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Abstract

Under extreme temperature and density conditions, the quarks and gluons that are

normally confined to nucleons are able to move freely in a state known as the quark-

gluon plasma (QGP). Currently, droplets of QGP can be created experimentally us-

ing heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory and at the Large Hadron Collider (LHC) at CERN. It is known

from first principle quantum chromodynamics (QCD) calculations that the transi-

tion from nuclear matter to the QGP is a crossover if the system has a net baryon

density of zero, which has been consistent with experimental results. One of the

key questions in the field is whether QCD exhibits a first-order phase transition at

large baryon densities. In this scenario, a critical point would mark the end of the

crossover phase transition and the beginning of the first order line.

In this thesis, I detail my study of the implications of the presence of a critical

point on the QCD phase diagram. In the first part of this work, I construct a family of

equations of state matching lattice calculations at low baryon density, and including

a critical point in the correct universality class. I then employ the equation of state

I developed in the analysis of a possible critical point signature that can be detected

experimentally at RHIC. I also use a Feed-Forward Neural Network to identify critical

point configurations that result in inconsistent thermodynamics.
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Introduction

A few microseconds after the Big Bang, when temperatures reached trillions of de-

grees Kelvin, the universe was filled with a liquid known as the quark-gluon plasma

(QGP). The QGP is made of freely moving quarks and gluons, particles that are nor-

mally confined in the form of protons and neutrons and cannot exist in an unconfined

state. Currently, droplets of QGP can be created experimentally using heavy-ion col-

lisions at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National

Laboratory. It is known from the accepted theory of strong interactions, quantum

chromodynamics, or QCD, that the transition from nuclear matter to the QGP is a

crossover if the system has a net baryon density of zero. So far, these predictions

have been consistent with experimental results.

One of the key questions in the field is whether QCD exhibits a sharp phase

transition (first-order) at large baryon densities. In this scenario, a critical point

would mark the end of the crossover phase transition and the beginning of the first

order line. The determination of the phase structure of QCD, along with the existence

and location of its critical point, is now one of the most important goals of high-

energy nuclear physics research.
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Early experimental runs of heavy-ion collisions at RHIC and at the Large Hadron

Collider (LHC) at CERN showed that the quark-gluon plasma behaves like a liquid

with low viscosity to entropy density ratio. This means that the QGP can be precisely

described by relativistic viscous hydrodynamics. These same equations of motion

have significant overlap with areas in condensed matter and astrophysics. There have

been increasing e↵orts from both theory and experiment to explain QGP dynamics.

From the theory perspective, finite lattice QCD calculations and hydrodynamic

simulations of heavy-ion collisions are the best available tools to interpret and pre-

dict experimental outcomes. The phase diagram for QCD is typically given in terms

of temperature and baryon chemical potential, µB. Although lattice QCD is a first-

principle approach, it cannot be solved at finite chemical potential. That means all

the information that can be extracted from lattice calculations about the QGP cor-

responds to the line at vanishing µB. Hydrodynamic simulations provide an e↵ective

way of describing the evolution of the system created in a heavy-ion collisions, but

they require an Equation of State (EOS) that can close the system of equations of

the system. The EOS needs to reflect all theoretical knowledge currently available.

Besides, it needs to incorporate a critical point, so that its e↵ect on experimental

observables can be studied.

The first phase of the Beam Energy Scan (BES-I) program at RHIC showed hints

of a first-order phase transition [1], which prompted improvements to detectors and

statistics for the second phase of the program, BES-II, scheduled for 2019-2021. With

results from the second phase of the Beam Energy Scan program underway over the

next 5 years, it is imperative that our theoretical tools are ready to interpret the

2



data.

The focus of my undergraduate research, presented in this thesis, was developing

methods to quantify the e↵ects of the proposed critical point of quantum chromody-

namics on the overall thermodynamic properties of heavy-ion collision systems, and

to identify tools that can aid in the constraint of the location, size, and shape of the

critical region.

This thesis is structured as follows:

Chapter 1 deals with the historical development of QCD as well as its Lagrangian

and main features of the theory.

Chapter 2 is a summary of the experimental e↵orts in heavy-ion physics that re-

sulted in the detection of the QGP. It also describes the results from BES-I that

motivated this work.

Chapter 3 presents my work in developing an Equation of State for QCD that

matches lattice data where applicable and also contains a critical point from the

correct universality class.

Chapter 4 details the how the EOS I constructed can be applied to the study of

the QCD phase diagram and the thermodynamic properties of the critical region.

Conclusions and Future Work will follow.
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Chapter 1

The Big Picture: A Brief History

of the Universe

1.1 A Hot Universe

In the 1920’s, Hubble discovered that our universe has been expanding and cooling

for approximately 10 billion years. His discovery changed every aspect of how we

perceive our universe over the decades that followed. The idea of an immutable,

infinite universe was replaced by that of a continuously evolving, incredibly dynamic

system. One of the natural conclusions to arise from Hubble’s observations is that if

the universe is and has been expanding throughout its entire existence, then, at the

very beginning of its history, it must have existed in a hot, extremely dense state.

We now refer to this state as the Big Bang – the event that brought the universe

itself and all of its contents into existence.
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After Hubble’s finding, the scientific community of the 1940’s began developing

a framework to explain the original hot, dense state that started the universe. The

case for a hot early universe was solidified in 1962, with the discovery of the cosmic

microwave background by Penzias andWilson [2]. The leftover radiation from the Big

Bang’s heat they discovered, in turn, motivated further theoretical and experimental

e↵orts.

1.2 Matter Under Extreme Conditions

One of the main challenges that came with looking back into the history of the

universe through the study of hot and dense matter was the di�culty in limiting the

quantities that our theories predict. In other words, the first question that needed

to be addressed at the time was what is exactly the highest temperature that could

be understood with the current theory?

In 1966, Sakharov [3] established that the absolute maximum temperature of any

substance in equilibrium with radiation is of the order of Planck temperature

TP =

r
~c5
Gk2

⇡ 1032K (1022MeV). (1.1)

Beyond this value, gravitational interaction between photons becomes significant.

However, theorists were still struggling to understand nuclear matter in the range of

a few hundred MeV, so dealing with temperatures in the Planck scale was unimag-

inable. Our ambition to map the thermal history of the universe would have to wait
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for a breakthrough in the theories of strong nuclear interaction.

At the time, there were two conflicting approaches to strongly interacting matter.

The first model, called Bootstrap, [4, 5] was based on the hypothesis that hadrons

are composites of one another. That is, lighter hadron species come together to form

heavier hadron species. The Bootstrap model predicted that after some limiting value

of temperature, referred to as the Hagedorn temperature (TH = 170 � 180 MeV),

any subsequent heating of the system would lead to the creation of more and more

massive hadron species, but not to an increase of its temperature. The second model,

the quark model [6, 7], hypothesized that hadrons are composite particles made up

of smaller constituents called quarks, which would be confined inside hadrons. Some

even predicted that there could be “leftover quarks” from the Big Bang roaming freely

through the universe [8]. Unfortunately, the best theories on strong interaction in

the 1960’s were still not equipped to deal with temperatures beyond 100 MeV.

The first breakthrough came in 1973 with the discovery of the phenomenon of

asymptotic freedom in the theory of elementary particle interactions by Gross, Wilzek

[9], and Politzer [10]. The nobel prize-winning insight immediately motivated the

study of its implications for hot and dense matter. Two groups, Collins and Perry,

and Cabibbo and Parisi arrived at two distinctly fascinating predictions. Collins and

Perry were the first to interpret the implications of assymptotic freedom in terms of

hadrons [11]. They realized that, since the interaction between quarks weakens as the

distance between them gets smaller, after a certain threshold these quarks would no

longer be confined inside hadrons. They called this state superdense matter, which

characterized any density above the nuclear one, and concluded that matter in a
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superdense state would consist of a “quark soup.” Cabibbo and Parisi went on to

reinterpret this prediction in terms of a phase transition. The abstract of their work

[12], published in 1975, reads

The exponentially increasing spectrum proposed by Hagedorn is not

necessarily connected with a limiting temperature, but it is present in

any system which undergoes a second order phase transition. We suggest

that the observed exponential spectrum is connected to the existence of a

di↵erent phase of the vacuum in which quarks are not confined.

Though succinct, the abstract contains two groundbreaking ideas. The first is

that the Hagedorn temperature is not a limit, but a transition. The second is that this

phase transition is associated with quarks breaking free from hadrons as asymptotic

freedom is approached. The realization that strongly interacting matter has di↵erent

phases spurred theorists on to develop a robust theory of strong interactions and

subsequently motivated the planning and construction of the largest experiments

science has ever built over the 1980’s. In the late 1970’s, the cloudiness around the

thermal history of the universe and its elementary components began to fade.

1.3 Quantum Chromodynamics

The determination of asymptotic freedom as a fundamental property of strong in-

teraction dynamics was the result of theorists’ search for a mathematical framework
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that could simultaneously include such behavior and account for the known proper-

ties of nuclear matter. Some refer to the work done by Gross, Wilzek, and Politzer

as the beginning of Quantum Chromodynamics (QCD) [13], the current accepted

theory of strong interactions. Formally, QCD is classified as a non-Abelian gauge

field theory. In order to understand what this means in terms of physical quantities,

we must inevitably go through a few definitions and key equations.

The first question one might ask is which particles are subject to strong inter-

actions? The strong force only acts on hadrons, which we now define to be any

particle composed of quarks. Amongst hadrons, we have baryons, which are systems

of quarks (qqq), and mesons, which are quark-anti-quark pairs (qq̄). In terms of spin,

baryons are classified as fermions (half-interger spin), while mesons are categorized

as bosons (integer spin).

1.3.1 Abelian Gauge Field Theories

QCD is a non-Abelian gauge field theory. Since the non-Abelian case is more nu-

anced, we will first analyze the properties of another fundamental force, one that falls

under the Abelian case, so that we can later derive the theory of strong interactions

without going over the more general properties of gauge field theories. This approach

is based on Ref. [13] and Ref. [14].

In general, gauge field theories satisfy the requirement that the theory itself is

invariant under local gauge transformations. The elements of the theory are fields

and, together with an operation, these elements form a group. An Abelian group has
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the property that elements of the group commute under the group operation. Take

for instance real numbers under multiplication. Here, real numbers are the group

elements and multiplication is the group operation. The group, G(R,⇥), is Abelian

because a⇥ b = b⇥ a, where a, b 2 R.

An example of an Abelian gauge field theory is electrodynamics – the theory that

describes interactions between charged particles and electric/magnetic fields. In the

case of electrodynamics, group elements are fermion fields of mass m and charge Qe,

where Q = �1 for electrons, 1 for protons, and likewise for other charged particles.

Classically, the well-known Maxwell’s equations for electromagnetic fields E and B

are

r⇥ E+
1

c

@B

@t
= 0, r ·B = 0, (1.2)

r⇥B+
1

c

@E

@t
=

1

c
QeJ, r · E = Qe⇢, (1.3)

where QeJ is the free current and Qe⇢ is the total charge for a charge distribution

⇢.

Next, we want to convert Maxwell’s equations to relativistic notation. We will

use the metric gµ⌫ in the Minkowski space {xµ : µ = 0, 1, 2, 3}, where

g00 = +1, g11 = g22 = g33 = �1, otherwise = 0

The contravariant space-time coordinate and energy momentum 4-vectors are given

by

xµ = (ct, r) pµ = (E/c,p),

where t is time, r is the space coordinate, E is the energy and p is the momentum
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vector. It follows that the covariant vectors are

xµ = gµ⌫x
⌫ = (ct,�r)

pµ = gµ⌫p
⌫ = (E/c,�p)

From these basic definitions we can see that the dot product p · x is

p · x ⌘ pµxµ = gµ⌫p
µx⌫ = Et� p · r.

From this point forward the convention is that repeated indices are summed.

Another important definition is the space and time di↵erential operator

@µ ⌘
@

@xµ

=
@

@t
�r

@2 = @µ@µ = gµ⌫@
µ@⌫ =

@2

@t2
�r

2.

Lastly, we define Dirac gamma matrices to be 4⇥ 4 matrices of the form

� =

2

64
A 0

0 B

3

75 .

There are four gamma matrices in total

�0 =

2

64
I2 0

0 �I2

3

75 , �i =

2

64
�i 0

0 ��i

3

75 ,

�5 =

2

64
0 I2

�I2 0

3

75 ,
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where �i are the three Pauli matrices. Furthermore, �5 satisfies �5 = i�0�1�2�3 and

anticommutes with all �µ, such that

{�5, �µ} = 0.

In general, gamma matrices satisfy the anticommutation rule

{�µ, �⌫} = 2gµ⌫

and the Hermitian conjugate obeys the relation

�µ† = �0�µ�0.

With these definitions in mind, we can combine Eqs. 1.2 and 1.3 in relativistic

form as

@µFµ⌫ =
1

c
QeJ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ, (1.4)

where Jµ = (c⇢,J) is the electromagnetic current four-vector and Aµ = (�,A) is the

electromagnetic four-potential.

Now let us introduce charged fermions, which can be expressed as Dirac fields

using the relativistic version of Schroedinger’s equation for free fields (the Dirac

equation):

(i�µ@µ �mc/~) = 0

Next, we need to obtain Dirac’s equation in the presence of an arbitrary electro-

magnetic field. Whatever solution we get must reproduce Lorentz’s equation for the
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force on a charged particle due to an electromagnetic field, F = Qe(E+ p⇥
1

mc
B).

