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Air bubbles entrapped in the ink channel are a major problem in piezo-driven inkjet printing. They
grow by rectified diffusion and eventually counteract the pressure buildup at the nozzle, leading to
a breakdown of the jetting process. Experimental results on the droplet velocity uy,, as a function
of the equilibrium radius R, of the entrained bubble are presented. Surprisingly, ug.,(Ro) shows a
pronounced maximum around Ry=17 um before it sharply drops to zero around Ry=19 um. A
simple one-dimensional model is introduced to describe this counterintuitive behavior which turns
out to be a resonance effect of the entrained bubble. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2397015]

I. INTRODUCTION

The number of possible applications of drop-on-demand
(DOD) printing has increased considerably in the last few
years. Beyond printing of text and pictures, the technique
will be or has already been applied in diagnostics, the phar-
maceutical industry, and the manufacturing of solar cells and
small and cheap devices." Stability of the inkjet printing
process and its reproducibility is crucial for most of these
applications. Moreover, a large jetting frequency is desirable,
in order to reduce the printing time.

Under normal conditions drop-on-demand piezo-electric
inkjet p1rinting3_9 fulfills all the requirements with respect to
stability and reproducibility. However, under certain condi-
tions an air bubble can be entrained in the nozzle,lof12 in
particular at large jetting frequencies beyond 20 kHz. This
air bubble grows by rectified diffusion: 13-16 While at pressure
maxima air is squeezed out of the bubble, this loss is over-
compensated at the pressure minima when the bubble ex-
pands, resulting in a net gas diffusion into the bubble. The
bubble growth first leads to a modification of the drop pro-
duction process and ultimately to the breakdown of the jet-
ting. In Ref. 12 we have introduced a method to acoustically
monitor the inkjet channel, using the piezo as a sensor. In
this way we could identify two different scenarios how
bubbles are entrained at the nozzle and what their long-time
effect is on the jetting. However, a direct optical observation
of the entrained bubbles was not possible, as standard inkjet
channels are not optically accessible.

In this paper we overcome this restriction by introducing
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a glass channel and a glass nozzle plate, so that direct obser-
vation of the entrained bubble and its radial and translational
dynamics becomes possible. The aim of the paper is to cor-
relate the bubble size (characterized by its equilibrium radius
R, at standard static pressure) with the droplet velocity gy
We will find that surprisingly the droplet velocity first in-
creases with increasing bubble size, namely from about
1.5 m/s without any air entrainment to about 2.5 m/s for an
air bubble with Ry=17 pum. Then it decreases sharply and at
a bubble radius of Ry=19 um the jetting breaks down.

The paper is organized as follows: In Sec. II we briefly
introduce the experimental setup. The main section is Sec.
I, where we present the correlation results between g,
and the bubble size R,. In Sec. IV we introduce a simple
one-dimensional model to qualitatively account for the ob-
servations. The comparison with the experimental data is fa-
vorable (Sec. V). Section VI contains the conclusions and an
outlook towards future work.

Il. EXPERIMENTAL SETUP

The printheads under consideration in this paper are
side-shooter printheads developed by Océ and used for pro-
fessional printing. The schematic setup of the printhead is
depicted in Fig. 1."? The channel block is a graphite block
with ink channels inside. The ink reservoir is connected to
the channel and can be set at a specified pressure. In the
rectangular ink channel one of the four walls is formed by a
piezo element. Under the action of an applied voltage, the
piezo first contracts increasing the volume of the ink channel
thereby reducing the pressure and drawing in ink from the
reservoir. During the second part of the pulse, the piezo ex-
pands, reducing the volume of the channel and ejecting a

© 2006 American Institute of Physics
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FIG. 1. (Color online) Sketch of the geometry of one ink channel of the
printhead, which typically contains 256 of such channels. Only one channel
on the printhead is actuated in our experiments. The pressure controlled
reservoir supplies ink to the rectangular ink channel with a length of 7 mm,
width of 200 um, and height of 150 um. The piezoelement of length of
5 mm is covered with a foil of 20 um thickness, which is in direct contact
to the ink. The nickel nozzle plate has round openings of diameter 30 um,
which serve as nozzles. The ejected droplets have a diameter of typically
35 pm.

drop. The pressure waves generated by the piezo travel to-
wards the ink reservoir, where they are reflected out of
phase, and to the nozzle, where they are reflected in phase.
The ink is pressed out through a 30 wm diameter electro-
formed nickel nozzle.

