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ABSTRACT 

Parkinson's Disease (PD) affects 1% of the world population, with this number expected 

to increase within the following years. Local field potentials (LFPs) recorded from deep brain 

stimulation (DBS) leads placed into the motor territory of the subthalamic nucleus (STN) can be 

used to investigate the mechanism of PD and allows for further development of new therapeutic 

strategies. Beta band activity, which typically presents itself as bursts, has been continuously 

found in the LFP recordings of PD patients. These oscillations of neural activity have been 

shown to correlate with motor impairment and can be suppressed by dopaminergic medication 

and stimulation of the brain. A novel adaptive technique we developed uses local cosine packets 

to detect beta bursts in LFPs and segments the data appropriately using nondyadic segmentation. 

We show that the spectral entropy of these adaptively captured bursts previse patient symptoms 

accurately and may outperform the basic beta suppression approach, such as thresholding. 

In this work, 120s of LFP data recorded in the resting state from chronic DBS leads of 

nine PD patients were segmented adaptively by entropy minimization. Using the recently 

developed algorithm, we performed the following: (i) adaptively segment STN LFP recordings 

into segments of 125ms or multiples of it, (ii) determine the entropy distribution of different time 

windows, (iii) correlate the change in entropy between unmedicated (OFF) and medicated (ON) 

states in different time windows with Unified Parkison's Disease Rating Scale (UPDRS) and 

computer-based measurements of bradykinesia. We found that as segment size increased, the 

difference in entropy between OFF and ON states enlarged. Based on entropy distribution, it was 

possible to determine whether a patient improved after the administration of medication. 

Similarly, the change of entropy in segments ≥375ms was highly correlated with the UPDRS 

and keyboard scores. These findings suggest that beta bursts can be adaptively segmented 
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without the use of a predetermined threshold, therefore allowing for robust quantification of 

disease severity. This could enable future closed-loop DBS algorithms to become more efficient 

and effective when stimulating based on beta bursts detection. 
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CHAPTER I 
 

INTRODUCTION 

  

1.1 Motivations and Specific Aims 
 

Identification neurobiomarkers of PD and their use for the development of new treatment 

technologies gained a significant interest in the past decade [Bouthour et al., 2019; Tinkhauser et 

al., 2017]. As of now PD remains incurable, but fortunately there are treatment options available 

to help alleviate associated symptoms. The administration of dopaminergic medication and deep 

brain stimulation (DBS) are the most favorable treatment options [Fang and Tolleson, 2017]. 

Implanted DBS electrodes are typically used to suppress excessive beta activity in advanced 

cases of PD [Eusebio et al., 2012]. The electrodes can also be used to record LFPs from the 

subthalamic nucleus (STN) of the patients. The LFP recordings of PD patients have continuously 

presented bursting beta-band activity [Wichmann et al., 2011]; therefore, continuous brain 

stimulation is required to subside symptom impairment. Ultimately, automatic and reliable 

detection of these beta bursts in LFP recordings can improve novel therapies such as closed-loop 

deep brain stimulation. 
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 In this study, we aimed to detect beta bursts adaptively using nondyadic time-frequency 

segmentations and investigate the correlation of burst-entropy with motor symptoms of PD. The 

LFP data analyzed was recorded continuously for 24 hours using chronic DBS electrodes from 

nine PD patients. Levodopa was administered to the patients three times, and their neural activity 

was recorded while ON and OFF the medication. During the ON and OFF states, the patients 

were instructed to rest for an extended time and were then asked to complete several tasks to 

quantify their improvement.  

The nondyadic segmentation algorithm we developed analyzed the resting state LFP 

recordings to capture beta bursts and segment the recordings based on time-varying 

characteristics of the signal. We computed the power spectra of LFP in constructed segments and 

used entropy as a measure to quantify the sharpness of the spectrum in each segment. We 

investigated whether or not the entropy modulated by the adaptively captured beta-bursts can 

describe the differences in symptoms of OFF and ON medication states. We also characterized 

the time-frequency dynamics and power spectrum in the analyzed resting states.  

1.2 Thesis Organization 
 

This thesis is organized in the following way; the first chapter serves as an introduction to 

the primary purpose of this work and organization. The second chapter provides a background 

for PD, DBS, and LFPs. The third chapter introduces the methods used to analyze the data, and 

the fourth chapter demonstrates the results acquired. Finally, the fifth chapter is the discussion 

and presents future steps regarding the algorithm. 
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CHAPTER II 
 

BACKGROUND 

  

2.1 Parkinson’s Disease  
 

PD is an extremely complicated neurological disease that affects multiple neurological 

circuits. It degenerates dopaminergic neurons in the substantia nigra pars compacta (SNc), 

which, in return, causes the loss of dopamine in the striatum [Wichmann et al., 2011]. Initially, 

this disease was medically described as a neurological syndrome by Doctor James Parkinson 

[Parkinson, 1969]. He would refer to it as ‘shaking palsy’, and it was not until much later that 

this disease was redefined due to the findings of Jean-Martin Charcot [Goedert and Compston, 

2017]. PD is the second most common age-related neurodegenerative disease, affecting people 

older than 60 years of age, after Alzheimer’s Disease [Reeve et al., 2014]. Also, although it is not 

common for younger adults to suffer from PD, early onset can occur [Reeve et al., 2014]. This 

disease mostly affects the male gender, but women can be affected as well. It is estimated that 

about 10 million people worldwide are affected by this disease, and in the United States alone, 

there are 60,000 cases reported each year, which does not reflect the number of cases that go 

undetected [Naqvi, 2018]. PD affects not only the person's health but also lessens their quality of 
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life due to the symptoms the patient experiences, making it difficult to complete daily tasks and, 

over time, causing the loss of independence. Unfortunately, the root cause of PD is still 

unknown, and there are no known measures that can 

help prevent it. 

To understand how PD works, understanding the 

basics of how a healthy neuron (Figure 2.1) 

communicates with the rest of the body is essential 

[Mayfield Brain and Spine, 2018]. Neurons are the 

basic building blocks of the nervous system. The 

structure of a neuron consists of the soma, axon, 

dendrites, and synapses. Dendrites, which are a 

tree-like structure, receive electrical impulses sent 

from other neurons. Afterward, these electrical signals received by the neuron causes electrical 

changes in the cell body, also known as the soma. Once all the information has been gathered, 

regeneration of the electrical impulse takes place at the axon hillock. Depending on the strength 

of the electrical impulse, the signal will then be carried down by the axon. The axon conducts 

electrical impulses away from the cell body to communicate with the rest of the neurons. These 

synapses are the junctions that help transmit the messages between the neurons. These synapses 

consist of one neurotransmitter; neurotransmitters would be what allows electrical impulses to 

cross from one neuron to another. Lastly, chemicals called monoamine oxidase-B (MAO-B) and 

catechol-O-methyltransferase (COMT) breakdown leftover neurotransmitters in the synapse, so 

it is clean and ready for the next impulse allowing the cycle to begin all over again [Mayfield 

Brain and Spine, 2018]. 

Figure 2. 1: Depicts the functionality of a 
healthy neuron. Reproduced from 
Mayfield Brain and Spine [2018]. 
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The basal ganglia-thalamocortical circuit's primary function is to provide motor control, 

such as prohibiting movements that would affect a smooth fluid motion when reaching for an 

object. A few other responsibilities of the basal ganglia would be learning, ocular-motor 

functions, and emotions. The basal ganglia is composed up of multiple subcortical-nuclei located 

within the brain. The group of nuclei that make up the basal ganglia is the substantia nigra (SN), 

subthalamic nucleus (STN), palladium, and striatum. The striatum is the most massive structure 

in the basal ganglia, and it consists of two separate nuclei structures, caudate nucleus and the 

putamen. The SN, name as such because of its high level of neural melanin, is composed of the 

SN pars reticulata (SNr) and SN pars compacta (SNc). Additionally, globus pallidus external 

(GPe), globus pallidus internal (GPi), and ventral palladium (VP) make up the palladium. 

 The basal ganglia controls body movements with a complex chain of neurons using an 

interconnected group of nerve cells [Mayfield Brain and Spine, 2018]. Initiations and executions 

of body movements start with the basal ganglia receiving neural input from the motor cortex 

regarding the initiation of movement. Afterward, the basal ganglia will deliver the message to the 

thalamus which would then send it to the motor cortex. Once at the motor cortex, the electrical 

impulse will then be sent to the muscle to execute the movement. These brain structures play a 

crucial role in what is known as the basal ganglia-thalamocortical circuit, and it is where the root 

of PD lies. 

In a normal functioning basal ganglia-thalamocortical circuit, the SNc releases dopamine 

receptor subtypes, D1 and D2, into the putamen. D1 dopamine subtype excites neurons, which 

increases the activity in the direct pathway (Figure 2.2). D2 dopamine subtype will then inhibit 

the neuron activity in the indirect pathway, making it less likely to fire, resulting in smooth 

execution of voluntary movement. In PD this does not occur; the person will experience an 
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imbalance of D1and D2 release because of the degeneration of dopaminergic neurons. Therefore, 

this imbalance will generate an overactivity in the indirect pathway and an under-activity in the 

direct pathway, causing the symptoms which are associated with this disease. 

  

 
 
 

 

 

 

 

 

 

 
 

2.1.1 Symptoms 
 

            Patients who suffer from PD experience, but are not restricted to the following 

symptoms, such as rigidity, bradykinesia, akinesia, and rest tremor. However, patients will 

experience PD symptoms after the death of 80% of the dopaminergic neurons [Mayfield Brain 

and Spine, 2018].  

Rest tremor is defined as a slow, involuntary, and rhythmic movement within the 

frequency range of 4-6Hz, which occurs when the person remains at rest [Jankovic, 2008]. It 

usually begins on one hand, foot or leg, and over time it slowly takes over other parts of the 

Figure 2. 2: Normal functioning basal ganglia-thalamocortical motor circuit (left) vs. Parkinsonian basal ganglia-
thalamocortical motor circuit on (right). The black arrows represent inhibitory connections, and the gray 
arrows represent excitatory connections. The width of the arrows represents their activity. Reprinted from 
Galvan and Wichman [2008]. 
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body. Some patients can also experience rest tremor in the jaw, chin, mouth and/or tongue, 

making it challenging to communicate effectively with others.  

