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Abstract— Untethered magnetic navigation of millirobots
within a human body using a Magnetic Resonance Imaging
(MRI) scanner is a promising technology for minimally invasive
surgery or drug delivery. Because MRI scanners have a large
static magnetic field, they cannot generate torque on magnetic
millirobots and must instead use gradient-based pulling. How-
ever, gradient values are too small to produce forces large
enough to penetrate tissue. This paper presents a method to
produce large pulsed forces on millirobots. A ferromagnetic
sphere is placed inside a hollow robot body and can move back
and forth. This movement is created by alternating the magnetic
gradient direction. On the posterior side, a spring allows the
sphere to change direction smoothly. On the anterior side, a
hard rod creates a surface for the sphere to impact. This impact
results in a large pulsed force. The purpose of this study was to
understand the functioning of magnetic hammer actuation and
control, as well as demonstrate the viability of this mechanism
for tissue penetration. This paper begins with modeling and
simulating this system. Next, different control strategies are
presented and tested. The system successfully penetrated lamb
brain samples. Finally, preliminary tests inside a clinical MRI
scanner demonstrate the potential of this actuation system.

I. INTRODUCTION

The navigation of millimeter-scale robots through the

passageways of bodies is currently being studied as a method

to perform highly localized drug delivery or perform mini-

mally invasive surgery [1]–[3]. Untethered navigation can be

achieved by placing a ferromagnetic piece inside the robot

and producing a controlled magnetic field around a patient.

Propulsion and steering of millirobots can be accomplished

by either moving a permanent magnet assembly around a

patient [4] or by controlling the current inside electromagnets

[5]. The latest solution is often realized with an MRI scanner

which already includes several electromagnets. In an MRI,

the background field magnetizes the ferrous components

of the robot, and the gradient coils generate the magnetic

gradient necessary to produce forces. The Magnetic Reso-

nance Imaging (MRI) scanner can be used simultaneously

to provide real-time imaging of the operating area as well as

positioning of the robot.

The force generated on the millirobots is proportional

to the gradient field strength. Commercial MRI scanners

produce gradients in the range of 20 to 40 mT/m. These

gradients are sufficient to maneuver milli-robots inside fluid-

filled regions of the body, such as vessels, [6] but insuf-

ficient for tissue penetration that requires larger forces [7];
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Fig. 1. Schematic representation of a millirobot actuated by a magnetic
hammer.

tissue penetration is required for many procedures, including

brachytherapy and micro-biopsy. The purpose of this paper

is to present and study a method, denoted magnetic hammer

actuation, that can generate large pulsed forces for tissue

penetration. The paper demonstrates the capability of the

device to penetrate tissue and shows that an MRI scanner is

suitable to produce the external magnetic field and gradient

necessary for the actuation. The magnetic hammer is a

system embedded into the millirobot. The millirobot has a

tubular structure in which a ferromagnetic sphere can move

back and forth. This movement is produced by alternately

changing the gradient direction. On the posterior side of the

millirobot, a spring allows the sphere to change direction

smoothly. On the anterior side, a hard rod creates a surface

for the sphere to impact, the impact plate. This impact results

in large pulsed forces that enable penetrating body tissues

progressively. A magnetic test bench has been developed to

make experimental tests more practical and less expensive.

It includes coils, sensors, power electronics, and a real-time

controller.

The paper studies three control strategies. The open-loop

control switches the magnetic gradient direction at constant

frequency. It is completely independent of the sphere position

and uses no feedback. The partially closed-loop control

detects the impact of the sphere and switches the magnetic

gradient direction as soon as the impact is detected. The

original gradient direction is reapplied after a constant time

ts. The perfect closed-loop control assumes a theoretical

sensor able to measure the position of the sphere at any time.

It is capable of detecting the impact of the sphere as well as

the change of direction on the posterior side. The controller

is therefore able to change the direction of the gradient when

the impact is detected and when the change of direction on

the posterior side is detected.

