

SNMP MIB for OpenFlow-Capable Switch

A Thesis

Presented to

The Faculty of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

In

 Engineering Technology

By

Dina Dalibalta

December 3, 2015

Acknowledgement

I am grateful and thankful to God, who always enriches me with endless blessings. Due to His

blessings, I was able to successfully complete my thesis, had the pleasure to work with a

knowledgeable and inspiring professor, Dr. Deniz Gurkan, and been lucky to have the support of

my husband and the two little angels that we have together.

Abstract

3

Abstract

Network Management Systems (NMSs) rely heavily on Simple Network Management Protocol

(SNMP) for exchanging information between managed devices. In this thesis, we thought of

introducing SNMP to Software Defined Network (SDN); the new promising paradigm in the

world of networking.

While MIBs (Management Information Bases) are central to SNMP functionality, we focused on

investigating and designing effective MIBs for SDN managed entities such as switches and

routers. In the designing stages, we emphasized our analysis and investigation on the

requirements and specifications of the standard configuration and management protocol (OF-

CONFIG) of all SDN operational contexts and its companion OpenFlow protocol. The outcome

of our design is a data model of OF-CONFIG MIB mapped to SNMP. This data model is

considered as a specific framework of SDN switch MIBs. Therefore, this thesis briefly explains a

road map of MIB development in an SDN environment. As a result, the information in this thesis

can be used as a guide for further design extensions, testing and implementation of SDN

effective MIBs.

Table of Contents

4

Table of Contents

Chapter 1: Introduction ... 8

1.1 Background ... 9

1.1.1 SNMP .. 9

1.1.1.1 SNMP Architecture.. 11

1.1.2 SNMP-managed network ... 12

1.2 MIB .. 13

1.2.1 What is MIB? .. 13

1.2.2 How it works? MIB & SNMP ... 13

1.3 SDN .. 14

1.3.1 OpenFlow ... 15

1.3.2 OF-CONFIG ... 16

1.3.2.1 OF-Config basics .. 17

1.3.3 OpenFlow Switch ... 18

1.3.3.1 Switch Components .. 19

Chapter 2 Literature Review ... 21

2.1 Motivation ... 21

2.2 Why SNMP .. 21

2.2.1 SIMPLE .. 21

2.2.2 Comprehensive MIBs ... 23

2.2.3 Proprietary Extensions ... 23

2.3 Bringing SNMP to SDN .. 23

2.3.1 Related Work ... 23

2.3.1.1 OLD BUT GOLD .. 28

Chapter 3: The Model ... 33

3.1 OID .. 33

3.2.1 What is the function of an OID?... 34

Table of Contents

5

3.3 ASN.1 ... 36

3.4 SMI .. 37

3.5 Modules .. 38

3.5.1 MIB Modules .. 38

3.5.1.1 SNMP MIB Specifications .. 40

3.5.1.2 SNMP MIB Modules .. 41

3.5.1.3 MIB Module Layout and Elements .. 42

3.5.1.4 SNMP MIB Modules lexical Rules.. 43

3.5.1.5 Constructs in MIB Modules ... 44

3.5.1.5.1 OBJECT-TYPE Construct .. 45

3.5.1.5.1.1 SYNTAX Clause .. 46

3.5.1.5.1.2 ACCESS Clause ... 46

3.5.1.5.1.3 MAX-ACCESS Clause .. 47

3.5.1.5.1.4 STATUS Clause... 48

3.5.1.5.1.5 DESCRIPTION Clause ... 49

Chapter 4: The Design ... 50

4.1 MIB Development Road Map .. 50

4.1.1 Problem statement .. 50

4.1.2 Framework Requirements ... 50

4.1.3 Analysis .. 51

4.1.4 Object Analysis ... 52

A.OF-Capable Switch ... 52

A.1 Translating a Model into a MIB .. 53

B. OF-Resource .. 55

B.1 MIB translation of OF-Resource .. 56

C.OF-Logical Switch ... 58

C.1 MIB translation of OF-Logical switch .. 59

D.OF-Controller ... 60

D.1 MIB translation of OF-Controller: ... 61

E.OF-Capabilities ... 62

E.1 MIB translation of OF-Capabilities .. 62

F.OF-Flow Table... 64

Table of Contents

6

F.1 MIB translation of OF-FlowTable .. 66

G.OF-Owned Certificate .. 70

G.1 MIB translation of OF-OwnedCertificate .. 71

H.OF-Queue .. 72

H.1 MIB translation of OF-Queue ... 73

I.OF-Port .. 74

I.1 MIB translation of OF-Port: .. 75

J.OF-Port Advertised Features .. 77

J.1 MIB translation of OF-PortAdertisedFeatures .. 78

K.OF-Tunnel ... 80

K.1 MIB translation of OF-Tunnel.. 80

Chapter 5: The Tree .. 82

Chapter 6 Conclusions and future work ... 86

6.1 Challenges ... 86

6.2 Future work ... 87

6.3 Summary ... 87

6.4 Conclusion ... 88

References .. 89

APPENDIX .. 93

Table of Figures

7

Table of Figures

Figure 1 SNMP Communication Principle ... 10

Figure 2 SNMP Management System ... 11

Figure 3 Controller and switch communications .. 19

Figure 4 OpenFlow Logical Switch components ... 20

Figure 5 OID Tree .. 35

Figure 6 Contents of a MIB specification .. 40

Figure 7 Layout of SNMP MIB Module .. 43

Figure 8 OpenFlow Capable Switch main components .. 52

Figure 9 OpenFlow Resource main components .. 55

Figure 10 OF-Logical switch main components .. 58

Figure 11 OF-Controller main components .. 60

Figure 12 OF-Capabilities main components .. 62

Figure 13 OF-Flow Table main components ... 64

Figure 14 OF-Owned Certificate main components ... 70

Figure 15 OF-Queue main components .. 72

Figure 16 OF-Port main components .. 74

Figure 17 OF-Port Advertised Features main components .. 77

Figure 18 OF-Tunnel main components.. 80

Figure 19 Standard MIB OID tree .. 83

Figure 20 Standard MIB OID tree with OF-CAPABLE Switch MIB added .. 83

Figure 21 Top level OF-Capable Switch Namespcace Organization ... 84

Introduction

8

Chapter 1: Introduction

 There is no doubt we are witnessing a new milestone in the history of networking with the rise

of SDN paradigm. We can think of SDN as a revolution in the nature of networking where all the

network building blocks are being defined as software entities. This new approach to building

networks will provide numerous benefits to network operators, including reductions in both

capital and operating costs. Moreover, the implementation of SDN seems to satisfy the Bring

Your Own Device (BYOD) trend and its requirements of flexible and secure networks.

Therefore, the continuous development of such a technology is valuable as long as it is

manageable and controlled. With all the promising types of benefits that potentially arise from

the application of SDN; this new environment is still lacking any aspect of management. One of

the keys to dealing with this situation is to make use of SNMP MIBs, a legacy mean of data

monitoring and information managing over the internet.

 Toward this goal, this thesis presents the first design of an SNMP MIB model dedicated to the

SDN-based switches. SNMP MIBs have been and are still serving network engineers to better

manage and control their networks’ various devices. In nowadays data networks, the

functionality controlling the network is split into three planes: the data plane, the control plane

and the management plane. The data plane needs to implement, in addition to next-hop

forwarding, functions such as tunneling, accessing control, address translation, and queuing [3].

To implement these functions, multiple entities such as the switches/routers are governed.

Therefore, tucked inside our designed MIB are states and instances to help tackle the multiple

routing processes running on the same router/switch and modify them for management and

control.

Background

9

1.1 Background

1.1.1 SNMP

SNMP (Simple Network Management Protocol) is a protocol that manages devices on an IP

network. These devices can vary from servers to routers to switches to printers and many more,

and all of these devices support SNMP [52]. SNMP is highly used in most of the network

management systems. SNMP can be used to monitor built-in and externally-attached network

devices. Internet Engineering Task Force (IETF) defines SNMP as a subset of the Internet

Protocol suite. SNMP consists of an application layer protocol, data objects, and database

schema that address the data objects. SNMP carries the system configurations in the form of

variables across the managed network. SNMP uses a management database schema, called the

MIB (Management Information Base), to store these variables. SNMP enables network

administrators with the capability to actively monitor, manage and configure the network devices

via remote access of the MIBs.

A typical SNMP scenario consists of one or more administrative units called the SNMP manager

that is responsible to monitor and manage the network devices. On each network device, resides

a software component called the SNMP agent that communicates with the manager using

designated SNMP messages (see figure 1). SNMP agents make use of the management data

stored in the MIBs in their communication with the SNMP manager. In some cases, more than

one SNMP agents are gathered to report to one master agent and the master agent in its turn,

reports directly to the manager. SNMP provides the agents with an extra feature where they can

send notifications instantly to the manager without the need of sending request messages and

Background

10

waiting for response. These notifications are asynchronous notifications of the agent’s states and

they are called traps. For that purpose, a section of the SNMP manager is dedicated to receive

this type of messages and is called the trap receiver.

Figure 1 SNMP Communication Principle

Background

11

1.1.1.1 SNMP Architecture

SNMP architecture is shaped by a manager-agent communication model. A typical SNMP-based

management system consists of a manager, a managed element and a set of SNMP protocol

messages. The managed element contains the SNMP agent with the managed objects. In their

communication, the SNMP manager and agent refer to the MIB to exchange defined data. As

mentioned earlier, the manager and agent communicate via specific messages provided by the

SNMP protocol. Through this type of communication, the agent provides an interface for the

manager to reach the managed objects. On other hand, provides an interface for the human

network administrator to reach the management system (see figure 2).

Figure 2 SNMP Management System

Background

12

SNMP stands for "Simple Network Management Protocol"[64]. The protocol is "simple" (but not

necessarily its implementation) as it contains only a few important operations. (See Table 1)

 Table 1 SNMP Message Types

SNMP Message Description

GET Retrieve data from a network node

GETNEXT Retrieve the next element from a network node

SET Send configuration or control commands to a network node

TRAP A network node can send a notification to the management station

INFORM
An acknowledged trap (network nodes can try and send it again if no
acknowledgement is received)

1.1.2 SNMP-managed network

An SNMP network [66] generally consists of SNMP entities, each consisting of one or more

SNMP agent and one or more SNMP managers (although an entity may comprise both an agent

and manager) that communicate using SNMP messages. An SNMP manager (or NMS (network

management station)) is responsible for managing one or more SNMP agents within the domain

of the SNMP manager. An SNMP agent is included in each node (or host) of the network (e.g.,

computer, server, etc) that is managed by an SNMP manager. Each agent collects data about the

respective managed node and provides the appropriate information to the designated SNMP

manager. The agent sends the appropriate information (configuration, parameters...etc.) as

responses to its manager’s requests. Each SNMP agent maintains a local MIB where it stores all

Background

13

the data collected about the managed node and its surroundings. In the case of maintaining a

collection of managed objects within one managed element, the SNMP agent can store all the

collected data in the form of MIB modules.

1.2 MIB

1.2.1 What is MIB?

MIB (Management Information Base) [30] is a database used for managing the entities in the

communication network. A Management Information Base [29] is a map of the hierarchical

order of all of the managed objects or MIB variables. Each system in a network (workstation,

server, router, bridge, and so on) maintains a MIB that reflects the status of the managed

resources on that system. A MIB consists of a collection of MIB variables that are managed by

the SNMP manager. Each variable within a MIB is referenced with a unique OID. An OID refers

to the location of a managed object within the MIB namespace. OIDs are arranged in a tree-like

structure that begins with a root and expands downwards into branches. Each point in a MIB tree

is known as a node.

1.2.2 How it works? MIB & SNMP

The MIB is a text file written in ASCII code describing SNMP managed objects [12]. The MIB

organizes the defined data of the managed objects in a nested list. Every element in the MIB list

is identified by a unique number. The main function of the MIB is to translate the identification

numbers into human-readable text whenever asked by an SNMP manager. In other words, the

SNMP manger uses the MIB as a dictionary or a codebook to identify the desired requested data.

Background

14

In this way, a MIB allows the SNMP manager to retrieve and modify data that is maintained by

an agent.

 The identification number given to each defined object in the MIB list is referred to as OID

(Object Identifier) (OID is defined later in section 3.1). The MIB, as well, provides a text-label

for each OID. Each message sent by an SNMP device contains an OID or more of certain object

in its string of numbers and/or text-label formats. The SNMP manager uses the MIB to process

the messages. The SNMP manager compiles the MIB through compiling software called the

compiler. The compiler converts the MIB from ASCII format into binary format to be used by

the managing device. Without the MIB, the message is just a meaningless string of numbers.

