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Abstract

In general, a reservoir is formed by laminated layers of shale, sand, and other types

of lithologies. Each layer has different elastic properties that are described by its

own stiffness tensor (Cijkl), density(ρj), and thickness (dj), j being the number of

the layer. A periodic medium is defined as the stack of homogeneous layers with

different elastic properties that it repeats after some length (d), where d is called the

period of the medium. If a wave-field travels through this periodic medium composed

of isotropic layers, the wave shows two mutually exclusive behaviors. When the

wavelength (λ) is smaller than d, the wave behaves as if in an isotropic medium

but when λ is bigger than d, the wave behaves as if in an equivalent transversely

anisotropic medium (Postma,1955; Rytov,1956; Rich,2006).

The goals of this thesis are three-fold. The first one is to describe the physi-

cal behavior of wave velocity as a function of thickness d and the impedance con-

trast between constituents when P -, Sv-, and Sh-wave travels in a periodic medium.

The second goal is to quantify, in term of thickness of the period of the medium,

the frequency and wavelength values at which the medium behaves as an effective

anisotropic one. The third goal is to compute the seismic response of this elastic
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periodic medium.

The description of how the wavefield propagates through the medium is given by

the solution of the wave equation for elastic media. This solution allows the definition

of Brillouin zones whose width is equal to π/d and shows that the periodic medium

exhibits a range of stop-bands frequencies where the wave does not propagate. These

stop-bands are located at the boundary of the Brillouin zone for the all of the types

of waves (P , Sv, and Sh). In the case of P and Sv-waves, there are also stop-bands

inside the Brillouin zone that depend on the frequency and angle of incidence of the

wavefield. As a result, seismic response and dispersion relationships show that the

medium can be considered anisotropic when λ > 10d and this anisotropic behavior

is also a function of the wavefield frequency (ω), for instance if the medium has a

period of d = 30m, the medium is anisotropic for ω ≤10hz.
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Introduction

Sedimentary basins are composed of stacks of layers with a wide range of variable

thickness. A periodic medium is defines as the stack of homogeneous layers with

different elastic properties that repeats after some length d; this d is the period of

the medium. In nature these periodical structures are found at small and large scales.

On small scale, the laminar characteristics of shales has been modeled as periodic

medium (Vernik and Nur, 1996). On large scale, alternating layers of limestones and

shales have been found and they can be considered as periodic media (Coe et al.,

2003).

In seismology, each of the medium layer is described by its elastic properties:

the stiffness tensor (Cijkl), density (ρj), and thickness (dj), where j is the index of

each layer. When an elastic wave field travels through a medium, it produces three

displacement components associated with three type of waves. The Sh- and Sv-waves

are waves with displacement perpendicular to the direction of the wave propagation

and the P -wave has displacement parallel to the direction of propagation. This thesis

studies the physical behavior when an elastic wave travels in a periodic medium. The

thesis is divided into three chapters. In the first chapter, the theoretical background
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for the solution of the wave equation in a periodical isotropic medium is presented.

In chapter two, the solution for the wave equation for the Sh-wave and its dispersion

relationship is derived. In chapter three, the solution for the wave equation for the

P - and Sv-wave and their dispersion relationships are computed.

Dispersion relationships for all three waves show the existence of stop-bands at

the boundary of the Brillouin zone and a modulation behavior. In this study, it

is shown that the width of these stop-bands and their modulation is a function of

wave incidence angle, thickness, and impedance contrast between constituents of the

medium. Seismic response is computed using dispersion relationships and Green’s

function.

Wave propagation in a periodic laminated media has been the object of study

of many authors. Postma (1955) and Rytov (1956) studied this type of media and

computed the effective stiffness tensor for a wave propagating perpendicular, parallel

and at angle of 45◦ from the vertical axis. Sun et al. (1968) and Sve (1971) computed

the P - and Sv-wave dispersion relationship for waves traveling perpendicular, parallel

and at different angles from the direction of bedding of the medium. Helbig (1984)

studied the behavior of the Sh-wave when it travels through a periodic medium

and found the Sh-dispersion relationship for the first Brillouin zone. Rich (2006)

in his study, showed that the dispersion relationship of Sh-wave traveling at any

angle also has stop-bands; this stop-band width is a function of impedance contrast

between constituent of the medium. He also showed the existence of critical angle at

which the Sh-wave dispersion relationship does not have any stop-bands. This thesis
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complements Rich’s findings in the following aspects: the modulation character of the

dispersion relationship as function of the period thickness and impedance contrast

is shown, the dependence of the stop-band width as a function of the constituents

thickness is computing, stop-bands within the Brillouin zone for the P - and Sv-wave

dispersion relationship are shown, the critical angle of the Sh-wave as a function of

the impedance contrast of constituents is calculated, and a medium anisotropic factor

is computed as a function of the frequency for different medium periods.
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Chapter 1

Elastic wave equation in a periodic

layered medium

1.1 Introduction

In this section the elastic wave equation for a periodic isotropic medium is defined

in terms of different wave type: P -, Sv-, and Sh-waves. The medium is assumed

infinite and composed of two constituents with different lithologies. In order to find

a solution for the wave traveling in this medium, the Floquet Theorem is assumed,

and the Helmholtz’s Theorem is used to separate the displacement produced by

the wavefield into three components that correspond to the P -, Sv-, and Sh-waves,

respectively.
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1.2 Wave equation in periodic layered medium

The wave equation for a infinite medium composed of alternating layers of two homo-

geneous and isotropic lithologies (periodic layered medium) is given by (Postma,1955;

Rytov,1956; Sve,1971; Rich,2006):

ρ (x3)
∂2ui
∂t2

=
∂

∂xj

(
Cijkl (x3)

∂uk
∂xl

)
(1.1)

In this equation the Einstein sum convection over repeated index is followed and

index i represents each component. The geometry of the medium is shown in Figure

1.1, where it can be seen that the density and stiffness tensor depend only on the

coordinate x3 for the whole medium, but each constituent is considered homogeneous

and isotropic.

Figure 1.1: Periodical laminated medium

The Floquet Theorem or Block Theorem has been applied to the analysis of the

propagation of waves through composite media with periodic structure (Rytov,1956;
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Lee at al.,1973; Sve,1971; Rich,2006). According to the Floquet Theorem, if F (x)

is the solution to the wave equation of the periodic medium then F(z) is a periodic

function with period d of the medium such that F (x) = F (x+d). Using this theorem,

the solution of the wave equation will be the solution of the wave equation for the

two constituents considering separately, and then solution is constrained to be a

periodic function with the period of the medium d = d1 + d2 (Rytov,1956; Sve,1971;

Rich,2006). The physical effect of the Floquet Theorem is to compute the wave

equation for the two constituents and then weld the two ends of this medium with

the same array of constituents in order to build the infinite periodical medium. This

assumption is valid since all the physical property of the medium: stiffness tensor,

density, and thickness are periodic function of the x3 coordinate with the period d.

The effect of applying the Floquet Theorem to equation 1.1 is:

ρp
∂2upi
∂t2

= Cp
ijkl

∂

∂xj

(
∂upk
∂xl

)
(1.2)

where index p represents the layer number.

In order to solve this equation for this periodical medium, I follow the procedure

outline by Rytov (1956) and Rich (2006). A plane wave that propagates in the direc-

tion x2x3 plane is assumed, this is valid since the medium has a vertical symmetry.

I also use Helmholtz’s Theorem to separate the displacement into vector potential
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(ψ) and scalar potential (φ) in the form (Aki:1980; Rich,2006):

u = ∇φ+∇xψ (1.3)

Where bold letters denotes vectors and ∇ denotes the vector differential operator.

Replacing equation 1.3 in 1.1 and knowing that Cijkl = λδijδkl +µ (δikδjl + δilδjk)

for isotropic layers, I have the following equations

ρ
∂2φ

∂t2
= (λ+ 2µ)

(
∂2φ

∂x21
+
∂2φ

∂x22
+
∂2φ

∂x23

)
,

ρ
∂2ψ∗1
∂t2

=µ
∂2ψ∗1
∂x21

,

ρ
∂2ψ∗2
∂t2

=µ
∂2ψ∗2
∂x22

,

ρ
∂2ψ∗3
∂t2

=µ
∂2ψ∗3
∂x23

(1.4)

where ψ∗i = ψj,l − ψj,l is the ith-component of the curl and the symbol ”,” denoted

coordinate derivative. Equation 1.4 allows separation of the problem in to two cases.