Bradykinesia refers to the slow movement PD patients may experience, while akinesia 

refers to the reduced ability to initiate movement. Both symptoms play a part in the difficulty of 

postural instability. At the onset stage of the disease, the person may first experience difficulty in 

swinging their arms when moving. As the disease progresses, they may experience slowness in 

walking while making it difficult to take more substantial steps. 

Rigidity is one of the symptoms of PD that causes pain because of the muscle stiffness 

that occurs. Frequently, patients will experience shoulder pain, and sometimes it may be 

diagnosed by physicians as arthritis, bursitis or rotator cut off injury due to the similarities. 

Although misdiagnosis does occur, these symptoms are one of the most frequent manifestations 

of PD [Jankovic, 2008]. Patients can experience a few other symptoms when suffering from PD, 

such as depression, cramped handwriting, shuffling gait, and sleep disorders. 

PD symptoms severity can be quantified using the Unified Parkinson’s Disease Rating 

Scale (UPDRS). UPDRS was developed in the 1980s and was later modified by MDS, therefore 

allowing evaluations of motor and non-motor symptoms associated with the disease [Goetz et al., 

2008]. UPDRS consists of 4 parts, part 1 evaluates mentation, behavior, and mood, part 2 

evaluates activities of daily life, part 3 completes a motor examination, and part 4 rates 

complication of therapy [Perlmutter, 2009]. Each subcategory is rated on a scale from 0 to 4, 0 

being normal (no impairment), and 4 being severe impairment.  
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2.1.2 Diagnosis 
 

            Since there are no current tests available to detect PD, it may become difficult to 

diagnose due to symptoms being similar to other diseases, and not everyone affected experiences 

the same symptoms. Fortunately, physicians are required to make a thorough examination of the 

patients’ medical history, and a physical exam is needed to diagnose the patient with PD 

accurately. 

2.1.3 Treatments 
 

The current treatment options available cannot cure PD, but they can help alleviate mild 

to moderate symptoms. Although just like other medications, symptom relief dissipates over 

time, and in some cases the patient may experience side effects. Levodopa, also known as L-3,4-

dihydroxyphenylalanine, or L-DOPA, is an effective dopamine replacement agent treatment for 

PD. L-DOPA crosses the blood-brain barrier through an amino acid transporter, and a 

decarboxylase enzyme will convert it into dopamine in the dopaminergic neurons. However, 

only 5% to 10% of the administered levodopa crosses the blood-brain barrier, and the remaining 

part has to be metabolized elsewhere [Meloni et al., 2015]. The rest of the medication may be 

metabolized either in the bloodstream or after it is converted to dopamine. L-DOPA is usually 

administered with a CMOT blocking agent to prevent further metabolization of the medication 

when not necessary, therefore reducing the chances of liver toxicity. Therapeutic dose of L-

DOPA will vary depending on the patient, and a vast majority of patients typically respond well 

to doses of 300-600 milligrams per day [Salat and Tolosa, 2013].  

Even though other options are available, L-DOPA is known to be effective in reducing 

rest tremor and other symptoms in PD patients. Usually, the effects of the medication last for 
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several hours before it wears off, and symptoms resurface. Unfortunately, when taking L-DOPA 

over a lengthy period, patients can experience L-DOPA induced dyskinesia. However, a 

combination of L-DOPA and DBS can help reduce dosage quantity and medication side effects.   

2.2 Deep Brain Stimulation 
 

A better understanding of PD allowed for significantly improved techniques; thus, 

surgeons first revisited the use of ablative procedures [Whichmann and DeLong, 2006]. 

However, over the last century, the surgical treatment of PD has evolved from an ablation with 

careful placement of lesions within a variety of brain structures into stimulation of particular 

brain targets within the basal ganglia subregions [Wagle and Okun 2014]. DBS delivers 

rectangular electrical impulses to targeted regions of the brain. Stimulation is typically applied in 

the STN or GPi (Figure 2.3) to reduce symptoms since there has been extensive evidence 

showing that abnormally synchronized activity in the beta band has been principally found in 

these brain structures [Eusebio et al., 2012]. DBS electrodes are placed on one or both sides of 

the brain, and stimulation parameters are fine-tuned to each individual’s need. The physician 

programmer can select lead contacts (positive, negative, or off—in any combination), stimulation 

mode (bipolar or monopolar with the INS case positive), and stimulation parameters (amplitude, 

0–10.5 V in 0.1-V steps; rate, 66 steps from 3 to 250 Hz; PW, 60–450 ms in 30-ms increments; 

and on/off cycling from seconds to 24 h on/off per day) [Coffey, 2009]. 

Stimulation of the STN at a higher frequency has helped subside most symptoms for 

patients by preventing neurons from firing and therefore removes the excessive inhibition from 

the indirect pathway. As time passed, DBS of the STN became more frequent, since methods  
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for implantation grew to be more precise and effective. There are a variety of placement 

techniques used to help map the optimal area for the DBS electrode (Figure 2.4). Placing the 

electrodes in the wrong location will reduce the efficiency of the stimulation and will lessen the 

probability of providing patients with relief; this leads to several side effects such as loss of 

cerebrospinal fluid, or pneumocephalus, among other complications. On the day of surgery, the 

external part of the head is numbed, and a head frame is placed on the head of the patient. At this 

point, the patient will/can experience a pressure sensation, but the pain should not be present. 

Pre-operatively (Pre-OP), an MRI or CT is taken, and a frame-based stereotaxy system is used to 

obtain the Cartesian coordinates of the frame. Afterward, the frame is adjusted to the 

corresponding coordinates, and microelectrodes are placed inside a cannula so they can be  

Figure 2. 3: Schematic for deep brain stimulation leads implantation and 
hardware required. DBS leads can be placed either in the STN or GPi 
(most common for PD patients). The pulse generator can be fine-tuned 
to the individual’s needs. Adapted from Hickey and Stacy [2016] 
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inserted into the brain using an electrode guiding system. Microelectrodes can be used to obtain 

Pre-OP LFP recordings and to help locate the best implantation location of DBS macroelectrodes 

for optimal programming. Although, in most cases, more than one technique is used for the 

certainty of DBS electrode placement. Afterward, the depth of the tissue is usually determined by 

using ventriculography, CT, and MRI to verify electrode placement location. Intraoperative 

testing is also completed to test the side effects the patient may experience when the electrode is 

stimulating at a specific location. One goal during surgery would be to achieve the most 

favorable electrode placement without inducing side effects. 

 However, even though stimulation can help subside most of the symptoms, DBS cannot 

treat postural instability. Particular symptoms may not respond to dopaminergic medication, 

indicating they are possibly controlled by a neural pathway that differs from the dopamine-

dependent pathways responsible for tremulous/anti-kinetic symptoms of PD [Thompson et al., 

Figure 2. 4: Medtronic DBS lead (model #3389) schematic shown at the top left. 
Medtronic IPG device with DBS electrode shown in the bottom right. Image 
adapted from Darvas and Hebb [2014] and https://doi.org/10.1016/B978-0-12-
805353-9.00076-0 
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2014]. Requiring the physician to make an extensive evaluation of the patient before they can be 

considered as a DBS candidate and undergo surgery. Therefore, an ideal candidate will have PD, 

responds to their dopaminergic medication, and will not have untreated severe depression or 

dementia. Ultimately, the patient’s reaction while on medication would be the best indication of 

whether DBS will work for them.  

However, this treatment option comes with drawbacks, since conventional DBS 

stimulates the brain continuously it can induce side effects on the patient. Reason being that it is 

not possible to predict when a patient will experience PD symptoms to stimulate only when they 

occur. 

2.3 Local Field Potentials 
 

            DBS macroelectrodes implanted are required to be left in the brain over a long time to aid 

with symptom relief. Although the primary purpose of DBS macroelectrodes is stimulation, 

LFPs may be recorded directly from DBS-electrodes in the few days that follow implantation 

while externalizing of leads occur before connection to the subcutaneous stimulator [Brown and 

Williams, 2005]. LFP recordings give us access to a measurable synchronous activity occurring 

in particular parts of the brain. When using standard analytic methods, the characteristics of LFP 

recordings can be studied, which in return can help translate what is occurring in the human 

brain.  

            When electrodes are placed in the brain for an extended time, impedance becomes a 

significant factor to keep into consideration when recording or stimulating. Generally, LFP 

recording is done before the IPG implantation to obtain optimal recordings. However, recordings 

can be done up to days or years later without affecting the quality of the signal. A recent study 
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tested the quality of LFP recordings during different stages of the surgery and after several years. 

The LFPs were recorded from the DBS electrodes, and electrode encapsulation was observed 

over a long time. Although some changes occurred during, they determined it was possible to 

obtain good quality LFP recordings even after several years had passed [Abosch et al., 2012].  

2.3.1 Local Field Potentials Recorded from the STN of a PD Patient 
 

            In recent research studies, LFPs recorded from the STN have been used for target 

localization and to determine medication onset. These studies suggest that the exaggerated 

activity of the beta band (13-35 Hz) in the basal ganglia is a hallmark for patients with PD 

[Tinkhauser et al., 2018]. Furthermore, most beta oscillatory cells were also found towards the 

dorsal part of the STN [Wichmann et al., 2011]. Additionally, PD rigidity has shown to correlate 

with the power of beta oscillations (13 -30Hz) [Thompson et al., 2014]. Typically, during the 

OFF state, a frequency peak within the beta range is present in the power spectra (Figure 2.5C). 

However, the beta peak will sometimes translate to a 70Hz peak in the ON state, as seen in the 

LFP recording in Figure 2.5D. Gamma and High-Frequency Oscillation above 200 Hz band 

powers increase after the administration of L-DOPA, caused by the contribution of a higher 

frequency signal to symptomatic improvement. Therefore, suggesting that gamma activity is 

prokinetic since it promotes normal, voluntary movement [Thompson et al., 2014]. The initiation 

of voluntary movement causes the suppression of beta-band, and it is associated with event-

related desynchronization (ERD).  Therefore, termination of voluntary movement promotes 

event-related synchronization (ERS), causing beta-band power to decrease. Some studies suggest 

that PD patients experience symptoms because of pathological synchronization at low 

frequencies (13 – 35 Hz) [Eusebio et al., 2012]. An increase in local and interhemispheric 

synchronization is related to the cause of beta bursts in PD patients [Tinkhauser et al., 2017].  