The SNMP manager imports the MIB through a software function called compiling. Compiling

is the process of converting the MIB from its raw ASCII format into a binary format that the

SNMP manager can use. Thus, it is very important for each component on the managed network

to be defined in the MIB, otherwise, from an SNMP device perspective the component doesn’t

exist.

1.3 SDN
SDN (Software Defined Networking) is the future of networks where all the network’s building

blocks are defined as software abstractions [56]. The main concept in SDN is decoupling the

control and data planes. The inventors and vendors of these systems claim that this simplifies

networking.

In network architecture there are three planes:

Data plane: carries the network user traffic

Background

15

Control plane: carries signaling traffic

Management plane: carries administrative traffic and is considered a subset of the control plane

SDN decouples the data and control planes, removes the control plane from network hardware

and implements it in software instead [48], which enables programmatic access and as a result,

makes network administration much more flexible. A network administrator can have a

landscape overview of the network traffic without individually accessing each component on the

network. The administrator can change any network switch’s rules when necessary.--prioritizing,

de-prioritizing or even blocking specific types of packets with a very granular level of control.

1.3.1 OpenFlow

SDN requires some method for the control plane to communicate with the data plane. One such

mechanism is OpenFlow. OpenFlow is a communications protocol that gives access to

the forwarding plane of a network switch or router over the network. OpenFlow enables

controllers to determine the path of network packets through the network of switches. OpenFlow

allows switches from different suppliers — often each with their own proprietary interfaces and

scripting languages — to be managed remotely using a single, open protocol. Its inventors

consider OpenFlow an enabler of Software defined networking (SDN) [43].

Over time, numerous paths to SDN implementation will emerge, but one of the most explored

strategies so far decouples the control plane of a physical network and places management in a

centralized controller. That controller uses OpenFlow as a southbound protocol to direct specific

flows between nodes on the network, allowing for granular network programmability.

https://en.wikipedia.org/wiki/OpenFlow
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Forwarding_plane
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Software_defined_networking
http://searchsdn.techtarget.com/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-for-you
http://whatis.techtarget.com/definition/northbound-interface-southbound-interface

Background

16

While OpenFlow efficiently manages flows and determines how packets are forwarded between

individual source and destination pairs, it does not provide the configuration and management

functions necessary to allocate ports or assign IP addresses. That's where OpenFlow

configuration protocols come in.

In a traditional network, vendors use proprietary configuration and management methods. Some

depend on SNMP to configure products and monitor devices. Others use command lines to

configure each device on the network.

But one of the potential benefits of SDN is to move away from programming individual switches

on the network. SDN controllers instead give engineers a holistic view of every component on

the network and then offer the ability to set policy and manage traffic across the complicated

matrix of devices.

In that scenario, OpenFlow defines packet flow operation, but it doesn't specify switch

configuration databases or a management protocol. OpenFlow configuration protocols, however,

establish the relationship between controllers and switches, enabling a standard configuration

and management method for switches. Using the same management configuration, network

managers can select switches from any vendor, choose the best device for each network location

and set the parameters for communication between controllers and switches [22].

1.3.2 OF-CONFIG

The OpenFlow Management and Configuration Protocol (OF-Config) is a special set of rules

that defines a mechanism for OpenFlow controllers to access and modify configuration data on

an OpenFlow switch. OF-Config provides network engineers with the configuration and

management functions that are needed to allocate ports or assign IP addresses. OF-Config also

http://searchcio-midmarket.techtarget.com/definition/Simple-Network-Management-Protocol
http://searchsdn.techtarget.com/answer/Why-do-I-need-SDN-technology

Background

17

helps in giving network engineers an overall view of every area of the network and the ability to

set policies and manage traffic across devices [35].

1.3.2.1 OF-Config basics

OpenFlow Management and Configuration Protocol version (OF-Config) was designed to apply

to all OpenFlow implementations and on both physical and virtual switches [22].

The OF-Config protocol addresses the following components of controller-switch management:

1. OpenFlow configuration point: The OF-Config point issues OF-Config commands.

2. OpenFlow capable switch: A physical or virtual switching device contains a number of

ports and queues.

3. OpenFlow logical switch: A logical switch within the OpenFlow capable switch allocates

a subset of the ports and queues that make up an OpenFlow capable switch.

The OF-Config Point can be located in the same server or workstation as an OpenFlow controller

or within traditional network management products. Either way, configuration points can

manage multiple OpenFlow-capable virtual or physical switches. A configuration point may

manage multiple OpenFlow capable switches, and a capable switch may be managed by more

than one configuration point.

The configuration point also communicates with OpenFlow logical switches that live within the

OpenFlow capable switch. Specifically the control point supplies each logical Switch with the IP

addresses and port numbers of the OpenFlow controllers that will control individual packet flows

through the switch. It also specifies whether TCP or TLS will be used to communicate between

the switch and controller, and it configures certificates for communications between switches

and controllers. Each OpenFlow logical switch operates independently of the other logical

switches within the same OpenFlow capable switch.

http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://searchnetworking.techtarget.com/definition/TCP
http://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS

Background

18

A configuration point can discover the resources allocated to a logical switch, configure tunnels,

set port parameters, turn ports off and on, and retrieve switch status. It receives error codes from

a switch if a configuration operation fails and it can roll back the operation in the event of a

partial failure.

1.3.3 OpenFlow Switch

An OpenFlow switch is a software program or hardware device that forwards packets in a

software-defined networking (SDN) environment. OpenFlow switches are either based on the

OpenFlow protocol, or compatible with it [44].

In a conventional switch, packet forwarding (the data plane) and high-level routing (the control

plane) occur on the same device. In software-defined networking, the data plane is decoupled

from the control plane. The data plane is still implemented in the switch itself, but the control

plane is implemented in software and a separate SDN controller that makes high-level routing

decisions. The switch and controller communicate by means of the OpenFlow protocol.

http://whatis.techtarget.com/definition/software-defined-networking-SDN
http://whatis.techtarget.com/definition/OpenFlow
http://searchtelecom.techtarget.com/definition/switch
http://searchnetworking.techtarget.com/definition/protocol
http://whatis.techtarget.com/definition/SDN-controller-software-defined-networking-controller

Background

19

Figure 3 Controller and switch communications

1.3.3.1 Switch Components

An OpenFlow Logical Switch can contain a number of flow tables and group tables that are

responsible for packets forwarding and lookups, as well as, OpenFlow channels for external

communications with the controller. Through these channels, the controller can manage the

switch using OpenFlow protocol. The controller is capable of modifying the data contained in

the flow tables inside the switch. Inside each flow table there is a set of flow entries. Flow entries

can be counters, matching fields or instructions for packet matching applications.

Background

20

Figure 4 OpenFlow Logical Switch components

 As a result, a virtual switch such as the OpenFlow switch can implement all of the sophisticated

functionality in a straightforward manner which makes it far more flexible and integrate more

tightly with host software than do physical switches [45].

Literature Review

21

Chapter 2 Literature Review

2.1 Motivation
As networks grow complex, managing them gets more complex. With the rise of the SDN

paradigm and its concept of adapting open-source software entities and a variety of vendors-

specific devices with their proprietary protocols, the mission to orchestrate such a complicated

system can be nearly impossible. On the other hand, SDN made it more challenging for network

researchers and designers to compete and produce an ultimate managing tool that would best

serve in such an overgrowing networking environment. Under the influence of this competition,

we decided to introduce the SNMP MIBs for OF-Capable switches as a promising tool capable

of monitoring and controlling SDN-based entities.

2.2 Why SNMP

2.2.1 SIMPLE

In our perception of the networks’ growing complexity we decided to resolve such a problem by

using a “simple” tweak, SNMP-based management approach that breaks down any complex

system into small detailed and manageable entities. The SNMP approach is generic and can be

used to manage a variety of different systems [47]. Almost any real-time system consisting of a

collection of independent communicating elements can use SNMP.

As stated by Alia Atlas [2], the second most popular interface for the interrogation of a device's

state, statistics, and configuration is the Simple Network Management Protocol and a set of

relevant standards-based and proprietary Management Information Base (MIB) modules. SNMP

Literature Review

22

has a strong history of being used by network managers to gather statistics and state information

about devices, including their routing systems.

In his article [3 SDN technology for network management better be more than middleware],

Patrick Hubbard stated that the ubiquity of the SNMP -- and its admittedly unsexy utility -- stem

from it's being baked into pretty much any network device --not from it's being in a box attached

to the device. And all vendors do it the same way, which eliminates any possibility that potential

customers can't integrate it into their management systems. When it comes to SDN, the

management vendors that are the most agnostic have the most to gain. They will be able to

integrate SDN frameworks from different vendors with existing non-SDN management

technologies into a single pane of glass.

In his post [4 Monitoring a Software Defined Network, Part 4 SDN offers an opportunity to

redesign network monitoring][http://www.nojitter.com/post/240166288/monitoring-a-software-

defined-network-part-4], Terry Slattery wrote; “ If we're not careful, we'll create this new SDN

thing and it will be great...until something breaks. Because there is a separate monitoring system

that's not well integrated, we'll have organizations that are running their networks blind simply

because they are unaccustomed to effectively using a network management system”. He also

wrote that SDN can make a large collection of switches look like one big switch/router. That’s

part of the advantage of SDN—it hides implementation details. But when one of the components

is experiencing health problems, we need to know about it. He then stated that SNMP could be

used to monitor device health data. And that there are some things that SNMP has done well.

Being able to walk the MIB of a device is very handy, even without the original MIB definition

file. He was sometimes able to determine useful information about a device by walking its MIB

using SNMP.

Literature Review

23

2.2.2 Comprehensive MIBs

MIBs could be thought of as a folder containing several titled documents each describing the

features of different network elements. MIBs are comprehensive databases in a way that they can

be addressed to any network element. MIBs are also flexible so that anyone can create/write his

own MIBs, register and implement them through MIB tree extensions on any hardware or

software device.

2.2.3 Proprietary Extensions

Any vendor can design and create a MIB for any chosen product of its own. There are standard

MIBs defined by the IETF that can be used as well by any vendor. Vendors can add new objects

under the Standard MIBs through sub-tree extensions. These extensions are designated for

proprietary use. The main tree branch for such extensions is usually named “enterprise”. All

extensions added under the enterprise has to be first registered by the IANA (Internet Assigned

Numbers Authority). The IANA assigns a unique MIB registration number to each vendor

applicant [46].

2.3 Bringing SNMP to SDN

2.3.1 Related Work

An early example of SNMP in the context of SDN is discussed in Peregrine.[68] Designers of

the ITRI container computer devised an innovative data center network architecture called

Peregrine, which employs only commodity Ethernet switches as dump packet forwarding

engines, but removes most of the control plane functionalities in the traditional Ethernet

architecture, such as spanning tree, source learning, flooding and broadcast-based ARP query,

and centralizes the address look-up, routing and fast fail-over intelligence on dedicated servers.

Literature Review

24

While Peregrine depends on SNMP or the CLI interface to program Ethernet switches,

OpenFlow proposes an open API for programming the switches’ control plane for every

OpenFlow-enabled switch from an Open-Flow controller. To support lights-out management, the

ITRI container computer incorporates a comprehensive SNMP-based environmental monitoring

and control subsystem to protect itself, including a fire-and-smoke detection system backed up

by a clean-agent gas-fire suppression subsystem, a physical security alarm subsystem, and an

early earthquake detection system that proactively shuts itself down in the event of an

earthquake.

Traditional NMS (Network Management System) adopts SNMP as management protocol and

has achieved great success with many advantages. SDN has many advantages as well, but it still

lacks mature management tools. Therefore, a group of researchers at the Beijing University of

Posts and Telecommunications decided to merge NMS with SDN and they came up with

SDNMP [68]. They presented the design of SDNMP, which is an approach for managing SDN

using traditional NMS. . By adding data acquisition function, data processing and storage

function and view function in the controllers, SDNMP provides a unified SNMP interface to

traditional NMSs. To verify their approach, they built and implemented a prototype in their own

testbed. By deploying virtual networks and services, results showed that SDNMP works well in

practice. Experiment results also showed that SDNMP enables the management of

physical/virtual networks, flow table, and services using SNMP. This approach introduces a way

to link NMS with SDN and it is considered the closest to ours, but it still far from directly

embedding SNMP MIBs in SDN as our approach does.

