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Abstract 

With the increasing amounts of astronomical data being gathered, it is becoming more 

crucial for machine learning techniques to be employed for star classification. Classical 

Cepheid variable stars can be grouped into several classes, such as fundamental-mode, 

first-overtone, and second-overtone. Each class has distinctive features, and the light 

curves of the stars can be analyzed for these features in order to be used in automatic 

classification. Here, we focus on developing a number of features to be used with the 

following machine learning methods: Multilayer Perceptron, Naïve Bayes, J48 Decision 

Trees, and Random Forest. We use the OGLE (Optical Gravitational Lensing 

Experiment) datasets of Classical Cepheid variable stars in the Large Magellanic Cloud 

and the Small Magellanic Cloud. Our findings indicate that the Multilayer Perceptron is 

an excellent method for approaching this problem, as it outperformed the other machine 

learning methods. We also identify a number of useful features using Information Gain 

and Gain Ratio. Specifically, the newly developed features to measure symmetry had 

high classification power.  
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Chapter 1 

Introduction 

1.1  Problem Statement 

Astronomy data collection is increasing rapidly, surpassing human ability to manually 

process it. In order to sift through the massive amounts of both incoming data and the 

data already collected, we must develop new automation techniques that are efficient 

and accurate. New discoveries are waiting to be made that will rely on these methods. 

 Classification is crucial for many applications within astronomy. Determining 

whether an observed entity is a supernova or a Cepheid variable star or a rare 

microlensing event is one of the first steps to learning more about the stars. There are a 

number of challenges associated with automatic classification, but increasing our ability 

to successfully employ machine learning methods will increasingly benefit us as we 

collect vast amounts of astronomy data. 

1.2  Contribution 

In this thesis, the focal point is classification of Cepheid variable stars through the use of 

newly developed features and machine learning methods. Although Cepheid variable 

stars only make up a very small portion of the astronomy data collected worldwide, they 

are important astronomical objects. Also, the research serves as a useful way to explore 

feature development, choosing the best machine learning methods for astronomy 

problems, and overcoming challenges faced by computer scientists and astronomers. 

 Specifically, this thesis includes a variety of features that have not been 

documented in previous literature, such as approaches for measuring the symmetry of 
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light curves. The goal was not to use previously documented features but to develop new 

features based on manually examining light curves and observing differences between 

star classes. These features were developed without many prior expectations for how 

they would perform. Instead, the approach was to perform a series of experiments and 

use measures like Information Gain and Gain Ratio in order to evaluate the features. 

 Many of the techniques and thought-processes that are applied to this problem 

can also be used on other astronomy problems and even problems outside of astronomy. 

Machine learning and computer science as a whole touches so many pieces of our lives, 

which means every contribution in computer science has the potential for many new, 

unexpected uses in the future.  

1.3  Thesis Organization 

The thesis will be organized into a series of chapters, starting with this introduction 

chapter. Background information and related work will be presented in Chapter 2 in 

order to lay the foundation knowledge required for understanding the concepts 

presented here. Chapter 3 focuses on methodology. In particular, Chapter 3 discusses the 

feature development process. Chapter 4 explains how the features from Chapter 3 are 

used in machine learning experiments and the results. The utility of features is also 

discussed in Chapter 4. Chapter 5 includes a discussion of experiment results, including 

an exploration of reasons for why some stars were misclassified in the experiments. 

Chapter 6 concludes the thesis with a discussion of limitations and approaches for future 

work, as well as a quick recap of what was presented in the thesis.  
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Chapter 2 

Background and Related Work 

2.1  Astronomy Background 

2.1.1  Data Growth and Automation Need 

New scientific instruments and sensor networks are emerging and generating astronomy 

data streams that are turning into an issue of Petascale computing, and utilizing this new 

information rapidly will create opportunities for new discoveries. This means we would 

be observing hundreds of thousands of transient events every night [11]. Transients can 

be defined as “all genuine non-moving objects that brighten by a certain amount” [15]. 

The Gaia mission and the Large Synoptic Sky Survey will be collecting over a billion 

periodic variables [6, 7]. But in order to actually use this huge amount of new 

information, especially in a real-time manner, it will be essential to use automatic 

processes. This could have an enormous impact across astronomy, such as by warning us 

about asteroids that could be hazardous or by detecting extrasolar planets with 

microlensing flares [11]. The imaging technology being used in astronomy has changed 

observation methods to be more like “making movies of the sky” rather than taking static 

snapshots sporadically [10]. Furthermore, the amount of data to be analyzed doubles 

every 12-18 months [12]. 

 In order to meet the challenges associated with the increasing amount of 

information, researchers are taking a wide variety of approaches. Currently, there is 

technology available like robotic telescopes that gather, transport, process, photometer, 

and store data autonomously. It is beneficial to automate the process because machines 
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are faster than humans, experimentation can be done more easily because it only 

involves rerunning code instead of asking people to do it, it is deterministic and 

repeatable, and much more calibration is possible [8]. More about the current challenges 

will be explored later in this thesis. 

2.1.2  Variable Stars and Cepheids 

Variable stars, which include the classical Cepheids that will be discussed here, change 

brightness over time. Analyzing various aspects of their light curves yields interesting 

information that is useful for classification. Light curves are plots that show the 

relationship between magnitude and time for stars [20]. It has been said that “the time 

domain is rapidly becoming one of the most exciting new research frontiers in 

astronomy” [11]. With the large amounts of information that currently are being 

accumulated and will accumulated in the future, it is clear that new ways of analyzing 

star information must be devised. 

Cepheids play a unique part in history because their behavioral patterns have 

helped astronomers gain an understanding of the size of the universe, thanks to 

Henrietta Leavitt who, while plotting and examining the stars’ light curves, discovered 

there is a relationship between their period and luminosity. Brighter mean magnitude 

stars have longer periods. A little later, Harlow Shapley used what she had discovered in 

addition to the absolute magnitude of a Cepheid (his discovery) in order to figure out 

distances in our galaxy. Also, Edwin Hubble used these discoveries for calculating 

distances to galaxies nearby [4, 5]. 

Classical Cepheids, which are also known as Delta Cephei stars, type I Cepheids, 

and Population I Cepheids are very large, bright stars [2], usually 3-9 times the mass of 

our Sun [5] that “brighten and fade with clockwork regularity” [3] that is akin to 
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“breathing.” As the stars go through these “bulk pulsations” [5], they expand and 

contract, and they are brightest when they are the smallest (densest) [3]. 

Classical Cepheids can oscillate or pulsate in several different modes -- 

fundamental, first-overtone, second-overtone, or a combination of these. Fundamental-

mode Cepheids often have periods that are a few days long, and their light curves tend to 

be asymmetric, although there are some exceptions [2]. The fundamental-mode of 

oscillation is when the entire star’s surface is either completely moving outwards or 

completely moving inwards at the same time [5]. The first-overtone Cepheids have much 

more symmetric light curves, and they tend to have smaller amplitudes in their light 

curves than the fundamental-mode Cepheids [2]. The first-overtone pulsators can also 

be said to be oscillating in the “first harmonic” mode, and this occurs when one of the 

star’s regions that girdles the surface (like the equator) all moves outwards at the same 

time as other parts (like the poles) all move inwards. This causes the star to oscillate with 

a higher frequency. “Second harmonic” and “third harmonic” occur when there are more 

“separate patches of the stellar photosphere” that “move simultaneously outwards while 

adjacent patches are simultaneously moving inwards” [5]. Second-overtone pulsators are 

rare and have “nearly sinusoidal light curves” and small amplitudes [1, 2, 16], below 0.1 

mag” [2]. Second-overtone pulsators are also interesting because they are able to be used 

“as an independent test of pulsational and evolutionary models” [1]. Triple-mode 

Cepheids are even rarer than second-overtone Cepheids [2]. Multimode pulsators are 

“very valuable” due to the fact that “each mode gives independent constraints on stellar 

parameters” [16]. 