Using this criterion the Hamiltonian of the system is found to be [15]

H = c
p

(p�QeA/c)2 +m2c2 +Qe�, (1.5)

where � is the scalar electromagnetic potential. Notice that the Hamiltonian for

the free case is H0 = c
p

p2 +m2c2. Hence, in the quantum mechanical version we

replace r by r � iQeA/~c and @0 by @0 + iQe�/~c. That means that the Dirac

equation in the presence of an electromagnetic field is simply
"
i�µ
 
@µ + iQ

e

~cAµ

!
�

mc

~

#
 = 0 (1.6)

It follows from Eq. 1.6 that the quantity  ̄�µ is a conserved current,

@µ( †�0�µ ) ⌘ @µ( ̄�µ ) = 0, (1.7)

and therefore it corresponds to the electromagnetic current in Eq. 1.4,

Jµ =  ̄�µ . (1.8)

.

We now have all the elements we need to describe the motion of charged particles

in an electromagnetic field (Eqs. 1.4, 1.6, and 1.8). We also know from the action

principle that these equations must be a direct result of the Euler-Lagrange equations

from a suitable Lagrangian. This Lagrangian density 1 is given by [13]

L = �
1

4
F µ⌫Fµ⌫ +  ̄[i�µ(@µ + iQeAµ)�m] . (1.9)

1
In field theories the Lagrangian is replaced by the Lagrangian density, which is a function of

the fields and their derivatives and their space-time coordinates.
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An important feature of this particular Lagrangian density is that it is invariant

under a phase shift by a constant ✓ of the field  , i.e.

 0
! e�iQ✓ (1.10)

The transformation in Eq. 1.12 is called the Abelian (because the charge Q

commutes with the field) global (since ✓ does not depend on x) transformation. This

particular transformation is an element of a set of transformations that constitutes

the unitary group in one dimension, U(1). A major theorem in field theory, the

Noether theorem, establishes that the invariance under such transformations implies

that there exists a conserved current in the theory, which we derived to be Eq. 1.8.

What if we want to define a transformation for which the parameter ✓ does depend

on x? In this case, the Lagrangian is only invariant if we also introduce a similar

transformation for Aµ,

Aµ
! Aµ +

1

e
@µ✓ (1.11)

These transformations are called Abelian local gauge transformations, since the

parameter ✓ depends on the local coordinate, x. Like quantum electrodynamics, QCD

is invariant under local gauge transformations, which is why it is classified as a gauge

field theory. Next, we will explore how QCD di↵ers from quantum electrodynamics,

and understand why it constitutes a non-Abelian gauge field theory.
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1.3.2 Non-Abelian Gauge Field Theories

Consider a fermion field  (x) with mass m belonging to an N-dimensional, arbitrary

group G (we will specify the group later). The field components – and group elements

– are  n(x), n = 1, 2, 3, ..., N . Furthermore, the group generators, T a, a = 1, 2, ..., n,

are subject to the commutation relation

[T a, T b] = ifabcT c, (1.12)

where fabc are the structure constants and are antisymmetric in all indices. The

constants a, b, and c characterize the algebra of the group. Hence, if we consider a

group element U of G, U = exp(�iT a✓a), where ✓a accounts for any parameters that

depend on x, the transformation property of  (x) is

 0
n
= Unm m. (1.13)

Here, the only di↵erence so far is the x-coordinate dependence and the fact that Q

was replaced by T a. Hence, we can try the following Lagrangian for the free fermion

field

L =  ̄n(i�
µ@µ �m) n. (1.14)

We have shown that this Lagrangian is invariant under the transformation in Eq.

1.13 if ✓a has no x-coordinate dependence. In the electrodynamics case, we can make

the Langrangian invariant under local transformations by replacing the derivative

with its covariant form. For the case of a fermion field interacting with a gauge
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field Aa

µ

2, we can try a similar approach, using the following form for the covariant

derivative,

Dµ = @µ � igT aAa

µ
, (1.15)

where g is the coupling strength between the fermion and gauge fields. Dµ is a tensor

with components

(Dµ)mn = �mn@µ � igT a

mn
Aa

µ
. (1.16)

Now we need to show that the corrected Lagrangian

L =  ̄n(i�
µ(Dµ)mn �m�mn) n (1.17)

=  ̄(i�µDµ �m) (1.18)

is invariant under the non-Abelian local gauge transformation in Eq. 1.13. We

impose that the gauge fields obey the transformation rule

T aA
0
a

µ
= U(T aAa

µ
�

i

g
U�1@µU)U�1 (1.19)

and note that because Dµ is the covariant derivative it is also true that

(Dµ )
0 = U(Dµ ). (1.20)

Therefore,

(Dµ )
0 = (@µ � igT aA

0
a

µ
) 0 (1.21)

= U(@µ + U�1@muU � igU�1T aUA
0
a

µ
) (1.22)

= U(Dµ ), (1.23)

2
The gauge field Aa

µ is the non-abelian equivalent of the photon field Aµ in electrodynamics.
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and Eq. 1.19 is satisfied. From this, we can conclude that  ̄Dµ is invariant under

the non-Abelian local gauge transformation in Eq. 1.13 and hence the Lagrangian

must also be invariant under the transformation.

However, the Lagrangian in Eq. 1.18 only accounts for the interaction between

the fermion and gauge fields, and is missing a kinetic term purely from the gauge

fields themselves. Unfortunately, the example in electrodynamics does not help in

this case. In Ref. [13] the author uses the infinitesimal form of the transformation

in Eq. 1.13 to derive the kinetic term and show that it is invariant. The result is the

general form of the Lagrangian of QCD, which is invariant under the non-Abelian

local gauge transformations in Eq. 1.13 and Eq. 1.19.,

L = �
1

4
F a

µ⌫
F aµ⌫ +  ̄(i�µDµ �m) , (1.24)

where �
1

4
F a

µ⌫
F aµ⌫ is the gauge field kinetic term.

1.4 Features of the QCD Lagrangian

Perhaps the most remarkable element of the Lagrangian of QCD is that it includes

interactions among the gauge field themselves. This is seen explicitly in the term

gfabcAb

µ
Ac

⌫
(1.25)

from the Lagrangian element F a

µ⌫
. At the time the theory of quantum chromody-

namics was derived, this was an entirely new feature in field theory. Furthermore,

the gauge group in question turned out to be the color SU(3) group, a subgroup

of the U(3) group, which is comprised of all 3 ⇥ 3 unitary matrices. The fermion
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fields  correspond to quarks (the fundamental elements of the color SU(3) group),

while the gauge fields Aa

µ
represent gluons, the force carriers in strong interactions

(elements of the color SU(3) group in the adjoint representation).

Over the next sections, we will introduce the physical quantities and properties

that are key to our understanding of matter under extreme conditions and how

they emerge from the theory of QCD, especially its Lagrangian. The first step is

understanding the degrees of freedom required by the accepted formulation of QCD.

1.4.1 The Color SU(3) Group and Discrete Symmetries

The color degree of freedom (or color charge) was introduced in QCD to give the color

SU(3) group a physical interpretation. The need to have di↵erent color constituents

in the theory arose from an inconsistency between what was known from baryon spin

and baryon wave functions.

As presented in Table 1.1, there are six known flavors of quarks [16], which di↵er

on their mass, isospin, and flavor content. Because baryons are three-quark states,

quarks inevitably have a spin of 1

2
. For 1

2
-spin baryons, the resulting baryon wave

function is in agreement with Fermi-Dirac statistics, which requires the wave function

to be antisymmetric. However, without the color degree of freedom, 3

2
-spin baryons

exist in a state that is symmetric in space, spin, and quark flavor. This dilemma was

resolved by introducing the color charge, which takes three possible values, a = 1, 2, 3,

conventionally called red, green, and blue. Each quark carries exactly one value of

color charge. With the inclusion of this new index, the baryon wave functions are

17



totally antisymmetric.

Table 1.1: All six known quark flavors with respective electric charge, spin, baryon
number, and mass.

Quark Charge (e) Isopin Baryon Number Mass (MeV)

up (u) 2/3 1/2 1/3 2.16
down (d) -1/3 -1/2 1/3 4.67
charm (c) 2/3 0 1/3 1270
strange (s) -1/3 0 1/3 93
top (t) 2/3 0 1/3 172.9·103

bottom (b) -1/3 0 1/3 4180

The addition of this new degree of freedom was supplemented with the require-

ment that only color singlet states exist in nature. That is, all composite particles are

color neutral. This requirement results in singlet states that are precisely mesons qq̄

and baryons "abcqaqbqc. The color SU(3) hypothesis quickly succeeded in explaining

and predicting experimental results of historical significance for QCD, such as the

prediction of the ⇡0 ! �� decay rate [17, 18] and new baryonic states, such as the

⌦�, which was discovered at Brookhaven in 1964 [19].

Some interesting symmetries arise from the algebraic structure of QCD. Perhaps

most famously, the baryon octets and decuplet, illustrated in Figure 1.1. These

symmetries not only allowed theorists to make predictions regarding missing states

(e.g., the ⌦�, which was missing from the J = 3/2 decuplet) – there are fundamen-

tal physical properties of strong interactions that can be derived from these exact

symmetries. Local gauge invariance accounts for the renormalizability of QCD, but

it is only one of the transformations under which the QCD Lagrangian is invariant.

Parity, charge conjugation, and time reversal are also symmetries associated with

QCD which are in agreement with observations of strong interaction processes [20].
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Figure 1.1: Baryon octets and decuplet displayed with respect to isospin (I3),
strangeness (S), and charge (Q), grouped by total angular momentum (J) [21].

1.4.2 Confinement and Asymptotic Freedom

The property of quark confinement follows directly from the exact symmetry associ-

ated with the color charge. That is, all hadron states are color singlets i.e., quarks are

confined to color neutral mesons and baryons that cannot be separated into individ-

ual quarks or combined to form colored states. While confinement can be somewhat

easily understood in terms of the color degrees of freedom, the need for asymptotic

freedom is more nuanced and can be approached from di↵erent perspectives.

The governing principle behind early collider experiments was that, in order to

gain insight on the elementary structure of a particle, a structureless object needs

to be used as a probe. For instance, in order to probe the inside of a proton one

could use a beam of electrons. Let’s consider an elastic collision between a proton
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Figure 1.2: Diagram of elastic scattering between a proton and an electron.

and an electron, ep ! ep, as shown in Figure 1.2. If we consider the proton to be

a point-like particle, the di↵erential cross-section in the laboratory frame, ignoring

recoil e↵ects, is given by

 
d�

d⌦

!

M

=
↵2cos2(✓/2)

4E2sin4(✓/2)
, (1.26)

where ↵ = e2/4⇡, E is the energy of the electron, and ✓ is the scattering angle in

the laboratory frame. Eq. 1.26, known as the Mott cross-section, shows significant

scattering across a wide region in ✓, which is expected due to our assumption of a

point-like nature for the target.

This behavior is not what was observed experimentally and considering what we

know about the structure of protons, the actual cross-section is given by [22, 23]

d�

d⌦
=

 
d�

d⌦

!

M

"
GM(Q2)

Q2

2M2
tan2(✓/2) +

G2

E
(Q2) +G2

M
(Q2)Q2/4M2

1 +Q2/4M2

#
E 0

E
, (1.27)

where M is the proton mass,

Q2 = 4EE 0sin2(✓/2) (1.28)
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is the momentum transfer, E’ is the energy of the scattered electron, GM and GE

are the magnetic and electric form factors defined by

GM(Q2) = F1(Q
2) + 2MF2(Q

2) (1.29)

GE(Q
2) = F1(Q

2) + F2(Q
2)Q2/2M (1.30)

hN |jµ(0)|Ni = ū[F1(Q
2)�µ + F2(Q

2)i�µ⌫q
⌫ ]u, (1.31)

with jµ(x), representing the electromagnetic current, |Ni the proton state, �µ⌫ =

i[�µ, �⌫ ]/2, u is the Dirac spinor for the nucleon, and q⌫ is the momentum transferred

from the electron to the proton. Despite the convoluted form, these equations express

that GM(Q2) and GE(Q2) are decreasing functions of Q2 if the proton extends in

space. The implication for Eq. 1.27 is that the rate of scattering at large angles is

suppressed. Thus, at lower energies, we expect results for the di↵erential cross-section

and the form factors GM(Q2) and GE(Q2) to reflect electrons scattering elastically

from an object of finite size. Indeed, what was observed in experiments is that the

form factors can be approximated by the dipole form

GM(Q2)/µ = GE(Q
2) =

1

(1 + Q2

0.7
)2
, (1.32)

where µ = 2.79 is the magnetic dipole moment for the proton.3 From these values it

was possible to calculate the mean square charge radius for the proton,

⌦
r2
↵
=

Z
d3xr2j0(x) = �6

@GE(0)

@Q2
= 0.67⇥ 10�26cm2. (1.33)

The takeaway from proton-electron elastic scattering is that the proton is not a

point-like particle, but an object that extends in space to a finite size which can be

calculated using the magnetic and electric form factors.

3µ is in terms of the proton Bohr magnetons and Q2
is in GeV

2
.
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However, for higher Q2, we expect these functional forms to reflect the inner

structure of the proton, as the electron beam should have enough energy to probe

the quarks inside the target in a process known as deep inelastic scattering.

As discussed in section 1.2, it was expected from field theory models that charges

could change their e↵ective size depending on whether they are probed at large or

small distances (or, equivalently, large energies). These changes were described by

Symanzik’s �-function [24],

Q2
@↵s(Q2)

@Q2
= �(↵s(Q

2)), (1.34)

in which the e↵ective size of the coupling strength between quark and gluon fields,

↵s, is a function of the energy of the collision.

In 1973, Gross, Politzer and Wilczek succeeded in showing that chromodynamics,

with colored quark and gluon fields that obey SU(3) color symmetry, resulted in a

negative �-function [25]. This �-function not only indicated that quarks and gluons

were asymptotically free at small distances, but it also led to the conclusion that

they become confined at large distances. In the years that followed, several electron-

nucleon scattering experiments confirmed this prediction, as shown in Figure 1.3.
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Figure 1.3: Summary of experimental results in 1989 from deep inelastic lepton-
nucleon scattering combined with electron-positron annihilation data in contrast with
theoretical predictions for coupling strength [26].
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Figure 1.4: Adaptation of the QCD phase diagram proposed by Cabibbo and Parisi
in terms of temperature (T ) and baryonic density (⇢B).