Literature Review

25

In order to let traditional systems manage new network architecture, there are some studies that

use SNMP to manage the new architecture. M. Madan and M.Mathur showed in their paper [28]

International Journal on Cloud Computing: Services and Architecture (IJCCSA), 2014 that

CNMM improves SNMP to manage the cloud network. A. Bianco with others defined a [6]

management architecture and a manager-agent communication model to coordinate the

information residing on the single elements of the multi-stage router to present a unified view to

the external network management station issuing SNMP requests. The IRTF rfc7426, [54] it was

mentioned that MIBs can be used to describe for the forwarding planes. The ITRI container

computer also incorporates a SNMP-based monitoring subsystem in the context of SDN. But it is

not presenting an NMS based on SNMP to manage SDN. Meanwhile, there have been some

studies on SDN management. For example,[27] was introduced as a high-level policy language

that is designed to solve the problem in the low level configuration where it effectively serves as

the glue between high-level event-driven network policies and low-level network configuration.

On the other hand, the main idea of Resonance [39] is that it allows network devices to operate

on the granularity of the flows. This function is enabled by the emerging OpenFlow standard and

has origins in the designs of earlier protocols and programmable switch architectures.

One of the recent implementations in the SDN management plane was conducted in a GENI

experimental [40] that introduced a new network management tool (NETMAN) that allows the

user to gain and manipulate the complete set of parameters of OpenFlow switches. NETMAN

which has a core of HTML/JavaScript code was experimented on a LINC switch that uses the

NETCONF protocol for configurations. XML-coded OpenFlow parameters were parsed and

Literature Review

26

displayed via shell script done with HTML/JavaScript/XML code. We saw that a lot of coding in

different languages was involved to display some parameters of the OpenFlow switch and the

authors mentioned that “sometimes people don’t have clarity that behind simplicity lays tons of

work and hundreds lines of code in order to just have one automatically configured function or

command”. We absolutely appreciate the hard work behind the NETMAN but the question is

why we would create a complicated tool to help manage an already complicated system. Another

approach was done by the same NETMAN experimenters consisted of mapping between OF-

CONFIG (OpenFlow Management and Configuration Protocol) and OVSDB (Open

vSwitch Database Management Protocol) protocols. Knowing that OVSDB and OFCONFIG

have absolutely different data models, OFCONFIG was implemented over the OVSDB protocol

to enable OpenFlow parameters to be programmed for an operational context. The results

showed that almost all the possible functions of OVSDB can be implemented in the OFCONFIG

proving that the two protocols are not significantly different even though they took different

approaches in managing network resources. Upon this discovery, we can see that it is not

obligatory nor it does make any advancement to have a proprietary or vendor- specific

management tool or protocol to better manage SDN network devices. Moreover, SNMP is

widely supported on almost all managed network devices, and the standards for MIBs are

comprehensive, covering almost all data network devices

Da Paz Ferraz Santos, P.R. with Pereira Esteves, R. and Zambenedetti Granville, L. investigated

the management interfaces based on SNMPv2c, SNMPv3, NETCONF, and RWS for managing

physical routers supporting virtualization [11] . They compared the interfaces by evaluating the

performance of each one in terms of response time, CPU time, memory consumption, and

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.da%20Paz%20Ferraz%20Santos,%20P.R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zambenedetti%20Granville,%20L..QT.&newsearch=true

Literature Review

27

network usage for three basic VR management operations: creation, retrieval, and removal. The

comparison showed that the SNMPv2c presented the best results for most evaluated metrics. The

second best one was the NETCONF interface, which achieved results quite close to the

SNMPv2c interface. Results also showed that the SNMPv2c interface is the most suitable one for

small NVEs (network virtualization environments) without strict security requirements and

NETCONF is the best choice to compose a management interface to be deployed in more

realistic scenarios, where security and scalability are major concerns. On the other hand, Garry

baker stated in his blog [5] that SNMP has been around since the dawn of IP networking and still

a lot of networks do not utilize it to its full capacity. Based on some quotes from the NETCONF

working group, replacing SNMP is not even part of the charter for NETCONF. “This

is NETCONF – configuration specific, not out to replace SNMP notifications, traps, etc.” –

 Randy Bush and “The work in the SNMP community (if there is any) doesn’t have much impact

on the NETCONF WG, since NETCONF is not intended to be a replacement for SNMP.” –

 Andy Bierman.

In the IRTF (Internet Research Task Force) rfc 7426 it was shown that [50] SNMP MIBs can be

used to describe DAL (Device and resource Abstraction Layer) for the forwarding and

operational planes. Similar to YANG, SNMP MIBs are able to describe DAL for the forwarding

plane. SNMP, similar to NETCONF, is suited for the MPSI (Management-Plane Southbound

Interface).

A white paper by Ashton, Metzler & Associates [60] discussed what IT organizations should

look for as a key feature is that it should be possible to monitor the SDN controller using

standard protocols and techniques. It should, for example, be possible to monitor the health of

the controller and the virtual networks that the controller supports using SNMP. The IT

http://www.ietf.org/proceedings/58/169.htm
http://www.psg.com/lists/netconf/netconf.2003/msg00619.html

Literature Review

28

organization should determine if the SDN controller provides support for a wide range of

standard MIBs and also provides private MIBs to enable the IT organization to monitor the

virtual network elements.

2.3.1.1 OLD BUT GOLD

The legacy SNMP is still influencing recent researches and studies of SDN. OpenDaylight is an

Open Source Software project under the Linux Foundation with the goal of furthering the

adoption and innovation of Software Defined Networking (SDN) through the creation of a

common industry supported platform. The OPEN DAYLIGHT TSC (Technical Steering

Committee) recently proposed the SNMP4SDN plugin project [49] The SNMP project formally

joins the OpenDaylight Lithium Simultaneous Release. The SNMP Project addresses the need

for a southbound plugin that allows applications and controller services to interact with devices

using SNMP.

SNMP4SDN scope:

 Enable Ethernet switch on the SDN paradigm by means of SNMP & CLI as the south

bound protocol

 New mechanisms for topology discovery for Ethernet switch in SDN

 Realize flow configuration of Ethernet switches over the forwarding table, ACL, and

VLAN table

For the SDN controller to support building an SDN using Ethernet switches, it needs to be able

to configure flows on the Ethernet switches. In addition, in initial, it has to discover which

switches are under its management and then can configure flows on them. Also, the connectivity

topology among switches is necessary information for the controller and applications. In this

plugin, flow configuration on Ethernet switch would be done via SNMP or CLI, switch

Literature Review

29

discovery would be achieved via SNMP trap sent from the switch, and topology discovery would

be resolved by reading LLDP (The Link Layer Discovery Protocol) data on the switches.

The following figure depicts the described SNMP4SDN as a southbound plugin in OpenDaylight

architecture:

In his article [41], Tom Nolle wrote that one could argue that the framework of OpenFlow today

is a byproduct of some limited experiments, rather than a mechanism designed to support

generalized network service creation. Many have pointed out that OpenFlow cannot accomplish

basic device setup, which would mean that more traditional management standards, such as the

SNMP protocol, has to be used to achieve this goal.

A couple of students from Lanzhou University, China [51] presented an OpenFlow-based

dynamic load balancing server cluster architecture to solve the problems that traditional

dedicated load balancer faced. In their experiment, they wrote an SNMP module and

LoadBalancer module that are executed by the Floddlight Controller [16]. The experiment

showed that their load balancing architecture consisting of an OpenFlow switch based NetFPGA

with a Floodlight Controller has more flexibility and low-cost. This can replace traditional

dedicated hardware load balancer.

Taeyoung Song [57] with others developed techniques for conventional network devices that are

monitored by SNMP to deal with the increasing amount of management traffic on networks.

The paper on Adaptive flow monitoring in SDN architecture [4] presented a new method to

lessen the burden of SDN switch by making the SDN controller poll the SDN switch adaptively,

Literature Review

30

instead of making the SDN switch wait for the event all the time. This method resembles the way

of SNMP function working more efficiently when it goes to trap method instead of polling

method.

A new invention by Senthil Gurusamy CS and Rajesh Kidambi [10] provides a single SNMP

view of OpenFlow flow tables that are dynamically defined by user or controller. They invented

an apparatus to create a single SNMP table for multiple Openflow tables, comprising: first index

with flow table as in SNMP that has device/context; second index with OpenFlow table Ids; and

third index with flow count, wherein such table acts as Index to view multiple flow tables by

iterating each row in flow table in SNMP, to provide for a single view display, thus providing

dynamic tables view using SNMP single table. While displaying single view, OpenFlow table

acts as index and is used to view multiple flow tables by iterating each row in the flow table in

SNMP. As the index is to OpenFlow table, this invention addresses dynamic tables view using

SNMP single tables. This is useful for OpenFlow enabled switches and remote monitoring of the

OpenFlow switches from an SNMP manager on all flows installed in the switch.

In a StackExchange blog, Fred Thomsen [62] stated that SNMP is still heavily used and relied on

for the following reasons:

 The use of UDP as the underlying protocol makes SNMP very efficient. Since most

monitoring/management is done within your own data center you don't need to be as

concerned with packets getting lost over the public internet and TCPs acknowledgement

and flow control are overkill. SNMPv2 addresses some of SNMP original inefficiencies,

for example, adding support for BULK GET.

https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Senthil+Gurusamy+CS%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Rajesh+Kidambi%22

Literature Review

31

 SNMP is universal across networked devices. Almost all networking equipment

implements a SNMP agent. Having MIBs ensures there is a global space where

information can be added by different vendors in a controlled fashion and thus makes

looking up information on what OIDs to query easier and mostly vendor agnostic.

 Finally, there hasn't been a good candidate to drop in as a replacement. SNMP may not

be great, but it’s good and good is good enough. Several network devices now have APIs

to get the same and additional information, but as I stated in my second point, the ways of

querying these APIs obviously vary across devices and no endpoints are standardized

across devices.

Trying to keep backward compatibility with existing network management approaches, one

initiative at IRTF SDNRG [26] proposes a management plane at the same level of the control

plane. It classifies solutions in two categories: control logic (with control plane southbound

interfaces) and management logic (with management plane southbound interfaces). In other

words, the management plane can be seen as a control platform that accommodates traditional

network management services and protocols, such as SNMP, BGP, PCEP, and NETCONF.

The ForCES (Forwarding and Control Element Seperation) helps in standardizing of information

being exchanged between the forwarding plane and the control plane in a ForCES NE (ForCES

Network Element). It defines a framework for protocols responsible for the whole information

exchange mechanism. ForCES defines Logical Function Blocks (LFBs) using XML encoding

just as SNMP uses ASN.1 language to define the MIBs. Also, same as in SNMP-based networks,

every entity belonging to the Forwarding Element (FE) being configured by the Control Element

(CE), must be defined in the LFB. The LFB’s entities are identified by component ids, each

consisting of a 32-bit numerical string. The identified entities are then stored in a scheme to be

Literature Review

32

addressed by protocol constructs. When used to address specific data, the component IDs are

organized in a hierarchal scheme that is called a path. A path is defined by the model [17] as a

dotted numerical string of 32-bit component IDs (e.g, 1.0.9.4).

The Model

33

Chapter 3: The Model

3.1 OID
The managed objects are stored in the MIB as variables and are organized in a hierarchal

structure called the MIB tree, where the variables for the leaves of the tree. Each branch and leaf

of the MIB tree is given a unique address. This address consists of a string of numbers and is

called an OID (Object Identifier). The OID helps in telling the exact location of any object on the

MIB tree. The MIB tree structure always begins with a root that expands into multiple branches.

The root is a node with no address because it’s only a starting point. The OID numbering starts

from the first node after the root and expand downwards (see figure 5). Figure 5 shows the

standard first level of the MIB tree as defined by the IETF. The standard in SNMP MIBs is to

start from node (iso) with OID (1), org node with OID (3), dod node with OID (6) then the

internet node with OID (1). We have several branches under the internet subtree; one of them is

the “private” branch where any vendor can put his own MIB. Another one is the “experimental”

branch where MIBs are still undergoing development by the IETF. Usually defined objects in

proprietary MIBs of certain organization are located under the “private” branch, “enterprises”

subtree. MIBs can be registered under the enterprises subtree through the IANA (Internet

Assigned Numbers Authority).The IANA assigns an enterprise number dedicated to the applied

party where the rest of the MIB OID numbering is determined locally within the organization.