The paper is organized as follows: first, the system is math-



Fig. 2. Picture of three millirobot prototypes actuated by a magnetic
hammer.
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Fig. 3. (i) Free length of sphere travel, L; (ii) free body diagram of sphere
when spring is compressed, (iii) when spring is not compressed.

ematically modeled, and its behavior is studied in Section

II. Secondly, parameters for the model are experimentally

measured (see Section III). Different materials for the impact

plate are compared. Thirdly, the magnetic test bench is

described and the test of a magnetic hammer is presented

(see section IV). Next, preliminary results from an open-

loop test performed in a clinical MRI scanner are presented

in Section V. The last Section (Section VII) is a conclusion

of this study.

II. THEORETICAL STUDY

A. Mechanical modelization

The motion of the sphere between two consecutive impacts

can be divided into two phases, based on the forces that act

on it. The magnetic gradient force Fmag and friction force

Ffriction act on the sphere during its motion along the free

length of the tube, L (see Fig. 3 (i),(iii)). When the spring is

compressed, its reaction force Fspring acts on the ball as well

(see Fig. 3 (ii)). The directions of Fmag and Ffriction change

depending on the direction of motion of the sphere. Inside

the homogeneous region of an MRI scanner, the magnitude

of Fmag is constant [8]. The same has been assumed for

developing analytical and numerical models in this paper.

The formula for calculating Fmag is presented in Section II-

B. Friction is considered negligible, but this assumption will

be relaxed in later sections. The spring force is given by

Fspring = kx, (1)

where x is the compression length, and k is the spring

constant. In the case of perfect closed-loop control, the

magnetic gradient direction is changed when the sphere hits
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Fig. 4. Closed-loop impact velocity for 150 impacts; k = 50 N/m; Fmag

= 1.5e-3 N; L = 0.03 m; ms = 5.58e-4 kg; rs = 2.5 mm.

the impact plate and when the sphere velocity slows to zero

when it compresses the spring. These two events represent

the instances when the sphere changes direction. In other

words, to maximize the impact velocity, the magnetic force,

and therefore, the magnetic gradient, are oriented in the same

direction as the sphere velocity vector. In the simulations,

the sphere changes direction after impact, and after the full

compression of the spring. The perfect closed-loop system

can therefore be easily modeled by applying a magnetic

gradient that is always in the same direction as the sphere

velocity.

An analytical model was developed by solving the system

of differential equations describing the dynamics of sphere

motion. This model allows predicting the impact velocity for

each impact, given a set of input parameters. The sphere-

impact plate system is assumed to have a coefficient of

restitution, e. This model assumes that the robot capsule

does not move. As seen in fig. 4, the impact velocity initially

increases and ultimately saturates for all values of e greater

than 0 and less than or equal to 1. The system reaches

a resonant state when the impact velocity saturates. This

happens when the energy lost by the sphere during impact

equals the energy gained by it during the rest of the cycle.

A higher e results in a higher impact velocity. For e = 1, the

impact velocity indefinitely increases since there is no energy

loss during impact. An analytical formula was derived to

predict the resonant impact velocity for a given set of input

parameters and for values of e between 0 and 1. This was

done by solving for the impact velocity at resonance, under

the condition that the velocities at impacts i and i + 1 are

equal. Using this condition, eq. (2) is derived by solving

the differential equations that define the dynamics of sphere

motion between impacts. The magnetic gradient is always in

the same direction as the sphere velocity vector. The results

given by eq. (2) were also verified by numerical simulations

in MATLAB.

vres =
2

√

Fmag

(

(e2+1)Fmag+(e2−1)(−k)L+
√

(2−2e4)kLFmag+(1+e2)2F2
mag

)

kms

1−e2

(2)