The piezo is actuated with 6 us trapezoidal pulses with a
repetition rate of 10 kHz, corresponding to one pulse every
100 ws, implying a 10 kHz firing frequency of the droplets.
More details of the driving protocol are given in Ref. 12. The
transfer function of the piezo voltage, V. to the (maximum)
nozzle velocity u, can be calculated from viscous acoustics
in pipes, as described, e.g., by Tijdeman.17 As shown in Fig.
2, in our printhead the dominant frequency is f=60 kHz.

To optically monitor the entrapped air bubbles, the stan-
dard printhead just described was modified. The nickel
nozzle plate was replaced with (i) a glass connection channel
and, in addition, (ii) a glass nozzle plate glued to it; see Fig.
3(a) for a sketch, Fig. 3(b) for a photograph, and Fig. 3(c) for

0.35

f =60 kHz

0 2 4 6 8 10
Frequency /Hz ¥ 10°

FIG. 2. The transfer function for the printhead under consideration showing
the dominant frequency at f=60 kHz. u,, is the nozzle velocity and V. is the
applied actuation voltage. The transfer function is calculated according to
Tijdeman’s model (Ref. 17) which from various measurements in other
channels is known to well represent the experimental one.

Phys. Fluids 18, 121511 (2006)

an enlargement of the entrained bubble. (i) The glass connec-
tion channel built by Micronit Microfluidics B.V. (Ref. 19) is
constructed from a glass plate with a thickness of 400 um.
The channel was obtained by powder-blasting the glass plate
from both sides, leading to an hourglass shape with a waist
diameter of approximately 80 wm and an inlet/outlet diam-
eter of 250 um. (ii) The glass nozzle plate was cut from a
70 pm thick glass plate, which again was powder-blasted
from both sides. The result is a conical nozzle shape with a
diameter of about 50 um at the channel exit and 30 wm at
the nozzle end.

The nozzle plate and the connection channel are glued
together to prevent leakage. The plates are then positioned
onto a standard printhead, replacing the nickel nozzle plate.
The glass is kept in place by small magnets, which push it
against the printhead. To permit visualization of the air
bubbles, a transparent ink was used. A continuous light
source illuminates the glass from the back. A Phantom V7
high speed camera records the ejected droplets and the en-
trained air bubble at the same time. Due to the limited focal
depth of the optical system, small bubbles in the ink channel
can be visualized without optical distortions. For the chosen
actuation voltage of 180 V, the droplet velocity without en-
trapped bubbles is ug,,=1.05 m/s.

In order to start the experiment we cause the entrapment
of an air bubble as described in Ref. 12. Under the action of
the oscillating pressure in the channel, the bubble grows by
rectified diffusion'*™" and causes the droplet formation to
stop. At this point the acoustic field is switched off and the
bubble starts dissolving. Shortly before the dissolution is
complete, actuation is resumed and the high speed camera is
triggered, recording the growth of the bubble and its effect
on the ejection of drops.

In Fig. 4 we show an example of the time evolution of a
bubble obtained in this way. We first let a bubble of initial
size Ry=26 um dissolve; there is no actuation. The dissolu-
tion rate is constant at about 0.5 pl/s, as seen from Fig. 4(b).
At t=165 s the actuation is switched on, leading to immedi-
ate jetting through the nozzle. The bubble which had nearly
completely dissolved then starts to grow by rectified diffu-
sion. Note the fast growth of the bubble compared to its
dissolution. Once it has reached an equilibrium radius of
about 19 um, jetting breaks down. This experiment shows
the strong influence of the size of the entrained bubble on the
jetting. Note that if we had waited some tens of seconds
longer before switching on the actuation, the bubble nucleus
would have completely vanished, and the nozzle would have
resumed jetting without any problem, until the occurrence of
the next bubble entrainment.'”

