
Abstraction of Computation and Data Motion
in High-Performance Computing Systems

by

Millad Ghane

A dissertation submitted to the Department of Computer Science,

College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science

Chair of Committee: Margaret S. Cheung, University of Houston

Committee Member: Larry (Weidong) Shi, University of Houston

Committee Member: Edgar Gabriel, University of Houston

Committee Member: Sunita Chandrasekaran, University of Delaware

University of Houston

December 2019

Copyright c© 2019, Millad Ghane

“What you seek is seeking you.”

– Rumi

“The mountain begins with the first rocks,

And the man with the first pain.”

– Shamlou

iii

To my mom, dad, and sister,
Farideh, Asadollah, and Midya.

I genuinely miss you all,
You are my whole world.

This whole dissertation is devoted to you.

iv

Acknowledgment

I am indebted to many great people during the past 5 years at UH. I want to take this

opportunity and acknowledge their valuable contributions to my life and this dissertation.

First and foremost, I want to express my gratitude to Professor Margaret S. Cheung as my

advisor, and Professor Sunita Chandrasekaran as my co-advisor for all their help, consider-

ation, inspiration, and encouragement during my journey. I was fortunate to have them as

my academic advisors during my studies.

I also want to thank the members of my PhD committee, Dr. Larry (Weidong) Shi

and Dr. Edgar Gabriel at UH for their support and insights. And, furthermore, I want to

thank Dr. Chris (CJ) Newburn and Chris Lamb for the summer internship opportunity at

NVIDIA. It was a very unique opportunity for me to spend a summer with them and expand

my knowledge in my research area.

During my PhD, I got to know many amazing people who they became good friends of

mine. Here, I try to remember as many of their names as possible.

At UH and in Houston, Hessam Mohammadmoradi (Moradi), Milad Heydariaan, Yaser

Karbaschi, Farnaz Ziaee, Foroozan Akhavan, Hosein Neeli, Amir Hossein Souri, Reza Fathi,

Mohammadmehdi Ezzatabadipour, Hasan Salehi Najafabadi, Masoud Poshtiban, Siddhartha

Jana, Shengrong Yin, Nour Smaoui, Nacer Khalil, Fabio Zegarra, Caleb Daugherty, Andrei

Gasic, Yossi Eliaz, Pengzhi Zhang, Jacob Ezerski, James Liman, Jacob Tinnin, Carlos Bueno,

and Jules Nde.

At NVIDIA and PGI, Chris (CJ) Newburn, Chris Lamb, Anshuman Goswami, Sreeram

Potluri, Michael Wolfe, Mathew (Mat) Colgrove, Duncan Poole, Pat Brooks, James Beyer,

Guray Ozen, Julia Levites, Jeff Larkin, Robert Searles, and Jinxin (Brian) Yang.

v

Finally, and most importantly, my deepest appreciation goes to my beloved family back

in Iran, especially my mom Farideh, my dad Asadollah, my sister Midya, and all my aunties

and uncles (especially my close aunties, Zhila and Valieh). It has been a very long journey,

both in time and space for me and you. I would not have been able to do this without your

unconditional love and support from such a distance. This dissertation is devoted to all of

you because of all the sacrifices that you have made for me during the 33 years of my life

(and especially the last 5 years) that I had on this planet. Thank you!

vi

Abstract
Supercomputers are at the forefront of science and technology and play a crucial role in

the advancement of contemporary scientific and industrial domains. Such advancement is

due to the rapid developments of the underlying hardware of supercomputers, which in turn,

have led to complicated hardware designs. Unlike decades ago when supercomputers were

homogeneous in their design, their current developments have been widely heterogeneous to

lower their energy and power consumption.

As hardware architectures of supercomputers become complex, so do the software ap-

plications that target them. In recent years, scientists have been utilizing directive-based

programming models, such as OpenMP and OpenACC, to mitigate the complexity of de-

veloping software. These programming models enable scientists to parallelize their code

with minimum code interventions from their developers. However, targeting heterogeneous

systems effectively is still a challenge despite having productive programming environments.

In this dissertation, we will introduce a directive-based programming model and a hier-

archical model to improve the usability and portability of several scientific applications and

prepare them for the exascale era. For the first model, our pointerchain directive replaces

a chain of pointers with its corresponding effective address inside a parallel region of code.

Pointerchain enables developers to efficiently perform deep copying of the data structures

in heterogeneous platforms. Based on our analysis, pointerchain has led to 39% and 38%

reductions in the amount of generated code and the total executed instructions, respectively.

Secondly, our hierarchical model, Gecko, abstracts the underlying memory hierarchy of

the exascale platforms. This abstraction paves the way for developing scientific applications

on supercomputers. To prove its feasibility, we developed an implementation of Gecko as

a directive-based programming model. Moreover, to evaluate its effectiveness, we ported

real scientific benchmark applications — ranging from linear algebra to fluid dynamics — to

Gecko. Furthermore, we also demonstrated how Gecko helps developers with code portability

and ease-of-use in real scenarios. Gecko achieved a 3.3 speedup on a four-GPU system with

respect to one single GPU while having only a single source-code base.

vii

Table of Contents

1 Introduction 1

1.1 What is High-performance Computing (HPC)? 1

1.2 Heterogeneity Is the Answer . 2

1.2.1 Node-level Heterogeneity . 3

1.2.2 Chip-level Heterogeneity . 3

1.2.3 Heterogeneity of On-chip Memories 5

1.3 Abstraction Models . 6

1.4 Why Does HPC Matter? . 9

1.5 Organization of this Dissertation . 10

2 Background 12

2.1 Challenges of Nested Data Structures . 14

2.2 Challenges of Accessing Memory in Heterogeneous Systems 16

3 Chain of Pointers and Deep Copy 19

3.1 The Programmatic Feature Gap . 19

3.2 Proposed Directive: pointerchain . 22

3.2.1 Expanded Version . 23

3.2.2 Condensed Version . 24

3.2.3 Sample Code . 25

3.3 Implementation Strategy . 27

3.4 C++ Pointers . 28

4 Deep Copy and Microbenchmarking 30

viii

4.1 Semantics of Deep Copy . 30

4.2 Methodology . 32

4.2.1 Linear Scenario . 32

4.2.2 Dense Scenario . 36

4.3 Experimental Setup . 39

4.4 Results . 41

4.4.1 Linear Scenario . 41

4.4.2 Dense Scenario . 46

4.4.3 Instruction Count . 49

5 CoMD: A Case Study in Molecular Dynamics and Our Optimization Strate-
gies 51

5.1 Reference Implementations . 54

5.2 Parallelizing CoMD with OpenACC . 55

5.3 Porting CoMD: Performance Implications . 58

5.3.1 Measurement Methodology . 58

5.3.2 Model Preparation . 59

5.4 Results . 59

5.4.1 Speedup for each Parallelization Step 59

5.4.2 Floating-point Operations per Seconds 63

5.4.3 Scalability with Data Size . 63

5.4.4 Scalability Measured at Different Architectures 64

5.4.5 Scalability with Multiple GPUs . 65

5.4.6 Effects on the Source Code . 67

6 Gecko: A Hierarchical Memory Model 69

6.1 The Gecko Model . 70

6.2 Key Features of Gecko . 74

6.2.1 Minimum Code Changes . 74

6.2.2 Dynamic Hierarchy Tree . 75

6.3 Challenges Raised by the Key Features . 78

ix

6.3.1 Finding Location to Execute Code 78

6.3.2 Workload Distribution Policy . 81

6.3.3 Gecko Runtime Library . 85

6.3.4 Memory Allocation in Gecko . 88

6.4 Gecko in Use . 93

6.5 Gecko’s Implementation . 95

6.6 Results . 96

6.6.1 Steps in Porting Applications to Gecko 98

6.6.2 Experimental Setup . 99

6.6.3 Sustainable Bandwidth . 99

6.6.4 Rodinia Benchmarks . 103

7 Conclusion 107

7.1 Current Effort . 107

7.2 Next Steps Looking Forward . 109

7.2.1 Big Picture . 110

7.2.2 Other Scientific Areas . 110

Bibliography 112

A Gecko’s Directives 122

A.1 Location Type . 122

A.2 Location . 123

A.3 Hierarchy . 124

A.4 Configuration File . 125

A.5 Drawing . 127

A.6 Memory Operations . 127

A.6.1 Allocating/Freeing Memory . 127

A.6.2 Copy and Move . 129

A.6.3 Register/Unregister . 130

A.7 Region . 131

x

A.8 Synchronization Point . 133

B Funding and Source Code 135

B.1 Funding . 135

B.2 Source Code . 135

xi

List of Tables

4.1 Total data size of our data structure tree as defined in the Linear scenario for
the allinit-allused scheme. Equation 4.1 was used to calculate these numbers.
The first row is in KiB, while the rest of the numbers is in MiB. 45