In the first case, the displacement field is in the plane x3x2. In the second case, the

propagation is perpendicular to the plane x3x2. The first case corresponds to P and

Sv waves while the second corresponds to Sh waves.

This document uses the procedure to solve the equations 1.4 given by Rich (2006)

with some clarifications.
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Chapter 2

Sh-wave equation solution

2.1 Introduction

In previous chapter it was showed how the Floquet’s Theorem was used to simplify

the wave equation and how the Helmhotz’s Theorem allowed the separtion of the

wavefield into P - Sv- and Sh-waves. In this chapter a solution of the Sh-wave and

its dispersion relationship is found using the methodology presented in Rich (2006).

This relationship is analyzed as a function of the wave incidence angle, the medium

period thickness(d) and the S-impedance contrast of the medium.

2.2 Sh wave solution

the Sh-wave is assumed to be perpendicular to the y-z plane. Since Helmholtz’s

Theorem is assumed, the vector-potential ψ in the x-direction is the only one that

describes the displacement in the x-direction. This means that uz = 0, uy = 0 and
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ux = ψy,x − ψz,y = ψ∗x, the wave equation in this case is:

ρ
∂2ψ∗x
∂t2

= µ

(
∂2ψ∗x
∂y2

+
∂2ψ∗x
∂z2

)
(2.1)

A solution in the form of plane waves times a function that depends on the variable

z, ψ∗x is equal to

ψ∗x = gj(z)ei(kzz+kyy−wt) (2.2)

Substituting equation 2.2 for ψ∗x into 2.1, the function g(z) has to obey below differ-

ential equation:

∂2gj
∂z2

+ 2ikz
∂gj
∂z

+

(
w2

c2tj
− k2z − k2y

)
gj = 0 (2.3)

The subscript j is the layer number, βj =
√

w2

V 2
sj
− k2y and Vsj is the Vs-velocity of the

jth-layer. Hence, the solution to 2.3 has the form:

gj(z) = Eje
−iz(kz+βj) + Fje

−iz(kz−βj) (2.4)

and the solution to the displacement ux is

ux =
2∑
j=1

[
Eje

−izβj + Fje
izβj
]
ei(kyy−wt) (2.5)

The value of the constants Fj and Ej can be obtained by applying the continuity

of displacement and stress at the boundary z = 0, z = −d2 and z = d1 . These
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boundary conditions are:

ux
(
0−
)

=ux
(
0+
)
, σxz

(
0−
)

=σxz
(
0+
)
,

ux (d1) =uz (−d2) e(ikzd), σxz (d1) =σxz (−d2) e(ikzd),

d = d1 + d2

(2.6)

The last three equations impose the periodicity of the wave-field required by the

Floquet Theorem. Using ux = ψ∗ and σxz = µux,z, the matrix equation for the

coefficient Ej and Fj is:



1 1 −1 −1

−β1µ1 β1µ1 β2µ2 −β2µ2

e−id1(kz+β1) e−id1(kz−β1) −eid2(kz+β2) −eid2(kz−β2)

−β1µ1e
−id1(kz+β1) β1µ1e

−id1(kz−β1) β2µ2e
id2(kz+β2) −β2µ2e

id2(kz−β2)


∗



E1

F1

E2

F2


= 0

(2.7)

The solution in 2.7 is found when the determinant of the matrix is equal to zero.

Appendix one shows the mathematical process to solve the determinat of equation

2.7 and to derive the equation that relates kz to the physical properties of the medium

(ρj, thickness and Vsj). This expression was also derived by Helbig (1984) using a

different method. This equation is:

cos(kzd) = cos(β1d1)cos(β2d2)−
(m1/m2 +m2/m1)

2
sin(β1d1)sin(β2d2) (2.8)
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where

βj =

√(
ω

Vsj

)2

− k2y

mj = µjβj =
√
µjρjω

√(
ω
Vsj

)2
− k2y

kj

j is the number of the layer in the medium and Vsj is the Vs-velocity of the jth-layer.

Equation 2.8 is solved for the values of kz. This solution gives the dispersion

relationship that relates the wave number kz and as a function of the frequency w

and ky. Equation 2.8 has the same general form as the one obtained by Helbig (1984)

and Rich (2006), however the variable mj is different from the one reported by Rich

(2006) by a factor ω. This difference does not alter the final result from equation

2.8, since in this equation the ratio between m1 and m2 (m1/m2 and m2/m1) cancels

out this ω factor. In the rest of this chapter, analysis of this relationship is done in

terms of impedance contrast and thickness of the constituents.

2.3 Dispersion of Sh-waves traveling perpendicu-

lar to layering

The first case to be analyzed for the dispersion equation 2.8 is when the Sh-wave is

traveling perpendicular to the layers. This means that βj = ρj
w
µj

and equation 2.8

takes the form:

cos(kzd) = cos(
ω

v1
d1)cos(

ω

v2
d2)−

1 + χ2

2χ
sin(

ω

v1
d1)sin(

ω

v2
d2) (2.9)

11



where χ = v2ρ2
v1ρ1

. This equation was first obtained by Rytov (1956) and gives explicit

values for kz when it is solved for a given ω. An example of this solution is given

in Figure 2.1 using the values of velocity and density for the two constituents given

in Table 2.1. This table is taken from Rich (2006) but with different constituent

thicknesses, he used 1m thickness for both constituents. The reason of this change in

thickness is to always make a comparison of how the constituent thicknesses affects

the dispersion relationship. The result of this solution is the spectrum of the Sh-wave

traveling perpendicular to the layer (α = 0).

Sand Shale
Vp [km/s] 4.00 2.00
Vs [km/s] 2.36 0.67
ρ [gr/cm3] 2.37 2.10
λ [Gpa] 11.52 6.50
K [Gpa] 2.37 2.10
µ [Gpa] 13.14 0.94
dj [m] 10.0 20.0

Table 2.1: Properties for sand-shale periodic medium, taken from Rich (2006).

The solution of equation 2.9 is shown in Figure 2.1. This solution has two im-

portant features: the first is that the solution is periodical with the period equal

to 2π/d and the second is that there are some frequencies at which there are no kz

values, these ranges of ω with no kz are called stop-bands (Brillouin, 1946). Bril-

louin demonstrated that the physical wave behavior in a periodic media can be fully

described only if wavenumber, kz, is considered within the range:

−π
d
≤ kz ≤

π

d
(2.10)
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Figure 2.1: Spectrum of Vsh-wave, wavenumber kz as a function of frequency(ω) for
d=30m.

The zone where this kz has these values is called ”Brillouin zone” in his honor,

borrowing this concept from his work in solid state physics. This periodicity in the

dispersion function is a direct consequence of Floquet Theorem since the solution

of the wave equation is constrained to be periodic. The stop-bands occur at the

boundary of the Brillouin zones, where multiple reflections are in phase which add

constructively and produce scattering that does not allow the wave to propagate at

such frequencies (Marion et al., 1994).

Since the solution to equation 2.9 is periodic and also an even function of kz,

this means that ω(kz) = ω(−kz). This characteristic allows representation of the

dispersion relationship using two different diagrams: the reduced diagram and the

extended one (Lee and Yang, 1973). These two diagrams are shown in Figure 2.2.
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The reduced diagram considers only those wavenumbers between zero and half the

period (0 ≤ k ≤ π
d
) of the dispersion relationship.

On the other hand, the extended diagram considers the positive range of kz of

the dispersion relationship. This extended representation can be obtained by two

equivalent ways. The first method is to use the reduced diagram and unfold the

values of ω(kz) with respect to the axis kz = π/d as shown in Figure 2.2. The

number on the side in each curve in this figure shows how the curves have been

unfolded.

The other method uses the complete solution of equation 2.9 for the whole positive

range of kz as it is shown in Figure 2.1, and selecting the values of ω(kz) that

correspond to different curves in each Brillouin zone. Figure 2.3 shows the dispersion

curves of Figure 2.1 plotted in this manner.

Figure 2.2: Example of the reduced representation (left) and extended representation
(right). The number in the curves show the relationship between these two representa-
tions, from Lee and Yang (1973) .