In the above equation, ms is the mass of the sphere in

kg. The radius of the ball rs indirectly influences the impact



Fig. 5. Geometry and variables used in equation eqs. (9) to (12)

velocity through Fmag and ms, both of which depend on the

volume of the sphere. The variation of vres with changes in

L, e, k,ms, rs, Fmag were plotted and they were all found to

be monotonic functions with no critical points. In eq. (2), vres

tends towards infinity as e tends to 1. In this case there is no

loss of energy during collision and hence, the impact velocity

indefinitely increases with subsequent impacts. Further, the

time between impacts at resonance, tres, is a constant value

and is given by eq. (3). tres is calculated by adding up the

time taken for the sphere to travel through each of the four

phases of motion defined in the introduction to eqn. 2. The

values tpos,1, tpos,2, tant,1 and tant,2 represent the time for

the sphere to move from xs = (i) L to 0, (ii) 0 to −xcs,

(iii) −xcs to 0, and (iv) 0 to L, all in a perfect closed-

loop system with optimal gradient switching. Here, xcs is

the maximum compression distance of the spring (See Fig.

3 (i)). The durations of motion for each of these individual

phases are calculated by solving the equations of motion

with the forces acting as shown in fig. 3. Friction has been

assumed to be negligible for these calculations.

tres = tpos,1 + tpos,2 + tant,1 + tant,2 (3)

tpos,1 =

√

e2v2res +
2LFmag

ms

− evres

Fmag

ms

(4)

tpos,2 =

π − tan−1

(

k

√

e2v2
res+

2LFmag

ms

ωFmag

)

ω
;ω =

√

k

ms

(5)

tant,1 =
cos−1

(

Fmag

Fmag+kxcs

)

ω
(6)

tant,2 =
vres −

√

v2res −
2LFmag

ms

Fmag

ms

(7)

xcs =

√

e2kmsv2res + 2kLFmag + F 2
mag + Fmag

k
(8)

In the above equations, ω represents the natural frequency

of the spring-mass system. The value of xcs can be used to

select an appropriate free length for the spring, to ensure that

it does not bottom out during compression.

Fig. 6. Comparison between the flux density computed with the semi-
analytical method with MATLAB and the flux density computed via a finite
element method with FEMM. The maximum difference is 0.8 %.

B. Magnetic field calculation

The magnetic field generated by an MRI scanner can be

separated into two components. The first is a constant and

strong magnetic field B0 along the z-axis. This field is used

to align the magnetic moments of the protons. Commercial

MRI scanners have B0 typically ranging from 1.5 to 3 T. The

second component of the field is the magnetic gradient. It is

used to encode the MRI signal spatially. The flux density G

produced by the gradient coils is added to B0 and linearly

varies with position. A computer controls this value.

The modelization of the field inside the uniformity sphere

of an MRI scanner is straightforward. G is directly propor-

tional to the current inside the gradient coils.

The flux density is more complicated to calculate outside

of the uniformity sphere. The same problem is present in our

magnetic test bench because the flux density and gradient are

not constant. To calculate forces accurately, it is necessary

to compute the magnetic field precisely. A semi-analytical

method was used to calculate the field produced in all space

by a solenoid assembly. It was tested on our magnetic test

bench.

According to [9], the magnetic flux density produced by

a current loop in all space can be calculated using equations

eqs. (9) to (12) and fig. 5. The authors obtained these results

by calculating the curl of the magnetic vector potential using

the software Mathematica. E(k) and K(k) are the complete

elliptical integrals of first and second kind respectively.

Bz =
µ0I

2πδ2β

[(

a2 −R2
m − z2

)

(E(k2) + δ2K(k2))
]

(9)

Bθ =
µ0I · z

2πδ2βRm

[(

a2 −R2
m − z2

)

(E(k2)− δ2K(k2))
]

(10)

δ =
√

a2 +R2
m + Z2

m − 2aRm (11)

β =
√

a2 +R2
m + Z2

m + 2aRm (12)

The cross-section S of any solenoid can be divided into

infinitesimal sections dS. Each dS is subjected to a current

dI = JdS. This current dI forms an infinitesimal loop, and
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vs. Perfect closed-loop.

the field it produces can be calculated using eqs. (9) to (12).