The recorded images of the ejected droplets and oscillat-
ing bubbles are analyzed with a gray-level threshold to de-
termine the location of the edges of the droplets and bubbles.
The images of both drops and bubbles only consist of some
tens of pixels, limiting the accuracy of the size determination
for smaller bubbles. Other sources of errors are optical dif-
fraction and the assumed sphericity of the droplets and
bubbles in the digital image analysis. For the ejected drops
and for the bubbles within the channel (away from the walls)
we do not have any indication of deviations from sphericity.
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FIG. 3. (a) Sketch of (i) the glass connection channel with (ii) the glass nozzle plate glued to it. (b) Photograph of half of the glass connection channel and
the glass nozzle plate under operation. An air bubble is present in the connection channel close to the nozzle and droplets are ejected. The multimedia part of
this figure shows a high-speed movie (taken at 40 000 frames per second) of the oscillating entrained bubble and the ejected droplets. (c) An enlargement of
the bubble in (b). Here the arrow points at the bubble, that is pressed against the glass nozzle plate. The little dark dots left to the bubble originate from dirt

on the glass connection channel (enhanced online).

However, the bubbles pushed against the glass nozzle plate
seem to be slightly nonspherical.

During the experiments the jetting frequency is kept con-
stant at 10 kHz. The frame rate of the camera is four times as
high, 40 kfps. Therefore, 4 frames are acquired during one
acoustic cycle, each at a different phase. To prevent motion
blur the exposure time was set to 3 us.

lll. EXPERIMENTAL RESULTS: BUBBLE SIZE
AND JET VELOCITY

In Fig. 5(a) the droplet velocity is displayed as a func-
tion of time. The actuation is started at r=0s. Up to
t=0.2 s, the droplet velocity increases, reaching a maximum
of 2.5 m/s. Then the droplet velocity gradually decreases to
Ugrop=1 m/s at t=0.9 s. A small amplitude oscillation of
f=50 Hz is superimposed onto the droplet velocity, reflect-
ing the ac frequency of the devices. This effect is negligible
compared to the effect of the entrained air bubble.

When the radius of the air bubble is plotted in Fig. 5(b),
it is evident that the air bubble grows over time by rectified
diffusion. The scatter in the bubble radius is found to be

quite large, due to the low contrast in the images and because
multiple bubble radii are measured over one acoustic cycle.
When we compensate for the latter by plotting the average
radius (over 40 bubble radii) the bubble growth becomes
more obvious as depicted in Fig. 5(c). Combining Figs. 5(a)
and 5(c) results in the droplet velocity ug, as a function of
the bubble radius Ry, Fig. 5(d). This figure is the main ex-
perimental result of this work. Surprisingly, ug, first in-
creases with increasing bubble radius. Around Ry~ 17 um
the droplet velocity has a pronounced maximum before drop-
ping sharply and jetting breaks down for bubble radii around
19 pm.

To estimate the error in the bubble radius arising from
averaging over only four frames per cycle, we numerically
model the bubble oscillations with the Rayleigh-Plesset
equation13 and then apply the very same averaging procedure
as in the experiment. We find that in our parameter regime
the error introduced is small as compared to other error
sources. The major error is caused by the low contrast and
hence the difficulties in edge detection. This error is esti-
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FIG. 4. Equilibrium radius R, (a) and corresponding bubble volume (b) as a function of time. Up to about =165 s there is no actuation and the bubble
dissolves. At t=165 s the actuation is started and the bubble, which was nearly fully dissolved, starts to grow by rectified diffusion. From the onset of actuation
up to the time that the bubble has reached about 19 um the nozzle is jetting. For larger bubbles the jetting breaks down.

mated to be +4 um (1 pixel). Note that this error is constant
for all bubbles, i.e., it is systematic and not statistical. There-
fore the shape of the curve, and in particular the existence of
the maximum, is not affected by it.

