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Abstract—Public blockchain networks using proof of work-
based consensus protocols are considered a promising platform
for decentralized resource management with financial incentive
mechanisms. In order to maintain a secured, universal state
of the blockchain, proof of work-based consensus protocols
financially incentivize the nodes in the network to compete for
the privilege of block generation through cryptographic puzzle
solving. For rational consensus nodes, i.e., miners with limited
local computational resources, offloading the computation load
for proof of work to the cloud/fog providers becomes a viable
option. In this paper, we study the interaction between the
cloud/fog providers and the miners in a proof of work-based
blockchain network using a game theoretic approach. In partic-
ular, we propose a lightweight infrastructure of the proof of work-
based blockchains, where the computation-intensive part of the
consensus process is offloaded to the cloud/fog. We formulate the
computation resource management in the blockchain consensus
process as a two-stage Stackelberg game, where the profit of the
cloud/fog provider and the utilities of the individual miners are
jointly optimized. In the first stage of the game, the cloud/fog
provider sets the price of offered computing resource. In the
second stage, the miners decide on the amount of service to
purchase accordingly. We apply backward induction to analyze
the sub-game perfect equilibria in each stage for both uniform
and discriminatory pricing schemes. For uniform pricing where
the same price applies to all miners, the uniqueness of the Stack-
elberg equilibrium is validated by identifying the best response
strategies of the miners. For discriminatory pricing where the
different prices are applied, the uniqueness of the Stackelberg
equilibrium is proved by capitalizing on the variational inequality
theory. Further, the real experimental results are employed to
justify our proposed model.

Index Terms—Computation offloading, blockchain, proof-of-
work, pricing, game theory, variational inequalities.

I. INTRODUCTION

Blockchain networks were first designed to be the backbone
of a distributed, permissionless/public database for recording
the transactional data of cryptocurrencies in a tamper-proof
and totally ordered manner [2], [3]. The blockchain network
is essentially organized as a virtual overlay Peer-to-Peer (P2P)
network, where the database state is maintained in a purely
decentralized manner and any node in the network is allowed
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to join the state maintenance process without the need of iden-
tity authentication. As indicated by the name “blockchain”,
the records of transactions between nodes in the network are
organized in a data structure known as the “block”. A series
of blocks are arranged in a strictly increasing-time order by a
linked-list-like data structure known as the chain of blocks
(i.e., “blockchain”). The blockchain is maintained as the
appending-only local replicas by the nodes participating in the
replicated consensus process. Unlike the traditional distributed
ledger systems using the Practical Byzantine Faulty-Tolerant
(PBFT) [4] or Paxos [5] protocols, a permissionless blockchain
network no longer needs any centralized authorities (e.g.,
authenticating/authorizing servers) and is able to accommodate
a much larger number of consensus nodes in the network [6].
Such an objective is achieved by blockchain networks with
the Nakamoto consensus protocol [2] (or protocols alike). Per
the Nakamoto protocol, financial incentive is introduced into
the consensus process to ensure that the best strategies of the
pseudonymous consensus nodes is to follow the given rules of
blockchain maintenance/extension. Otherwise they will suffer
from monetary loss.

The core component of the Nakamoto consensus protocol
is a computation-intensive process known as Proof of Work
(PoW). For the consensus nodes that propose their local
blockchain view to be the new state of the blockchain database,
PoW requires them to solve a cryptographic puzzle, i.e., to
find a partial preimage satisfying certain conditions of a hash
mapping based on the proposed blockchain state. According
to [7], a typical PoW process is executed in the following steps.
First, with an input contribution function, a consensus node
validates and bundles a sub-set of unconfirmed transactions
into a new block. Then, the consensus node computes the
PoW solution to the cryptographic puzzle, which is formed
based on the value of the new block. Immediately after the
puzzle solution is obtained, the consensus node broadcasts the
new block to the entire network as its own proposal of the
new blockchain head. On the other hand, the rest of nodes
in the network run a chain validation-comparison function to
determine whether to accept such a proposal or not. In the
blockchain network, an honest consensus node follows “the-
longest-chain” rule and adopts the longest one among the
received blockain proposals to update its local view of the
blockchain state. In such a process, the nodes that devote their
computational resources to the generation of new blocks (i.e.,
PoW solutions) are also known as the block “miners”. This is
mainly because according to the Nakamoto protocol, a certain
amount of blockchain tokens will be awarded to the node that
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has its proposed blockchain state accepted by the majority of
the network. The theoretic proof and analysis for secure and
private communication with the Nakamoto protocol can be
found in [7].

With the blossom of various cryptocurrencies, permission-
less blockchains are considered to be especially appropriate
for constructing the decentralized autonomous resource man-
agement framework in (wireless) communication networks.
Specifically, when the resource management relies on the de-
sign of incentive mechanisms (e.g., resource access control [8]
and proactive edge caching [9]), permissionless blockchains
are able to provide fast implementation of the self-organized
trading platform with small investment in the operational
infrastructure. Furthermore, with the PoW-based Nakamoto
consensus protocol, the users of a Decentralized Application
(DApp) are incentivized to turn themselves from the free riders
of the blockchain network into consensus nodes (i.e., block
miners) for more profit. However, due to the required computa-
tion contribution by the PoW, the computationally lightweight
nodes such as the Internet of Things (IoT) devices may be
prevented from directly participating in the consensus process.
To alleviate such limitation, “cloud mining” becomes a viable
option where the mobile devices offload their storage load
and/or computation tasks in PoW to the Cloud/Fog Providers
(CFPs) or even other edge devices [10], [11]. In the case of
computation offloading, the lightweight devices may employ
the existing cloud-mining protocols such as Stratum [12]
without causing any significant transmission overhead. From
the perspective of the blockchain-based DApp’s designer, the
benefit of encouraging cloud-based mining is multifold. First,
by incorporating more consensus nodes, the robustness of the
blockchain network is naturally improved [7]. Second, the user
devices may improve their valuation of the DApps, thanks
to the additional reward obtained in the consensus process.
Also, the high level of user activities may attract more users
and in return further improve the robustness of the underlying
blockchain network.

In this paper, we study the interaction between the computa-
tionally lightweight devices and a CFP, where the lightweight
devices (i.e., block miners) purchase the computing power
from the CFP to participate in the consensus process of a PoW-
based blockchain for block-mining revenues. Game theory can
be leveraged as a promising mathematical tool to analyze the
interactions among the CFP and block miners. For example,
in [13], the authors formulated a Stackelberg game to solve the
resource management in fog computing networks, where the
game theoretic study of the market and pricing strategies are
presented. In [14], the authors studied the spectrum resource
allocation in order to mitigate the interference management
among multiple cellular operators in the unlicensed system.
A multi-leader multi-follower Stackelberg game is proposed
to model the interactions among the operators and users in
unlicensed spectrum. Similarly, we also model the resource
offloading market as a two-stage Stackelberg game. In the first
stage, the CFP sets the unit price for computation offloading.
In the second stage, the miners decide on the amount of ser-
vices to purchase from the CFP. In particular, we analyze two
pricing schemes [15], i.e., uniform pricing where a uniform

unit price is applied to all the miners and discriminatory pric-
ing where different unit prices are assigned to different miners.
The uniform pricing leads to a straightforward implementation
as the CFP does not need to keep track of information of
every miner, and charging the same prices is fair to all miners.
However, from the perspective of the CFP, discriminatory
pricing yields a higher profit by allowing price adjustment
for different miners [16]. The main contributions of this paper
are summarized as follows.

1) We explore the possibility of implementing a permis-
sionless, PoW-based blockchain in a network of compu-
tationally lightweight devices. By allowing computation
offloading to the cloud/fog, we model the interactions
between the rational blockchain miners and the CFP as
a two-stage Stackelberg game.

2) We study both the uniform pricing scheme and the
discriminatory pricing scheme for the CFP. Through
backward induction, we provide a series of analytically
results with respect to the properties of the Stackelberg
equilibrium in different situations.