4.2 Total data size of our data structure tree as defined in the Dense scenario.
Equation 4.3 was used to calculate these numbers. 48

4.3 Total instruction generated by the PGI compiler (for Tesla V100) for the
Linear scenario. Mar. and PC refer to the marshalling and pointerchain

schemes, respectively. The numbers in parentheses show the increase with
respect to UVM. 50

4.4 Total instruction generated by the PGI compiler (for Tesla V100) for the
Dense scenario. Mar. and PC refer to the marshalling and pointerchain

schemes, respectively. The numbers in parentheses show the increase with
respect to UVM. 50

5.1 Overview of all steps that were applied to CoMD. The pc column designates
whether pointerchain was applied at that step or not. 57

5.2 Effect of the OpenACC adaption on the source code – lines of code (LOC)
column shows extra line required to implement this step with respect to the
OpenMP implementation as the base version. The third column (%) shows
the increase with respect to the base version. 68

6.1 List of all the benchmarks from Rodinia that were ported to Gecko and their
associated domains . 98

6.2 List of benchmarks in the Rodinia Suite that were ported to Gecko - A:
Number of kernels in the code. B: Total kernel launches. SP: Single Precision
- DP: Double Precision - int: Integer - Mixed: DP+int 103

xii

List of Figures

1.1 The trend of 42 years of microprocessor design. Courtesy of Karl Rupp [96]. 2

1.2 Three scenarios to integrate 150-million transistors into different cores in a
heterogeneous architecture. Adopted from Borkar and Chien [13]. 4

1.3 A heterogeneous processor with three different frequency domains. Each fre-
quency domain has four cores. This design will lead to an energy-efficient
processor. Adopted from Borkar and Chien [13]. 5

1.4 An Abstract Machine Model (AMM) for future architectures. This figure
represents the increasing level of complexity that high performance computing
systems will face in near future (as one can also observe from Figure 2.1).
Adopted from Unat et al. [104]. 6

1.5 The latest embedded platforms by NVidia. c© Courtesy of NVidia. 9

1.6 NVidia’s DGX-2 and a snapshot of the output of the Clara platforms. c© Cour-
tesy of NVidia. 10

2.1 The architecture of a single node in Summit [84]. c© Courtesy of Oak Ridge
National Laboratory (ORNL). Each node possesses two processors (IBM Pow-
er9 shown as P9), two DRAM modules as the main memory (256 GB each),
an NVM memory module (to save the temporary state of the application), a
network interface card (NIC), and six NVIDIA Volta GPUs. Note how local
storage (NVM) becomes a bottleneck to the system performance and how NIC
provides better bandwidth in comparison to NVM. 13

3.1 An example of a pointer chain. An illustration of a data structure and its
children. In order to reach the position array, one must go through a chain
of pointers to extract the effective address. 20

4.1 Steps to perform a deep copy operation when the targeting device is a GPU.
The horizontal line separates the memory spaces between the host and the
GPU. (a) initialize the data structures; (b) copy the main structure to the
GPU; (c) copy other nested data structures to the device; (d) fix corresponding
pointers in every data structure. 31

xiii

4.2 The overview of the Linear scenario as described in Section 4.2.1. Increasing
k increases the depth of our nested data structures. 33

4.3 The overview of the Dense scenario as described in Section 4.2.2. Increasing
q increases the data size exponentially. Unlike the Linear scenario, the depth
is fixed to three levels. The dots in the figure show the recursive nature of the
data structure. 37

4.4 Normalized wall-clock time with respect to UVM for the Linear scenario. . . 42

4.5 Normalized kernel time with respect to UVM for the Linear scenario. 44

4.6 Normalized wall-clock time and kernel time to UVM for Dense scenario. The
Y axes are in logarithmic scale. Lower is better. 47

5.1 Link-cell decomposition of space [105, 14]. The cutoff range is also shown for
a specific atom. The 2D space is divided into 5-by-5 cells. The cell containing
the atom and its neighboring cells are displayed in gray. 53

5.2 The relationship among the optimization steps that were taken to parallelize
CoMD. For detailed description of each step, please refer to Table 5.1. 58

5.3 Normalized execution time after applying all optimization steps and run on
NVIDIA P100. After applying all 10 steps on the OpenACC code, we were
able to reach 61%, 129%, and 112% of performance of the CUDA kernels
for ComputeForce, AdvancePosition, and AdvanceVelocity, respectively.
Results are normalized with respect to CUDA. OMP-ICC and OMP-PGI refer
to the OpenMP version of the code compiled with the Intel and PGI compilers,
respectively. ACC-MC refers to the OpenACC version of the code for the
multicore architecture (compiled with the PGI compiler). 60

5.4 Giga floating-point operations per second (GFLOP/s). In case of the Compute-
Force kernel, despite comparable speedups with respect to CUDA, the number
of floating-points operations that OpenACC implementation executes is be-
hind CUDA’s performance. The OpenACC implementation of AdvanceVel-

ocity performs better than its CUDA’s counterpart. Measurements are per-
formed on P100 of Nvidia’s PSG cluster. 62

5.5 Scalability with different data sizes with one GPU of NVIDIA P100. One can
observe that performance is not lost when data size is increased. OpenACC-
Multicore performs better in comparison to OpenMP counterparts. The lower
the value, the better the performance results. Measurements are performed
on Nvidia’s P100 from PSG. 64

5.6 Scalability with different architectures while exploiting one GPU in the target
architecture. With new architectures, performance is improving by shortening
time. Lower is better. 65

xiv

5.7 Scalability of implementations on NVIDIA P100. The ComputeForce kernel
is performing linearly and its performance is close to its CUDA counterpart. 66

5.8 Scalability of implementations on NVIDIA V100. For a 2,048,000-atom sys-
tem, OpenACC and CUDA scale linearly with the number of GPUs. In case of
ComputeForce, OpenACC shows more scalable performance in comparison to
CUDA. The CUDA implementation of the AdvanceVelocity kernel displays
a super-linear performance. 67

6.1 An overview of a hierarchical shared memory system. Locations are specified
with Loc prefix. Small boxes represent variables in the system. The solid lines
show the location where variables are defined. The dotted lines represent the
locations in hierarchy that have access to that variable. Virtual locations are
designated with “vir.” tags. Tree is a hierarchical representation of relation-
ship among locations. The root location is the topmost location that has no
parent. Leaves are locations at the bottom of the tree that have no children. 70

6.2 Gecko’s model representing various system. ORNL’s Summit (a and b) with
two IBM POWER9 processors and six NVIDIA Volta V100 GPUs – Tianhe-2
(c) with two Intel Xeon processors and three Intel Xeon Phi co-processors –
NUMA architecture with four NUMA nodes (d) – A complex platform with
multiple types of accelerators (e) . 73

6.3 Polymorphic capabilities of Gecko lead to fewer source code modifications.
We can change the location hierarchy at run time. Our computational target
can be chosen at runtime: processors (b) or GPUs (c). Gecko also supports
deep hierarchies in order to provide more flexibility to applications (d). We
are able to extend the hierarchy as workload size changes (e). 76

6.4 Four different possible scenarios in the MCD algorithm. 80

6.5 Four different workload distribution policies that are supported in Gecko. . . 83

6.6 An overview of Gecko’s architecture. This figure shows how the Gecko Run-
time Library (GRL) sits on top of other libraries to abstract the application
from the various hardware and software combinations. 85