The stars experience oscillation because the star has a “cyclic predominance of 

gas pressure wanting to make the star expand followed by gravity wanting to make it 

contract.” Over time, oscillation systems lose energy gradually and stop oscillating 
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eventually (like a pendulum), often due to frictional forces. But the stars continue to 

oscillate because each has an ionization layer, which acts like a heat valve [5]. 

2.1.3  OGLE, LMC, and SMC 

OGLE, the Optical Gravitational Lensing Experiment, is a wide-field sky survey, and the 

original motivation for gathering the data was to find microlensing events. The strategy 

with OGLE is to monitor about 200 million star brightness levels in the Magellanic 

Clouds and in the Galactic bulge for years, thus gathering large amounts of photometric 

measurements. There are several phases of the project [1]. 

A subset of the OGLE data will be used in the experiments performed in this 

thesis and includes classical Cepheids in the Large Magellanic Cloud (LMC) and the 

Small Magellanic Cloud (SMC). The OGLE classical Cepheid data for the LMC and SMC 

was gathered with a 1.3-meter Warsaw telescope in Las Campanas Observatory, Chile, 

which is operated by the Carnegie Institute of Washington [1, 16]. Also, in order to obtain 

the OGLE data now available to researchers, it was necessary for a massive search to be 

undertaken to find Cepheids in the Magellanic Clouds, which required a number of 

processing steps. For example, when looking for Cepheids in the LMC, “tens of 

thousands” of light curves were selected for visual inspection [1]. In addition, when 

searching for Cepheids in the SMC, approximately “6 million stars were subjected to a 

Fourier-based frequency analysis” [16]. VI photometry for both the LMC and SMC was 

obtained through the use of Difference Image Analysis (DIA) technology [1, 16]. This “is 

able to perform in dense stellar fields considerably better photometry than the 

traditional PSF-fitting programs” [1]. 

The Large Magellanic Cloud (LMC) is our nearest non-dwarf neighboring galaxy. 

Thus, it is “one of the most fundamental extragalactic targets of modern astrophysics” 

[1]. Also, at the time of the data collection, OGLE contained the “largest sample of 
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classical Cepheids detected to date in the LMC and, likely, in any other environment” [1]. 

In total, 3,361 classical Cepheids are included. Specifically, the sample includes 1,848 

fundamental-mode (F), 1,228 first-overtone (1O), 14 second-overtone (2O), 61 double-

mode F/1O, 203 double-mode 1O/2O, 2 double-mode 1O/30, and 5 triple-mode 

Cepheids [1]. 

 The Small Magellanic Cloud (SMC) is of particular interest because of its part in 

history. As mentioned in Section 2.1.2, Leavitt worked with Cepheids and discovered the 

period-luminosity relationship. But it was actually SMC Cepheids that she used to make 

the discovery [16]. In the SMC OGLE Cepheid data, there are a total of 4,630 variables, 

which is the largest set identified in any galaxy at the time. Of those, 2,626 are 

fundamental-mode, 1,644 are first-overtone, 83 are second-overtone, 59 are double-

mode F/1O, 215 are double-mode 1O/2O, and 3 are triple-mode Cepheids [16]. 

 The LMC and SMC are very similar, but a primary difference between them is the 

distribution of Cepheids amongst different Cepheid groups. It appears that there are 2-3 

populations of classical Cepheids in the LMC and the SMC. They have different periods 

and luminosities, and they most likely also have differences in metal abundances and 

ages. It is also known that “there are many more short-period and fainter Cepheids in 

each pulsation mode” in the SMC, which can be explained by differing metal abundances 

in the galaxies. The SMC is a metal-poor environment, but the LMC is more metal-rich. 

Also, only a few anomalous Cepheid candidates were discovered in the SMC, unlike the 

LMC. In addition, “spatial distribution of interstellar matter in the SMC is more 

homogenous than in the LMC” [16]. 

For each LMC and SMC star, the following information is provided in the data: 

Cepheid ID, intensity I- and V-band mean magnitude, period in days, uncertainty of the 

period in days, maximum brightness time in JD, I-band amplitude, and four Fourier 
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coefficients (R_21, phi_21, R_31, and phi_31) [1, 16]. JD stands for Julian Day or Julian 

Date, which is commonly used in astronomy to keep track of time in a way that avoids 

dealing with leap years and other complications [20]. Also, as described in [1], light 

curves were “fitted by a Fourier series of the order depending on the shape and scatter of 

the light curve” in order to determine mean luminosities, amplitudes, and Fourier 

parameters. Using Fourier coefficients is common for “quantitative description of the 

structure of Cepheid light curves” [1]. Also, for each star, observations are recorded and 

the following information is given: date and time of observation in JD, the magnitude of 

the star at the observation time, and the uncertainty of the magnitude recorded [1, 16]. 

The OGLE dataset has some variations within it, and sometimes individual data 

values are missing for stars for a number of possible reasons. For example, some of the 

Cepheids do not have I-band data. One of the reasons this occurs is if the CCD saturation 

limit is exceeded [1]. Also, the V-band information is sparser than the I-band 

information [7]. Another issue is that star photometry can be influenced by “strong 

reddening” or crowding and are marked as “uncertain” in the data [16]. But the LMC and 

SMC information is still very complete and is very useful for star classification. 

2.1.4  Challenges 

There are a number of challenges that computer scientists face when working in the 

astronomy field. The amount of data to be processed is rapidly growing, but much of the 

gathered information has known problems. Scarcity of resources is also a problem; it 

includes both scarcity of human resources and scarcity of equipment like telescopes. 

Related to this, the curse of dimensionality poses a significant challenge. It can be 

difficult to sift through huge amounts of information to identify rare events and to 

accurately identify legitimate objects of interest, especially with the requirement of being 

able to process and respond quickly to astronomical events. 
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 Astronomy datasets often suffer from problems like sparsity and heterogeneity, 

and data may have inconsistent measurement issues [9, 10, 11]. Heterogeneity can come 

in many forms, such as “differences in cadence, observing region, flux noise, detection 

limits, and number of observed epochs per light curve” [7]. These differences can make it 

hard to develop classifiers that perform well on unseen datasets [7]. An example of a 

measurement issue is if there were a problem with a detector, a measurement in a 

certain filter could be missing [11]. Similarly, information collected is not always of the 

same quality for various reasons. For example, the pre-launch Kepler Input Catalog data 

discussed in [14] needs improvement, but the NASA Kepler Mission light curves dataset 

was much more useful for classification and identifying new class members. 

Noise may be also be present in the data, and the noise may falsely look like 

transient events, which will make accurate classification even more difficult [8, 11]. Much 

of the signal classification issue, which identifies if an event is real or not, has been 

addressed with artificial neural networks and support vector machines, eliminating up to 

95% of the image artifacts [11]. Another issue related issue is that rare events are 

particularly difficult to detect, especially in noisy data. This problem strongly affects 

microlensing, which is achromatic, time-symmetric, does not repeat, and is 

“outnumbered by stellar variability by at least a factor of 10 000” [9]. 

Contextual information in astronomy can be very helpful for classification. For 

example, if, through analyzing a transient light curve, it is unclear whether it is a blazar, 

supernova, or a cataclysmic variable star, using contextual information can show that it 

is most likely to be a supernova if we know that the transient is close to a galaxy. But 

contextual information can be difficult to use in a manner that can be processed by 

machines, and new methods are being developed [11]. Finding new ways of integrating 
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this kind of knowledge with machine learning methods can reduce ambiguity currently 

present in many classification problems. 