3) In particular, the existence and uniqueness of Stackelberg
equilibrium are validated by identifying the best response
strategies of the miners under the uniform pricing scheme.
Likewise, the Stackelberg equilibrium is proved to exist
and be unique by capitalizing on the Variational Inequal-
ities (VI) theory under discriminatory pricing scheme.

4) We conduct extensive numerical simulations to evaluate
the performance of the proposed price-based resource
management in blockchain networks. The results show
that the discriminatory pricing helps the CFP to encour-
age more service demand from the miners and achieve
greater profit. Moreover, under uniform pricing, the CFP
has an incentive to set the maximum price for the profit
maximization.

The rest of the paper is organized as follows. Section II
presents a brief review of the related work. We describe
the model of the consensus formation in a permissionless
PoW-based blockchain network and formulate the two-stage
Stackelberg game between the lightweight nodes and the CFP
in Section III. In Section IV, we analyze the optimal service
demand of block miners as well as the profit maximization
of the CFP using backward induction for both uniform and
discriminatory pricing schemes. We present the performance
evaluations in Section V. Section VI concludes the paper with
summary and future directions.

II. RELATED WORK

A. Public Blockchains, DApps and Incentive Mechanism

For blockchain networks, the core technological “building
blocks” have been recognized as the distributed database (i.e.,
ledger), the consensus protocol and the executable scripts
(i.e., smart contract) based on network consensus [17]. From
a data processing point of view, a DApp is essentially a
collection of smart contracts and transactional data residing
on the blockchain. The realization of a DApp relies on the
distributed ledger to identify the state/ownership changes of
the tokenized assets. The smart contracts are implemented as
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transaction (data)-driven procedures to autonomously deter-
mine the state transition regarding the asset re-distribution
among the DApp users [17]. With public blockchains, the
implementation of a DApp does not require a centralized
infrastructure, namely, dedicated storage and computation pro-
vision for the ledger and smart contracts. Instead, the DApp
users are allowed to freely enable their functionalities among
transaction issuing/validation, information propagation/storage
and consensus participation [17], [18]. More specifically, the
token-based incentive mechanisms in public blockchains of-
fload the tasks of resource provision and system maintenance
from the DApp providers to the DApp users. Thereby, public
blockhain networks are considered to be a suitable platform for
implementing the incentive-driven Distributed Autonomous
Organization (DAO) systems.

In recent years, a line of work has been dedicated to the
study in DAO for wireless networking applications based on
public blockchains. In [19], a trading platform for Device-to-
Device (D2D) computation offloading is proposed using a ded-
icated cryptocurrency network. Therein, resource offloading is
executed between neighbor D2D nodes through smart contract-
based auctions, and the block mining tasks are offloaded to the
cloudlets. In [20], a PoW-based public blockchain is adopted
as the backbone of a P2P file storage market, where the
privacy of different parties in a transaction is enhanced by
the techniques such as ring signatures and one-time payment
addresses. When identity verification is required for market
access granting, e.g., in the senarios of autonomous network
slice brokering [21] and P2P electricity trading [22], the
public blockchains can be adapted into consortium blockchains
by introducing membership authorizing servers with little
modification to the consensus protocols and smart contract
design.

Our paper also relates to the classical literature on incentive
mechanisms in crowdsensing [23]–[25]. In crowdsensing, the
crowdsensing platform as the service provider offers a reward
as the incentive to attract more crowdsensing user participa-
tion. In the pioneering work [23], the authors considered two
system models: the platform-centric model where the provider
offers a certain amount of reward that will be shared by the
participating users, and the user-centric model where the users
have their reserve prices for the participation. In [24], the
authors designed the incentive mechanisms for crowdsensing
with multiple crowdsourcers, i.e., service providers. The in-
teractions among the service providers are modelled as the
noncooperative game. Therein, the authors proposed a discrete
time dynamic algorithm utilizing the best response dynamics
to compute the Nash equilibrium of the modeled game. The
authors in [25] presented the incentive mechanism in a sealed
market where the users have incomplete information on other
users’ behavior. The convergence to the Nash equilibrium in
such a market is then analyzed using the well-known best
response dynamics.

B. Consensus and Game Theoretic Mining Models in PoW-
based Blockchains

By the Nakamoto protocol, from a single miner’s point of
view, the process of solving a PoW puzzle involves an exhaus-

tive query to a collision-resistant hash function (e.g., SHA-
256), which aims to find a fixed-length hashcode output with
no less than a given number of prefix zeros [2], [7]. For each
individual miner, such a process simulates a Poisson process
when the required number of prefix zeros is sufficiently large.
For a group of miners independently running their own PoW
processes at the same time, the first miner to obtain the PoW
puzzle solution will have a high probability of getting its block
head proposal acknowledged by the entire network. Therefore,
block mining under the Nakamoto protocol can also be viewed
as a hashing competition, where the probability of a miner
winning the competition is roughly proportional to the ratio
between its devoted hash power1 and the total hash power in
the network.

According to the theoretical analysis in [7], when the PoW-
based blockchain network satisfies the condition of honest
majority in terms of computing power, the probability for the
blockchain state machine to be compromised is negligible.
Therefore, the mainstream research on the PoW-based consen-
sus protocols focus on the protocol’s incentive compatibility
and thus the search of miners’ rational strategy to optimize
the reward obtained in the mining process. A plethora of
recent studies [26]–[28] model the mining process in PoW-
based blockchain networks as a noncooperative game, where
rational miners may withhold their newly found blocks with
valid PoW solutions to internationally cause the fork of the
blockchain. In certain conditions of hash power distribution,
it is proved in [26]–[28] that by postponing the newly mined
blocks, rational miners may obtain a higher expected payoff
than fully abiding by the Nakamoto protocol.

In the literature, the most relevant works to this paper
are about the pool-based mining mechanisms. In public
blockchains based on outsourceable PoW schemes, a mining
pool is essentially a proxy node in the network that only en-
ables its local functionalities of transaction issuing/validation
and information propagation/storage. The proxy node offloads
the queries to the hash function to the mining workers that
subscribe to the pool for mining payment [17], [18]. It is
worth noting that most of the existing studies consider the
pool-based mining from the perspective of mining workers
(i.e., cloud-side resource providers) [29]–[32]. In [29], the
process of mining pool formation is modeled as a coalitional
game among the mining workers, which is found to have
an empty core under the proportional payment scheme. In
contrast, the social welfare of miners is considered in [30] and
a geometric-payment pooling strategy is found to be able to
achieve the optimal steady-state utility for the miners. In [31],
the group bargaining solution is adopted by considering the
P2P relationship of the miners. In [32], instead of limiting
the miner subscription to a single mining pool, a computing
power-splitting game is proposed. With the proposed scheme,
the miners play a puzzle-solution game by distributing their
computing power into different pools in order to maximize the
mining reward.

1We use the hash power and computing power interchangeably throughout
the paper.
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Figure 1. System model of public blockchain application involving PoW.

III. SYSTEM MODEL AND GAME FORMULATION

In this section, we first propose the system model of
blockchain under our consideration [33]. Then, we present the
Stackelberg game formulation for the price-based computing
resource management in blockchain networks assisted by
cloud/fog computing.

A. Chain Mining Assisted by Cloud/Fog Computing

We consider a public blockchain network using the PoW-
based consensus protocol [1], [34], [35]. The blockchain net-
work dedicatedly works as the backbone of a specific DApp,
where most of the nodes are limited in their local computing
power (e.g., the IoT devices and smart phones in a typical
crowd-sensing market). We assume that the adopted PoW pro-
tocol is ASIC-resistant [18], e.g., using the Ethash-based PoW
scheme [36] or the schemes alike. Then, to participate in the
consensus process, a node only has to solve the PoW puzzle
with general-purpose computing devices. In the blockchain
network, a set of N nodes denoted as N = {1, . . . , N},
are interested in participating in the consensus process and
make extra profit through block mining. In order to achieve
this, these block miners purchase the necessary hash power
from a public CFP (e.g., Amazon EC2) without hassle of
managing the infrastructure such as seeking extra electricity
sources [37]. In addition, we consider that the CFP is able to
provide the near-to-end computing units such as fog nodes or
even edge devices which are closer to the miners2 [38]. As
such, the aforementioned PoW puzzle can be offloaded to the
remote cloud or the nearby fog computing unit. The computing
resources offered to the miners is priced by the CFP3. Figure 1
shows the system model of the blockchain network under our
consideration. Note that we assume that the link between the
miners and cloud/fog computing units is sufficiently reliable
and secured, which is guaranteed by certain ready-to-use
communication protocols (e.g., Stratum [12]).