The Model

34

3.2.1 What is the function of an OID?

All SNMP messages sent by an SNMP device carry a series of OIDs identifying the desired data

objects [12]. OIDs are a dotted sequence of numbers. These numbers are non-negative real

integers separated by dots; each integer defining a new node and each dot defining a new branch.

Moreover, the OID sequence can have the exact name of the desired object instead of the

numerical value. However, OID sequences can also carry both numerical and textual values

separated by dots as well. OIDs can have the following syntax formats [46]:

 {<name>.,<name>.<name>….}

Or

{<number>.<number>.<number>…..}

Or

{…<number>.<number>.<name>…..}

Where

<name> refers to an object name and

<number> refers to the object value

For example:

{internet} can be defined as {iso(1)org(3)dod(6)1}

{private} can be defined as {internet 4}

{enterprises} can be defined as 1.2.6.1.4

 or

 iso.org.dod.internet.private.1

 or

1.3.6.1.4.enterprises

 or

Simply enterprises can be defined as private 1

The Model

35

To define an OID, the choice of any of these syntax depends on the location of the object and

where the OID is used. There are no restrictions on the names used with OID as long as they are

unique for each object defined by the tree.

Figure 5 OID Tree

The Model

36

3.3 ASN.1
The MIBs are written in ASN.1 language. ASN.1 stands for Abstract Syntax Notation 1. The

ISO (International Organization for Standardization) maintains ASN.1 as a standard notation

[12]. ASN.1 is human-readable and extensible so that it can be used in any system where

communication between different devices is required. It can describe any type of data transmitted

over a network, regardless of the communication protocols and implementation language used.

However, ASN.1 is not a programming language; it is only used to describe the structural aspects

of the data. One of the important characteristics of ASN.1 is that any term defined within this

notation can be capable of defining another separate term. This criterion is essential in hierarchal

structures as used in MIBs where constructed types of objects are defined. ASN.1 uses basic data

types such as:

INTEGER, BIT STRING, SEQUENCE…..

Below is an example of how ASN.1 can define a component as a sequence of sub-components:

ofFlowTable DEINITIONS ::= BEGIN

ofFlowTable OBJECT-TYPE

 SYNTAX SEQUENCE OF ofFlowTableEntry

ofFlowTableEntry OBJECT-TYPE

 SYNTAX ofFlowTableEntry

 INDEX {ofFlowTableIndex}

 ::= {ofFlowTableEntry 1}

 ::= {of 1.1.7}

OFFlowTableEntry ::=SEQUENCE {

The Model

37

 ofFlowTableIndex INTEGER

}

ofNextFlowTables OBJECT-TYPE

 SYNTAX INTEGER

 ::= { ofFlowTableEntry 2}

ofFlowTableMatch OBJECT-TYPE

 SYNTAX INTEGER

 ::= { ofFlowTableEntry 3}

END

3.4 SMI

 (The Structure of Management Information)

SMI is considered a subset of ASN.1 used by the MIBs as a framework to define managed

objects [46]. The SMI outlines the layout of the MIB tree structure. SMI specifies the names,

data type allowed and syntax of manageable objects within the MIBs. SMI can be thought of as a

schema for a database system. When designing MIBs for any selected device, it is essential to

begin with building a model of abstractions describing the main components of the device. These

components are later to be defined as managed objects by the MIB tree. The SMI helps in

defining the managed objects model and the different types of actions that are used to access

these objects .

The Model

38

3.5 Modules
Modules are the main building blocks of the MIBs as defined by the ASN.1 syntax. Modules’

mechanism is used to organize managed objects. Modules define objects by unique names and

group them according to their functions and features. Therefore, Modules apply some restrictions

on object-naming and value assigning mechanisms. These restrictions prevent MIBs from having

duplicate names/values. For example, it is not allowed to define objects with different OID

values, but carrying the same name, thus, all object names must be unique within a module

namespace. However, the MIB objects must have a common prefix associated with their names

within the whole defined module [46].

3.5.1 MIB Modules

The MIB term is sometimes used to describe management data contained in one or more

modules. The modules in their turn are found in one or more documents [46]. Some may use the

whole collection of management documents as one entity and name it “the MIB”.

Proprietary MIBs are used for existing MIBs extensions and specifications of new objects that

are not covered in IETF-standard MIBs defined areas.

It is mentioned earlier that names must be unique across the whole MIB modules; this is strictly

the case for MIBs that are developed to be IETF standards. In the case of experimental and

proprietary MIBs, name restrictions are not strictly enforced. MIB module names are formed by

letters and digits, all upper case, separated by hyphens. There is no limitation for the number of

letters and digits used, but there some restrictions on the use of hyphens. It is not allowed to use

consecutive hyphens nor is it allowed to start or end a module name by a hyphen. Below is the

format MIB modules’ syntax:

The Model

39

 <mib>=<module>…

 <module>=

 <modName> DEFINITIONS ::= BEGIN

 [“IMPORTS” <importlist>;…]

 END

<importlist> =[<impotitem> , <importitem>]…

 FROM <importmodName>

Where

 <modName> is the name of the MIB module;

 <importitem> is an item defined in another MIB module;

 <importmodName> is the name of another previously defined MIB module;

The IMPORTS clause (defined later in section 3.5.1.2) allows MIB designers to use items

previously defined in other modules and import them in the newly defined modules. Therefore,

any item cannot be imported unless it is previously defined in Textual conventions. The imports

also help in using the OBJECT-TYPE macro and choosing its definitions and syntax as defined

in the Concise MIB RFC [33] and in the SMI RFC [34].

The Model

40

3.5.1.1 SNMP MIB Specifications

SNMP MIB specifications consist of three sections [47] (see figure 6) the first contains prose

descriptions, the next consists of one or more MIB modules, and the last section contains

references to other documents. Usually MIB specifications developed by IETF working groups

are published as RFCs. The prose descriptions in a MIB specification are needed to map between

the managed device or software and the definitions of the management information contained in

the MIB module. The references section completes a MIB specification by providing a list of all

the sources used or which can provide additional information to understand the item being

managed.

Figure 6 Contents of a MIB specification

Prose descriptions

MIB module(s) written in ASN.1

References to other documents

The Model

41

3.5.1.2 SNMP MIB Modules

SNMP MIB modules are made to be human-readable and program-readable at the same time

[47]. The main programs used by SNMP MIB are called MIB compilers. A MIB compiler is

software used to perform parsing.

Items within a MIB module are defined by a language that consists of constructs from ASN.1

and constructs created for SNMP by means of ASN.1 macros [47]. ASN.1 macros are a

mechanism to extend what can be specified in ASN.1 modules. To a user of the ASN.1 language,

the macros appear to augment the language with additional constructs). The purpose of the

macros is to define SNMP management information, SNMP events, describe SNMP MIB

modules and specify implementation characteristics.

The macro that we basically used in designing our MIBs is the OBJECT-TYPE.

Example:

--the name of the MIB module is OF-CAPABLE-SWITCH-MIB

 OF-CAPABLE-SWITCH-MIB DEFINITIONS : := BEGIN

-- The imports section specifies items defined in

-- other modules and referenced in this module.

-- The imports section must precede the definitions.

 IMPORTS

 OBJECT-TYPE

 FROM RFC1155-SMI

 ofResource

 FROM OF-CAPABLE-SWITCH-ROOT-MIB;

-- MIB module for enterprise OFCapableSwitch

-- for management of Resource.

ofResource OBJECT IDENTIFIER

-- resource OF objects

: : = {of 1.1}

--a definition of management information

The Model

42

ofResource OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Assigns ports and queues associated with ofCapableSwitch and OFlogicalSwitch.”

 ::= {of 1.1}

ofPort OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS current

 DESCRIPTION

 “Represent a physical port or a logical port.”

 ::= {of 1.1.1}

--the rest of the module would go here

END

3.5.1.3 MIB Module Layout and Elements

MIB modules should have outer wrapper that names it and differs it from other MIB modules.

The IMPORTS section comes inside the wrapper as a linkage section to specify items previously

defined in other modules and imported in the current module. After the IMPORTS section,

modules are required to define the identity of the MIB module, especially in the case of SNMPv2

MIB modules where MODULE-IDENTITY construct should be used. The remaining of the

modules is where the definitions come. (See figure 7).

The Model

43

Figure 7 Layout of SNMP MIB Module

3.5.1.4 SNMP MIB Modules lexical Rules

SNMP MIB modules are contained in an ASCII file. The ASCII file contains printable characters

and line terminators. A terminator is an end of file (EOF). Printable characters usually form a

stream of tokens. Tokens consist of identifiers, punctuation, keywords, and white space. White

space can have space characters, tab characters, comments, and line terminators. If not used to

separate adjacent identifiers, literals and keywords, the white space is ignored.

The Model

44

3.5.1.5 Constructs in MIB Modules

The IMPORTS statement as defined before specifies items that are used in the current MIB

module from other MIB modules. The definitions can be either ASN.1 “type assignments” for

defining textual conventions and sequences, or ASN.1 “value assignments” for defining all other

items in a MIB module. The constructs in MIB modules are formed of both the IMPORTS

statement and the definitions.

There are different types of constructs that can be used to define items in SNMP MIB modules

such as constructs defined in Table 2.

Table 2 Constructs used to Define Items in SNMP MIB Module

Construct Description

MODULE-IDENTITY definition
Specifies information about an SNMP MIB module and

registers the module with an OID value

OBJECT-TYPE definition
Defines management information and registers it with

an OID value

OBJECT-IDENTITY definition Defines a unique item and registers it with an OID value

OBJECT-GROUP definition
Groups management information and registers that

grouping with an OID value

NOTIFICATION-TYPE definition Defines an event and registers it with an OID value

TRAP-TYPE definition
Defines an event and identifies it with two numbers and

an OID value

SEQUENCE definition Specifies the columns in an SNMP table

The Model

45

3.5.1.5.1 OBJECT-TYPE Construct

In a MIB module, most of the definitions are for management information and use the OBJECT-

TYPE construct to define several objects such as table, row and columnar. In our design of the

OF-CAPABLE-SWITCH-MIB we used the OBJECT-TYPE construct. This construct is

basically used to define an object type. An object type could be either a mechanism to organize

related object types or a class of management information.

There are some clauses of the OBJECT-TYPE construct that can be used for definitions of table,

row, and scalar objects. (See Table 3).

Table 3 Allowed clauses of the OBJECT-TYPE construct

Clause Example

SYNTAX SYNTAX Counter

UNITS UNITS “inches”

ACCESS ACCESS read-only

MAX-ACCESS MAX-ACCESS read-only

STATUS STATUS mandatory

DESCRIPTION DESCRIPTION “physical port representation”

REFERENCE REFERENCE “xxx co.”

INDEX INDEX {ifindex}

AUGMENTS AUGMENTS {xxPiplineEntry}

DEFVAL DEFVAL {2} *for columnar

We used the following clauses for the OF-CAPABLE-SWITCH-MIB:

The Model

46

3.5.1.5.1.1 SYNTAX Clause

The SYNTAX clause must present to define the structure of the data describing the respective

object defined abstraction. We have to note that MIB objects with Object Syntax are exclusively

supported by SNMP as defined in SMI [33]. However, even if SNMP operations are exclusively

applied on scalar objects, MIB developers are able to construct virtual table indexed structures

for adjunctive collection of objects within the same MIB. The SYNTAX clause that we used in

our MIB design specified as INTEGER, OCTET STRING, TABLE ENTRY or OBJECT

IDENTIFIER.

3.5.1.5.1.2 ACCESS Clause

The ACCESS clause [33] specifies the required support level for a certain object type. The

ACCESS clause [47], which must be present, specifies the allowed access to the leaf object

according to SMIv1. There was confusion within the SNMP community on the use of the clause,

and even the allowed values. In SMIv1, the values are specified as “read-only”, “read-write”, and

“write-only”. (See Table 4)

Table 4 Values for the ACCESS clause in SMIv1

Value Description

not-accessible Not allowed for scalar or columnar

read-only
The object type may be an operand in only retrieval and event report

operations.

The Model

47

read-write

The object type may be an operand in modification, retrieval and event report

operations.

write-only

The object type may be an operand in modification, retrieval and event report

operations. However, the result is undefined. Note: this value should not be

used, since it is obsolete.