A quantitative explanation of the growth of the bubble as
a function of rime [Fig. 5(c)] and the dynamics of the bub-
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ble’s position will be presented elsewhere. In particular, we
will account for the observed saturation in size as a feedback
effect: The grown bubble counteracts the pressure buildup in
the channel. Being larger than its resonance size, the bubble
is pushed away from the pressure antinode against the nozzle
plate.
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FIG. 5. (a) The time development of the droplet velocity. At r=0 the actuation is started with an air bubble in the ink channel, resulting in an initial droplet
velocity enhancement. (b) The radius of the entrapped air bubble over time, showing large variation due to multiple frames during one acoustic cycle. (c) The
averaged bubble radius as a function of time. (d) Droplet velocity i, as a function of the equilibrium radius Ry, of the entrapped air bubble. The curve shows

a pronounced maximum.
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FIG. 6. Sketch of the one-dimensional disk bubble model. Note that in spite
of the (compressible) disk bubble we allow for an ink flow between channel
and nozzle.

IV. ONE-DIMENSIONAL DISK BUBBLE MODEL

What is the origin of the maximum in u,,,(R,)? It might
be expected that the main effect of the bubble in the inkjet
nozzle would be to counteract the pressure buildup in the
nozzle, as the bubble gets compressed, thus making jetting
more difficult. The experimental results, however, show that
the effect of the bubble is more subtle, as for small entrained
bubbles the droplet velocity increases. To get further insight
into the problem, we develop a simple one-dimensional
model. It will turn out that the droplet velocity increase is
due to a resonance phenomenon.

The nozzle flow and the bubble dynamics are both
driven by the channel acoustics. Note the feedback mecha-
nism: The sound-driven bubble emits a pressure wave that
propagates into the channel, modifying the channel acoustics
and thus ultimately its own dynamics. A complete analysis of
the system should therefore comprise the coupling of the
channel acoustics to the bubble and nozzle dynamics. For the
sake of simplicity, here we neglect the back-effect of the
bubble on the channel acoustics.

As shown already in Fig. 2, the channel transfer function
has a strong peak at f=60 kHz. To simplify the analysis, in
our one-dimensional model we will consider only this domi-
nant frequency and impose a sinusoidal velocity in the chan-
nel. Extensions are easily possible, but not necessary to un-
derstand the physics of the peak in iy

A sketch of the main ingredients of the model is shown
in Fig. 6. The channel has cross section A, and the time-
dependent velocity therein (averaged over the cross section)
is u.(t). The nozzle has an effective cross section A,, length
1,, and the time-dependent (average) nozzle velocity is u,,().
In between the channel and nozzle there is a disk-shaped
compressible bubble, reflecting the one-dimensional nature
of the model. In spite of the fact that, in this simple model,
the bubble would actually block the channel, we allow an ink
flow in the direction of the nozzle. The relevant feature of the
bubble is its compressibility. This disk model is based on
Oguz and Prosperetti’s work'® who suggested this simplifi-
cation for large bubbles in tubes.

The viscous friction in the nozzle is approximated by the
friction factor of Poiseuille flow. From the Navier-Stokes
equation, i.e., from balancing inertia, viscous friction, and
the pressure drop through the nozzle between the bubble of
pressure P, and the ambient pressure P, one obtains

Phys. Fluids 18, 121511 (2006)

%:L(Ph_PO)_gﬂjum (1)
t  pl, A,

where v is the kinematic viscosity and p the liquid density,
assumed to be constant.

