjk = (phardjk − psoftjk)/σsoftjk of degree

mixing matrix, which shows the probability of an edge connecting two nodes with

degree di and dj. As Figure 3.5 shows, the connecting patterns between very large

degree and very small degree are quite different between HC and SC.

A qualitative explanation why SC overestimates CCg is that the large number of

nodes with small expected degree in scale-free sequences may have 0 actual degree.

69

Figure 3.2: Cumulative distribution function (CDF) of transitivity for scale-free
graphs with various exponents,γ and network size 316. The figures show transitivity
distributions generated by SC (blue dashed) and predicted by HC (red) for different
γ values.

70

Figure 3.3: Probability density function (PDF) of transitivity for scale-free graphs
with various exponents,γ and network size 316. The figures show transitivity distri-
butions generated by SC (blue dashed) and HC (red points) for different γ values.

71

N=100, r=2.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=100, r=2.5

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=100, r=3.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=316, r=2.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=316, r=2.5

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=316, r=3.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=1000, r=2.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=1000, r=2.5

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=1000, r=3.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=3162, r=2.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=3162, r=2.5

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

N=3162, r=3.0

z−score

fr
eq

ue
nc

y

−5 0 5 10 15

0
50

15
0

Figure 3.4: z-score distribution for different system size and exponents. Here
z = (µsoftCCg

− µhardCCg
)/σhardCCg

. In order to compare different parameters in same scale,
distribution is truncated so that only bulk part is shown.

72

degree

de
gr

ee

715
254
251
205

64
63
56
53
49
47
44
43
39
38
36
29
26
24
22
20
19
18
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

71
5

25
4

25
1

20
5 64 63 56 53 49 47 44 43 39 38 36 29 26 24 22 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

−40

−30

−20

−10

0

10

20

30

z−score

Figure 3.5: z-score of degree mixing matrix. zjk = (phardjk − psoftjk)/σsoftjk To reduce
noise, only elements with |z| > 6 are shown. N = 1000, γ = 2.0

73

Because SC does not fix the prescribed constraint for every graph, a node with ex-

pected degree 1 could take on an actual degree of 0,1,2 or more. If the node has

actual degree 0, then the edge must be distributed elsewhere. The remaining part

of the graph must become denser, thus, increasing the clustering of the whole graph,

as shown in Figure 3.6. To determine whether this explains the difference between

SC and HC, we examine graphs whose prescribed degree is much larger than 1 and

therefore avoid this “pitfall”. As we show in regular random graphs, SC still predicts

higher transitivity for graphs where the prescribed degree is much larger than 1.

74

(a) Rewire

(b) ERGM

Figure 3.6: Graphs with same expected degree sequence but generated with different
methods. N = 316, γ = 2.0

75

3.4 Result for regular random graphs

Simple undirected k-regular graph requires all nodes have same prescribed degree d.

This provides a model where the prescribed degree can be set to much larger than 1.

We limit our study to networks of size 316. As Figure 3.7 shows, the distributions

of transitivity for various prescribed degrees differ greatly for SC and HC. While SC

has a large spread, HC has a much lower standard deviation, especially for larger

prescribed degrees. The two methods also are not centered around the same value

with SC predicting higher transitivity.

Figure 3.8 shows the mean and standard deviation of CCg from SC (blue) and

HC (red) methods, and their predicted values for a random graph of size 316 with

prescribed degree d using Table 3.1.

Table 3.1: Comparison between hard and soft constraint methods on regular random
graphs

hard constraint soft constraint

µ∆
N(N−1)
(N−2)2

(d−1)3

6
N(N − 1)(N − 2)p3/6

σ2
∆

(d−1)3(N−2−d)3

6(N−4)3 * ∼ N4p5(1− p)/2
µV Nd(d− 1)/2 N(N − 1)(N − 2)p2/2
σ2
V 0 ∼ 2N4p3(1− p)
ρ − observation: 1 for large p

µCCg
N−1

(N−2)2

(d−1)2

d
p

σ2
CCg

32σ2
∆

µ2
V

σ2
x/y

µ2
x/y

= σ2
x

µ2
x

+
σ2
y

µ2
y
− 2ρσx

µx

σy
µy

Here we use a HC which produces identical results to link-swap, known as se-

quential importance sampling [46, 164] because for dense graphs link-swap becomes

prohibitively slow. Using link-swap, we were able to reach k = 273, and results were

identical to sequential importance sampling up to this point. The standard deviations

76

Figure 3.7: PDF for transitivity measured on regular random graphs with degree, k,
and size 316. Figures display various k, and the resulting SC (blue dashed) and HC
(red) distributions.

77

0 50 100 150 200 250 300

−
0.

00
8

−
0.

00
6

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4

d

C
C

g
−

 p

hard
soft
theory

0 50 150 250

0.
0

0.
4

0.
8

d

C
C

g

Figure 3.8: CCg minus baseline p = d/(N−1) for regular random graph with number
of nodes N = 316 and degree d using hard (red) and soft (blue) constraint methods.
Thick colored lines are the mean value. Thin colored lines show standard deviation of
the CCg distribution. Black continuous lines show theoretical prediction using Table
3.1. Black dashed line is from Eq. 3.25. The inset figure shows mean CCg instead of
CCg − p.

78

for each k are also shown.

As shown in Figure 3.8, theoretical results in Table 3.1 agree with the data pretty

well. In next section we’ll explain the theory and argument behind Table 3.1.

3.5 Theoretical explanation of Table 3.1 for regu-

lar random graphs

For regular graph with number of nodes N and degree of each node d ≥ 2, define p =

d/(N −1). For number of triangles N∆ and number of connected triples NV , we want

to estimate their mean µ, variance σ2 and correlation ρ, and use those distribution

parameters to calculate the mean and variance of global clustering coefficient CCg.

3.5.1 Theory for hard constraint methods

According to Corollary 2.19 in [23], the number of i-cycles in a random graph with

node number N and degree d are asymptotically independent Poisson random vari-

ables with mean and variance λi = (d− 1)i/(2i).

For i = 3, λ3 = (d− 1)3/6. If d = N − 1, λ3 = (N − 2)3/6.

However, for complete graph d = N − 1 the number of triangles µ∆(N − 1) =(
N
3

)
= N(N − 1)(N − 2)/6 6= (N − 2)3/6 = λ3.

In order to resolve this inconsistency, we can try to multiply λ3 by a finite size

correction factor N(N − 1)/(N − 2)2.

79

Thus, the mean of number of triangles µ∆ is

µ∆(d) =
N(N − 1)

(N − 2)2

(d− 1)3

6
. (3.10)

To estimate the variance of number of triangles σ2
∆(d), we need to make use of the

symmetry that σ2
∆(d) = σ2

∆(N − 1− d).

Based on the expression of λ3, σ2
∆(d) ∝ (d − 3)3. Using the symmetry above,

σ2
∆(d) ∝ (d−1)3(N −1−d−1)3 = (d−1)3(N −2−d)3. Define σ2

∆(d) = (d−1)3(N −

2− d)3B where B is an unknown factor.

For small d, σ2
∆(d) and λ3(d) shouldn’t be too different. Assuming for d = 2,

σ2
∆(d) = λ3(d), we have (2− 1)3(N − 2− 2)3B = (2− 1)3/6. Thus, B = 1

6(N−4)3 and

the variance of number of triangles:

σ2
∆(d) =

(d− 1)3(N − 2− d)3

6(N − 4)3
, (3.11)

where d < N − 1.

For regular random graph with degree d the same for every node, the number of

connected triples is N
(
d
2

)
= Nd(d− 1)/2. Thus, the mean µV (d) and variance σ2

V (d)

are

µV (d) = Nd(d− 1)/2 , (3.12)

and

σ2
V (d) = 0 . (3.13)

Since σ2
V (d) = 0, the correlation ρ between number of triangles N∆ and number

of connected triples NV is undefined.

Since the global clustering coefficient is defined as CCg = 3N∆/NV , the mean of

80

global clustering coefficient µCCg is

µCCg(d) =
3µ∆(d)

µV (d)
= 3

N(N − 1)

(N − 2)2

(d− 1)3

6

2

Nd(d− 1)
=

N − 1

(N − 2)2

(d− 1)2

d
. (3.14)

Since σ2
V = 0, the variance of global clustering coefficient σ2

CCg
can be calculated

using

σ2
CCg(d) =

32σ2
∆(d)

µV (d)2
=

9× 4

N2d2(d− 1)2

(d− 1)3(N − 2− d)3

6(N − 4)3
=

6(d− 1)(N − 2− d)3

d2N2(N − 4)3
.

(3.15)

3.5.2 Theory for soft constraint methods

Generating random regular graphs using soft constraint method is the same as gen-

erating random graphs using Erdos-Renyi model, where each pair of nodes is inde-

pendently connected with identical probability p = d/(N − 1).

For any three nodes i, j, k randomly chosen from all
(
N
3

)
combinations, in order for

i, j, k to form a triangle, the elements of adjacency matrix Aij = 1, Ajk = 1, Aki = 1.

Since they are connected independently, the probability for all three edges to be

connected is P (Aij = 1, Ajk = 1, Aki = 1) = p3. Thus, the expected value, or mean

of number of triangles µ∆(p) is

µ∆(p) =

(
N

3

)
p3 = N(N − 1)(N − 2)p3/6 . (3.16)

From now on we’ll skip the (p) notation and simply write µ∆, σ2
∆, etc. Just

remember those are functions of p.

Following the method in [74, 136], define Yijk = 1 if i, j, k forms a triangle

and Yijk = 0 if they don’t. Then the number of triangles N∆ =
∑

i,j,k Yijk. The

81

variance σ2
∆ = E(N2

∆) − µ2
∆, where E(N2

∆) is the expected value of N2
∆. N2

∆ =∑
ijk,i′j′k′ YijkYi′j′k′ .

To compute the expected value of YijkYi′j′k′ , we need to consider the probability

P (Yijk = 1, Yi′j′k′ = 1). But since ijk and i′j′k′ are not necessarily different, we need

to consider different situations.

If ijk and i′j′k′ share 3 nodes, then P (Yijk = 1, Yi′j′k′ = 1) = p3, and there is(
N
3

)(
3
3

)
= 1
(
N
3

)
case.

If ijk and i′j′k′ share 2 nodes, then P (Yijk = 1, Yi′j′k′ = 1) = p5, and there are(
N
4

)(
4
2

)(
2
1

)(
1
1

)
= 12

(
N
4

)
cases.

If ijk and i′j′k′ share 1 node, then P (Yijk = 1, Yi′j′k′ = 1) = p6, and there are(
N
5

)(
5
2

)(
3
2

)(
1
1

)
= 30

(
N
5

)
cases.

If ijk and i′j′k′ share 0 nodes, then P (Yijk = 1, Yi′j′k′ = 1) = p6, and there are(
N
6

)(
6
3

)(
3
3

)
= 20

(
N
6

)
cases.

Thus, the variance of number of triangles

σ2
∆ = E(N2

∆)−µ2
∆ =

(
N

3

)
p3+12

(
N

4

)
p5+30

(
N

5

)
p6+20

(
N

6

)
p6−

(
N

3

)2

p6 . (3.17)

82

Since

30

(
N

5

)
+ 20

(
N

6

)
−
(
N

3

)2

=N(N − 1)(N − 2)(N − 3)(N − 4)/4

+N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)/36

−N2(N − 1)2(N − 2)2/36

=N5/4− (1 + 2 + 3 + 4)N4/4 +O(N3)

+N6/36− (1 + 2 + 3 + 4 + 5)N5/36

+ (2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20)N4/36 +O(N3)

−N2(N2 − 3N + 2)2/36

=N5/4− 5N4/2 +N6/36− 15N5/36 + 85N4/36 +O(N3)

−N2(N4 + 9N2 − 6N3 + 4N2 +O(N))/36

=N5/4− 5N4/2 +N6/36− 15N5/36 + 85N4/36−N6/36 +N5/6− 13N4/36 +O(N3)

=−N4/2 +O(N3) ,

for large N and not too small p, ignoring O(N3) terms, σ2
∆ can be simplified as

σ2
∆ ≈ N4(p5 − p6)/2 = N4p5(1− p)/2 . (3.18)

Using same method, we can calculate the number of connected triples NV . Define

Lijk the number of connected triples formed by 3 randomly chosen nodes i, j, k. Then

NV =
∑

i,j,k Lijk. L can take values 0, 1 and 3. The expected value E(Lijk) =(
3
2

)
p2(1− p) + 3

(
3
3

)
p3 = 3p2.