By integrating this equation over the solenoid cross-section,

one can obtain the value of the flux density generated by the

solenoid.

The flux density must be calculated for each solenoid. The

total flux density is the vectorial sum of the flux density

produced by each solenoid. The results obtained via this

semi-analytical method is compared to the solution obtained

via finite element calculations with the software FEMM

(Finite Elements Method Magnetics) [10] (see fig. 6). The

results are identical. The semi-analytical method is faster to

compute for this model. Indeed, the magnetic field only needs

to be calculated at the sphere position. The semi-analytical

method can calculate the magnetic field at one point only

whereas finite elements methods must compute the magnetic

field in the full domain.

C. Magnetic force calculation

This section calculates the force applied by the magnetic

field to the sphere.

The ferromagnetic sphere is small compared to the coil

system and can be considered as a infinitely small magnetic

moment m. Assuming a constant material magnetization M,

one can calculate m from eq. (13).

V is the volume of the sphere. The ferromagnetic sphere is

magnetized by the externally applied field Happ = Bapp/µ0.

Ferromagnetic materials create a demagnetizing field Hd

when subjected to an external field. The actual field H seen

by the sphere is the sum of Happ and Hd. This effect must be

taken into account to calculate the magnetization accurately.

Hd is related to Happ by eq. (14). The demagnetization factor

N for a sphere is -1/3. Its magnetization can be calculated

using eq. (15). Once the magnetic moment m is obtained,

the force on the sphere can be calculated using eq. (16).

m = M · V (13)

Hd = N ·Happ (14)

M =
Happ (µr − 1)

2 ·N · µr − 1
(15)

F = ∇(m ·B) (16)

D. Simulation results

1) Perfect closed-loop vs. open-loop system: A numerical

model was used to simulate the system dynamics for different

t=ts
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t=ts
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Fig. 8. Six regimes for spring-end switching time; green and red represent
Fmag towards anterior and posterior respectively. Direction of colored arrow
represents direction of ball motion.

input gradients. Average impact velocities over impacts 100

to 1,100 were compared for a perfect closed-loop pulsed

input, and open-loop inputs with sinusoidal and square

profiles. As seen in figure 7, closed-loop control produces

approximately three times greater average impact velocity

as compared to open-loop sinusoidal and square waves, over

all frequencies. As with the analytical model in Section II-

A, the simulation assumes that the robot capsule does not

translate along its axis. While the absolute values of impact

velocity and force will be different when the capsule is free to

move, the closed-loop input can still be expected to produce

higher forces than open-loop inputs. Further, for a given

open-loop frequency, the variation of impact velocity over

multiple contacts was found to be random for both square

and sinusoidal inputs. It is not possible to reach a resonant

state using a constant frequency input of any form. For a

given set of input parameters, there exists only one path, or

control input, that enables the system to achieve resonance.

2) Partially closed-loop system: To implement a perfect

closed-loop system, sensing is required at both the spring

and impact ends. While sensing at the impact end can

be done using a microphone sensor (see Section IV-B), it

is harder to detect sphere reversal at the spring end. For

experiments of the magnetic hammer on our test bench,

a partially closed-loop system was implemented with only

impact end sensing using a microphone. The sensor detected

each impact and triggered a reversal in the direction of the

gradient force. The switching time ts at the spring end was

manually set at different values. The motion of the sphere

between two successive impacts is analyzed based on ts, the

initial velocity v0+ , and the time between impacts ∆timp.

The motion can be divided into six regimes based on ts, for

a given set of geometric and material properties as shown

in fig. 8. In fig. 8(i), v0+ and ts are low enough that the

sphere reverses direction before reaching the spring. In this

case, v0+ < 2aL, where a = Fmag/ms. Fig. 8(ii) represents

the case when v0+ is high enough that spring compression is

unavoidable even for ts = 0. In fig. 8(iii), the signal switch

happens after spring compression starts but before it bottoms

out. Fig. 8(iv) represents perfect closed-loop switching. In

fig. 8(v), the signal is switched after maximum compression,

but before the sphere reaches xs = 0. Fig. 8(vi) represents
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switching after spring rebound and before the next impact.