The extended scheme facilitates evaluation of the phase velocity for the Sh-wave

since the phase velocity is equal to w(kz)/kz. This is shown in Figure 2.3. In

this graph, the presence of stop-bands is also evident as it was described before.
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The length of these gaps depends on the S-impedance contrast between the two

constituents and their corresponding thickness. In the next section a detailed study

of this feature is done.

Figure 2.3: Extended zone scheme for Sh-wave with a periodic medium with the physical
properties shown in Table 2.1

2.3.1 Sh-wave phase velocity as a function of frequency

One of the important results of the dispersion function is that it allows computation

of the phase velocity as a function of the frequency, which is shown in Figure 2.4.

This figure shows two features: the phase velocity as a modulated function of the

frequency and that at large frequencies (ω ≥ 2000 rad/s), phase velocities converge

to a velocity value of 880.1 m/s (red dash line in figure). This velocity corresponds

to the velocity computed using the ray theory. This theory will be explained in a

later section.
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Figure 2.4: Phase velocity as a function of frequency ω for a periodic medium with the
physical properties shown in Table 2.1. Red dashed line shows the Ray Theory velocity
at 880.1 m/s

The two physical factors that influence the modulation of the phase velocity

as a function of the frequency (ω) are the thickness and the velocity contrast of

the constituents. As an example of this, Figure 2.5 and Figure 2.6 show how the

modulation changes when each of these factors is changed and the other is kept

constant. Figure 2.5 shows that the modulation is higher when the thickness of the

medium that has the slowest velocity is thicker than those with a faster velocity.

In this figure, it is also shown that the phase velocity converges to the Ray Theory

velocity and that this Ray Theory velocity changes as the thickness of the constituents

change.

Figure 2.6 shows the change in the modulation when the Vs-contrast between

constituents changes. The result is that the modulation character is more evident

when the contrast between the V s of the constituents is small (≤ 40%).
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Figure 2.5: Phase velocity as a function of frequency ω for a periodic medium, the
velocity and density are kept as in Table 2.1 but the constituent thicknesses change as is
shown in top of each panel. Red dashed line shows the Ray Theory velocity.
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Figure 2.6: Phase velocity as a function of frequency ω for a periodic medium, the
thickness and density are kept constant as in Table 2.1 but the Vs-shale velocity changes
as a percentage of the Vs-sand velocity, the percentage values are shown in top of each
panel.
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2.3.2 Sh-wave phase velocity as a function of wavelength

Figure 2.7 shows the phase velocity as a function of the ratio between the wavelength

and the thickness of the period of the medium (λ
d
). This figure shows that the Vsh

phase velocity can be approximated similar to the velocity computed through the

Effective Media Theory (green line in Figure 2.7) at large wavelengths compared

with d. On the other hand, if the wavelength is much smaller than d, the phase

velocity can be approximated as the velocity computed by the Ray Theory (red line

in Figure 2.7). These two theories explain how the medium behaves in the limit cases.

When the wavelength is comparable with d (λ ≈ d), a lot of dispersion effects take

place, mainly due to scattering phenomena (Marion et al., 1994). This is observed

in Figure 2.7 when 0.1 > λ
d
< 10.

Figure 2.7: Phase velocity as a function of the thickness ratio λ and the period thickness
d for a periodic medium with the physical properties shown in Table 2.1. The lines in
green and red show the velocity using Ray and Effective Media Theory respectively.
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2.3.3 Ray and Effective Medium Theory

Before continuing with the description of the wave traveling in a periodic media, a

few comments about the Ray and Effective Medium Theory are needed. The Ray

Theory occurs when wavelength is much less than the layer thickness (λ � d). It

assumes that all constituents experience the same strain, and this is represented by

the isostrain or Voigt bound (Mavko et al., 2003). In this case the total elastic

modulus of the whole media is computed using the equation:

Mray =
2∑
j=1

fjMj (2.11)

where the Mj is the elastic modulus of the jth-layer, and fj is the fraction of volume

the jth-layer. In order to compute the phase velocity of the whole media, the time

average, also known as Wyllie’s Equation is used (Wyllie et al., 1956)

V −1ray =
2∑
j=1

fi
Vj

(2.12)

On the other hand, The Effective Medium Theory occurs when the wavelength

is much greater than the layer thickness (λ� d). In this theory, it is assumed that

all the constituents experience the same stress, representing the isostress or Reuss

bound (Mavko et al., 2003). In this case the total elastic modulus of the whole media
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is computed using the equation:

Mray =

(
2∑
j=1

fjMj

)−1
(2.13)

where the Mj is the elastic modulus of the jth-layer, and fj is the fraction of volume

of the jth-layer. In order to compute the effective phase velocity of the whole media,

the below equation is used:

V −1eff =ρaver

2∑
j=1

fi
µj

ρaver =
2∑
j=1

fiρj

(2.14)

These two theories explain how the medium behaves in the limit cases: λ � d and

λ� d

2.3.4 Dependence of the gap width with S-impedance con-

trast and layer thickness

The dispersion relationship for a wave propagating in periodic media shows the pres-

ence of stop-bands or gaps. These gaps, localized at the boundary of the Brillouin

zone, are defined as frequency bands at which the wave can not propagate. The

phenomenon is explained as the presence of multiple reflections that are in phase

at the Brillouin boundary attenuating the wave at these boundaries (Marion et al.,

1994). In this section the width of this gap is analyzed as a function of the of the

impedance contrast and thickness changes of the constituents. Figure 2.8 shows an
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example of how these gaps change when the thickness of the constituents changes.

Figure 2.8: Dispersion relationship for variable constituent thickness, physical properties
are shown in Table 2.1. The blue color is for a sand and shale thickness of 15m and 15m
respectively. Red color is for sand and shale thickness of 10m and 20m respectively.

As mentioned before, the factors that affect the stop-band width are the velocity,

density and thickness of the constituents. The analysis below is divided into three

parts. In the first part, the behavior of the gap-width when the thickness of the

layers changes is described. In the second part the behavior of the gap with change

in Vs only is described. In the third part the change in density (ρ) only is described.

Similar analysis was obtained by Rich (2006) using the P-wave dispersion relationship

and P-impedance changes.

Figure 2.9 shows the stop-band width of the first four Brillouin zones as a function

of the thickness of layers one and two. The parameters used in this experiment are

shown at the top of the figure, allowing the thickness d1 and d2 to varies from 5% to
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Figure 2.9: Gap or stop-band width as a function of changes in the thickness of layer
two. The total thickness d = d1 + d2 is kept constant, d = 30m.

95% of the total thickness d with the constraint that the total thickness, d = d1+d2, is

kept constant at 30m. This experiment shows that the stop-band width for Brillouin

zones two, three, and four disappears at certain values of d2. On the other hand the

stop-bands width for the first Brillouin zone has a maximum when d2 = 0.32d. It

is also observed that the higher the number of the Brillouin zone is, the faster the

variability of the stop-band width is.

Figure 2.10 shows how the stop-band width changes when the S-velocity, density

and S-impedance of the layer changes. The first case to consider is when the stop-

band width changes when the variation of the shear modulus (µ), to ease the analysis,

the value of µ2 of the second layer is a percentage of the shear modulus of layer 1, and

the density of both media have the same value as it is shown in the parameter table
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at the top of this panel. The figure shows that for some values of Vs2 the stop-band

is not present. One special case is when Vs1 = Vs1, in this case, all the stop-band

widths are zeros because there are no boundaries between layers, since both of them

have the same shear modulus and the medium is considered one layer. The first and

second Brillouin zones do not show any other value of the Vs2 where the stop band

width is zero as opposed to the fifth Brillouin zone in which the stop-band disappears

at values of Vs2 = .5Vs1 and Vs2 = 1.33Vs1. The fourth Brillouin zone shows only

one value of Vs2 where this width is zero (Vs2 = .67Vs1). All of these observations

support the conclusion that higher Brillouin zone numbers exhibit more variation of

the stop-band width when the velocity changes are expected.

The middle panel of Figure 2.10 shows the variation of the stop-band width with

the changes of ρ2. To ease the analysis, the value of density for the second layer (ρ2)

is a percentage of the density of layer 1 (ρ1). This figure shows that the stop-band

width increases when the value ρ2 increases or decreases, having the reference value

of ρ1. This observation is valid for first, second, fourth, and fifth Brillouin zones.

