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Abstract

In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies
under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a
predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers.
Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the
resource allocation problem in the mixed services scenariowhere certain users have a required rate, while the
others have flexible rate requirements. The solution is relevant to many communication systems that are limited by
a power spectral density mask constraint such as WiMax, Wi-Fi and UWB.

Index Terms
Power allocation, multi-carrier systems, rate control.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) is becoming a ubiquitous technique for
wireless multiple access schemes in communication systemssuch as UWB, WLAN, WiMAX and LTE,
due to its high spectral efficiency. OFDMA waveforms providethe flexibility of allocating subcarriers
to combat frequency selective fading. These standards operate under two types of power constraints:
Total power and power mask; i.e. the Power Spectral Density (PSD) of the transmitter is limited by the
regulator. The total capacity of OFDMA can be optimized by dynamically allocating subcarriers among
users according to channel conditions. However, the operator must satisfy the subscribers’ demands to
provide a reasonable level of Quality of Service (QOS). The standards define several different services
that allow QOS differentiation. The major challenges facing QOS in wireless networks are the dynamic of
the channels, bandwidth allocation, and handoff support. It is important to guarantee QOS at each layer so
that the network stays flexible. Bandwidth and bit rates playa major role. They should be allocated in an
efficient manner. In some systems data services and voice services have to be supported simultaneously.
These services can conflict because voice services are very delay sensitive and require real-time service.
Whereas, data services are less delay sensitive but are verysensitive to loss of data and require almost-
error-free transmission. Thus both factors must be taken into account when providing QOS for voice
and data services. In this paper, we address the allocation of subcarriers using a the weighted max-min
approach that sets user priority according to a preset weight. This approach is then extended to guarantee
a minimum data rate for voice services and allocate the residue capacity to data services.

In [1]a power adaptation method was suggested to maximize users’ total data rate in downlinks of
an OFDM system. The transmitted power adaptation scheme wasderived by solving the maximization
problem in two steps involving subcarrier assignment of users and power allocation of subcarriers. The
outcome is that the data rate of a multiuser OFDM system is maximized when each subcarrier is assigned
to only one user with the best channel gain for that subcarrier, and the transmit power is distributed
over the subcarriers by a water-filling policy. However, fairness does not enter into this approach. In the
extreme case most of the spectrum will be allocated to a smallgroup of subscribers with high average
channel gains. In [2] the problem of resource allocation of the OFDMA system was addressed. A heuristic
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scheduling algorithm was proposed under the constraint that each subscriber must obtain a preset data
rate.

Rhee and Cioffi [3] derived a multiuser convex optimization problem under the total power constraint
to find max-min suboptimal subcarrier allocation, where equal power is allocated to the subcarriers. A
max-min rate allocation algorithm maximizes the data rate of the worst user, such that all users operate
at a similar data rate. However, this solution is not suitable when the operator has to provide different
level of services. Shen et al. [4] proposed a suboptimal proportional fairness resource sharing mechanism
which provides multiple service levels under total power constraint while maximizing the total data rate.
The algorithm involves two steps. First, the subcarriers are allocated under the assumption that the power
is equal on each subcarrier. In the second step, the power is distributed among the allocated subcarriers
to maximize the total rate while maintaining proportional fairness constraints. An alternative approach to
the resource allocation problem is using game theoretic solutions such as the Nash bargaining solution
under total power constraint (see e.g., [5], [6]), [7] or under PSD mask constraint [8] as well as the
Kalai-Smorodinski solution [9], [10],[11].

Here, we focus on power spectral density maks constraint andintroduce the mechanisms to enable
explicit subcarrier allocation for multiple users in wireless systems when the following conditions must
be fulfilled:

1) Differentiated service levels must be supported. A wireless operator should have the flexibility to
specify differentiated service levels (or weights). The available radio resource has to be partitioned
proportionally to the weights.

2) Voice service is supported using a fixed data rate.
3) Computational and signaling overhead must be minimal. A primary design goal of an efficient

resource allocation algorithm is to minimize the communication and the computational load of
feedback iterations Algorithms have to be designed to calculate the allocation that puts a minimal
load on the system. Specifically, the time it takes to calculate the fair rate must be minimal.