Thus, the mean of number of connected triples:

µV =

(
N

3

)
E(L) = N(N − 1)(N − 2)p2/2 . (3.19)

83

To calculate the variance σ2
V = E(N2

V)− µ2
V , where N2

V =
∑

ijk,i′j′k′ LijkLi′j′k′ , we

need to consider the probability P (Lijk = 1, Li′j′k′ = 1).

If ijk and i′j′k′ share 3 nodes i, j, k, then E(Lijk) = 3p2.

If ijk and i′j′k′ share 2 nodes i, j, then

E(LijkLijk′) =P (Aij = 1)E(Lijk|Aij = 1)2 + P (Aij = 0)E(Lijk|Aij = 0)2

=p(2p(1− p) + 3p2)2 + (1− p)(p2)2

=p3(p2 + 4p+ 4) + p4 − p5

=5p4 + 4p3 .

If ijk and i′j′k′ share 1 node i, then E(LijkLij′k′) = E(Lijk)E(Lij′k′) = 9p4.

If ijk and i′j′k′ share 0 nodes, then E(LijkLi′j′k′) = E(Lijk)E(Li′j′k′) = 9p4.

Thus, the variance of number of connected triples:

σ2
V = E(N2

V)−µ2
V =

(
N

3

)
3p2+12

(
N

4

)
(5p4+4p3)+(30

(
N

5

)
+20

(
N

6

)
−
(
N

3

)2

)9p4 .

(3.20)

For large N and not too small p,

σ2
V ≈ N4(5p4 + 4p3 − 9p4)/2 = 2N4p3(1− p) . (3.21)

We observed that correlation ρ between number of triangles N∆ and number of

connected triples NV approaches 1 for sufficiently large p.

Thus, the mean of global clustering coefficient

µCCg =
3µ∆

µV
=

3N(N − 1)(N − 2)p3/6

N(N − 1)(N − 2)p2/2
= p , (3.22)

and the variance of global clustering coefficient can be calculated using

σ2
x/y

µ2
x/y

=
σ2
x

µ2
x

+
σ2
y

µ2
y

− 2ρ
σx
µx

σy
µy

. (3.23)

84

For large N and not too small p, we can use the approximations µ∆ ≈ N3p3/6,

σ2
∆ ≈ N4p5(1− p)/2, µV ≈ N3p2/2, σ2

V ≈ 2N4p3(1− p), and ρ ≈ 1.

Then

σ2
∆/V

µ2
∆/V

=
σ2

∆

µ2
∆

+
σ2
V

µ2
V

− 2ρ
σ∆

µ∆

σV
µV

≈N
4p5(1− p)/2
N6p6/36

+
2N4p3(1− p)
N6p4/4

− 2

√
N4p5(1− p)/2× 2N4p3(1− p)

N3p3/6×N3p2/2

=
18(1− p)
N2p

+
8(1− p)
N2p

− 24(1− p)
N2p

=
2(1− p)
N2p

.

Thus,

σ2
∆/V ≈

2(1− p)
N2p

µ2
∆/V =

2(1− p)
N2p

(
N3p3/6

N3p2/2
)2 =

2p(1− p)
9N2

, (3.24)

σ2
CCg = σ2

3∆/V = 32σ2
∆/V ≈

2p(1− p)
N2

. (3.25)

This expression successfully captures the behaviour of σ2
CCg

at large p but fails

at small p. So it is recommended to use the complete expression instead of the

approximation.

3.6 Conclusion

In conclusion, we show that the SC methods are biased toward networks with higher

transitivity on structurally constrained graphs when compared to HC methods. By

comparing the transitivity of graphs generated from scale-free degree sequences using

the exponential random graph model and link-swap; we observe divergence in the

structural characteristics. For scale-free degree sequences this divergence occurs when

85

2 < γ < 3, a region where known structural constraints come into play [45]. Similar

results on k-regular graphs show that SC systematically overestimates transitivity

compared with HC. In conjunction with other known disadvantages of using soft-

constrained methods notably, degeneracy [114, 76, 62], we urge extreme caution be

exercised when using ERGM and other soft-constrained methods.

86

Chapter 4

Preferred degree extreme dynamics

4.1 Introduction

In previous sections, we discussed different methods to generate ensemble of graphs

having a certain degree sequence. However, we didn’t talk about why and how the

group of nodes are connected in a certain way. This is exactly what we expected from

a null model: making good use of known information while making as few assumptions

as possible of the unknown.

On the other hand, real-world networks can be understood as emergent phenom-

ena coming from some dynamics or rules followed by each node, like preferential

attachment [4]. Generating graphs using some rules or dynamics means we are mak-

ing assumptions not directly observed in the data. When doing this, we lose the

ability to generate all possible graphs with uniform probability. But we might find

interesting phenomena coming from the dynamics.

To generate graphs with prescribed degree sequence, we can use the “preferred

87

degree extreme dynamics” [168]:

• Each node i has a preferred degree κi.

• At every time step a random node i is chosen.

• If its actual degree ki > κi, it randomly chooses one of its neighbors and cut

the link.

• If ki < κi, it randomly chooses one of the nodes not yet connected to it and

connect.

• If ki = κi, it does nothing.

This model is extreme in the sense that any node, when given a chance, will try

to make its actual degree closer to its preferred degree, regardless of how different

they are, and regardless of the effect of this move on other nodes. This is different

from simulated annealing, where the whole system accepts a move with probability

determined by a global cost function.

This extreme dynamics, in this general form, is difficult to study analytically. To

simplify the problem, we introduce the following two models:

• eXtreme Introverts and Extroverts (XIE): two types of nodes, NI introverts

with κI = 0 and NE extroverts with κE = NI +NE − 1

• Generalized Introverts and Extroverts (GIE): 0 ≤ κI ≤ κE ≤ NI +NE − 1

Previous study shows that XIE has mixed order phase transition [14], while GIE

with non-integer preferred degree shows non-equilibrium effect [58].

88

4.2 XIE will reach equilibrium

In XIE dynamics, starting from any initial condition and letting the system evolve,

finally the system will reach and stay in a subset of configurations, or states, where all

introverts are disconnected from other introverts, and all extrovert are connected with

other introverts. Only the cross-link between introverts and extroverts will change.

Those states can be represented by their incidence matrices I.

Previous results show that XIE will reach equilibrium [14]. Below is a detailed

proof for reader’s convenience.

4.2.1 Ergodicity

Since for any element Iij in the incidence matrix, if Iij = 1, then there is a probability

1/NI 6= 0 that introvert i is chosen, and probability 1/ki 6= 0 that introvert i cut this

link, making Iij = 0. Similarly, if Iij = 0, then there is a probability 1/NE 6= 0 that

extrovert j is chosen, and probability 1/pj 6= 0 that extrovert j add this link, making

Iij = 1. Here pj = NI +NE − kj means the number of nodes that are not connected

with j. Thus, for any element in the incidence matrix, there is a non-zero probability

for it to flip its value.

The configuration space of the incidence matrix is a hypercube with NINE dimen-

sions. Since all directed edges of this hypercube have non-zero transition probability,

the system is ergodic.

89

4.2.2 Detailed balance

4.2.2.1 General idea

In order to prove detailed balance, we can use Kolmogorov’s criterion [86], which says

that detailed balance is satisfied if and only if any loop of any length is reversible.

We first show that a combination of loops is reversible if all the components are

reversible and have finite product of probabilities.

We know [14] that in XIE any loop with length 4 is reversible.

If we assume any loop with length n is reversible, then for any loop with length

n+2, by considering the subspace of an active element in the state vector, the loop can

be written as a combination of a loop with length n and a loop that is a combination

of loops with length 4. Thus, any loop with length n+ 2 is also reversible.

Thus, any loop is reversible.

Thus, XIE satisfies detailed balance.

4.2.2.2 Definition

Consider a set of states si ∈ S. The transition probability from si to sj is psisj . A

loop s1s2 · · · sns1 is reversible if and only if ps1s2ps2s3 · · · psns1 = ps1snpsnsn−1 · · · ps2s1 .

4.2.2.3 Combination of loops

Consider two reversible loops sharing a path. Loop A sC1 · · · sCmsA1 · · · sAp sC1 and loop

B sC1 · · · sCmsB1 · · · sBq sC1 have common path sC1 · · · sCm.

90

Since the two loops are reversible,

psC1 sC2 · · · psCmsA1 psA1 sA2 · · · psAp sC1 = psC1 sAp · · · psA2 sA1 psA1 sCm · · · psC2 sC1 , (4.1)

psC1 sBq · · · psB2 sB1 psB1 sCm · · · psC2 sC1 = psC1 sC2 · · · psCmsB1 psB1 sB2 · · · psBq sC1 . (4.2)

Multiply Eq.4.1 with Eq.4.2 and divide both sides by the common factor

psCmsCm−1
· · · psC2 sC1 psC1 sC2 · · · psCm−1s

C
m
, (4.3)

as long as it is not zero, we have

psCmsA1 psA1 sA2 · · · psAp sC1 psC1 sBq · · · psB2 sB1 psB1 sCm (4.4)

= psC1 sAp · · · psA2 sA1 psA1 sCmpsCmsB1 psB1 sB2 · · · psBq sC1 . (4.5)

Thus, loop sCms
A
1 · · · sAp sC1 sBq · · · sB1 sCm is reversible.

Thus, a combination of loops is reversible if all the individual loops are reversible,

and there is no zero-transition-probability on any path.

4.2.2.4 XIE basic loops

We can describe an XIE state by its incidence matrix. Let’s write the incidence

matrix in one column and call it state vector. Since neighboring states are different

by one element, the state vectors form a hypercube.

Consider loops with 2 moving elements and 4 states.

In XIE, whether the 2 elements are chosen from (1) same row, (2) same column

or (3) different rows and columns from the incidence matrix, we can prove [14] from

the transition probabilities that all those loops are reversible.

91

4.2.2.5 Induction

We know that any loop with length 4 is reversible.

Assume any loop with length n is reversible.

We want to prove that any loop with length n+2 is also reversible. (For hypercube,

length of a loop must be even number.)

For an arbitrary loop s0s1 · · · sn+1s0 with length n+ 2, there must exist at least 1

element in the state vector that changes its value as we go around the loop. Without

loss of generality, let’s call this active element a and let a = 0 for state s0 and a = 1

for s1. Then we can go along the loop until the first time a changes from 1 back to

0. Let’s say a = 1 for sm and a = 0 for sm+1. Thus, a = 1 for s1, s2, · · · , sm.

Now let’s consider new states s′1, s′2, · · · , s′m, which are the same as s1, s2, · · · ,

sm except that a = 0. Obviously s′1 = s0 and s′m = sm+1.

Now consider two loops

A : s′1s
′
2 · · · s′msm+2sm+3 · · · sn+1s

′
1 , (4.6)

B : s1s2 · · · sms′ms′m−1 · · · s′1s1 . (4.7)

Loop A has n states, thus, from the induction condition, loop A is reversible.