14 
 

 

 

 

 

 

 

 

 

 

 

 

Therefore, suggesting that dopamine depletion causes highly synchronous beta activity 

[Thompson et al., 2014]. It is suspected that this excessive synchronization within and in the 

basal ganglia is what contributes to clinical impairment. The correlation of beta-band power 

suppression induced by levodopa with the improvement of clinical impairment was (𝑟 =

0.811, 𝑃 < 0.001), which strengthens the hypothesis of beta-band promoting clinical impairment 

(Figure 2. 6) [Kuhn et al., 2006]. Moreover, low-beta power was also correlated (𝑟 = 0.5, 𝑃 =

0.03) with keyboard improvement ratio [Ozturk et al., 2019]. Additionally, previous studies had 

reported patient symptoms were diminished when stimulation was applied at the exact location 

where beta-band activity was at its highest (Figure 2.7) [Eusebio et al., 2012]. 

Figure 2. 5: A) and B) depicts the LFP activity of a patient during the OFF and ON 
medication state. C) and D) show the power spectra of the corresponding 
LFP recordings. Reproduced from Brown and Williams [2005]. 

 



15 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2. 7: A) LFP Power spectrum prior to stimulation. B) Beta band suppressed 
once DBS was applied, which is denoted by red bars. C) Depicts how much 
voltage of DBS was applied as time progressed. Adapted from Eusebio et 
al. [2011]. 

 

Figure 2. 6: A) The scatter plots show the correlation (𝑟 = 0.811, 𝑃 < 0.001) between 
reduction in beta peak with levodopa and improvement of UPRS hemibody subscore. 
B) Scatter plots the correlation between the reduction in beta peak power and 
improvement of akinesia-rigidity subscore (𝑟 = 0.835, 𝑃 < 0.001). Adapted from 
Kuhn et al.  [2006]. 
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2.3.2 Beta Bursts 
 

The activity in the beta band fluctuates over time and appears as bursts with large 

amplitudes. Thus, making it difficult to predict its appearance since it is random, has different 

durations, and amplitudes. Being the reason to why continuous stimulation of the brain is 

required for complicated cases of PD and, most recently, adaptive deep brain stimulation 

methods are being studied. In a recent adaptive deep brain stimulation study, a predetermined 

threshold was used to detect beta bursts that were ≥ 100 ms (Figure 2.8A); they effectively 

stimulated when beta bursts were detected, therefore reducing the number of large high 

amplitude bursts [Tinkhauser et al., 2017]. Both beta bursts duration and phase-amplitude 

coupling have emerged as more selective biomarkers than beta band power itself, and they could 

potentially be used as a feedback signal in closed-loop DBS [Bouthour et al., 2019]. Beta bursts 

are continuously positively correlated with muscle rigidity, and bradykinesia suggesting that it 

may have a mechanistic role. In the OFF state, beta bursts are frequent and have a longer 

duration. Fortunately for most patients, exaggerated beta bursts activity and beta-band power can 

be suppressed with the administration of L-DOPA.  

 
Figure 2. 8: A) A threshold method was used to detect burst with a length of 100 ms and greater. The LFP data was 

filtered to around each individual’s beta peak. B) Demonstrates how the amplitude of beta bursts increases as 
burst duration increases. Adapted from Tinkhauser et al. [2017]. 
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L-DOPA modifies the delivery of beta bursts by making them less frequent and shortening the 

burst period. As a result, burst amplitude and duration decreases (Figure 2.8B) and prevents 

symptoms from surfacing, until the medication wears off.  Due to this response, beta bursts with 

longer duration have a positive correlation (𝑟 = 0.5	, 𝑃 = 0.045) with clinical impairment, while 

shorter bursts a negative correlation (𝑟 = −0.5, 𝑃 = 0.45) with clinical impairment (Figure 2.9) 

[Tinkhauser et al., 2017]. While in the ON state, suppression of slower oscillatory signals occurs, 

and the imbalance of the dopamine subtypes are restored. However, in some cases, beta-

suppression by medication may not happen, and it is due to beta-band having two subcategories, 

low beta (8 -20Hz), and high beta (21-40Hz). The depletion of dopamine in the substantia nigra 

Figure 2. 9: Depicts the correlation between long and short bursts with clinical 
impairment. A) shows the distribution of bursts with respect to their 
length. B) Negatively Correlates shorts bursts with clinical impairment. 
C) Positively correlates long bursts with clinical impairment. Reproduced 
from Thinkhauser et al. [2017].  
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pars compacta causes the activity of the low-beta band, making it pathological. While high-beta 

band activity is physiological.  
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CHAPTER III 

METHODS AND DATA 

 

3.1 METHODS 

 We are proposing dyadic and nondyadic segmentation methods of the LFP in the time 

axis for the adaptive detection of beta bursts. We use Local Cosine Packets (LCP) to construct 

time segmentations, adapting the time-varying characteristics of the LFP signal. We anticipate 

that excessive beta activity or beta bursts that occur randomly with varying duration can be 

captured by dividing LFP signals into segments that are proportional to the duration of these 

oscillations. Our hypothesis is that the entropy of the power spectrum of the beta bursts estimated 

from adaptive segmentations can be a better predictor of the motor symptoms and their 

improvement following dopaminergic medication. In this scheme, first, we employ the best basis 

algorithm constructing such segments over a dyadic tree structure. Later we improve this method 

with nondyadic segmentation for isolation of beta bursts, which do not necessarily appear in 

dyadic segments. In particular, the LFP recordings are rapidly segmented from left to right by 

minimizing the entropy of LCP estimated in adjacent windows in an iterative fashion. We 

compute time-frequency maps of LFP in these adapted windows to visualize the change of 

frequency throughout the segments as time progresses. Afterward, the entropy of each segment 
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was computed to be used as a feature to characterize the sharpness of the spectrum and later 

predict the improvement in symptoms of the PD patients. Below we first describe the adaptive 

time segmentation methods and later use the entropy of the spectrum in these windows to obtain 

the difference in entropy between OFF and ON medication states and correlate it to UPDRS and 

keyboard scores. 

3.1.1 Local Cosine Packets 

3.1.1.1 Discrete Cosine Transform Type IV 

 To represent the time-varying spectrum of neural activity, the signal is generally divided 

into disjoint fixed length rectangular windows and analyzed with Fourier bases. This method has 

two drawbacks. First, fixed window length provided uniform frequency resolution and did not 

adapt the time-varying properties of the signal. Second, multiplying a signal with a rectangular 

window causes side lobe artifacts, which extend to high frequencies. To avoid these artifacts, 

smooth windows are preferred. However, when smooth windows are used, then orthogonality is 

lost when Fourier bases are used.  

 

 

 

 

 

It has been shown that one can construct orthogonal bases by using smooth windows modulated 

by cosine IV basis. This transform is also named as the lapped orthogonal transform or local 

Figure 3. 1: Smooth windows used, which also overlap with its neighbor 
intervals 
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cosine packets. The windows are not only smooth, but they also overlap their neighbor interval 

(Figure 3.1). Despite the overlap, DCT-IV serves as an orthonormal basis and can be effectively 

used to study the local spectrum of the signal. Therefore, local cosine packets can be used to 

expand a signal and provide local spectral representation with minimal spectral leakage due to 

the use of smooth windows. The discrete cosine transform can decompose a signal into the sum 

of cosines which oscillate at different frequencies. This transform results in real integer values to 

represent a discrete-time signal in the frequency domain.  

Hence a signal, 𝑠(𝑡) 	∈ 	 𝐿! , could be written as terms of the functions 𝜓"#(𝑡)	 as equation 

3.1 and 

 can be rearranged as 𝑝#
" 	= 	𝑠(𝑡) ∙ 	𝜓#

"(𝑡) , where 𝑝#
"  coefficients are calculated using DCT-IV 

with the following procedure [Wickerhauser et al., 1995; Ince et al., 2004]. Here, 𝜓#
"(𝑡) =

	𝑏"(𝑡)
√!
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	𝑐𝑜𝑠 '
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A B𝑡 − 𝑎"D, 𝑗 ∈ 𝑍, 𝑘 ∈ 𝑁 with 𝑙" = 𝑎")( − 𝑎", being an orthonormal basis 

for 𝐿!(𝑅) and 𝑏"(𝑡) is the smooth window that overlaps with the windows next to it, as shown in 

Figure 3.1. These are satisfied by 𝑏"*(! (𝑡) + 𝑏"!(𝑡) + 𝑏")(! (𝑡) = 1	for 𝑡	 ∈ [	𝑎" − 𝑛, 𝑎")(𝑛] where 

𝑛 ≤ &!
!
 would be the length of the overlapping part, as shown in Figure 3.2A.  

3.1.1.2 Best Basis Algorithm  

 Local cosine packets can be applied to obtain an adaptive time segmentation of a 

particular signal over a dyadic tree structure; the nodes of the tree represent a segment with 

 𝑠(𝑡) 	= 	 N 𝑝#
"

"∈,,#∈.

𝜓#
"(𝑡) (3.1) 
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mother and child-relationships depicted in Fig 3.2. Simply the mother segment covers the same 

amount of duration of the union of its children. The signal is decomposed into local cosine 

packets in each sub-segment, thus providing localized characteristic details of the signal until the 

last layer of the tree structure is reached.  