Scarcity of resources is a very real, constant problem in astronomy. It is expected 

that available assets for follow-up observations will not increase to match the increasing 

amount of data [15]. Because of this, it is necessary to ask what use of resources would 

yield the maximum information gain and what cost is worth the potential for making a 

discovery [11, 15]. There are several approaches to handling scarce resources. One way is 

to focus on real-time processing and follow-up [8], even though this brings challenges of 

making sure interesting events are not missed but there are few false alarms [11]. This is 

important because so many potentially interesting events are not receiving follow-up 

observations, and this can become a significantly worse problem in the future as more 

information is collected [15]. Another way to deal with scarcity of resources is to 

preprocess data so that only a reduced amount of data must be examined, as done in [9]. 

This is related to the curse of dimensionality problem. One approach to deal with it is to 

only retain features that have strong discriminatory power for classification [12]. There 

are a number of strategies to select useful features, and some of them will be discussed 

later. 

It is also important to note that developing training and test sets can have 

associated costs, such as manual labeling of datasets. Different datasets have different 

costs associated with them, depending on factors like the signal-to-noise ratio for light 

curves, sparsity, amount of available archival data to help determine classes, and 

whether or not a star is available for spectroscopic follow-up [6]. There are also different 

dataset labeling approaches, such as human-scanned, artificial-source constructed, and 

ground-truth derived. The human-scanned method has humans tediously label possibly 

thousands of candidates by hand. The artificial-source constructed method involves 
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inserting artificial events into raw data that must be reasonable likenesses of real events. 

The ground-truth derived approach removes vagueness and human-scanning non-

repeatability problems but can also rely on human labels, as well [8]. 

Another problem that is a serious issue when working with astronomy data is 

that the distributions of the training and test data can be different. This creates sample 

selection bias, which can make it much harder to select the best model when employing 

automated supervised methods because it biases approaches like 10-fold cross-

validation. Normally it would be assumed that the distributions are similar when 

running machine learning algorithms; but, if they are not, then it is essential that 

approaches are used to compensate for this [6]. In [6], the following three approaches 

are taken to combat sample selection bias: importance weighting, co-training, and active 

learning. They had the best success with active learning. 

2.1.5  Benefit to Other Fields 

Astronomy is only one of many fields being strongly affected by the rapidly growing 

amount of data becoming available, and so many of the challenges facing astronomy also 

face other fields. Therefore, the advances that are made in this field may be able to be 

applied in new, unexpected ways over time. For example, fields like environmental 

monitoring and security could benefit from real-time data analysis. Developing 

automated systems driven by machine learning algorithms that efficiently utilize scarce 

resources is challenging but could have vast benefits in more than just astronomy [11]. 

For example, with the security field, it is not difficult to draw a comparison between 

searching for intruders and finding rare microlensing events. The key similarity is the 

rarity, and it is important to not have false alarms in both fields. 
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2.2  Machine Learning Background 

2.2.1  Machine Learning Methods 

A variety of machine learning methods have been used for classification of stars. 

Different ways to overcome the challenges faced in astronomy classification have also 

been explored. Quite a bit of success has already been seen in the astronomy field 

through the use of computer science techniques, but we are still only at the beginning of 

incorporating computer science methods into astronomy. 

Bayesian methods for classification of events can be useful for dealing with 

heterogeneity and sparsity in astronomy data, as well as the “curse of dimensionality” 

[11]. In [11], a small dataset was used with a prototype Bayesian Network model in order 

to identify six distinct classes. Also in the paper, Naïve Bayes is described as being very 

useful for dealing with high-dimensional data. 

 Decision trees can be useful once the light curve information has been converted 

to a uniform set of feature vectors, as done in [11] with three star classes. But trees can be 

very sensitive to feature changes, which can significantly change the tree structure [17]. 

This is significant also for the Random Forest method because that method is a 

collection of trees. 

 Gaussian Process Regression is used in [10] with a modeling-based approach in 

order to deal with challenges presented by imperfect light curves. This method is 

particularly useful, as it is efficient and, unlike other methods, it can build in censoring 

when necessary. Thus, it can handle cases when information is missing because an object 

falls below the detection limit [10]. In [10], feature selection is performed by using the 

Random Forest method and observing if performance decreases with respect to the Gini 

Index as features are removed. Identifying features (or predictors) for classification and 
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then determining the utility of those features is key for successful classification using 

machine learning methods. This can be accomplished in a variety of ways. 

 Also in [10], the following five machine learning methods were used: Standard 

Linear Discriminant Analysis, Recursive Partitioning, Support Vector Machines, Neural 

Networks, and Random Forest. A combination of classifiers can also be used because 

different classifiers may be useful for different circumstances. This may be particularly 

useful for real-time classification of transients [15]. Similarly, using a sequence of neural 

networks to form a neural network cascade is used in [9] for complex pattern recognition 

in order to remove variable stars and supernovae based on their light curves in order to 

identify microlensing events. Neural networks are also used in [19], including the 

Multilayer Perceptron, which is a class of supervised neural networks. Specifically, the 

Multilayer Perceptron is a feedforward network, and it is trained using the 

backpropagation algorithm. Neural networks are particularly useful because no prior 

knowledge needs to be incorporated in order to use them [19]. 

2.2.2  Training and Testing 

Determining methods for developing training and test sets for machine learning 

experiments is a crucial step, and there are numerous challenges and approaches 

associated with it. First, it is necessary to avoid using same data for training and testing 

because then the classification rate would be inflated [10] and overfitting would occur 

[11]. Instead, we must develop a training set of labeled data and then a separate test set 

of unlabeled data to use with machine learning methods [7]. This can be done by using 

two totally different datasets, as done in [7], or it can be done by splitting one dataset 

into partitions as described below. 

 One method of dividing the dataset for training and testing is to use 10-fold 

cross-validation, as used in [11]. In this method, the dataset is divided into 10 partitions 
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randomly. Ten iterations are performed with one partition retained each time for testing. 

The other partitions are used for training. At each iteration, a different partition is held 

out of the training set [11]. 

 Another way of handling this problem is demonstrated in [10] where the dataset 

was randomly split into ⅔ for training and ⅓ for testing. It is explained in [10] that using 

one random split was sufficient because they were interested in the relative classification 

performance and because the sample size was relatively large. But sometimes these 

methods are not viable options, such as when the dataset is very small, and different 

approaches must be taken.  
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Chapter 3 

Methodology 

3.1  Overview 

In the process of working on this thesis, a variety of features were developed, and 

they were incorporated throughout several iterations of Python 2.7 code. Python was 

chosen because it can be useful for rapid prototyping, development, and 

experimentation.  

Several types of features were developed. The simplest features are the raw 

data features, which directly use the data provided in the OGLE datasets and may 

perform some basic calculations. There are also fitted curve features, which are less 

prone to outlier issues. Many features mentioned here have both the raw data 

version and the fitted curve version for comparison purposes. In addition, two rather 

different approaches to calculating symmetry were taken. The first calculates the 

differences between the integral of both halves of the fitted curve. The second 

approach sums the distances to the center of the light curve from pairs of points 

along the curve. 

The approaches taken in this thesis for developing features were mostly 

inspired by manually inspecting the light curves and researching the differences 

between the classes of Cepheids. The newly developed features are not necessarily 

established features used for classification in astronomy. For example, the second 

approach to measuring symmetry is an original concept that has not been tested by 

others. The reason these new approaches are taken in this thesis is because feature 
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development in the astronomy field is still in the beginning phases, and having new 

approaches to test is important. 

3.2  Raw Data Features 

Raw data features can be very useful for classifying stars. Although, one of the issues 

with using these types of features is that outliers can be a problem. For example, if 

measurement errors occurred while recording the data, those errors would be 

reflected in the raw data features, which can affect classification accuracy. But 

approaches can be taken to combat this issue. 

Class labels were provided with the dataset. Therefore, for all training and 

evaluation of performance of the testing set, it was simple to identify which stars 

were classified correctly and incorrectly. 

 In order to capture the overall trend of the data, for each star, the minimum 

and maximum magnitude were used as features. It was important to use the 

minimum and maximum magnitudes because the different star classes are known to 

often have different amplitudes. For example, first-overtone Cepheids tend to have 

smaller amplitudes than fundamental-mode Cepheids [5], as mentioned earlier. 