Consider loops s1s2s
′
2s
′
1, s2s3s

′
3s
′
2, · · · , sm−1sms

′
ms
′
m−1. Those loops are all of

length 4, thus reversible.

ps1s2ps2s′2ps′2s′1ps′1s1 = ps1s′1ps′1s′2ps′2s2ps2s1 , (4.8)

ps2s3ps3s′3ps′3s′2ps′2s2 = ps2s′2ps′2s′3ps′3s3ps3s2 , (4.9)

92

· · ·

psm−1smpsms′mps′ms′m−1
ps′m−1sm−1

= psm−1s′m−1
ps′m−1s

′
m
ps′msmpsmsm−1 . (4.10)

Multiply both sides and divide by common factor,

ps2s′2ps′2s2ps3s′3ps′3s3 · · · psm−1s′m−1
ps′m−1sm−1

, (4.11)

we have,

ps1s2ps2s3 · · · psm−1smpsms′mps′ms′m−1
· · · ps′2s′1ps′1s1 (4.12)

= ps′1s′2ps′2s′3 · · · ps′m−1s
′
m
ps′msmpsmsm−1 · · · ps2s1ps1s′1 . (4.13)

Which is the probability product of loop B. Thus, loop B is reversible.

Now that both loop A and loop B are reversible, their combination, which is the

original loop with length n+ 2, is also reversible.

This completes the inductive step.

Thus, for any loop with any length, the loop will be reversible. �

4.3 XIE: degree distribution, cross-link distribu-

tion and correlation.

Previous studies use a mean field approach to estimate XIE degree distribution, which

works fine when NI 6= NE. To get a more accurate result for the case NI = NE, we

define Fixed cross-link XIE (fXIE) ensemble, which is a “cross-section” of XIE at a

fixed number of cross-links. Using a self-consistent mean field approach, we can get

the fXIE degree distribution. Then from fXIE degree distribution we can get XIE

degree distribution, cross-link distribution, and correlation.

93

4.3.1 fXIE degree distribution is truncated Poisson

Using same argument as in [14], we can show that fXIE degree distribution is trun-

cated Poisson.

For degree k ≥ 0, the relationship between degree density ρI(k) and transition

probability R(k → k + 1) satisfies the detailed balance:

ρI(k)R(k → k + 1) = ρI(k + 1)R(k + 1→ k) . (4.14)

Given X, NI , NE: In order for a certain introvert with degree k + 1 to cut one

link, it only needs to be chosen (with probability 1
NI+NE

):

R(k + 1→ k) =
1

NI +NE

. (4.15)

For a certain introvert with degree k to add one link, one of the extroverts which

haven’t link to this introvert must be chosen (with probability NE−k
NI+NE

), and it must

add one link with this introvert (with probability < 1
pE
>)

R(k → k + 1) =
NE − k
NI +NE

<
1

pE
> , (4.16)

where pE is hole degree of extrovert and < 1
pE
> is the average of reciprocal of pE.

Thus,

ρI(k + 1)

ρI(k)
=
R(k → k + 1)

R(k + 1→ k)
= (NE − k) <

1

pE
> . (4.17)

Since

ρI(k)

ρI(0)
=

ρI(k)

ρI(k − 1)

ρI(k − 1)

ρI(k − 2)
· · · ρI(1)

ρI(0)
, (4.18)

94

we have

ρI(k)

ρI(0)
= (NE − k + 1)(NE − k + 2) · · · (NE) <

1

pE
>k

=
NE!

(NE − k)!
<

1

pE
>k .

(4.19)

Thus,

ρI(k) =
1

Z(X)

NE!

(NE − k)!
<

1

pE
>k . (4.20)

where

Z(X) =

NE∑
k=0

NE!

(NE − k)!
<

1

pE
>k

= NE! <
1

pE
>NE

NE∑
k=0

1

(NE − k)!
<

1

pE
>k−NE

= NE! <
1

pE
>NE

NE∑
k=0

1

(NE − k)!
<

1

pE
>−(NE−k)

= NE! <
1

pE
>NE

NE∑
q=0

1

q!
<

1

pE
>−q .

(4.21)

Let us define f = X
NINE

and assume pE is a constant with value pE = NI − X
NE

=

NI(1− X
NINE

) = NI(1− f). If we further assume NI = NE = L, then pE = L− X
L

=

L(1− f).

Thus,

ρI(k) =
1

Z(X)

L!

(L− k)!
(

1

L−X/L
)k

=
1

Z(X)

L!

(L− k)!
(L−X/L)−k ,

(4.22)

and

Z(X) = L!(
1

L(1− f)
)L

L∑
q=0

1

q!
(

1

L(1− f)
)−q

=
L!

[L(1− f)]L

L∑
q=0

[L(1− f)]q

q!
.

(4.23)

95

This interpretation of the parameter in truncated Poisson distribution works fine

as long as f is neither too large nor too small, so that the probability of introverts

having 0 degree (happy introverts) and the probability of extroverts having 0 hole

degree (happy extroverts) can be safely ignored. Otherwise, we should solve the

parameter in truncated Poisson distribution numerically in a self-consistent way.

4.3.2 Correlation between cross links in fXIE

4.3.2.1 Truncated Poisson degree distribution

For fixed crosslink XIE model where NI = NE = N and crosslink X, define f = X
N2 ,

the introvert degree distribution is a truncated Poisson distribution

ρ(k) =
1

Z

λN−k

(N − k)!
, (4.24)

where

Z =
N∑
0

λN−k

(N − k)!
, (4.25)

and

X

N
= fN = k̄ =

N∑
0

kρ(k) . (4.26)

Mean of truncated Poisson distribution can be calculated as follows:

Change variable p = N − k, ζ(p) = ρ(k) = 1
Z
λp

p!
, then Z =

∑N
0

λp

p!
remains the

same.

p̄ =
N∑
0

pζ(p) =
N∑
0

p

Z

λp

p!
=

N∑
1

λ

Z

λp−1

(p− 1)!
=
λ

Z

N−1∑
0

λp

p!
=
λ

Z
(Z − λN

N !
) . (4.27)

Since ρ(0) = 1
Z
λN

N !
, p̄ = λ(1− 1

Z
λN

N !
) = λ(1− ρ(0)). Thus,

λ =
p̄

1− ρ(0)
=

N − k̄
1− ρ(0)

=
N − X

N

1− ρ(0)
. (4.28)

96

So the parameter λ can be represented by happy introverts instead of happy extro-

verts.

Variance of truncated Poisson distribution can be calculated as follows.

First calculate

p(p− 1) =
N∑
0

p(p− 1)ζ(p) =
N∑
0

p(p− 1)

Z

λp

p!
=

N∑
2

λ2

Z

λp−2

(p− 2)!

= λ2

N−2∑
0

1

Z

λp

p!
= λ2(1− ρ(0)− ρ(1)) .

(4.29)

Since ρ(1) = 1
Z

λN−1

(N−1)!
= N

λ
ρ(0), p(p− 1) = λ2(1−ρ(0)− N

λ
ρ(0)). Since p̄ = λ(1−ρ(0)),

ρ(0) = 1− p̄
λ
. Thus,

p(p− 1) = λ2(1− (1− p̄

λ
)− N

λ
(1− p̄

λ
)) = p̄λ−Nλ+Np̄ . (4.30)

Second moment

p2 = p(p− 1) + p̄ = p̄λ−Nλ+Np̄+ p̄ . (4.31)

Variance

var(p) = p2 − p̄2 = p̄λ−Nλ+Np̄+ p̄− p̄2 . (4.32)

4.3.2.2 fXIE cross-link correlation

Given degree distribution, the correlation between two entries in the same row of the

incidence matrix is

χ∗EE =
k2 − k̄

N(N − 1)
− k̄2

N2
=

k2

N(N − 1)
− f

N − 1
− f 2 , (4.33)

χEE =
χ∗EE

f(1− f)
. (4.34)

Since p = N − k, var(k) = var(p). Thus,

k2 = var(k) + k̄2 = p̄λ−Nλ+Np̄+ p̄− p̄2 + k̄2 . (4.35)

97

Since k̄ = Nf , p̄ = N − k̄ = N −Nf = N(1− f),

k2 = N(1− f)λ−Nλ+N2(1− f) +N(1− f)−N2(1− f)2 +N2f 2 . (4.36)

χ∗EE =
k2

N(N − 1)
− f

N − 1
− f 2

=
1

N − 1
(
k2

N
− f − (N − 1)f 2)

=
1

N − 1
(λ− fλ− λ+N −Nf + 1− f −N −Nf 2 + 2Nf +Nf 2 − f −Nf 2 + f 2)

=
1

N − 1
(f 2 − 2f + 1 +Nf −Nf 2 − λf)

=
1

N − 1
((1− f)2 +Nf(1− f)− λf) .

(4.37)

Since λ = p̄
1−ρ(0)

= N(1−f)
1−ρ(0)

,

χ∗EE =
1

N − 1
((1− f)2 +Nf(1− f)(1− 1

1− ρ(0)
))

=
1

N − 1
((1− f)2 −Nf(1− f)

ρ(0)

1− ρ(0)
) .

(4.38)

χEE =
χ∗EE

f(1− f)
=

1

N − 1

1− f
f
− N

N − 1

ρ(0)

1− ρ(0)
. (4.39)

4.3.2.3 Asymptotic Behaviour when f → 1, ρ(0)→ 0

Though both terms in Eq.4.39 are small and approaches 0, the second term vanishes

earlier. For sufficiently large f , ρ(0) is effectively 0, the second term can be ignored.

Thus,

χEE →
1

N − 1

1− f
f

=
1

N − 1
(
1

f
− 1) . (4.40)

98

Figure 4.1: Scaling behaviour of χEE for different N when f is large. Black line is
asymptotic result using Eq.4.40

.

99

Figure 4.2: Scaling behaviour of χEE for different N when f is large. Black line is
asymptotic result using Eq.4.40

.

100

4.3.2.4 Asymptotic Behaviour when f → 0, ρ(0)→ 1

Now that both terms in Eq.4.39 go to infinity, the difference between the two is highly

sensitive to the estimation of ρ(0). Rather than using Eq.4.39, it’s easier to make use

of the sparsity of the incidence matrix and directly calculate χEE using the truncated

Poisson distribution Eq.4.24.

Using Eq.4.24, we have

ρ(1) = ρ(0)
N

λ
, ρ(2) = ρ(0)

N(N − 1)

λ2
, · · · (4.41)

Define ν = 1
λ
, we have

ρ(1) = ρ(0)Nν , ρ(2) = ρ(0)N(N − 1)ν2 , · · · (4.42)

Since f → 0, the incidence matrix is sparse, the probability of k ≥ 3 can be

ignored. So the degree distribution can be written as

ρ(0) =
1

W
, ρ(1) =

Nν

W
, ρ(2) =

N(N − 1)ν2

W
, (4.43)

where W = 1 +Nν +N(N − 1)ν2 is just the normalization factor.

The average degree

k̄ = fN =
∑

kρ(k) =
0× 1 + 1×Nν + 2×N(N − 1)ν2

1 +Nν +N(N − 1)ν2
. (4.44)

Thus,

f =
ν + 2(N − 1)ν2

1 +Nν +N(N − 1)ν2
. (4.45)

For f → 0, ρ(0)� ρ(1)� ρ(2). The right hand side of Eq.4.45 is just ν. Thus,

ν ≈ f , (4.46)

101

and

W ≈ 1 . (4.47)

Note that in this case, ρ(2) ≈ N(N − 1)f 2, which is different from the binomial

distribution
(
N
2

)
f 2(1− f)N−2 ≈ N(N−1)

2
f 2.

Since only degree k = 2 has non-zero contribution to k(k − 1),

χ∗EE =
k(k − 1)

N(N − 1)
− f 2 =

2(2− 1)ρ(2)

N(N − 1)
− f 2 ≈ 2N(N − 1)f 2

N(N − 1)
− f 2 = f 2 . (4.48)

Thus,

χEE ≈
f 2

f(1− f)
≈ f . (4.49)

4.3.2.5 Cross point

We can see where the two asymptotic curves Eq.4.49 and Eq.4.40 cross f ∗ by solving

them together.

f ∗ =
1

N − 1

1− f ∗

f ∗
, (4.50)

(N − 1)(f ∗)2 + f ∗ − 1 = 0 , (4.51)

f ∗ =
−1±

√
1− 4(N − 1)(−1)

2(N − 1)
=
−1±

√
4N − 3

2(N − 1)
. (4.52)

Since f ∗ > 0, f ∗ = −1+
√

4N−3
2(N−1)

. For large N →∞, we have

f ∗ →
√

4N

2N
=

1√
N

. (4.53)

Since for NI = NE = N , the bulk part (plateau) of P (f) distribution is on the

right side of 1√
N

[170], for large N we can safely say that for a practical realization

of fXIE, χEE ≈ 1
N−1

(1
f
− 1).