We now must connect the nozzle velocity u, with the
channel velocity u.. In the absence of a bubble, continuity
dictates that A,u,=A u.. With the compressible bubble being
present, one obtains

()

The last ingredient is an assumed polytropic relation between
the bubble volume V,(r) and its pressure P,(z):

Vo )V
Py(1) Po( v,0) 3)
Within the one-dimensional disk bubble model the
bubble volume V), can be transformed into an effective thick-
ness [,(1)=V,(t)/A, and the equilibrium volume V; to an
equilibrium thickness /y=V,/A..
Upon combining the last two equations we get

dp, A
—b__p l)’l(—V—l)(_”Mn _ uc> 4
dr 0ol A, (4)
or, after linearization around the equilibrium volume [leading
to lb=10 in Eq (4)],

dp, P07<An )
=\ Tu,~u.).
dr Iy

A (5)

Equations (5) and (1) form a set of two linear first order
differential equations for the bubble pressure P,(r) and the

nozzle velocity u,(¢). Upon eliminating P, we obtain a
forced harmonic oscillator equation for the nozzle velocity

U, (1):
. . ) 2 \Ac
iy, + 281k, + wy(Ro)u, = wo(Ro)A_uc- (6)

The forcing is due to the channel velocity u.(z). The bubble-
size dependent eigenfrequency wy is given by

YPo A, 3yPuA,

2
wy(Ry) = = 7
0( 0) Plnlo Ac 47TplnR(?; ( )
and the damping coefficient is
41y
=—. 8
B A (8)
Both  the normalized amplitude  max,(u,(7,R))/

max,(u,(t,Ry=0)) [see Fig. 7(a)] and the corresponding
phase shift of roughly 7 [Fig. 7(b)] clearly show the reso-
nance behavior. Here we have used A,=1.3 X 10~ m? for the
nozzle cross section, ¥=1.0X 107 m2s~! for the kinematic
viscosity, 1,=70 um for the nozzle length, p=1090 kg/m?
for the ink density, fy=w/(27)=60 kHz for the dominant
frequency, and Py=101.3 kPa for the ambient pressure.
Though the Peclet number P€=Réf/K can approach 1, for
Ry=10 pum, f=60 kHz, and the typical heat diffusivity of air
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FIG. 7. (a) Ratio of the maximal nozzle velocity max,(u,(#,R,)) for the case with an entrained bubble to the maximal nozzle velocity max,(u,(t,R,=0)) versus
the equilibrium bubble radius R, within the one-dimensional disk bubble model. In (b) the respective phase shift is displayed, clearly signaling the resonance

behavior.

k=15X10"% m?/s one obtains Pe=0.4, for simplicity the
bubble has been assumed to behave isothermally throughout
the cycle, y=1. Taking the adiabatic value y=7/5 only leads
to a small shift of the maximum.

The location of the nozzle velocity maximum in Fig.
7(a) can straightforwardly be calculated, leading to the reso-

nance radius
1/3
) . )

res ( 37A2P 0
O "\ dmpl (w?A? + 641777

Using the above values for the parameters, we obtain

Ry*~13 um, in agreement with Fig. 7(a). The phase shift at

resonance is not exactly 7 as a result of viscous friction in

the nozzle.

V. COMPARISON

To compare the results of the model with the data, the
resulting droplet velocity must be calculated from the nozzle
velocity. This can be done with the method described by
Dijksman.3

The droplet formation is assumed to start when the
nozzle velocity becomes positive, and to end when the ki-
netic energy density of the forming droplet becomes larger
than the average kinetic energy density of the fluid flowing
out of the nozzle. The ink that is outside the nozzle at that
time is assumed to form the droplet. The droplet leaves the
nozzle with a kinetic energy equal to the kinetic energy of
the forming droplet at that time. The corrections for viscous
and capillary effects during the formation of the tail are ne-
glected. A parabolic flow profile is assumed.

For a sinusoidal driving velocity at a frequency of
f=60 kHz and the geometry of the experimental setup, the
droplet velocity monotonously depends on the nozzle veloc-
ity amplitude, see Fig. 8. Therefore, a single peak in the
nozzle velocity causes a single peak in the droplet velocity.
Physically, the threshold observed in Fig. 8 of course reflects
the finite amount of energy being necessary to form the sur-
face of a drop.