In this paper, we show how the weighted max-min fairness design criterion can assist operators in
network optimization, at multiple target rates. Here, we use a model similar to [4] but employ a power
mask rather than an average power constraint. It is well known that the total data throughput of a zero-
margin system is close to capacity even with a flat transmit (PSD) as long as the energy is poured only into
subcarriers with high SNR gains. A good algorithm will not assign power to bad subcarriers. Furthermore,
a flat PSD might be necessary if the PSD mask constraint is tighter than the total power constraint.

The remainder of the paper is organized as follows. In section II we describe the general model of
the wireless system and derive a solution for the weighted max-min resource allocation problem. Section
III is focused on the special solution for the case of two subscribers and outlines a simple algorithm for
computing the weighted max-min solution. Simulation results are presented and discussed in Section IV.
Section V concludes this paper.

II. RESOURCE ALLOCATION USING THE WEIGHTED MAX-MIN SOLUTION

In this section, we show that under a PSD mask constraint the max-min fair solution can be com-
puted using linear programming. This is simpler than the total power constraint where general convex
programming is necessary. Assume that we haveN users, sharing a frequency selective channel. Let the
K channel matrices1 at frequenciesk = 1, ..., K be given by〈Hk : k = 1, ..., K〉. Each user is allowed to
transmit using a maximal powerp (k) in the k’th subcarrier. In this paper, we limit ourselves to a joint
FDM and TDM scheme where an assignment of disjoint portions of the frequency band to the various
transmitters can be different at each time instance as is done in Wimax. In the FDM/TDM case we have
the following:
1. Usern transmits using a PSD limited by〈pn(k) : k = 1, ..., K〉.

1These can be the uplink, downlink or multiple source-destination pairs within the network.
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2. Each usern is allocated a relative time vectorα = [αn1, ..., αnK ]
T whereαk is the proportion of time

allocated to usern at thek’th frequency channel. This is the TDM/FDM part of the scheme.
3. For eachk,

∑N

n=1
αnk = 1. This is a Pareto-optimality requirement.

4. The rate obtained by usern is given by

Rn(αn) =
∑K

k=1
αnkRnk, . (1)

where,

Rnk = log2

(

1 +
|hnn(k)|

2pn(k)

σ2
n(k)

)

and the subcarrier bandwidth is normalized to 1. Interference is avoided by time sharing at each frequency
band; i.e, only a single user transmits at a given frequency bin at any time. Furthermore, since at each
time instance each frequency is used by a single user, each user will transmit using the maximal power.
Note that we can replace the instantaneous rates by the long term averages using well known coding
theorems for fading channels [12]. This allows much slower information exchange and makes the proposed
approach practical in real wireless systems.

The weighted max-min fair solution with weightsγ1, ..., γN is given by solving the following equation:

Rmaxmin = max
α1,...,αN

min
1≤n≤N

γnRn(αn). (2)

To solve this equation we rephrase it as a linear programmingproblem: Letc be the value of the weighted
max-min rate. We would like to maximizec under the constraintsRn ≥ c, for all 1 ≤ n ≤ N . Since each
Rn depends linearly onαn we require

max
α1,...,αN ,c

c, (3)

under the constraints
0 ≤ c,
c
γn

≤
∑K

k=1
αnkRnk, n = 1, ..., N ,

∑N
n=1

αnk = 1, k = 1, ..., K.

(4)

The Lagrangian is given by:

f (α, δ,µ,λ, c) = −c−
∑N

n=1
δn

(

∑K

k=1
αnkRnk − c/γn

)

−
∑N

n=1

∑K
k=1

µnkαnk

+
∑K

k=1
λk

(

∑N

n=1
αnk − 1

)

− βc.

(5)

To better understand the problem, we first derive the KKT conditions. Taking the derivative with respect
to the variablesαn(k) and c we obtain

{

−µnk + λk − δnRnk = 0

−1 +
∑N

n=1

δn
γn

− β = 0,
(6)

with the complementarity conditions:






















λn

(

∑N
n=1

αnk − 1
)

= 0,

δn

(

∑K

k=1
αnkRnk − c/γn

)

= 0,

µnkαnk = 0,
βc = 0, µnk ≥ 0, β ≥ 0, δn ≥ 0.