102

Figure 4.3: Behaviour of χEE for different N when f is small. Black line is asymptotic
result in Eq.4.49

.

103

4.3.3 From fXIE to XIE

Once we have the fXIE degree distribution, using detailed balance

P (X)NE(1− ζX(0)) = P (X + 1)NI(1− ρX+1(0)) , (4.54)

we can get the cross link distribution.

XIE degree distribution is just an average of fXIE degree distribution weighted

by cross-link distribution

ρ(k) =
∑
X

P (X)ρX(k) . (4.55)

From degree distribution we can calculate cross-link correlation and other prop-

erties.

4.4 A special case of GIE similar to XIE

Inspired by Erdos-Gallai theorem [56], we can create a special case of GIE which is

very similar to XIE:

NEκE −NE(NE − 1) > NIκI . (4.56)

The condition above means extroverts’ preferred degrees are so large that even

after connecting with all other extroverts and used up all the preferred degree of

introverts together, they still want more connections. Thus, all extroverts are con-

nected with each other, all introverts are disconnected from each other, all extroverts

only want to add links with introverts, and all introverts only want to cut links with

extroverts.

104

4.5 All loops of length 4 are reversible if preferred

degrees are integers

4.5.1 Proof that all loops of length 4 are reversible

Now let’s consider a case where the preferred degrees d̂i are integers, which means

it’s possible for a node to be satisfied without initiating any move when it comes to

its turn.

Following the extreme dynamics, the probabilities for an element of the adjacency

matrix Aij to flip its value are

P (Aij : 0→ 1) =



1
N−1−di , di < d̂i, dj ≥ d̂j

1
N−1−dj , di ≥ d̂i, dj < d̂j

1
N−1−di + 1

N−1−dj , di < d̂i, dj < d̂j

0, di ≥ d̂i, dj ≥ d̂j ,

(4.57)

and

P (Aij : 1→ 0) =



1
di
, di > d̂i, dj ≤ d̂j

1
dj
, di ≤ d̂i, dj > d̂j

1
di

+ 1
dj
, di > d̂i, dj > d̂j

0, di ≤ d̂i, dj ≤ d̂j .

(4.58)

To get a loop of length 4, consider 2 elements of the adjacency matrix (Aij, Akl)

take values (0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (0, 0).

If i, j and k, l are all different, then their dynamics don’t affect each other. Thus,

105

the product of forwarding probabilities

∏
(P →) = P (Aij : 0→ 1)P (Akl : 0→ 1)P (Aij : 1→ 0)P (Akl : 1→ 0) , (4.59)

and the product of backwarding probabilities

∏
(P ←) = P (Akl : 0→ 1)P (Aij : 0→ 1)P (Akl : 1→ 0)P (Aij : 1→ 0) . (4.60)

Since
∏

(P →) =
∏

(P ←), this loop is reversible.

Now consider a case where i, j and k, l has 1 common index. Without loss of

generality, let k = i. Thus, we have 2 elements of the adjacency matrix Aij and Ail

at the same row.

Given preferred degree d̂i, d̂j, d̂l, we can enumerate all the possible initial condi-

tions of di, dj, dl in the following tables. Here deg(i) represents the degree of node i

at current state of the loop.

Table 4.1: di ≤ d̂i − 2, dj ≤ d̂j − 1, dl ≤ d̂l − 1

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

0 1
N−1−di + 1

N−1−dj
(1,0) di + 1 dj + 1 dl

0 1
N−1−(di+1)

+ 1
N−1−dl

(1,1) di + 2 dj + 1 dl + 1
1

N−1−(di+1)
+ 1

N−1−dj 0

(0,1) di + 1 dj dl + 1
1

N−1−di + 1
N−1−dl

0

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

106

Table 4.2: di = d̂i − 1, dj ≤ d̂j − 1, dl ≤ d̂l − 1

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

0 1
N−1−di + 1

N−1−dj
(1,0) di + 1 dj + 1 dl

1
di+2

1
N−1−dl

(1,1) di + 2 dj + 1 dl + 1
1

N−1−dj
1

di+2

(0,1) di + 1 dj dl + 1
1

N−1−di + 1
N−1−dl

0

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

Table 4.3: di ≥ d̂i, dj ≤ d̂j − 1, dl ≤ d̂l − 1

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

1
di+1

1
N−1−dj

(1,0) di + 1 dj + 1 dl
1

di+2
1

N−1−dl
(1,1) di + 2 dj + 1 dl + 1

1
N−1−dj

1
di+2

(0,1) di + 1 dj dl + 1
1

N−1−dl
1

di+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 1

(N−1−dj)(N−1−dl)(di+1)(di+2)
, reversible.

107

Table 4.4: di ≤ d̂i − 2, dj ≤ d̂j − 1, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

0 1
N−1−di + 1

N−1−dj
(1,0) di + 1 dj + 1 dl

1
dl+1

1
N−1−(di+1)

(1,1) di + 2 dj + 1 dl + 1
1

N−1−(di+1)
+ 1

N−1−dj 0

(0,1) di + 1 dj dl + 1
1

N−1−dj
1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

Table 4.5: di = d̂i − 1, dj ≤ d̂j − 1, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

0 1
N−1−di + 1

N−1−dj
(1,0) di + 1 dj + 1 dl

1
di+2

+ 1
dl+1

0

(1,1) di + 2 dj + 1 dl + 1
1

N−1−dj
1

di+2

(0,1) di + 1 dj dl + 1
1

N−1−di
1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

108

Table 4.6: di ≥ d̂i, dj ≤ d̂j − 1, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

1
di+1

1
N−1−dj

(1,0) di + 1 dj + 1 dl
1

di+2
+ 1

dl+1
0

(1,1) di + 2 dj + 1 dl + 1
1

N−1−dj
1

di+2

(0,1) di + 1 dj dl + 1
0 1

di+1
+ 1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

Table 4.7: di ≤ d̂i − 2, dj ≥ d̂j, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

1
dj+1

1
N−1−di

(1,0) di + 1 dj + 1 dl
1

dl+1
1

N−1−(di+1)

(1,1) di + 2 dj + 1 dl + 1
1

N−1−(di+1)
1

di+1

(0,1) di + 1 dj dl + 1
1

N−1−di
1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 1

(N−1−di)(N−1−(di+1))(dj+1)(dl+1)
, reversible.

109

Table 4.8: di = d̂i − 1, dj ≥ d̂j, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

1
dj+1

1
N−1−di

(1,0) di + 1 dj + 1 dl
1

di+2
+ 1

dl+1
0

(1,1) di + 2 dj + 1 dl + 1
0 1

di+2
+ 1

dj+1

(0,1) di + 1 dj dl + 1
1

N−1−di
1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

Table 4.9: di ≥ d̂i, dj ≥ d̂j, dl ≥ d̂l

P ↑ (Aij, Ail) deg(i) deg(j) deg(l) P ↓
(0,0) di dj dl

1
di+1

+ 1
dj+1

0

(1,0) di + 1 dj + 1 dl
1

di+2
+ 1

dl+1
0

(1,1) di + 2 dj + 1 dl + 1
0 1

di+2
+ 1

dj+1

(0,1) di + 1 dj dl + 1
0 1

di+1
+ 1

dl+1

(0,0) di dj dl∏
(P ↑) =

∏
(P ↓) = 0, reversible.

110

Thus, all loops of length 4 are reversible.

However, this doesn’t necessarily mean that “all loops with any length are re-

versible”. A counterexample is shown in Figure 4.4.

Also, note that depending on its actual degree, a node can sometimes behave as

an introvert, disconnecting with an existing neighbor; and sometimes an extrovert,

connecting to a new neighbor. An example preferred degree sequence is {2, 1, 1, 1}.

4.5.2 Configurations for preferred degree sequence can be

not ergodic

The simplest degree sequence that has topologically different configurations is {2, 2, 2, 1, 1}.

Let’s call those nodes modest nodes.

We can add one extreme extrovert (XE) connecting all of the 5 modest nodes and

let the 5 modest nodes to be happy about it. Thus, the preferred degree sequence

becomes {5, 3, 3, 3, 2, 2}.

Then we can add one extreme introvert (XI) not connecting to any of those 6

nodes. Thus, the preferred sequence becomes {6, 3, 3, 3, 2, 2, 0}.

Now while running extreme dynamics, the graph will end up in one of the two

topologically different configurations for the modest nodes. XE will connect to all the

5 modest nodes. XI will not connect to any of the 5 modest nodes. The 5 modest

nodes are happy. The dynamics only happen between XI and XE. If XI and XE are

connected and we pick up XI, it will cut its only link with XE. If XI and XE are

not connected and we pick up XE, it can only connect to XI because all other links

between XE and modest nodes are already there. Thus, once the 5 modest nodes are

111

Figure 4.4: A counterexample showing that there exist irreversible loops even if all
loops of length 4 are reversible. Each node represents a configuration. The transition
probability is 1 along the directed edge and 0 otherwise. For any loop of length 4, the
product of forward probabilities and backward probabilities are equally 0. Thus, any
loop of length 4 is reversible. However, following the loop 2 → 4 → 3 → 7 → 5 →
6 → 2, the product of forward probabilities is 16 = 1 but the product of backward
probabilities is 06 = 0. Thus, this loop of length 6 is irreversible.

112

happy, they will not change the connections between them. However, since there are

two topologically different configurations if we just consider the 5 modest nodes, those

two configurations can not go from one to the other in stationary distribution. Thus,

it is possible for extreme dynamics on preferred degree sequence to be not ergodic.

4.5.3 Conjecture that the system will reach equilibrium.

Though we haven’t proven ergodicity and detailed balance in the general case, we

conjecture that the system following extreme dynamics will finally reach equilibrium

as long as the preferred degrees are integers and ergodicity is satisfied.

113

(a) (b)

(c) (d)

Figure 4.5: (a) and (b) are two topologically different configurations for degree
sequence {2, 2, 2, 1, 1}. (c) and (d) are two disjoint basins for degree sequence
{6, 3, 3, 3, 2, 2, 0} where XI (Node 7) and XE (Node 1) are connected. In each basin
of configurations, the connection between XI and XE can be changed. However, once
reaches one of the two basins, the system cannot jump to the other basin.

114

4.6 Summary

In this section we use fXIE to help us understand XIE. We also conjecture that the

system will reach equilibrium when the preferred degree are integers.

A graph from XIE in equilibrium belongs to a class of graphs called split graph,

which is the topic of next chapter.

115

Chapter 5

Split graph and deeply nested

network

5.1 Introduction

5.1.1 Split graph

A split graph [152, 59] is a undirected simple graph in which the vertices can be

partitioned into a clique U , in which every node is connected with every other node,

and an independent set W , in which there is no connection between any node. An

example is shown in Figure 5.1.

If we order the nodes so that the first |U | nodes are from the clique, and the rest

|W | nodes are from the independent set, then the adjacency matrix has the form1− I|U |×|U | X|U |×|W |

XT
|W |×|U | 0|W |×|W |

 (5.1)

116

Figure 5.1: An example of split graph. The 5 nodes on the left form a clique, a.k.a. a
complete graph, where every node is connected with every other node. The 5 nodes
on the right form an independent set, where there’s no connection between any pair
of nodes.

Here I is the identity matrix. The upper left corner is 1 − I because for simple

graph we excluded the self-loops.

In a split graph, the only edge pairs that can be used for degree-preserving link-

swaps are those between U and W [55]. Thus, if we can decompose a graph into

a series of split graphs, this decomposition can be used to improve the efficiency of

MCMC.

5.1.2 Graph decomposition

We can try to decompose [55] a graph into a clique U , an independent set W and a

set of nodes V , s.t. every node in V is connected to every node in U , but no node in

V is connected to any node in W , as shown in Figure 5.2.