The width of the third Brillouin zone is zero for all the values of the ρ2. This is due

to the particular values of velocity and density chosen for this example. In addition

the value of zero stop-band width when ρ1 = ρ2 is not distinguished between layers

and the medium is considered one layer.

The bottom panel of Figure 2.10 shows the variability of gap width with the

change of S-impedance. The S-impedance is defined as Is = ρVs and to ease the

analysis, the value of Is2 varies from 50% to 150% of Is1. This case is more realistic
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Figure 2.10: Gap or stop-band width as a function of changes in the physical properties
(Vs2, ρ2) and impedance (Is = Vs2ρ2). Top panel shows the gap width as a function of
changes of Vs2. Middle panel shows the gap width as a function of changes in density
(ρ2). Bottom panel shows the gap width as a function of changes in the impedance of
the layer 2 with respect to layer 1. The parameters used in computation are shown at
the top of each panel.
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compared with the previous two cases, since the change in Vs always has an implicit

change in shear modulus (µ) and/or density. In order to account for these simultane-

ous changes, the sand Vp-Vs and ρ-Vp relationships derived by Castagna et al. (1993)

are used. These relationships are shown below:

Vs(km/s) =.8042Vp − .8559

ρ =− .115V 2
p + .261Vp + 1.515

(2.15)

The bottom panel of Figure 2.10 shows the function of the stop-band width with

the change of Is. It can be observed that the variation in impedance captures the

behavior of changes in both ρ and Vs. This figure shows that the gap disappeared

for Brillouin zones three and five. On the other hand, the gap-width increases for

Brillouin zones one, two, and four in all the range of Is.

2.4 Dispersion of Sh- waves traveling at any angle

of propagation

So far the description of the Sh-wave has been done when ky = 0. This mean

that the wave propagates perpendicular to the layering. In order to study the Sh-

wave propagating at any angle, ky 6= 0 and the angle of propagation is given by

α = tan−1(kz/ky). In this case the values of kz that obey equation 2.8 for a given ω

and ky will give the dispersion relationship. Examples of this solution are given in
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Figure 2.11: Dispersion relationships as a function of the norm of k for a Sh-wave
traveling at 50◦ from the vertical axis z.

Figure 2.11. Notice that this picture does not show the periodicity of the medium

anymore as it was shown for the case of ky = 0.

Helbig (1984) suggested a different way of representing the dispersion relationship

for this general case by plotting lines of constant frequency in the ky-kz plane. This

representation is helpful for computation, since it is enough to compute the dispersion

relationship for the first Brillouin zone at the desired frequency and then unfold them

to the real position in a different Brillouin zone. This property was demonstrated

by Brillouin (1946) and it is equivalent to the extended representation, explained in

Figure 2.2. One example on how the values of ω(kz, ky) unfold to the second Brillouin

zone is shown in Figure 2.12.

Figure 2.12 also shows the dispersion relationship in the case that the medium is

isotropic (bottom centered panel). Comparing Figures 2.12.b and 2.12.c, it can be
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(a) (b)

(c)

Figure 2.12: Dispersion relationship for Sh-wave traveling at incidence angles from 0◦

to 90◦. Panel a) is the representation using reduced diagram (left top). Panel b) is the
representation using the extended diagram (top right) and panel c) is the representation
of dispersion relationship for isotropic medium(bottom center). Number inside the curve
shows the frequency values.

seen that this periodic medium exhibits anisotropic behavior, since the contour lines

do not follow an ellipse-shape as shown by Figure 2.12.c. In addition to this, there are

some disconnected contour lines, as in examples where ω = 26hz, 31hz, and 36hz.

This effect is evidence for the existence of stop-bands, since there are no vertical

wavenumber (kz) for these frequencies. Figure 2.13 shows the dispersion relationship

in the kz-ky plane for constituent thickness equal to 50m (d = d1 + d2 = 100m)

with more detail and a bigger range of frequencies from 1hz to 176hz. In this figure
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Figure 2.13: Extended representation of the dispersion relationship for Sh-wave traveling
at angles of incidence from 0◦ to 90◦. Contour lines are every 2.5hz starting from 1hz,
the number inside the curve shows the frequency values.

the boundaries of the Brillouin zones are also more evident. Rich (2006) shows the

Sh-wave dispersion relationship in ky-kz for the same set of elastic parameter but for

constituent thickness equal to 1m (medium period, d=2m). In general, Rich’s and

this study’s dispersion relationships are similar, and they change only in scale of the

axes. This is due to the difference in the order of magnitude of d.

The representation of the dispersion relationship in the ky-kz plane is also useful

for computing the phase and group velocity of Sh-wave traveling at any angle, α,

from the vertical. In order to compute the phase velocity, a line that represents a

vector k in the plane ky-kz is necessary. This vector has a starting point at the origin

(ky = 0, kz = 0) and an end point at any point (ky, kz) that obeys tan(α) = ky/kz.

The magnitude of the phase velocity would be ω/|k|. In order to compute the group
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velocity, a vector perpendicular to a given frequency contour is needed, the group

velocity at this point is equal to dω/|dk|.

Another advantage of the ky-kz plane representation is the computation of the

dispersion relationship for a Sh-wave traveling at any angle α. This dispersion re-

lationship can be obtained by drawing a line at the desired angle, α. This angle is

measured from the axis kz. The values of ω(ky, kz) that intercept this straight line

are the values of the ω(ky, kz) of the dispersion relationship at this α angle. Fig-

ure 2.14 shows these dispersion relation for different angles of propagation from the

vertical for medium with parameters shown in Table 2.1 and constituent thicknesses

(dj = 50m). Rich (2006) computed this dispersion relationship for different angles

using constituent thicknesses of 1m (dj=1m).

Figure 2.14 also shows that wave propagation at different angles has the same

characteristics as if traveling perpendicular to the layering. Both cases exhibit stop-

bands, and the location of this stop-bands is proportional to the Brillouin zone width

(nπ/d). This proportional constant, n, depends on the angle α at which the wave

field propagates.

It was stated in Section 2.3.4 that the stop-band width is a function of the thick-

ness and S-impedance of the layer. Figure 2.14 shows that the stop-band width is

also a function of propagation angle. Figure 2.15 shows the stop-band as a function of

the Sh-wave propagation angle. The most interesting feature in this figure is that the

stop-bands disappeared at an angle of 28◦. This absence of stop-bands occurs when

the line, defined by the angle of propagation, passes through points where frequency
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Figure 2.14: Extended diagram for the dispersion relationship for Sh-waves propagating
at different angles. The propagation angle value, α, is shown at the top of each panel.
This angle is measured from the vertical axis.
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Figure 2.15: Stop-band width as function of the Sh-wave propagation angle for the first
four Brillouin zones.

contours are continuous across Brillouin zones (Rich, 2006). Rich (2006) made the

same simulation shown in figure 2.15 but using different constituent layer thicknesses

(dj=1m)

Comparing Figure 2.15 with the one shown in Rich (2006), it can be concluded

that this critical angle is not a function of the layer thickness, since both studies

shown the same critical angle value. The layer thicknesses dj in Rich(2006) and this

study are 1m and 50m respectively.

Other important observation in Figure 2.14 is the behavior of the fourth stop-

band when compared to the other stop-bands. This stop-band starts to increase when

the propagation angle increases from 0◦ to 20◦ as opposed to the other stop-bands.

This can be explained by the high variability of the higher Brillouin zone number

with the impedance values shown in Figure 2.10.
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Figure 2.16 shows how this critical angle is function of the layers S-impedance.

To address the change on S-impedance, the methodology described by equation 2.15

is used. This figure shows that the critical angle is present in the medium as long

as there is a S-impedance contrast between constituents. The zero value of critical

angle correspond when the two layers has the same S-impedance.

Figure 2.16: Sh-critical angle as a function of the S-impedance ratio between of the
layer 1 and 2.

2.5 Dependence of the anisotropic coefficient as a

function of the frequency

Once the dispersion relationship is obtained for every frequency value, the anisotropic

coefficient can be computed with the equation (Chesnokov et al., 2001):

Anisotropic Coeff =
V Max
sh − V Min

sh

V Max
sh

(2.16)
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Figure 2.17: Anisotropic coefficient as a function of the frequency for different period
thicknesses.