1.4.3 The QCD Phase Diagram

The scattering behavior observed from nuclear matter at di↵erent energies was the

first hint that QCD presented a rich phase structure. The earliest attempt to ex-

press the seemingly conflicting principles of confinement and asymptotic freedom

in terms of a phase diagram was proposed by Cabibbo and Parisi in 1975 [12], as

shown in Figure 1.4. The interpretation was that there was a transition line that

clearly separated confined nuclear matter (I) from a quark-gluon plasma phase (II)

corresponding to asymptotically free quarks and gluons.

One of the main theoretical challenges surrounding the study of QCD at large

baryon densities is that the first-principle theory discussed in this chapter cannot

be solved using standard lattice techniques at finite baryonic densities. To a large

extent, the early phase structure proposed by Cabbibo and Parisi still holds. The

“modern” representation of the QCD phase diagram is shown in Figure 1.5. Despite

decades of theoretical development and experimental programs, the phase structure
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Figure 1.5: Conventionally accepted representation the QCD phase diagram in terms
of temperature and baryonic density [27]. CEP stands for critical end point, i.e.
critical point.

of QCD remains mostly an open question.
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Chapter 2

Experimental Overview of

Heavy-Ion Collisions

2.1 Circumstantial Evidence: A First Glimpse of

the QGP

The realization that asymptotic freedom is a feature of QCD and, subsequently, that

QCD exhibits a high-temperature phase of weakly interacting quarks and gluons,

marked the beginning of a new era in both theoretical and experimental high-energy

physics. By the end of the 1970’s, theorists agreed on the prediction that this state

of “collectivized” quarks and gluons would form at extremely high temperatures,

around an energy density of 1 GeV/fm3 [28]. The only way to test these predictions

was to somehow create such highly energetic conditions experimentally.
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It would take almost four decades to confirm the existence of the QGP. In the late

1980’s, the two world-leading facilities in particle physics, CERN (Counseil Europeen

pour la Recherche Nucleaire), in Geneva, Switzerland, and Brookhaven National

Laboratory, in New York, announced they would attempt to create the QGP [29, 30,

31]. In 2000, CERN concluded its first heavy-ion program run at the Super Proton

Synchrotron (SPS), which began in 1994, and published circumstantial evidence for

the creation of a new state of matter in lead (Pb + Pb) collisions [32].

2.1.1 QGP Signatures

The di�culty in confirming the creation of the QGP stems from the nature of the

strong force. When and if created, the QGP itself would have a very transient

existence, as the system would only exist in the required state of energy density for a

short amount of time before cooling down into a hadronic state. In addition, because

of color confinement, single quarks and gluons can never escape the collision and reach

the detectors – they will always recombine into color neutral hadrons. Consequently,

hadrons account for the vast majority of particles that reach the detectors, regardless

of whether or not QGP is formed during the collision. Therefore, evidence for or

against the creation of the QGP had to be extracted from a careful analysis of the

observed final state of hadrons.

The first indirect evidence for the creation of the QGP in Pb–Pb collisions at

CERN was the explosive nature of systems observed by the detectors. In general,

after the lead atoms collide with each other, the resulting energy gives rise to many
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Figure 2.1: Evolution of a Pb+Pb collision illustrating the di↵erent stages of the
system [33].

secondary interactions before any particles can escape from the collision. This is

known as the fireball. When the fireball has expanded by a factor of 30-50, the inter-

actions finally cease, and the composition of the hadrons that will reach the detector

is fixed. This state of the collision is known as the chemical freeze-out. Because

these particles were first created in a highly energetic state, their composition carries

a “memory” of the early collision stage. This information can be extracted through

the analysis of relative particle abundances and momentum distributions. SPS looked

at more than 20 di↵erent hadron species and carefully analyzed two-particle corre-

lations and momentum distributions. They found that the fireball expanded with a

rate of over half the speed of light. Such an explosive expansion could only be the

result of immense pressure in the early collision stages. In addition, measurements

of the angular momentum distribution matched theoretical calculations correspond-

ing to an energy density of ⇠ 1 GeV/fm3, which is exactly the QCD prediction for

the transition temperature [34, 35, 36]. Other interesting features were recorded

by experiments during the lead beam program at CERN, such as the enhancement
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Figure 2.2: Strangeness enhancement: experimental data from SPS run WA97 (black
dots) compared to theoretical predictions, VENUS (open squares) and RQMD (open
circles) models [42].

of particles containing strange quarks [37, 38, 39], shown in Figure 2.2, and the

suppression of particular charmonium (particles containing charm and anti-charm

quarks) states [40, 41], both of which matched theoretical predictions for possible

QGP signatures.

For most theorists and experimentalists, the picture was clear – two colliding

nuclei create a huge amount of energy, which materializes in the form of strongly

interacting quarks and gluons. This dense state, which has an initial energy density
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of about 3-4 GeV/fm3, suppresses the formation of charmonium states, enhances

strange particle abundance and begins to drive the explosive expansion of the fireball.

As the plasma cools down it expands and becomes more dilute. Once the system

reaches an energy density of 1 GeV/fm3 (T⇡155 MeV) quarks and gluons go through

the hadronization process and the final hadron abundance is fixed. Later, at an

energy density of about 50 MeV/fm3 (T=100-120 MeV) the fireball undergoes a

chemical freeze-out (hadrons stop interacting), at which point it expands with more

than half the speed of light.

2.2 Au+Au Collisions at the Relativistic Heavy-

Ion Collider

Though SPS found convincing circumstantial evidence for QGP formation, it is com-

monly accepted that the discovery of the QGP took place at the Relativistic Heavy

Ion Collider (RHIC) in 2005 following five consecutive years of measurements of

Au+Au collisions [43]. Key measurements were taken across four major experiments

– BRAHMS, PHOBOS, STAR, and PHENIX. Since the four experiments were de-

signed with di↵erent detectors, each one of them was able to o↵er a unique perspective

and evidence for QGP formation in Au+Au collisions at RHIC.

BRAHMS, which stands for Broad RAnge Hadron Magnetic Spectrometers, of-

fered great momentum resolution and hadron identification capabilities. Because of

these features, the BRAHMS collaboration was able to deduce from the post-collision
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charged particle count that the energies required to produce such high multiplicities

much exceeded that of hadronic matter. They found that “initial energies surpassed

the energy density of a nucleus by a factor of 30, the energy density of a baryon by

a factor of 10, and the energy density for QGP formation that is predicted by lattice

QCD calculations by a factor of 5 [44].”

PHOBOS, a collection of silicon detectors, was designed to count the total number

of produced particles with precision and study the angular momentum distributions

of these products. The goal was not only to understand these two features of heavy-

ion collisions, but also to look for fluctuations in particle production and angular

distribution. The PHOBOS collaboration found evidence for the formation of “a

high energy density system” that could not be accounted for in hadronic degrees of

freedom [45], in agreement with the findings published by the BRAHMS collabora-

tion.

Similarly, the STAR collaboration concluded from their experiments that “theory-

experiment comparison suggested that central Au+Au collisions at RHIC produce

dense, rapidly thermalizing matter characterized by initial energy densities above the

critical values predicted by lattice QCD for establishment of a quark-gluon plasma

(QGP)” which presented “nearly ideal fluid flow, marked by constituent interactions

of very short mean free path, established most probably at a stage preceding hadron

formation” [46]. In other words, not only was there evidence that QGP was being

produced in these collisions, but experimental data also implied that regardless of

what pre-hadronic state was being produced, its constituents behaved like a nearly

perfect liquid, and were able to seemingly move past each other. A similar conclusion
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was reached by the BRAHMS collaboration.

Lastly, the PHENIX collaboration, which analyzed measurements of charged par-

ticle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in

a wide range of transverse momenta (pT ), elliptic flow, two-particle correlations, non-

statistical fluctuations, and suppression of particle production at high pT , concluded

that the high density state being produced in the same kinds of collision (central,

high beam energy) could not be explained in terms of the dynamics of color-neutral

hadrons [47].

Surprisingly, experimentalist across all four collaborations were not only seeing

evidence of parton-like behavarior, but there was also strong indication that this new

state of matter being created had the properties of “perfect fluid.” Figure 2.3 from

the STAR report [46] illustrates the dependence on the elliptic flow, v2, of charged

⇡’s, K, p, and ⇤ as a function of transverse momentum, pT . These measurements

were in eerie agreement with hydrodynamics results for a thermalized, ideal fluid

expansion. Furthermore, the predictions that seemed to best fit experimental data

were based on an equation of state that was consistent with lattice QCD calculations

including a phase transition at 165 MeV.

With all four distinct experiments reaching identical conclusions, the case for

deconfinement was stronger than it had ever been. The reports released by the

BRAHMS, PHOBOS, STAR, and PHENIX collaborations also outlined the improve-

ments necessary from both theory and experiment that would eventually lead to

su�cient evidence that quark-gluon plasma, and not another high-density nuclear

state, was being created at RHIC. Though the PHOBOS and BRAHMS programs
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Figure 2.3: (a) STAR results of the transverse momentum dependence of the elliptic
flow parameter in 200 GeV Au+Au collisions for ⇡±, K0

s
, p, and ⇤ [48]. Hydrody-

namics calculations [49, 50] assuming early thermalization, ideal fluid expansion, an
equation of state consistent with LQCD calculations including a phase transition at
TC = 165 MeV (EOS Q), and a sharp kinetic freezeout at a temperature of 130
MeV, are shown as dot-dashed lines. Only the lower pT portion (pT  1.5 GeV/c)
of the distributions is shown. (b) Hydrodynamics calculations of the same sort as
in (a), now for a hadron gas (EOS H) vs. QGP (EOS Q) equation of state [51, 49],
compared to STAR v2 measurements for pions and protons in minimum bias 130
GeV Au+Au collisions [52].
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o�cially ended in 2005 and 2006, respectively, STAR and PHENIX continued to

make measurements through the following generation of experiments at RHIC.

2.3 The Beam Energy Scan Program

For the first five years of measurements, RHIC operatared very close to its maximum

collision energy, around 200 GeV. After careful analysis, the consensus among the

four experiments that participated in the first runs was that a new state of matter

with partonic degrees of freedom was created at center of mass energies
p
sNN =

62 � 200 GeV. However, most of the questions that motivated the construction of

RHIC in the first place, mostly regarding the structure of the QCD phase diagram,

remained unanswered [53, 54]. Luckily, a large range of collision energies available

at RHIC had not yet been explored. With that in mind, the STAR collaboration

proposed a new program – the Beam Energy Scan (BES) – with the goal of probing

higher density regions of the QCD phase diagram.

In 2010, the STAR collaboration released results from the BES trial run, which

suggested that the QGP quickly achieves local thermal equilibrium and that the

transition from the QGP to hadronic matter is a crossover, i.e. a smooth, continuous

transition at high collision energies (low baryon densities) [55, 56]. In contrast,

several theoretical models predicted that the transition becomes first-order at lower

temperatures and high baryon densities, conditions that correspond to lower collision

energies [57, 58, 59, 60, 61, 62, 63, 64, 65]. If these theoretical predictions were

correct, a critical point would mark the exact location in the phase diagram where
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Table 2.1: BES-I: Number of expected events and run time for di↵erent collision
energies.

this change occurs, presumably at intermediate temperatures and baryon chemical

potentials.

The Beam Energy Scan program sought to answer: 1) Can evidence of a critical

point (CP) be detected? 2) Can a first-order phase transition be detected? and 3)

How does the medium created in the collisions change as
p
sNN is lowered? 4) How

does the QGP change when multiple conserved charges are considered?

The theoretical models at the time suggested that the proposed critical point

location could fall within RHIC beam energies [66, 67, 68, 69], so BES proposed a

scan of the region between
p
sNN = 5�39 GeV in an initial run, BES-I, which would

inform a second run, BES-II, that would provide more data on areas of particular

interest. As shown in Figure 2.4 [70], the proposed range for BES-I bridged the

gap between SPS and RHIC data in terms of temperature, T, and baryon chemical

potential, µB, while focusing on lower collision energies, where the probability of

identifying a CP was thought to be highest. Table 2.1 outlines the run plan for

BES-I.
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Figure 2.4: The calculated chemical freeze-out temperature and chemical potential
as functions of collision energy. The black curves are phenomenological parameteri-
zations of the data points displayed.
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2.3.1 Locating the Critical Point: Fluctuations

First-principle lattice QCD calculations showed that the derivatives of the partition

functions with respect to baryon, charge, and strangeness chemical potential were

expected to show large fluctuations as a function of temperature [71]. In particular,

the moments of the charge, baryon, and strangeness chemical potential can be ob-

tained from the derivatives of the pressure with respect to the chemical potential,

normalized by the correct power of the temperature:

�B,Q,S

i,j,k
=

@i+j+k(P/T 4)

@(µB/T )i@(µQ/T )j@(µS/T )k

These fluctuations can in turn be related to moments of event-by-event net-

particle multiplicity distributions in heavy-ion collisions [72]. Figures 2.5 and 2.6

show �BQS

2
and �BQS

4
fluctuations as functions of the temperature for vanishing

baryon chemical potential with a phase transition at Tc = 200 MeV. The baryon

number fluctuations are expected to diverge at the critical point and were therefore

the most obvious candidate for CP signatures.

In order to detect critical behavior due to changes in charge, baryon, and strangeness

fluctuations, the STAR collaboration proposed measurements of fluctuations in the

expected transverse momentum, hpT i, the K/⇡, p/⇡, and K/p ratios, and elliptic

flow, v2, in addition to high moments of the net-proton yield, which can provide

insight on baryon number fluctuations.