 

 

 

 

 

 

 

 

 

The best basis (BB) method of Wickerhauser et al., 1992, employs an entropy 

minimization strategy over this dyadic tree to select the nodes that adapt to time-varying 

characteristics of the signal. Later, this method has been successfully extended to classification 

(local discriminant bases -LBD) applications to select the time-frequency representation tuned 

for discrimination [Saito et al., 2002]. The LDB method was also used in EEG classification 

[Ince et al., 2009; Ince et al., 2007] for a brain-machine interface. In dyadic adaptive 

segmentation, the partitions are selected from a dyadic-partitioning tree, and at each level, the 

Figure 3. 2: a) Dyadic tree structure used, sub-segments represent a smooth    
window. b) Smooth windows of child bell and mother bells. c) Cosine 
packet with smooth window applied 
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signal is divided into 2" segments where j is the level, where the interval [	𝑎"	,𝑎")(]	describes a 

partition [Wickerhauser et al., 1992; Ince et al., 2004]. Therefore, all the data that was introduced 

into the algorithm needed to have a length, which was to the power of two. The algorithm is 

visually represented in Figure 3.2A, as the pruning processing of the dyadic tree begins from 

bottom to top. Local cosine packets mentioned in Section 3.1.1, were used to decompose the 

signal in each segment after a folding process took place, and the average of coefficients is 

obtained after time-shifting [Boulet, 2014]. This results in the estimation of the power spectra of 

the signal various segments with different resolutions in a redundant fashion. The best base 

algorithm was implemented to select the segments that adapt the time-varying characteristics of 

the signal through the minimization of the entropy cost function. 

The BB method is outlined in three steps. First, the signal must be expanded into Cosine 

Packets in accordance with the tree structure. Secondly, after decomposing each segment into 

Cosine Packets, the cost function (the Shannon entropy) of each sub-segment is obtained 

here p0 represents the DCT-IV coefficients in a particular segment normalized to the total energy 

of the signal. Here 𝐻1 estimates the sharpness of the spectrum. 

Lastly, the pruning process takes place from bottom to top, thus allowing for 

minimization of entropy (Figure 3.3). Typically, this pruning works as such to compare the 

mother and children sub-segments. When the mother segment is has a lower cost function, this 

segment will be kept by disregarding the children segments. On the other hand, if the children 

sub-segments have lower entropy values combined, the mother’s cost function will be replaced 

 𝐻1 = −N𝑝#! log(𝑝#!),
2

#3(

 (3.2) 
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with the child’s entropy. After comparing with the upper level, if it determined that the children 

have lower entropy, the mothers will be discarded, and the children will be kept.  

 

  

  

 

 

 

3.1.1.3 Nondyadic Segmentations 

The BB of Wickerhauser and LDB method of Saito are selected over a dyadic tree by a 

divide and conquer algorithm. However, there is no guarantee that the local patterns will occur in 

dyadic segments. In case the localized events in the analyzed data do not match to the tree 

structure, then both algorithms result in arbitrary trees/segmentations. Therefore, a more flexible 

segmentation algorithm is desired.  

Ince et al., 2006, proposed a nondyadic segmentation based on a Merge and Divide 

strategy for the discrimination (Figure 3.4). In this method, rather than employing a bottom to 

top cost function maximization search on a dyadic tree as done in LDB and BB methods, they 

merged consecutive segments based on the change of the cost function. Nondyadic segmentation 

is very similar to the dyadic segmentation method previously mentioned, but the difference lies 

in the technique used to segment the data. While dyadic segmentation prunes a tree from bottom 

Figure 3. 3: A) Dyadic tree structure. B) Dyadic tree structure applied to a synthetic signal. C) Final 
segmentation for the synthetic signal 
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to top, the nondyadic algorithm segments data from left to right recursively. As depicted in 

Figure 3.4 from left to right, the consecutive segments are merged if the cost function (entropy) 

is minimized in the mother segment. Thus, this means that children are not necessarily half of the 

mother windows as it was in the dyadic segmentation. In the next iteration, the merged segment 

on the left becomes a child, and it is merged 

with the neighboring child window based on 

the change in the cost function. Consequently, 

the merged segments can be multiples of the 

finest segments. While Ince et al., 2006 used 

this approach to maximize discrimination in 

this study, we aimed to minimize the Shannon 

entropy of the spectrum to construct segments 

based on time-varying properties of the 

beta bursts.  

 One drawback when using this 

type of transform would be that it is not shift invariant. A phase delay in the original discrete-

time signal will prompt unprecise computation of the coefficients, which will then result in an 

inaccurate representation of the signal in the frequency domain. However, imposing a time 

shifting signal operation help can help overcome this.  This shifting procedure expands the data 

by generating its time shifted versions in both directions in a circular manner, known as a “spin 

cycle” procedure [Saito et al., 2002]. In this procedure, if the desired number of shifts is 𝜏 then 

the training set is expanded to 2𝜏 + 1 including the original signal, and it shifts by −𝜏	, −𝜏 +

1, . . . , 𝜏 [ Ince et al., 2006]. 

Figure 3. 4: A schematic demonstration of how a nondyadic 
algorithm segments data from left to right by 
comparing the entropy of adjacent segments. The 
first iteration starts at the bottom with the left-most 
segments (C1 and C2) and iterated until we reach 
the right-most segments of the data (C5). 
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3.1.2 Entropy of the Power Spectrum 

 Claude E. Shannon first introduced Shannon entropy in 1984, and it is now widely used 

in a variety of engineering applications. The Shannon entropy of a distribution is the expected 

amount of information from that event. Furthermore, Shannon entropy is the negative sum of the 

probability multiplied by the log of the probabilities. In our work, the normalized power 

spectrum of the LFP can be seen as the probability density function. Hence, the entropy 

measures the sharpness of the spectrum of the signal. For instance, if a signal is built up from a 

pure oscillation, here beta burst, it should have only a few DCT-IV coefficients, which are 

nonzero, resulting in a lower entropy. In case the signal is white noise, then the power spectrum 

is expected to be uniform resulting in a lager entropy, 𝐻4. 

Depending on the log function used, entropy can be computed in units of bits (binary 

units) when using  𝑙𝑜𝑔! or nats (natural units) when using 𝑙𝑜𝑔(5.  However, in its original form, 

the entropy is sensitive to the signal length, and this can cause problems in comparison of 

segments with different lengths. Therefore, normalized entropy is used 

 𝐻1 = −W
𝑝6! log(𝑝6!)
𝑙𝑜𝑔(𝑛) ,

2

63(

 (3.3) 

when it is divided by 𝑙𝑜𝑔(𝑛) , it results in 𝐻1 ∈ [0,1] . Where 𝑛 is the length of the 

corresponding segment in samples. Normalized entropy was used to compare the entropy of 

segments that had varying lengths. Thus, allowing for a fair comparison. Another option would 

be to compute (Fast Fourier Transform) FFT coefficients using the same number of FFT points 

for all segments regardless of their length. 
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 After we computed the entropy for different segments, we then weighted it based on the 

power of the segments 

 
𝐻, =	

∑ 𝐻- 	 ∙ 𝑤-.
/01 			
∑ 𝑤/.
/01

, 
(3.6) 

where 𝐻# stands for the normalized entropy and 𝑤# stands for the allocated weight value. We 

calculated weighted entropy to consider the varying power of the segments. This helped us 

determine the relative importance of segments, based on their power or other patterns that can be 

used as a weight factor. Here, in addition to the signal power, we also considered the ratio of low 

beta band power to high beta band power as a novel weight factor.  

 Additionally, we calculated the difference in entropy between the two states (OFF vs. 

ON) 

where 𝐻7899 stands for the weighed entropy value of the OFF-medication state and 𝐻78. stands 

for the weighed entropy value of the ON-medication state. ∆𝐻7 allows us to correlate mean 

weighted entropy of segments regardless of their length to UPDRS and keyboard scores. 

However, we can also calculate the difference in entropy by using normalized entropy instead of 

weighted entropy in equation 3.7. We then correlated differences in normalized entropy to 

clinical improvement for specific segment lengths; hence the need for weighted entropy is not 

necessary.  

 

 

 ∆𝐻, = 𝐻,233 − 𝐻,24, (3.7) 
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3.1.3 Correlation Coefficients  
 

The correlation coefficients were calculated using Pearson correlation 

where N is the sample size, 𝑥6 	and 𝑦6 are the individual samples points, 𝜇: and 𝜇;	are the means 

of x and y , and 𝜎:	 and 𝜎; are the standard deviations.  

3.2 EXPERIMENTS WITH SYNTHETIC DATA 
 

3.2.1 Adaptive Segmentation Algorithms with Synthetic Data 
 

All of the following segmentation algorithms were written in MATLAB software (version 

R2018b; The Mathworks, Inc., Natick, Ma). Two test signals (Figure 3.5) of four second lengths 

were created to mimic beta bursts with varying frequencies and duration. Here we study time-

varying characteristics of these test signals using constructed segmentations. Three different 

segmentation methods are studied: 

1. Fixed windows of 125ms 

2. Dyadic, with a finest level/segment length of 125ms 

3. Nondyadic, with finest segment length being 125ms 

Note, the smallest window used in all the algorithms was set to 0.125s, to accommodate the 

period of the lowest frequency of interest (8Hz). All the segmentation methods used the same 

time shifting technique [Saito et al., 2002; Ince et al., 2006]. With 𝜏 = 8 , decomposed the signal 

into local cosine packets and computed the spectral entropy. This experiment helped us 

determine the degree of effectiveness of each algorithm in localizing time-varying bursts through 

 
𝜌(𝑥, 𝑦) =

1
𝑛 − 1	N	(	

𝑥6 − 𝜇:
𝜎:

<

63(

	)	(	
𝑦6 − 𝜇;
𝜎;

	), (3.8) 
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entropy minimization. Thus, allowing a decision to be made on which approach to implement on 

real LFP data recorded from the STN of PD patients. Once segmentation was completed, FFT 

was computed in each constructed segment and normalized entropy was used to characterize the 

sharpness of the spectrum. Additionally, the entropy of segments was weighted based on their 

power. Finally, we used the total weighted entropy across segments to assess the effectiveness of 

each segmentation method. 

Fixed segmentation was used as a baseline experiment to determine the effectiveness of 

the other two algorithms. The results are provided in Figure 3.6, along with the change in 

entropy. When fixed 0.125s long windows are used to segment the test signals, it provided 

uniform time-frequency resolution and larger entropy. As expected, using one uniform window 

size does not offer any advantage to the time-varying characteristic of the signal. 

When introducing the test signals into the BB method, we noted that segments length 

became longer around beta bursts. Although a few artificial beta bursts were preserved, others 

were truncated in the middle due to the lack of segmentation flexibility. 