2Note that this fog unit deployment is also more appropriate in hostile
environment where the communications with remote cloud are limited and for
the access from personal devices which keep moving, e.g., mobile devices.

3Note that the resource may also include communication resource. Specifi-
cally, we can consider that the communication cost is part of the price charged
by the CFP. In other words, the CFP offers the service as a bundle which
is composed of computing and wireless/wired communication resources.
The energy consumption for the computing and communication is naturally
accounted in the bundle.

The CFP, i.e., the seller, sells the computing services, and
the miners, i.e., the buyers, access and consume this service
from the remote cloud or the nearby fog computing unit. Each
miner i ∈ N determines their individual service demand,
denoted by xi. Additionally, we consider xi ∈ [x, x], in
which x is the minimum service demand, e.g., for blockchain
data synchronization, and x is the maximum service demand
governed by the CFP. Note that each miner has no incentive to
unboundedly increase its service demand due to its financial
burden. Then, let x

∆
= (x1, . . . , xN ) and x−i represent the

service demand profile of all the miners and all other miners
except miner i, respectively. As such, the miner i ∈ N with
the service demand xi has a relative computing power (hash
power) αi with respect to the total hash power of the network,
which is defined as follows:

αi(xi,x−i) =
xi∑
j∈N xj

, αi > 0, (1)

such that
∑
j∈N αj = 1.

In the blockchain network, miners compete against each
other in order to be the first one to solve the PoW puzzle
and receive the reward from the speed game accordingly.
The occurrence of solving the puzzle can be modeled as
a random variable following a Poisson process with mean
λ = 1

600 sec [26]. Note that our model is general that can be
applied with other values of λ easily. The set of transactions
to be included in a block chosen by miner i is denoted as ti.
Once the miner successfully solves the puzzle, the miner needs
to propagate its solution to the whole blockchain network
and its solution needs to reach consensus. Because there is
no centralized authority to verify the validate a newly mined
block, a mechanism for reaching network consensus must be
employed. In this mechanism, the verification needs to be
processed by other miners before the new mined block is
appended to the current blockchain.

The first miner to successfully mine a block that reaches
consensus earns the reward. The reward consists of a fixed
reward denoted by R, and a variable reward which is defined
as rti, where r denotes a given variable reward factor and
ti denotes the number of transactions included in the block
mined by miner i [26]. Additionally, the process of solving the
puzzle incurs an associated cost, i.e., the payment from miner
i to the CFP, pi. The objective of the miners is to maximize
their individual expected utility, and for miner i, it is defined
as follows:

ui = (R+ rti)Pi (αi(xi,x−i), ti)− pixi, (2)

where P (αi(xi,x−i), ti) is the probability that miner i suc-
cessfully mines the block and its solutions reach consensus,
i.e., miner i wins the mining reward.

The process of successfully mining a block consists of two
steps, i.e., the mining step and the propagation step. In the
mining step, the probability that miner i mines the block
is directly proportional to its relative computing power αi.
Furthermore, there are diminishing chances of wining if one
miner chooses to propagate a block that propagates slowly
to other miners in the propagation step. In other words, even
though one miner may find the first valid block, if its mined
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Figure 2. Two-stage Stackelberg game model of the interactions among the
CFP and miners in the blockchain network.

block is large, then this block will be likely to be discarded
because of long latency, which is called orphaning [26].
Considering this fact, the probability of successful mining by
miner i is discounted by the chances that the block is orphaned,
Porphan(ti), which is expressed by

Pi(αi(xi,x−i), ti) = αi(1− Porphan(ti)). (3)

Using the fact that block mining times follow the Poisson
distribution aforementioned, the orphaning probability is ap-
proximated as [39]:

Porphan(ti) = 1− e−λτ(ti), (4)

where τ(ti) is the block propagation time, which is a function
of the block size. In other words, the propagation time needed
for a block to reach consensus is dependent on its size ti,
i.e., the number of transactions in it [26], [40]. Thus, the
bigger the block is, the more time needed to propagate the
block to the whole blockchain network [41]. Same as [26],
we assume this time function is linear, i.e., τ(ti) = z × ti
with z > 0 represents a given delay factor. Note that this linear
approximation is acceptable according to the numerical results
from [26]. Additionally, it would be more appropriate to add a
constant term in this function [41], but apparently this constant
term has no effect on our subsequent analytical results. Thus,
the probability that the miner i successfully mines a block and
its solution reaches consensus is expressed as follows:

Pi(αi(xi,x−i), ti) = αie
−λzti , (5)

where αi(xi,x−i) is given in (1).

B. Two-Stage Stackelberg Game Formulation

The interaction between the CFP and miners can be modeled
as a two-stage Stackelberg game, as illustrated in Fig. 2.
The CFP, i.e., the leader, sets the price in the upper Stage
I. The miners, i.e., the followers, decide on their optimal
computing service demand for offloading in the lower Stage
II, being aware of the price set by the CFP. By using backward
induction, we formulate the optimization problems for the
leader and followers as follows.

1) Miners’ mining strategies in Stage II: Given the pricing
of the CFP and other miners’ strategies, the miner i determines
its computing service demand for its hash power maximizing
the expected utility which is given as:

ui(xi,x−i, pi) = (R+ rti)
xi∑
j∈N xj

e−λzti − pixi, (6)

where pi is the price per unit for service demand of miner i.
The miner sub-game problem can be written as follows:

Problem 1. (Miner i sub-game):

maximize
xi

ui(xi,x−i, pi)

subject to xi ∈ [x, x].
(7)

2) CFP’s pricing strategies in Stage I: The profit of the
CFP is the revenue obtained from charging the miners for
computing service minus the service cost. The service cost is
directly related to the time that the miner takes to mine a block,
the cost of electricity, c, and the other cost that is a function of
the service demand xi. Therefore, the CFP decides the pricing
within the strategy space {p = [pi]i∈N : 0 ≤ pi ≤ p} to
maximize its profit which is represented as:

Π(p,x) =
∑

i∈N
pixi −

∑
i∈N

cTxi. (8)

Note that practically the price is bounded by maximum price
constraint that is denoted by p. Then, the profit maximization
problem of the CFP is formulated as follows.

Problem 2. (CFP sub-game):

maximize
p

Π(p,x)

subject to 0 ≤ pi ≤ p.
(9)

Problem 1 and Problem 2 together form the Stackelberg
game, and the objective of this game is to find the Stack-
elberg equilibrium. The Stackelberg equilibrium ensures that
the profit of the CFP is maximized given that the miners
generate their demands following the best responses, i.e., the
Nash equilibrium. This means that the demands from the
miners maximize the utility. In our problem, the Stackelberg
equilibrium can be written as follows.

Definition 1. Let x∗ and p∗ denote the optimal service
demand vector of all the miners and optimal unit price vector
of computing service, respectively. Then, the point (x∗,p∗) is
the Stackelberg equilibrium if the following conditions,

Π(p∗,x∗) ≥ Π(p,x∗) (10)

and

ui(x
∗
i ,x
∗
−i,p

∗) ≥ ui(xi,x∗−i,p∗),∀xi ≥ 0,∀i (11)

are satisfied, where x∗−i is the best response service demand
vector for all the miners except miner i.