There is also a possible seventh case where the switching

happens after one entire impact cycle. This case is not

relevant and serves more as an upper limit of practical ts
values.

Simulations were done for the partially closed-loop system

to identify effects of different ts and v0+ values on ∆timp.

Fig. 9 shows ∆timp as a function of ts for different values of

v0+ . For v0+ = 0.15 m/s, there is a linear increase in ∆timp

untill ts reaches a critical point. This linear region represents

the case shown in fig. 8(i). Beyond this, ∆timp decreases with

increasing ts (fig. 8(ii),(iii)), until the latter reaches its perfect

closed-loop value. At this point ∆timp reaches a minimum

value (fig. 8(iv)). As ts increases beyond this, the ∆timp

keeps increasing (fig. 8(v),(vi)), until it saturates because

the signal is switched after the duration of the entire impact

cycle. The linear range does not exist for higher values of

v0+ . Future work will involve designing a control law that

will help push ts values closer to perfect closed-loop values

for subsequent impacts.

3) Effect of Coulomb friction: In all the above models,

the friction force was assumed to be zero. Average impact

velocities over 100 impacts are plotted for varying values

of the friction force in Fig. 10. The circles represent the

perfect closed-loop values, while the curves represent the

partially closed-loop values using impact times. Much like

the step-out frequency of a stepper motor, average impact

velocities drop suddenly for the partially closed-loop system

0.45

0.50

0.55

0.60

0.65

0.70

3 4 5 6

C
o

e
ff

ic
ie

n
t 

o
f 

R
e

st
it

u
ti

o
n

, 
e

Diameter of Sample (mm)

Steel Copper Brass Aluminum Titanium

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

M
ic

ro
p

h
o

n
e

 o
u

tp
u

t 
(V

)

Time (s)

Time between 

first 2 bounces

a)

b)

c)

Ball 

drop 

height

Impact 

rod

Mic 

sensor

Fig. 11. (a) Microphone output showing multiple bounces of sphere
(b) Experimental setup for measuring the coefficient of restitution, e

(c) Measured values of e for different materials and rod diameters. 10
measurements were performed for each data points.

beyond a cut-off driving frequency. This is due to the sphere

reversing direction before spring contact, leading to a drop

in its net kinetic energy. As friction force increases as a

percentage of Fmag, the partially closed-loop system reaches

its cutoff frequency, before resonance. This drop in impact

velocity is not seen in the perfect closed-loop system for any

values of friction since the spring is always compressed to

its maximum limit. Hence, partially closed-loop control will

not produce the maximum possible impact velocity for high

values of Coulomb friction force. Future work will use better

models of kinetic and static friction, as well as air resistance.

III. EXPERIMENTAL DETERMINATION OF IMPACT

COEFFICIENT OF RESTITUTION

The coefficient of restitution e was determined using the

time interval between two consecutive bounces of the sphere

when dropped from a given height onto the impact rod. The

measurements were made using 38.1 mm long impact rods

for five different materials. Impact rods were held by a drill

chuck. A length of 10.0 mm of the impact rods was sticking

out of the chuck. The experimental setup is shown in fig. 11.

The results, shown in fig. 11 (c), show that titanium

offers the largest coefficient of restitution. The densities

of aluminum, titanium, stainless steel, brass, and copper

are 2720, 4500, 7600, 8500, and 8940 kg/m3 respectively.

This data, coupled with a desire for a lightweight millirobot

suggests that titanium is the best material for an impact plate.

Bio-compatibility of the material used is another constraint.