Thus, the minimums and maximums should often be different. The minimum phase 

and maximum phase of each star were also included but mainly just for testing 

purposes, in order to see if an interesting relationship existed that was unexpected; 

however, that is unlikely because the phase values generally range from 0 to 1. The 

reason that the phase ranges from 0 to 1 is because, as directed in the documentation 

provided with the OGLE data, the process for calculating the light curves is to read in the 

star’s file and subtract the JD and the max JD and then divide by the period to get the 

16 



phase. Next, it is necessary to discard the integer fraction of the phase so the values 

range from 0-0.999. 

 The mean magnitude and mean phase of each star were also used as features. 

The idea behind using means is to help avoid outliers. Minimum and maximum 

values can be thrown off greatly due to outliers, but means are more robust. Outliers 

might still be a problem, such as when only very sparse information is available, as is 

the case for the V-band, but the features are still worth exploring and might be useful 

in conjunction with other, more varied features. When deciding to use these means 

as features, it was unknown whether or not they would have good classification 

power. 

 One issue worth mentioning here is that using these raw data features may 

not be as effective in this thesis as would be possible because I-band and V-band 

information was treated in the same manner. What this means is that for each star, 

two instances are being used for classification, one with I-band information and one 

with V-band information. Magnitude will be different between the I- and V-band, 

though, so training a classifier with this information could be conflicting. In the 

future, a different approach may be taken. 

 In order to clearly visualize the above described raw data features, a star plot 

diagram is included on the following page. In the diagram, the blue points are the 

raw data points, the measurements provided for the star OGLE-LMC-CEP-007. The 

star class shown here is first-overtone. The I-band information is depicted, which is 

the denser band of data. The maximum magnitude is clearly shown, but the 

minimum magnitude is not so clear. With this particular star, there is one outlier 

present that makes the minimum magnitude look slightly lower than it should. The 
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reason that it is apparent that this data point is an outlier is because the minimum 

magnitude should really be occurring at either the minimum or maximum phase, but 

this data point occurs closer to the middle of the phase. 

 

Figure 3.2: Raw Data Features Example 

 As can be seen above, the maximum magnitude of the star is very clear, but the 

minimum magnitude value may have an outlier issue that slightly skews the feature data. 

It is important to note that the y-axis decreases towards the top of the graph because this 

is a standard for light curve plotting. 

 In addition to the raw data features already described, the x-value (phase value) 

of the maximum magnitude was incorporated as a feature. Although this feature may 

sometimes be subject to the outlier problem, it is useful to include the phase data for the 
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peak magnitude value. One reason for this is because it can help identify if the light curve 

is centered or not, which may be a measure of symmetry. 

 The OGLE dataset includes Fourier coefficients and star periods, as well, so these 

were included as features. The following Fourier coefficients were given in the dataset: 

R_21, phi_21, R_31, and phi_31. As explained in Section 2.1.3 and in [1], Fourier 

coefficients are good descriptors of light curves. 

Also, inspired by the work in [18], the log of the period given in the dataset 

was used as a feature, and so was the given mean magnitude. The given mean 

magnitude may be slightly different from the calculated one mentioned earlier that is 

calculated with the Python script. 

 Overall, it is important to have a variety of types of features for machine learning 

methods in order to capture the most information possible. It is especially important to 

include many features when testing to see which features are worth retaining. The 

following section describes the fitted curve features, which may be better at handling 

data outliers. 

3.3  Fitted Curve 

In order to deal with the outlier issue, a line was fitted to the data using Python’s polyfit 

function. A degree of 4 was chosen after some experimentation. Degree of 3 did not fit all 

of the star’s data well enough, but degree of 5 did not seem to be much of an 

improvement over degree of 4. It seemed prudent to go with the smallest degree possible 

that fit the data well. 

 The coefficients of the fitted curve were incorporated as features, in addition to a 

number of other features involving the fitted curve, several inspired by [18]. The 

coefficients are numbered from 1-5 and from left to right. The fitted curve version of one 
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of the raw data features, the x-value (phase value) of the maximum magnitude, was 

included. Using the fitted curve for this feature helps avoid the outlier issue but still 

captures relevant information. Also, the depth of the light curve was calculated by 

subtracting the minimum magnitude from the maximum magnitude on the fitted curve. 

In addition, two more features were developed by creating two straight fitted lines. The 

slopes of these straight fitted lines are used as features. The diagram below illustrates 

this feature. 

 

Figure 3.3: Straight Fitted Lines Example 

 In the above image, it is shown that the first straight fitted line is in red and is on 

the left side of the line fitted to the raw star data. The second straight fitted line is in blue 

and is on the right side. The slopes of the red and blue line are used for features for each 

of the stars. 

 The fitted curve was also used in order to calculate skewness and harmonic mean 

with Python’s SciPy library. In the case of harmonic mean, the flattened fitted curve was 

used. For skewness, it was used as a preliminary approach to determining symmetry. 
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Skewness can be very useful for predictions in astronomy, such as for determining 

whether a source is eclipsing or non-eclipsing [17]. 

 

3.4  Symmetry, First Approach 

Symmetry of light curves is a good way to distinguish between the three classes of stars 

discussed. Fundamental-mode Cepheids tend to be rather asymmetrical, but first-

overtone and second-overtone stars are more symmetrical. 

 The first approach to assessing symmetry was to use Python’s quad function in 

order to calculate the integral of the fitted curve. Specifically, the integral for both halves 

of the light curve are calculated, and the differences between the two halves are used as 

features. This procedure is shown in the diagram below and explained more in depth 

afterwards. 

 

Figure 3.4: Symmetry Diagram for Approach #1 

 In the above diagram, it is shown that two integrals are taken, one for each half of 

the light curve. The left one is shown in red, and the right one is shown in yellow. Notice 

that the y-axis focuses on only 16.8 to 17.0, as those are a typical y-minimum and y-
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maximum, respectively; but the integral goes all the way down to 0. After the integrals 

are taken, the differences between them are calculated and used as features. Specifically, 

the first feature is the difference between the integrals. The second feature is the 

difference between the absolute error values returned by the integral function. The error 

difference was included as an extra feature, just in case an interesting relationship 

occurred. 

3.5  Symmetry, Second Approach 

Because symmetry is so important in distinguishing the classes of Cepheids, it 

seemed best to focus more on trying to capture that information effectively. In order 

to do this, the middle of the fitted curve is calculated by iterating through 50 points 

on the fitted light curve and determining the maximum y-value (the maximum 

magnitude), which is the approximate middle of the light curve. The reason that 50 

points on the light curve were used is because it seemed effective in practice for 

determining a fairly accurate middle point. 

Then, the two halves of the light curves are compared. Starting at the middle 

of the light curve and working outwards in increments of 0.02, the points on each 

side of the light curve are directly compared to each other. The distance between 

these sets of points is taken incrementally, and the differences are summed. The total 

differences between all the pairs of points are summed in order to represent the 

symmetry. A lower sum indicates a more symmetrical light curve. 

The following diagram illustrates this concept in a simplified way. The center 

of the light curve is represented by a dotted blue line. Each pair of points is either 

green or red, and the distance from the point to the center is represented by a 

straight line of the same color as the point. The number of pairs of points in the 
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diagram does not exactly match the actual light curve calculations done, as this is 

just for simple illustration. The important thing here is that the points were 

determined by a fixed amount along the light curve, not necessarily their y-values. 

 

Figure 3.5: Symmetry Diagram for Approach #2 

 The above diagram illustrates a way to approach calculating symmetry that is 

rather different from the integral function differences used in the first approach. The idea 

behind using multiple ways to approach symmetry is partially to find out which is best 

but also to attempt to capture the widest amount of information possible. It could be that 

using both measures of symmetry is important for accurate Cepheid classification. 