3.5.1.5.1.3 MAX-ACCESS Clause

There was also confusion over whether the access specified for a leaf object was the minimal

needed for conformance, or the maximum allowed [47]. The rules for SMIv2 clarify the intent of

this clause by changing the name to MAX-ACCESS and specifying that the value specified is the

one that makes “protocol sense” and not a value for conformance.

In SMIv2, the access values for the leaf object are “accessible-for-notify”, “read-only”, “read-

write”, and “read-create”. (See Table 5)

Table 5 Values for the MAX-ACCESS clause in SMIv2

Value Description

Not-accessible

The object type is a column in a table that is used as an index.

Accessible-for-

notify

The object type is a special operand for event report operations.

read-only

The object type may be an operand in only retrieval and event report operations.

The Model

48

read-write

The object type may be an operand in modification, retrieval and event report
operations.

read-create

The object type may be an operand in modification, retrieval and event report
operations. And the object type may be an operand in modification request that
creates a new instance of the object type.

3.5.1.5.1.4 STATUS Clause

The STATUS clause, which must be present, defines the implementation support required for

that object type [33]. The value of the STATUS clause for a columnar object must be consistent

with the value of the STATUS clause of the containing table [47]. That is, if the status of the

containing table is “obsolete”, then all the columnar objects must have a status of obsolete. If the

status for the containing table is “deprecated”, then the columnar objects of the table may have a

status of “deprecated” or “obsolete”. (See Table 6).

Table 6 Consistent STATUS values for Columnar Objects

Value for containing

Table/Row

Allowed values for Index

Columnar Objects

Allowed values for Non-Index

Columnar Objects

mandatory in SMIv1

mandatory in SMIv1

mandatory, deprecated, or obsolete in SMIv1

current in SMIv2

current in SMIv2

current, deprecated, or obsolete in SMIv2

deprecated

deprecated

deprecated or obsolete

The Model

49

obsolete

obsolete

obsolete

3.5.1.5.1.5 DESCRIPTION Clause

The DESCRIPTION clause doesn’t have to be present. This clause is comprehensive in which it

is used to briefly describe a certain identified object. Using the DESCRIPTION clause, a

developer can write all necessary definitions associated with the managed object in a textual

format. It is critical to though for the value of this clause to be enclosed in double quotation

marks as required by the ASN.1 syntax [33].

The Design

50

Chapter 4: The Design

4.1 MIB Development Road Map

4.1.1 Problem statement

We have set a task aiming to create an information framework for OpenFlow-Capable Switches.

An OpenFlow switch main function is to forward packets throughout the network. Moreover, the

OpenFlow switch must support three types of OpenFlow ports: physical ports, logical ports and

reserved ports. Besides the ports, the OpenFlow switch contains logical entities that take care of

packets lookup such as flow tables. For its communication with the controller, the OpenFlow

switch contains OpenFlow channels as well. With this sophisticated structure and features, our

goal is to make it possible to create OpenFlow switch management software that exploits its key

features.

4.1.2 Framework Requirements

 We provided a list of what we want to do and what we are trying to accomplish with this

framework:

 Determine what components are present in the system: controller, logical switch etc.

 Examine the attributes of each component.

 Control each component: enabling/ disabling ports.

 Build Forwarding tables and decide forwarding actions.

 Monitor multiple OpenFlow data paths.

 Configure resources: queues and ports.

The Design

51

 Configure certificates for secure communication between the OpenFlow Logical

Switches and OpenFlow Controllers.

4.1.3 Analysis

 This was the first and most important phase in the MIB where we outlined the manageable

objects we were trying to model in the MIB. (See Table 7). In our case, we made use of the OF-

Config 1.2 specifications defined by UML (Unified Modeling Language) diagrams and XML

(Extensible Markup Language) encoding to guide us in the analysis process.

Table 7 Manageable Objects to be modeled

MANAGABLE OBJECTS DESCRIPTION PRIMARY PURPOSE

OpenFlow Capable Switch
Is a physical or virtual
switching device

Contains & manages OpenFlow
Resources

OpenFlow Configuration Point Is a Logical service entity
Configures one or more
OpenFlow Capable Switches Via
OF-CONFIG protocol

OpenFlow Logical Switch

Is an abstraction of OpenFlow
switch containing a set of
OpenFlow resources (e.g
data path, control channel ...)

Communicates with the
controller via OpenFlow protocol

OpenFlow Controller Is a software
Controls OpenFLow Logical
switches via OpenFlow protocol

OpenFlow Resource
Is a set of resources (ports,
queues, flow tables…)

provide matching, forwarding,
and packet modification

OpenFlow Queue
Is a queuing resource of an
OpenFlow Logical Switch

Schedule packets according to
their priority on an output port to
provide Quality-ofService (QoS)

OpenFlow Port
Is a forwarding interface of an
OpenFlow Logical Switch

Where packets enter and exit the
OpenFlow pipeline (set of linked
flow tables)

NDM (Negotiable Datapath
Model)

Is an abstract switch model
Describes specific switch
forwarding behaviors controllable
via the OpenFlow-Switch protocol

The Design

52

4.1.4 Object Analysis

 The first step after outlining the manageable objects was to define the main components (See

Figure 8) of these objects and breaking them down into the attributes, statistics, and states. To

accomplish that, we filled out a simple sheet for each selected component and assigned four

columns representing the various aspects of that component: cardinality, attributes, statistics, and

state. And with respect to these categories we characterized each subcomponent identified within

the main selected component. (See Table 8).

A.OF-Capable Switch

Figure 8 OpenFlow Capable Switch main components

Table 8 OF-Capable Switch Object analysis Worksheet

component cardinality attributes statistics state

OpenFlow

Capable Switch

 1

Resource 1 to number of

switches

Ports/queues/tables Flow entries/

packets flow rate

The Design

53

Logical switch 1 to number of

switches

Flow tables/

OpenFlow channels

Flow entries/

packets flow rate

Configuration

point

1 to number of

switches

After completing the worksheet of the first component we followed some rules to guide us

through the translation process to MIB syntax:

 Sub-components with cardinality greater than 1 should be part of a table.

 Attributes [47] can take on two forms: OCTET STRINGS can be used to represent

items such as human readable text descriptions or binary data, and integer types are

used to represent measurable quantities such as packets flow rate.

 Statistics representing high or the low packet rate or flow entries are integer type,

INTEGER.

 Statistics representing increasing values are counter type, COUNTER

 States representing discrete stages of operation use an enumerated INTEGER. Each

enumerated value is one of the states mentioned.

 States that have fluctuating values are gauge type, GAUGE.

A.1 Translating a Model into a MIB

Using the above worksheet, we were able to construct the first piece of the MIB declaration for

the OpenFlow switch component. First, we could recognize that we had only 1 OpenFlow switch

whose components all had cardinality between 1 and the number of given switches. Hence,

there’s no cardinality greater than 1 so we directly assigned the switch and its components

The Design

54

OBJECT IDENTIFIER SYNTAX. We then added the attributes, the statistical objects and the

state objects respectively. So we could define the objects as follows:

ofCapableSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “OFConfig identification and version”

 ::= {of 1}

ofResource OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Assigns ports and queues associated with ofCapableSwitch and OFlogicalSwitch.”

 ::= {of 1.1}

ofLogicalSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Identification of OFConfig, datapath and provides means for checking connection-

behavior and controller-certificate.”

 ::= {of 1.2}

ofConfigurationPoint OBJECT-TYPE

 SYNTAX DISPLAY STRING

 MAX-ACCESS read-only

The Design

55

 STATUS current

 DESCRIPTION

 “A textual description of the entity. This value should include OFConfigID and protocol.”

 ::= {of 1.3}

You can note that we gave our MIB modules the prefix “of” as for representing OpenFlow.

We proceeded with the translation following the same rules identified first to cover all

components of the OpenFlow switch.

B. OF-Resource

Figure 9 OpenFlow Resource main components

The Design

56

Table 9 OF-Resource Object Analysis Worksheet

component cardinality attributes statistics state

Resource 1

Port
1 to number of

resource
 Rate of packets Up/down

Queue
1 to number of

resource

Flow tables/

OpenFlow channels

Flow entries/

packets flow rate

Flow table
1 to number of

resource
Queue id

Duration in Nano

seconds

Owned certificate 1

External certificate
1 to number of

resource

Parameterized-

ndm
1

Available-ndm 1

B.1 MIB translation of OF-Resource:

ofResource OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Assigns ports and queues associated with ofCapableSwitch and OFlogicalSwitch.”

 ::= {of 1.1}

ofPort OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS current

 DESCRIPTION

The Design

57

 “Represent a physical port or a logical port.”

 ::= {of 1.1.1}

ofQueue OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS current

 DESCRIPTION

 “Represents a queue as described in the OF protocol specification.”

 ::= {of 1.1.2}

ofParameterized-ndm OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of specific switch forwarding behaviors.”

 ::= {of 1.1.3}

ofAvailable-ndm OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Includes name, type and version of the entity”

 ::= {of 1.1.4}

ofOwnedCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised.”

 ::= {of 1.1.5}

ofExternalCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

The Design

58

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “It can be used by an OFLogicalSwitch for authenticating itself to a controller when a TLS

connection is established.”

 ::= {of 1.1.6}

ofFlowTable OBJECT-TYPE

 SYNTAX SEQUENCE ofFlowTableEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 ::= {of 1.1.7}

C.OF-Logical Switch

Figure 10 OF-Logical switch main components

Table 10 OF-Logical switch Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Logical switch 1

The Design

59

controllers
1 to number of

switch

Flow entries

resources
1 to number of

switch

Ports/queues/flow

tables

Flow entries/

packets flow rate

capabilities
1 to number of

switch

Ports/queues/flow

tables

Tables-sizes/ Flow

entries/ packets

flow rate

C.1 MIB translation of OF-Logical switch:

ofLogicalSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A set of resources from an ofCapableSwitch which can be associated with a specific

ofController.”

 ::= {of 1.2}

ofController OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Contains attributes that indicate the role of the controller and parameters of the OF

connection to the controller.”

 ::= {of 1.2.1}

ofResources OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

The Design

60

 “Assign ports and queues associated with ofCapableSwitch and ofLogicalSwitch.”

 ::= {of 1.1}

ofCapabilities OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Identify tables-lengths, ports-statistics, queues and flow statistics.”

 ::= {of 1.2.3}

D.OF-Controller

Figure 11 OF-Controller main components

The Design

61

Table 11 OF-Controller Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Controller 1

Controller
OpenFlowState

1 to number of
controller

 Connection state Up/down

Supported version 1 to number of
controller

Version index Flow entries/
packets flow rate

updated

D.1 MIB translation of OF-Controller:

ofController OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “ofConfig ID, Role (master, slave, equal), IP-address, port number and protocol (TCP, TLS).”

 ::= {of 1.2.1}

ofControllerOFState OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the connection-state (up, down) and current version.”

 ::= {of 1.2.1.1}

ofSupportedVersion OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the version(1.3, 1.2, 1.1, 1.0).”

 ::= {of 1.2.1.1.1}

The Design

62

E.OF-Capabilities

Figure 12 OF-Capabilities main components

Table 12 OF-Capabilities Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Capabilities 1

Group type
1 to number of

switch
 Connection state Up/down

Group capabilities
1 to number of

group type
Version index

Flow entries/
packets flow rate

updated

Reserved port type
1 to number of

switch
 Packet flow rate

Action type
1 to number of

capabilities

Queues/IP-

fragments
Packet flow rate

Instruction type
1 to number of

capabilities

E.1 MIB translation of OF-Capabilities:

ofCapabilities OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

The Design

63

 STATUS current

 DESCRIPTION

 “Values of max-buffered-packets, max-tables, max-ports, flow-statistics and block-looping

ports.”

 ::= {of 1.2.3}

ofReservedPortType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates port-statistic.”

 ::= {of 1.2.3.1}

ofGroupType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates group-statistics.”

 ::= {of 1.2.3.2}

ofGroupCapabilities OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates table-statistics.”

 ::= {of 1.2.3.3}

ofActionType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates queue statistics and IP-fragments.”

The Design

64

 ::= {of 1.2.3.4}

ofInstructionType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates flow-statistics.”