IV. EXPERIMENTAL MAGNETIC HAMMER TESTS

A. Magnetic test bench description

A desktop-size, single-axis magnetic setup was built to

reduce the cost related to clinical MRI experiments. It is

composed of two solenoid coils oriented along the same axis

and separated by a distance d. The coils are used to produce

both the magnetizing field and the gradient. The properties

of the coils are shown in Table I.

The system is shown in fig. 12. The two coils are held

by an acrylic tube. They can slide along this tube and be



Fig. 12. Picture of the magnetic test bench.

TABLE I

PROPERTIES OF THE COILS USED IN THE MAGNETIC TEST BENCH

Internal Radius 140 mm Electrical resistance 8.17 Ω

External Radius 63 mm Inductance 113 mH

Length 60 mm
Max current change rate
Voltage = 25 V

130 A/s

Wire 18 AWG Max continuous current 10 A

Wire cross-section 0.823 mm2

Flux density on
system center
I = 10 A, d = 50 mm

55 mT

Number of turns 265

Gradient on
system center
I = 10 A, d = 50 mm

0.14 T/m

locked in place to adjust the distance between the two coils

and therefore change the maximum field and gradient values.

The acrylic tube is transparent, allowing for visual access to

the robot. Each coil is powered by a Syren 25 regenerative

switching power supply. The Syren 25 are manufactured by

Dimension Engineering. They can provide continuously a

current of 25 A with a maximum voltage of 24 V.

Robots are inserted inside the acrylic tube holding the

coils. They are held by a second, smaller tube that guides

them along the system axis. Robots can be free to move

along the coil axis or held in place. A picture of the system

is provided in fig. 12.

B. Partially closed-loop experiment

A system to record the impact velocity of the sphere as

well as the driving period of the magnetic hammer was built.

A schematic representation of the system is shown in fig.

13. The main body of the system is a 3d printed tube with

thick walls. The sphere is a NdFeB permanent magnet with

a magnetization of 883,000 A/m. It has a mass of 1.05 g.

It is placed inside the tube and an impact rod and a spring

are placed on the anterior and posterior sides respectively.

This constitutes the magnetic hammer system. A laser and a

diametrically opposed light sensor are placed radially on the

tube, with radial holes in the tube for the laser beam to pass

through. The thick walls of the tube permit the encapsulation

of the laser and the sensor with epoxy resin.

When moving, the sphere interrupts the laser beam during

a time ti inversely proportional to the velocity. By measuring

ti one can calculate the average velocity V of the sphere with

V = 2 ·rs/ti. The laser beam was positioned on the anterior

side of the capsule, mounted at a distance Lf > 2rs from

the impact rod to allow the sphere to not interrupt the beam

when it touches the impact rod. This positioning enables

Fig. 13. Schematic representation of the system using a laser and a light
sensor to measure the sphere velocity

Fig. 14. Experimental results obtained with the laser-based sensor. The
error bars represent the standard deviation. 300 impacts were recorded for
each point.

computing the velocity of the sphere just before the impact

which we will consider as being equal to the impact velocity.

The acquisition of the data is automatic and performed via a

National Instrument cRIO real-time controller. The controller

was programmed using LabVIEW.

The cRIO is used at the same time to control the magnetic

hammer. The partially closed-loop method is used. Square

shaped current waveform drive the coils. The current in the

coils either either considered to be Imax or 0 A. The time

constant of the coils (13 ms) is small enough compared to

Ts to neglect the current transient. The coil will be said to be

“on” when I = Imax and “off” when I = 0 A. A microphone

is used to monitor the noise produced by the system. The

impact creates a large pulsed signal on the microphone output

that can be easily detected. When the impact is detected, the

anterior coil is turned off while the posterior coil is turned on.

The force applied to the sphere pushes it toward the posterior

side. The current stays constant during a time ts after the

impact is detected. The anterior coil is subsequently turned

on, and the posterior coil is turned off. The force then pushes

the sphere forward. The current in the coils is changed again

when another impact is detected. This process is repeated

indefinitely.