 We noted that the nondyadic algorithm provides the desired flexibility for segmenting 

LFP data. The synthetic bursts were captured, and not truncated as they were in dyadic 

Figure 3. 5: The two different test signals were used to test the dyadic, nondyadic, and fixed segmentations. A) The 
signal is composed of background white noise, 23 Hz (0.375s), 14Hz (1s), 11Hz (0.75s), 24Hz (0.5s). B) 
The signal is composed of background white noise, 27Hz (0.25s), 23Hz (0.5s), 16Hz (1.5s), 25 Hz (1s), 
21Hz (0.250s).  
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segmentation. When the total entropy estimated from each segmentation method is compared, we 

noted that nondyadic segments had the lowest entropy, followed by dyadic segments. As  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 6: Sides A and B depict two different signals being segmented by the fixed, dyadic and 
nondyadic algorithms with its corresponding time-frequency map. The weighed (power) 
entropy average is shown for both signals, for each segmentation algorithm. Weighted 
entropy average decreased as algorithm accuracy improved.  
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expected, fixed segmentations had the highest entropy. When dyadic adaptive segmentation is 

implemented, entropy is not minimized as effectively as the nondyadic version as the segments 

are constructed at dyadic coordinates.  

To quantify the proper function of all three approaches mentioned previously, we created 

synthetic Gaussian white noise with zero mean and introduced it into all the segmentation 

algorithms (Figure 3.7). Since there is no structure in the data and samples are independent of 

each other, we anticipate that the constructed segmentations will not provide any improvement in 

entropy minimization.  

We provided these results in Figure 3.7. We noted that the total entropy values did not 

change with different segmentation algorithms as we have observed in the previous experiment  

Figure 3. 7: A) Using fixed segmentation on white Gaussian noise. B) Using dyadic segmentation on 
white Gaussian noise. C) Using nondyadic segmentation on white Gaussian noise. D) Average 
entropy value of all three segmentation techniques. Weighted average entropy value when using 
power ratio is also provided.  
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including localized oscillatory activities. This is an expected result due to the lack of structure or 

bursts/oscillations in the data. 

Based on the experiments, we employed a nondyadic segmentation algorithm on LFP 

data. We used the minimized entropy between OFF and ON states to predict the symptom 

improvement of the patients. In the next section, we described our LFP recordings from human 

subjects with PD and provided our results in detail. 

3.3 DATASET AND EXPERIMENTAL PROTOCOLS 
 

 In this study, nine patients provided informed consent to be a part of the research study, 

which was approved by the institutional board of the University of Minnesota and the University 

of Houston. Participants had to be admitted into the hospital for a 24-Hour DBS electrode 

recording, after undergoing unilateral DBS electrode implantation of the STN at Fairview 

Hospital of the University of Minnesota. To reduce discrepancies, the same medication was 

given to all the patients, and L-DOPA dosages were adjusted to their current medication dosage. 

OFF: motor state while not on medication. ON: motor state while on the medication. UPDRS subscores have a 
maximum value of 32. Bradykinesia has a maximum value of 16. Keyboard scores are the average 
number of taps for 30 seconds. All scores would be the average of assessments from three different 
trials. Medication dosages were adjusted to the L-DOPA equivalent. Pt 6 and Pt 8 were given additional 
medication (50mg) after 30-40 minutes in their first trial because they were not able to achieve the full 
‘ON’ state. Their medication dosages would be the ones given in their two trials. 

Table 1. Patients Scores and Medication 
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It is important to note that the two patients (patients 6 and 8) who did not feel improvement with 

the first dosage of medication administered to them, received a second dose so they could  

achieve the ON medication state. However, the second dosage of medication did not help with 

symptom relief, and although their UPDRS scores indicated a slight improvement, their 

keyboard scores showed minimal to no improvement. Patient scores and prescribed medication 

dosages are provided in Table 1. 

3.3.1 Surgical Procedure and Postoperative LFP Recordings 
 

Using a standard clinical protocol for DBS implantation, Medtronic quadripolar #3389 

DBS leads (Medtronic, Minneapolis, MN) were inserted inside the STN of the patients. After 

three weeks of DBS lead implantation, once admitted into the hospital, the electrodes were 

externalized, and before 

Implantable Pulse Generation 

(IPG) implantation, LFP 

recordings were collected. The 

LFPs were recorded using an 

epilepsy monitoring unit with a 

wearable amplifier, XLTEK-

EMU40, (Natus Medical Inc., 

Pleasanton, CA) with a 16-bits 

analog-to-digital converter with 

an antialiasing filter at 400 Hz at a 

sampling frequency of 1024 Hz. The 

Figure 3. 8: Recording Timeline. The 24-Hour LFP recordings of 
patients began 3 weeks after DBS lead implantation. 
The study consisted of 3 trials period. Reproduced from 
Ozturk et al., [2019]. 
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LFP recordings were collected from all four monopolar DBS lead contacts and were high-pass 

filtered at 0.1 Hz to remove any DC-offset.  

At least 12 hours after their last medicated dosage, 30 minutes recording undertook place 

for each patient during their first OFF state and was used as a baseline recording. Proceeding the 

previous recording, L-DOPA was administered to the patients (med in), and they were directed 

to announce once they felt their medication set in (verbal on). Subsequently, once symptoms 

began to resurface, the patient announced their medication had worn off, therefore completing 

one trial. In total, this study comprised of three trials, and it is accurately summarized in Figure 

3.8.  

3.3.2 Patient Assessments and Completed Task  
 

The UPDRS III (motor section) was used in each state to quantify the patient’s clinical 

impairment before and after medication. The subsections of particular interest were hand and 

foot tremor, upper and lower extremity rigidity, and finger tapping, hand open and close, lastly, 

hand supination/pronation. Also, patients were instructed to complete a keyboard task during 

each state. For the keyboard task, the patient had to alternately press two different keys for 30s 

following a 10s resting period. The task was completed twice in each state, and all press errors 

were taken into count during the timing period. Each patient was evaluated 30 minutes before 

being administered their medication, and 30 minutes after announcing their medication had taken 

effect. Furthermore, patients were also instructed to rest for a minimum of 120s in each OFF and 

ON state.   
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3.4 REST DATA PREPROCESSING  
 

3.4.1 Bipolar Derivations 
 

Resting data was recorded continuously for a minimum of 120s. It was then inspected 

with an in-house software, CNELab [Jiang et al., 2017]. LFPs were recorded using monopolar 

contacts LFP 0, LFP 1, LFP 2, LFP3, and LFP 3. Subsequently, a montage was used to derive the 

bipolar derivations of the monopolar contacts by subtracting adjacent channels [Ozturk et al., 

2019]. The benefits of using bipolar derivation would be that spatial resolution increases and the 

correlative activity of the signal is removed [Meloni et al., 2015]; this allows a clear visualization 

of beta bursts during the OFF (Figure 3.11 A) and ON (Figure 3.11 B) medication state. 

Apparent suppression of beta bursts is visualized in the ON state, which is also confirmed by the 

patient’s power spectra (Figure 3.12 A). 

 

 

Figure 3. 9: A) LFP recording of OFF medication state, beta bursts are visible. B) LFP recording of ON 
medication state, beta bursts have been suppressed by medication.  
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3.4.2 Power Spectra 
 

 The power spectra of bipolar derivations for each patient in different states were 

computed using the welch periodogram method. A Hanning window length of 1,024 samples 

with a 50% overlap and a frequency resolution of 1 Hz was used to calculate the power spectrum 

of each OFF and ON state and grand average (Figure 3.10). Based on these results, the bipolar 

derivation with the largest beta band power in the OFF-medication state was chosen for each 

patient (Table 2). 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. 10: The images on the left represent the OFF state, and those on the right represent the ON 
state. A) Power spectral density of Pt 2, who improved after the administration of L-DOPA. 
B) Power spectral density of Pt 6 who did not improve after the administration L-DOPA. C) 
Blue: PSD grand average of OFF state, Red: PSD grand average of ON state, Dotted-Red: 
PSD grand average of ON state when excluding patients 6 and 8. The shaded area highlights 
the beta range used (13-30Hz). 
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3.4.3 Filtering 
 

 Before completing any further analysis of the signal, the LFP data were high passed 

filtered above 8Hz with a 385 tap FIR filter (designed using Blackman window). Zero-phase 

filtering was then applied to have zero-phase distortion, thus preserving the original 

characteristics of the signal. Subsequently, a 60Hz Butterworth-IIR notch filter of 2nd order was 

used to remove powerline artifacts, and zero-phase filtering was applied once again. 

   

Table 2. Patient’s Optimal Bipolar Derivation 

The optimal contact pair chosen for each patient are shown. Optimal 
contacts were chosen based on the highest beta power that was 
present during the OFF medication state for each patient. 
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CHAPTER IV 
 

RESULTS 
 

4.1 PATIENT IMPROVEMENT 
 

Figure 4.1 depicts the improvement that is seen in the patients with their mUPDRS, 

keyboard, and bradykinesia scores. In the three scores we observed a significant difference 

between the two states, confirming patient improvement and efficacy of the medication. 

 

  

Figure 4. 1: Difference in scores during OFF and ON states, the Wilcoxon rank-sum test was used in all. A) 
mUPDRS, p<0.001. Mean-OFF: 18.5 and Mean-ON: 4.3. B) Keyboard task scores, p=0.002. Mean-
OFF: 105.9 and Mean-ON: 151.3. C) Bradykinesia sub-scores, items: 23-26, p<0.001. Mean-OFF: 
10.5 and Mean-ON: 2.4  

 

Figure 4. 2: A) Nondyadic segmented LFP recording of Patient 2 during the first OFF trial, with its according 
time-frequency map. B) Nondyadic segmented Patient 2 LFP recording during first ON trial, with its 
according time-frequency map.Figure 4. 3: Difference in scores during OFF and ON states, the 
Wilcoxon rank-sum test was used in all. A) mUPDRS, p<0.001. Mean-OFF: 18.5 and Mean-ON: 4.3. 
B) Keyboard task scores, p=0.002. Mean-OFF: 105.9 and Mean-ON: 151.3. C) Bradykinesia sub-
scores, items: 23-26, p<0.001. Mean-OFF: 10.5 and Mean-ON: 2.4  
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4.2 ADAPTIVE BETA BURSTS SEGMENTATION 
 

Once the resting data was preprocessed, it was ready to be introduced in the adaptive 

segmentation algorithm. The nondyadic adaptive algorithm was able to segment beta bursts 

(Figure 4.2 and 4.3) from LFP recordings during the OFF-medication state efficiently, and the 

time-frequency map confirmed it. Longer segments in the OFF-medication state, have a higher 

beta power, thus smaller segments had little to no beta power present. Figure 4.2 represents 

patient 2 during different OFF and ON medication states. While Figure 4.3 depicts patient 1 

during two different OFF and ON medication states. During the ON medication state, segments 

with a higher beta power were not as present, and the data was segmented into smaller segments 

than before, as presented in the following segments. 