Having more features available for experimentation is important, and poorly performing 

features can be ruled out later.  
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Chapter 4 

Experiments and Results 

4.1   Experiment Setup and Background 

4.1.1  The Data 

For the purpose of these experiments, two subsets of the Optical Gravitational Lensing 

Experiment (OGLE) data are used. This includes Classical Cepheids in the Large 

Magellanic Cloud (LMC) and Classical Cepheids the Small Magellanic Cloud (SMC). As 

mentioned previously, the LMC consists of 1,848 fundamental-mode, 1,228 first-

overtone, and 14 second-overtone Cepheids. The SMC consists of 2,626 fundamental-

mode, 1,644 first-overtone, and 83 second-overtone Cepheids. In the initial experiments, 

stars with missing data are skipped, so the numbers are a little lower. In the rest of the 

experiments, very few stars are skipped because missing values are allowed. 

Depicted on the next page is OGLE-LMC-CEP-0012, a fundamental-mode 

Cepheid. In the light curve plot, it can be seen that the V-band is noticeably sparser. The 

light curve is clearly asymmetrical, as is expected with fundamental-mode Cepheids. The 

blue dots are the raw data points (the observations) provided in the dataset for this star, 

and the red dots are the fitted curve points. It can be seen that the fitted curve has a 

stronger presence in the I-band where the information is denser and a weaker presence 

in the V-band, where the information is sparser. This is especially noticeable in the V-

band near the maximum phase. 
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Figure 4.1.1a: Light Curve of Fundamental-Mode Cepheid 

An example of OGLE-LMC-CEP-0006, a first-overtone Cepheid, is below. The V-

band is also much sparser here, but the star below exhibits the characteristic 

symmetrical nature of first-overtone light curves. 

 

Figure 4.1.1b: Light Curve of First-Overtone Cepheid 

 It is easiest to see in the I-band information for the star above that the light curve 

is symmetrical, but it is still noticeable for the V-band. Here, the V-band has more data 

near the minimum and maximum phase values than in the previous example, but there 

is still a noticeable lack of information around the phase value of 0.7. 

Similarly, the second-overtone Cepheid below has a symmetrical light curve, but 

the amplitude is very small. 
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Figure 4.1.1c: Light Curve of Second-Overtone Cepheid 

 In the example above, the typical second-overtone Cepheid is demonstrated. It 

has the characteristic small amplitude and a fairly symmetrical light curve. 

 Using these distinctive characteristics of the Cepheid classes as features for the 

machine learning algorithms will be crucial for accurate classification. If it can be 

successfully identified that a symmetrical light curve tends to be first-overtone or 

second-overtone and that the tiniest amplitudes tend to be second-overtone, then the 

classifiers should do well. 

4.1.2  Weka 

For running machine learning methods and analyzing class distributions, Weka 3.6.9 

was used. Weka is an open source Java-based data mining software [13]. It can be used 

via the command-line or with the graphical interface and has many machine learning 

algorithms available. It also has methods of determining the value of features, such as 

Information Gain and Gain Ratio. In order to run experiments in Weka, an ARFF 

(Attribute-Relation File Format) needs to be generated. In this case, Python was used to 

generate the ARFF with the feature data separated by commas and the Cepheid variable 

stars separated by line breaks. 
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4.1.3  Missing Data 

In the initial set of experiments, only fundamental-mode and first-overtone Cepheid 

stars were used, and any stars with missing data were discarded. But once second-

overtone Cepheid stars were incorporated, it became clear that this approach would not 

be effective. This is partially because less information was available for second-overtone 

stars, but it was also because there were so few second-overtone stars included in the 

dataset. Thus, every star was important to keep for training or testing, and a method was 

devised to handle missing data. 

As Weka was to be used for running the machine learning algorithms, the method 

of incorporating missing data needed to be compatible with Weka. A question mark was 

inserted in place of the missing feature data in the ARFF file in order to signal to Weka 

that the feature information was missing for that star. 

4.1.4  Machine Learning Methods 

For the machine learning methods, the Weka default settings were used. For example, 

for the Multilayer Perceptron, a learning rate of 0.3 and a momentum value of 0.2 were 

used. For J48 Decision Trees, the confidence factor used for pruning was 0.25 was used, 

and 2 minimum instances per leaf were specified. For Random Forest, 10 trees were 

specified to be generated, and a random number seed of 1 was chosen. No parameters 

needed to be specified for Naïve Bayes. 

4.1.5  General Background 

Many experiments were performed in order to determine the effects of the developed 

features on classification accuracy. Initial experiments focused on fundamental-mode 

and first-overtone Cepheid variable stars and only included the Large Magellanic Cloud 

(LMC). Also, since there were plenty of stars in the dataset for these two classes, training 
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and testing could be performed in multiple ways. After these two groups of experiments 

were performed, a group of revised experiments was also completed. In these, only the 

LMC fundamental-mode and first-overtone Cepheids were used (as in the initial 

experiments). But all 28 features were used, unlike in the initial experiments. 

Additionally, measures were used in order to determine the utility of features 

because later experiments use subsets of the features in order to compare accuracies 

across machine learning methods. This is in line with avoiding the curse of 

dimensionality problem mentioned in Chapter 2. 

4.2   Determining the Utility of Features 

To determine the utility or value of features in an unbiased manner, the following two 

measures were used: Information Gain (IG) and Gain Ratio (GR). These methods were 

run through Weka, and both measures had fairly similar results. The results are 

discussed in the table on the following page. The features are ordered in rows by the IG 

ranking. The second column is the IG value. Next is the GR ranking, which is similar to 

the IG ranking, but not exactly the same. Then the column after that is the GR value. The 

feature number and the feature description are in the right-most columns. 

The majority of the rankings agree between IG and GR. The first four features, 

which are the best, are ranked in the same order in both evaluation methods. The best 

feature is feature number 16, which is one of the Fourier coefficient measures given in 

the OGLE dataset. The second most highly ranked feature, number 25, is one of the 

slopes of the fitted straight line. The third, number 15, is a measure of symmetry. 

Specifically, the second approach to measuring symmetry, as explained in Section 3.5, 

performed well here. The fourth highest ranking feature, number 22, is the depth of the 

light curve. 
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IG 
Rank 

IG 
Value 

GR 
Rank 

GR 
Value 

Feature 
Number 

Feature Description 

1 1.1593 1 0.739 16 Fourier coefficient R_21 
2 1.0767 2 0.6900 25 Second slope of fitted straight 

line 
3 0.9403 3 0.5940 15 Symmetry approach #2 
4 0.9229 4 0.5900 22 Depth calculated by high minus 

low magnitude on fitted curve 
5 0.8784 14 0.4530 13 Coefficient4 of fitted curve 
6 0.8660 5 0.5780 24 First slope of fitted straight line 
7 0.8644 7 0.5570 23 X-value of the maximum 

magnitude on the fitted curve 
8 0.8323 6 0.5680 12 Coefficient3 of fitted curve 
9 0.7660 8 0.5400 11 Coefficient2 of fitted curve 
10 0.7633 9 0.5390 10 Coefficient1 of fitted curve 
11 0.6654 11 0.4660 9 X-value (phase) for maximum 

magnitude of raw data points 
12 0.6527 12 0.4630 8 Symmetry integral difference #2 

(error calculation) 
13 0.6527 13 0.4630 7 Symmetry integral difference #1 
14 0.4674 10 0.4790 20 Log of the period given in dataset 
15 0.4356 15 0.3030 27 Skewness of fitted curve 
16 0.1587 16 0.2330 14 Coefficient5 of fitted curve 
17 0.1568 17 0.2140 4 Minimum magnitude of raw data 

points 
18 0 18 0 6 Minimum phase of raw data 

points 
19 0 19 0 2 Mean phase of raw data points 
20 0 20 0 3 Max magnitude of raw data 

points 
21 0 21 0 5 Max phase of raw data points 
22 0 22 0 28 Harmonic mean of fitted curve 
23 0 23 0 17 Fourier coefficient phi_21 
24 0 24 0 18 Fourier coefficient R_31 
25 0 25 0 26 Mean magnitude of fitted curve 
26 0 26 0 21 Mean magnitude given in the 

dataset 
27 0 27 0 19 Fourier coefficient phi_31 
28 0 28 0 1 Mean magnitude of raw data 

points, calculated 
 

Table 4.2: Information Gain and Gain Ratio for All Features 
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The last 11 features in the table do not have any measureable worth, according to 

Information Gain and Gain Ratio. Also, features ranked sixteenth and seventeenth have 

very low worth, according to both measurements. Features ranked fourteenth and 

fifteenth by Information Gain have low values, but notice that feature number 20 is 

ranked as tenth by Gain Ratio instead of as fourteenth. For more information on the 

features and how they were developed, please refer back to Chapter 3. 