 ::= {of 1.2.3.5}

F.OF-Flow Table

Figure 13 OF-Flow Table main components

The Design

65

Table 13 OF-Flow Table Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Flow table

Flow table entry
1 to number of

flow table entries

Match

fields/counters
Matching packets

Next flow table
1 to number of

flow table entries

Match
fields/counters Matching packets

Flow table match
1 to number of

flow table entries

Match
fields/counters

Matching packets

Next flow table

miss

1 to number of

flow table entries

Match
fields/counters

Matching packets

write action
1 to number of

flow table entries

Match
fields/counters

Apply action
1 to number of

flow table entries

Match
fields/counters

Apply action miss
1 to number of

flow table entries

Match
fields/counters

instructions
1 to number of

flow table entries

Match
fields/counters

instruction miss
1 to number of

flow table entries

Match
fields/counters

Apply set fields
1 to number of

flow table entries

Match
fields/counters

Field length

Apply set field miss
1 to number of

flow table entries

Match
fields/counters

Field length

Write set fields
1 to number of

flow table entries

Match
fields/counters

Field length

Write set fields

miss

1 to number of

flow table entries

Match
fields/counters

Field length

Table wild cards
1 to number of

flow table entries

Match
fields/counters

Table experimenter
1 to number of

flow table entries

Match
fields/counters

The above worksheet showed that the cardinality of all components of the OpenFlow Flow Table

is between 1 and the number of flow table entries. Since the cardinality of all these components

The Design

66

varied between 1 and the number of flow table entries we had to use a table indexed by flowtable

number.

F.1 MIB translation of OF-FlowTable:

ofFlowTable OBJECT-TYPE

 SYNTAX SEQUENCE OF ofFlowTableEntry

 ACCESS not-accessible

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 ::= {of 1.1.7}

ofFlowTableEntry OBJECT-TYPE

 SYNTAX ofFlowTableEntry

 ACCESS not-accessible

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 INDEX {ofFlowTableIndex}

 ::= {ofFlowTableEntry 1}

Since the table was indexed by the FlowTable number, it was the first column in our table. So,

we first added the columnar objects to the SECUENCE construct for the table, and then we

created the OBJECT-TYPE definitions for them.

OFFlowTableEntry ::=SEQUENCE {

 ofFlowTableIndex INTEGER

}

Looking back at the worksheet, we saw that each flowtable entry contained one of each of the

components within the flowTable. By adding the attributes of these items, we were able to define

the objects as follows:

The Design

67

ofNextFlowTables OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates a counter for table id number given a maximum number of entries.”

 ::= { ofFlowTableEntry 2}

ofFlowTableMatch OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the metadata-match.”

 ::= { ofFlowTableEntry 3}

ofNetFlowTableMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates a counter for missed entries, it increments whenever an entry is missed.”

 ::= { ofFlowTableEntry 4}

ofFlowTableWriteAction OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the metadata-write.”

 ::= { ofFlowTableEntry 5}

ofFlowTableInstructionMiss OBJECT-TYPE

 SYNTAX INTEGER

The Design

68

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the missed instructions.”

 ::= { ofFlowTableEntry 6}

ofFlowTableApplyAction OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates type of action.”

 ::= { ofFlowTableEntry 7}

ofFlowTableApplyActionMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Type of action missed.”

 ::= { ofFlowTableEntry 8}

ofFlowTableApplySetFields OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates Field length.”

 ::= { ofFlowTableEntry 9}

ofFlowTableWriteSetFieldsMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates metadata-write field length missed.”

The Design

69

 ::= { ofFlowTableEntry 10}

ofFlowTableWriteSetFields OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Metadata-write field length.”

 ::= { ofFlowTableEntry 11}

ofFlowTableApplySetFieldsMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Field length missed.”

 ::= { ofFlowTableEntry 12}

ofFlowTableWildCards OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates wildcard number.”

 ::= { ofFlowTableEntry 13}

ofFlowTableExperimenter OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates id number.”

 ::= { ofFlowTableEntry 14}

ofFlowTableInstructions OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

The Design

70

 “Indicates instructions.”

 ::= { ofFlowTableEntry 15}

G.OF-Owned Certificate

Figure 14 OF-Owned Certificate main components

Table 14 OF-Owned Certificate Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Owned certificate

 1

Key Value Type

Private-Key

1 to number of

Owned

certificate

Key type Value

DSA Key Value

1 to number of

Owned

certificate

Pingen counter

speed

 mbps

The Design

71

RSA Key Value

1 to number of

Owned

certificate

Modulus Value

G.1 MIB translation of OF-OwnedCertificate:

ofOwnedCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised.”

 ::= {of 1.1.5}

ofKeyValueTypePrivate-Key OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of key type.”

 ::= {of 1.1.5.1}

ofDSAKeyValue OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of PgenCounter, speed, P, Q, J, G and Y.”

 ::= {of 1.1.5.1.1}

ofRSAKeyValue OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

The Design

72

 DESCRIPTION

 “Value of Modulus and exponent.”

 ::= {of 1.1.5.1.2}

H.OF-Queue

Figure 15 OF-Queue main components

Table 15 OF-Queue Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Queue 1

property
1 to number of

Queue

ID/Port number

Min-Rate
1 to number of

Queue

Min-Rate Value
 percentage

Max-Rate

1 to number of

Queue

Max -Rate Value

percentage

The Design

73

Experimenter
1 to number of

Queue
 ID

H.1 MIB translation of OF-Queue:

ofQueue OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Represents a queue as described in the OF protocol specification.”

 ::= {of 1.1.2}

ofQueueProperty OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “ID and port number.”

 ::= {of 1.1.2.1}

ofQueueMin-Rate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of queue min-rate (percentage 0.0 to 100.0 to 1/10 of a percent).”

 ::= {of 1.1.2.1.1}

ofQueueMax-Rate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

The Design

74

 DESCRIPTION

 “Value of queue max-rate (percentage 0.0 to 100.0 to 1/10 of a percent).”

 ::= {of 1.1.2.1.2}

ofQueueExperimenter OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Experimenter id and data.”

 ::= {of 1.1.2.1.3}

I.OF-Port

Figure 16 OF-Port main components

Table 16 OF-Port Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Port 1

Current Features
1 to number of

port s

Match

fields/counters

Matching

packets

The Design

75

Advertised
Features

1 to number of
port s

Matching

packets

Supported

Features
1 to number of

port s

Tunnel
1 to number of

port s

IP addresses

Configuration
1 to number of

port s

Port State
1 to number of

port s

Blocked/ live

Up/ down

Advertised Peer

Features
1 to number of

port s

I.1 MIB translation of OF-Port:

 ofPort OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Represent a physical port or a logical port.”

 ::= {of 1.1.1}

ofPortCurrentFeatures OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “DESCRIPTION value of port current features state.”

 ::= {of 1.1.1.1}

ofPortAdvertisedFeatures OBJECT-TYPE

 SYNTAX SEQUENCE ofPortFeaturesEntry

 ACCESS read-write

 STATUS current

The Design

76

 DESCRIPTION

 “Value of port advertised features state.”

 ::= {of 1.1.1.2}

ofPortSupportedFeatures OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port supported features state.”

 ::= {of 1.1.1.3}

ofTunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Addresses of remote and local endpoints.”

 ::= {of 1.1.1.4}

ofPortConfiguration OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Value of admin-state up or down.”

 ::= {of 1.1.1.5}

ofPortState OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Value of oper-state up, , blocked or live.”

 ::= {of 1.1.1.6}

ofPortAdvertisedPeerFeatures OBJECT-TYPE

The Design

77

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised peer features status.”

 ::= {of 1.1.1.7}

J.OF-Port Advertised Features

Figure 17 OF-Port Advertised Features main components

Table 17 OF-Port Advertised Features Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Advertised
Features

1

The Design

78

Port features
1 to number of

port features

Rate
1 to number of

port features

Bits per
second

Duplex
1 to number of

port features

Matching
packets

Half/full

Auto Negotiate
1 to number of

port features

Matching
packets

Enabled/disabled

Medium
1 to number of

port features

Copper/fiber

Index value

Pause
1 to number of

port features
 Symmetric/asymmetric

J.1 MIB translation of OF-PortAdertisedFeatures:

 ofPortAdvertisedFeatures OBJECT-TYPE

 SYNTAX SEQUENCE ofPortFeaturesEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised features state.”

 ::= { ofPortFeaturesEntry 1}

OfPortFeature OBJECT-TYPE

 SYNTAX ofPortFeatureEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Listing OF port features as described in OF protocol.”

 ::= { ofPortFeaturesEntry 2}

ofPortRate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

The Design

79

 DESCRIPTION

 “A value in bits.”

 ::= { ofPortFeaturesEntry 3}

ofPortDuplex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port is half or full.”

 ::= { ofPortFeaturesEntry 4}

ofPortAutoNegotiate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port auto-negotiate is enabled or disabled.”

 ::= { ofPortFeaturesEntry 5}

ofPortMedium OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the media is copper or fiber.”

 ::= { ofPortFeaturesEntry 6}

ofPortPause OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port status is symmetric or asymmetric.”

 ::= { ofPortFeaturesEntry 7}

The Design

80

K.OF-Tunnel

Figure 18 OF-Tunnel main components

Table 18 OF-Tunnel Object Analysis Worksheet

Component Cardinality Attributes Statistics State

Tunnel 1

IP in GRE
1 to number of

tunnels
 sequence

VxLAN Tunnel
1 to number of

tunnels
 IP addresses

NVGRE Tunnel
1 to number of

tunnels
IP addresses

K.1 MIB translation of OF-Tunnel:

ofTunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Addresses of remote and local endpoints.”

 ::= {of 1.1.1.4}

The Design

81

ofIPinGRE OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of the entity including checksum-present, key-present and

sequence number present.”

 ::= {of 1.1.1.4.1}

ofVxLANTunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of the entity including UDP-checksum status, source, destination,

ports status, and IP address.”

 ::= {of 1.1.1.4.2}

ofNVGRETunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of the entity including TNI multicast group and net IP address.”

 ::= {of 1.1.1.4.3}

The Tree

82

Chapter 5: The Tree
Usually the position where the defined manageable object should be located in the OID tree, is

determined before writing the MIB module. For private MIBs as in our case, a new branch

should be added under an “enterprise” branch in the “internet private” subtree. Never the less, it

is often required to create branches under the “experimental” subtree for testing and

experimenting purpose as well as a branch for each released MIB module. Once a MIB is

published, its items cannot be changed. Therefore, a newly designed MIB should be placed under

an “experimental” branch, tested then moved to a “standard” branch whenever the MIB

document is published. OIDs are used extensively via SNMP with no specific constraints. The

OIDs can have unlimited length with unlimited size of component values as assigned by the

ASN.1[46].

The Tree

83

Figure 19 Standard MIB OID tree

Figure 20 Standard MIB OID tree with OF-CAPABLE Switch MIB added

The Tree

84

As for the structure of the MIB tree, all MIBs are established in a standard topology;

iso.org.internet.private.enterprises (See Figure 19). Starting from the root of a tree that has no

identification, the variables of our OID infrastructure layout start from the branch of OID

1.3.6.1.4.1.19676, where “19676” is assigned to the University of Houston (See Figure 20). The

structure of the upper branches of the universal OID tree is fixed, so we only had control over the

OID area for enterprise and this is a common case for any framework designer. Figure 21 shows

the OID infrastructure layout where the top level of our MIB’s namespace resides. We numbered

the sub-trees with the registrations 1 through 3 for the three main components of the OF-Capable

Switch: ofResource(1), ofLogicalSwitch and ofConfigurationPoint.

Figure 21 Top level OF-Capable Switch Namespcace Organization

The full OF-Capable Switch MIB in ASN.1 syntax is provided in the APPENDIX.

The Tree

85

Conclusions

86

Chapter 6 Conclusions and future work

6.1 Challenges
As in any design project, a designer might face a lot of challenges. To overcome those

challenges a designer should turn these challenges into targeted goals that need to be

fulfilled. In our design of the OpenFlow Capable Switch MIB, the major challenge that we

faced was the translation of the switch objects into the MIB syntax. It was tricky to

carefully outline the switch components that could be managed. Especially that we were

dealing with all software entities, it was hard to define attributes and link them to those

components. If we want to describe it, it was like making a virtual thing touchable by

giving it an ID and character.