Figure 2.17 shows the relationship of the anisotropic coefficient with the frequency in

a media with physical properties shown in Table 2.1 and different period thicknesses.

This figure shows that the maximum anisotropic value is 7%. The frequencies at

which this value is reached depend on the period thickness of the medium. For

instance, for a medium with period equal 30m, the so called long-wave approximation

is located between 0hz and 10hz.

On the other hand, the value of the anisotropic coefficient is zero when the fre-

quency is higher than 110hz for the 30m period thickness medium. In this case the

wave is propagating in the Ray Theory regime, i.e. the wavelength is much less than

the period of the medium.
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2.6 Sh-wave synthetic seismograph in layered pe-

riodic medium

In this section a synthetic seismograph is computed to understand the effect of the

dispersion relationship when a Sh-wave is passes through a periodic medium. This

seismograph is obtained using the Green’s Function formulation and the function

ω(k) that was discussed in previous sections. This methodology is explained in Rich

(2006) and it is repeated here with a small modification in order to be able to compute

incidence angle seismograph gather.

In general, an inhomogeneous differential equation has the form:

Lu(r) = p(r) (2.17)

where L is a linear differential operator, that for the standard wave equation, has

the form ∇2 − 1
v2

∂2

∂t2
. The solution to the homogeneous Equation of 2.17 is:

LG(r, r′) = δ(r− r′) (2.18)

where G is the Green’s Function where the physical interpretation is the response of

the medium to an impulse source (Aki and Richards, 1980). If the Green’s Function
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is known, then the solution to the inhomogeneous equation is given by:

u(r) =

∫
G(r, r′)p(r′)dr′ (2.19)

Considering the solution to the standard wave equation in the frequency domain of

the form:

G(r, r′) = e−ik(ω)‖r−r
′‖ (2.20)

where k(ω) is the inverse of the dispersion relationship ω(k) and ‖r−r′‖ is the distance

from the point source to the place where the measurement is taken. Applying the

Fourier transform to equation 2.19, using equation 2.20 and considering point source

at ro equal to p(r′, ω) = p(ω)δ(r′ − ro). The following equation can be derived:

u(r, ω) =

∫
G(r, r′, ω)p(ω)δ(r′ − ro)dr

′

=G(r, ro, ω)p(ω)

=p(ω)e−ik(ω)‖r−ro‖

(2.21)

Equation 2.21 shows that the phase shift of the displacement produce by the wavefield

recorded at the point r is given by the distance between the source point and the

point where the wavefield is recorded and the frequency ω(k). This ω(k) is the

dispersion relationship already computed in the previous section which is a function

of kz, ky and α (ω = f(ky, kz, α)). The displacement at distance r from the origin is

the inverse Fourier transform of equation 2.21.
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To compute the seismograph, the following steps were used. Step 1) Select the

propagation angle α and compute the k(w, ky, kz, α) for a given model, for example

dispersion relationships shown in Figure 2.14. Step 2) Define the source pulse in the

time domain. Step 3) Perform a Fourier transform of the pulse. Step 4) Multiply

each frequency component by the corresponding phase shift eik(kz ,ky ,ω,α,)do , where

do = |r− ro| is the distance from the source position to the detector position and α

is the wave incident angle measured from the vertical axis. Finally step 5) Perform

the inverse Fourier transform. Figure 2.18.a shows these steps in a flow to compute

a synthetic seismograph.

(a) (b)

Figure 2.18: Synthetic computation seismograph flow. a) Steps for computing synthetic
seismograph. b) Source wavelet used in the computation.

Seismographs were computed for the model showed in Table 2.1. The source pulse

or wavelet used was a Gaussian windowed sign given by the equation below:

p(t) = sin(ωot)e
−2ω2

ot
2

n2 (2.22)

where ω0 = 2πfo is the center frequency and n is the number of cycles. For these
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Figure 2.19: Sh-seismographs for variable medium period thickness. The value of the
thickness is shown on the left of each seismograph. The vertical lines are the ray theory
(red) and the effective media(yellow) time predictions for the 300m and 0.2m period
thicknesses respectively. Number in the right hand side are the scaler factor applied to
seismograph.

simulation the values used were fo = 50hz and n = 9, the source wavelet is shown in

Figure 2.18.b.

In order to compute the seismographs, the pulse is propagated over the distance

of a 500 meters measured perpendicular to the layering. The thickness of the con-

stituents layer had the same value for each computation (d1 = d2) but the periods

were varied from 0.2m to 300m as it is shown in Figure 2.19. The same range of

layer thickness were used by Rich (2006). In his study, he computed the Sh-wave

propagating parallel and perpendicular to the layering.

Figure 2.19 shows the range of time and layer thickness where the Ray Theory and

the Effective Media Theory are in effect. The seismograph with a period thickness of
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300m shows the first reflection at 0.478s which corresponds to the total travel time

of the Sh-wave through each individual layer (Ray Theory) and the subsequent picks

are the energy bouncing in the faster layer. The energy bouncing from the slower

layer would come 0.574s after the first arrival, since it takes 0.287s to go up and

return in 0.287s. When the thickness of the period starts to get smaller there is more

interference of this reflections until all the return reflections interfere constructively

and the medium starts to behave as an effective medium.

In order to display the seismic traces in Figure 2.19, a scaler multiply factor

was applied; this scaler value is shown on the right-hand side. Figure 2.19 shows

a decrease in the amplitude accompanied by a change in frequency content at the

transition between these two layer thickness values. This decrease in amplitude is as-

sociated with the presence of stop-bands in the frequency range of the source wavelet.

The periodic medium acts as a filter for the input wavelet, transmitting selected fre-

quencies in the finite-bandwidth wavelet and reflecting back other frequencies. This

tuning effect contributes to the change in the frequency content of the received signal.

This effect was shown experimentally by Marion et al. (1992).
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Chapter 3

P- and Sv-wave solution

3.1 Introduction

In this chapter the P - and Sv-wave propagating through a periodic medium is de-

scribed and quantified. The dispersion relationship for these two wavefields are found

using the same methodology used by Rich (2006).

3.2 P- and Sv-wave solution

In chapter one, it was shown P - and Sv-wave is a solution of the wave equation 1.2

where the wave is propagating along the plane (y-z). The P-wave’s displacement

is along the propagation axes and the Sv-wave’s displacement is perpendicular to

the propagation axis. For this type of displacement the scalar and vector potential
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choices are:

φ =fj (z) ei(kzz+kyy−wt),

ψx =gj (z) ei(kzz+kyy−wt)

ψy =0

ψz =0

(3.1)

where x1 = x, x2 = y, x3 = z, kz and ky are the z and y components of the wave

number vector k such that kz = |k|cos (θ) and ky = |k|sin (θ). Here θ is the angle

from the z-axis. The subscript j refers to the solution in the jthlayer. With this

choice of potential ψ given by equation 3.1, equation 1.4 takes the following form:

ρ
∂2φ

∂t2
= (λ+ 2µ)

∂2φ

∂y2
+
∂2φ

∂z2
,

ρ
∂2ψx
∂t2

=µ

(
∂2ψx
∂y2

+
∂2ψx
∂z2

) (3.2)

Substituting equation 3.1 into equation 3.2, leads to following equations

∂2fj
∂z2

+ 2ikz
∂fj
∂z

+

(
w2

c2lj
− k2z − k2y

)
fj =0

∂2gj
∂z2

+ 2ikz
∂gj
∂z

+

(
w2

c2tj
− k2z − k2y

)
gj =0

(3.3)

where c2l = λ+2µ
ρ

and c2t = µ
ρ

are the isotropic compressional and shear wave velocities,

respectively. The solution to equation 3.3 is given by (Sve, 1971; Rich, 2006):

fj(z) =Aje
−iz(kz−αj) +Bje

−iz(kz+αj)

gj(z) =Cje
−iz(kz−βj) +Dje

−iz(kz+βj)

(3.4)
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with αj =
√

w2

c2lj
− ky and βj =

√
w2

c2tj
− ky and Aj, Bj, Cj, and Dj are constants that

have their respective values when the boundary conditions are met. These boundary

conditions obey the Floquet’s Theorem where fj (z) and gj (z) are periodic functions

with a period d of the medium such that fj (z) = fj (z + d) and gj (z) = gj (z + d).