117

Figure 5.2: Graph decomposition. U is a clique, thus, U × U part of the adjacency
matrix will be 1−I. W is an independent set, thus, the W ×W part of the adjacency
matrix will be 0. All nodes in V are connected with all nodes in U , thus, the U × V
part of the adjacency matrix will be 1. No node in V is connected to any node in W ,
thus, the V ×W part of the adjacency matrix will be 0. The connections between U
and W are represented by matrix X. And the connections within V are represented
by matrix S.

When the nodes are sorted in the order of {U, V,W}, the adjacency matrix can

be written as 
1− I|U |×|U | 1|U |×|V | X|U |×|W |

1|V |×|U | S|V |×|V | 0|V |×|W |

XT
|W |×|U | 0|W |×|V | 0|W |×|W |

 (5.2)

While a graph may be decomposed in different ways, we want to find a way that

extract the most information out of the degree sequence and leave least degree of

freedom. Thus, we have canonical decomposition.

118

5.1.3 Canonical decomposition

Theorem 1. Theorem 2 in [151]

1. The graph G with non-increasing degree n-sequence is decomposable iff ∃p, q

non-negative integers s.t.

0 < p+ q < n ,

p∑
i=1

di = p(n− q − 1) +
n∑

i=n−q+1

di . (5.3)

2. Call a pair (p, q) satisfying condition (5.3) good. To every good pair (p; q) we can

associate the decomposition (〈U,W 〉;E)◦H = G where (d1, . . . , dp); (dp+1, . . . , dn−q)

and (dn−q+1, . . . , dn) are the degree sequences in U, V (H) and W respectively.

Moreover, every such decomposition is associated with some good pair.

3. Let p0 be the minimum first component of the good pairs. Let q0 = |{i : di < p}|

if p0 6= 0 and q0 = 1 otherwise. Then (〈U,W 〉;E) is indecomposable if and only

if the associated good pair is (p0, q0).

Theorem 2. Corollary 3.4 in [151]

• Every graph G can be uniquely decomposed (up to isomorphism) into the form

G = (〈U1,W1〉;E1) ◦ · · · ◦ (〈Ul,Wl〉;El) ◦G0 , (5.4)

where each split graph and the non-split simple graph G0 (if it exists) are inde-

composable. The composition operation is associative but not commutative.

5.1.4 Graph composition

Given a split graph (〈U,W 〉;E) and another graph G, we can compose a new graph

(〈U,W 〉;E)◦G by adding connections between every node in G and every node in U .

119

5.1.5 Deeply nested network

We can try to perform canonical decomposition on any graph G. If G can be decom-

posed into a long series of split graphs, then we can roughly say that this graph is

deeply nested. Figure 5.3 shows a constructed deeply nested network. The building

block is a split graph 〈u,w〉 with degree sequence {4, 2; 1, 1, 1, 1}. The number of

iterations N = 10.

If the decomposed components have the fast-mixing property when doing MCMC

link-swap, then the original graph is also fast-mixing [55].

120

u={4,2}, w={1,1,1,1}, N=10

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5.3: An example of deeply nested network. The building block is a split graph
〈u,w〉 with degree sequence {4, 2; 1, 1, 1, 1}. The number of iterations N = 10.

121

5.2 Nodes with the same degree separate together

in canonical decomposition

Previous results [151] have shown that in order to perform canonical decomposition,

all we need is the degree sequence. Here we proved that nodes with the same degree

would be put into the same decomposition component.

Theorem 3. All nodes in a degree class separate together in a canonical split graph

decomposition, except when the separating split graphs have an empty U or W set.

Proof. A) Split graph {u,w} with |u| > 0, |w| > 0 and d|u| = |u|−1 is decomposable.

proof: Consider a split graph {u,w} containing clique u and independent set w,

|u| + |w| = n, assuming |u| > 0, |w| > 0, d|u| = |u| − 1 = n − |w| − 1. Let’s use

Tyshkevich’s theorem 2.1. Since the graph is already a split graph, if p = |u|, q = |w|,

then 0 < p+ q = n, Sp = p(n− q − 1) + Sq, so the first condition is violated but the

second condition holds. Let’s try p′ = |u| − 1 and q′ = |w|: p′ = p − 1, q′ = q, 0 <

p′+q′ = p−1+q = n−1 < n, Sp′ = Sp−(n−|w|−1), p′(n−q′−1) = (p−1)(n−|w|−1),

Sq′ = Sq, Sp′ − p′(n− q′ − 1)− Sq′ = Sp − (n− |w| − 1)− (p− 1)(n− |w| − 1)− Sq =

Sp − p(n − |w| − 1) − Sq = 0. So 0 < p′ + q′ < n, Sp′ = p′(n − q′ − 1) + Sq′ , both

conditions are satisfied. So split graph with d|u| = |u| − 1 is decomposable.

B) For nontrivial canonical decomposition, dp > n − q − 1. proof: During the

canonical decomposition, dp ≥ n − q − 1. If dp = p − 1 + n − p − q = n − q − 1,

then after decomposition the clique u has dmin = p − 1, then using A), the split

graph {u,w} is decomposable. This is in contradict to the definition of canonical

decomposition that each split graph is indecomposable, So dp > n− q − 1.

C) For nontrivial canonical decomposition, dp 6= dp+1. proof: Using B), dp >

122

n− q − 1. By definition, dp+1 ≤ n− p− q − 1 + p = n− q − 1. So dp 6= dp+1.

D) For nontrivial canonical decomposition, all decomposition put nodes with the

same degree to the same group. proof: Using C), dp 6= dp+1. By definition, dn−q 6=

dn−q+1. So the decomposition doesn’t separate nodes with the same degree.

5.3 Canonical decomposition algorithm with lin-

ear complexity

5.3.1 Idea

We want an efficient algorithm with which to find the canonical split graph decompo-

sition of a simple graph. Such a decomposition consists of series of indecomposable

split graphs, and perhaps one non-decomposable non-split graph.

A graph G is decomposable if there is a split graph (〈U,W 〉;E) consisting of a set

of completely connected nodes U and a set of completely disconnected nodes W such

that (〈U,W 〉;E) ◦ H = G. Assume that the graph H consists of vertex set V .

This algorithm relies on the idea that all nodes in a degree class separate together,

except when the separating split graphs have either U or W empty. Note that for

decomposed clique U with size p, every node in the independent set W with size q

has degree smaller than p, and every node in the not yet decomposed part has degree

at least p. Using this fact, we can use p to determine q, and increase p to find the

first valid decomposition as canonical decomposition. This leads us to the following

algorithm.

123

5.3.2 Algorithm

Consider a non-increasing degree sequence of length n: D = {d1, d2, . . . , dn}. Note

that nodes can be completely disconnected, i.e. dn = 0 is possible.

Assume that the number of nodes with degree d is sd, i.e. sd is the size of degree

class d which is the set of all nodes with degree d. Then

n−1∑
j=0

sj = n . (5.5)

Define the number of nodes in the residual, not yet decomposed, sequence n0, and

initially set n0 = n. Let k0 and j0 be the minimum and maximum degree class that

is not yet decomposed, and initially set k0 = 0 and j0 = n − 1. Note that k0 always

points to the zero residual degree of the residual sequence.

1. If sk0 6= 0, then decompose a nested set of sk0 split graphs, each of which consist

of a single node in the W set. Set n0 = n0 − sk0 . If n0 = 0, then terminate

program, decomposition is complete, else continue.

2. If sj0 = 0, then set j0 = j0 − 1 and repeat this step. Else continue.

3. If j0 = n0− 1 + k0 and sj0 6= 0, then decompose a nested set of sj0 split graphs:

(a) If sj0 6= n0 then each of the split graphs will consist of single node in the

U set. Set n0 = n0 − sj0 , k0 = k0 + sj0 j0 = j0 − 1, and return to step 1.

(b) Else the first sj0 − 1 split graphs will consist of a single node in the U

set and the last one of which consists of a single node in the W set, then

terminate program, decomposition is complete.

Else continue.

124

4. Set i = 0,

p = sj0 , (5.6)

mp = (j0 − k0) sj0 , (5.7)

and

q =

k0+p−1∑
k=k0+1

sk , (5.8)

mq =

k0+p−1∑
k=k0+1

(k − k0) sk . (5.9)

5. (a) If p+ q > n0, then all remaining n0 nodes go into a final, non-split graph,

and program terminates.

(b) Else if

mp − p(n0 − 1− q)−mq = 0 , (5.10)

then decompose a split graph with |U | = p and |W | = q, set n0 = n0−p−q,

k0 = k0 + p and j0 = j0 − 1− i, and then

i. If n0 = 0, then terminate program, decomposition is complete,

ii. Else return to step 1.

(c) Else set i = i+ 1 and continue.

6. Set k1 = k0 + p,

p = p+ sj0−i , (5.11)

mp = mp + (j0 − i− k0) sj0−i , (5.12)

and

q = q +

k0+p−1∑
k=k1

sk , (5.13)

mq = mq +

k0+p−1∑
k=k1

(k − k0) sk . (5.14)

125

Return to step 5.

5.3.3 Computational complexity

The complexity of this algorithm is O(n). Note that each degree class gets visited

just once before deciding about separation.

5.4 Theoretical results on graph composition

5.4.1 Degree distribution of composed graph

We can compose a degree sequence V for deeply nested graph using the degree se-

quence {u,w} of a small indecomposable split graph as unit.

We define the notation as follows. u, V , and w are degree sequences, thus vectors.

|V | is the length of V , which is a scalar. The + in u + |V | is defined as adding the

same scalar |V | to every element in vector u. Vn is the degree sequence after n-th

composition.

• For every new unit added, Vn = {u+ |Vn−1|, Vn−1 + |u|, w}.

• Using induction, Vn = {u+ (n− 1)|u|+ |V0|+ (n− 1)|w|, u+ (n− 1)|u|+ |V0|+

(n− 2)|w|, ..., u+ (n− 1)|u|+ |V0|+ |w|, u+ (n− 1)|u|+ |V0|;V0 +n|u|;w+ (n−

1)|u|, w + (n− 2)|u|, ..., w + |u|, w}.

• So the degree distribution for large n is:

1. w-block, width = n|u|, density ∼ |w|/|u|;

126

2. u-block, width = n|w|, density ∼ |u|/|w|;

Thus, the block or step structure of degree distribution only depends on the

size of u and w, as shown in Figure 5.4, and the exact degree sequence u and w

only matters when we look at the details of each block with small enough bin

size.

5.4.2 Composed graphs are dense.

For large number of composition t� 1, we can calculate the number of edges |E| of

the composed graph up to the leading order:

• |Vt| = |V0|+ (|u|+ |w|)t ∼ (|u|+ |w|)t,

• t ∼ |Vt|
|u|+|w| ,

• |Et+1| = |Et|+ |u||Vt|+ C1, C1 = |Eu|+ |Euw|,

• ∆|Et| = |Et+1| − |Et| = |u||Vt|+ C1,

• ∆|Et| ∼ |u|(|u|+ |w|)t+ C1 ∼ |u|(|u|+ |w|)t,

• |Et| = |E0|+
∑t−1

τ=0 ∆|Eτ |,

• |Et| ∼ |E0|+
∑t−1

τ=0 |u|(|u|+ |w|)τ ∼
|u|(|u|+|w|)

2
t2,

• |E| ∼ |u|(|u|+|w|)
2

(|Vt|
|u|+|w|)

2 = |u|
|u|+|w|

|V |2
2
∼ O(|V |2).

Since |E| ∼ O(|V |2), the composed graph is dense.