It was also quite challenging for us to come up with a MIB model that might be able to

cover all types of SDN-based entities. Therefore, we based our design on OpenFlow and

OFCONFIG protocols, the basic pillars in the SDN environment. While OpenFlow

efficiently manages flows and determines how packets are forwarded between individual

source and destination pairs, it does not provide the configuration and management

functions necessary to allocate ports or assign IP addresses. That's where OpenFlow

configuration protocols come in. As a result, we can say that OpenFlow and OFCONFIG

complement each other and it was of high importance for us to consider both protocols in

our design. In general, the idea of merging the legacy SNMP into the new SDN

Conclusions

87

environment and have it compete with other newly designed and up-to-the date monitoring

tools and protocols, was a challenge by itself.

6.2 Future work
An approach to fulfill the goal behind our designed MIB is to implement this MIB in a

working SDN-based switch and put it under testing. We can suggest using NET-SNMP

tool to monitor an OpenFlow-Capable switch as a LINC switch after adding our designed

MIB. Our MIB could be added to the switch by injecting it into the standard imported

MIBs via NET-SNMP. Most of the standard MIBs specify branches, like the enterprise

subtree for extensions or new objects to be added.

6.3 Summary
In this thesis, we discussed how to go about analyzing systems and services with SNMP in mind,

and how to translate that analysis into a MIB. Based on the OF-CONFIG data model defined in

the OF-CONFIG 1.2 specifications through UML diagrams and XML encoding, we created the

OF-CONFIG MIBs Tree and mapped it to SNMP.

The SNMP architectural model with the MIB tree structure helped in classifying the main

elements of an operational context which is capable of supporting an OpenFlow Switch using

OF-CONFIG. The MIB tree provided a description of the real capabilities of the OpenFlow

Capable Switch starting from OF-Configuration Point, OF-Resources and OF-Logical Switch to

the ports and queues‘ Features and properties. This MIB tree is to be later tested using an SNMP

monitoring tool.

Conclusions

88

6.4 Conclusion
This thesis looks into how management in SDN environment can be approached. It makes use of

proprietary-based SNMP MIBs and maps them to the new SDN-based switches. The purpose of

this thesis is to build a unified information framework that can be implemented over a wide

range of OpenFlow-Capable switches. According to Martin Taylor (2014) “a past that has been

dominated by special- purpose network elements based on proprietary hardware will give way to

a future in which network functions are implemented almost entirely in software running on

shared pools of standard hardware resources, just like cloud-based IT workloads” (p.2) [59].

References

89

References
[1] Aron, M., Sanders, D. Druschel, P. and W. Zwaenepoel, “Scalable content-aware request

distribution in cluster-based network servers,” in Proceedings of the 2000 USENIX Annual

[2] Atlas, A., Nadeau, T., and Ward, D. Interface to the Routing System Problem Statement. IETF draft

2015.

[3] A. Greenberg et al., “A Clean Slate 4D Approach to

 Network Control and Management,” ACM Comp. Commun.

 Rev., vol. 35, no. 5, 2005, pp. 41–54.

[4] Baik, S., Lim, Y., Kim, J., and Lee, Y. “Adaptive flow monitoring in SDN architecture”. kt Infra

Laboratory Daejeon, Korea, 2015.

[5] Baker, G. “Using NETCONF + YANG To Configure Network Devices And Why It Does Not Replace

SNMP”. Packetpushers.net (blog). November 2011. http://packetpushers.net/using-netconf-yang-to-

configure-network-devices-and-why-it-does-not-replace-snmp.

[6] Bianco, A., Birke, R., Debele,F., and Giraudo, L. “snmp management in a distributed software router

architecture,”, IEEE Intl. Conference on communications (icc’11), pp. 1–5, jun. 2011.

[7] Bemstein, L., and Yuhas, C.M. Basic concepts for managimng telecommunication networks:Copper to

sand to glass to air (Network and systems management)., 1999th ed. Springer, 1999.

[8] Birke, F.,Debele, G., and Giraudo, L., “SNMP Management in a Distributed Software Router

Architecture,” 2011 IEEE International Conference Communications (ICC), pp. 1-5, June, 2011.

[9] Chiueh, T., Tu, C., Wang, Y., Wang, P., Li, K., and Huang, Y. “Peregrine: An All-Layer-2 Container

Computer Network”. IEEE Fifth International Conference on Cloud Computing, 2012.

[10] CS, G and Kidambi, R. “Unites States Patent Application: 20150236918-Method and system for

creating single snmp table for multiple openflow tables, August 20, 2015.

[11] Da Paz Ferraz Santos, P. R., Esteves, R. P., and Granville, L. Z. “Evaluating SNMP, NETCONF, and

RESTful web services for router virtualization management. IFIP/IEEE International Symposium on

Integrated Network Management, 2015.

[12] DenHartog, M., “Demystifying the MIB”. DPS Telecom, February 5, 2008.

[13] Doria, A. et al., “Forwarding and Control Element Separation (ForCES) Protocol Specification” .IETF

RFC 5810, March 2010.

[14] Feamster, N., Rexford, J., and Zegura, E.” The Road to SDN.”Queue, 11(12):20:20–20:40,

December 2013.

[15] Feng, T., Bi, J., Xiao, P., and Zheng, X. “Hybrid SDN architecture to integrate with legacy control and

management plane: An experiences-based study”. Integrated Network Management (IM), 2015

IFIP/IEEE International Symposium, pp 754-757.

[16] “Floodlight”. Project. http://www.projectfloodlight.org/floodlight/.

[17] “Forwarding and Control Element Separation (ForCES) Forwarding Element Mode”. IETF RFC5812,

March 2010.

http://packetpushers.net/using-netconf-yang-to-configure-network-devices-and-why-it-does-not-replace-snmp
http://packetpushers.net/using-netconf-yang-to-configure-network-devices-and-why-it-does-not-replace-snmp
http://www.projectfloodlight.org/floodlight/

References

90

[18] Hamid, A , Kawahara, Y. and Asami, T. “Web cache design and implementation for efficient SNMP

monitoring towards internet-scale network management,” IEICE Transactions on Communications, vol.

94, no. 10, pp. 2817–2827, 2011.

[19] Hillbrecht, R., and De bona , R. “A SNMP-based virtual machines management interface”, IEEE/ACM

fifth international conference on utility and cloud computing, 2012.

[20] Hubbard, P., “SDN technology for network management better be more than middleware”, April

2013. [Online]. Available: http://searchsdn.techtarget.com/news/2240181264/SDN-technology-for-

network-management-better-be-more-than-middleware.

[21] “ Information processing systems - Open Systems Interconnection - Specification of Abstract

Syntax Notation One (ASN.1)”.International Organization for Standardization International Standard

8824, December 1987.

[22] Jacobs, D., “OpenFlow-configuration-protocols-Understanding-OF-Config-and-OVSDB”, April 2013.

[Online]. Available: http://searchsdn.techtarget.com/tip/OpenFlow-configuration-protocols-

Understanding-OF-Config-and-OVSDB.

[23] John, A., Vanderveen, K., and Sugla, B. “ An XML-based Framework for Dynamic SNMP MIB

Extension”. Active Technologies for Network and Service Management: 10th IFIP/IEEE International

Workshop on Distributed Systems , Zurich, Switzerland, October, 1999.

[24] John, W. et al., “Scalable Software Defined Monitoring for Service Provider DevOps”. Software

Defined Networks (EWSDN), 2015 Fourth European Workshop, pp 61-66.

[25] John, W. et al., “ Research directions in network service chaining In Future Networks and Services”,

2013 IEEE SDN for, pages 1–7, Nov 2013.

[26] Kreutz, D. et al., “Software-Defined Networking: A Comprehensive Survey “, 2014.

[27] Kim, H., and Feamster, N. “ Improving network management with software defined networking”.

Communications Magazine, IEEE, volume: 51 Issue: 2, pp 114-119, 2013.

[28] Madan, M.,and Mathur, M. “Cloud Network Management Model A Novel Approach to Manage

Cloud Traffic”. International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No.

5, October 2014.

[29] “Management Information Base”, Microsoft Developer Network Library. Last modified August

28, 2008. https://msdn.microsoft.com/en-us/library/aa909982.aspx.

[30] “Management information base”, Wikipedia. Last modified October 28, 2015.

https://en.wikipedia.org/wiki/Management_information_base.

[31] Marschke, D., Doyle, J., and Moyer, P. SDN: anatomy of openflow. Lulu.com, 2015.

[32] Matthew Roughan, “A Case Study of the Accuracy of SNMP Measurements”, Australia, Journal of

Electrical and Computer Engineering Volume 2010, Article ID 812979, 7 pages.

[33] McCloghrie, K., and Marshall, T.R., “Concise MIB Definitions”. IETF RFC 1212, March 1991.

[34] McCloghrie, K., and Marshall, T.R., “Structure and Identification of Management Information for

TCP/IP-based Internets”. IETF RFC 1155 (previously RFC 1065), May 1990.

[35] McNickle, M., “OF-Config (OpenFlow Configuration and Management Protocol) definition”, August

2013. [Online]. Available:http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-

Configuration-and-Management-Protocol.

[36] McCloghrie, K., and Marshall, T.R., “Towards Concise MIB Definitions”, IETF RFC 1212, March 1991.

http://searchsdn.techtarget.com/news/2240181264/SDN-technology-for-network-management-better-be-more-than-middleware
http://searchsdn.techtarget.com/news/2240181264/SDN-technology-for-network-management-better-be-more-than-middleware
http://searchsdn.techtarget.com/tip/OpenFlow-configuration-protocols-Understanding-OF-Config-and-OVSDB
http://searchsdn.techtarget.com/tip/OpenFlow-configuration-protocols-Understanding-OF-Config-and-OVSDB
https://msdn.microsoft.com/en-us/library/aa909982.aspx
http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-Configuration-and-Management-Protocol
http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-Configuration-and-Management-Protocol

References

91

[37] McKeown, N., Anderson, T. , Balakrishnan, H. , Parulkar, G. M. , Peterson, L. L., Rexford, J. ,

Shenker, S. and Turner, J. S. “Openflow: enabling innovation in campus networks,” Computer

Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[38] McCloghrie, K., et al., “Structure of Management Information Version 2 (SMIv2)”, IETF RFC 2578,

April 1999.

[39] Nayak, A., Reimers, A., Feamster, N., and Clark, R. “ Resonance: Dynamic Access Control for

Enterprise Networks” School of Computer Science, Georgia Tech, 2010.

[40] Network Management considerations for OpenFlow-based SDN.

[41] Nolle, T. “SDN's missing links: Five barriers blocking SDN adoption by providers”. Article,

Techtarget.com. May 2013.

[42] “Object Identifier”. Wikipedia. Last modified September 23,

2015.https://en.wikipedia.org/wiki/Object_identifier.

 [43] “OpenFlow”, Wikipedia. Last modified November 29, 2015.

https://en.wikipedia.org/wiki/OpenFlow

[44] “OpenFlow Switch Specification”, (2014), Version 1.3.4 (Protocol version 0x04) (White paper).

Open Networking Foundation.

[45] Pfaff , B., Pettit, J., Koponen, T., Amidon, K., Casado, M., Shenker, S. Extending Networking into

the Virtualization Layer. Hotnets, 2009.

[46] Perkins, D., “ Understanding SNMP MIBs”, September 1993.

[47] Perkins, D. and McGinnis, E. Understanding SNMP MIBs. New Jersey: Prentice Hall PTR, 1997.

[48] “Plane (in networking)”, Networking and communications glossary. Last modified January 2013.

http://whatis.techtarget.com/definition/plane-in-networking.

[49] “Project Proposals: SNMP Plugin”. Opendaylight.org. Last modified January 13, 2015. [Online].

Available: https://wiki.opendaylight.org/view/Project_Proposals:SNMP_Plugin.

[50] “SDN layers and architecture terminology”. IRTF (Internet Research Task Force) RFC7426.

http://tools.ietf.org/html/rfc7426

[51] Shang, Z., Chen, W., Ma, Q., and WU, B. “Design and implementation of server cluster dynamic load

balancing based on OpenFlow”. Lanzhou University Communication Network Center Lanzhou,China,

2013.

[52] “Simple Network Management Protocol”, Wikipedia. Last modified November 10, 2015.

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol.

 [53] Slattery, T., “Monitoring a Software Defined Network, Part 4”, February 2014. [Online]. Available:

http://www.nojitter.com/post/240166288/monitoring-a-software-defined-network-part.

[54] “Software-Defined Networking (SDN): Layers and Architecture Terminology”. IETF RFC7426. Online

at http://tools.ietf.org/html/rfc7426.

[55] “Software-defined networking: The new norm for networks,” White Papers. OFN, 2012, pp. 3–6.