Substituting equations 3.4 and 3.1 into 1.3, the following equation for displace-

ments uz and uy are derived:

uz =
∂φ

∂z
− ∂ψx

∂y

uz =
[
iαj
(
Aje

izαj −Bje
−izαj

)
− iky

(
Cje

izβj +Dje
−izβj

)]
ei(kyy−ωt)

uy =
∂φ

∂y
+
∂ψx
∂z

uy =
[
iky
(
Aje

izαj +Bje
−izαj

)
+ iβj

(
Cje

izβj −Dje
−izβj

)]
ei(kyy−ωt)

(3.5)

and for stresses σyz and σzz are:

σij =λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
σzz =λ

(
∂uy
∂y

+
∂uz
∂z

)
+ 2µ

∂uz
∂z

σyz =µ

(
∂uy
∂z

+
∂uz
∂y

) (3.6)

In order to find the value for the constants Aj,Bj,Cj, and Dj in equations 3.5

and 3.6, boundary conditions must be met. The boundary conditions are that the

amplitudes of the displacements and stresses must be continuous at the boundary
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between any two layers. The Floquet Theorem is also applied at the boundary d1

and d2 of the two layer, this gives the following conditions:

uz
(
0−
)

=uz
(
0+
)
,

uz (d1) =uz (−d2) e(ikzd),

uy
(
0−
)

=uy
(
0+
)
,

uy (d1) =uy (−d2) e(ikzd),

σzz
(
0−
)

=σzz
(
0+
)
,

σzz (d1) =σzz (−d2) e(ikzd),

σyz
(
0−
)

=σyz
(
0+
)
,

σyz (d1) =σyz (−d2) e(ikzd),

d =d1 + d2

(3.7)

Using the above boundary conditions gives eight equations with eight unknowns. The

representation of this 8x8 matrix is given in equation 3.8, this matrix is representing

by two 8x4 sub-matrices. The first 8x4 matrix is composed of columns one through

four and the second 8x4 matrix is composed of the columns five through eight.
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α1 −α1 −ky −ky

ky ky β1 −β1

k2y − β2
1 k2y − β2

1 2kyβ1 −2kyβ1

−2kyα1 2kyα1 k2y − β2
1 k2y − β2

1

α1E1e1 −α1E1e1 −kyE1e2 −kyE1e2

kyE1e1 kyE1e1 β1E1e2 −β1E1e2

(k2y − β2
1)E1e1 (k2y − β2

1)E1e1 2kyβ1E2e2 −2kyβ1E1e2

−2kyα1E1e1 2kyα1E1e1 (k2y − β2
1)E1e2 (k2y − β2

1)E1e2



(3.8)



−α2 α2 ky ky

−ky −ky −β2 β2

(β2
2 − k2y)γ (β2

2 − k2y)γ −2kyβ2γ 2kyβ2γ

2kyα2γ −2kyα2γ (β2
2 − k2y)γ (β2

2 − k2y)γ

−α2E2e3 α2E2e3 kyE2e4 kyE2e4

−kyE2e3 −kyE2e3 −β2E2e4 β2E2e4

(β2
2 − k2y)γE2e3 (β2

2 − k2y)γE2e3 −2kyβ2γE2e4 2kyβ2γE2e4

2kyα2γE2e3 −2kyα2γE2e3 (β2
2 − k2y)γE2e4 (β2

2 − k2y)γE2e4





A1

B1

C1

D1

A2

B2

C2

D2



= 0
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In equation 3.8, the following notation is used (Sve, 1971):

E1e1 =e−id1(kz+α1), E1e1 =e−id1(kz−α1),

E1e2 =e−id1(kz+β1), E1e2 =e−id1(kz−β1),

E2e3 =eid2(kz−α2), E2e3 =eid2(kz+α2),

E2e4 =eid2(kz−β2), E2e4 =eid2(kz+β2),

λjk
2
y + α2

j (λ+ 2µ) =µj(β
2
j − k2y), γ =

µ2

µ1

(3.9)

Equation 3.8 is different from the one reported by Rich (2006), specifically in

those terms when the boundary condition is applied at d1 and d2. On the other

hand, equation 3.8 is identical to the one reported by Sve (1971).

Equation 3.8 has a mathematical solution only if the determinant of the 8x8 ma-

trix is zero. This determinant equal zero procedure gives a characteristic polynomial

that is solved for kz when the ky and ω are given. The values of kz, ky, and ω that

obey this characteristic polynomial define the P - and Sv-wave dispersion relationship.

A Matlab c© program was written to solve this determinant.

The propagation on the P - Sv-wave can be divided in propagation perpendicular

to the layers and propagation along an angle; this angle is measure from vertical axis.

When the propagation is perpendicular to the layer, ky = 0 and the characteristic

polynomial is solved for kz for each ω value.

When the P - and Sv-wave propagates at angle (α), measured from the vertical

axis, the wave number components, kz and ky, have the values kz = |k| cos(α) and
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kz = |k| sin(α) respectively, where |k| =
√
k2z + k2y. In the next section the P - and

Sv-wave dispersion relationship is analyzed for different propagation angles.

3.3 Dispersion of P- and Sv-waves traveling per-

pendicular to layering

The solution to equation 3.8 gives the dispersion relationship for P - and Sv-waves

propagating in a periodic medium. In the case of perpendicular propagation to the

layer bedding, the angle measured from the vertical axis, α, is equal to zero and from

this |k| = kz. The determinant is solved numerically for the sand-shale model given

in Table 2.1. Figure 3.1.a shows the solution to the equation. It can be seen that the

solution contains the dispersion relationship for the P - and Sv-wave together. This is

a consequence of the coupling of these two waves in the displacement equation when

the Helmholtz’ scalar and vector potentials are used in equation 3.5.

In order to decouple the P - and Sv-wave solution of Figure 3.1.a into the corre-

sponding P - and Sv-dispersion relationships, the values of the A1,A2,B1,B2,C1,C2,D1,

and D2 for each value of kz and ω must be found. This procedure is equivalent to

finding the eigenvector for the eigenvalue kz. Once the eigenvector-vectors are found

by the orthogonally property of these vectors, it can be known which kz values corre-

spond to P -wave and which ones correspond to Sv-waves. In this way, the two waves

can be separated in to its corresponding dispersion relationships. This is shown in

Figure 3.1.b and 3.1.c, respectively.
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(a)

(b) (c)

Figure 3.1: a) Solution to equation 3.8 solving for kz using parameter of Table 2.1. b)
Spectrum of Vp as a function of the wavenumber. c) Spectrum of Vs as a function of the
wavenumber.

Figure 3.1 also shows that the P - and Sv-dispersion relationship are periodic with

the period given by 2π/d, as it was also the case for the Sh-wave shown in the previous

chapter. This characteristic allows the Brillouin zone to be defined and the extended

representation to be applied as it was done for the Sh-wave. Figure 3.2 shows the

extended representation of dispersion relationship for P - and Sv-wave. This figure

shows two features. The first feature is that the P - and Sv-wave shows stop-bands as
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in the case of Sh-waves. The second feature is that the Sv-wave dispersion relationship

has the same values as those derived for the Sh-wave case. This is true in the case of

wave propagation perpendicular to the bedding but the two dispersion relationships

are different for the case of wave propagation with an angle from the vertical axis

(α 6= 0).

Figure 3.2: Extended representation of the P - and Sv-wave dispersion relationship.

3.3.1 P- and Sv-wave phase velocity as a function of fre-

quency

One use of the extended representation of the dispersion relationship is to compute

the phase velocity of the wave traveling in a period media. Figure 3.3 presents plots

of the phase velocity as a function of the frequency (ω) using the model shown in

Table 2.1. Both phase velocities plots exhibit a modulation behavior which is also

present in the Sh-wave case. As shown in previous chapter this modulation is a

function of the impedance and the thickness of the constituents.
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(a) (b)

Figure 3.3: Velocity as function of ω for P and Sv-waves. a) P -wave phase velocity
and b) Sv-wave phase velocity. Line in red is the ray theory velocity.