127

u={4,2}, w={1,1,1,1}, N=1000

degree

D
en

si
ty

0 1000 3000 50000.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

(a)

u={4,4,4,4}, w={2,2}, N=1000

degree

D
en

si
ty

0 1000 3000 50000.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

(b)

Two units mix: {4,2; 1,1,1,1}, {3,3,3; 1,1,1}

degree

D
en

si
ty

0 1000 3000 50000.
00

00
0

0.
00

01
0

0.
00

02
0

(c)

Two units mix: {4,2; 1,1,1,1}, {4,4,4,4; 3,1}

degree

D
en

si
ty

0 1000 3000 50000.
00

00
0

0.
00

01
0

0.
00

02
0

(d)

Figure 5.4: Degree distribution of composed graphs. (a) Degree distribution of a
composed graph from a single unit split graph with |u| = 2 and |w| = 4, iterated 1000
times. (b) Single unit with |u| = 4 and |w| = 2. (c) Random mixture of two units
with average ¯|u| = 2.5 and ¯|w| = 3.5. (d) Random mixture with ¯|u| = 3 and ¯|w| = 3.
Red lines are theoretical predictions.

128

(a) Adjacency matrix, two units mix:
{4,2; 1,1,1,1}, {3,3,3; 1,1,1}

(b) Adjacency matrix, two units mix:
{4,2; 1,1,1,1}, {4,4,4,4; 3,1}

(c) Adjacency matrix, two units mix:
{4,4,4,4; 3,1}, {4,4,4,4; 2,2}

(d) Adjacency matrix, all units mix.

Figure 5.5: Adjacency matrices of composed graphs. Nodes are ordered by degree.
Number of iterations N = 100. At each time step a random unit split graph is chosen.
(a) ¯|u| = 2.5, ¯|w| = 3.5. (b) ¯|u| = 3, ¯|w| = 3. (c) ¯|u| = 4, ¯|w| = 2. (d) ¯|u| = 3,
¯|w| = 3. The overall wedge shape is only decided by ¯|u| and ¯|w|. The degree sequence

of unit split graph only affects the detailed shape at the boundary.

129

(a) Adjacency matrix, two units com-
bined: {4,2; 1,1,1,1}, {4,4,4,4; 3,1}

(b) Adjacency matrix, two units com-
bined: {3,3,3; 1,1,1}, {4,2; 1,1,1,1}

(c) Adjacency matrix, two units com-
bined: {3,3,3; 1,1,1}, {4,4,4,4; 3,1}

(d) Adjacency matrix, two units com-
bined: {4,4,4,4; 3,1}, {4,2; 1,1,1,1}

Figure 5.6: Adjacency matrices of composed graphs. Nodes are ordered by degree.
The graph is composed by first using the first unit split graph for N times and then
using the second unit split graph for another N times. Here we choose a small number
of iterations N = 10 to see the details at the boundary.

130

5.5 Random power-law graphs are not deeply nested

We generated random power-law degree sequences P (k) ∝ k−γ with exponent γ ∈

{−2,−1, 0, 2}, and generated random graphs from those degree sequences. Figure 5.7

gives a few examples of their adjacency matrices.

When we try to perform canonical decomposition, we found that random power

law sequences are not very decomposable. Only a few decomposition steps are per-

formed, and a large portion of the graph left is not decomposable, as shown in Fig-

ure 5.8.

This suggests that if we find any graph that is deeply nested, it is very unlikely

that this nestedness comes from random connection. The graph must be designed or

evolved into this nested state.

131

(a) Adjacency matrix of power-law degree
sequence with N = 600 and γ = −2

(b) Adjacency matrix of power-law de-
gree sequence with N = 600 and γ = −1

(c) Adjacency matrix of power-law degree
sequence with N = 600 and γ = 0

(d) Adjacency matrix of power-law de-
gree sequence with N = 600 and γ = 2

Figure 5.7: Adjacency matrices of graph from power-law degree distribution P (k) ∝
k−γ. Nodes are ordered by degree. Number of nodes is 600. (a) γ = −2. (b) γ = −1.
(c) γ = 0. (d) γ = 2.

132

n0

F
re

qu
en

cy

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

(a) Histogram of n0, γ = 0

sc

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

(b) Histogram of sc, γ = 0

n0

F
re

qu
en

cy

993 995 997 999

0
50

10
0

15
0

20
0

25
0

(c) Histogram of n0, γ = −1

sc

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
50

10
0

15
0

20
0

25
0

(d) Histogram of sc, γ = −1

Figure 5.8: (a) Histogram of number of nodes left in the non-split graph n0 after
canonical decomposition. Number of nodes N = 1000. Degree sequence follows power
law P (k) ∝ k−γ with exponent γ = 0. 1000 degree sequences are generated for better
statistics. (b) Histogram of number of canonical decomposition steps performed sc
for γ = 0. (c) Histogram of n0 for γ = −1 with same system size and number of
degree sequences. (d) Histogram of sc for γ = −1.

133

5.6 Summary

In this chapter we studied the way to decomposed any graph into a series of split

graphs. We first proved that all nodes with the same degree separate together in

canonical decomposition. Utilizing this theorem, we developed a canonical decompo-

sition algorithm with linear complexity.

We also studied the inverse problem: composing a graph using split graph. We

found the degree sequence of composed graph, and showed that composed graphs are

dense.

Finally, we applied our decomposition algorithm to random power-law degree

sequences, and found that they are in general not deeply nested.

134

Chapter 6

Conclusion

In this dissertation, we discussed different ways to generate random graphs with pre-

scribed degree sequence. We developed efficient stub sampling with a more stable

weighted average, and compared the hard constraint method with soft constraint

method. Then we studied the preferred degree extreme dynamics model, and a

broader class of graph called split graph. This chapter summarizes those results

and discusses the potential direction of research in the future.

In Chapter 2, we optimized the previously developed Sequential Importance Sam-

pling (SIS) method, which is a hard constraint method, using our knowledge on Ex-

ponential Random Graph Model (ERGM), which is a soft constraint method. Here

we use a mean-field approximation to estimate the probability to connect a pair of

nodes in ERGM, and use this probability to decide the connection between Hub and

nodes in the Allowed Set in SIS. This helps reduce the variance of log-weight in SIS.

Moreover, we developed a way to calculate the weighted average of graph property

135

by measuring the distribution parameter of the property and log-weight joint proba-

bility distribution as long as this distribution is bivariate normal. We can get more

stable weighted average using this bivariate normal assumption. Using efficient stub

sampling with bivariate normal assumption, we studied a real-world social network

with 1 million nodes, and concluded that it’s very unlikely that this specific network

is formed by chance.

In Chapter 3, we studied the difference of ensembles generated using soft and

hard constraint methods developed in Chapter 2. We showed, both theoretically

and through simulation, that soft constraint method significantly overestimates the

global clustering coefficient. Thus, we need to be cautious about the null models we

use when doing statistical inference.

In Chapter 4, we analyzed a different model that tries to generate graphs with

preferred degree: the preferred degree extreme dynamics model, and its special cases

eXtreme Introverts and Extroverts (XIE) model, and Generalized Introverts and Ex-

troverts (GIE) model. We solved the degree distribution, cross-link distribution and

correlation in XIE model. We also conjectured that the system following extreme

dynamics would reach an equilibrium as long as the preferred degrees are integers.

In Chapter 5, we explored the properties of split graphs, which were seen in

Chapter 4. We proved that during canonical decomposition, nodes with the same

degree would be decomposed into the same component. Using this theorem, we

developed a linear complexity algorithm to perform canonical decomposition. We

also studied the inverse problem: graph composition. Here we found the degree

distribution of composed graph, and proved that composed graphs are dense. Finally,

we tried to decompose random power-law degree sequences, but found that most

136

random power-law degree sequences are not deeply nested. This indicates that any

deeply nested graphs we observed must be either designed or evolved into that state.

Though we made some progress in this dissertation, there are still a lot of questions

to be answered. In SIS, while we tried to reduce the variance of log-weight, it still

increases approximately linearly as the system size goes larger. It might be promising

to use resampling method to control the range of weight, or even get rid of the weight

altogether. In ERGM, whether there exists a simple but more accurate approximation

of connection probability for all possible degree sequences is an important question

both theoretically and in practice. In GIE, other studies showed that the system is

in non-equilibrium when preferred degrees are non-integers. The physical meaning of

this phenomena and its potential application are yet to be found. For split graphs,

the definition of split graph and canonical decomposition might be too strict for real-

world graphs. Instead of asking whether or not a graph is decomposable, we might

want to ask to what extent a decomposition describes the structure in the original

graph. A “softer” definition of decomposition may give us a less accurate but more

coarse-grained description of real-world graphs.

137

Bibliography

[1] W. Aiello, F. Chung, and L. Lu. A Random Graph Model for Massive Graphs.
In Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, STOC ’00, pages 171–180, New York, NY, USA, 2000. ACM.

[2] R. Albert, I. Albert, and G. L. Nakarado. Structural vulnerability of the North
American power grid. Physical Review E, 69(2):025103, pages 1–4, Feb. 2004.

[3] R. Albert and A.-L. Barabási. Topology of Evolving Networks: Local Events
and Universality. Physical Review Letters, 85(24):5234–5237, Dec. 2000.

[4] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Re-
views of Modern Physics, 74(1):47–97, Jan. 2002.

[5] R. Albert, H. Jeong, and A.-L. Barabási. Diameter of the World-Wide Web.
Nature, 401(6749):130–131, Sept. 1999.

[6] U. Alon. Network motifs: theory and experimental approaches. Nature Reviews
Genetics, 8(6):450–461, June 2007.

[7] C. J. Anderson, S. Wasserman, and B. Crouch. A p* primer: logit models for
social networks. Social Networks, 21(1):37–66, Jan. 1999.

[8] A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks.
Science, 286(5439):509–512, Oct. 1999.

[9] A.-L. Barabási and Z. N. Oltvai. Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2):101–113, Feb. 2004.

[10] A. Barrat and M. Weigt. On the properties of small-world network models.
The European Physical Journal B - Condensed Matter and Complex Systems,
13(3):547–560, Feb. 2000.

[11] J. Bascompte. Structure and Dynamics of Ecological Networks. Science,
329(5993):765–766, Aug. 2010.

138

[12] K. E. Bassler, D. Dhar, and R. K. P. Zia. Networks with preferred degree: a
mini-review and some new results. Journal of Statistical Mechanics: Theory
and Experiment, 2015(7):P07013, pages 1–38, July 2015.

[13] K. E. Bassler, C. I. D. Genio, P. L. Erdős, I. Miklós, and Z. Toroczkai. Exact
sampling of graphs with prescribed degree correlations. New Journal of Physics,
17(8):083052, pages 1–18, Aug. 2015.

[14] K. E. Bassler, W. Liu, B. Schmittmann, and R. K. P. Zia. Extreme Thouless
effect in a minimal model of dynamic social networks. Physical Review E,
91(4):042102, pages 1–10, Apr. 2015.

[15] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gul-
cehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash,
V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals,
Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261 [cs, stat], June 2018.

[16] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with
given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–
307, May 1978.

[17] G. Bianconi. The entropy of randomized network ensembles. Europhysics Let-
ters, 81(2):28005, pages 1–6, Dec. 2007.

[18] G. Bianconi. Entropy of network ensembles. Physical Review E, 79(3):036114,
pages 1–10, Mar. 2009.

[19] P. Billingsley. Probability and Measure. Wiley-Interscience, New York, 3 edition
edition, May 1995.

[20] J. Blitzstein and P. Diaconis. A Sequential Importance Sampling Algorithm for
Generating Random Graphs with Prescribed Degrees. Internet Mathematics,
6(4):489–522, 2010.

[21] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424(4):175–308, Feb. 2006.

[22] M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Cut-offs and finite size
effects in scale-free networks. The European Physical Journal B, 38(2):205–209,
Mar. 2004.

[23] B. Bollobás. Random Graphs: Second Edition. Cambridge University Press,
Cambridge ; New York, 2 edition, Oct. 2001.

139

[24] B. Bollobas. Modern Graph Theory. Springer, New York, corrected edition,
Aug. 2002.

[25] B. Bollobás and O. Riordan. Random Graphs and Branching Processes. In
B. Bollobás, R. Kozma, and D. Miklós, editors, Handbook of Large-Scale Ran-
dom Networks, Bolyai Society Mathematical Studies, pages 15–115. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[26] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network Analysis in
the Social Sciences. Science, 323(5916):892–895, Feb. 2009.