Data were recorded for Imax values of 0.96A, 1.5A and

2.2A which correspond to forces Fmag equal to 0.0273N,



0.0426N and 0.0625N respectively. The value for Fmag

were calculated using the software FEMM. Results of the

measurements are presented in fig. 14. The impact velocity

is larger at 1.5A than at 0.96A due to the larger force

exerted on the sphere at larger current. This increase in

velocity produces a decrease on the average time between

impact ∆timp (on the bottom curve, one can see that ∆timp

is smaller for the largest current). These curves exhibit a

maximum impact velocity, at ts = 75 ms for Imax=1.5 A

and ts = 95 ms for Imax=0.96A. These points coincide with

a minimum on the ∆timp curve and correspond to the optimal

driving frequency. The curve measured at higher current,

2.2A, show better performance overall in both impacts per

second and velocity. A few points are not in agreement

with this observation but the difference is within the value

of the standard deviation. At all current values, our visual

observations as well as the large standard deviation indicates

that the control with the partially closed-loop method is not

optimum because it is not able to maintain the maximum

velocity for each impact.

The impact velocity has a local maximum at ts=135 ms

for the curve at measured at 1.5A. This is a point where

the system exhibits another resonance, when the sphere

compresses the spring two times during each cycle.

V. PRELIMINARY TESTS IN CLINICAL MRI

Preliminary tests of magnetic hammers were performed in

a clinical 3T Siemens MRI scanner to demonstrate the ability

of MRI scanners to produce a force able to drive the device.

No closed-loop control was implemented. The magnetic

gradient oscillated at a constant frequency. As seen before,

the system does not work optimally in these conditions. At

low frequencies, the magnetic sphere completely stops on

both sides of the millirobot. All the kinetic energy is lost at

these times, and the magnetic hammer, therefore, performs

poorly. The aim of these tests is to prove that MRI scanners

are suitable to produce the desired force on the magnetic

sphere inside the millirobot and provide a pulsed force.

A 50 mm long, 7 mm diameter robot was built for this

test. The sphere has a diameter of 5mm and is made of

stainless steel. This material is used instead of a permanent

magnet because the main magnetic field of the MRI scanner

magnetizes the stainless steel at its saturation value which is

higher than the magnetization of a permanent magnet.

A plastic container was placed inside the MRI scanner,

sitting on the patient table. The millirobot was positioned

inside this container, with its length oriented along the x axis.

The tissue sample to penetrate was a goat brain hemisphere

placed in the container, in front of the millirobot tip. . A 2

Hz square gradient along the x axis with an amplitude of 23

mT/m was applied to it. This frequency is slow enough to

allow the sphere to stop on both sides completely.

Friction with the plastic container prevented the capsule

from moving when a constant gradient was applied. Once

the gradient wave was started, the sphere began to move

back and forth while the robot was moving toward the

sample at each impact, at an average speed of 1.9 mm/s.

Fig. 15. Picture of the magnetic hammer driven by an MRI scanner. The
penetration test is realized on a goat brain sample.

The robot then began to penetrate the sample. It went 9

mm deep inside it and stopped progressing (see fig. 15).

This experiment demonstrates the suitability of MRI scanners

to drive magnetic hammers. No further measurements were

made as this demonstration was the sole purpose of the

experiment and the magnetic test bench allows us to perform

extensive testing at reduced cost.

Future work will implement closed-loop control on the

clinical MRI scanner to transfer energy efficiently. The MRI

signal could be used to compute the position of the magnetic

sphere at a frequency greater than 20 Hz, as we did in [11].

VI. TISSUE PENETRATION EXPERIMENT

An iterative design process was used to achieve tissue

penetration using the magnetic test bench. Seven millirobots

were built and tested, varying the tip shape and composition,

the tube length, the spring, and the sphere material.

Our observations of the penetration experiments concluded

that sharp blades placed on the tip of the millirobot allow for

an easier tissue penetration. The blades are placed much like

on a hunting arrow tip, and create a fissure in the tissue that

reduces the force needed for the capsule to progress through

the sample. The blades used in our experiments were made

of titanium, a bio-compatible and non-magnetic metal.