The relationship between distribution moments and fluctuations is as follows,
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Figure 2.5: Second order fluctuations
of baryon number, electric charge and
strangeness for µB = 0 and Tc = 200
MeV [71].

Figure 2.6: Fourth order fluctuations
of baryon number, electric charge and
strangeness for µB = 0 and Tc = 200
MeV [71].

Mean: M = �1 Variance: �2 = �2

Skewness: S =
�3

�3/2

2

Kurtosis:  =
�4

�2

2

These relations establish the foundation for comparison of experimental data to theo-

retical predictions. Since the QGP presented fluid-like properties, relativistic hydro-

dynamic simulations of heavy-ion collisions were the main theoretical tool available

to bridge the gap between theory and experiment. Models coupled with a hydro-

dynamic stage, such as Ultra relativistic Quantum Molecular Dynamics (UrQMD),

which allowed theorists to carry out full simulations of nucleus-nucleus collisions and

make predictions for various experimental observables. Figure 2.7 displays the com-

parison of predictions from two theoretical models to data from STAR and SPS for

the standard deviation of the K/⇡ ratio as a function of collision energy.

This kind of phenomenological analysis was what the STAR team hoped would

confirm the existence and location of the QCD critical point, and they expected that
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Figure 2.7: Comparison of the predictions of the Hadron String Dynamics (HSD)
and UrQMD models to the experimental data from STAR and SPS-NA49 for the
standard deviation, �, of the K/⇡ ratio as a function of collision energy. Data from
[73, 74]
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the Beam Energy Scan program would result in such discovery.

2.3.2 Results from BES-I

Phase I of the BES program collected data between the years 2010 and 2014. Colli-

sions were recorded at
p
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 MeV, which

significantly increased the range of baryonic chemical potentials covered at RHIC to

µB = 20 � 420 MeV at the point of chemical freeze-out [75]. Figure 2.8 shows the

conjectured phase diagram for QCD, including the range of baryonic chemical po-

tential covered by di↵erent major experiments, and highlights the higher µB values

surveyed by BES-I in contrast to previous and future programs.

In terms of locating the critical point, BES-I succeeded at detecting non-monotonic

variation with collision energy in �2 of the net-proton number with a 3.0� signifi-

cance for the most central Au+Au collisions, one of the suggested signatures for the

critical point [78].

The first step in the process was measuring the event-by-event net-proton (Np �

Np̄) distributions, shown in Figure 2.9 for the most central collisions in the trans-

verse momentum range 0.4 < pT (GeV/c) < 2.0 at di↵erent collision energies. The

wealth of data collected for the net-proton distributions allowed for the calculations

of cumulants (Cn) of up to fourth order as a function of
p
sNN , where

C1 = M C2 = �2

C3 = S�3 C4 = �4

shown in Figure 2.10 as a function of collision energy for both central (head-on) and
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Figure 2.8: QCD phase diagram. The boundary between hadron gas and the QGP
is indicated by the solid line for a first-order phase transition beginning at large µB

and small T and ending at the proposed critical point. The crossover transition is
indicated by the dashed line. The regions of µB/T  2 and 3 are shown as red and
blue dot-dashed lines, respectively. These lines are of significance because comparison
between lattice calculations and RHIC data strongly disfavors a critical point in the
region µB/T  2 [76, 77].
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Figure 2.9: Event-by-event net-proton number distributions for central Au+Au col-
lisions at di↵erent nine collision energy values measured by the STAR collaboration.
The distributions are normalized to the total number of events at each collision en-
ergy. The statistical uncertainties are smaller than the symbol sizes and the lines are
to guide the eye [78].

peripheral collisions.

Large values for higher order cumulants C3 and C4 of the net-proton distribution

of central collisions are an indication that the distributions deviate significantly from

the standard Gaussian. This was considered by the STAR collaboration to be the

first evidence of augmented fluctuations due to the presence of a critical point, as

predicted by theoretical models [79, 80]. On the other hand, cumulant values for

peripheral collisions were close to zero. This could be due to the fact that peripheral

collisions may not reach a state that is hot and dense enough to drive a phase

transition. In terms of dependence, C1 and C3 decrease monotonically with
p
sNN ,

while C2 and C4 vary non-monotonically with collision energy. In order to eliminate

first-order volume variations and relate cumulants to baryon number susceptibilities,

the following ratios were calculated [81],
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Figure 2.10: Cumulants of the net-proton distributions for central (0-5%) and periph-
eral (70- 80%) collisions as a function of collision energy. The vertical bars represent
the statistical uncertainties and the caps correspond to the systematic uncertainties
[78].

C3
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�B

3

�B

2

,
C4
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�B

4

�B

2
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Figure 2.11 shows the net-proton S� and �2 values for both central and pe-

ripheral collisions, as well as UrQMD [82] and hadron resonance gas model [83]

predictions which did not include a critical point. As expected, peripheral collisions

vary monotonically with
p
sNN , with �2 values below unity (statistical baseline).

In central collisions, there is a clear non-monotonic pattern in �2 with respect to

collision energy, with values dipping below unity and then rising above unity again

as collision energy increases. In order to determine the significance of this deviation,

the data for �2 was modeled by a polynomial function of order three in the
p
sNN

range of 7.7 - 62.4 GeV, where the non-monotonic behavior is predominant. The
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Figure 2.11: S� on the left and �2 on the right as a function of collision energy for
net-proton distributions measured in Au+Au collisions. Both central and periph-
eral collisions are shown. The error bars and caps show statistical and systematic
uncertainties, respectively. The vertical-dashed (central) and dash-dotted (periph-
eral) lines correspond to results from a hadron resonance gas (HRG) model. The
orange (central) and black (peripheral) shaded bands are the results from a UrQMD
calculation, which do not include a phase transition or a critical point [78].

polynomial is in the form ⌃nPn(
p
sNN)n, n = 0, 1, 2, 3, the exact values for pn can be

found in Ref. [78].

The uncertainties for the derivatives of this polynomial were calculated based

on the polynomial fitting and the overall significance of the change in the sign of

the slope for �2 as a function of
p
sNN in the range of 7.7-62.4 GeV is 3�. The

statistical significance of the non-monotonic behavior of net-proton �2 for central

collisions along with the deviation from UrQMD and HRG predictions that did not

include a critical point, further solidifies the case for a possible CP signature.

In summary, BES-I resulted in the first measurements of non-monotonic behavior

of the net-proton �2, which was used as a proxy for the net-baryon �2. These

measurements are consistent with QCD-based models that include a critical point.
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However, there are many caveats that come with using net-proton counts for this

analysis. Firstly, the net-proton distributions obviously do not account for all baryons

in the system. Secondly, there are significant interactions that happen between the

point of collision and chemical freeze-out. Thirdly, there are finite size e↵ects and

acceptance cuts on the experimental side that could significantly a↵ect the moments

of the net-proton distribution – especially higher moments such as skewness and

kurtosis. Although promising, fluctuation results from BES-I are simply not enough

to confirm the existence of a critical point. This clear mismatch between what

experiments can measure and what theoretical models can replicate in terms of CP

signatures is what motivated the original work described in the next chapter.
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Chapter 3

An Equation of State for QCD

with a Critical Point

Preliminary results from first phase of the Beam Energy Scan showed hints of a first-

order phase transition, which prompted improvements to detectors and statistics for

the second phase of the program, BES-II, scheduled for 2019-2021. The determi-

nation of the phase structure of QCD, along with the existence and location of its

critical point, remains one of the most important goals of high-energy nuclear physics

leading up to BES-II.

A key factor that limits the analysis of critical signatures on the theoretical side is

the lack of an Equation of State (EOS) that contains a critical point. Hydrodynamic

simulations of the fireball created during heavy-ion collisions rely on an Equation

of State to dictate the evolution of the system. Therefore, in order to account for

critical phenomena, these simulations require an EOS that contains a critical point.
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These results are imperative to the analysis of BES-II measurements because they

would lead to precise calculations of the variations we expect to see in fluctuations

as a function of
p
sNN and the probability that these signatures would survive final

hadronic scatterings, both of which have yet to be carefully calculated.

There is much work that needs to be done in that direction, including adjust-

ments in hydrodynamic calculations near the critical point [84, 85, 86, 87]. Once

these modifications are quantified, an EOS that encompasses all current theoretical

knowledge on the phase diagram as well as a parametrically chosen critical point

would allow for a precise survey of collisions at BES-II energies.

The goal of this work was to produce a family of equations of state for QCD, each

one of which contains a critical point in the region covered by BES-II while simulta-

neously respecting what is known from first-principle lattice QCD calculations up to

order four in µB. This is the first model to account for both (i) the Taylor expansion

of the QCD EOS from lattice calculations to describe a crossover phase transition

and (ii) a first-principle model for the critical contribution. Previous studies have

considered either the lattice Taylor expansion only [88, 89, 90] or models for the

critical behavior in the vicinity of the CP [91, 92, 93], but not both at the same time.
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3.1 Taylor Expanded Equation of State from Lat-

tice QCD

The Equation of State for QCD is known with high precision at vanishing baryon

chemical potential from lattice calculations with 2+1 (up, down + strange) [94, 95,

96] and 2+1+1 (up/down + strange + charm) [97] quark flavors present in the

system. It is possible to extend the EOS at µB = 0 to finite chemical potentials

using a Taylor expansion about the temperature axis in terms of powers of the ratio

µB/T [98, 99, 100, 101, 102]. For the pressure, the Taylor expansion is given by

P (T, µB) = T 4
X

n

c2n(T )
⇣µB

T

⌘2n
, (3.1)

where the constant coe�cients are the susceptibilities of the baryon number at van-

ishing baryon chemical potential,

cn(T ) =
1

n!

@nP/T 4

@(µB/T )n

�����
µB=0

=
1

n!
�n(T ). (3.2)

In this expansion, all odd derivatives of the pressure at µB = 0 cancel out due to

the charge conjugation (µB = �µB) symmetry of the QCD partition function.

These coe�cients have been calculated at both finite lattice spacing [100, 103, 104]

and in the continuum limit [77, 105], where the lattice spacing is approximately zero.

Figure 3.1 shows results from cn, n = 0, 2, 4, 6 as a function of temperature from the

Wuppertal-Budapest collaboration [88].

The Taylor expansion method provides an alternative to direct first-principle

calculations at finite density, which are subject to the fermion sign problem, or
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Figure 3.1: cn, n = 0, 2, 4, 6, as functions of the temperature, from the Wuppertal-
Budapest collaboration [88].

complex action problem. This is due to the fact that, at finite density, the weight used

for importance sampling in Monte Carlo integration over lattice QCD configurations,

becomes complex, which makes simulations at finite chemical potential extremely

di�cult.

The Taylor expansion can be useful in putting constraints on the location of

the critical point. If we assume that the critical point is the closest singularity to

the µB = 0 axis in the complex µB plane, the radius of convergence of the Taylor

expansion should lead to an indication of the location of the critical point. Because

only a few coe�cients are known, the only result in that direction is an indication that

the region in the phase diagram for which µB / 2T in unlikely to contain a critical

point [77]. In terms of knowledge of the critical region, that is as much information

as the Taylor expansion can provide; since it cannot reproduce a singularity, this
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method is not useful in the analysis of the QCD EOS beyond the critical point.

With all this in mind, it is clear that a more sophisticated approach is needed to

model the QCD phase diagram at intermediate and high densities. The first issue

one runs into is how to account for the correct critical behavior when the critical

point itself is still an unknown feature of the theory of quantum chromodynamics.

3.2 A Critical Point from the 3D Ising Model

Though the QCD critical point cannot yet be understood from first-principle meth-

ods, it is possible to make inferences about the expected critical behavior based on

universality arguments. The principle of universality allows for theories with com-

pletely di↵erent dynamics to share the same critical behavior, as long as they have

the same degrees of freedom and underlying symmetries. The deeper implication is

that the critical behavior of a system is dictated by universal features of the theory,

not by how its di↵erent degrees of freedom interact.

The universality principle allows for theories to be grouped in universality classes.

Theories in the same universality class share a set of critical exponents, which char-

acterize the thermodynamics of the system in the vicinity of a critical point. Since

QCD is expected to be in the same universality class as the 3D Ising model [106],

it is possible to construct an equation of state for QCD with a critical point in the

correct universality class and therefore account for the appropriate critical behavior.

The phase diagram for the Ising model of ferromagnets, shown in Figure 3.2,
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Figure 3.2: Schematic representation of the phase diagram for the Ising model of
ferromagnets

is typically represented in terms of the reduced temperature, t, and the reduced

magnetic field, h, where

t =
T � TC

TC

, (3.3)

h =
H

kBTC

, (3.4)

for which T is the temperature, TC is the critical temperature, H is the magnetic

field, and kB is the Boltzmann constant.

In this phase diagram, negative t values correspond to a first-order phase transi-

tion between negative/positive magnetization (ferromagnetic regime), while positive
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t yields a smooth crossover (paramagnetic regime). In the neighborhood of the crit-

ical point, the system becomes scale invariant and its underlying properties are no

longer important, as relevant thermodynamic quantities scale according to a set of

power laws and critical exponents. The following are some of these critical exponents

and how they relate to the behavior of the system in the vicinity of the critical point:

• ↵ determines the behavior of the specific heat on the h = 0 axis, which scales

as C ⇠ |t|↵;

• � drives the scaling of the spontaneous magnetization, M ⇠ (�t)�;

• � dictates the behavior of the zero field susceptibility � ⌘
⇣@M
@H

⌘

H=0

⇠ |t|��;

• � rules the scaling of the magnetization along the h-axis, M ⇠ sign(h)|h|1/�.