 Figure 4. 4: A) Nondyadic segmented LFP recording of Patient 2 during the first OFF trial, with its 
according time-frequency map. B) Nondyadic segmented Patient 2 LFP recording during first ON 
trial, with its according time-frequency map.  

 

Figure 4. 5: A & B) Nondyadic segmented LFP recording of Patient 1 during OFF1(A) and ON1 (B) trial, 
with its according time-frequency map. C & D) Nondyadic segmented LFP recording of Patient 1 
during OFF3 (C) and ON3 (D) trial, with its according time-frequency map.Figure 4. 6: A) 
Nondyadic segmented LFP recording of Patient 2 during the first OFF trial, with its according 
time-frequency map. B) Nondyadic segmented Patient 2 LFP recording during first ON trial, with 
its according time-frequency map.  
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 Figure 4. 7: A & B) Nondyadic segmented LFP recording of Patient 1 during OFF1(A) and ON1 (B) 
trial, with its according time-frequency map. C & D) Nondyadic segmented LFP recording of 
Patient 1 during OFF3 (C) and ON3 (D) trial, with its according time-frequency map. 

 

Figure 4. 8: The pie charts represent how much of the data is made up by the segments of that specific 
length for the different OFF and ON states. The bottom two pie charts represent the average 
across of all the patients for their OFF and ON state.Figure 4. 9: A & B) Nondyadic 
segmented LFP recording of Patient 1 during OFF1(A) and ON1 (B) trial, with its according 
time-frequency map. C & D) Nondyadic segmented LFP recording of Patient 1 during OFF3 
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4.2.1 Distribution of Constructed Segments 
 

 We binned segments in the following way, 0.125, 0.250, 0.375, 0.50, 0.625-0.875, and ≥

	1 s (Figure 4.4), and found that larger bursts were present during the OFF-medication state. 

Since medication results in the reduction of beta power in the ON state, ON state segments were 

not expected to include structured large-amplitude beta oscillations of long duration. For this 

reason, considering the background noise and lack of beta bursts, the algorithm segmented the 

ON state into the shortest segment possible to aid in the minimization of entropy.  

 

 

 

Figure 4. 10: The pie charts represent how much of the data is made up by the segments of that specific length for 
the different OFF and ON states. The bottom two pie charts represent the average across of all the patients 
for their OFF and ON state.  

 

Figure 4. 11: Difference in segments during OFF and ON states, the Wilcoxon signed-rank test was used for both. 
A)The Boxplots show the difference in the smallest segment (0.125s) between OFF and ON states, all 
patients included (p=0.01). B) The Boxplots show the difference in segments ≥ 1s  between OFF and ON 
states, all patients included (p<0.05).Figure 4. 12: The pie charts represent how much of the data is made 
up by the segments of that specific length for the different OFF and ON states. The bottom two pie charts 
represent the average across of all the patients for their OFF and ON state.  
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Hence, the number of smaller segments which make up the data in the ON state will increase. 

Overall, we noted a significantly (𝑝 = 0.01) larger amount of short (=0.125s) segments in the 

ON states compared to the OFF states. They accounted for 14% of the ON state data and 11% in 

the OFF state data. On the contrary, we observed a significantly (𝑝 < 0.05) larger number of  

≥1s segments in the OFF states compared to the ON states (Figure 4.5). These long segments 

accounted for 25% of the ON state data and 34% of the OFF state data. The verification of the 

increase in smaller segments and a decrease in larger segments during the patients’ ON-

medication state helps to partially explain patient improvement. 

 

 

 

4.3 ENTROPY OF SEGMENTS 
 

After the construction of the segments, their entropy was computed. We visualized the 

mean entropy of each segment size for each patient during their OFF and ON states. We then 

plotted four curves for each patient representing the three OFF-ON medication trials and an 

Figure 4. 13: Difference in segments during OFF and ON states, the Wilcoxon signed-rank test was 
used for both. A)The Boxplots show the difference in the smallest segment (0.125s) 
between OFF and ON states, all patients included (p=0.01). B) The Boxplots show the 
difference in segments ≥ 1s  between OFF and ON states, all patients included (p<0.05). 

 

 

Figure 4. 14:  The 0.625s index on x-axis represents segments between 0.625s and 0.875s. A) 
Entropy curves of Patient 2 for separate states and overall average included. B) Entropy 
curves of Patient 6 for all separate states and overall average. C) Overall average when 
excluding the ON trials of patients 6 and 8. D) Overall average when including the ON 
trials of patients 6 and 8. E) Entropy difference for different segment lengths, when using 
all patients (solid line) and excluding patients 6 and 8 (dashed line) from ON state.Figure 4. 
15: Difference in segments during OFF and ON states, the Wilcoxon signed-rank test was 
used for both. A)The Boxplots show the difference in the smallest segment (0.125s) 
between OFF and ON states, all patients included (p=0.01). B) The Boxplots show the 
difference in segments ≥ 1s  between OFF and ON states, all patients included (p<0.05). 
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overall average of all trials (Fig. 4.6). For those patients who improved based on their UPDRS 

and keyboard scores, we observed that they had a clear separation of their entropy curves (Figure 

4.6A). However, our results show that for those two patients (patients 6 and 8) who did not 

improve, their entropy curves did not exhibit separation (Figure 4.6B). This disconnect of the 

entropy curves between the OFF and ON medication states is caused by the number of beta 

bursts that are captured in each state. Therefore, as segment size increases, mean entropy 

decreases in the OFF state, which is caused by longer beta oscillations that were captured by the 

adaptive segmentation algorithm. 

 
Figure 4. 16:  The 0.625s index on x-axis represents segments between 0.625s and 0.875s. A) Entropy curves of 

Patient 2 for separate states and overall average included. B) Entropy curves of Patient 6 for all separate 
states and overall average. C) Overall average when excluding the ON trials of patients 6 and 8. D) 
Overall average when including the ON trials of patients 6 and 8. E) Entropy difference for different 
segment lengths, when using all patients (solid line) and excluding patients 6 and 8 (dashed line) from ON 
state. 

 

Figure 4. 17: In the first two columns, beta spectrum of the grand average of all patients for OFF and ON trials is 
presented, while the ON trials after the dotted gray line excludes the two patients (6 & 8) who did not 
improve. The 0.625s index on x-axis represents segments between 0.625s and 0.875s.  (A) Normalization 
of the power spectrum in each segment to its maximum power. (B) Power of all segments was normalized 
to the maximum beta power across all segments.Figure 4. 18:  The 0.625s index on x-axis represents 
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On the other hand, during the ON medication state, longer beta bursts are not recurrent, while 

shorter segments are thus increasing the mean entropy for each segment bin.  

We observed that as segment size increases, the difference between the OFF and ON 

entropy curves enlarges; this led us to compute two grand averages to determine how the patients 

who did not improve would affect the average across all patients. The first average excluded 

patients 6 and 8 from the ON state (Fig 4.6C), while the second average includes all subjects 

Figure 4. 19: In the first two columns, beta spectrum of the grand average of all 
patients for OFF and ON trials is presented, while the ON trials after the 
dotted gray line excludes the two patients (6 & 8) who did not improve. The 
0.625s index on x-axis represents segments between 0.625s and 0.875s.  (A) 
Normalization of the power spectrum in each segment to its maximum power. 
(B) Power of all segments was normalized to the maximum beta power across 
all segments.  

 

Figure 4. 20: Normalized OFF state beta band power across all segments was 
positively correlated to increasing segment length (r=0.882, p<0.05). The 
0.625s index on x-axis represents segments between 0.625s and 0.875s.Figure 
4. 21: In the first two columns, beta spectrum of the grand average of all 
patients for OFF and ON trials is presented, while the ON trials after the 
dotted gray line excludes the two patients (6 & 8) who did not improve. The 
0.625s index on x-axis represents segments between 0.625s and 0.875s.  (A) 
Normalization of the power spectrum in each segment to its maximum power. 
(B) Power of all segments was normalized to the maximum beta power across 
all segments.  
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(Fig. 4.6D). An increase in the entropy for the ON state curve is seen when removing patients 6 

and 8. This difference emphasizes the influence that patients 6 and 8 had on the 

increase/decrease of the mean ON state segment entropy, respectively. Figure 4.6E depicts the 

difference between the mean entropy for each time window. As we expected, the difference in 

entropy increases when excluding the two patients who did not improve from the ON state.  

When we normalized the power spectrum in each segment to its maximum power and 

averaged it over subjects (Figure 4.7A), it helped confirm the presence of beta in each segment 

bin. During the OFF-medication state, low-beta (13-22Hz) power was present in all segments, 

and it then shifted to high-beta (23-30Hz) power during the ON-medication state, which shows 

the suppression of low beta by L-DOPA. When we excluded patients 6 and 8 from the ON state, 

the presence of low-beta power is diminished. Moreover, when we normalized the power 

spectrum in each segment to the maximum power across all segments and averaged it over 

subjects, beta band power increased with respect to segment length (Figure 4.7B).  

 

 

 

 

 

 

 

Figure 4. 22: Normalized OFF state beta band power across all segments was 
positively correlated to increasing segment length (r=0.882, p<0.05). The 
0.625s index on x-axis represents segments between 0.625s and 0.875s. 

 

Figure 4. 23: Overall average of the change in beta-power ratio with respect to 
segment length for OFF and ON state. The 0.625s index on the x-axis 
represents segments between 0.625s and 0.875s.Figure 4. 24: Normalized 
OFF state beta band power across all segments was positively correlated to 
increasing segment length (r=0.882, p<0.05). The 0.625s index on x-axis 
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Once again, by removing the two patients who did not improve, we can visualize the 

peak frequency shifting from low-beta to high-beta when transitioning from OFF to ON state. 