[Online]. Available: http://goo.gl/ElEJv.

[56] “Software-defined networking”, Wikipedia. Last modified November 13, 2015.

https://en.wikipedia.org/wiki/Software-defined_networking.

[57] Song, T., Kawahara, Y., and Asami, T. “Cache management algorithm of load balancer for large-

scale SNMP monitoring system”. Globecom 2013 Workshop- The 5th IEEE International Workshop on

Management of Emerging Networks and Services.

https://en.wikipedia.org/wiki/Object_identifier
https://en.wikipedia.org/wiki/OpenFlow
http://whatis.techtarget.com/definition/plane-in-networking
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://www.nojitter.com/post/240166288/monitoring-a-software-defined-network-part
http://tools.ietf.org/html/rfc7426
http://goo.gl/ElEJv
https://en.wikipedia.org/wiki/Software-defined_networking

References

92

[58] Swarna, J., Senthil, C., and Dr.K.S.ravichandran ,“Cloud monitoring based on snmp”. Journal of

Theoretical and Applied Information Technology 30th June 2012. Vol. 40 No.2.

[59] Taylor, M., “ A guide to NFV and SDN “. White paper, Metaswitch Networks, 2014 Technical

Conference (USENIX-00). Berkeley, CA: USENIX Ass., Jun. 18–23 2000, pp. 323–336.

[60] Ten Things to Look for in an SDN Controller”. Ashton, Metzler and Associates.

[61] “The Open vSwitch Database Management Protocol”. IETF RFC7047, 2013.

[62] Thomsen, F. “Is SNMP still used widely as of 2015?”. StackExchange/serverfault blog. August

2015.http://serverfault.com/questions/709005/is-snmp-still-used-widely-as-of-2015.

[63] Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., and Sherwood, R. “On controller

performance in software-defined networks,” Hot-ICE’12 Proceedings of the 2nd USENIX conference on

Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services,2012.

[64] “TUT: SNMP”, Net-SNMP Wiki. Last modified November 4, 2010. http://net-

snmp.sourceforge.net/wiki/index.php/TUT:SNMP

[65] Van Adrichem, N. L. M., Doerr, C., and Kuipers, F.A., “OpenNetMon: Network Monitoring in

OpenFlow Software-Defined Networks”. Network Architectures and Services, Delft University of

Technology, The Netherlands.

 [66] Yost, W. H., “United States Patent: 7290142 B1- System and method for initializing a simple

network management protocol (SNMP) agent”, October 30, 2007.

[67] Z. Cai, “Maestro: Achieving Scalability and Coordination in Centralized Network Control Plane”,

Ph.D. thesis, 2011.

[68] Zhang, Y., Gong, X.,Hu, Y., Wang , W., and Que, X., “ SDNMP: Enabling SDN Management Using

Traditional NMS”. Workshop on Advances in Software Defined and Context Aware Cognitive Networks,

IEEE ICC, 2015.

http://serverfault.com/questions/709005/is-snmp-still-used-widely-as-of-2015

APPENDIX

93

APPENDIX

<OfCapableSwitch>

OF-CAPABLE-SWITCH-MIB DEFINITIONS : := BEGIN

IMPORTS

 OBJECT-TYPE

 FROM RFC1155-SMI

ofCapableSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “OFConfig identification and version”

 ::= {of 1}

ofResource OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Assigns ports and queues associated with ofCapableSwitch and OFlogicalSwitch.”

 ::= {of 1.1}

ofLogicalSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Identification of OFConfig, datapath and provides means for checking connection-behavior and

controller-certificate.”

 ::= {of 1.2}

ofConfigurationPoint OBJECT-TYPE

 SYNTAX DISPLAY STRING

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

APPENDIX

94

 “A textual description of the entity. This value should include OFConfigID and protocol.”

 ::= {of 1.3}

ofResource OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 “Assigns ports and queues associated with ofCapableSwitch and OFlogicalSwitch.”

 ::= {of 1.1}

ofPort OBJECT-TYPE

 SYNTAX INTEGER

ACCESS read-only

 STATUS current

 DESCRIPTION

 “Represent a physical port or a logical port.”

 ::= {of 1.1.1}

ofQueue OBJECT-TYPE

 SYNTAX INTEGER

ACCESS read-only

 STATUS current

 DESCRIPTION

“Represents a queue as described in the OF protocol specification.”

 ::= {of 1.1.2}

ofParameterized-ndm OBJECT-TYPE

 SYNTAX OCTET STRING

ACCESS read-write

 STATUS current

 DESCRIPTION

“A textual description of specific switch forwarding behaviors.”

 ::= {of 1.1.3}

ofAvailable-ndm OBJECT-TYPE

 SYNTAX OCTET STRING

ACCESS read-write

 STATUS current

 DESCRIPTION

“Includes name, type and version of the entity”

 ::= {of 1.1.4}

ofOwnedCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

ACCESS read-write

 STATUS current

 DESCRIPTION

“Value of port advertised.”

 ::= {of 1.1.5}

ofExternalCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

ACCESS read-write

 STATUS current

APPENDIX

95

 DESCRIPTION

“It can be used by an OFLogicalSwitch for authenticating itself to a controller when a TLS

connection is established.”

 ::= {of 1.1.6}

ofFlowTable OBJECT-TYPE

 SYNTAX SEQUENCE ofFlowTableEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 ::= {of 1.1.7}

ofLogicalSwitch OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A set of resources from an ofCapableSwitch which can be associated with a specific ofController.”

 ::= {of 1.2}

ofController OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Contains attributes that indicate the role of the controller and parameters of the OF connection to the

controller.”

 ::= {of 1.2.1}

ofResources OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Assign ports and queues associated with ofCapableSwitch and ofLogicalSwitch.”

 ::= {of 1.1}

ofCapabilities OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

“Identify tables-lengths, ports-statistics, queues and flow statistics.”

 ::= {of 1.2.3}

ofController OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

APPENDIX

96

 STATUS current

 DESCRIPTION

 “ofConfig ID, Role (master, slave, equal), IP-address, port number and protocol (TCP, TLS).”

 ::= {of 1.2.1}

ofControllerOFState OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the connection-state (up, down) and current version.”

 ::= {of 1.2.1.1}

ofSupportedVersion OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the version(1.3, 1.2, 1.1, 1.0).”

 ::= {of 1.2.1.1.1}

ofCapabilities OBJECT-TYPE

 SYNTAX OBJECT IDENTIFIER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Values of max-buffered-packets, max-tables, max-ports, flow-statistics and block-looping ports.”

 ::= {of 1.2.3}

ofReservedPortType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates port-statistic.”

 ::= {of 1.2.3.1}

ofGroupType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates group-statistics.”

 ::= {of 1.2.3.2}

ofGroupCapabilities OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates table-statistics.”

 ::= {of 1.2.3.3}

APPENDIX

97

ofActionType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates queue statistics and IP-fragments.”

 ::= {of 1.2.3.4}

ofInstructionType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates flow-statistics.”

 ::= {of 1.2.3.5}

ofFlowTable OBJECT-TYPE

 SYNTAX SEQUENCE ofFlowTableEntry

 ACCESS not-accessible

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 ::= {of 1.1.7}

ofFlowTableEntry OBJECT-TYPE

 SYNTAX ofFlowTableEntry

 ACCESS not-accessible

 STATUS current

 DESCRIPTION

 “A logical context which represents a flow table.”

 INDEX {ofFlowTableIndex}

 ::= {ofFlowTableEntry 1}

ofNextFlowTables OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates a counter for table id number given a maximum number of entries.”

 ::= { ofFlowTableEntry 2}

ofFlowTableMatch OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

APPENDIX

98

 STATUS current

 DESCRIPTION

 “Indicates the metadata-match.”

 ::= { ofFlowTableEntry 3}

ofNetFlowTableMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates a counter for missed entries, it increments whenever an entry is missed.”

 ::= { ofFlowTableEntry 4}

ofFlowTableWriteAction OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the metadata-write.”

 ::= { ofFlowTableEntry 5}

ofFlowTableInstructionMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates the missed instructions.”

 ::= { ofFlowTableEntry 6}

ofFlowTableApplyAction OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates type of action.”

 ::= { ofFlowTableEntry 7}

APPENDIX

99

ofFlowTableApplyActionMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Type of action missed.”

 ::= { ofFlowTableEntry 8}

ofFlowTableApplySetFields OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates Field length.”

 ::= { ofFlowTableEntry 9}

ofFlowTableWriteSetFieldsMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates metadata-write field length missed.”

 ::= { ofFlowTableEntry 10}

ofFlowTableWriteSetFields OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Metadata-write field length.”

 ::= { ofFlowTableEntry 11}

ofFlowTableApplySetFieldsMiss OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

APPENDIX

100

 DESCRIPTION

 “Field length missed.”

 ::= { ofFlowTableEntry 12}

ofFlowTableWildCards OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates wildcard number.”

 ::= { ofFlowTableEntry 13}

ofFlowTableExperimenter OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates id number.”

 ::= { ofFlowTableEntry 14}

ofFlowTableInstructions OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Indicates instructions.”

 ::= { ofFlowTableEntry 15}

ofOwnedCertificate OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised.”

 ::= {of 1.1.5}

ofKeyValueTypePrivate-Key OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of key type.”

 ::= {of 1.1.5.1}

APPENDIX

101

ofDSAKeyValue OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of PgenCounter, speed, P, Q, J, G and Y.”

 ::= {of 1.1.5.1.1}

ofRSAKeyValue OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of Modulus and exponent.”

 ::= {of 1.1.5.1.2}

ofQueue OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Represents a queue as described in the OF protocol specification.”

 ::= {of 1.1.2}

ofQueueProperty OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “ID and port number.”

 ::= {of 1.1.2.1}

ofQueueMin-Rate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of queue min-rate (percentage 0.0 to 100.0 to 1/10 of a percent).”

 ::= {of 1.1.2.1.1}

ofQueueMax-Rate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of queue max-rate (percentage 0.0 to 100.0 to 1/10 of a percent).”

 ::= {of 1.1.2.1.2}

ofQueueExperimenter OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

APPENDIX

102

 STATUS current

 DESCRIPTION

 “Experimenter id and data.”

 ::= {of 1.1.2.1.3}

ofPort OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Represent a physical port or a logical port.”

 ::= {of 1.1.1}

ofPortCurrentFeatures OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “DESCRIPTION value of port current features state.”

 ::= {of 1.1.1.1}

ofPortAdvertisedFeatures OBJECT-TYPE

 SYNTAX SEQUENCE ofPortFeaturesEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised features state.”

 ::= {of 1.1.1.2}

OfPortFeature OBJECT-TYPE

 SYNTAX ofPortFeatureEntry

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Listing OF port features as described in OF protocol.”

 ::= {of 1.1.1.2.1}

ofPortRate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value in bits.”

 ::= {of 1.1.1.2.1.1}

ofPortDuplex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port is half or full.”

 ::= {of 1.1.1.2.1.2}

APPENDIX

103

ofPortAutoNegotiate OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port auto-negotiate is enabled or disabled.”

 ::= {of 1.1.1.2.1.3}

ofPortMedium OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the media is copper or fiber.”

 ::= {of 1.1.1.2.1.4}

ofPortPause OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A value which indicates if the port status is symmetric or asymmetric.”

 ::= {of 1.1.1.2.1.5}

ofPortSupportedFeatures OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port supported features state.”

 ::= {of 1.1.1.3}

ofTunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Addresses of remote and local endpoints.”

 ::= {of 1.1.1.4}

ofIPinGRE OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of the entity including checksum-present, key-present and sequence number

present.”

 ::= {of 1.1.1.4.1}

ofVxLANTunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

APPENDIX

104

 “A textual description of the entity including UDP-checksum status, source, destination, ports

status, and IP address.”

 ::= {of 1.1.1.4.2}

ofNVGRETunnel OBJECT-TYPE

 SYNTAX OCTET STRING

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “A textual description of the entity including TNI multicast group and net IP address.”

 ::= {of 1.1.1.4.3}

ofPortConfiguration OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Value of admin-state up or down.”

 ::= {of 1.1.1.5}

ofPortState OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 “Value of oper-state up, down, blocked or live.”

 ::= {of 1.1.1.6}

ofPortAdvertisedPeerFeatures OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-write

 STATUS current

 DESCRIPTION

 “Value of port advertised peer features status.”F

 ::= {of 1.1.1.7}