Note that the same or different prices can be applied to
the miners, which we refer to them as the uniform and
discriminatory pricing schemes, respectively. In the following,
we investigate these two pricing schemes for resource man-
agement in blockchain networks. The Stackelberg equilibrium
ensures that the profit of the CFP is maximized given that the
miners generate their demands following the best responses,
i.e., the Nash equilibrium. This means that the demands from
the miners maximize the utility. The Stackelberg equilibrium
under the uniform pricing scheme contains only one single
price that the CFP imposes to the miners identically. On
the contrary, the equilibrium under the discriminatory pricing
scheme contains different prices, each of which the CFP
imposes to each miner separately.
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xi
∗ = Fi(x) =



x,

√
(R+rti)

∑
i6=j

xj

peλzti
−
∑
i 6=j

xj < x√
(R+rti)

∑
i6=j

xj

peλzti
−
∑
i6=j

xj , x ≤

√
(R+rti)

∑
i6=j

xj

peλzti
−
∑
i 6=j

xj ≤ x

x,

√
(R+rti)

∑
i6=j

xj

peλzti
−
∑
i 6=j

xj > x

. (12)

The significance of each pricing scheme is as follows. Under
the uniform pricing scheme, the equilibrium ensures a fair
price applied to all miners. The miners are indifferent to
choose the services. However, the CFP has limited degree of
freedom to maximize its profit. By contrast, under the discrim-
inatory pricing scheme, the CFP can customize the price for
each miner, matching with the miner’s demand and preference.
As such, the profit obtained under the discriminatory pricing
scheme is expected to be superior to that of the uniform pricing
scheme in terms of the higher profit for the CFP.

IV. EQUILIBRIUM ANALYSIS FOR CLOUD/FOG
COMPUTING RESOURCE MANAGEMENT

In this section, we propose the uniform pricing and dis-
criminatory pricing schemes for resource management in
blockchain application involving PoW assisted by the CFP.
We then analyze the optimal service demand of miners as
well as the profit maximization of the CFP under both pricing
schemes.

A. Uniform Pricing Scheme

We first consider the uniform pricing scheme, in which
the CFP charges all the miners the same unit price for their
computing service demand, i.e., pi = p,∀i. Given the payoff
functions defined in Section III, we use backward induction
to analyze the Stackelberg game.

1) Stage II: Miners’ Demand Game: Given the price p
decided by the CFP, in Stage II, the miners compete with each
other to maximize their own utility by choosing their individ-
ual service demand, which forms the noncooperative Miners’
Demand Game (MDG) Gu = {N , {xi}i∈N , {ui}i∈N }, where
N is the set of miners, {xi}i∈N is the strategy set, and ui is
the utility, i.e., payoff, function of miner i. Specifically, each
miner i ∈ N selects its strategy to maximize its utility function
ui(xi,x−i, p). We next analyze the existence and uniqueness
of the Nash equilibrium in the MDG.

Definition 2. A demand vector x∗ = (x∗1, . . . , x
∗
N ) is the Nash

equilibrium of the MDG Gu = {N , {xi}i∈N , {ui}i∈N }, if, for
every miner i ∈ N , ui(x∗i ,x

∗
−i, p) ≥ ui(xi

′,x∗−i, p) for all
xi
′ ∈ [x, x], where ui(xi,x−i) is the resulting utility of the

miner i, given the other miners’ demand x−i.

Theorem 1. A Nash equilibrium exists in MDG Gu =
{N , {xi}i∈N , {ui}i∈N }.

Proof. Firstly, the strategy space for each miner is defined to
be [x, x], which is a non-empty, convex, compact subset of

the Euclidean space. From (6), ui is apparently continuous
in [x, x]. Then, we take the first order and second order
derivatives of (6) with respect to xi to prove its concavity,
which can be written as follows:

∂ui
∂xi

= (R+ rti)e
−λzti ∂αi

∂xi
− p, (13)

∂2ui
∂xi2

= (R+ rti)e
−λzti ∂

2αi
∂xi2

< 0, (14)

where ∂αi
∂xi

=
∑
i6=j xj

(
∑
i∈N xj)

2 > 0, and ∂2αi
∂xi2

= −2
∑
i6=j xj

(
∑
i∈N xj)

3 <

0.
Therefore, we have proved that ui is strictly concave with

respect to xi. Accordingly, the Nash equilibrium exists in this
noncooperative MDG Gu [42]. The proof is now completed.

Further, based on the first order derivative condition, we
have

∂ui
∂xi

= (R+ rti)e
−λzti ∂αi

∂xi
− p = 0, (15)

and we obtain the best response function of miner i by
solving (15), as shown in (12).

Theorem 2. The uniqueness of the Nash equilibrium in
the noncooperative MDG is guaranteed given the following
condition

2(N − 1)eλzti

R+ rti
<
∑
j∈N

eλztj

R+ rtj
(16)

is satisfied.

Proof. Let x∗ denote the Nash equilibrium of the MDG. By
definition, the Nash equilibrium needs to satisfy x = F (x),
in which F (x) = (F1(x),F2(x), . . . ,FN (x)). In particular,
Fi(x) is the best response function of miner i, given the
demand strategies of other miners. The uniqueness of the Nash
equilibrium can be proved by showing that the best response
function of miner i, i.e., as given in (12), is the standard
function [42].

Definition 3. A function F (x) is a standard function when
the following properties are guaranteed [42]:
(1) Positivity: F (x) > 0;
(2) Monotonicity: If x ≤ x′, then F (x) ≤ F (x′);
(3) Scalability: For all φ > 1, φF (x) > F (φx).

Firstly, for the positivity, under the condition in (16), we
have (from Lemma 1)∑

i 6=j

xj <
R+ rti
4peλzti

<
R+ rti
peλzti

, (17)
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Fi(x′)−Fi(x) =

√√√√ (R+ rti)
∑
i 6=j

x′j

peλzti
−
∑
i 6=j

x′j −

√√√√ (R+ rti)
∑
i 6=j

xj

peλzti
−
∑
i 6=j

xj

=

√ (R+ rti)

peλzti
−
√∑
i 6=j

x′j −
√∑
i6=j

xj

√∑
i 6=j

x′j −
√∑
i 6=j

xj

 . (20)

φFi(x)−Fi(φx) = φ

√√√√ (R+ rti)
∑
i 6=j

xj

peλzti
− φ

∑
i6=j

xj −

√√√√ (R+ rti)
∑
i 6=j

φxj

peλzti
−
∑
i 6=j

φxj

=
(
φ−

√
φ
)√√√√ (R+ rti)

∑
i 6=j

xj

peλzti
> 0, ∀φ > 1. (21)

then we can conclude that

∑
i 6=j

xj <

√√√√ (R+ rti)
∑
i 6=j

xj

peλzti
. (18)

Thus, we can prove that

Fi(x) =

√√√√ (R+ rti)
∑
i 6=j

xj

peλzti
−
∑
i 6=j

xj > 0, (19)

which is the positivity condition. Secondly, we prove the
monotonicity of (12). Let x′ > x, we can further simplify
the expression of Fi(x′) − Fi(x), which is shown in (20).
In particular, we have

√∑
i 6=j

x′j −
√∑
i 6=j

xj > 0, and we can

easily verify that

√
R+ rti
peλzti

−
√∑

i 6=j

x′j −
√∑

i 6=j

xj ∈√R+ rti
peλzti

− 2

√∑
i 6=j

x′j ,

√
R+ rti
peλzti

− 2

√∑
i 6=j

xj

 . (22)

Under the condition in (30), we can prove that√
R+ rti
peλzti

− 2

√∑
i6=j

xj > 0,∀xj . (23)

Thus, the best response function of miner i in (12) is always
positive.

At last, as for scalability, we need to prove that φF (x) >
F (φx), for λ > 1. The steps of proving the positivity of
φF(x) − F(φx) are shown in (21). Therefore, φF (x) >
F (φx) is always satisfied for φ > 1. Until now, we have
proved that the best response function in (12) satisfies three
properties described in Definition 2. Therefore, the Nash
equilibrium of MDG Gu = {N , {xi}i∈N , {ui}i∈N } is unique.
The proof is now completed.

Theorem 3. The unique Nash equilibrium for miner i in the
MDG is given by

xi
∗ =

N − 1∑
j∈N

peλztj

R+rtj

−

 N − 1∑
j∈N

peλztj

R+rtj


2

peλzti

R+ rti
,∀i, (24)

provided that the condition in (16) holds.