When we normalized OFF state beta band power across all segments for each patient, we were 

able to determine how much of the beta power lied within each segment bin. Therefore, if the 

normalized power from each segment bin was summed up for each patient, it would equal to 1. 

This normalized beta power was positively correlated (𝑟 = 0.882, 𝑃 < 0.05) with increasing 

segment length (Figure 4.8). Meaning that normalized beta band power had little to no presence 

in smaller segments, but as segment length increased the presence of this normalized power 

became more pronounced. Affirming the previous findings of the entropy curves, as beta power 

increases, entropy is minimized. Consequently, the drop seen in the entropy curves at 	≥ 1𝑠, was 

due to beta power increasing for segments 	≥ 1𝑠. 

Figure 4. 25: Overall average of the change in beta-power ratio with 
respect to segment length for OFF and ON state. The 0.625s 
index on the x-axis represents segments between 0.625s and 
0.875s. 

 

Figure 4. 26: A) Correlation coefficient curve of difference in mUPDRS. 
B) Correlation coefficient curve for weighted segments of 
difference in mUPDRS. B) Correlation of difference in 
mUPDRS with the difference in entropy from segments of 
0.125s. C) Correlation of difference in mUPDRS with the 
difference in entropy from segments of 1s and greater. D) 
Correlation of difference the in mUPDRS with difference in 
weighted entropy (using power ratio) for all segments.Figure 4. 
27: Overall average of the change in beta-power ratio with 
respect to segment length for OFF and ON state. The 0.625s 
index on the x-axis represents segments between 0.625s and 
0.875s. 
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 We also calculated the beta-power ratio 

where 𝛽&=7 represents the low-beta frequency range (13-22Hz), and 𝛽>6?> represents the high-

beta frequency range (23-30Hz). We used the beta-power ratio to determine the presence of low-

beta in all segments, which has been related to the pathological part of PD. During the OFF state, 

low-beta power increased gradually as segment size increased, and as expected, low-beta power 

decreases in the ON state with respect to segment size (Figure 4.9).  

4.4 CLINICAL CORRELATION 
 

We correlated the difference in entropy for each segment bin with the difference in 

mUPDRS scores and found the correlation coefficient for each segment length to plot the 

correlation curve (Figure 4.10A) The correlation coefficient steadily increased when we 

correlated the difference in entropy for specific segment lengths with difference mUPDRS 

scores. When we weighted segments with their beta power ratio, the correlation coefficient curve 

increased steadily as well (Figure 4.10B). We obtained a poor correlation when establishing the 

correlation between the smallest segment (0.125s) and ∆	mUPDRS scores (𝑟 = −0.165, 𝑃 =

0.41), suggesting that smaller segments may not be the leading cause of clinical impairment 

(Figure 4.10C). The suppression of larger and longer beta oscillations is caused by L-DOPA, 

resulting in a sizeable difference in entropy. Therefore, longer segments (≥ 1s) had a strong 

positive correlation (𝑟 = −0.749, 𝑃 < 0.001) to clinical improvement (Figure 4.10D). 

Additionally, when we included all segments by weighting them with their respective beta-power 

ratio,	correlation increased (𝑟 = −0.825, 𝑃 < 0.001) (Figure 4.10E). 

 𝑃𝑜𝑤𝑒𝑟@AB6= = 	
𝛽&=7
𝛽>6?>

	, (4.1) 
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We calculated the percent change in the keyboard scores as 

where ON represents the score from the ON state, and OFF represents the score from the OFF 

state. We then correlated the difference in entropy for each segment bin with keyboard 

improvement and a similar trend to that of the mUPDRS scores was noted. We plotted each 

correlation coefficient to obtain a curve, and for a second time, we observed that an increase in 

segment size resulted in the rise of correlation for each segment length (Figure 4.11A). However, 

when weighing the entropy of these segments with its beta power ratio, the curve fluctuated for 

 
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡	(%) =

[𝑂𝑁	 − 𝑂𝐹𝐹]
𝑂𝐹𝐹 × 100, (4.2) 

Figure 4. 28: A) Correlation coefficient for difference in mUPDRS vs difference in entropy was plotted for each 
segment bin and a curve was obtained. B) Correlation coefficient curve for weighted segments of 
difference in mUPDRS. B) Correlation of difference in mUPDRS with the difference in entropy from 
segments of 0.125s. C) Correlation of difference in mUPDRS with the difference in entropy from 
segments of 1s and greater. D) Correlation of difference the in mUPDRS with difference in weighted 
entropy (using power ratio) for all segments. 

 

 

Figure 4. 29: A) Correlation coefficient curve of keyboard improvement. B) Correlation coefficient curve for 
weighted segments of keyboard improvement. C) Correlation of keyboard improvement (%) with the 
difference in entropy from segments of 0.125s. D) Correlation of keyboard improvement (%) with the 
difference in entropy from segments of 1s and greater. E) Correlation of keyboard improvement (%) 
with the difference in weighted entropy (using beta power ratio) for all segments.Figure 4. 30: A) 
Correlation coefficient curve of difference in mUPDRS. B) Correlation coefficient curve for weighted 
segments of difference in mUPDRS. B) Correlation of difference in mUPDRS with the difference in 
entropy from segments of 0.125s. C) Correlation of difference in mUPDRS with the difference in 
entropy from segments of 1s and greater. D) Correlation of difference the in mUPDRS with difference 
in weighted entropy (using power ratio) for all segments. 
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some segment lengths (Figure 4.11B). This signified that some patient’s low-beta bursts may lie 

within a specific beta-range resulting in the decreased correlation. The difference in entropy for 

the 0.125𝑠 segments had a weak correlation (𝑟 = −0.434	, 𝑃 < 0.05) with keyboard 

improvement, once again indicating that the presence of smaller segments may not impact a 

patient negatively (Figure 4.11C). When we correlated the difference in entropy of segments ≥

1𝑠	(𝑟 = −0.734, 𝑃 < 0.001) with clinal improvement there was a strong correlation (Figure 

4.11D). Correlation improved (𝑟 = −0.80, 𝑃 < 0.001)  even further when we used all of the 

segments to correlate them to the clinical improvement by weighting their entropy with the beta 

power ratio, suggesting that the low-beta bursts can be related to the clinical impairment the 

patient experiences  (Figure 4.11E). 

Figure 4. 31: A) Correlation coefficient for keyboard improvement (%) vs difference in entropy was plotted for 
each segment bin and a curve was obtained. B) Correlation coefficient curve for weighted segments of 
keyboard improvement. C) Correlation of keyboard improvement (%) with the difference in entropy 
from segments of 0.125s. D) Correlation of keyboard improvement (%) with the difference in entropy 
from segments of 1s and greater. E) Correlation of keyboard improvement (%) with the difference in 
weighted entropy (using beta power ratio) for all segments. 

 

 

Figure 4. 32: A) Correlation coefficient curve of difference in bradykinesia scores. B) Correlation coefficient 
curve for weighted segments of difference in bradykinesia score. C) Correlation of difference in 
bradykinesia score with the difference in entropy from segments of 0.125s. D) Correlation of 
difference in bradykinesia score with the difference in entropy from segments of 1s and greater. E) 
Correlation difference in bradykinesia score with the difference in weighted entropy (using beta power 
ratio) for all segments.Figure 4. 33: A) Correlation coefficient curve of keyboard improvement. B) 
Correlation coefficient curve for weighted segments of keyboard improvement. C) Correlation of 
keyboard improvement (%) with the difference in entropy from segments of 0.125s. D) Correlation of 
keyboard improvement (%) with the difference in entropy from segments of 1s and greater. E) 
Correlation of keyboard improvement (%) with the difference in weighted entropy (using beta power 
ratio) for all segments. 
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 Additionally, we correlated the difference in entropy with the difference in bradykinesia 

scores and plotted the correlation coefficient for each segment bin (Figure 4.12A). When we 

weighted the segments with its beta power ratio, the curve fluctuated as it did for the weighted 

keyboard improvement curve (Figure 4.12B). Moreover, smaller segments exhibited a weak 

correlation (𝑟 = −0.276, 𝑃 = 0.2) to the difference in bradykinesia scores (Figure 4.12C). 

However, longer segments (≥ 1s) did have a strong correlation (𝑟 = −0.615, 𝑃 < 0.001) with 

difference in bradykinesia scores (Figure 4.12 C). Furthermore, by weighing all the segments 

with their power ratio, we found that they were highly correlated to difference in bradykinesia 

scores (𝑟 = −0.721, 𝑃 < 0.001)  (Figure 4.12D). 

Figure 4. 34: A) Correlation coefficient for difference in bradykinesia score vs difference in entropy was plotted 
for each segment bin and a curve was obtained. C) Correlation of difference in bradykinesia score with 
the difference in entropy from segments of 0.125s. D) Correlation of difference in bradykinesia score 
with the difference in entropy from segments of 1s and greater. E) Correlation difference in bradykinesia 
score with the difference in weighted entropy (using beta power ratio) for all segments. 