Using this droplet formation model, the droplet velocity
can be calculated as a function of the bubble radius, allowing
for a direct comparison of the model results with the experi-
mental ones, see Fig. 9. The amplitude of the channel flow
was chosen to yield the experimentally determined droplet
velocity in the absence of a bubble.

The bubble radius causing a maximum of 2.5 m/s in
the droplet velocity was experimentally found to be
Ry=17+4 pm. In contrast, the disk bubble model gives a
maximum in the droplet velocity at Ry=13 um (for a mean
nozzle radius of 20 wm), quantitatively slightly off, but in
reasonable agreement, considering the experimental system-
atic error of 4 um in the estimate of the bubble radius and
the simplifications of the model. The estimated maximum
velocity is 5.3 m/s, about twice the measured value.

For a nozzle radius of 15 um, the calculated maximum
in the droplet velocity shifts to Ry=9 wm, which is outside
the uncertainty interval, see the dotted line in Fig. 9. How-
ever, the maximum droplet velocity of 3.0 m/s is closer to
the measured velocity maximum.

20

15

00 5 10 15

u /ms™
n

FIG. 8. The droplet velocity calculated from the nozzle velocity according
to Dijksman (Ref. 3) assuming a parabolic velocity profile. A nozzle velocity
amplitude of at least u,=2.0 m/s is required to form a droplet.



121511-7 Entrapped air bubbles

/ms”

drop

FIG. 9. The droplet velocity ugy, as a function of the equilibrium radius R
The experimental results (solid) show a maximum in droplet velocity at
Ro=17 pm. The numerical model displays a maximum at Ry=13 um
(dashed) when the average nozzle radius 20 um (A,=1.3-10"° m?) is taken
as the relevant transversal length scale of the nozzle, and a maximum
at Ry=9 um (dotted) when the minimal nozzle radius of 15 um
(A,=7.1-10719 m?) is taken instead.

The results of the model are sensitive to the exact value
taken for the nozzle cross section. However, the shapes of
the predicted and measured peaks are very similar. Even the
sharp drop in droplet velocity for bubble sizes slightly below
the size where droplet formation stops is represented in the
one-dimensional disk model where it is caused by the infinite
slope of the droplet velocity as a function of nozzle velocity.

Very small bubbles (Ry<<1 um) do not influence the
droplet velocity. However, such bubbles are too small to be
optically detected.

VI. CONCLUSIONS AND OUTLOOK

The influence of the bubble size on the droplet velocity
in an inkjet printhead was measured and modeled with a
simple one-dimensional disk bubble model. As expected,
small bubbles have no effect on the droplet velocity. The
main finding of our work is that for intermediate bubble radii
the droplet velocity is increased by the bubble. This remark-
able phenomenon is caused by a resonance in the volume
oscillations of the bubble, which are driven by the flow in the
nozzle. Large bubbles cause nozzle failure. The droplet for-
mation ceases abruptly as the bubble radius increases.

After these mechanisms have been understood, our re-
search on the problem will go in several directions. First of
all, we will extend the one-dimensional disk bubble model to
a full, three-dimensional and two-way coupled numerical
model. We hope that with such a model the effect of the
bubble size and of its exact position on the droplet velocity
can be quantitatively captured. Next, we would like to quan-
titatively understand the bubble growth by rectified diffusion
and its dynamics in the ink channel. While rectified diffusion
is quantitatively understood in still liquid in the bulk, both
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the liquid flow along the bubble and the constrained geom-
etry in the nozzle strongly affect the bubble’s growth and
must be accounted for.

While we have revealed that small particles and an ink
layer on the nozzle can lead to air entrainment, ' it is not yet
clear why at certain frequencies and for certain shapes the
nozzle is more vulnerable to air entrainment than at others. A
resonance mechanism between the driving frequency and the
eigenfrequency of the meniscus may be the origin for this
observed strong dependence, and we plan to examine this
conjecture.

From an application point of view the ultimate goal must
of course be to avoid air entrainment or to immediately flush
out the bubble once it has been entrained.
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