Proof. According to (13), for each miner i, we have the
mathematical expression∑

i6=j
xj( ∑

j∈N
xj

)2 =
peλzti

R+ rti
. (25)

Then, we calculate the summation of this expression for all
the miners as follows:

(N − 1)
∑
j∈N

xj( ∑
j∈N

xj

)2 =
∑
i∈N

peλzti

R+ rti
, (26)

which means (N−1)∑
j∈N

xj
=
∑
i∈N

peλzti

R+rti
. Thus, we have

∑
j∈N

xj =
N − 1∑

i∈N

peλzti
R+rti

. (27)

Recall from (12), according to the first order derivative con-
dition, we have

∑
j∈N

xj =

√√√√ (R+ rti)
∑
i 6=j

xj

peλzti
. (28)

By substituting (28) into (27), we have

N − 1∑
i∈N

peλzti
R+rti

=

√√√√√√R+ rti
peλzti

 N − 1∑
i∈N

peλzti
R+rti

− xi

. (29)
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After squaring both sides, we have

 N−1∑
i∈N

peλzti
R+rti

2

=

R+rti
peλzti

 N−1∑
i∈N

peλzti
R+rti

− xi

. With simple transformations, we

obtain the Nash equilibrium for miner i as shown in (24).

Lemma 1. Given

2(N − 1)eλzti

R+ rti
<
∑
i∈N

eλzti

R+ rti
, (30)

the following condition∑
i 6=j

xj <
R+ rti
4peλzti

(31)

is satisfied.

Proof. According to (24) and (27), we can obtain

∑
j 6=i

xj =

 N − 1∑
j∈N

peλztj

R+rtj


2

peλzti

R+ rti
. (32)

After substituting (31) into (32), we have

2(N − 1)peλzti

R+ rti
<
∑
i∈N

peλzti

R+ rti
, (33)

which means that the condition in (30) needs to be ensured. On
the contrary, if the condition in (30) holds, then, the condition
in (33) is satisfied. The proof is now completed.

Generally, we can use the best-response dynamics for ob-
taining the Nash equilibrium of the N-player noncooperative
game in Stage II [42]. In the following, we analyze the profit
maximization of the CFP in Stage I under uniform pricing.

2) Stage I: CFP’s Profit Maximization: Based on the
Nash equilibrium of the computing service demand in the
MDG Gu = {N , {xi}i∈N , {ui}i∈N } in Stage II, the leader of
the Stackelberg game, i.e., the CFP, can optimize its pricing
strategy in Stage I to maximize its profit defined in (8). Thus,
the optimal pricing can be formulated as an optimization
problem. By substituting (24) into (8), the profit maximization
of the CFP is simplified as follows:

maximize
p>0

Π(p) = (p− cT )
N − 1∑

j∈N

peλztj

R+rtj

subject to 0 ≤ p ≤ p.

(34)

Theorem 4. Under uniform pricing, the CFP achieves the
globally optimal profit, i.e., profit maximization, under the
unique optimal price.

Proof. From (34), we have

Π(p) =
p− cT
p

N − 1∑
j∈N

eλztj

R+rtj

. (35)

The first and second derivatives of profit Π(p) with respect to
price p are given as follows:

dΠ(p)

dp
=
cT

p2

N − 1∑
j∈N

eλztj

R+rtj

(36)

and
d2Π(p)

dp2
= −2cT

p2

N − 1∑
j∈N

eλztj

R+rtj

< 0. (37)

Due to the negativity of (37), the strict concavity of the
objective function is ensured. Thus, the CFP is able to achieve
the maximum profit with the unique optimal price. The proof
is now completed.

Note that the profit maximization defined in (34) is a convex
optimization problem, and thus it can be solved by stan-
dard convex optimization algorithms, e.g., gradient assisted
binary search. Under uniform pricing, we have proved that
the Nash equilibrium in Stage II is unique and the optimal
price in Stage I is also unique. Thus, we can conclude that
the Stackelberg equilibrium is unique and accordingly the
best-response dynamics algorithm can achieve this unique
Stackelberg equilibrium [42].

B. Discriminatory Pricing Scheme

Then, we consider the discriminatory pricing scheme, in
which the CFP is able to set different unit prices of service
demand for different miners. Again, we use the backward
induction to analyze the optimal service demand of miners
and the profit maximization of the CFP.

1) Stage II: Miners’ Demand Game: Under discriminatory
pricing scheme, the strategy space of the CFP becomes {p =
[pi]i∈N : 0 ≤ pi ≤ p}. Recall that we prove the existence
and uniqueness of MDG Gu = {N , {xi}i∈N , {ui}i∈N }, given
the fixed price from the CFP. Thus, under discriminatory
pricing, the existence and uniqueness of the MDG can be still
guaranteed. With minor change from Theorem 3, we have the
following theorem immediately.

Theorem 5. Under uniform pricing, the unique Nash equilib-
rium demand of miner i can be obtained as follows:

xi
∗ =

N − 1∑
j∈N

pje
λztj

R+rtj

−

 N − 1∑
j∈N

pje
λztj

R+rtj


2

pie
λzti

R+ rti
,∀i, (38)

if the following condition

2(N − 1)pie
λzti

R+ rti
<
∑
j∈N

pje
λztj

R+ rtj
(39)

holds.

Proof. The steps of proof are similar to those in the case of
uniform pricing as shown in Section IV-A1, and thus we omit
them for brevity.

We next analyze the profit maximization of the CFP in
Stage I under discriminatory pricing to further investigate the
Stackelberg equilibrium.
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g(p) =
∑
j 6=h

ah
1−

ph

ah

N − 1∑
h∈N

ph
ah


1−

pj

aj

N − 1∑
h∈N

ph
ah


. (42)

∂g(p)

∂pi
=
∑
j 6=i

(ai + aj)


−N−1

ai

∑
h 6=i

ph
ah( ∑

h∈N

ph
ah

)2

1−
N − 1∑
h∈N

ph
ah

pj

aj

+

N−1
ai

pj
aj( ∑

h∈N

ph
ah

)2

1−
N − 1∑
h∈N

ph
ah

pi

ai




. (43)

∑
i 6=j

(ai + aj)

∑
h∈N

λp
′
h + (1− λ)p′′h

ah
−N

λp
′
j + (1− λ)p′′j

aj


=

∑
i 6=j

(ai + aj)

λ ∑
h∈N

p
′
h

ah
− (1− λ)

∑
h∈N

p
′′
h

ah
− λN

p
′
j

aj
− (1− λ)N

p
′′
j

aj


= λ

∑
i 6=j

(ai + aj)

∑
h∈N

p
′
h

ah
−N

p
′′
j

aj

+ (1− λ)
∑
i6=j

(ai + aj)

(1− λ)
∑
h∈N

p
′
h

ah
−N

p
′′
j

aj

 ≤ 0. (44)

2) Stage I: CFP’s Profit Maximization: Similar to that in
Section IV-A2, we analyze the profit maximization with the
analytical result from Theorem 5, i.e., the Nash equilibrium
of the computing service demand in Stage II. After substitut-
ing (38) into (8), we have the following optimization,

maximize
p>0

Π(p) =
∑
i∈N

pi − cT N − 1∑
j∈N

pje
λztj

R+rtj


subject to 0 ≤ pi ≤ p,∀i.

(40)

Theorem 6. Π(p) is concave on each pi, when∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
≤ 0, and decreasing on

each pi when
∑
i6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
> 0, provided that

the following condition

pi
ai
≥

∑
j∈N

pj
aj

(N − 1)
2 (41)

is satisfied, where ai = (R+ rti)e
−λzti .

Proof. We firstly decompose the objective function in (40) into
two parts, namely,

∑
i

cTx∗i and
∑
i

pix
∗
i . Then, we analyze the

properties of each part. We define

f(p) = −cTx∗i = −cT N − 1∑
j∈N

pje
λztj

R+rtj

. (46)

Let aj = (R + rtj)e
−λztj , and we have f(p) = −cT (N−1)∑

j∈N

pj
aj

.

Then, we obtain the first and the second partial derivatives

of (46) with respect to pi as follows.