[27] M. Boss, H. Elsinger, M. Summer, and S. Thurner 4. Network topology of the
interbank market. Quantitative Finance, 4(6):677–684, Dec. 2004.

[28] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,
L. Ling, N. Zhang, G. Li, and R. Chen. Topological structure analysis of the
protein–protein interaction network in budding yeast. Nucleic Acids Research,
31(9):2443–2450, May 2003.

[29] C. T. Butts. A perfect sampling method for exponential family random graph
models. The Journal of Mathematical Sociology, 42(1):17–36, Jan. 2018.

[30] C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynam-
ics. Reviews of Modern Physics, 81(2):591–646, May 2009.

[31] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras. Generation of uncorrelated
random scale-free networks. Physical Review E, 71(2):027103, pages 1–4, Feb.
2005.

[32] S. Chatterjee and P. Diaconis. Estimating and understanding exponential ran-
dom graph models. The Annals of Statistics, 41(5):2428–2461, Oct. 2013.

[33] S. Chatterjee, P. Diaconis, and A. Sly. Random graphs with a given degree
sequence. The Annals of Applied Probability, 21(4):1400–1435, Aug. 2011.

[34] T. Chen, P. Singh, and K. E. Bassler. Network community detection using
modularity density measures. Journal of Statistical Mechanics: Theory and
Experiment, 2018(5):053406, pages 1–15, May 2018.

[35] F. Chung and L. Lu. The average distances in random graphs with given ex-
pected degrees. Proceedings of the National Academy of Sciences, 99(25):15879–
15882, Dec. 2002.

[36] F. Chung and L. Lu. Connected Components in Random Graphs with Given
Expected Degree Sequences. Annals of Combinatorics, 6(2):125–145, Nov. 2002.

140

[37] F. Chung and L. Lu. Complex Graphs and Networks. American Mathematical
Society, Providence, RI, Aug. 2006.

[38] S. Ciliberti, O. C. Martin, and A. Wagner. Innovation and robustness in com-
plex regulatory gene networks. Proceedings of the National Academy of Sciences,
104(34):13591–13596, Aug. 2007.

[39] P. Colomer-de Simon and M. Boguñá. Clustering of random scale-free networks.
Physical Review E, 86(2):026120, pages 1–5, Aug. 2012.

[40] A. C. C. Coolen, A. D. Martino, and A. Annibale. Constrained Markovian
Dynamics of Random Graphs. Journal of Statistical Physics, 136(6):1035–1067,
Sept. 2009.

[41] C. Cooper, M. Dyer, and C. Greenhill. Sampling Regular Graphs and a Peer-
to-Peer Network. Combinatorics, Probability and Computing, 16(4):557–593,
July 2007.

[42] L. d. F. Costa, O. N. O. Jr, G. Travieso, F. A. Rodrigues, P. R. V. Boas,
L. Antiqueira, M. P. Viana, and L. E. C. Rocha. Analyzing and modeling real-
world phenomena with complex networks: a survey of applications. Advances
in Physics, 60(3):329–412, June 2011.

[43] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characteri-
zation of complex networks: A survey of measurements. Advances in Physics,
56(1):167–242, Jan. 2007.

[44] A. C. Davison and D. V. Hinkley. Bootstrap Methods And Their Application.
Cambridge University Press, Cambridge ; New York, NY, USA, 1 edition, Oct.
1997.

[45] C. I. Del Genio, T. Gross, and K. E. Bassler. All Scale-Free Networks Are
Sparse. Physical Review Letters, 107(17):178701, pages 1–4, Oct. 2011.

[46] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler. Efficient and Exact
Sampling of Simple Graphs with Given Arbitrary Degree Sequence. PLoS ONE,
5(4):e10012, pages 1–7, Apr. 2010.

[47] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phenomena in
complex networks. Reviews of Modern Physics, 80(4):1275–1335, Oct. 2008.

[48] S. N. Dorogovtsev and J. F. F. Mendes. Scaling behaviour of developing and
decaying networks. Europhysics Letters, 52(1):33–39, Oct. 2000.

[49] S. N. Dorogovtsev and J. F. F. Mendes. Effect of the accelerating growth of
communications networks on their structure. Physical Review E, 63(2):025101,
pages 1–4, Jan. 2001.

141

[50] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Advances in
Physics, 51(4):1079–1187, June 2002.

[51] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of Growing
Networks with Preferential Linking. Physical Review Letters, 85(21):4633–4636,
Nov. 2000.

[52] A. Doucet, N. d. Freitas, and N. Gordon, editors. Sequential Monte Carlo
Methods in Practice. Information Science and Statistics. Springer-Verlag, New
York, 2001.

[53] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka,
and W. Willinger. The “robust yet fragile” nature of the Internet. Proceedings
of the National Academy of Sciences, 102(41):14497–14502, Oct. 2005.

[54] P. Erdős and A. Rényi. On the Evolution of Random Graphs. In Publication of
the Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61,
1960.

[55] P. L. Erdős, I. Miklós, and Z. Toroczkai. New Classes of Degree Sequences
with Fast Mixing Swap Markov Chain Sampling. Combinatorics, Probability
and Computing, 27(2):186–207, Mar. 2018.

[56] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices [hungarian].
Matematikai Lapok, 11:264–274, 1960.

[57] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–
297, 1959.

[58] M. Ezzatabadipour. Non-Equilibrium Statistical Mechanics of a Mixed Order
Phase Transition in a Dynamical Network Model. PhD thesis, University of
Houston, 2019.

[59] S. Foldes and P. L. Hammer. Split Graphs Having Dilworth Number Two.
Canadian Journal of Mathematics, 29(3):666–672, June 1977.

[60] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
Feb. 2010.

[61] S. Fortunato and D. Hric. Community detection in networks: A user guide.
Physics Reports, 659:1–44, Nov. 2016.

[62] A. Fronczak. Exponential Random Graph Models. In R. Alhajj and J. Rokne,
editors, Encyclopedia of Social Network Analysis and Mining, pages 1–18.
Springer, New York, 2017.

142

[63] P. Gao and N. Wormald. Enumeration of graphs with a heavy-tailed degree
sequence. Advances in Mathematics, 287:412–450, Jan. 2016.

[64] D. F. Gatz and L. Smith. The standard error of a weighted mean con-
centration—I. Bootstrapping vs other methods. Atmospheric Environment,
29(11):1185–1193, June 1995.

[65] J. Gómez-Gardeñes and Y. Moreno. Local versus global knowledge in the
Barabási-Albert scale-free network model. Physical Review E, 69(3):037103,
pages 1–4, Mar. 2004.

[66] C. Greenhill and M. Sfragara. The switch Markov chain for sampling irregular
graphs and digraphs. Theoretical Computer Science, 719:1–20, Apr. 2018.

[67] J.-L. Guillaume and M. Latapy. Bipartite structure of all complex networks.
Information Processing Letters, 90(5):215–221, June 2004.

[68] R. Guimerà, S. Mossa, A. Turtschi, and L. a. N. Amaral. The worldwide air
transportation network: Anomalous centrality, community structure, and cities’
global roles. Proceedings of the National Academy of Sciences, 102(22):7794–
7799, May 2005.

[69] S. Hakimi. On Realizability of a Set of Integers as Degrees of the Vertices of a
Linear Graph. I. Journal of the Society for Industrial and Applied Mathematics,
10(3):496–506, Sept. 1962.

[70] B. Hall, A. Jaffe, and M. Trajtenberg. The NBER patent citations data file:
Lessons, insights and methodological tools. 2001.

[71] V. Havel. Poznámka o existenci konečných graf̊u. Časopis pro pěstováńı matem-
atiky, 080(4):477–480, 1955.

[72] N. Henze and B. Zirkler. A class of invariant consistent tests for multivariate
normality. Communications in Statistics - Theory and Methods, 19(10):3595–
3617, Jan. 1990.

[73] S. M. Herbert Robbins. A stochastic approximation method. Ann. Math.
Statist., 22(3):400–407, 1951.

[74] P. W. Holland and S. Leinhardt. A Method for Detecting Structure in Socio-
metric Data. American Journal of Sociology, 76(3):492–513, 1970.

[75] P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering.
Physical Review E, 65(2):026107, pages 1–4, Jan. 2002.

[76] S. Horvát, Czabarka, and Z. Toroczkai. Reducing Degeneracy in Maximum
Entropy Models of Networks. Physical Review Letters, 114(15):158701, pages
1–5, Apr. 2015.

143

[77] H.-B. Hu and X.-F. Wang. Disassortative mixing in online social networks.
Europhysics Letters, 86(1):18003, pages 1–6, Apr. 2009.

[78] P. Hu and W. C. Lau. A Survey and Taxonomy of Graph Sampling. arXiv
preprint arXiv:1308.5865 [cs, math, stat], Aug. 2013.

[79] D. R. Hunter and M. S. Handcock. Inference in Curved Exponential Fam-
ily Models for Networks. Journal of Computational and Graphical Statistics,
15(3):565–583, Sept. 2006.

[80] E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review,
106(4):620–630, May 1957.

[81] E. T. Jaynes. Information Theory and Statistical Mechanics. II. Physical Re-
view, 108(2):171–190, Oct. 1957.

[82] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distribu-
tions, Vol. 1. Wiley-Interscience, New York, 2 edition edition, Oct. 1994.

[83] V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore. Scale invariance in road
networks. Physical Review E, 73(2):026130, pages 1–6, Feb. 2006.

[84] Kaluza Pablo, Kölzsch Andrea, Gastner Michael T., and Blasius Bernd. The
complex network of global cargo ship movements. Journal of The Royal Society
Interface, 7(48):1093–1103, July 2010.

[85] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms for
generating bipartite graphs and tournaments. Random Structures & Algorithms,
14(4):293–308, 1999.

[86] F. P. Kelly. Reversibility and Stochastic Networks. Cambridge University Press,
Cambridge ; New York, revised ed. edition edition, Aug. 2011.

[87] J. F. Kenney and E. S. Keeping. Mathematics of statistics. Part 2 ,second
edition. D. Van Nostrand, Princeton, N.J., 1951. OCLC: 122291120.

[88] H. Kim, C. I. D. Genio, K. E. Bassler, and Z. Toroczkai. Constructing and
sampling directed graphs with given degree sequences. New Journal of Physics,
14(2):023012, pages 1–23, Feb. 2012.

[89] H. Kim, Z. Toroczkai, P. L. Erdős, I. Miklós, and L. A. Székely. Degree-
based graph construction. Journal of Physics A: Mathematical and Theoretical,
42(39):392001, pages 1–10, Sept. 2009.

[90] L. Kish. Survey sampling. Wiley, Jan. 1965.

[91] H. Klein-Hennig and A. K. Hartmann. Bias in generation of random graphs.
Physical Review E, 85(2):026101, pages 1–7, Feb. 2012.

144

[92] K. Klemm and V. M. Egúıluz. Highly clustered scale-free networks. Physical
Review E, 65(3):036123, pages 1–5, Feb. 2002.

[93] B. Klimt and Y. Yang. Introducing the enron corpus. In First Conference on
Email and Anti-Spam (CEAS) Proceedings, 2004.

[94] P. L. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of Growing Random
Networks. Physical Review Letters, 85(21):4629–4632, Nov. 2000.

[95] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 631–636, New York, NY, USA, 2006. ACM.

[96] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[97] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg. The
web of human sexual contacts. Nature, 411(6840):907–908, June 2001.

[98] W. Liu, B. Schmittmann, and R. K. P. Zia. Extraordinary variability and sharp
transitions in a maximally frustrated dynamic network. Europhysics Letters,
100(6):66007, Dec. 2012.

[99] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph Summarization Methods
and Applications: A Survey. ACM Comput. Surv., 51(3):62:1–62:34, June 2018.

[100] Y.-Y. Liu and A.-L. Barabási. Control principles of complex systems. Reviews
of Modern Physics, 88(3):035006, pages 1–58, Sept. 2016.

[101] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou. Vital nodes
identification in complex networks. Physics Reports, 650:1–63, Sept. 2016.