6.7 Reversed Hash Table (RHT) with a code snippet that demonstrates the memory
allocate clause in Gecko and its effect on the Gecko Memory Table (GMT). 86

6.8 Steps taken by Gecko that show how distance-based memory allocations are
performed with minimum code modification. By simply annotating the mem-
ory allocation clause with distance, Gecko governs the correct state of the
pointers internally. 92

xv

6.9 Right: A snapshot of the Stream benchmark with Gecko’s directives. Top
Left: A sample configuration file that represents Configuration (a) on the
bottom left. The first two lines are comments. Bottom Left: Visualization
of different configurations. Note how placing “LocH” in different positions in
the hierarchy results in targeting different architectures. Configuration (a)
and (b) target general-purpose processors. Configurations (c) and (d) target
one single GPU. Configurations (e) and (f) target multi-GPU and multi-
architecture systems, respectively. 94

6.10 An overview of the compilation stack in Gecko. 97

6.11 Sustainable bandwidth of the Stream benchmark on PSG and Sabine. Left:
multicore systems, Center: single- and multi-GPU systems, and Right: het-
erogeneous systems. 101

6.12 Left: Speedup results of the multi-GPU execution of the Rodinia benchmarks
on PSG and Sabine, specified with Configuration (e) in Figure 6.9. Right:
Heatmap of the execution time of cfd and srad v2 for different host contribu-
tions and number of GPUs. 105

xvi

Chapter 1

Introduction

1.1 What is High-performance Computing (HPC)?

High-performance computing (HPC) plays an imperative role in the advancement of engi-

neering, science, research, security, and industry. It is at the forefront of discovery in science

and commercial innovations over the past years. HPC, in general, refers to the utilization of

high-end supercomputers and computing machines to solve complex problems through data

analysis and simulations. A supercomputer is basically a collection of high-end computers

(referred to as compute nodes), which are connected through an efficient high-speed network

infrastructure. Each compute node comprises multiple processing cores with their own local

memory space. Modern generations of supercomputers have hundreds of thousands of such

compute nodes to satisfy the ever-growing performance demand of the HPC applications.

Currently, we are reaching the exascale era of HPC as the modern generation HPC systems

are performing one quintillion (1018) floating-point operations per second. With such capa-

bility, HPC systems are experiencing major changes to overcome the constraints imposed by

the energy, power [39], and locality of the exascale systems [6, 106].

1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Year

42 Years of Microprocessor Trend Data

Figure 1.1: The trend of 42 years of microprocessor design. Courtesy of Karl Rupp [96].

1.2 Heterogeneity Is the Answer

Since 1971, Moore’s Law [98] has been the main source of performance improvement in

microprocessor design. Based on the observation of Gordon Moore, the number of transis-

tors on a chip is essentially doubling every two years, which has implicitly led to doubling

performance. However, with the emergence of the power wall [6, 39], the landscape of mul-

tiprocessor design has changed dramatically. Since the early 2000s, the working frequency

of transistors has been essentially flat, and this has also led to a constant performance rate

(as is shown by the blue circles in Figure 1.1). As elegantly put by Sutter: “The free lunch

is over [101].1” This phenomenon is also referred to as the law of Dennard scaling [24]2.

Consequently, computer architects are increasing the number of logical cores on the device

1This statement refers to the fact that software no longer runs faster with each successive generation of
microprocessors. Developers have to modify their software to utilize their hardware to the fullest extent.

2In short, Dennard scaling refers to the fact that increasing the working frequency of transistors is not a
feasible approach anymore, and we have to turn to new methods (e.g., multicore design and heterogeneous
computing).

2

in order to utilize the potential performance of all available transistors on the chip. That

being the case, we begin to observe the advent of the multicore era, as evidenced by the

rising rate of the number of logical cores in Figure 1.1.

Dennard scaling [24] has instigated the HPC community’s adaptation of heterogeneous

architectures in the design of supercomputers and high-performance clusters. As a result,

heterogeneity has been the primary source of computational performance in modern high

performance systems [7, 25, 59] since the decline of conventional improvements [24, 104].

1.2.1 Node-level Heterogeneity

Heterogeneity is not realized through a single approach. A broad range of decisions on

the architectural level leads to heterogeneity. On the node level, integration of accelerators

with conventional processors has been the primary technique in improving the performance

of current supercomputers. Accelerators like Graphics Processing Units (GPUs) [53] and

Many Integrated Cores (MICs) have been widely adopted in the design of modern HPC

systems. Such systems possess one or two conventional processors with a couple of GPUs

and MICs. As an example, the ORNL’s latest supercomputer, Summit [84], possesses six

NVIDIA Volta V100 GPUs and only two IBM POWER9 processors per node. Similarly, the

Tianhe-2 supercomputer [61], located in the National Supercomputer Center in Guangzhou,

China, is equipped with three Intel Xeon Phi MIC accelerators while having only two Intel

Ivybridge Xeon processors per node.

1.2.2 Chip-level Heterogeneity

On the chip level, we achieve heterogeneity with diversity in the chip design. Any diversity in

frequency, voltage, core area, application3, and instruction set (ISA) leads to a heterogeneous

3Application-specific cores are those cores that are dedicated to accelerate specific class of problems.
Examples of such cores are Digital Signal Processor (DSP), encryption accelerators, and speech accelerators.

3

1 2

3 4

5 6

Large-core Homogeneous

1

Small-core Homogeneous

2 5

6 7 10

3026 27

1 2

Heterogeneous

1 2 5

2016 17

25 million
transistors

5 million
transistors

(a) (b) (c)

Figure 1.2: Three scenarios to integrate 150-million transistors into different cores in a heteroge-
neous architecture. Adopted from Borkar and Chien [13].

chip design. Figure 1.2 shows three integration scenarios when we budget our transistors dif-

ferently. As illustrated in Figure 1.2a, we can have six large (fat) cores on a single chip, where

each core has 25 million transistors for a total of 150 million transistors. This is the most

common approach in the design of processors in the multicore era. If we change our budget

strategy and allocate only five million transistors to each small (thin) core, as illustrated

in Figure 1.2b, we will end up having a homogeneous architecture with 30 cores. However,

by mixing these two approaches, we will end up having a heterogeneous architecture. The

imposed heterogeneity is due to the diversity in the core areas on the chip, as illustrated

in Figure 1.2c. Furthermore, any variations to the working frequency of the on-chip cores

results in a heterogeneous design too. For instance, Figure 1.3 depicts a scenario where a few

large cores are utilized for single-thread performance while many small cores, under different

working frequencies, are used to perform energy-efficiently.

4

Large
Core

Large
Core

f/2 f/4 f f/2

f/4 f f/2 f/4

f f/2 f/4 f

Energy
efficient
cores

Figure 1.3: A heterogeneous processor with three different frequency domains. Each frequency
domain has four cores. This design will lead to an energy-efficient processor. Adopted from Borkar
and Chien [13].

1.2.3 Heterogeneity of On-chip Memories

The complexity arises when we use the transistor budget to expand the on-chip storage

capability of the system. The computational and memory components in platforms like

Summit [84] are installed on separate chips and connected to each other through fast in-

terconnect networks. Accessing data from another component is feasible only through such

interconnects. However, data transfer via the interconnects is very slow, and it should be

avoided. As a result, computer architects are integrating processors and memory modules

on a single chip. Such integration has been feasible with advances in semiconductor manu-

facturing.

This radical change in architecture design leads to better data locality for on-chip proces-

sors, which minimizes data transfer between on- and off-chip components. Modern on-chip

memories have manifested themselves in the form of scratchpad memories [10], 3D Stacked

memories [64, 110], and Flash-based memories [58]. The integration of these components

on the chip generates another level of complexity, which inevitably will happen in upcoming

architectures and chips in the near future.

5

System-on-a-Chip

Scratchpad
Memories /
L3 Cache

Off-chip

D
R
AM

N
VR

AM

H
igh C

apacity, Low
 Bandw

idth

3D-Stacked
Memory

Low Capacity, High Bandwidth

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

Fat
Core

Fat
Core

Fat
Core

Fat
Core Thin Cores /

Accelerators

NoC

Shared Memory
Among Thin Cores

Network-on-Chip

Non-Volatile RAM

Memory NoC

Figure 1.4: An Abstract Machine Model (AMM) for future architectures. This figure represents
the increasing level of complexity that high performance computing systems will face in near future
(as one can also observe from Figure 2.1). Adopted from Unat et al. [104].