∂f(p)

∂pi
=

(N − 1)cT

ai

( ∑
j∈N

pj
aj

)2 , (47)

∂2f(p)

∂pi2
=
−2(N − 1)cT

ai2

( ∑
j∈N

pj
aj

)3 . (48)

Further, we have
∂f(p)

∂pipj
=
−2(N − 1)cT

aiaj

( ∑
j∈N

pj
aj

)3 . (49)

Thus, we can obtain the Hessian matrix of f(p), which is
expressed as:

∇2f(p) =
−2(N − 1)cT( ∑

j∈N

pj
aj

)3


1
a1

2
1

a1a2
· · · 1

a1aN
1

a2a1

1
a2

2 · · · 1
a2aN

...
...

. . .
...

1
aNa1

1
aNa2

· · · 1
aN 2

 .
(50)

For each i ∈ N , we have 1
ai2

> 0. Thus, the diagonal elements
of the Hessian matrix are all larger than zero, and the principle
minors are equal to zero. Therefore, the Hessian matrix of
f(p) is semi-negative definite.

Then, we analyze the properties of
∑
i

pix
∗
i . We first define

g(p) =
∑
i∈N

pixi
∗ =

∑
j 6=i

aixixj(∑
j 6=i

xj

)2 . (51)

By substituting (38) into (51), we can obtain the final
expression for g(p), which can be rewritten as in (42).
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∂Π(p)

∂pi
=
∑
j 6=i

(ai + aj)


N−1
ai

∑
h 6=i

ph
ah( ∑

h∈N

ph
ah

)2

1−
N − 1∑
h∈N

ph
ah

pj

aj

+

N−1
aiaj

pj( ∑
h∈N

ph
ah

)2

1−
N − 1∑
h∈N

ph
ah

pi

ai



+

N−1
ai

cT( ∑
h∈N

ph
ah

)2

≤
N−1
ai( ∑

h∈N

ph
ah

)2

∑
j 6=i

(ai + aj)

−∑
h∈N

ph

ah

1−
N − 1∑
h∈N

ph
ah

pj

aj

+
pj

aj

1−
N − 1∑
h∈N

ph
ah

pi

ai



+ cT



= −
N−1
ai( ∑

h∈N

ph
ah

)2

∑
j 6=i

(ai + aj)

∑
h∈N

ph

ah

1−
N∑

h∈N

ph
ah

pj

aj





︸ ︷︷ ︸
<0

+

N−1
ai( ∑

h∈N

ph
ah

)2

cT −∑
j 6=i

(ai + aj)
N − 1∑
h∈N

ph
ah

pi

ai

pj

aj




= −
N−1
ai( ∑

h∈N

ph
ah

)2

∑
j 6=i

(ai + aj)

−∑
h∈N

ph

ah

1−
N∑

h∈N

ph
ah

pj

aj



+

N−1
ai( ∑

h∈N

ph
ah

)2

cT −
∑
j 6=i

ai + aj

aj︸ ︷︷ ︸
<1

N − 1∑
h∈N

ph
ah

pipj

ai




≤ −
N−1
ai( ∑

h∈N

ph
ah

)2

∑
j 6=i

(ai + aj)

−∑
h∈N

ph

ah

1−
N∑

h∈N

ph
ah

pj

aj



+

N−1
ai( ∑

h∈N

ph
ah

)2

cT − pmin
N − 1∑
h∈N

ph
ah

N − 1pi

ai



= −
N−1
ai( ∑

h∈N

ph
ah

)2

∑
j 6=i

(ai + aj)

−∑
h∈N

ph

ah

1−
N∑

h∈N

ph
ah

pj

aj





︸ ︷︷ ︸
<0

+

N−1
ai( ∑

h∈N

ph
ah

)2

cT − pmin
(N − 1)2∑
h∈N

ph
ah

pi

ai


︸ ︷︷ ︸

<0

< 0. (45)

Then, we derive the first order and the second partial
derivatives of (42) with respect to pi as shown in (43)

and (52). Since we have xi = N−1∑
h∈N

ph
ah

− pi
ai

(
N−1∑

h∈N

ph
ah

)2

=

N−1∑
h∈N

ph
ah

(
1− N−1∑

h∈N

ph
ah

pi
ai

)
> 0, 1− N−1∑

h∈N

ph
ah

pi
ai

> 0. When

∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
≤ 0, it is observed that ∂

2g(p)
∂pi2

<

0, i.e., g(p) is concave on each pi. Now we prove that Π(p) is
a monotonically decreasing function with respect to pi, when∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
> 0. The steps are shown in (45),

where pmin = min{p1, p2, . . . , pN}. Practically, pmin > cT .
Thus, with some manipulations, we can prove ∂Π

∂pi
< 0 when∑

i 6=j
(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
> 0, if the condition in (41)

holds. The proof is now completed.

Theorem 7. Under discriminatory pricing, the CFP achieves
the profit maximization by finding the unique optimal pricing
vector.

Proof. From Theorem 6, we know that Π(p) is concave

on each pi, when
∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
≤ 0, and

decreasing on each pi when
∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
> 0.

In other words, when Π(p) is concave on pi, pi needs to
be smaller than a certain threshold, and Π(p) is decreasing

on pi when pi is larger than this threshold. Then, it can be
concluded that if the price is higher than the threshold, the
miner is not willing to purchase the computing service from
the CFP. Therefore, we know that the optimal value of profit
of the CFP, i.e., Π∗(p) is achieved in the concave parts when∑
i6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
≤ 0. Clearly, the maximization

of profit Π(p) is achieved either in the boundary of domain
area or in the local maximization point. Since we know that
the optimal value of profit, i.e., Π∗(p) is achieved in the
interior area, and thus p∗ exists. In the following, we prove that
there exists at most one optimal solution by using Variational
Inequality theory [43], from which the uniqueness of the
optimal solution, i.e., the Stackelberg equilibrium, follows.

Let the set K =

{
p =

[p1, . . . , pN ]>
∣∣∣∣∑
i 6=j

(ai + aj)

(
1−

N
pj
aj∑

j∈N

pj
aj

)
≤ 0,∀i ∈ N

}
.

The constraint can be rewritten as follows:∑
i 6=j

(
(ai + aj)

(∑
h∈N

ph
ah
−N pj

aj

))
≤ 0. (54)

Thus, we redefine the set K as
{
p = [p1, . . . , pN ]>∣∣∣∣∑

i 6=j

(
(ai + aj)

( ∑
h∈N

ph
ah
−N pj

aj

))
≤ 0,∀i ∈ N

}
. Then,

we formulate an equivalent problem to (40) as follows:

minimize
p>0

−Π(p)

subject to p ∈ K.
(55)
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∂2g(p)

∂pi2
=

∑
j 6=i

(ai + aj)


2N−1
ai2

∑
h 6=i

ph
ah( ∑

h∈N

ph
ah

)3

1− 2
N − 1∑
h∈N

ph
ah

pj

aj

− 2N−1
ai2

pj
aj( ∑

h∈N

ph
ah

)3

1−
N − 1∑
h∈N

ph
ah

pi

ai




. (52)

∂2g(p)

∂pi2
=

2N−1
ai2

∑
h6=i

ph
ah( ∑

h∈N

ph
ah

)3

∑
j 6=i

(ai + aj)

1− 2
N − 1∑
h∈N

ph
ah

pj

aj


− 2N−1

ai2( ∑
h∈N

ph
ah

)3

∑
j 6=i

(ai + aj)
pj

aj

1−
N − 1∑
h∈N

ph
ah

pi

ai




≤
2N−1
ai2

∑
h6=i

ph
ah( ∑

h∈N

ph
ah

)3

∑
j 6=i
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Let F (p) = ∇ (−Π(p)) = −[∇piΠ]
>
i∈N . Accordingly, the

optimization problem in (55) is equivalent to find a point set
p∗ ∈ K, such that (p− p∗)F (p∗) ≥ 0,∀p ∈ K, which is the
Variational Inequality (VI) problem: VI(K, F ).