The critical point from the 3D Ising model is the key element in this work. It

allows us to account for the correct expected critical behavior in addition to what is

known from lattice QCD.

3.3 Methodology: A Family of Equations of State

for QCD

The result of this work is a family of equations of state for QCD, which match what

we know from lattice QCD results up to fourth order in µB, O(µ4

B
), in the region

where it applies, and include a critical point from the correct universality class. This

was accomplished through the following strategy:
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I. Choose a location in the phase diagram, (µBC , TC), at which to put a critical

point;

II. define a suitable parametrization to describe the universal scaling behavior of

the Equation of State in the 3D Ising model near the critical point;

III. map the 3D Ising model phase diagram onto the QCD phase diagram via a

parametric change of variables;

IV. use the thermodynamics of the Ising model EOS to estimate the critical contri-

bution to the expansion coe�cients up to O(µ4

B
) from lattice QCD;

V. reconstruct the full pressure, matching lattice QCD up to O(µ4

B
) at µB = 0 and

including the correct critical behavior.

This approach is similar to and based on Refs. [107, 108], but di↵ers from these

previous e↵orts in that the critical contribution is built on top of a first-principle

result from lattice QCD, instead of relying on additional modeling.

It is important to highlight that this method assumes that the critical point of

QCD is the closest singularity to µB = 0 on the real µB axis. Only under this

assumption are we allowed to construct the EOS as detailed above. Additionally,

the placement of the critical point in each equation of state is done by construction,

meaning that no inferences or predictions regarding the existence or location of the

critical point can be made using the EOS alone. Instead of being a direct path

towards determining the properties of a possible QCD critical point, we present a

tool that can be used in conjunction with hydrodynamic simulations and comparisons
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to experimental results to assist in this goal.

3.3.1 Scaling the 3D Ising Model EOS

In order to formulate a suitable parametrization of the Ising model EOS, we introduce

the variables R and ✓, and define a map between these two variables and the Ising

variables (r, h)1:

M = M0R
�✓, (3.5)

h = h0R
��h̃(✓), (3.6)

r = R(1� ✓2), (3.7)

where M0, h0 are normalization constants, and

h̃(✓) = ✓(1 + a✓2 + b✓4),

a = �0.76201, b = 0.00804.

The 3D Ising critical exponents are � ' 0.326 and � ' 4.80, and the possible values

for new parameters are R � 0 and |✓|  ✓0 ' 1.154, where ✓0 is the nontrivial zero

of h̃(✓). Additionally, the values of the normalization constants are such that

M(r = �1, h = 0+) = 1,

M(r = 0, h) / sign(h)|h|1/�,

which yields M0 ' 0.605 and h0 ' 0.394. This parametrization accounts for the

correct behavior of the magnetization,M , as a function of r and h [107, 108, 109, 110].

1
The reduced temperature variable is referred to as r from here on.
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Figure 3.3: Visual representation of the parametrization defined in Eqs. (3.5-3.7.)
Left: lines of constant h and r in the ✓ � R plane, with solid and dashed lines,
respectively. Right: lines of constant ✓ and R in the h � r plane, with dashed and
solid lines, respectively.

Figure 3.3 shows a map of the parametrization defined in Eqs. 3.5-3.7, with lines of

constant h and r in the ✓�R plane and lines of constant ✓ and R in the h� r plane.

The goal is to obtain an expression for the pressure of the system. Starting from

our parametrization, the Gibbs free energy density is

G(h, r) = F (M, r)�Mh, (3.8)

where F (M, r) is the free energy density,

F (M, r) = h0M0R
2�↵g(✓), (3.9)

where ↵ ' 0.11 is another critical exponent, for which the relationship 2�↵ = �(�+1)

holds. Hence, we only need to solve for the function g(✓) to obtain an expression for

the Gibbs free energy density. This can be done using the fact that h = (@F/@M)h,

which yields the di↵erential equation

h̃(✓)(1� ✓2 + 2�✓2) = 2(2� ↵)✓g(✓) + (1� ✓2)g0(✓). (3.10)
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The solution is simply

g(✓) = c0 + c1(1� ✓
2) + c2(1� ✓

2)2 + c3(1� ✓
2)3, (3.11)

with

c0 =
�

1� ↵
(1 + a+ b),

c1 = �
1

2

1

↵� 1
{(1� 2�)(1 + a+ b)� 2�(1 + 2b)},

c2 = �
1

2↵
{2�b� (1� 2�)(a+ 2b)},

c3 = �
1

2(↵ + 1)
b(1� 2�).

With all factors determined, the expression for the pressure in the 3D Ising model

in terms of the scaling parameters R and ✓ can be constructed by noticing that the

Gibbs free energy density is equivalent to the negative of the pressure, G = �P ,

hence

PIsing(R, ✓) = h0M0R
2�↵[✓h̃(✓)� g(✓)]. (3.12)

This expression is dimensionless and completely analytic in (R, ✓) in the range of

parameter values. However, the map (R, ✓) 7�! (r, h) is not globally invertible.

3.3.2 Mapping Ising Variables to QCD Variables

Next, we want to map Ising variables to QCD coordinates. The goal is use Eq. (3.12)

to derive the critical contribution to thermodynamic observables. In this map, the

critical point of the 3D Ising model (r = 0, h = 0) will correspond to the critical
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point of QCD, whatever its location may be. Additionally, the lines or first-order

phase transition and crossover in the Ising model must match those in the QCD

phase diagram.

The simplest map that meets these requirements is a linear map in the form [111]:

T � TC

TC

= w(r⇢ sin↵1 + h sin↵2), (3.13)

µB � µBC

TC

= w(�r⇢ cos↵1 � h cos↵2), (3.14)

which can be visualized in Figure 3.4. There are six parameters involved in the

mapping, two of which, (TC , µBC), correspond to the location of the critical point

on the QCD phase diagram. The remaining parameters are scale factors, w and ⇢,

which determine the size and shape of the critical region2, and the angles that the r

and h axes form with lines of constant T , ↵1 and ↵2.

Now that we have mapped Ising variables to QCD variables, the result is the

double map

(R, ✓) 7�! (r, h) ! (T, µB). (3.15)

In order to apply the thermodynamics we developed for the Ising model to our

problem, we need an expression for T (R, ✓) and µB(R, ✓). Unfortunately, because

only the second step in our map is globally invertible, this cannot be achieved an-

alytically. Hence, we need to solve the following expressions for each point in the

2w is a global scaling factor for the variables r and h, so it determines the size and contribution

of the critical region with respect to the QCD phase diagram. ⇢ is a relative scaling factor, so it

roughly determines the shape of the critical region.
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Figure 3.4: Illustration of the non-universal map between Ising and QCD variables.

QCD phase diagram:

T (R, ✓)� Ti = 0, (3.16)

µB(R, ✓)� µBi = 0. (3.17)

We proceed by (i) choosing a range of interest for T and µB (ii) given a choice of

the paramters in the Ising-QCD map, we solve Eqs. (3.16) and (3.17) numerically for

a two-dimensional grid in T and µB in the desired range, which results in a discrete

inverse map (T, µB) 7�! (R, ✓). Though this solution is not analytic, it allows us

to convert the thermodynamics of the 3D Ising model in terms of (R, ✓) to QCD

variables, given a choice of parameters for the map (Eqs. (3.13) and (3.14).)

3.3.3 Strategy for Obtaining the Thermodynamic Behavior

Our two starting “ingredients” for the EOS are the lattice coe�cients at vanishing

baryonic potential and the parametrized Ising contribution. Clearly, we need to
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merge those two components in order to produce an equation of state for QCD that

satisfies our requirements.

We begin by rewriting the Taylor expansion coe�cients in Eq. (3.1) as the sum

of an “Ising” contribution coming from the critical point of QCD and a “non-Ising”

contribution, which contains any other behavior including other criticality present

in the T � µB region of interest. Mathematically, this can be expressed as

T 4cLAT
n

= T 4cnon-Ising
n

+ f(T, µB = 0)cIsing
n

, (3.18)

where f(T, µB = 0) is a regular function of the temperature and chemical potential,

with dimension of energy to the fourth power.

Eq. (3.18) allows us to obtain the non-Ising coe�cients, which we use to build

a Taylor expansion in µB, analagous to the lattice one. The advantage of using

the non-Ising coe�cients is that the expansion can be pushed to larger values in µB,

since the contribution from the critical point is removed. The result of this procedure

is an expression for the non-Ising pressure of a broad region of the phase diagram.

The critical behavior is introduced separately, under the assumption that the critical

contribution to the Taylor coe�cients from lattice QCD can be obtained by enforcing

the correct scaling behavior in the vicinity of the critical point.

The full pressure can obtained by adding the critical contribution at any point

in the T � µB plane to the Taylor expansion of the non-Ising pressure:

P (T, µB) = T 4
X

n

cnon-Ising
2n

(T )
⇣µB

T

⌘2n
+ PQCD

crit
(T, µB), (3.19)
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where the critical pressure is obtained from Eq. (3.12) using the map in Eq. (3.15)

and multiplication by the function f(T, µB) in Eq. (3.18):

PQCD

crit
(T, µB) = f(T, µB)P

Ising(R(T, µB), ✓(T, µB)). (3.20)

Since the choice for the function f(µB) is largely arbitrary, we consider the sim-

plest choice,

f(T, µB) = T 4

C
. (3.21)

At this point, it is important to note that not every choice of parameters will

result in a thermodynamically stable model. The only property guaranteed by this

procedure is that, for any choice of parameters, the coe�cients at µB = 0 match what

we known from lattice QCD. Ensuring thermodynamic stability requires additional

steps, which will be discussed in detail in Chapter 4.

3.3.4 Taylor Coe�cients in the Ising Model

In order to obtain the contributions to the expansion coe�cients of the pressure from

the Ising model, we need to calculate the derivatives of the pressure with respect to

baryon chemical potential at fixed temperature:

cIsing
n

(T ) =
1

n!
T n

@nP Ising

@µn

B

�����
µB=0

=
1

n!
�Ising

n
(T ). (3.22)

Though the expression we obtained for the critical pressure is terms of the vari-

ables (R, ✓), not (r, h) or (T, µB), we can use the rules for the derivative of the
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inverse and the multivariate chain rule to obtain each term as an analytic function

of (R, ✓). Once all terms are calculated, we can use Eqs. (3.16) and (3.17) to convert

all quantities back to QCD coordinates.

For instance, the following expressions need to be calculated,

�n(T, µB = 0) = �T n

 
@nG

@µn

B

!

T

.

If we take n = 1, the expression can be rewritten as

�1

T
=

 
@G

@µB

!

T

= �

 
@G

@r

!

h

@r

@µB

�

 
@G

@h

!

r

@h

@µB

, (3.23)

where

 
@G

@r

!

h

=
@G

@R

 
@R

@r

!

h

+
@G

@✓

 
@✓

@r

!

h

,

 
@G

@h

!

r

=
@G

@R

 
@R

@h

!

r

+
@G

@✓

 
@✓

@h

!

r

.

Next, we need to find explicit expressions for the dependence of (R, ✓) on (r, h).

This can be accomplished by (i) using the rule for the derivative of the inverse, which

will allows us to express derivatives of (R, ✓) with respect to (r, h) as combinations

of derivatives of (r, h) with respect to (R, ✓), and (ii) using the rule for derivatives

of a function with another function held constant.

First, let us define the rule for the derivative of the inverse. Let fn be the nth

derivative of an invertible function that depends only on the variable x, f = f(x),

fn =
dnf

dxn
.
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The following recursive relationship holds

f 2n�1

1

dnx

dyn
= P n, with Pn+1 = f1P

0
n
� (2n� 1)f2Pn, (3.24)

where Pn are the polynomials in {fk} (e.g., P1 = 1) and primed variables are di↵er-

entiated with respect to x.

Take for example the second order derivative of R with respect to r. Though we

do not know the dependence of R on r, using the relationship in Eq. (3.24), we see

that it can be expressed as combinations of the derivatives that we do know, namely

those of r with respect to R:
 
@2R

@r2

!

h

= �

 
@2r

@R2

!

h

 
@r

@R

!�3

h

.

Lastly, we will use the following relationship for derivatives of a function with

another function held constant:
 

@

@x1

!

y1

y2 =

 
@

@x1

+

✓
dx2

dx1

◆

y1

@

@x2

!
y2. (3.25)

In our case, (x1, x2) corresponds to (R, ✓) and (y1, y2) to (r, h). Eq. (3.24) can

be applied as follows:
 
@h

@R

!

r

=

"
@

@R
+

✓
dR

d✓

◆

r

@

@✓

#
h =

h0R���1

2✓

1� ✓2

2��✓h̃(✓) + (1� ✓2)h̃0(✓)
. (3.26)

We can apply this relationship sequentially to obtain higher order derivatives.

Although these derivatives increase in complexity quite rapidly as we get to higher

order terms, they remain analytic in terms of the additional variables (R, ✓). This

allows us to have an expression for any these derivatives at any point in the QCD

phase diagram.
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3.3.5 Critical Contribution to the Pressure

Recall that because of charge conjugation symmetry, the QCD partition function

needs to be an even function of the baryon chemical potential,

Z(T,�µB) = Z(T, µB) (3.27)

which implies that the pressure is also an even function of µB. Thus, our equation of

state needs to account for the fact that QCD must present a critical point at �µBC

as well. The symmetric form of the pressure can be written as

P crit

QCD
(T, µB) =

1

2
f(T, µB)P

Ising

symm
[R(T, µB), ✓(T, µB)] (3.28)

=
1

2
f(T, µB){P

Ising[R(T, µB), ✓(T, µB)] + P Ising[R(T,�µB), ✓(T,�µB)]}.