1.3 Abstraction Models

Figure 1.4 provides a detailed abstract model of a future architecture [104], which we will

refer to it as the Abstract Machine Model (AMM) throughout this work. An exascale node in

the future will most likely follow this configuration. In AMM, a node is composed of a set of

thin cores (e.g., GPUs and MICs) and fat cores (e.g., general purpose processors like x86 [48]

and Arm [49, 43] processors). Both of them (thin and fat cores) are embedded inside a single

chip to minimize the data transfer time between all the components. Fat cores in the figure

are characterized by their sophisticated branch prediction units, deep pipelines, instruction-

level parallelism, and other architectural features that optimize the serial execution to its

full extent. Fat cores are similar to the conventional processors in current systems.

6

Thin cores, on the other hand, have less complex design, consume less energy, need

less physical die space, and have higher throughput. Such cores are designed to boost the

performance of data parallelism algorithms [7]. Both fat and thin cores communicate with

each other and transfer data via a customized network on the chip, known as Network-on-

Chip (NoC) as shown in Figure 1.4 [11, 34]. This model is providing better spatial locality

to the cores in comparison to the contemporary approaches where cores and memories reside

on different chips.

On-chip memories are utilized to provide data in high bandwidth with low latency to the

on-chip cores. This design provides high spatial locality to cores. Consequently, we are in

dire need of a simple and robust model to efficiently express such implicit memory hierarchy

along with the parallelization opportunities available in current advances in hardware design

for scientific applications [104].

As mentioned above, compute nodes are evolving and becoming increasingly complex

while offering several folds of parallelism; hence, compute nodes demand sophisticated pro-

gramming approaches to exploit every parallelism opportunity exhibited by their underlying

hardware [73, 104]. As compute nodes become complex on the hardware level, so does de-

veloping software applications for them. Hence, to leverage available hardware resources

on all connected devices, we need low-level programming frameworks, such as CUDA and

OpenCL, for developers. However, merely exploiting low-level or proprietary languages such

as CUDA or OpenCL in the long run will be impractical. A low-level framework comes with

maintenance and debugging challenges, the inability to move the code to any other hardware,

and the steep learning curve that demands an in-depth knowledge of memory, hardware, and

software stack. We need to examine trade-offs while applying optimization techniques that

maximize utilization of accelerator devices (e.g., GPUs and MICs) so that the additional

programming burden would still lead to noticeable improvement. Moreover, as researchers

have confirmed in their studies [73, 102, 104, 13, 69], there is an urgent need for portability

7

of software architecture in order to support recent developments in HPC. Easily portable

software tools would allow the scientific community to spend more time on science and less

time on programming challenges. This serves as a strong motivation for our work.

High-level directive-based programming models [83, 82, 60, 95] have been a promising

solution to map scientific applications to hardware with rich and evolving features. Such

models typically require minimal to no code changes, thus allowing scientists to focus more

on science and less on the programming itself. Contrary to the legacy approaches4, which

are inherently infeasible with the currently rapid advancement in hardware development,

directive-based programming models provide unprecedented opportunities and freedom to

developers of scientific applications in utilizing a system to its full extent.

As clearly stated before, heterogeneous systems are the current state-of-the-art computing

platform that support scientific simulations beyond a petascale computing era. Such a

demand suggests supplying nodes with accelerators that feature high levels of parallelism

such as on-chip or off-chip GPUs and MICs. In the Top500 list of high-computing resources

in December 2017 [103], eight out of the top ten supercomputers are equipped with varying

types of accelerators. This number nearly triples when it is compared to the same list in

December 2010 where only three out of the top ten architectures adopted GPUs. This

progress shows how heterogeneity has become the de facto standard in designing a modern

HPC system. A next-generation exascale system by the year 2023 [73] will require the

effective integration of different accelerators [66, 4] into computational nodes that expect

high levels of parallelism.

4The legacy approaches utilize a runtime library for every architecture and platform that we target in
our application.

8

(a) Nvidia Jetson AGX Xavier (b) Nvidia Jetson TX2

Figure 1.5: The latest embedded platforms by NVidia. c© Courtesy of NVidia.

1.4 Why Does HPC Matter?

The advances in HPC has also led to the development of various commercial technologies,

which potentially impact every day of our lives. Due to the success of the NVidia GPUs in

their experiences in HPC, they have brought the promised computational power of GPUs

to industry with recent products in the autonomous (self-driving) vehicles and healthcare

domains. As the need to deploy the self-driving technology to bring a safer experience

among drivers grows, they need high-performance computing processors to perform their

split-second decisions in controlling cars on the road. To address this issue, NVidia has

introduced its embedded platform, Jetson [79, 76]. This embedded platform has expanded its

application to other areas in industry as well, such as robotics [113, 76], Artificial Intelligence

of Things (AIoT) [62], manufacturing [67, 76], and construction [9]. Figure 1.5 shows two of

the latest Nvidia flagship products, the Jetson AGX Xavier and Jetson TX2 platforms.

NVidia has disrupted the healthcare industry as well with its latest hardware and soft-

ware stack. NVidia Clara [77] is a computational platform that empowers physicians and

doctors to improve the diagnostic accuracy and the quality of their medical imagings to

enhance patient outcomes and reduce the cost of their care. This has been enabled with the

latest DGX-2 products by NVidia. DGX-2 is the first two-PetaFLOPs system that engages

9

(a) Nvidia DGX-2 [78] (b) A sample output of Nvidia Clara Imaging [77]

Figure 1.6: NVidia’s DGX-2 and a snapshot of the output of the Clara platforms. c© Courtesy

of NVidia.

16 GPUs (fully interconnected). Figure 1.6 shows a DGX-2 system and an output of an

image from NVidia Clara.

1.5 Organization of this Dissertation

In this work, we present two directives that make the current source codes portable for future

exascale systems with minimum code modifications. The first directive, pointerchain,

enables developers to deal with the chain of pointers in the source code. When source code

possesses nested data structures, the parallelization process becomes very complicated with

the current approaches when targeting modern accelerators. By maintaining the effective

address of the last pointer in the chain, pointerchain provides better flexibility to the

developers. Chapter 3 discusses the pointerchain directive, and we discuss a case study in

molecular dynamics (MD) domain based on pointerchain in Chapter 5 as well.

The second directive is a realization of the hierarchical model that we introduce to address

the heterogeneity in current HPC systems. Our model, Gecko, is a hierarchical distributed

view of shared memory architectures. Gecko enables developers to target heterogeneous

10

systems with minimum code modification, similar to pointerchain. With Gecko, an appli-

cation is able to target different architectures without any changes in the source code and,

more importantly, in the executable binary code. Chapter 6 discusses different capabilities

of Gecko in more details.

Portability of the current source codes for future hardware generations has always been

a concern of the scientific community. Supporting new architectures and platforms with the

same source code is the ultimate goal of scientists. To demonstrate how scientists can harness

Gecko’s potential to their benefit, we chose the Rodinia benchmark suite [16] and ported it

to Gecko [36]. The suite contains a number of benchmarks that possess different workload

characteristics. They have real applications in scientific domains. Each benchmark represents

different scientific domains that range from solving a system of linear algebras to traversing

and parsing graphs in graph-based algorithms. Chapter 6 discusses such benchmarks and

our efforts in porting them to Gecko.

Finally, this dissertation includes two appendices. Appendix A describes Gecko’s direc-

tives in detail. For each clause in Gecko, the syntax of the clause and an example for that

clause is provided. Appendix B describes the funding sources that generously supported this

work. It also includes the address of the online repository for all developed source codes

during this work.