Definition 4. If F is strictly monotone on K, then VI(K, F )
has at most one solution, where K ∈ RN is a convex closed
set, and the mapping F : K 7→ RN is continuous [43].

Let λ ∈ (0, 1), p′,p′′ ∈ K, it can be concluded that λp′ +
(1 − λ)p′ ∈ K, which is shown in (44). Accordingly, K is a
convex and closed set. To prove that the mapping F : K 7→
RN is strictly monotone on K, we check the positivity of
(p′ − p′′)>(F (p′) − F (p′′)),∀p′,p′′ ∈ K and p′ 6= p′′. We
know

(p′ − p′′)>(F (p′)− F (p′′)) =∑
i∈N

(
(p′i − p′′i )

(
− ∇piΠ|pi=p′i + ∇piΠ|pi=p′′i

))
, (56)

and from Theorem 6, we have

∂2Π(p)

∂pi2
=
∂2(f(p) + g(p))

∂pi2
< 0. (57)

Thus,∇piΠ is decreasing on each pi, and −∇piΠ is increasing
on each pi. It can be concluded that

− ∇piΠ|pi=p′i + ∇piΠ|pi=p′′i =

{
≥ 0, p′i ≥ p′′i
< 0, p′i < p′′i .

(58)

Then, we have(
(p′i − p′′i )

(
− ∇piΠ|pi=p′i + ∇piΠ|pi=p′′i

))
≥ 0,∀i ∈ N ,

(59)
and we know p′ 6= p′′, and accordingly there exists at
least one j ∈ N which satisfies the constraint in (59).
Therefore, we have proved that F is strictly monotone on K
and continuous. Until now, we have proved that VI(K, F ) has
at most one solution according to Definition 4 in [43]. Thus,
the equivalent problem admits at most one optimal solution.
Since we know the existence of a single optimal solution, and
thus the uniqueness of the optimal solution is validated. The
proof is now completed.

Similar to that in Section IV-A, we can apply the low-
complexity gradient based searching algorithm to achieve the
maximized profit Π(p) of the CFP. In particular, we adopt
Algorithm 1 to obtain the unique Stackelberg equilibrium, un-
der which the CFP achieves the profit maximization according
to Theorem 7. The basic description is explained as follows:
for the given prices imposed by the CFP, the followers’ sub-
game is solved first. After substituting the best responses of
the followers’ sub-game into the leader sub-game, the optimal
prices can be obtained by a gradient-based algorithm. The
similar algorithm can be used for uniform pricing as well.

Algorithm 1 Gradient iterative algorithm to find Stackelberg
equilibrium under discriminatory pricing
1: Initialization:

Select initial input p = [pi]i∈N where pi ∈ [0, p], k ← 1, precision threshold
ε;

2: repeat
3: Each miner i decides its computing service demand x[k]

i based on (12);
4: CFP updates the prices using a gradient assisted searching algorithm, i.e.,

p(t+ 1) = p(t) + µ∇Π(p(t)), (60)

where µ is the step size of the price update and µ∇Π(p(t)) is the gradient
with ∂Π(p(t))

∂p(t)
. The price information is sent to all miners;

5: k ← k + 1;

6: until

∥∥∥p[k]−p[k−1]
∥∥∥
1∥∥∥p[k−1]

∥∥∥
1

< ε

7: Output: optimal demand x∗[k] and optimal price p∗[k].

V. PERFORMANCE EVALUATION

In this section, we first perform the real experiment on
the PoW-based blockchain mining to validate the proposed
utility function of the miner. Then, we conduct the extensive
numerical simulations to evaluate the performance of our pro-
posed price-based computing resource management to support
blockchain application involving PoW.

A. Environmental Setup

We first set up the real blockchain mining experiment
based on Ethereum and consider the smart phones as limited
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Figure 3. Real mobile blockchain mining experimental setup with Ethereum
which is a popular open ledger.
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Figure 4. The comparison of real experiment results with our proposed model.

devices, as illustrated in Fig. 3. The experiment is performed
on a workstation with Intel Xeon CPU E5-1630, and android
devices (smart phones) installing a mobile blockchain client
application. The mobile blockchain client application is im-
plemented by the Android Studio and Software Development
Kits (SDK) tools. All transactions are created by the mobile
blockchain client application4. Each miner’s working environ-
ment has one CPU core as its processor. The miner’s processor
and its CPU utilization rate are generated and managed by
the Docker platform [45]. The mobile device of each miner
has installed Ubuntu 16.04 LTS (Xenial Xerus) and Go-
Ethereum [46] as the operation system and the blockchain
framework, respectively.

In Fig. 3, from Box 1 and 2, the screen of computer terminal

4In our experiment, each mobile device sends transactions to the server,
and the size of each transaction is around 1 kilobyte [44]. Then, the server
will collect and pack all the transactions into a block and proceed to solve
the proof-of-work puzzle, where each block consists of block information and
hash numbers. As mentioned in the paper, the number of transactions in each
mined block is 10, and thus the size of the data from mobile device sent to
the server is approximately 10 kilobytes in total. Likewise, the size of a block
including 10 hash numbers that is sent from the server to the mobile device
is around 1.5 kilobytes. The detailed description can be found in our previous
work [44].

shows that the Ethereum is running on the host, i.e., edge
device (Box 5). The mobile devices in Box 4 are connected to
the edge computing node through network hub (Box 3) using
mobile blockchain client application. The basic steps can be
implemented as follows. The mobile users, i.e., miners use
the Android device to connect to the edge computing node
through network hub, i.e., access point. Then, the miners can
request the service from edge node, and mine the block with
the assistance of Ethereum service provided accordingly.

We create 1000 blocks employing Node.js and use the
mobile device to mine these blocks in the experiment. We
consider two cases with three miners and four miners. In the
three-miner case, we first fix the other two miners’ service
demand (CPU utilization) at 40 and 60, and then vary one
miner’s service demand. In the four-miner case, we first fix
other three miners’ service demand as 40, 50 and 60, and
then vary one miner’s service demand. For our experiment,
the number of transactions in each mined block is 10, i.e.,
the size of block is the same. The comparison of the real
experimental results and our proposed analytical model is
shown in Fig. 4. As expected, there is not much difference
between the real results and our analytical model. This is
because the probability that the miner successfully mines
the block is directly proportional to its relative computing
power when the block size are identical. Note that the delay
effects are negligible. In the sequel, we present the numerical
results to evaluate the performance of the proposed price-based
computing resource management for supporting blockchain
application involving PoW.

B. Numerical Results

To illustrate the impacts of different parameters from the
proposed model on the performance, we consider a group of
N miners, e.g., mobile users in the blockchain application
involving PoW assisted by the CFP. We assume the size of
a block mined by miner i follows the normal distribution
N (µt, σ

2). The default parameter values are set as follows:
x = 10−2, x = 100, p = 100, µt = 200, σ2 = 5,
R = 104, r = 20, z = 5 × 10−3, c = 10−3 and N = 100.
Further, we employ the ‘fix’ function in MATLAB to round
each ti to the nearest integer toward zero. Note that some
of these parameters are varied according to the evaluation
scenarios. We evaluate the performance of uniform pricing
and discriminatory pricing in the following.

1) Investigation on total service demand of miners and the
profit of the CFP:

a) The comparison of uniform pricing and discriminatory
pricing: We first address the comparison of uniform pricing
and discriminatory pricing schemes. Figure. 5 demonstrates
the comparison of the normalized average optimal price under
two proposed pricing schemes. It is worth noting that the
optimal price under uniform pricing is the same as the maxi-
mum price, which can be explained by (36). Specifically, the
expression in (36) is always positive, and thus the profit of the
CFP increases with the increase of price. This means that the
maximum price is the optimal value for profit maximization of
the CFP under uniform pricing. Thus, we have the following
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Figure 5. Normalized average optimal price versus the number of miners.

conclusion: the CFP intends to set the maximum possible value
as optimal price under uniform pricing. This conclusion is
still useful even when the CFP does not have the complete
information about the miners.