[102] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou. Rec-
ommender systems. Physics Reports, 519(1):1–49, Oct. 2012.

[103] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica
A: Statistical Mechanics and its Applications, 390(6):1150–1170, Mar. 2011.

[104] F. D. Malliaros and M. Vazirgiannis. Clustering and community detection in
directed networks: A survey. Physics Reports, 533(4):95–142, Dec. 2013.

[105] K. V. Mardia. Measures of Multivariate Skewness and Kurtosis with Applica-
tions. Biometrika, 57(3):519–530, 1970.

[106] S. Maslov, K. Sneppen, and A. Zaliznyak. Detection of topological patterns
in complex networks: correlation profile of the internet. Physica A: Statistical
Mechanics and its Applications, 333:529–540, Feb. 2004.

145

[107] B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence
of graphs with degreeso(n1/2). Combinatorica, 11(4):369–382, Dec. 1991.

[108] G. A. Miller. WordNet: An Electronic Lexical Database. A Bradford Book,
Cambridge, Mass, May 1998.

[109] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the
uniform generation of random graphs with prescribed degree sequences. arXiv
preprint arXiv:cond-mat/0312028, Dec. 2003.

[110] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and Analysis of Online Social Networks. In Proceedings of the
5th ACM/Usenix Internet Measurement Conference (IMC’07), San Diego, CA,
October 2007.

[111] M. Molloy and B. Reed. A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms, 6(2-3):161–180, 1995.

[112] M. Molloy and B. Reed. The Size of the Giant Component of a Random Graph
with a Given Degree Sequence. Combinatorics, Probability and Computing,
7(3):295–305, Sept. 1998.

[113] M. Newman. The Structure and Function of Complex Networks. SIAM Review,
45(2):167–256, Jan. 2003.

[114] M. Newman. Networks: An Introduction. Oxford University Press, Oxford ;
New York, 1 edition, May 2010.

[115] M. E. J. Newman. The structure of scientific collaboration networks. Proceed-
ings of the National Academy of Sciences, 98(2):404–409, Jan. 2001.

[116] M. E. J. Newman. Assortative Mixing in Networks. Physical Review Letters,
89(20):208701, pages 1–4, Oct. 2002.

[117] M. E. J. Newman. Random graphs as models of networks. In S. Bornholdt
and H. G. Schuster, editors, Handbook of Graphs and Networks, pages 35–68.
Wiley-VCH Verlag GmbH & Co. KGaA, 2002. DOI: 10.1002/3527602755.ch2.

[118] M. E. J. Newman. Ego-centered networks and the ripple effect. Social Networks,
25(1):83–95, Jan. 2003.

[119] M. E. J. Newman. Communities, modules and large-scale structure in networks.
Nature Physics, 8(1):25–31, Jan. 2012.

[120] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E,
64(2):026118, pages 1–17, July 2001.

146

[121] M. E. J. Newman and D. J. Watts. Renormalization group analysis of the
small-world network model. Physics Letters A, 263(4):341–346, Dec. 1999.

[122] K. Norlen, G. Lucas, M. Gebbie, and J. Chuang. EVA: Extraction, Visualiza-
tion and Analysis of the Telecommunications and Media Ownership Network.
In Proceedings of International Telecommunications Society 14th Biennial Con-
ference (ITS2002), Seoul Korea, pages 27–129.

[123] A. Nyberg, T. Gross, and K. E. Bassler. Mesoscopic structures and the
Laplacian spectra of random geometric graphs. Journal of Complex Networks,
3(4):543–551, Dec. 2015.

[124] D. Obradović and M. Danisch. Direct generation of random graphs exactly
realising a prescribed degree sequence. In 2014 6th International Conference on
Computational Aspects of Social Networks, pages 1–6, July 2014.

[125] C. Orsini, M. M. Dankulov, P. Colomer-de Simón, A. Jamakovic, P. Mahadevan,
A. Vahdat, K. E. Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, S. Fortunato,
and D. Krioukov. Quantifying randomness in real networks. Nature Communi-
cations, 6:8627, pages 1–10, Oct. 2015.

[126] G. A. Pagani and M. Aiello. The Power Grid as a complex network: A survey.
Physica A: Statistical Mechanics and its Applications, 392(11):2688–2700, June
2013.

[127] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in Temporal Networks.
In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, WSDM ’17, pages 601–610, New York, NY, USA, 2017. ACM.

[128] D. D. S. Price. A general theory of bibliometric and other cumulative advantage
processes. Journal of the American Society for Information Science, 27(5):292–
306, 1976.

[129] D. J. D. S. Price. Networks of Scientific Papers. Science, 149(3683):510–515,
1965.

[130] M. Pujari and R. Kanawati. Supervised Rank Aggregation Approach for Link
Prediction in Complex Networks. In Proceedings of the 21st International Con-
ference on World Wide Web, WWW ’12 Companion, pages 1189–1196, New
York, NY, USA, 2012. ACM.

[131] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási.
Hierarchical Organization of Modularity in Metabolic Networks. Science,
297(5586):1551–1555, Aug. 2002.

147

[132] E. S. Roberts, A. Annibale, and A. C. C. Coolen. Controlled Markovian Dynam-
ics of Graphs: Unbiased Generation of Random Graphs with Prescribed Topo-
logical Properties. In C. Grácio, D. Fournier-Prunaret, T. Ueta, and Y. Nishio,
editors, Nonlinear Maps and their Applications, Springer Proceedings in Math-
ematics & Statistics, pages 25–34. Springer New York, 2014.

[133] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponen-
tial random graph (p*) models for social networks. Social Networks, 29(2):173–
191, May 2007.

[134] G. Rotundo and A. M. D’Arcangelis. Ownership and control in shareholding
networks. Journal of Economic Interaction and Coordination, 5(2):191–219,
Dec. 2010.

[135] P. Royston. Approximating the Shapiro-Wilk W-test for non-normality. Statis-
tics and Computing, 2(3):117–119, Sept. 1992.

[136] R. Ryder. probability - Distribution and Variance of Count of Triangles in
Random Graph, Apr. 2018.

[137] W. E. Schlauch, E. Á. Horvát, and K. A. Zweig. Different flavors of randomness:
comparing random graph models with fixed degree sequences. Social Network
Analysis and Mining, 5(1):36, pages 1–14, July 2015.

[138] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S.
Manna. Small-world properties of the Indian railway network. Physical Review
E, 67(3):036106, pages 1–5, Mar. 2003.

[139] C. Seshadhri, T. G. Kolda, and A. Pinar. Community structure and scale-free
collections of Erdős-Rényi graphs. Physical Review E, 85(5):056109, pages 1–9,
May 2012.

[140] H. A. Simon. On a Class of Skew Distribution Functions. Biometrika,
42(3/4):425–440, 1955.

[141] T. A. Snijders. Markov chain monte carlo estimation of exponential random
graph models. Journal of Social Structure, 3(2):1–40, April 2002.

[142] R. V. Solé, R. Pastor-Satorras, E. Smith, and T. B. Kepler. A model of large-
scale proteome evolution. Advances in Complex Systems, 05(01):43–54, Mar.
2002.

[143] O. Sporns. The human connectome: a complex network. Annals of the New
York Academy of Sciences, 1224(1):109–125, 2011.

148

[144] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, devel-
opment and function of complex brain networks. Trends in Cognitive Sciences,
8(9):418–425, Sept. 2004.

[145] D. Strauss. On a General Class of Models for Interaction. SIAM Review,
28(4):513–527, Dec. 1986.

[146] S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276, Mar.
2001.

[147] G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A
fast and unbiased procedure to randomize ecological binary matrices with fixed
row and column totals. Nature Communications, 5:4114, pages 1–7, June 2014.

[148] W. M. Tam, F. C. M. Lau, and C. K. Tse. Complex-Network Modeling of a
Call Network. IEEE Transactions on Circuits and Systems I: Regular Papers,
56(2):416–429, Feb. 2009.

[149] R. Taylor. Contrained switchings in graphs. In K. L. McAvaney, editor, Com-
binatorial Mathematics VIII, Lecture Notes in Mathematics, pages 314–336.
Springer Berlin Heidelberg, 1981.

[150] Tom A. B. Snijders, Philippa E. Pattison, Garry L. Robins, and Mark S. Hand-
cock. New Specifications for Exponential Random Graph Models. Sociological
Methodology, 36(1):99–153, Aug. 2006.

[151] R. Tyshkevich. Decomposition of graphical sequences and unigraphs. Discrete
Mathematics, 220(1):201–238, June 2000.

[152] R. I. Tyškevič and A. A. Černjak. Canonical decomposition of a graph de-
termined by the degrees of its vertices. Vesc̄ı Akadèmı̄̄ı Navuk BSSR. Seryja
F̄ız̄ıka-Matèmatyčnyh Navuk, 5(5):14–26, 138, 1979.

[153] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani. Modeling of Protein
Interaction Networks. Complexus, 1(1):38–44, 2003.

[154] N. D. Verhelst. An Efficient MCMC Algorithm to Sample Binary Matrices with
Fixed Marginals. Psychometrika, 73(4):705–728, Apr. 2008.

[155] F. Viger and M. Latapy. Efficient and Simple Generation of Random Simple
Connected Graphs with Prescribed Degree Sequence. In L. Wang, editor, Com-
puting and Combinatorics, Lecture Notes in Computer Science, pages 440–449.
Springer Berlin Heidelberg, 2005.

[156] S. Vitali, J. B. Glattfelder, and S. Battiston. The Network of Global Corporate
Control. PLoS ONE, 6(10):e25995, pages 1–6, Oct. 2011.

149

[157] X. F. Wang and G. Chen. Complex networks: small-world, scale-free and
beyond. IEEE Circuits and Systems Magazine, 3(1):6–20, 2003.

[158] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[159] M. Winlaw, H. DeSterck, and G. Sanders. An In-Depth Analysis of the Chung-
Lu Model. Technical Report LLNL-TR-678729, Lawrence Livermore National
Lab. (LLNL), Livermore, CA (United States), Oct. 2015.

[160] J. Wishart. The Generalised Product Moment Distribution in Samples from a
Normal Multivariate Population. Biometrika, 20A(1/2):32–52, 1928.

[161] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive
Survey on Graph Neural Networks. arXiv preprint arXiv:1901.00596 [cs, stat],
Jan. 2019.

[162] Y. Xia, C. K. Tse, W. M. Tam, F. C. M. Lau, and M. Small. Scale-free user-
network approach to telephone network traffic analysis. Physical Review E,
72(2):026116, pages 1–7, Aug. 2005.

[163] J. Zhang and Y. Chen. Sampling for Conditional Inference on Network Data.
Journal of the American Statistical Association, 108(504):1295–1307, Dec. 2013.

[164] W. Zhang and K. E. Bassler. Efficient sampling of ensembles of large graphs
with prescribed degrees. (in preparation for publication).

[165] W. Zhang, E. McMillan, and K. E. Bassler. Graphs sampled from soft degree-
sequence-constraint methods are more clustered. (in preparation for publica-
tion).

[166] Z. Zhang, P. Cui, and W. Zhu. Deep Learning on Graphs: A Survey. arXiv
preprint arXiv:1812.04202 [cs, stat], Dec. 2018.

[167] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph Neu-
ral Networks: A Review of Methods and Applications. arXiv preprint
arXiv:1812.08434 [cs, stat], Dec. 2018.

[168] R. K. P. Zia, W. Liu, S. Jolad, and B. Schmittmann. Studies of adaptive
networks with preferred degree. Physics Procedia, 15:102–105, Jan. 2011.

[169] R. K. P. Zia, W. Liu, and B. Schmittmann. An Extraordinary Transition in
a Minimal Adaptive Network of Introverts and Extroverts. Physics Procedia,
34:124–127, Jan. 2012.

[170] R. K. P. Zia, W. Zhang, M. Ezzatabadipour, and K. E. Bassler. Exact results
for the extreme Thouless effect in a model of network dynamics. Europhysics
Letters, 124(6):60008, pages 1–6, Jan. 2019.

150