11

Chapter 2

Background

Previously published content:

1. M. Ghane, S. Chandrasekaran, and M. S. Cheung. pointerchain: Tracing pointers
to their roots A case study in molecular dynamics simulations. Parallel Computing,
2019. [37]

2. M. Ghane, S. Chandrasekaran, and M. S. Cheung. Gecko: Hierarchical Distributed
View of Heterogeneous Shared Memory Architectures. In Proceedings of the 10th
International Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM ’19, New York, NY, USA, 2019. ACM. [36]

Heterogeneous computing systems comprise multiple and separate levels of memory

spaces; thus, they require a developer to explicitly issue data transfers from one memory

space to another with software application programming interfaces (APIs) [104]. In a system

composed of a host processor and an accelerator (referred to as device in this dissertation),

the host processor cannot directly access the data on the device and vice versa. For such

systems, the data are copied back and forth between the host and the device with an explicit

request from the host1. This issue has become particularly severe for supercomputers as the

1In this scenario, accelerators are passive elements, and the host is the active element that controls the
whole system (including the accelerators).

12

Figure 2.1: The architecture of a single node in Summit [84]. c© Courtesy of Oak Ridge National
Laboratory (ORNL). Each node possesses two processors (IBM Power9 shown as P9), two DRAM
modules as the main memory (256 GB each), an NVM memory module (to save the temporary
state of the application), a network interface card (NIC), and six NVIDIA Volta GPUs. Note how
local storage (NVM) becomes a bottleneck to the system performance and how NIC provides better
bandwidth in comparison to NVM.

number of devices connected to one node increases. For example, the Titan supercomputer

from ORNL [85] has only one NVIDIA K20 GPU2 per node, while this number for the lat-

est supercomputer, Summit from ORNL [84], is six NVIDIA Volta GPUs [84]. Figure 2.1

demonstrates the complexity of the Summit architecture for only one node. Each node pos-

sesses two processors (IBM Power9 shown as P9), two DRAM3 modules as the main memory

(each one has the capacity of 256 GB), an NVM memory module (to save the temporary

results of the application), a network interface card (NIC) to communicate with other nodes

2Graphics Processing Unit
3Dynamic Random-access Memory

13

through the high performance network, and six NVIDIA Volta GPUs. Each GPU has an

HBM memory module on the card with a 16 GB global memory. Three GPUs form a clique

amongst themselves and are connected through NVLink connections. They also form a lo-

cality domain with one of the P9 processors. Supercomputers with different device families

will continue to exacerbate this issue [104].

Developing software for the heterogeneous systems poses a challenge to the community

of scientific applications. First, we will discuss how nested data structures in scientific appli-

cations are an issue for developers to handle, especially as developers target heterogeneous

architectures. Due to their separate memory spaces, handling nested data structures is cum-

bersome work and leads to severe performance loss in heterogeneous architectures. Second,

we will discuss the challenges that the scientific applications are facing in targeting hetero-

geneous architectures. In addition, we will argue how portability has become a first-class

concern for future generations of the scientific applications.

2.1 Challenges of Nested Data Structures

As a scientific framework becomes sophisticated, so do its data structures. A data structure

typically includes pointers (or dynamic arrays) that point to primitive data types or to other

user-defined data types [12, 18]. As a result, transfer of the data structure from the host

to the other devices mandates the transfer of not only the main data structure but also its

nested data structures, a process known as deep copy [81, 18]. The tracking of pointers that

represent the main data structure on the host from its counterpart on the device further

complicates the maintenance of the data structure. Although this complicated process of

deep copy avoids a major change in the source codes, it imposes unnecessary data transfers.

In some cases, a selective deep copy is sufficient when only a subset of the fields of the

device’s data structure is of interest [81]; however, even though the data motion decreases

14

proportionately, the burden to maintain data consistency among the host and other devices

still exists.

This dissertation addresses the shortcomings of data transfer between the host and a

device by extracting the effective address of the final pointer of a chain of pointers [18]. Uti-

lizing the effective address leads to a reduction in the generated assembly code by replacing

the pointer chain with a single pointer as well. This single pointer suffices for the correct

execution of the kernel on both the host and the device with no code modification. As a

result, our method improves the performance of our parallel regions by reducing the gener-

ated assembly code and omitting an unnecessary deep copy of the data structures between

the host and the device. We have developed the pointerchain directive to provide these

helpful features to developers in data transfer, which eliminates the need for a complete

implementation of deep copy in a compiler and runtime library and modifying the source

codes. Chapter 3 provides detailed discussion of our proposed directive.

We have demonstrated the merit of pointerchain by improving the portability of a

molecular dynamics (MD) proxy application (known as CoMD [21]) on a heterogeneous

computing system. MD is an essential tool for investigating the dynamics and properties

of small molecules at the nano-scale. It simulates the physical movements of atoms and

molecules with a Hamiltonian of N-body interactions. Over the past three decades, we have

witnessed the evolution of MD simulations as a computational microscope that has provided

a unique framework for understanding the molecular underpinning of cellular biology [91],

which applies to a large number of real-world examples [42, 114, 100, 32, 115, 29, 99].

Currently, major MD packages, such as AMBER [90], LAMMPS [93], GROMACS [63],

and NAMD [92], use low-level approaches, like CUDA [75] and OpenCL [54], to utilize

GPUs to their benefits for both code execution and data transfer. They are not, however,

equipped for the dire challenge in next-generation exascale computing in which the demand

of parallelism [86] is achieved by the integration of a wide variety of accelerators, such as

15

GPUs [53] and MICs [66, 4], into the high-performance computational nodes.

We have chosen the OpenACC programming model [82] as the target programming model

in implementing the pointerchain directive. Ratified in 2011, OpenACC is a standard par-

allel programming model designed to simplify the development process of scientific applica-

tions for heterogeneous architectures [108, 45]. The success of our approach has far-reaching

impact on modernizing legacy MD codes, readying them for the exascale computing. Chap-

ter 5 provides detailed discussion on MD simulation frameworks and steps we took to par-

allelize an MD proxy code with OpenACC and pointerchain.

2.2 Challenges of Accessing Memory in Heterogeneous

Systems

The aforementioned heterogeneity in current and future generation of exascale supercom-

puters has become complicated as we face the challenges imposed by the “memory wall” [7].

Essentially, memory wall refers to the phenomenon of how the memory subsystem has be-

come a huge bottleneck for the performance in the current systems. To mitigate the effects of

the memory wall, the memory subsystem has undergone many changes, and the technologies

in designing the memory subsystem have advanced substantially.

Recent advances in memory technologies have led to dramatic changes in their hierar-

chy. Deep memory hierarchy is no longer defined as multiple cache levels (L1, L2, and L3),

DRAM, and external memory devices. The inclusion of novel memory technologies, such as

non-volatile memory (NVM) [70] and 3D-stacked memory [64, 110] has complicated the hier-

archy too. Various technologies like High Bandwidth Memory (HBM) [50], Hybrid Memory

Cube (HMC) [88], and Phase-change Memory (PCM) [109, 94] address different aspects of

the challenges imposed by the memory wall (like trade-offs between bandwidth and capacity

16

or on-chip versus off-chip memories). As the design factors grow, the complexity in both

the hardware and the software components compels researchers to develop a performance-,

developer-friendly approach. The above-mentioned complexity is exacerbated when multiple

devices with different hardware types are utilized to parallelize the code. It is particularly

problematic when they are equipped with diverse memory technologies, e.g., the Processing-

In-Memory (PIM) technology on multicore and GPU architectures [2, 87]. Recent advances

in die-stacking (3D) technology has put PIM in the spotlight as one of the promising meth-

ods to tackle the memory wall [65, 74]. It tries to bring the memory subsystem closer to the

compute units so that the data transfer between them is performed at higher bandwidth,

lower latency, and lower energy consumption in comparison to the other memory technolo-

gies in the system (which resides outside of the processor, unlike PIM units). The potentials

of the PIM concept has disrupted both homogeneous and heterogeneous domains [74, 87].

To that end, a simple yet robust model helps applications to utilize the hardware to their

benefit [28, 112]. Applications can put their frequently used data close to their computational

cores in hope of maximizing locality, while the data that are used less frequently are placed

as far as possible with respect to the compute unit (for instance, in the main memory or

the secondary-storage devices like hard disks or solid-state drives). That being the case,

we will present Gecko4 [36], a novel programming model and runtime library system that

represents the hierarchical structure of memory and computational resources in current and

future HPC systems. Gecko addresses multi-device heterogeneous platforms and provides a

portable software platform to applications to add and remove memory and computational

resources at the compilation and execution time.