(7)

Note that this problem is always feasible by choosingc = 0. Based on (6)-(7) we can easily see that the
following proposition holds:



OCTOBER 22, 2018 4

Proposition 2.1: The Lagrange multipliers in equation (7) satisfy the following claims:

1. If there is a non zero feasible solution thenβ = 0.
2. For each user with total rate equal toc > 0, δn > 0, and β = 0. Therefore,

∑N

n=1
δn/γn = 1.

Otherwise,δn = 0.
3. If αnk > 0, thenµnk = 0 andλk = δnRnk.
4. If αnk = 0, thenµnk ≥ 0 andλk ≥ δnRnk.

From these we obtain the following proposition:
Proposition 2.2: The weighted max-min fair solution is achieved if all users have equal weighted rates;

i.e., the optimalc satisfies for alln c = γnRn.
Proof: Let c be the optimal value. Assume that there is a usern with a rate higher thanc and letk be a
frequency such thatαn (k) > 0. Defineα′

n(k) = αn(k)− ε, and form 6= n: α′
m(k) = αm(k)+ ε/(N − 1).

Obviously the weighted rate for all other users is increased. Choosingε ≤ γn
∑K

k=1
αn(k)Rnk − c,

ensures thatRn > c. Since by construction all usersm 6= n achieve a rate higher thanc we obtain a
contradiction to the optimality ofc. This claim is important result from a network planning perspective.
The achieved rates are proportional to1/γn; in other words, users with ratesγm, γn will receive rates
satisfyingRm/Rn = γm/γn. This is desirable since utility typically scales withlogR, so that doubling
the rate results in a fixed increase in the total utility.

A. Voice and data rate allocation

In networks carrying mixed services, it is important to be able to allocate a fixed bandwidth, to constant-
bit-rate and latency-sensitive services such as voice services. The weighted max-min formulation can be
easily generalized to this case. Voice users (fixed rate) will get at leastRmin, while, other variable-bit-rate
users will get the weighted max-min rate according to their respective service levels. We have two groups
of users:V,D and the optimization becomes:

max
α1,...,αN ,c

c















0 ≤ c

c ≤
∑K

k=1
αikRnk, i ∈ D

Rmin ≤
∑K

k=1
αikRnk, i ∈ V

∑N
i=1

αi(k) = 1, k = 1, ..., K.

(8)

Here, one should solve the optimization problem first assuming that the setD is empty. This will confirm
that there is a feasible solution for the voice users. If there is a feasible solution for the setV then we
know that there is a feasible solution to the general problem. A simple version of this scenario is analyzed
in Example II in section IV.

We now show that the feasibility of a given rate allocation can be tested by solving a simple weighted
max-min problem, where the weights are given by the inverse of the desired rates. By proposition 2.2 the
solution to the weighted max-min problem with weights givenby γn = 1/Rd

n whereRd
n is the desired rate

for usern, provides the largestc such that for each usercRd
n = Rn. Hence the rate vector

(

Rd
1, ..., R

d
N

)

is
feasible if and only if the solution satisfies1 ≤ c. Otherwise the rate vector is infeasible. This completes
the solution of the feasibility problem. Note that the solution holds even when each constant bit-rate user
has a different rate requirement.

III. T HE TWO USER CASE

In this section, we address the special cases of two users. Inthis case the optimization problem can be
dramatically simplified. Using1 − 4 in proposition 2.1 above we can easily conclude that the partition
rules are as follows:

1) δ1
γ1

+ δ2
γ2

= 1. Special case of item 2 in proposition 2.1.
2) If δ1R1k > δ2R2k the frequency bink is allocated to user 1.
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3) If δ1R1k < δ2R2k the frequency bink is allocated to user 2.
4) If δ1R1k = δ2R2k the frequency bink is shared between the users such that they both get the same

total rate. based on item 3 in proposition 2.1.
An interesting consequence of our analysis is that in the twouser case at most a single subcarrier should
be shared between the users. This conclusion can be extendedto theN user case, where at most