4.3   Initial Experiments 

4.3.1  Explanation 

For the initial experiments, only fundamental-mode and first-overtone Cepheids from 

the LMC were used. I-band and V-band information for each star were treated as 

separate stars for simplicity of building training and test sets. The V-band is sparser but 

still contains enough information for good classification. Also, for these initial 

experiments, all stars that have missing data were excluded from the training and test 

sets. A total of 21 features were used with the machine learning methods. From the table 

in Section 4.2, features 1-20 were used and so was feature 23. It is important to note that 

features 22 through 25, which ranked very highly in the Information Gain and Gain 

Ratio measurements, were not used in these initial experiments because they had not yet 

been incorporated. Features 26-28, which performed poorly here, were not included for 

the same reason. 

 In order to run the experiments, the first step taken in the Python script (which 

generates the Weka ARFF for classification) is to calculate and plot the light curves of 

each star. The actual data points are plotted and used in calculations, but a line is also 

fitted using Python’s polyfit function with a degree of 4. (A degree of 3 was used in 

experiments not detailed here, but some of the degree 3 fitted curves did not adhere well 
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to the data.) Next, features are extracted from the light curve and given star information, 

as described previously. Lastly, these features are written to the ARFF. 

 In Weka, the ARFF is loaded, and machine learning algorithms can be run. Four 

machine learning methods were run that are worth discussing here, and three methods 

of dividing training data versus test data were used. Specifically, the following machine 

learning methods were used: Multilayer Perceptron, Naïve Bayes, J48 Decision Trees, 

and Random Forest. For dividing the training and test sets, the following three methods 

were used: (1) 10-fold cross-validation, (2) 70% train and 30% test, and (3) 20% train 

and 80% test. 

4.3.2  Results 

As mentioned, initial experiments were performed with 21 features, the LMC galaxy, and 

fundamental-mode and first-overtone star classes. Four machine learning methods and 

three ways of dividing the training and test data were used. The results appear in the 

table below. 

 Multilayer 
Perceptron 
Accuracy % 

Naïve 
Bayes 
Accuracy % 

J48 
Decision Trees 
Accuracy % 

Random 
Forest 
Accuracy % 

10-fold Cross-Validation 98.2643 92.7680 97.8847 98.1016 
70% Train, 30% Test 97.5889 92.3448 97.7095 97.8300 
20% Train, 80% Test 97.0847 93.2429 96.9492 96.9492 

 

Table 4.3.2: Accuracies for Machine Learning Methods in Initial Experiments 

 As can be seen in the above table, 10-fold cross-validation had the highest 

accuracies for most of the methods, the exception being Naïve Bayes. Also, the Multilayer 

Perceptron performed the best overall, but Random Forest was very close with J48 right 

behind it. Naïve Bayes clearly had the lowest performance. 
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4.4   Further Experiments 

4.4.1  Explanation 

The next set of experiments included all 28 features. Also, second-overtone Cepheids and 

Cepheids from the SMC were added. In order to incorporate second-overtone stars, it 

was unrealistic to use the previously discussed methods for dividing up the training and 

testing data. This is because there were thousands of stars available for the previous 

experiments with fundamental-mode and first-overtone stars, but there were not even 

100 second-overtone stars in the OGLE LMC and SMC data combined. Thus, in order to 

deal with this problem, a tiny training set was developed. 

The tiny training set was constructed by including the first seven of each class of 

star, so 21 from the LMC and 21 from the SMC for 42 total stars. But like in previous 

experiments, the I-band and V-band were treated separately. Specifically, there are 83 

instances in the training data. The training data would have included 84 instances, but 

the first-overtone star OGLE-SMC-CEP-0003 is missing V-band data. The test set 

consists of 14,795 total instances, which is about 7,400 stars. Only 194 of those instances 

are second-overtone. First-overtone includes 5,746 instances, and fundamental-mode 

includes 8,855 instances. 

 A series of experiments were performed with the 28 features and subsets of those 

features using the following machine learning methods in Weka: Multilayer Perceptron, 

Naïve Bayes, J48 Decision Trees, and Random Forest. Also, experiments were performed 

with both galaxies, as well as the LMC galaxy alone and the SMC galaxy alone in order to 

compare the classification potential of the features across the two galaxies. Furthermore, 

some experiments included only the fundamental-mode and first-overtone Cepheids, 

while other experiments included all three classes, including second-overtone Cepheids. 
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In total, 216 experiments were performed with each experiment being a combination of 

features, galaxies, classes, and machine learning methods. 

As mentioned, there were several subsets of features used for the experiments. 

Some experiments used all of the features, and this will be referred to as the Complete 

Set or Set 1. But others left out features that did not perform well in terms of Information 

Gain and Gain Ratio measurements. A base set of features to be removed was developed 

and included the following feature numbers: 1, 2, 3, 5, 6, 17, 18, 19, 21, 26, and 28. The 

set that only removed these base features will be referred to as the Base Set or Set 2. Set 

3 removed the base features plus feature number 27. Set 4 removed the base features 

plus features number 4 and 14. Set 5 is the Minimal Set, and it removed the base features 

plus 4, 14, and 27. Sets 1-5 are the Primary Sets and include the first 120 experiments. 

Four additional sets were created that removed features that performed 

reasonably well but not the best, and those are to be referred to as the Secondary Sets. 

They make up the last 96 experiments. The Secondary Sets were only created to 

demonstrate that removing too many features is actually detrimental to the performance 

of the machine learning methods. Set 6 includes Set 5 (the Minimal Set), plus it also 

removes feature number 20, the log of the star period. Set 7 includes Set 6 plus also 

removes features 7 and 8, the features that use the integral of the fitted curve to 

determine symmetry. Set 8 includes Set 7 plus also removes feature number 9, the x-

value (phase) for the maximum magnitude determined with the raw data, not the fitted 

curve. Lastly, Set 9 includes Set 8 plus also removes three of the coefficients of the fitted 

curve, features 10, 11, and 12. 

4.4.2  Results 

As described, experiments were performed with different combinations of features, 

galaxies, classes, and machine learning methods in order to compare classification 
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accuracy more effectively. In total, 216 experiments were performed, but only the first 

120 are part of the Primary Sets, which are the feature sets that will be discussed in the 

majority of the following tables. 

 Below, results comparing the machine learning methods are shown. In order to 

obtain the following results, four averages were calculated using only the Primary Sets. 

For each machine learning method, the mean was taken for the 30 experiments done 

with that method and feature sets 1-5. The experiments varied the number of galaxies, 

classes, and subsets of features but are comparable across machine learning methods. 

For example, Experiments 1-4 included both galaxies, all 28 features, and only the first 

two classes. The only thing that changed between Experiments 1-4 were the machine 

learning methods. 

Machine Learning Method Accuracy Percent 
Multilayer Perceptron 95.2205 
Naïve Bayes 87.3121 
J48 Decision Trees 90.6842 
Random Forest 91.2358 

 

Table 4.4.2a: Comparison of Machine Learning Methods and Classification Accuracy 

As can be seen in the table above, the Multilayer Perceptron performed better on 

average than the other machine learning methods. Naïve Bayes performed the worst. 