Gecko provides a distributed shared memory (DSM) view of available memory hierarchy

in a hierarchical tree model to the applications. Gecko, however, has a specific rule: a

variable defined in a particular location is accessible by that location and all

4Accessible from: https://github.com/milladgit/gecko.

17

of its children, while the same variable remains inaccessible with respect to its

parent. This rule enables applications to improve their data locality by bringing the data

closer to where it is supposed to be processed, and eventually prevent the side-effects of data

sharing (also known as false sharing [40]). Developed as a directive-based programming

model on top of OpenACC [82] and OpenMP [83], Gecko consists of a set of directives

that help applications to declare devices, allocate memories, and launch kernels on different

devices. Chapter 6 provides a detailed discussion on Gecko and how to utilize it.

18

Chapter 3

Chain of Pointers and Deep Copy

Previously published content:

1. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung, Margaret S., “pointerchain:
Tracing pointers to their roots - A case study in molecular dynamics simulations.”
Parallel Comput., 2019. [37]

2. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung Margaret S., “Assessing
Performance Implications of Deep Copy Operations via Microbenchmarking.” arXiv
preprint, 2019. [35]

In this chapter, we will present a directive, called pointerchain, as an extension to

the OpenACC programming model. The proposed directive will help developers to trans-

fer complex data structures between connected devices and the host with minimum code

intervention.

3.1 The Programmatic Feature Gap

Modern HPC platforms possess two separate memory spaces: the host memory space and the

device memory space. A memory allocation in one of them does not guarantee an allocation

19

0x123

0x456

0x789

0xA123

0xA456

0xA789

0xB123

simulation

atoms

traits
positions

n atoms

Figure 3.1: An example of a pointer chain. An illustration of a data structure and its children. In
order to reach the position array, one must go through a chain of pointers to extract the effective
address.

in the other. Such an approach demands a complete replication of any data structure in both

spaces in order to guarantee data consistency. However, data structures get complicated as

they retain complex states of the application.

Figure 3.1 shows a typical case in the design of a data structure for scientific appli-

cations. The arrows represent pointers. The number next to each structure shows the

physical address of an object in the main memory. Here, the main data structure is the

simulation structure. Each object of this structure has pointers embedded to other struc-

tures, like the atoms structure. The atoms structure also has a pointer to another traits

structure, and so on. As a result, in order to access the elements of the positions ar-

ray from the simulation object we have to dereference the following chain of pointers:

simulation->atoms->traits->positions. Every arrow from this chain goes through a

dereference process to extract the effective address of the final pointer. Throughout this

thesis, this chain of of accesses to reach the final pointer (in this case, positions) is called a

pointer chain. Since every pointer chain eventually resolves to a memory address, we propose

the extraction of the effective address and replace it with the chain in the parallel sections

of the code.

20

Currently, there are two primary approaches to address pointer chains. The first approach

is the deep copy that requires excessive data transfer between the host and the device as

previously mentioned in the Introduction chapter. The second approach is the utilization

of Unified Virtual Memory (UVM) on Nvidia devices. UVM provides a single coherent

memory image to all processors (CPUs1 and GPUs) in the system, which is accessible through

a common address space [57]. It eliminates the necessity of explicit data movement by

applications. Although it is an effortless approach for developers, it has several drawbacks:

1) It is only supported by Nvidia devices and not by others (Xeon Phis, AMD GPUs, FPGAs,

etc.); 2) It is not a performance-friendly approach due to its arbitrary memory transfers that

potentially happen at any time. The consistency protocol in UVM depends on the underlying

device driver that traces memory page-faults on both host and device memories. Whenever

a page fault occurs on the device, the CUDA driver fetches the most up-to-date version of

the page from the main memory and provides it to the GPU. Similar steps are taken when

a page-fault happens on the host.

Although deep copy and UVM address the data consistency, they impose different per-

formance overheads on the application. In many cases, we are looking for a somewhat

intermediate approach; while we are not interested in making a whole object and all of its

nested children objects accessible on the device (like UVM), we want to transfer only a

subset of the data structures to the device without imposing the deep copy’s overhead on

the performance of our application. Our proposed approach, pointerchain, is meant to be

a minimal approach that borrows the beneficial traits of the above-mentioned approaches.

pointerchain is a directive-based approach that provides selective accesses to data fields of

a structure while having a less error-prone implementation.

1Central Processing Units

21

3.2 Proposed Directive: pointerchain

As a compiler reaches a pointer chain in the source code, it generates a set of machine

instructions to dereference the pointer and correctly extract the effective address of the

chain for both the host and the device. However, dereferencing each intermediate pointer in

the chain is the equivalent of a memory load operation, which is a high cost operation. As

the pointer chain lengthens with a growing number of intermediate pointers, the program

performs excessive memory load operations to extract the effective address. This extraction

process impedes performance, especially when the process happens within a loop (for instance

a for loop). In order to alleviate the implications of the extraction process, we propose to

perform the extraction process before the computation region begins, and then reuse the

extracted address within the region afterwards.

The example in Figure 3.1 demonstrates the idea of extracting process from a pointer

chain. In this configuration, the pointer chain of simulation->atoms->traits->positions

is replaced with its corresponding effective address (in this case 0xB123). This pointer, then,

is used for data transfer operations to and from the accelerator and also the computational

regions. It bypasses the transmission of redundant structures (in this case, simulation,

atoms, and traits) to the accelerator that, in any case, will remain intact on the accelerator.

The code executed on the device will modify none of these objects. Moreover, it keeps the

accelerator busy performing “useful” work rather than spending time on extracting effective

addresses.

Utilizing the effective addresses as a replacement to a pointer chain, however, demands

code modifications in both the data transfer clauses and the kernel codes. To address these

concerns, we propose pointerchain, a directive that minimally changes the source code to

announce the pointer chains and to specify the regions that include the pointer chains. The

justification for having an end keyword in pointerchain is that our implementation does

22

not rely on a sophisticated compiler (as will be discussed in Section 3.3) to recognize the be-

ginning and the end of complex statements (e.g., for-loops and compound block statements).

Our motivation behind utilizing a script rather than a compiler was to minimize the proto-

typing process and implement our proof-of-concept approach by avoiding the steep learning

curve of the compiler design. The steps mentioned in Section 3.3 can also be supported with

a modern compiler.

3.2.1 Expanded Version

In its simple form, the pointerchain directive accepts two constructs: declare and region.

Developers use declare construct to announce the pointer chains in their code. The syntax

in C/C++ is as follows:

#pragma pointerchain declare(variable [,variable]...)

where variable is defined below:

variable := name
{
type[:qualifier]

}

where

• name: the pointer chain

• type: the data type of the effective address

• qualifier: an optional parameter that is either restrictconst or restrict. They

will cause the underlying variable to be decorated with restrict const and restrict

in C/C++, respectively. These qualifiers provide hints to the compiler to optimize the

code with regard to the effects of pointer aliasing.

23

After declaring the pointer chains in our code, we have to determine the code region that

we target to perform the transformation. The following lines describe how to use begin and

end clauses with the region construct. The pointer chains that have been declared before

in the current scope are the subject of transformation in subsequent regions.

#pragma pointerchain region begin

<...computation or data movement...>

#pragma pointerchain region end

Our proposed directive, pointerchain, is a language- and programming-model-agnostic

directive. Although, in this paper, for implementation purposes, pointerchain is targeting

C/C++ and OpenACC [82] programming models, one can utilize it for the Fortran language

or target the OpenMP [83] programming model as well.

3.2.2 Condensed Version

Our two proposed clauses (declare and region) provide developers with the flexibility of

reusing multiple variables in multiple regions. However, there exists a condensed version

of pointerchain that performs the declaration and replacement process at the same time.