Further, we find that the average optimal price of discrim-
inatory pricing is slightly lower than that of uniform pricing.
The intuition is that, under under discriminatory pricing, the
CFP can set different unit prices of service demand for
different miners. For the details of operation of discriminatory
pricing, we conduct the case study in Section V-B2. In this
case, the CFP can significantly encourage the higher total
service demand from miners and achieve greater profit gain
under discriminatory pricing, which is also consistent with the
following results. As shown in Figs. 6-8, in all cases, the total
service demand from miners and the profit of the CFP under
the uniform pricing scheme is slightly smaller than that under
the discriminatory pricing scheme.

From Fig. 6, we find that when σ2 decreases, the results
under uniform pricing scheme is close to that under discrim-
inatory pricing. This is because the heterogeneity of miners
in blockchain is reduced as σ2 decreases. We may consider
one symmetric case, where the miners are homogeneous with
the same size of blocks to mine, i.e., σ2 = 0. In this case, the
discriminatory pricing scheme yields the same results as those
of the uniform pricing scheme.

b) The impacts of the number of miners: We next eval-
uate the impacts brought by the number of miners, and the
results are shown in Fig. 6. From Fig. 6, we find that the total
service demand of miners and the profit of the CFP increase
with the increase of the number of miners in blockchain. This
is due to the fact that having more miners will intensify the
competition among the miners, which potentially motivates
them to have higher service demand. Further, the coming
miners have their service demand, and thus the total service
demand from miners is increased. In turn, the CFP extracts
more surplus from miners and thereby has greater profit gain.
Additionally, it is observed that the rate of service demand
increment decreases as the number of miners increases. This
is from the fact that the incentive of miners to increase their
service demand is weakened because the probability of their
successful mining is reduced when the number of miners is

increasing. Comparing different results, it is also observed that
the total service demand of miners and the profit of the CFP
increase as µt increases. This is because when µt increases,
i.e., the average size of one block becomes larger, the variable
reward for each miner also increases. The potential incentive
of miners to increase their service demand is improved, and
accordingly the total service demand of miners increases.
Consequently, the CFP achieves greater profit gain.

c) The impacts of reward for successful mining: Then,
we investigate the impacts of variable reward and fixed reward
on miners and the CFP, which are shown in Fig. 7. It is
observed that with the increase of variable reward factor, both
the total service demand of miners and the profit of the CFP
increase. This is from the fact that the increased variable
reward enhances the motivation of miners for higher service
demand, and the total service demand is enhanced accordingly.
As a result, the CFP achieves greater profit gain. Further, by
comparing curves with different value of fixed reward, we find
that as the fixed reward increases, the total service demand of
miners and the profit of the CFP also increase. Similarly, this
is because the increased fixed reward induces greater incentive
of miners, which in turn improves the total service demand of
miners and the profit of the CFP.

d) The impacts of propagation delay: At last, we exam-
ine the impact of propagation delay on miners and the CFP,
as illustrated in Fig. 8. It is observed that as the propagation
delay factor increases, the total service demand and the profit
of the CFP increase. This is because when the propagation
delay effects are strong, the miners with larger mined block
need to have higher service demand to reduce the propagation
delay of their propagated solutions. At the same time, a miner
with smaller mined block is also incentivized from the demand
competition with the other miners. Therefore, the total service
demand increases, which in turn improves the profit of the
CFP. Additionally, we observe that as the value of service
cost factor increases, the total service demand decreases under
discriminatory pricing and remains unchanged under uniform
pricing. On the contrary, the profit of the CFP increases in both
schemes. Recall from Fig. 5, the reason is that the optimal
price under uniform pricing remains unchanged from varying
the value of service cost factor, and thus the service demand
remains unchanged under uniform pricing. Correspondingly,
the CFP achieves greater profit gain from the lower cost under
uniform pricing. However, under discriminatory pricing, when
the service cost decreases, the CFP has an incentive to set
lower price for some miners to encourage higher total service
demand. On the contrary, when the value of service cost factor
increases, the CFP has no incentive to set lower price for
these miners, since the higher total service demand results
in higher cost for the CFP. Therefore, as the value of service
cost factor decreases, the total service demand and the profit
of CFP increase.

2) Investigation on optimal price under uniform and dis-
criminatory pricing schemes: Then, to explore the impacts of
discriminatory pricing on each specific miner, we investigate
the optimal price and resulting individual computing service
demand from miners. We conduct a case study for three-miner
mining with the following parameters: t1 = 100, t2 = 200,
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t3 = 300, x = 10−2, x = 100, p = 100, R = 104, r = 20,
z = 5× 10−3, and c = 10−3.

As expected, we observe from Figs. 9 and 10 that the
optimal price charging to the miners with the smaller block is
lower, e.g., miners 1 and 2. This is because the variable reward
of miners 1 and 2 for successful mining is smaller than that
of miner 3. Thus, the miners 1 and 2 have no incentive to pay
a high price for their service demand as miner 3. In this case,
the CFP can greatly improve the individual service demand
of miners 1 and 2 by setting lower prices to attract them,
as illustrated in Figs. 11 and 12. Due to the competition from
other two miners, the miner 3 also has the potential incentive to
increase its service demand. However, due to the high service
unit price, as a result, the miner 3 reduces its service demand
for saving cost. Nevertheless, the increase of service demand
from miners 1 and 2 are greater. Therefore, the total service
demand and the profit of the CFP are still improved under
discriminatory pricing compared with uniform pricing.

Further, from Fig. 9, we observe that the optimal prices for
miners 1 and 2 increase with the increase of fixed reward.
This is because as the fixed reward increases, the incentives
of miners 1 and 2 to have higher service demand is greater. In
this case, the CFP is able to raise the price and charge more
for higher revenue, and thus achieves greater profit. Therefore,
for each miner, the individual service demand increases as
the fixed reward increases, as shown in Fig. 11. Additionally,
we observe from Fig. 10 that the optimal prices for miners
1 and 2 decrease as the variable reward factor increases.
This is because when the variable reward factor increases,
the incentive of each miner to have higher service demand
is greater. However, the incentives of the miners with smaller
block to mine, i.e., the miners 1 and 2 are still not much as

Fixed reward for successfully mining
2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 o
pt

im
al

 p
ric

e

60

65

70

75

80

85

90

95

100

Miner 1 with 100 transactions
Miner 2 with 200 transactions
Miner 3 with 300 transactions

Figure 9. Normalized optimal price versus the fixed reward for mining
successfully under discriminatory pricing.

that of miner 3, and become smaller than that of miner 3 as the
variable reward factor increases. Therefore, the CFP intends
to set the lower price for miners 1 and 2 which may induce
more individual service demand as shown in Fig. 12.

Note that the Stackelberg game of the edge/fog computing
service for blockchain aims at maximizing the profit of the
CFP. Alternatively, social welfare, i.e., utility of miners, are
also important and should be maximized. As such, auction [47]
is a suitable tool to achieve this objective in which some
preliminary modeling and results are presented in [35].

VI. CONCLUSION

In this paper, we have investigated the price-based comput-
ing resource management, for supporting offloading mining
tasks to cloud/fog provider in proof-of-work based public
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Figure 10. Normalized optimal price versus the variable reward factor under
discriminatory pricing.
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Figure 11. Normalized individual demand versus the fixed reward for mining
successful.

blockchain networks. In particular, we have adopted the two-
stage Stackelberg game model to jointly study the profit max-
imization of cloud/fog provider and the utility maximization
of miners. Through backward induction, we have derived the
unique Nash equilibrium point of the game among the miners.
The optimal resource management schemes including the
uniform and discriminatory pricing for the cloud/fog provider
have been presented and examined. Further, the existence and
uniqueness of the Stackelberg equilibrium have been proved
analytically for both pricing schemes. We have performed the
real experiment to validate the proposed analytical model.
Additionally, we have conducted the numerical simulations to
evaluate the network performance, which help the cloud/fog
provider to achieve optimal resource management and gain
the highest profit. For the future work, we will further study
the oligopoly market with multiple cloud/fog providers, where
providers compete with each other for selling computing
services to miners. Another direction is to study the optimal
strategies of the provider and miners with the consideration of
cyber-attacks, such as [48].
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