Both J48 and Random Forest are in between and very similar to each other. But it is also 

important to note that the Multilayer Perceptron performed better than the other 

machine learning methods in every experiment set, not just on average. Thus, for most of 

the remainder of the tables in this chapter, only the Multilayer Perceptron machine 

learning technique will be used in order to simplify the tables of results. As for the other 

methods, there was no consistent trend throughout the experiment sets for which is 

second best or third or worst. 
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Next are the results of star classes on classification accuracy. Two groups of 

experiments were performed. Group 1 includes only fundamental-mode and first-

overtone Cepheids. Group 2 includes all three classes, so second-overtone Cepheids are 

also included. The averages of the experiments for the Multilayer Perceptron are 

summarized in the table below and only include the results of the Primary Sets. 

Classes Included Accuracy Percent 
Fundamental-mode and First-overtone 96.4203 
Fundamental-mode, First-overtone, and Second-overtone 94.0207 

 

Table 4.4.2b: Comparison of Star Classes and Classification Accuracy 

 As can be seen in the table above, the accuracy average is somewhat lower when 

the second-overtone stars are included. This is actually consistent across the data. For 

every Multilayer Perceptron experiment set, the experiment with all three classes has a 

lower accuracy percent than the one with only two classes, frequently by 2-3%. This 

consistency is also demonstrated in J48 and Random Forest experiments. Naïve Bayes 

has a little inconsistency though with 3 experiment sets out of 15 being reversed, 

although the difference is less than 1% in all those cases. 

 Another aspect tested in the experiments is the galaxy’s effect on accuracy. Three 

groups of experiments were used, one with both galaxies included, one with only the 

LMC, and the last with only the SMC. The average results for the Multilayer Perceptron 

are shown in the table below and include only the results of the Primary Sets. 

Galaxies Included Accuracy Percent 
LMC and SMC 95.9013 
LMC 93.9115 
SMC 95.5193 

 

Table 4.4.2c: Comparison of Galaxies and Classification Accuracy 
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 As can be seen in the table above, the LMC is associated with a lower accuracy 

than the SMC, but this did not hurt the average for both galaxies. On the contrary, 

performance was best when both galaxies were included, which is interesting. This trend 

can also be seen in the data apart from the averages, although it is not entirely 

consistent. Further experiments, perhaps with a different dataset, would be needed in 

order to confirm whether this result is the norm or if it is chance. 

Lastly, feature subset experiments were performed. As discussed previously, 

there are 5 sets included in the Primary Sets and 4 sets included in the Secondary Sets. 

Only Set 1 includes all 28 features. The creation of these feature sets is based on the 

results of Information Gain and Gain Ratio in Section 4.2. The base set were the features 

with the worst performance and, thus, were the safest to remove. The Secondary Sets 

were only included to demonstrate that the machine learning methods do not perform as 

well if too many features are removed. The results are shown in the following table. 

Set Number Accuracy Percent for 
All Machine Learning Methods 

Accuracy Percent for 
Multilayer Perceptron 

Set 1 90.7684 94.1430 
Set 2 91.1622 94.9511 
Set 3 91.2515 95.4666 
Set 4 91.1858 95.6203 
Set 5 91.1979 95.9216 
Set 6 88.4026 87.8505 
Set 7 88.9274 88.3175 
Set 8 89.1560 89.0293 
Set 9 89.1003 88.7642 

 

Table 4.4.2d: Comparison of Feature Sets and Classification Accuracy 

 As shown in the table above, it is fairly consistent for the accuracy percent to 

increase as poorly performing features are removed, but the accuracy quickly declines if 

too many features are taken out. The Multilayer Perceptron accuracy consistently 

increases in sets 1-5, which are the sets that have poorly performing features removed. It 
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is especially clear when looking at the Multilayer Perceptron that too many features were 

removed for the Secondary Sets, sets 5-9, as the accuracy decreases about 8% between 

Set 5 and Set 6. 

4.5   Revised Experiments 

4.5.1  Explanation 

In order to do further testing, a revised set of experiments was developed using all 28 

features. The larger training set was able to be used for these revised experiments 

because only fundamental-mode and first-overtone Cepheids of the LMC were included, 

much like in the initial experiments. The main difference between these revised 

experiments and the initial ones is the number of features. First, all 28 features were able 

to be used. Second, subsets of those 28 features were tested in order to compare 

classification accuracy when poorly performing features were removed. Also, stars that 

are missing data were included, unlike in the initial experiments. All four machine 

learning methods were run in these revised experiments. 

 4.5.2 Results 

As previously explained, these experiments were similar to the initial experiments 

already discussed in this chapter but include all 28 features. The results appear in the 

chart below in addition to the “Custom” set of data. The Custom set is the result from 

Section 4.4 experiments just discussed, included here for comparison only. As previously 

explained, the Custom set has a training set with 7 of each type of star, so about 42 stars 

total, which is a much smaller number of stars than the other training and testing 

methods. It was expected that the Custom training data would build a classifier with 

somewhat lower accuracy due to training on such a small number of stars and including 

all three classes. 
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Figure 4.5.2: Comparison of Feature Sets in Revised Experiments 

As can be seen in the chart above, accuracy increases slightly between the Initial 

Set and Set 1, which means that removing poorly performing features was somewhat 

beneficial. This is true for all of the training-testing combinations. But an interesting 

difference occurs between the Custom data and the other training-test combinations. 

The Custom data accuracy percent increases a little as more poorly performing features 

are removed, but the other training-testing combinations have a slight decrease in 

accuracy. One possibility for this is that having a larger amount of training information 

overcomes some of the shortcomings of features that do not perform as well.   
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Chapter 5: 

Discussion 

5.1  General Discussion 

In the experiments in the last chapter, it was determined that the Multilayer Perceptron 

performed the best out of the four methods. There may be a number of reasons for this, 

such as how neural networks and many other methods perform well without requiring 

prior knowledge. But it may be helpful to incorporate contextual information and prior 

information to improve the classification accuracy of the Naïve Bayes approach. Also, for 

Random Forest, it may be helpful to further refine the utility of the features and develop 

new features with high classification accuracy. It is also important to note that, according 

to [17], “classification trees are simple, yet powerful, non-parametric classifiers” but even 

small feature changes can change the tree structure significantly. 

 It is also worth reviewing the fact that including both galaxies, rather than just 

one galaxy at a time, yielded higher classification accuracy. This is especially interesting 

because the galaxies do have different populations of Cepheids, which have slightly 

different characteristics. But it seems that neural networks are capable of working with 

those differences between Cepheid populations. It is possible that feeding more data into 

the machine learning methods is an effective way to achieve high accuracy percentages, 

even if that information contains variations. 

 Similarly, higher classification accuracies were achieved when more training 

information was used when the second-overtone Cepheids were left out, even when 

poorly performing features were retained. This is a positive thing because we are 
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gathering huge amounts of data on astronomical objects, so it is becoming more and 

more possible to train on larger amounts of data. 

 Overall, the results are very hopeful, and the interdisciplinary field of computer 

science within astronomy appears to have a bright future. It is important to focus on 

automatically collecting new data, assessing feature quality, and performing experiments 

in order to test approaches. 

5.2  Misclassified Stars 

In order to further analyze the classification capability of the developed features and in 

order to work on the development of new features, misclassified stars were reviewed. In 

order to do this, all 28 features, both galaxies, and all three star classes were included 

with the small training set of 42 stars described in the previous chapter. The Multilayer 

Perceptron was used. Several types of misclassifications will be discussed below with 

supporting star plots included. 

 One of the characteristics of fundamental-mode Cepheids, as discussed 

previously, is that their light curves are rather asymmetrical, unlike first-overtone 

Cepheids, which are fairly symmetrical. They are also unlike second-overtone Cepheids, 

which have nearly sinusoidal light curves. 