3.3.2 P-wave phase velocity as a function of wavelength

Figure 3.4 shows the P -wave phase velocity as a function of the ratio between the

wavelength and the thickness of the period of the medium (λ
d
). This figure shows that

the Vp phase velocity at large wavelengths compared with d, can be approximated

as the velocity computed through the Effective Media Theory (green line in Figure

3.4). On the other hand, if the wavelength is much smaller than d the phase velocity

can be approximate as the velocity computed by the Ray Theory (red line in Figure

3.4). These two theories explain how the medium behaves in the limit cases. When

the wavelength is comparable with d (λ ≈ d), a lot of dispersion effects take place,

mainly due to scattering phenomena (Marion et al., 1994). This is observed in Figure

3.4 when 0.1 > λ
d
< 10. The Sv-wave dispersion relationship is the same as the one

found for the Sh-wave. This Sh-wave phase velocity is showed in figure 2.7

49



Figure 3.4: λ
d

vs. P-wave phase velocity with propagation normal to layers for alternating
sand and shale medium. The green and red lines show the velocity computed by the Ray
and Effective Media Theory respectively.

3.4 Dispersion of P- and Sv-waves traveling at gen-

eral propagation angles

Solving equation 3.8 for kz and ky gives the dispersion relationship for P - and Sv-

waves traveling at any angle from the vertical axis. Since the P - and Sv waves are

coupled, there are phenomena at the interface of each layer that involves more than

one mode of propagation, for instance at each interface (boundary between layers),

there are conversions from P to Sv modes and from Sv to P . Another effect is due

to the angle of incidence of the wave, since critical refraction angle of propagation

can be reached and in this case the waves travel along the interfaces.

In contrast from the Sh-wave case, the dispersion relationship for P - and Sv-wave

does not have an analytical solution and the determinant of equation 3.8 has to be
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Figure 3.5: Dispersion relationship for P - and Sv-wave traveling at 20◦ measured from
the perpendicular axis. Dash lines show the Stoneley waves phase velocity for each layer.

solved numerically. The dispersion relationship is plotted as a function of |k|, where

|k| =
√
k2y + k2z . Figure 3.5 shows this relationship for the P and Sv-waves using the

model in Table 2.1. Wave propagation is at α = 20◦ measured from the vertical axis.

This figure shows the different Stoneley phase waves velocities. Stoneley waves are

waves that propagate along the interface (Sheriff, 1997). These velocities have the

values Vpj sin(α) and Vsj sin(α), where j is the layer constituents number.

Figure 3.5 also shows that the dispersion curves are not periodic; however plotting

this relationship in the ky-kz plane (Figure 3.6), it can be seen that the dispersion

relationship follow, in certain ways, the behavior of the Sh-wave. However, due to

the P - and Sv-wave coupling, extra computation has to be taken since the solu-

tion of equation 3.8 gives both values of kzp and kzs corresponding to each wave

respectively. In order to decouple these two wave the values of the eight constants
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(A1,B1,C1,D1,A2,B2,C2, and D2) for each value of ω(ky, kz) needs to be computed.

This process is similar to finding the eigenvector of the solution for equation 3.8. An

example of this process is shown in Figure 3.6, the model described in Table 2.1 is

used in this simulation.

(a)

(b) (c)

Figure 3.6: Representation of the P - and Sv-wave dispersion relationship in the ky-kz
plane, contour lines are at constant ω. a) Complete solution of equation 3.8, b) decoupled
P -wave dispersion relationship and c) decoupled Sv-wave dispersion relationship. Contour
lines are every 10hz from1hz to 121hz, the number inside the curves shows the frequency
values.

Figure 3.7 shows the dispersion relationship for the P and Sv-wave in more de-

tailed after the decoupling is done. In this plot the real and the imaginary solutions
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are shown. The imaginary values of the dispersion relationship correspond to in-

homogeneous waves that travel along the interface and are attenuated away from

the interface. The real values of the dispersion relationship describes the phase of

the homogeneous waves, these waves do not attenuate when they pass through the

interface (Aki and Richards, 1980). The wave propagation angle can be computed

from Figure 3.6 using tan(α) = (ky/kz). The boundary between the real and imagi-

nary values of the dispersion relationship correspond to the critical angle and for the

model of Table 2.1, this critical angle has a value of 30◦ and 16.5◦ for P and Sv-wave,

respectively.

(a) (b)

Figure 3.7: Representation of the P - and Sv-wave dispersion relationship in the ky-kz
plane for the first Brillouin zone, contour lines are at constant ω. a) P -wave dispersion
relationship and b) Sv-wave dispersion relationship. Contour lines are every 2.5hz starting
at 1hz, the number inside the curves shows the frequency values.

Figure 3.7 also shows that the P - and Sv-waves exhibit an anisotropic behavior

because the dispersion relationship for both waves does not show a circular shape

which is characteristic of isotropic media as it was shown in the previous chapter.

As in the Sh-wave case, P - and Sv-wave dispersion relationships also show a
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Figure 3.8: Dispersion relationship for P -wave in the ky-kz plane. Dash lines show the
stop-bands for that specific frequency. Numbers inside the curves show their respectively
frequency (ω) values.

periodic behavior and stop-bands at the boundary of the Brillouin zone when the

waves travel at angles different from the perpendicular direction of the bedding (α 6=

0◦). However, a feature that differs from the Sh-wave is that the P - and Sv-wave

dispersion relationships shows stop-bands inside the Brillouin zone. This happens

when the phase of the P -wave is equal to the phase of Sv-wave. Figure 3.8 shows these

stop-bands within the first P -wave Brillouin zone; the Sv-wave phase in this figure

has not been unfolded to its real position since the reduced representation is used.

These values of Sv-dispersion relationship belong to the second Sv-wave Brillouin

zone. Figure 3.8 also shows that the width of this intra-Brillouin zone stop-bands is

a function of the frequency and the angle of wave propagation. This phenomenon is

also reported when acoustic phonons travel in super-lattices (Kato, 1997).
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Conclusions

The purpose of this thesis was to provide a physical description of the waves traveling

through an elastic periodic medium. P -, Sv-, and Sh-waves were analyzed using the

methodology described by Sve (1971) and Rich (2006). For the case of P - and Sv-

wave, an 8x8 determinant had to be solved numerically. For the Sh-wave case an

equation for the dispersion relationship was found (see Appendix A in this thesis).

The dispersion relationship for all the waves showed a periodic function with the

period of d = d1 + d2 in the z-direction. This periodicity allowed the definition of

Brillouin zone whose width was equal to π/d.

Depending on the wavelength, the wave propagation in periodic layered media

show three regimes. If the wavelength (λ) is greater than 10 times the period of

the medium (d), the wave treats the medium as an effective anisotropic one. This

behavior is described by the Effective Media Theory. On the other hand, if the

wavelength is less than 0.1 times the period of the medium (d), the wave travels

through the medium as if the medium were isotropic. This behavior corresponds

to the Ray Theory regime. In the region between 0.1 and 10 times the period of

the medium (d) is the transition zone where the wave exhibits a lot of scattering
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phenomena.

These regimes are also found when the wave frequency is allowed to vary. For

instance for a medium with d = 30, the maximum anisotropic value is 7% and is

reached at frequencies between 0hz and 10hz. This range corresponds to the long-

wave approximation. On the other hand, the value anisotropic is zero when the

frequency is higher than 110hz. In this case the wave is propagating in the ray

theory regime, i.e. the wavelength is much less than the period of the medium.

In addition of the Brillouin zones, the dispersion relationship shows stop-bands

for all waves: P ,Sh and Sv. This stop-bands are defined as localized frequency zones

where waves do not propagate. This stop-bands are found at the boundary of each

Brillouin zone where the wave shows multiple reflections that do not allow the wave

to propagate in this frequency range (Marion et al., 1994). It was found that the

width of these stop bands is a function of the propagation incidence angle, impedance

contrast and layer thickness. It was also found that the higher the number of the

Brillouin zones the more sensitive the stop-band width is to these factors.

Simulation on the Sh-wave propagating through a layered periodic medium showed

the existence of a critical angle at which the stop-bands disappear for the Sh wave.

This phenomenon appears at 28◦ for the model shown in Table 2.1. The absence of

stop-bands happens when the angle of wave propagation coincides where the separa-

tion in frequency between Brillouin zones is minimum or close to zero (Rich 2006).

Further simulation done in this thesis shown that the critical angle is not a func-

tion of the medium constituent thicknesses but it is a function of the constituent
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impedance contrasts.