The condensed version of pointerchain replaces the declared pointer chain with its effective

address in the scope of the targeted region. It is placed in the region clauses. An example

of a simplified version, enclosing a computation or data movement region, is shown below:

#pragma pointerchain region begin declare(variable [,variable]...)
<...computation or data movement...>

#pragma pointerchain region end

The condensed version is a favorable choice in comparison to the declare/region pair

when our regions have few chains and we do not plan to reuse them in other parts of the code

24

in future. It leads to a clean, high quality code. Furthermore, utilizing the pair combination

helps with the code readability, reduces the complexity of code, and expedites the porting

process to OpenACC and OpenMP programming models. Potentially, the current mod-

ern compilers will be able to incorporate the condensed version of pointerchain with the

OpenACC or OpenMP directives directly. The following example shows how the condensed

version could be incorporated into the OpenACC programming model.

#pragma acc parallel pointerchain(variable [,variable]...)
<...computations...>

3.2.3 Sample Code

Listing 3.1 shows an example on how to use pointerchain in a source code. Lines 1-16

show the data structures for configuration in Figure 3.1, including the main object variable

(simulation). Our computational kernel, Lines 26-33, initializes the position of every atom

in 3D space in the system. These lines represent a normal, formal for-loop that has

been parallelized by the OpenACC programming model. First, we declared our pointer

chain (Line 19), then utilized the region clause to transfer the data to our target device

(Lines 21-23), and finally, utilized the region clause to parallelize the for loop (Lines 26-33).

Without pointerchain, parallelizing the for-loop requires to transfer every member of the

chain to the device separately while retaining their relationship during the transfer. This

will adversely impact the performance while making its implementation also challenging.

Pointerchain is capable of dealing with both pointers and scalar variables. Unlike

pointers, dealing with the scalar variables requires more attention. The following example

lays out the challenge in dealing with scalar variables. Suppose we want to change the

number of atoms in the atoms structure (simulation->atoms->N). The declare clause

25

Listing 3.1: An example on how to use pointerchain directive for data transfer and kernel
execution.

1 typedef struct {

2 ...

3 // position , momenta , and force in 3D space

4 double *positions [3];

5 } Traits;

6 typedef struct {

7 ...

8 // position , momenta , and force in 3D space

9 Traits *traits;

10 } Atoms;

11 typedef struct {

12 ...

13 // atom data (positions , momenta , ...)

14 Atoms* atoms;

15 } Simulation;

16 Simulation *simulation;

17
18 // Declaring the targeted pointer chain

19 #pragma pointerchain declare(simulation ->atoms ->traits ->positions{

double *})

20
21 #pragma pointerchain region begin

22 #pragma acc data enter copyin(simulation ->atoms ->traits ->positions [0:N

])

23 #pragma pointerchain region end

24
25 // pointerchain region

26 #pragma pointerchain region begin

27 #pragma acc parallel loop

28 for(int i=0;i<nAtoms;i++) {

29 simulation ->atoms ->traits ->positions[i][0] = ...;

30 simulation ->atoms ->traits ->positions[i][1] = ...;

31 simulation ->atoms ->traits ->positions[i][2] = ...;

32 }

33 #pragma pointerchain region end

26

extracts the value stored in this variable and records it in a temporary variable for the

future references in the upcoming regions. However, when the region is done, the temporary

variable has the most up-to-date value and while its corresponding chain is unaware of such

update. Therefore, pointerchain updates the corresponding pointer chain with the updated

temporary variable.

3.3 Implementation Strategy

To simplify the prototyping process, we have developed a Python script that performs a

source-to-source transformation of the source codes annotated with the pointerchain di-

rectives. Our transformation script searches for all source files in the current folder and finds

those annotated with the pointerchain directives. Then, they are transformed to their

equivalent code.

Here is the overview of the transformation process. Upon encountering a declare clause,

for each variable, a local variable with the specified type is created and initialized to the

effective address of our targeted pointer chain (variable name). If qualifiers are set for

a chain, they will also be appended. Any occurrences of pointer chains in between region

begin and region end clauses are replaced with their counterpart local pointers announced

before by declare clauses in the same functional unit.

Scalar variables (i.e., simulation->atoms->N) are treated differently in pointerchain.

It starts by defining a local temporary variable to store the latest value of the scalar variable.

Then, all occurrences of the scalar pointer chain within the region are replaced with the local

variable. Finally, after exiting the region, the scalar pointer chain variable is updated with

the latest value in the local variable.

Introducing new local pointers to the code has some unwelcome implications on the usage

27

of the stack memory. They are translated into a memory space on the call stack of the calling

function. Pointerchain has alleviated this burden by reusing the local variables that were

extracted from the chain instead of reusing the chains over and over again. This is especially

beneficial when our application targets GPU devices. Section 4 discusses the implications

imposed by pointerchain by several aspects including code generation, performance, and

stack memory layout. For a detailed discussion, please refer to Section 4.

3.4 C++ Pointers

A number of well-known simulation frameworks (e.g., LAMMPS [93]) are developed in the

C++ language. Such frameworks, in some cases, heavily utilize the getter/setter functions

to deal with the pointers in their codes. An example of the getter/setter functions is shown

in Listing 3.2.

Listing 3.2: An example of setter/getter functions

1 class Simulation {

2 private:

3 // ...

4 AtomStruct *atoms;

5
6 public:

7 // ...

8
9 AtomStruct *getAtoms () {

10 return atoms;

11 }

12
13 void setAtoms(AtomStruct *as) {

14 atoms = as;

15 }

16 };

In such cases, similar to the previous cases in C, pointerchain is effective since it is

dealing with the memory addresses. As long as the chain has an effective address, point-

erchain operates as expected. After extracting the effective address and reserving it in a

28

temporary variable, such temporary variable is a good candidate to replace the chain in our

kernels. For such cases, we can easily declare our chains, and then, use it accordingly within

the regions. Listing 3.3 shows an example of how to use pointerchain when we utilize C++

approach. This example is based on the Listing 3.1.

Listing 3.3: An example using pointerchain with setter/getter functions.

1 // Declaring the targeted pointer chain

2 #pragma pointerchain declare(getSimulation ()->getAtoms ()->getTraits ()->

getPositions (){double *})

3
4 #pragma pointerchain region begin

5 #pragma acc data enter copyin(getSimulation ()->getAtoms ()->getTraits ()

->getPositions ()[0:N])

6 #pragma pointerchain region end

7
8 // pointerchain region

9 #pragma pointerchain region begin

10 #pragma acc parallel loop

11 for(int i=0;i<nAtoms;i++) {

12 getSimulation ()->getAtoms ()->getTraits ()->getPositions ()[i][0] = ...;

13 getSimulation ()->getAtoms ()->getTraits ()->getPositions ()[i][1] = ...;

14 getSimulation ()->getAtoms ()->getTraits ()->getPositions ()[i][2] = ...;

15 }

16 #pragma pointerchain region end

Moreover, C++ also provides reference variables (or references in short). References are

an alias (in other words, an alternative) to another variable in our application. Since refer-

ences will eventually reduce to an address in memory, we are able to exploit pointerchain

with C++ references as well.

29

Chapter 4

Deep Copy and Microbenchmarking

Previously published content:

1. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung, Margaret S., “pointerchain:
Tracing pointers to their roots - A case study in molecular dynamics simulations.”
Parallel Comput., 2019. [37]

2. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung, Margaret S., “Assessing
Performance Implications of Deep Copy Operations via Microbenchmarking.” arXiv
preprint, 2019. [35]

In this chapter, we will discuss what deep copy is, how it is a challenge in HPC, and what

the current techniques to perform deep copy are. We will also introduce our proposed direc-

tive, pointerchain, as one of the techniques to perform the deep copy operation. Moreover,

a set of benchmarks is introduced to evaluate the current deep copy approaches.

4.1 Semantics of Deep Copy

As discussed in Chapter 3, scientific applications utilize nested data structures in their design.