But in the following example (and many other instances not shown here), the 

fundamental-mode Cepheid OGLE-LMC-CEP-0333 looks very symmetrical. Here, this 

LMC fundamental-mode Cepheid was classified as a first-overtone Cepheid. Because this 

goes against symmetry expectations, which ranks high in Information Gain and Gain 

Ratio rankings previously, it is not surprising that the machine learning methods would 

misclassify the star. Probably the best way to overcome this fault is to have other strong 

features that do not revolve around symmetry. 
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Figure 5.2a: Symmetrical Fundamental-Mode Example #1 

 As can be seen above, the fundamental-mode LMC Cepheid’s light curve does 

look rather symmetrical, much like a first-overtone Cepheid. There are anomalies within 

each star class, such as this one, whose classes are difficult to distinguish. 

 Similarly, in the following example, an SMC fundamental-mode Cepheid, OGLE-

SMC-CEP-0982, is misclassified as a second-overtone Cepheid. 

 

Figure 5.2b: Symmetrical Fundamental-Mode Example #2 

 In the above example, especially in the I-band, the light curve is surprisingly 

symmetrical for a fundamental-mode Cepheid. Also, the amplitude is very small. It looks 

very much like a second-overtone star, so it is no wonder that the machine learning 

methods misclassified it. This may be an anomaly for this type of star, or perhaps a 
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labeling error has occurred. Further research into this may provide deeper answers that 

could help with future feature development and star classification. 

 Another type of problem that arose that seemed to affect classification accuracy 

negatively is that the magnitude of the light curves is not always represented in the same 

way. In most of the stars that were classified correctly, the minimum magnitudes occur 

at minimum and maximum phase values. But in a number of misclassifications, the 

magnitudes begin to rise again near the minimum and maximum phase values, as shown 

below in the example star OGLE-LMC-CEP-0223. The following LMC fundamental-

mode Cepheid was classified as a first-overtone Cepheid. 

 

Figure 5.2c: Magnitude Example #1 

 In the above star plots, there are unexpected variations in the magnitude where 

the phase is a higher value. Normally the magnitude has a gradual decline from 

approximately the middle phase value to the highest phase value. But, here, the 

magnitude decreases somewhat rapidly and then increases again before decreasing to its 

minimum. Also, the fitted curve (in red) clearly had some problems with fitting the data 

properly in this case. But increasing the degree of the fitted curve did not completely 

resolve this problem. 
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 Below is an example of a SMC fundamental-mode Cepheid being misclassified as 

a first-overtone Cepheid, possibly due to the magnitude issues like in the previous 

example. 

 

Figure 5.2d: Magnitude Example #2 

 In the above example, the magnitude increases again at both the minimum and 

the maximum phase values. This may have played a part in the misclassification of this 

star, even though it is less pronounced than the previous example. 

 Also, a frequent problem that occurred was that the V-band was misclassified 

even though the I-band for that star was classified correctly. Fundamental-mode 

Cepheid OGLE-LMC-CEP-0218 is shown below as an example of this. 

 

Figure 5.2e: Misclassified V-Band Example #1 
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 In the above star plots, it is apparent that the V-band information is much 

sparser, which may be a large part of why the V-band was misclassified but the I-band 

was not. It is also interesting to note here that this example also demonstrates two other 

issues previously mentioned. The light curve is not quite a U-shape, as the magnitude 

has some unexpected variation at the minimum and maximum phase. Also, this star is 

more symmetrical than many of the fundamental-mode Cepheids. Perhaps these 

problems plus the sparser data for the V-band account for the partial misclassification of 

this star. Another issue that could be playing a part in the misclassification of the V-band 

instance is that the I- and V-bands have slightly different characteristics. But these 

characteristics were not taken into account for running the machine learning methods. A 

more complex approach to this problem may be taken in the future. 

 Below is another star misclassified only in the V-band, the LMC fundamental-

mode Cepheid OGLE-LMC-CEP-0139. 

 

Figure 5.2f: Misclassified V-Band Example #2 

 As in the previous example, the V-band is sparser, and there are some problems 

with the fitted curve conforming to the data properly. At the smaller phase values in the 

I-band light curve, the magnitude is especially misinterpreted by the fitted curve. The 

actual magnitude decreases, but the fitted curve’s magnitude increases at the minimum 
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phase. This occurs in the V-band, as well, although it is not quite as clear or as 

pronounced. This is interesting because the I-band was correctly classified, despite the 

problems with its fitted curve. But perhaps because the information is much sparser for 

the V-band, it does not take as much unexpected variation to cause misclassification, and 

there may have been less obvious issues with the other features. 

 The issues discussed may be able to be solved with further research and feature 

development. Having a variety of features with high classification accuracy that target 

the differences between each class is a beneficial approach. More about the limitations of 

this research and potential for future work will be discussed in the next chapter.  
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Chapter 6 

Future Work and Conclusion 

6.1  Limitations and Future Work 

Although a number of experiments were performed in the context of this thesis, there are 

a variety of improvements that could be made and a number of future paths to explore. 

For example, it would be best if this work were expanded to include other galaxies and 

other datasets in order to further test the classifying potential of these features. The more 

variety that is incorporated with new test sets, the more sure we can be of how these 

features rank in terms of true classification value. 

 Also, if more datasets are incorporated, it would become more viable to 

distinguish between a larger number of classes rather than just fundamental-mode, first-

overtone, and second-overtone, which would be useful in the future. It would also be 

interesting to see how these features would work if more diverse classes were included, 

such as supernovae. Furthermore, being able to distinguish between more classes would 

make the feature utility clearer. 

 Another direction that could be taken in the future is to explore sparse data more 

thoroughly. It would be beneficial to determine just how sparse the data could be but still 

have high classification accuracy with these features. In this thesis, both the I-band and 

the sparser V-band data were used for Cepheids. There were numerous examples where 

the V-band was misclassified, even though the I-band was classified correctly. In the 

future, experiments could be done to remove a percentage of the available data points 

and compare classification accuracy. This could be very beneficial for assessing features, 
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as well, because stars with only sparse data available may be more prone to 

misclassification. Having features that are sensitive to these conditions could yield 

higher classification accuracy overall, even when available information is not sparse. 

Another way to deal with the I-band and V-band issue is to treat them separately and 

incorporate prior knowledge about each band. 

 It would be ideal to build on this work in order to be able to classify stars in real-

time and with huge amounts of data. It would also be ideal if contextual information 

could be integrated with the features. It could be possible to use contextual information 

in order to rule out noise and identify measurement and labeling errors. It would also be 

beneficial to use different types of machine learning methods, such as Support Vector 

Machines, because they may have many advantages not explored in this thesis. 

6.2  Conclusion 

The overall goal of this research is to reduce the number of hours humans must spend in 

order to further astronomy and to increase the amount of automation throughout the 

system in order to make discoveries as efficiently as possible. This work just scratches 

the surface of astronomy and machine learning. There is a multitude of ways that this 

work could be incorporated into something larger. Machine learning is becoming an 

increasingly crucial part of astronomy. With the rapid growth of data collection, it will 

only continue to be more so. Developing efficient, scalable, useful, and even real-time 

methods for star classification and related purposes is essential for making use of the 

new data. Developing features for classifying the different types of classical Cepheids 

shows a lot of promise, as these experimental features yield good classification results. 

There are still many issues to tackle, and it would be good to expand to different kinds of 

Cepheids and stars and other datasets to make sure that the features are robust.  
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 In this thesis, we have reviewed 28 developed features and numerous 

experiments and results for LMC and SMC fundamental-mode, first-overtone, and 

second-overtone Cepheid variable stars using the following machine learning methods 

implemented in Weka: Multilayer Perceptron, Naïve Bayes, J48 Decision Trees, and 

Random Forest. Multilayer Perceptron performed the best overall.  
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