Beside the stop-band at the boundary of the Brillouin zone, the P - and Sv-waves

exhibit stop-bands inside the Brillouin zones. This phenomenon could be explained as

the multiple reflections presence at the boundary between layer due to the conversion

of P -waves into Sv-waves or Sv-waves into P -waves. This phenomenon occurs when

the phase of the P -wave is the same as the phase of the Sv-wave. It was shown that

these stop-bands are a function of the wave frequency and the incident wave angle.

57



References

Aki, K., and Richards, P. G., 1980, Quantitative Seismology Theory and Methods,
W. H. Freeman and Company.

Brillouin, L., 1946, Wave Propagation in Periodic Structures, McGraw-Hill Book
Company, Inc.

Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993, Rock physics - The link between
rock properties and AVO response: Offset-dependent reflectivity - Theory and
practice of AVO analysis: SEG, 135–171.

Chesnokov, E., Queen, J., Vichorev, A., Lynn, H., Hooper, J., Bayuk, I., Castagna,
J., and Roy, B., 2001, Frequency dependent anisotropic: SEG Expanded Ab-
stract, 20(ANISOTROPY I).

Coe, A. L., Bonsence, D. W., Church, K. D., Flint, S. S., Howell, J. A., and Wilson, R.
C. L., 2003, The Sedimentary Record of Sea-level Change, Cambridge University
Press.

Helbig, K., 1984, Anisotropy and dispersion in periodically layered media: Geo-
physics, 49(4) 364–373.

Kato, H., 1997, Acoustic SH phonons in superlattice with (111) interfaces: Journal
of Acoustical Society of America, 101(3) 1380–1387.

Lee, E. H., and Yang, W. H., 1973, On waves in a composite materials with periodic
structure: SIAM Journal on Applied Mathematics, 25(3) 492–499.

Marion, D., Mukerji, T., and Dvorkin, J., 1994, Scale effects on velocity dispersion:
from ray to effective medium theories in stratified media: Geophysics, 59(10)
1613–1619.

Mavko, G., Mikerji, T., and Dvorkin, J., 2003, The Rock Physics Handbook, Cam-
bridge University Press.

Postma, G. W., 1955, Wave Propagation in a stratified medium: Geophysics, 20(4)
780–806.

58



Rich, J., 2006, Quantitative Analysis of Material Contrast and Wave Propagation in
a Periodic Layer Media, Ph.D. thesis, University of Oklahoma.

Rytov, S. M., 1956, Acoustical propeties of a thinly laminated medium: Soviet
Physics Acoustics, 2 68–80.

Sheriff, R., 1997, Encyclopedic Dictionary of Exploration Geophysics, The Society of
Exploration Geophysicists.

Sun, C. T., Achenbach, J. D., and Herrmann, G., 1968, Continuum Theory for
laminated medium: Journal of Applied Mechanics,Transactions of the ASME
Series E, 90(2) 467–475.

Sve, C., 1971, Time-harmonic wave traveling obliquely in a periodically laminated
medium: Journal of Applied Mechanics,Transactions of the ASME Series E,
38(2) 477–482.

Vernik, L., and Nur, A., 1996, Ultrasonic velocity and anisotropy of hydrocarbon
source rocks: Geophysics, 57(5) 727–735.

Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956, Elastic wave velocities
in heterogenous and porous media: Geophysics, 21 41–70.

59



Appendix A

Computation of Sh-dispersion

relationship

This appendix contains the derivation of equation 2.8. The starting point is equation

2.7, for convenience it is repeated below:



1 1 −1 −1

e−id1(kz+β1) e−id1(kz−β1) −eid2(kz+β2) −eid2(kz−β2)

−β1µ1 β1µ1 β2µ2 −β2µ2

−β1µ1e
−id1(kz+β1) β1µ1e

−id1(kz−β1) β2µ2e
id2(kz+β2) −β2µ2e

id2(kz−β2)


∗



E1

F1

E2

F2


= 0

(A.1)

This equation only has solution when the determinant of the left matrix is equal to

zero. This determinant is:
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 −1 −1

E1e1 E1e1 E2e2 −E2e2

−β1µ1 β1µ1 β2µ2 −β2µ2

−β1µ1E1e1 β1µ1E1e1 β2µ2E2e2 −β2µ2aE2e2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 0 (A.2)

where the below notation is used:

E1 =eid1kz , E1 =e−id1kz

e1 =eid1β1 , e1 =e−id1β1

E2 =eid2kz , E2 =e−id2kz

e2 =eid2β2 , e2 =e−id2β2

βj =

√
w2

c2j
− k2y

j is the layer numbers and cj is the each layer S-velocity.

Solving for the determinant of equation A.2, the below expression is derived:

E1e1β
2
2µ

2
2(e2 − e2)E2 + E2e2β1µ1β2µ2(E1e1 − E2e2) + E2e2β1µ1β2µ2(E1e1 − E2e2)+

E1e1β
2
2µ

2
2(e2 − e2)E2 + E2e2β1µ1β2µ2(E1e1 − E2e2) + E2e2β1µ1β2µ2(E1e1 − E2e2)+

E1e1β1µ1β2µ2(E2e2 − E1e1) + E1e1β1µ1β2µ2(E2e2 − E1e1) + E2e2β
2
1µ

2
1(e1 − e1)E1+

E1e1β1µ1β2µ2(E2e2 − E1e1) + E1e1β1µ1β2µ2(E2e2 − E1e1) + E2e2β
2
1µ

2
1(e1 − e1)E1

= 0

(A.3)
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Using the property e1e1 = e2e2 = e1e1 = e2e2 = 1, equation A.3 becomes:

E1e1β
2
2µ

2
2(e2 − e2)E2 + E2β1µ1β2µ2(E1e1e2 − E2) + E2β1µ1β2µ2(E1e1e2 − E2)+

E1e1β
2
2µ

2
2(e2 − e2)E2 + E2β1µ1β2µ2(E1e1e2 − E2) + E2β1µ1β2µ2(E1e1e2 − E2)+

E1β1µ1β2µ2(E2e2e1 − E1) + E1β1µ1β2µ2(E2e2e1 − E1) + E2e2β
2
1µ

2
1(e1 − e1)E1+

E1β1µ1β2µ2(E2e2e1 − E1) + E1β1µ1β2µ2(E2e2e1 − E1) + E2e2β
2
1µ

2
1(e1 − e1)E1

= 0

(A.4)

factoring (e1 − e1) and (e2 − e2), equation A.4 becomes:

E1β
2
2µ

2
2(e2 − e2)(e1 − e1)E2 + E2β

2
1µ

2
1(e1 − e1)(e2 − e2)E1+

E1E2β1µ1β2µ2(e1e2 + e2e1 + e1e2 + e1e2)− 4E2
2β1µ1β2µ2

E1E2β1µ1β2µ2(e1e2 + e2e1 + e1e2 + e1e2)− 4E
2

1β1µ1β2µ2

= 0

(A.5)

factoring (e1 − e1)(e2 − e2), equation A.5 becomes:

E1E2(e2 − e2)(e1 − e1)(β2
1µ

2
1 + β2

2µ
2
2)+

2E1E2β1µ1β2µ2(e1e2 + e2e1 + e1e2 + e1e2)

− 4β1µ1β2µ2(E
2

1 + E2
2) = 0

(A.6)

putting E1 and E2 on one side of the equation
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4β1µ1β2µ2
(E

2

1 + E2
2)

E1E2

=(e2 − e2)(e1 − e1)(β2
1µ

2
1 + β2

2µ
2
2)+

2β1µ1β2µ2(e1 + e1)(e2 + e2)

(A.7)

Since e1, e1, e2, and e2 obey the properties below:

(e2 − e2) =2isin(β2d2)

(e1 − e1) =2isin(β1d1)

(e2 + e2) =2cos(β2d2)

(e1 + e1) =2cos(β1d1)

(E
2

1 + E2
2)

E1E2

=E1E2 + E1E2 = 2cos(k(d1 + d2))

(A.8)

Using these equations A.8 into equation A.7, the desired Sh-dispersion relationship

is found

cos(k(d1 + d2)) = cos(β1)cos(β2)−
(m1/m2 +m2/m1)

2
sin(β1)sin(β2) (A.9)

with mj = µjβj
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