(3.29)

The definition as presented in Eq. (3.29) does not a↵ect the singular critical

behavior at the critical point. It does, however, ensure that odd-power coe�cients in

the Taylor expansion vanish, which is what we desire. This modification also makes

the pressure at the critical point nonzero, whereas without the modification it would,

by definition, be zero.

3.4 Parameter Choice

The previous section outlined the strategy used to produce the pressure across a

range of temperatures and baryonic potentials in the QCD phase diagram. Now that

we have a procedure to generate the EOS, we need to make a choice of parameters for
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the Ising-to-QCD map. The choice of parameters is neither completely arbitrary nor

irrelevant – it is a key part of the process, and constraining the parameter space can

provide insight on physical properties of QCD through comparison with experimental

data.

There are two ways to constrain the parameter space: i) applying existing knowl-

edge about the QCD phase diagram and ii) studying the thermodynamic stability

of the EOS produced. We will explore the latter in Chapter 4. The former largely

reduces the array of acceptable parameters on its own. For instance, the decofine-

ment temperature is T ' 155 MeV along the temperature axis [56]. In addition, the

curvature of the transition line is negative [88, 112, 113], so we can safely infer that

the critical temperature must be TC . 155 MeV, and, as mentioned in Chapter 2, a

critical point in the region µB . 2T seems to be strongly disfavored.

It is also expected that the curvature of the transition line is extremely small,

hence the parameter ↵1, which determines the angle between the r axis and lines

of constant T , needs to be positive and very small. Unfortunately, we cannot make

a similar argument for the second angle, which remains largely arbitrary. For sim-

plicity, the results presented from here on are based on parameter sets for which

↵2 � ↵1 = ⇡/2, meaning the r � h axes are orthogonal.

In principle, the baryonic chemical potential at the critical point is not restricted

by any physical properties. However, we restrain its value to the range of the BES-II

program, µBC . 450 MeV.

Lastly, we focus on the scaling parameters, w and ⇢. These are certainly less
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Figure 3.5: The pressure obtained with the mapping from the 3D Ising model and
symmetrized around µB = 0 for the choice of parameters TC ' 143.2 MeV, µBC =
350 MeV, ↵1 = 3.85o,↵2 = 93.84o (left), w = 1, and ⇢ = 2, and for a smaller value
of w = 0.25 (right). We can see the singular behavior for µB > µBC , where the
first-order transition occurs. A smaller value of the scaling parameter w corresponds
to a larger Ising contribution to the pressure.

intuitive and due to the fact that the size and shape of the proposed critical region

are unknown, we need to be careful imposing any restrictions. In general, using

the µB = 0 axis as reference, the e↵ect of changing w while keeping ⇢ fixed is

equivalent to moving closer or further away from the critical point. Particularly,

because derivatives with respect to µB are proportional to 1/w, a smaller w results

in a larger Ising contribution to the pressure and its derivatives, i.e., a larger critical

region. This e↵ect is displayed in Figure 3.5, where a smaller w extends the critical

region, such that the pressure grows faster in the T and µB directions. The other

scaling parameter, ⇢, dictates the behavior of the pressure and its derivatives along

the temperature direction, moving away from the critical point. Currently, there are

no constraints on how the scaling in the T and µB direction compare to one another,

so the choice of ⇢ is mostly arbitrary.
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3.4.1 Reducing the Number of Parameters

Given the knowledge presented above, it is possible to reduce the number of parame-

ters in the Ising-to-QCD map from six to four. The transition line with an estimated

negative curvature can be approximated by a parabola,

T = T0 + T0

 
µB

T0

!2

+O(µ4

B
), (3.30)

where T0 is the transition temperature and  is the curvature of the transition line

on the T axis. Using this approximation and a choice of µBC , TC can be determined

from Eq. (3.30) and ↵1 is fixed by

↵1 = tan�1

 
2


T0

µBC

!
. (3.31)

With the goal of illustrating the process, consider µBC = 350 MeV, which is

approximately in the middle of the range of chemical potentials covered by BES-II,

and the value of  calculated in Ref. [88]. This choice yields

TC ' 143.2MeV ↵1 = 3.85o. (3.32)

Our choice to keep the r � h axes orthogonal means that ↵2 = 93.85o. Setting the

scaling parameters to w = 1 and ⇢ = 2 results in the pressure shown in the left panel

of Figure 3.5.

Using this procedure, for any choice of  and µBC , TC and ↵1 can be fixed using

Eqs. (3.30) and (3.31.)
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3.4.2 Parametrization of Lattice QCD Results

In addition to the thermodynamics of the Ising model, we also need the Taylor

coe�cients from lattice QCD in order to calculate the pressure as defined in Eq.

(3.19.) This work uses data from the Wuppertal-Budapest Collaboration [95, 114] for

the pressure and its derivatives at µB = 0. Unfortunately, the range of temperatures

of the available lattice QCD results is too narrow to generate an EOS that meets the

requirements of hydrodynamic simulations (30 MeV . T . 800 MeV). The available

data is also discrete, so some kind of smoothing needs to performed in order to

ensure that the derivatives with respect to T and µB do not present any pathological

or unphysical wiggly behavior.

We solved these issues using the following strategy:

I. For temperatures below the reach of lattice (T  135 MeV), data was generated

using the Hadron Resonance Gas (HRG) model.

II. The dependence of the pressure and its derivatives on the temperature was

parametrized in the desired temperature range.

The zeroth and fourth order susceptibilities were parametrized using a ratio of

fifth-order polynomials in the inverse temperature,

�i(T ) =
ai
0
+ ai

1
/t+ ai

2
/t2 + ai

3
/t3 + ai

4
/t4 + ai

5
/t5

bi
0
+ bi

1
/t+ bi

2
/t2 + bi

3
/t3 + bi

4
/t4 + bi

5
/t5

, (3.33)

while the second order susceptibility was parametrized using the expression

�2(T ) = e�h1/t
0�h2/t

02
· f3 · (1 + tanh(f4/t

0 + f5)), (3.34)
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Table 3.1: Parametrization constants for �0(T ), �4(T ), and �2(T ) in Eqs. (3.33) and
(3.34.)

�0(T ) �4(T ) �2(T )
a0 7.53891 0.0148438 h1 0.325372
a1 6.18858 0.0371572 h2 0.497729
a2 5.37961 0.0313008 f3 0.148987
a3 7.08750 0.0101907 f4 6.66388
a4 0.977970 0.00144661 f5 5.07725
a5 0.0302636 0.000159877
b0 2.24530 0.0673273
b1 6.02568 3.33723
b2 15.3737 13.6747
b3 19.6331 20.4745
b4 10.2400 13.6013
b5 0.799479 3.39819

where t = T/154 MeV and t0 = T/200 MeV [115]. Eqs. (3.33) and (3.34) were

calculated from lattice/HRG data in the range T = 5 � 500 MeV and extrapolated

to the range T = 5 � 800 MeV. The parametrization constants are given in Table

3.1.

The comparison of the parametrization to lattice and HRG results is shown in

Figure 3.6. The HRG model used to calculate the behavior of the susceptibilities at

low T does not take into account interactions and was constructed upon data from the

most up-to-date particle list (PDG2016+ [116]) from the Particle Data Group. The

smooth curves resulting from parametrizations are cLAT
n

(T ) in Eq. (3.18), which were

used to calculate cNon-Ising

n
(T ). This process is illustrated in Figure 3.7, which shows

both contributions, Ising and non-Ising, to the parametrized lattice/HRG curves for

the parameter choice TC = 143MeV, µBC = 350MeV,↵1 = 3.85�,↵2�↵1 = 90�, w =

1, and ⇢ = 2.

68



Figure 3.6: Parametrization of baryon susceptibilities from lattice QCD [95, 117]
and HRG model calculations for the parameter choice TC = 143MeV, µBC =
350MeV,↵1 = 3.85�,↵2 � ↵1 = 90�, w = 1, and ⇢ = 2.
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Figure 3.7: Comparison of critical (blue, dot-dashed) and non-Ising (red, dashed)
contributions to baryon susceptibilities up to O(µ4

B
) with the parametrized lattice

data (black, solid).
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3.5 Results

Now that all the components in Eq. (3.19),

P (T, µB) = T 4
X

n

cnon-Ising
2n

(T )
⇣µB

T

⌘2n
+ PQCD

crit
(T, µB),

have been obtained, an EOS can be generated for any choice of 6 or 4 (if the curvature

of the transition line is fixed) parameters [118]. The equations of state are in the

temperature range 30 MeV  T  800 MeV and in the chemical potential range 0

 µB  450 MeV.

3.5.1 Correcting the EOS at low T

Unfortunately, because of our choice of f(T, µB), the Ising coe�cients at low tem-

perature follow a power law, while the ones from lattice calculations decrease expo-

nentially. As a result, for some value of T , one or more of the non-Ising coe�cients

drops below zero, which leads to negative values for the pressure if the ratio (µB/T )

is large enough. This becomes a problem especially in the regions where (µB/T ) is

very large.

To solve this issue, we rely on the fact that, in the region where (µB/T ) is large,

we can safely expect the system to be a hadron resonance gas. We perform a smooth

merging of the pressure obtained through the Taylor expansion with the pressure as

described by the HRG model using the hyperbolic tangent:

PFinal(T, µB)

T 4
=

P (T, µB)

T 4

1

2

"
1 + tanh

T � T 0(µB)

�T 0

#
+

PHRG(T, µB)

T 4

1

2

"
1 + tanh

T � T 0(µB)

�T 0

#
.

(3.35)
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Here, T 0(µB) is the switching temperature and �T is the size of the overlap

region, where both pressures contribute to the sum. We set the dependence of the

switching temperature on the baryon chemical potential to be a parabola parallel to

the transition line in Eq. (3.30):

T 0(µB) = T0 +


T0

µ2

B
� T ⇤, (3.36)

where T0 and  are the transition temperature and curvature of the transition line

on the T axis. We choose T ⇤ = 23 MeV and �T 0 = 17 MeV in Eq. 3.35.

This correction eliminates the pathological behavior of the Taylor expansion at

low values of T , while conserving the expected correct behavior in the chosen range

of the phase diagram.

3.5.2 Full Thermodynamic Description

Now that we have a full description of the pressure, we can compute di↵erent thermo-

dynamic observables for a complete description of the equation of state. We calculate

the entropy density, baryon density, energy density, and speed of sound (normalized

by the correct power of temperature):

S(T, µB)

T 3
=

1

T 3

 
@P

@T

!

µB

(3.37)

nB(T, µB)

T 3
=

1

T 3

 
@P

@µB

!

T

(3.38)

✏(T, µB)

T 4
=

S

T 3
�

P

T 4
+

µB

T

nB

T 3
(3.39)

c2
s
(T, µB) =

 
@P

@✏

!

S/nB

(3.40)
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For the sake of simplicity, we rewrite the expression for the speed of sound in

terms of derivatives of the pressure with respect to the temperature or the chemical

potential [119]:

c2
s
=

n2

B
@2
T
P � 2SnB@T@µBP + S2@2

µB
P

(✏+ P )[@2
T
P@2

µB
P � (@T@µBP )2]

. (3.41)

Figs. 3.8 show the pressure, entropy density, baryon density, energy density, and

speed of sound in the ranges 30 MeV  T  800 MeV and 0  µB  450 MeV using

the parameters TC ' 143.2 MeV, µBC = 350 MeV, ↵1 = 3.85o,↵2 = 93.84� (left),

w = 1, and ⇢ = 2. Figs. 3.9-3.11 show the same quantities for other possible choices

of parameters. In Fig. 3.9, we see that choosing a larger w results in a smaller

critical region (critical e↵ects hardly appear in first order derivatives), whereas for

a smaller w, as in Fig. 3.10, the critical e↵ects are enhanced. Fig. 3.11 shows a

di↵erent choice of location for the critical point, and we can see that the peaks and

troughs associated with the critical point are also shifted.

Finally, although not very evident from the pressure, the critical point generally

manifests itself clearly in first-order derivatives (entropy, baryon, and energy density),

where the discontinuity due to a first-order phase transition is visible at µB > µBC .

Furthermore, the speed of sound shows a clear dip at the critical point, as well as a

(less evident) discontinuity at µB > µBC .
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(a) Pressure. (b) Entropy density.

(c) Baryon density. (d) Energy density.

(e) Speed of sound.

Figure 3.8: All five thermodynamic quantities computed from the EOS given the
choice of parameters specified in this section, after merging with HRG.
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(a) Pressure. (b) Entropy density.

(c) Baryon density. (d) Energy density.

(e) Speed of sound.

Figure 3.9: All five thermodynamic quantities compute from the EOS with parame-
ters corresponding to the same location of the CP and angles presented in Fig. 3.8,
but with w = 4 and ⇢= 1.
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(a) Pressure. (b) Entropy density.

(c) Baryon density. (d) Energy density.

(e) Speed of sound.

Figure 3.10: All five thermodynamic quantities compute from the EOS with param-
eters corresponding to the same location of the CP and angles presented in Fig. 3.8,
but with w = 0.75 and ⇢= 2.
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(a) Pressure. (b) Entropy density.

(c) Baryon density. (d) Energy density.

(e) Speed of sound.

Figure 3.11: All five thermodynamic quantities compute from the EOS with param-
eters corresponding to µBC= 400 MeV, ↵1 ' 4.40o, ↵2 � ↵1 = 90o, and w = 2, ⇢ =
2.
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Chapter 4

Applications of the Equation of

State

Now that an Equation of State with a critical point from the correct universality class

is available [120], we can use it to (i) study critical e↵ects on the thermodynamics

of heavy-ion systems at di↵erent collision energies and temperatures, and (ii) take

advantage of thermodynamic stability principles to constrain the size and shape of

the critical region. The sections below detail how our EOS was used to provide

insight on those two fronts ahead of BES-II results.