(

N

2

)

frequencies are shared in time. The proof is given in appendix I.
Based on the above properties we suggest anO(K log2K) complexity algorithm motivated by our

analysis of the Nash Bargaining Solution (NBS) for the frequency selective interference channel [13], [8].
Extensions to the total power constraint are possible, similarly to the solution of the NBS [7]. We also
show that at most a single frequency may be shared between thetwo users. To that end, letα1k = αk,
andα2k = 1− αk, and without loss of generality, we setγ1 = 1, andγ2 = γ. The ratioΓ = δ2

δ1
= 1−δ1

δ1γ
is

a threshold which is independent of the frequency and is set by the optimal assignment. AlthoughΓ is
a-priori unknown, it exists. We also assume that the rate ratios L(k) = R1k/R2k, 1 ≤ k ≤ K are sorted
in decreasing order; i.e.L(k) ≥ L(k′), ∀k ≤ k′. 2 Using proposition 2.2 we obtain

K
∑

k=1

αkR1k = γ
K
∑

k=1

(1− αk)R2k. (9)

We are now ready to define the optimal assignment of theαk’s.
Let Γk be a moving threshold defined by

Γk =
Ak

Bkγ
(10)

where

Ak =

k
∑

m=1

R1m, Bk =

K
∑

m=k+1

R2m. (11)

Ak is a monotonically increasing sequence, whileBk is monotonically decreasing. Hence,Γk is also
monotonically increasing.Ak is the rate of user 1 respectively when frequencies1, ..., k are allocated to
him. Similarly Bk is the rate of user 2 when frequenciesk + 1, ..., K are allocated to him. Let

kmin = min
k

{k : Ak ≥ Bkγ} . (12)

We are interested in a feasible solution such that the ratio of the accumulated rate of the users will be
equal toγ. Thus, frequency binkmin has to be split between the users, andαkmin

is given by

Akmin−1 + αkmin
R1kmin

= γ (Bkmin−1 − αkmin
R2kmin

) , (13)

or
αkmin

=
γBkmin−1 −Akmin−1

R1kmin
+ γR2kmin

. (14)

It easy to confirm that0 ≤ αkmin
≤ 1.

The outline of the algorithm is given in Table I.

2This can be achieved by sorting the frequencies according toL(k).
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TABLE I
ALGORITHM FOR COMPUTING THE2X2 WEIGHTED MAX-MIN

Initialization: Sort the ratiosL(k) in decreasing order.
Calculate the values ofAk, Bk andΓk.
Calculatekmin using (12).
Calculateαkmin

using (13).
User1 gets the bins1 : kmin−1 andαkmin

of bin kmin.
User2 gets the binskmin+1 : K and1− αkmin

of bin kmin.

k 1 2 3 4 5 6
R1 14 18 5 10 9 3
R2 6 10 5 15 17 16
L (k) 2.33 1.80 1.00 0.67 0.53 0.19
Ak 14 32 37 47 56 59
Bk 63 53 48 33 16 0
Γk .178 .483 .617 1.14 2.80 ∞

TABLE II
USER RATES IN EACH FREQUENCY BIN AFTER SORTING, AND THE VALUES OFΓk .

IV. EXAMPLES AND SIMULATIONS

In this section we report simulation results on rate allocation for various values of weights.
To illustrate the algorithm we compute the weighted max-minsolution for the following example:

Example I: Consider two users communicating over a 2x2 memoryless Gaussian interference channel
with 6 frequency bins. The weights of user1 and2 are1 and1.25, respectively. The interference free user
rates in each frequency bin (sorted according toLk) are given in Table II. We now compute the values
of Ak andBk for each user. Since,Γ3 > 1 we conclude thatkmin = 4 andαkmin

= 0.8. Thus, user1 is
using subcarriers1, 2, 3, and sharing subcarrier4 with user2. The total rate of players1 and2 are45 and
36, respectively. We can also give a geometrical interpretation to the solution. In Figure 1 we draw the
feasible total rate that player1 can obtain as a function of the total rate of player2. The enclosed area in
blue, is the achievable rates set. Since, the subcarriers are sorted according toLk the set is convex. The
point (45, 36) is the operating point of the weight max-min withγ = 1.25. A change in the value ofγ
will move the solution on the boundaries of achievable ratesset.