 

 

Figure 4. 35 : A) Full beta-band (13-30Hz) power log-ratio (ON/OFF) correlation to keyboard improvement (r = -
0.651, P<0.001 ) and mUPDRS (r = -0.599, P<0.001). B) Low-beta band power (13-22Hz) log-ratio 
correlation to keyboard improvement (r = -0.634, P<0.001) and mUPDRS.(r = -0.677, P<0.001)Figure 4. 
36: A) Correlation coefficient curve of difference in bradykinesia scores. B) Correlation coefficient curve 
for weighted segments of difference in bradykinesia score. C) Correlation of difference in bradykinesia 
score with the difference in entropy from segments of 0.125s. D) Correlation of difference in 
bradykinesia score with the difference in entropy from segments of 1s and greater. E) Correlation 
difference in bradykinesia score with the difference in weighted entropy (using beta power ratio) for all 
segments. 
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We also used fixed segmentation, and Best basis/Dyadic segmentation to segment the 

LFP data. We then weighted the entropy of the corresponding segments from each segmentation 

algorithm with the beta-power ration and correlated the weighted segments with keyboard 

improvement (%), ∆	mUPDRS scores, and ∆	Bradykinesia scores. Fixed segmentations were 

correlated with keyboard improvement (r=-0.726, p<0.001), difference in mUPDRS scores (r=-

0.79, p<0.001), and difference in bradykinesia scores (r=-0.72, p<0.001). Best Basis/Dyadic 

segmentations were also correlated with keyboard improvement (r=-0.835, p<0.001), difference 

in mUPDRS scores (r=-0.788, p<0.001), and difference in bradykinesia scores (r=-0.71, 

p<0.001). Additionally, as mentioned previously nondyadic weighted segments were also 

correlated to keyboard improvement (r=-0.80, p<0.001), difference in mUPDRS scores (r=-

0.815, p<0.001), and difference in bradykinesia scores (r=-0.27, p<0.001). Overall, the segments 

obtained from nondyadic segmentation gave the best correlation because of the way beta bursts 

were captured and segmented. 

Table 3. Correlation Coefficient of Different Segmentation Algorithms 

All three segmentation algorithms were used to segment the LFP data. The entropy of the 
segments were weighted with their beta power ratio and correlated to ∆	mUPDRS 
scores, keyboard improvement (%),  and ∆	Bradykinesia scores.  
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We then correlated the entire beta band power, and low-beta power to keyboard and 

UPDRS scores (Figure 4.13A). We found a significant correlation when the full beta band (13-30 

Hz) ratio (ON/OFF) was correlated to keyboard improvement (%) (𝑟 = 	−0.651, 𝑃 < 0.001) 

and mUPDRS scores (𝑟 = 	−0.599, 𝑃 < 0.001). These correlation values were similar when 

solely using low-beta band power (Figure 4.13B). For keyboard improvement, the correlation 

was −0.634 (𝑃 < 0.001) whereas, mUPDRS correlation to low-beta band power was −0.677 

(𝑃 < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 37 : A) Full beta-band (13-30Hz) power log-ratio (ON/OFF) 
correlation to keyboard improvement (r = -0.651, P<0.001 ) and 
mUPDRS (r = -0.599, P<0.001). B) Low-beta band power (13-
22Hz) log-ratio correlation to keyboard improvement (r = -0.634, 
P<0.001) and mUPDRS.(r = -0.677, P<0.001) 

 

Figure 4. 38: Clinical scores and the sum of the entropy from all segments 
from the first off state were used. Total UPDRS scores were 
correlated to total entropy (r=-0.573, p=0.11), rigidity (r=-0.69, 
p=0.04), bradykinesia (r=-0.479, p=0.2), bradykinesia plus rigidity 
(r=-0.617, p=0.08), and tremor (r=-0.202, p=0.6).Figure 4. 39 : A) 
Full beta-band (13-30Hz) power log-ratio (ON/OFF) correlation to 
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The entropy sum that we used was based on the entropy sum of all segments during the 

first OFF state for each patient, also referred to as the total entropy. We then correlated total 

entropy to the total UPDRS scores and the individual subscores (Figure 4.14). Total UPDRS (r=-

0.573, p=0.11), rigidity (r=-0.69, p=0.04), and bradykinesia plus rigidity (r=-0.617, p=0.08) were 

correlated to entropy gain. While, bradykinesia (r=-0.479, p=0.2), and tremor (r=-0.202, p=0.6) 

had little to no correlation to entropy gain. However, although these correlations were not 

significant, it still gives a brief understanding of how total entropy is related to the first OFF 

medication state of the patients. The correlation might improve and become more significant if 

we had additional patients. 

 

 

 

Figure 4. 40: Clinical scores and the sum of the entropy from all segments from the first off state 
were used. Total UPDRS scores were correlated to total entropy (r=-0.573, p=0.11), 
rigidity (r=-0.69, p=0.04), bradykinesia (r=-0.479, p=0.2), bradykinesia plus rigidity (r=-
0.617, p=0.08), and tremor (r=-0.202, p=0.6). 
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CHAPTER V 
 

DISCUSSION AND FUTURE DIRECTIONS 

 
5.1 DISCUSSION 
 

In this research study, we introduced a novel method for the detection of beta bursts using 

an adaptive segmentation algorithm. We tested three types of adaptive segmentation algorithms 

on synthetic signals and compared segments to determine ideal performance. We then concluded 

that nondyadic adaptive segmentation was the optimal choice based on how the artificial beta 

bursts were detected as a whole, and not truncated as they were with the two other segmentation 

techniques. The nondyadic segmentation approach was applied to the STN LFP recordings of PD 

patients, which segmented the data into various lengths. 

The segments were binned into six different time windows; there was a higher (0.125s) 

percentage of smaller segments during the ON state, while larger (≥ 1s) segments were found 

during the OFF state. A previous study filtered the LFP data around the individual’s beta peak 

frequency, and a threshold was used to detect bursts that are ≥ 100ms [Tinkhauser et al., 2017]. 

In this study, it was crucial to let the algorithm have a broader frequency range to segment the 

data rather than solely restricting it within a specific beta range. Therefore, high-pass filtering of 
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the data above 8 Hz introduced more segmentation flexibility into the algorithm and allowed for 

the detection of smaller segments (125ms). Consequently, the mean entropy of these segments 

minimized as the segment size increased during the OFF state. On the other hand, less detection 

of beta oscillations during the ON state caused the mean entropy of the segments to increase. 

Tinkhauser’s method relied on the amplitude of the signal to detect beta bursts, failing to 

acknowledge the various characteristics of a burst [Tinkhauser et al., 2017]. However, in this 

study, an adaptive method which implements entropy minimization was used to detect beta 

bursts and segment the LFP bases on the consistency of the spectrum along the time axis. 

Additionally, more than one burst characteristic was considered, such as entropy minimization, 

normalized beta power, and beta power ratio. These characteristics helped determine the 

modulation of larger bursts by beta-band activity. Consequently, the normalization of beta band 

power to its segment length confirmed the presence of beta oscillations in all segment bins. 

Moreover, segments normalized to the maximum beta power were positively correlated to an 

increasing segment size while shifting from low-beta (OFF state) to high-beta (ON state) relating 

this to the pathological part of the disease.  

Patient improvement and efficacy of the medication were confirmed by the significant 

difference that was observed in keyboard and mUPDRS scores; Keyboard scores improved in the 

ON states while mUPDRS scores decreased. Tinkhauser et al., 2017, correlated the percentage of 

bursts ≥	0.5s (r=-0.5, p=0.45) and < 0.5s (r=0.5, p=0.45) with mUPDRS; here, the difference in 

entropy for resting state data was correlated to the clinical scores obtained, and the correlation 

was higher and significant for ∆	mUPDRS (r =-0.825, p<0.001), keyboard improvement (%) (r=-

0.80, p<0.001), ∆ bradykinesia (r=-0.727, p<0.001) scores . Furthermore, the previous study also 

reported that the correlation between segment size and clinical improvement became positive 
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once bursts length reached at least 0.5s [Tinkhauser et al., 2017]. However, in this study 

correlation improved once the segments length reached 375ms, signifying that beta oscillations 

with a duration of ≥	375ms may be the pathological ones correlating with PD symptoms. In 

addition, the computer-based keyboard scores (r=-0.800, p<0.001) were found to be more 

insightful than the bradykinesia scores (r=-0.727, p<0.001) because they had a stronger 

correlation with the difference in weighted entropy. The same phenomenon was found for 

segments ≥ 1s when correlating the difference in unweighted entropy with keyboard scores (r=-

0.734, p<0.001), and bradykinesia scores (r=-0.615, p<0.001). Based on these findings, we 

hypothesize that smaller segments do not contribute to clinical impairment as much as larger 

segments do. As a result, making larger beta bursts the target for adaptive DBS might reduce 

symptom impairment even further.  

Eusebio et al., 2012 reviews the evidence supporting the DBS suppression of pathological 

beta activity and concludes that suppression of excessive beta synchrony is responsible for motor 

improvement. However, in this work, the full beta-band was divided into two subcategories, low 

and high beta, which helped determine which segments were predominantly associated with 

clinical impairment. It was found that as the length of the segmentation increased, the energy of 

low-beta bursts also increased. Based on this observation, in each segment the energy ratio of 

low beta to high beta band was calculated and this ratio was used to weigh the entropy of the 

segments. As it has been noted in Figure 4.11B, there is a possibility that patients may 

experience low-beta bursts within a specific range because of the fluctuation seen on the 

weighted keyboard improvement correlation curve. For that reason, using a unique low-beta 

range for each patient could improve the weighed correlation for each segment bin. Additionally, 

full beta and low-beta band power was correlated with keyboard and UPDRS scores, supporting 
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the findings of Ozturk et al., 2019. Lastly, entropy gain helped establish baseline correlations 

determining it to be most correlated with total UPDRS than with individual sub-sections. 

Weighing the normalized entropy of each segment with its corresponding power ratio 

helped highlight the significant impact beta bursts have on patient impairment. It was noted for 

all MDS-UPDRS, keyboard, and bradykinesia scores, the correlation was higher when a 

weighted entropy based on low/high beta band ratio was used. However, the adaptive 

segmentation algorithm is limited to specific segmentation time windows but if more flexibility 

were achieved, a better understanding will be gained about how beta bursts affect PD patients. 

Overall, the use of this algorithm can help establish a different type of method for the detection 

of beta bursts and not limit burst detection to the one currently used today. 

5.2 FUTURE DIRECTIONS 
 

 Based on the fact that 120s pre-recorded resting data was used, the burst detection 

algorithm presented would need to be tested on longer LFP recordings of freely moving patients. 

Moreover, in clinical practice the entropy of beta bursts might serve as a better biomarker for the 

quantification of disease severity and improvement, than the amplitude of the bursts alone. Based 

on the results obtained from keyboard and bradykinesia scores, we argue that such method 

should be coupled with computer based objective measurement for motor symptoms of the 

disease as our results show a stronger correlation between neural data and keyboard scores. 

Finally, the entropy of adaptively segmented beta bursts could be used as a feedback signal in 

adaptive DBS scenarios. 
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