4.1 The Kurtosis of the Baryon Number

In Chapter 2, we introduced the idea that baryon susceptibilities diverge at the

critical point and are therefore the most promising observable in the search for the
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critical point. Particularly, promising data on �2 for the net-proton number resulted

from BES-I, as this quantity clearly displays a dip in collision energies between 5-100

MeV (see Fig 2.11). Though the dip is of large statistical significance, it does not

imply presence of a critical point on its own. Other explanations for the dip have

been proposed, such as the e↵ect of global conservation of baryon number, which is

expected to play a bigger role at low collision energies where the system is smaller

[121]. A dip has also been observed in finite µB Taylor expansions of lattice kurtosis

calculations [76]. Additionally, transport models that do not include any criticality

have been able to reproduce the decrease in �2 in finite densities [122], as shown in

Fig. 4.1.

Figure 4.1: Energy dependence of �2 of net-proton and net-baryon distributions for
0-5% Au+Au collisions from the UrQMD (left) and the AMPT string melting model
(right). Plots are from Ref. [122].
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4.1.1 Predicting the Behavior of Conserved Charges

In heavy-ion collisions, the three conserved charges are baryon number (B), strangeness

(S), and electric charge (Q). At vanishing baryon density, it is possible to calculate

the higher order BSQ susceptibilities on the lattice and then use them to reconstruct

the lower order ones at small finite baryon densities, which unfortunately has only

been accomplished with large numerical uncertainties so far [123, 76, 124]. In ad-

dition, there are e↵ective models capable of reproducing lattice QCD results that

include a critical point at finite baryon density. Fig. 4.2 shows the predictions for

the baryon susceptibilities from a holographic black hole engineering, which found a

critical point at TC = 89 MeV and µBC = 724 MeV, where the peaks in �2 and �4

are evident near the critical point [125].

Figure 4.2: Baryon number susceptibilities as functions of the temperature for di↵er-
ent values of the baryon chemical potential computed using holographic black hole
engineering from Ref. [125].

80



An alternative is to employ the universality of the critical behavior. This approach

has been used in Ref. [126], which proposes the non-monotonic behavior of the

kurtosis  of net-baryon number as a function of
p
s as a potential critical point

signature.

In that same work, it was shown that, up to the fourth order in the derivatives,

the leading divergence term comes from the third derivative of the critical mode

(the magnetization M) with respect to the magnetic field h at constant reduced

temperature t:

(t, h) =

✓
@3M

@h3

◆

t

. (4.1)

The predicted behavior for  along a parametrized freeze-out curve is shown in

Fig. 4.3 in terms of the reduced temperature. With respect to the baryon chemical

potential, the same curve, starting at µB = 0 and passing close to the critical point

would behave as follows. From its value at µB = 0,  is expected to decrease at

increasing µB, then move upwards and reach a peak in the vicinity of the critical

point.

The non-monotonic behavior of the kurtosis has been the main driving factor in

the experimental search for the critical point since a similar signature was measured

for �2 of the net-baryon number distribution during BES-I. Recall once again that

the data from the STAR experiment in Fig. 2.11 show �2 decreasing and then

swinging upwards as the collision energy decreases, similar to what is predicted in

Ref. [126]
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Figure 4.3: The dependence of the kurtosis, 4, on the reduced temperature, t, along
the vertical dashed green line on the density plot above along an arbitrary freeze-out
line from Ref. [126].

4.1.2 Why We Should Reconsider the Dip

Aside from possible explanations for the dip that do not require a critical point, the

main caveat to the results obtained in Ref. [126] is that only the leading divergence

terms were incorporated in the calculation of the kurtosis near the critical point.

However, when mapping the 3D Ising model onto QCD, additional sub-leading terms

appear because of the mixing between the two Ising variables, as discussed in Chapter

3.

Using the EOS with a critical point from the 3D Ising model, we found that these

mixing terms are strictly sub-leading only in the immediate vicinity of the critical

point, but can dominate elsewhere. The resulting overall kurtosis is thus di↵erent

from what is obtained when only leading terms are considered. After including all
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sub-leading expressions from the 3D Ising model critical point, we found that the

decrease of the kurtosis along the crossover line leading to the critical point appears

at temperature values larger or just barely incorporating the crossover line, making

it di�cult to observe it experimentally at the chemical freeze-out. However, we find

that the divergence of the kurtosis at the critical point leads to a peak that can

likely be measured along the freeze-out line. This is also consistent with the model

presented in Ref. [125]. Therefore, it is worthwhile to focus experimental e↵orts

not on the dip at intermediate collision energies, but rather on the rapid increase in

the kurtosis, which appears to be the common critical signature between di↵erent

analyses.

4.1.3 Results

From our EOS, we calculated the second and fourth susceptibilities of the baryon

number, using the choice of parameters in Table 4.1. The location of the critical

point was fixed at µBC = 420 MeV, which results in TC ' 138 MeV and ↵1 ' 4.6�,

while several values of the parameters (w, ⇢) were studied.

In addition, we consider two di↵erent choices for the relative angle between the

(t, h) axes. First, we keep the two axes orthogonal (↵2�↵1 = 90�), then we examine

the case with the angle between the two axes ↵2 � ↵1 = 330�1.

The second angle choice is interesting because the h axis is flipped in the map

and the angle between the two axes, ↵1�↵2 = �30� is small. This second point has

1
The second choice is motivated by Ref. [127], which obtained a similar value from a universality-

driven treatment of the map between 3D Ising model and QCD in the small quark mass limit.
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Table 4.1: The two sets of parameter choices we employ in this work. TC and ↵1

follow from the parametrization of the transition line in Eq. 3.30

µBC TC ↵1 ↵2 � ↵1 w ⇢
I. 420MeV 138MeV 4.6� 90� 0.75, 1, 2, 4 0.75, 1.5, 2
II. 420MeV 138MeV 4.6� 330� 0.75, 1, 2, 4 0.75, 1.5, 2

very important consequences. From our construction of the EOS, in particular the

map from Ising to QCD variables, the closer the Ising axes are to being parallel to

each other, i.e. small ↵1�↵2 = �30�, the stronger a critical behavior we can expect

to observe in the fourth cumulant of the net-baryon number. Additionally, the role

of the parameter ⇢ is enhanced, such that it more directly influences the range in

chemical potential over which a variation in the thermodynamics occurs.

We start by investigating the behavior of �B

4
(T, µB) = @4(p/T 4)/@(µB/T )4 on

the region close to the critical point T = 120 � 180MeV and µB = 390 � 450MeV.

�B

4
is related to the baryon number kurtosis  discussed above as �B

4
= �4. In

Figs. 4.4 and 4.5 the density plots of �B

4
(T, µB) in the (T, µB) plane are shown for

w = 0.75, 1.5, 2, 4 and ⇢ = 0.75, 1, 2 in the case of ↵2�↵1 = 90� and ↵2�↵1 = 330�,

respectively. The yellow and green areas correspond to positive values (the regions

where it is the largest are indicated in yellow) of �B

4
, while the blue ones correspond

to negative ones (darker blue in the regions where it is largest in magnitude). The

orange curve shows the QCD transition line from Eq. (3.30.) We note that in

Figs. 4.4 and 4.5 we only show the contribution to �B

4
from the critical point, without

the baseline non-Ising terms. Since our procedure stops at order O(µ4

B
), the total

contribution obtained in our approach di↵ers from the critical one by a constant in

µB, i.e. a function depending on the temperature only. Thus, a similar plot for the
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Figure 4.4: Density plots of the critical contribution to �B

4
(T, µB) in the (T, µB)

plane with a critical point located at (TC ' 138MeV, µBC = 420MeV), and with
↵2�↵1 = 90�, for (top to bottom) w = 0.75, 1.5, 2, 4 and (left to right) ⇢ = 0.75, 1, 2.
The critical point is indicated by a red dot, while the chiral/deconfinement transition
line is represented by the solid, orange line. The yellow regions indicate large, positive
values, while the dark blue ones indicate large, negative values.

85



Figure 4.5: Density plots of the critical contribution to �B

4
(T, µB) in the (T, µB)

plane with a critical point located at (TC ' 138MeV, µBC = 420MeV), and with
↵2�↵1 = 330�, for (top to bottom) w = 0.75, 1.5, 2, 4 and (left to right) ⇢ = 0.75, 1, 2.
The critical point is indicated by a red dot, while the chiral/deconfinement transition
line is represented by the solid, orange line. The yellow regions indicate large, positive
values, while the dark blue ones indicate large, negative values.
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total contribution would show the same features, shifted by a constant.

Although �B

4
diverges by construction for every choice of parameters, the size of

the critical region is still an unknown feature of the theory. Hence, how much the

divergence, in both the positive and negative direction, extends in the phase diagram

cannot be extracted from universality arguments. Yet, it is critical that we try to

determine to what extent it can be detected experimentally. Because the net-proton

kurtosis is measured only at the hadron gas phase, if the critical region is small,

it is possible that the divergence in the kurtosis would be nullified at the chemical

freeze-out.

We see in Figs. 4.4 and 4.5 that, as expected, a smaller value of w leads to a

larger critical region for both values of the relative angle ↵2 � ↵1, since @µB ⇠ 1/w.

We can also see that the main e↵ect of ⇢ seems to be that of changing the shape of

the critical region, resulting in a flattening and twisting of the “lobe-like” structures

that are most evident in the case of w = 0.75, ⇢ = 0.75. As discussed previously,

the parameter ⇢ in the Ising-to-QCD map indicates the relative scale between the

t (which we called r in Chapter 3) and h directions, so this was also expected.

Most importantly, the behavior of this observable is quite the opposite of what was

originally anticipated in Ref. [126]. The region where the kurtosis turns negative

is in fact either at temperatures above the transition line, or at chemical potentials

larger than the critical point one.

This demonstrates the importance of accounting for the sub-leading terms that

arise from the Ising-to-QCD mapping, as they indeed become relevant outside the

immediate vicinity of the critical point. While in the 3D Ising model the leading
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divergence comes from a derivative with respect to the magnetic field – see Eq. (4.1)

– in QCD we need to obtain the derivative with respect to the baryon chemical

potential. Because of the mapping between 3D Ising and QCD, in general these two

derivatives are related by:

@µB ⇠ At @t + Ah @h , (4.2)

where At and Ah are two quantities which depend on the mapping parameters that

are proportional to the cosines of the angles ↵1 and ↵2. Taking only the leading

divergence corresponds to setting @µB ⇠ @h, and hence @4
µB
⇠ @4

h
. The full expression

contains many additional terms. Dropping the additional terms is only justified as

At ! 0 and Ah ! 1. However, in realistic realizations of the Ising-to-QCD map, one

has At ⇠ 1, since ↵1 ⇠ 0, which alone prevents the additional terms in the derivative

from being negligible. Furthermore, in the case ↵2�↵1 = ⇡/2, we also have Ah ⇠ 0.

When ↵2 � ↵1 = 330� the situation is closer to the expected one. This can be seen

in Fig. 4.5, especially for ⇢ = 1.5, 2, where the dark blue (negative) lobe is turned

and falls in between the yellow (positive) ones.

Next, we show the behavior of the ratio �B

4
/�B

2
= �2 along parametrized freeze-

out lines. This is the observable for which the kurtosis of the net-proton number is

used as a proxy. Once again, we consider trajectories which are parallel to the chiral

transition line in Eq. (3.30):

T (µB) = T0 + 2 T0

✓
µB

T0

◆2

��T , (4.3)

where �T indicates the shift in temperature from the transition line.

First, we consider ↵2 � ↵1 = 90�, with (w, ⇢) = (0.75, 1.5), (1, 2) and (4, 0.75). In
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Fig. 4.6 the ratio �B

4
(T, µB)/�B

2
(T, µB) is shown as a function of µB along the lines

in Eq. (4.3) with �T = 4� 14MeV (in intervals of 1MeV).

Under this set of parameters, we observe a slow decrease with increasing chemical

potential – decreasing collision energy – then a rapid increase. This closely matches

BES-I results from the STAR collaboration, though the error bars from experimental

data are sizeable.

As discussed earlier, the presence of a clear, pronounced peak in the measurements

at low collision energies would be an unambiguous signal of the presence of the critical

point. However, it is not clear whether the initial decrease can also be attributed

to critical behavior. Since our EOS allows us to compute the Taylor expansion for

the pressure using only the non-Ising coe�cients, we considered the case where there

is no contribution from the Ising critical point. The results are shown in Fig. 4.7,

where we performed the calculations using the same lines as in Fig. 4.6, but with

no critical point. The decrease, or dip, is clearly observed in the case without the

critical point, which leads us to the conclusion that it is built into the underlying

non-critical behavior.

To further make the case, in Fig. 4.8, we show the same curves that included a

critical contribution in Fig. 4.6, but this time subtracting the underlying behavior

shown in Fig. 4.7. We see that the decrease is completely erased and that the only

signal associated with the presence of the critical point is the sharp increase.

Even when di↵erent parameters are chosen, the overall features and behaviors

as (w, ⇢) is changed remain the same. In Figs. 4.9 and 4.11 we show the plots
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Figure 4.6: Chemical potential dependence of �B

4
/�B

2
along lines parallel to the chi-

ral/deconfinement transition one (as defined in Eq. (4.3)), with�T = 4�14MeV, for
1MeV intervals. The critical point is located at (TC ' 138MeV, µBC = 420MeV),
and ↵2�↵1 = 90�. From left to right we have (w, ⇢) = (0.75, 1.5), (1, 2) and (4, 0.75).
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Figure 4.7: Chemical potential dependence of �B

4
/�B

2
along the same lines as in

Fig. 4.6, in the absence of a critical point. The color coding defined in this Figure is
the same as in Fig. 4.6 and will be maintained in all remaining figures shown in this
chapter.
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Figure 4.8: Chemical potential dependence of �B

4
/�B

2
along lines parallel to the

chiral/deconfinement transition one (as defined in Eq. (4.3)), with �T = 4�14MeV,
for 1MeV intervals, after subtracting the underlying behavior. The critical point is
located at (TC ' 138MeV, µBC = 420MeV), and ↵2 � ↵1 = 90�. From left to right
we have (w, ⇢) = (0.75, 1.5), (1, 2) and (4, 0.75).
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corresponding to ↵2 � ↵1 = 90� and ↵2 � ↵1 = 330�, respectively. In Figs. 4.10

and 4.12 we show the same plots, but subtracting the underlying behavior. The

plots indicate that when w is increased, while other parameters are kept constant,

the e↵ect of the critical point is reduced. In addition, a smaller angle di↵erence

enhances such e↵ects.