Next, we demonstrate simulation results of rate allocationfor various values of weights in two cases. In
both cases the users are communicating over a frequency selective Rayleigh fading channel with variance
1. The number of frequency bins is 64Case 1, simulation of two data groups: The first case simulates two
groups of users, each group is of size 8. This is a typical scenario where one group has higher priority.
The weight for one data group isγ while for the second data group is1− γ, where0 ≤ γ ≤ 1. For each
value ofγ we have performed10000 tests. TheSNR values of the two data groups are20dB and10 dB
respectively. Figure 2 presents the distribution of the feasible rates for various value ofγ. It is clear that
for a given value ofγ the feasible rate will be along a ray with an angleφ = arctan γ

1−γ
relative to the

x axis. Figure 3 presents a histogram of the ray withγ = 0.1. Figure 4, presents the average value of
the feasible rate for group1 vs. average rate of group2. Figure 5 shows the outage regions for outage
probability of 0.1 and 0.05. We can clearly see that reducing the outage has significant impact on the
achievable rates.

Case 2, simulation of a voice group and two data groups: The second case simulates three groups of
users, a voice group of size 4 and two data groups each of size 8. The SNR value of the voice group
is 5dB and theSNR of the two data groups is20dB. Figure 6 shows the outage regions for outage
probability of 0.05,0.1 and0.5.
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Fig. 2. The distribution of feasible rates for each value ofγ. [SNR1, SNR2] = [20dB, 10dB].

V. CONCLUSION AND EXTENSIONS

In this paper we described a simple rate allocation technique for multiple-access OFDMA systems
applying joint TDM/FDM subchannel allocation. The method is applicable whenever a central access
point or base station is available. The complexity of the technique is very low. Furthermore, the allocation
can be done using channel statistics instead of the actual channels. We have also demonstrated how to
accommodate and test the feasibility of a set of constant rate users. Finally, we have analyzed the two
user case, and provided a very low complexity weighted max-min algorithm for this case.

VI. A PPENDIX

Lemma I.1 : Assume that all the rate ratiosR1(k)/R2(k) are different from each other then at most
a single frequency bin is shared between the two users.
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Fig. 4. The average rate of group2 vs. the average rate of group1 for [SNR1, SNR2] = [20dB, 10dB].

Proof: Based on 3 in proposition 2.1 a subcarrier is shared between two users ifδ1R1k = δ2R2k, or in
other wordsδ2

δ1
= R1k

R2k
. Hence, if all rate ratios are different, at most a single frequency may have a rate

ratio equal toδ2
δ1

.
Lemma I.2 : Assume that there is a solution where two subcarriers are shared between the users. Then

there is an alternative solution where only a single subcarrier is shared between the users.
Proof: Assume without loss of generality that subcarriers1, and2 are shared between users1 and2.

User 1 gets fractionsα1 andα2 from subcarriers1 and 2, respectively. User2 gets fractionsβ1 andβ2

from subcarriers1 and 2, respectively (whereαi + βi = 1). Based on proposition 2.1 the rate ratios in
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these frequency bins should satisfy the relationR11

R21
= R12

R22
, and the total rate of each user satisfies the

conditions:
c
γ1

= A+ α1R11 + α2R12

c
γ2

= B + β1R21 + β2R22

, (15)

whereA andB are the sum of rates of users1 and 2 on the other frequency bins. We note that in one
hand, ifα1

R11

R12
≤ β2, then user1 can setα1 to 0 while increasing his share in subcarrier2 by α1

R11

R12
. On

the other hand, whenα1
R11

R12
> β2 we obtainα1 > β2

R22

R21
. Therefore, user2 can setβ2 to 0 and increase

his fraction in subcarrier1 by β2
R22

R12
.

Lemma I.3 : In theN user case at most
(

N

2

)

frequencies are shared in time.
Proof Based on Lemma I.2. at most a single frequency bin is shared between any two users. Since

the number of different pair of users is
(

N

2

)

, then the maximum number of frequency bins that are time
shared is upper bounded by

(

N

2

)

.
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