Our observations also showed that, when the sphere com-

presses the spring, the capsule tends to move backward. This

effect releases the pressure exerted by the millirobot tip on

the tissue and therefore makes the impact less efficient at

penetrating the sample. This issue was solved by placing a

porcupine needle placed at the leading tip of the millirobot, at

the center of the blades. Porcupine needles are covered with

microscopic backward facing barbs. These barbs prevent the

needle from being pulled off a tissue once penetrated. Natural

porcupine needles cannot be sanitized and so cannot be

used in an in-vivo medical intervention. However, synthetic

porcupine needles can be built [12].

Fig. 16 show frames of a video from a representative

penetration test. A video attached to this paper shows this

test. The tissue samples used in these experiments were

10 mm thick lamb brain slices. As shown in the attached

video, it was placed in a sample holder made with two

acrylic sheets, one on each side. Two holes in the sample

holder allow the millirobot to access and cross the tissue.

The millirobot used in this experiment has a diameter of 7.5

mm. It uses three titanium blades, a porcupine needle, and

a titanium impact rod. The sphere is a NdFeB permanent



Fig. 16. Picture presenting the penetration of a millirobot prototype inside
a lamb brain sample. The corresponding video is attached to this paper.

magnet with a 6.35 mm diameter and a mass of 1.05 g. The

spring has a free length of 10 mm and a constant of 35 N/m.

The free length of sphere travel is 15 mm. The flux density

applied by the coils had a maximum value of 40 mT and a

maximum gradient of 545 mT/m. The control was performed

with the partially closed-loop method presented in Section

II-D.2.

We performed a series of four successful penetration tests

with no failures using our final millirobot design. The first

three samples were perforated in 225, 252 and 230 seconds.

It took 20 minutes for the millrobot to perforate the fourth

sample because it included the pia mater. These tests prove

the capability of the magnetic hammer system to penetrate

biological tissue.
VII. CONCLUSIONS

A magnetic hammer system for a millirobot driven by

the gradient fields of an MRI scanner was studied. The

system enables producing force large enough to penetrate

body tissue. The hammer is composed of a magnetic sphere

moving inside a tube.

A modelization allows the computation of the position

of the sphere as a function of time. The magnetic flux

density and the gradient are computed using a semi-analytical

method and allow an accurate calculation of the force applied

to the sphere. A study about the sphere friction on the tube

was performed. The friction between the air and the sphere

was not taken into account as the final millirobot will be

under vacuum to prevent any air release within the body.

The speed of the sphere after impact is computed from the

coefficient of restitution.

The coefficient of restitution (e) depends on the materials

of the colliding objects and also on their shape and sizes. Val-

ues of e were experimentally measured. These measurements

showed that titanium impact plates exhibit large values of e.

This material also has the advantage of being lightweight, a

useful property to achieve neutral buoyancy of millirobots,

and is a bio-compatible material.

A magnetic test bench was built to reduce experimental

cost related to the use of a clinical MRI scanner. A magnetic

hammer was tested with a partially closed-loop control. The

impact of the sphere is detected via a microphone. The

posterior coil is turned on during a predetermined time ts
to pull the sphere backward. After this time, the posterior

coil is turned off and the anterior coil is turned on until the

next impact is detected.

A laser based sensor was used to record the impact

velocity of the sphere. The data obtained shows that there

is an optimum value for ts where the impact velocity is

maximum. The impact velocity also increases when the

magnetic field value increases.

In a series of four trials the magnetic test bench propelled

a millirobot through lamb brain samples. Preliminary tests in

a 3T MRI scanner validated the mechanical design. Future

work should implement and test closed-loop control of the

magnetic hammer in a clinical MRI scanner, detecting im-

pacts with the MRI signal instead of a microphone. Tradeoffs

involved in miniaturization of the robot should also be

studied.
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