4.1.4 Implications for BES-II and Future Experiments

What this analysis shows is that clearly we cannot infer the presence of a critical

point based solely on the experimental observation of a decrease in �2 for the net-

proton count as function of collision energy. There is evidence that the small dip can

be accounted for even when no critical point is present in the system. However, the

peak has thus far been a consistent indicator of criticality, and once smaller error

bars are obtained at lower collision energies, it would represent a clear signal in favor

of the existence of the critical point.
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Figure 4.9: Chemical potential dependence of �B

4
(T, µB)/�B

2
(T, µB) along lines par-

allel to the chiral/deconfinement transition one (as defined in Eq. (4.3)), with
�T = 4 � 14MeV, for 1MeV intervals. The critical point is located at (TC '

138MeV, µBC = 420MeV), and ↵2�↵1 = 90�; from top to bottom w = 0.75, 1.5, 2, 4,
and from top to bottom ⇢ = 0.75, 1, 2.
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Figure 4.10: Same curves as in Fig. 4.9, with the underlying behavior subtracted.
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Figure 4.11: Chemical potential dependence of �B

4
(T, µB)/�B

2
(T, µB) along lines

parallel to the chiral/deconfinement transition one (as defined in Eq. (4.3)),
with �T = 4 � 14MeV, for 1MeV intervals. The critical point is located at
(TC ' 138MeV, µBC = 420MeV), and ↵2 � ↵1 = 330�; from top to bottom
w = 0.75, 1.5, 2, 4, and from top to bottom ⇢ = 0.75, 1, 2.
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FIG. 9. Same curves as in Fig. 8, with the underlying behavior subtracted.Figure 4.12: Same curves as in Fig. 4.11, with the underlying behavior subtracted.
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4.2 Imposing Thermodynamic Stability Using Neu-

ral Networks

Recall from Chapter 3, that while some constraints can be placed on the choice of

parameters for the Ising-to-QCD mapping in Eqs. (3.13) and (3.14),

T � TC

TC

= w(r⇢ sin↵1 + h sin↵2),

µB � µBC

TC

= w(�r⇢ cos↵1 � h cos↵2),

there are no arguments that can be made to constrain the scaling parameters w

and ⇢. An alternative to the lack of lattice or universality arguments on this front

is to require the system to be thermodynamically stable. That is not to say that

thermodynamic stability is not a requirement in general, but by making use of it and

performing a systematic scan of the possible values for (w, ⇢), while keeping other

parameters fixed, we can learn about what values are allowed and which ones are

pathological.

In order to test this idea, we fixed the location of the critical point at µBC =

350MeV and TC = 143MeV, as well as the angles, ↵1 = 3.85� with ↵2 � ↵1 = 90�,

and changed the value of (w, ⇢) within the interval (0, 2)⇥(0, 4) in 0.25 increments for

w and 0.5 increments for ⇢. The results are shown in Fig 4.13, which indicates that

values of (w, ⇢) that correspond to larger critical region – i.e. small w – are forbidden

and there is an apparent dependence on ⇢, so both parameters are relevant for the

thermodynamic stability of the EOS.

Though insightful, the process of individually calculating the EOS along with
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Figure 4.13: Plane of (w, ⇢) values. The red squares correspond to pathological
parameter choices and the blue circles to allowed values.

every thermodynamic observable and then checking every point for every choice of

parameter for pathological behavior is time-consuming and computationally ine�-

cient. An alternative to all this computational labor is to use a machine learning

classification algorithm – namely, an Artificial Neural Network (ANN) – that can

identify what makes a parameter choice “good” or “bad” and then classify new pa-

rameter choices based on whether “good” or “bad” features are detected in the EOS.

Another advantage of this method is that, since all thermodynamic observables are

derivatives of the pressure, we expect that these features can be detected in the

pressure, which would eliminate the need to compute and check the derivatives.
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4.2.1 Strategy and Methods

Under the premise that we can identify pathological patterns in the pressure and

classify a specific choice of parameters as pathological/acceptable without calculating

numerical derivatives, we adopted the following strategy:

i. First, we produce a small subset of equations of state within the (w, ⇢) range of

interest.

ii. For this small subset, we check every point for every thermodynamic quantity

for stability and causality.

iii. Then we tag each set of parameters as “acceptable” or “pathological,” and use

the pressure only as training data for the ANN.

iv. Once the network has been trained using the small subset of parameters, gener-

ate an EOS (pressure only) for each value of (w, ⇢) within the range of interest.

v. Run the set of pressure data through the ANN, which will classify each choice

of parameter as “acceptable” or “pathological,” with a prediction confidence

between 50-100%.

Neural networks were designed to mimic information flow in the human brain and

its billions of neurons that communicate with each other via electric signals. In an

Artificial Neural Network, each neuron receives signals from the previous layer – the

first one being the input layer – and if a certain threshold is exceeded, that neuron
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is activated, and passes on information onto the next layer. A simple mathematical

model for an artificial neuron is given by

y = f

 
nX

i=1

wixi

!
= f(u). (4.4)

Here, the output y of the neuron is the value of its activation function, which

have as input a weighted sum of signals xi, . . . , xn received by n other neurons.

An artificial neural network will have layers of connected neurons, which interact

with each other via mathematical functions defined between each layer. Most ANN’s

are comprised of an input layer, an output layer, and hidden layers in between. In

the case of classification networks, each hidden layer can contain an arbitrary number

of neurons, or nodes, but the input layer must have as many nodes as input signals

while the number of nodes in the output layer must match the number of classes.

The connection between two nodes is associated with a weight variable wi.

In general, the goal of a classification NN is to divide the input received into

two or more classes of outputs. In order to do that, we must produce a model that

systematically assigns inputs into one of these classes. In our case, the two classes

are “acceptable” and “pathological,” which determine if a set of parameters complies

with thermodynamic stability and causality.

The first step in creating an ANN is to pre-process the data, so that only the

essential information goes through the network. If we take the (w, ⇢) plot shown in

Fig. 4.13 in 0.1 increments in both variables, we have a total of 648 combinations of

parameters. For each of these parameter choices, the pressure contains data ranging
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Preprocessing		
•  The	EoS	calculates	pressure	on	a	451x771	grid.	Each	file	contains	3D	data	for	

347,721	points	(~15	MB).		

•  Parameter	space	contains	648	points.		

•  15	MB	x	648	=	10GB	of	data	for	each	choice	of	CP.	Impossible	to	feed	to	a	NN.		

•  Preprocessing	is	a	key	component	of	the	process.		

	

Pressure	

Pressure	

Pressure	

P5,0	…	PT,	muB		…				P5,450	
																(…)	
	P800,0								…										P800,450		

c1	

c771	

(…)	PCA	

771x451	matrix	

648	x	3	x	347,721	 648	x	771	

Figure 4.14: Schematics of the data processing.

from 30�800MeV in T and 0�450MeV in µB, which is a total of 347,721 individual

points2. Feeding 347,721 points to a neural network is just as ine�cient as going

through the process of checking each thermodynamic observable. Therefore, for each

set of parameters, we take the pressure, map it onto a 771⇥451 matrix, and perform

a principle component analysis. We then take the first vector in the baryon chemical

potential basis, which generally accounts for ⇠ 98% of the variation in the pressure,

and use that as the input for the network instead of the full pressure. Using this

procedure the input data is reduced from 10GB (648 full pressure files) to about

33KB (648 vectors of dimension 771). The full process is illustrated in Fig. 4.14.

In terms of the design of the NN, the number of hidden layers has to be optimized

on an empirical basis. The optimization is done based on the minimization of the

loss, which is a function that measures how well the network accomplished its task.

The final network design is shown in Fig. 4.15. The input layer has 771 nodes, each

corresponding to an entry in the principle component. The input layer is followed by

2 layers of 200 nodes and an output layer containing the two nodes corresponding to

2
The output from the EOS is given in the form: (µB , T, P ), so there are actually 3 ⇥ 347, 721

values in each file.
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Hidden	
Layers	

Input	
Layer	

	

Output	
Layer	

	

200	nodes	

771	nodes	

2	nodes	

	.	.	.		

✓	 ✗	

	.	.	.		

c1	 c2	 c768	 c769	 c770	 c771	c3	 c4	

f1,1	 f1,2	 f1,199	 f1,200	

f2,1	 f2,2	 f2,199	 f2,200	

Figure 4.15: Visual representation of the ANN design implemented in the classifica-
tion of EOS as thermodynamically acceptable or pathological.

pathological and acceptable parameter choices. In our design, each neuron receives

input from all preceding neurons but no feedback from the layers ahead of it, making

it a fully-connected Feed-Forward Neural Network (FFNN).

The weights for each neuron must be adjusted using a training data set, for which

the desired outcome must be known. In our case, the points in Fig. 4.13 were used,

since we had already confirmed whether those parameter sets were acceptable or

pathological choices.

4.2.2 Results

It is important to note that analysis cannot provide any information regarding why

a certain set of parameters is pathological, it can only identify choices that result

in either the negativity of thermodynamic quantities or the violation of causality, as

determined by pathological features identified by the network in the training data.
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Figure 4.16: Front plane: values of (w, ⇢) where red squares correspond to patho-
logical parameter choices and blue circles to allowed values. Background: A finer
grid of values in the same (w, ⇢) plane classified by the FFNN as pathological (red)
or acceptable (blue), where the intensity of either color corresponds the confidence
level of the classification as shown in the legend on the right. The other parameters
were kept fixed at µBC = 350MeV, TC = 143MeV, ↵1 = 3.85�, and ↵2 � ↵1 = 90�.
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The finer grid obtained using the FFNN is shown in Fig 4.16 in the background

with the same training data from Fig. 4.13 overlaid on top. How confident the

network is on the classification is determined by the activation function assigned to

the output layer. In our case, the hyperbolic function was used:

f(x) = tanh x. (4.5)

The threshold value is 0.5 for the “acceptable” neuron to be activated and�0.5 for

the “pathological” neuron to be activated. The plot in Fig 4.16 only shows parameter

choices as “acceptable” (blue) or “pathological” (red) if the output value is above

±0.60, because we consider values between 0.5 � 0.6 inconclusive. Those points –

which are concentrated along the transition between acceptable and pathological

choices – are shown in Fig 4.16 in white.

The NN method is a great indicator of the general layout of the acceptable and

forbidden regions. However, for points that fall close to the boundary between the

two regions, this network design does not give conclusive results. Therefore, it is

not a reliable tool to determine whether a specific choice of parameters is good

or bad. This method should be used as a computationally e�cient alternative to

determine the general location of acceptable and forbidden regions in the context of

large parameter scans.
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Chapter 5

Conclusions and Future Work

This thesis presented a procedure to construct a family of model equations of state

for QCD, each of which features a critical point in the 3D Ising model universality

class. An explicit expression for the critical contribution to QCD thermodynamic

quantities is obtained via a parametrized change of variables. This EOS can be used

in conjunction with hydrodynamic simulations of the fireball created in heavy-ion

collisions at energies that are relevant to the ongoing BES-II program. In addition,

the EOS can be coupled to hydrodynamic simulations for a Bayesian model-to-data

analysis using data from BES-I and, in the future, BES-II. Eventually, we hope

to include the other two conserved charges (strangeness and electric charge) in our

equation of state, which are just as important in the dynamics of heavy-ion collisions.

We also took advantage of the EOS to study the higher order susceptibilities of

the baryon number in QCD in the presence of a critical point in the 3D Ising model

universality class. We found that sub-leading terms that arise from the Ising-to-QCD
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map contribute significantly to the profile of the baryon number susceptibilities, con-

tradictory to what was expected based on previous works in the field. We established

that the decrease in the observable �B

4
/�B

2
, which is currently considered a possible

critical signature, can be attributed to other factors. We propose that experimental

e↵orts should instead focus on the rapid increase expected at the lower end of BES-II

collision energies, which is a consistent feature of �B

4
/�B

2
around the critical point.

Lastly, we proposed the use of a Feed-Forward Neural Network to study the

structure of the phase space of the EOS in terms of thermodynamic stability and

causality principles. The procedure we developed is a computationally e�cient way to

quickly rule out EOS parameters that violate thermodynamic stability and causality,

thus constraining the possible choices of parameters. We illustrate this idea by

varying the size and shape of the critical region, while keeping other parameters

constant, and we find that a large critical region is generally disfavored. In the future,

we hope to produce more training data, and explore the role of other parameters in

the thermodynamic stability of the EOS.
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[95] Szabolcs Borsányi, Zoltan Fodor, Christian Hoelbling, Sandor D Katz, Stefan
Krieg, and Kalman K Szabo. Full result for the qcd equation of state with 2+
1 flavors. Physics Letters B, 730:99–104, 2014.

[96] Alexei Bazavov, Tanmoy Bhattacharya, Carleton DeTar, H-T Ding, Steven
Gottlieb, Rajan Gupta, P Hegde, UM Heller, Frithjof Karsch, Edwin Laer-
mann, et al. Equation of state in (2+ 1)-flavor qcd. Physical Review D,
90(9):094503, 2014.
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