Nested data structures are composed of a set of simple or complex member variables. The

30

a

Host
GPU

x a y b

b

c d

Host
GPU

x a y b

x a y b

Host
GPU

x a y b

x a y b

Host
GPU

x a y b

x a y b

C
op
y

C
op
y

C
op
y

Figure 4.1: Steps to perform a deep copy operation when the targeting device is a GPU. The
horizontal line separates the memory spaces between the host and the GPU. (a) initialize the data
structures; (b) copy the main structure to the GPU; (c) copy other nested data structures to the
device; (d) fix corresponding pointers in every data structure.

simple member variables are those members with primitive data types (e.g., int, float,

double in C/C++). However, the complex member variables are those that are user-defined

data structures themselves. The situation gets complicated as the complex member variable

may itself possess another complex data structure within itself.

The common approach to utilize complex member variables in C/C++ for such cases

is to define them as pointers. Since the array size is not known at the compilation time,

they have to be allocated at run time. This causes their addresses in memory to be known

only at execution time. This is not an ideal case for heterogeneous platforms with separate

memory address spaces. Figure 4.1 illustrates the necessary steps required to perform the

deep copy. After initializing (Step a) and transferring (Steps b and c) the structure from

the host to the device, the pointers on the main structure hold illegal addresses. They still

point to the same memory address on the host, which is inaccessible on the device. We have

to fix this issue by reassigning the pointers to their correct corresponding addresses on the

device (Step d in Figure 4.1).

Deep copy, as described in [81], can be categorized into two groups: 1) Full Deep Copy;

31

2) Selective (Partial) Deep Copy. A full deep copy operation copies a data structure with

all of its nested data structure to the device. As a result, a replica of the whole structure is

available on the device. The process discussed in Figure 4.1 demonstrates a full deep copy

operation. However, a full deep copy is not always an appropriate approach and we need

mechanisms to perform a partial copy operation. In those cases, not all variable members of

a data structure are accessed during a kernel execution on the device. As a result, there is

no need to transfer them to the device. Consider the example in Figure 4.1. If our kernel is

only accessing array x->a, we should not copy array x->b to the device and keep it on the

host. This will significantly improve performance of the copy operation. This is an example

of a selective deep copy operation.

4.2 Methodology

This section is dedicated to discussing our methodology in benchmarking the deep copy

operations for two different scenarios, Linear and Dense. Each scenario is tested with various

transfer and layout schemes. In the following, we will discuss the detailed description of each

scenario and scheme. All the source codes of our microbenchmark are accessible on Github1.

4.2.1 Linear Scenario

In this case, we will design a set of experiments to study the effect of nesting depth on the

performance of applications. Figure 4.2 shows the data layout for the Linear scenario. All the

data structures in this scenario have similar member variables. They consist of two integer

variables (nA and nLnext), a floating-point array (A), and a pointer to the next nested data

structure (Lnext). The main data structure is the the data structure at level 0, which is

1https://github.com/milladgit/deepcopy-benchmark.

32

...nA

A

nLnext

Lnext
nA

A

nLnext

Lnext

L0

L1

nA

A

nLnext

Lnext

...

L2

...

...

nA

A

nLnext

Lnext

Lk

|||

n

n

n

|||

Figure 4.2: The overview of the Linear scenario as described in Section 4.2.1. Increasing k
increases the depth of our nested data structures.

designated by L0. Our design for this scenario has two parameters: k and n. The parameter

k controls the depth of our data layout and the parameter n controls the length of the extra

payload that we have assigned to each nested data structure.

In order to perform these experiments, we developed a Python script that accepts an

integer k as an input parameter and generates a total of k C++ source files with 1 to k

nested data structures, similar to the configuration in Figure 4.2. The parameter n is an

input to the main program of each C++ source file.

4.2.1.1 Transfer Schemes

For Linear scenarios, we have investigated three options to transfer the data structures to

the device:

1. UVM: Since we are targeting NVidia GPUs, we utilized Unified Virtual Memory (UVM)

technology [57] for memory allocations. UVM allows developers to allocate memories

33

that are accessible by both host and device. The PGI compiler provides UVM alloca-

tions with -ta=tesla:managed flag at the compile time for every memory allocation

requests (mallocs) by the application.

2. Marshalling data structures: We developed a method to enable the marshalling/demar-

shalling of structures at the run time of the application using acc attach/ acc detach

API methods in OpenACC. Algorithm 1 shows the steps our implementation takes to

implement the marshalling. At the beginning, developers determine how big the whole

tree is (the main data structure with all of its nested data structures). Then, that

amount of memory is allocated. Afterwards, any subsequent memory allocation re-

quests from the program are responded to by returning the next available space from

our allocated buffer. These steps compact all the allocated memories into a contiguous

space in the memory. This approach is the ideal case for transferring a complicated

data structure tree in one batch instead of multiple batches for each structure. After

transferring the whole buffer to the device, we have to call acc attach on each pointer

on the device so that the pointers on the device point to a correct memory address.

The demarshalling process is performed exactly in the reverse order of the marshalling

algorithm. It is highly probable that the implementations of deep copy in different

compilers follow similar marshalling approach.

3. pointerchain: the proposed directive as described in Section 3.

4.2.1.2 Layout Schemes

Three separate layout schemes are introduced for our Linear scenario. The layout schemes

differ in whether the A arrays in Figure 4.2 are allocated or not, and whether they will be

transferred to the device and utilized or not.

34

Algorithm 1 Marshalling algorithm

1: function marshallize(struct)
2: n← determineTotalBytes(struct)
3: buff← Allocate n bytes buffer on heap
4: requestList← []
5: for memory allocation of size w do
6: Append the allocation request to the requestList

7: Return a pointer to w bytes from buff

8: end for
9: Transfer buff to the device

10: for req in requestList do
11: acc attach(req)
12: end for
13: end function

1. allinit-allused : In this scheme, all the A arrays in all levels allocate n elements and

they are accessed on the GPU. Our kernel scales all elements of the A arrays with

an arbitrary number. This layout scheme helps us understand the efficiency of each

transfer scheme when a full deep copy is inevitable.

2. allinit-LLused : Similarly, we allocate n elements for all the A arrays, however only the

A arrays of the last level are utilized within a kernel on the device. This scheme helps

us understand how selective deep copy improves the performance when the kernels

target only a subset of data structures on the device.

3. LLinit-LLused : In this scheme, only the A array in the last-level (Lk) allocates memory

space. This scheme helps us understand which transfer scheme performs the best in

a long chain of pointers. This is a dominant scheme in scientific applications like

molecular dynamics simulations [37].

4.2.1.3 Data Size

The amount of data generated by our tree of data structures for each layout scheme, as

shown in Figure 4.2, is as following. For the allinit-allused and allinit-LLused cases, the size

35

of our configuration, as a function of n and k, is

DataSize(k, n) =
k∑

i=1

(24 + 8n)

= 24k + 8nk

(4.1)

where 24 is the size of the Li structures and 8 is the size of an element in A in bytes (for

double-precision floating-point numbers).

For the LLinit-LLused case, the data size can be computed as follows

DataSize(k, n) =
k∑

i=1

24 + 8n

= 24k + 8n

(4.2)

4.2.2 Dense Scenario

In the dense scenario, the intermediate pointers are an array of objects instead of a single

object. Figure 4.3 illustrates the dense scenario. This configuration provides a dense tree of

data, which the size of the data will grow exponentially with small changes in both parameters

in our design. The parameter q describes number of elements in the intermediate arrays Li,

and the parameter n determines the number of elements in the A arrays.

4.2.2.1 Transfer Scheme

In comparison to the Linear scenario, transferring the data structure tree represented in

Figure 4.3 is more complicated. For the marshalling and pointerchain approaches, extra

work is required to make the intermediate pointers legal on the device so that they could

be dereferenced correctly. In cases similar to Dense, utilizing the pointerchain directive to

36

L0
nA

A

nLnext

Lnext

L1

nA

A

nLnext

Lnext

nA

A

nLnext

Lnext

q

.

.

.

nA

A

nLnext

Lnext

nA

A

nLnext

Lnext

q

.

.

.

...

n

L2

...

...

...

...

...

n

...

n

L2

q

.

.

.

nA

A

nA

A

nA

A

...

n

...

n

...

n

L3

...

n

q

.

.

.

nA

A

nA

A

nA

A

...

n

...

n

...

n

L3

...

n

nA

A

nLnext

Lnext

nA

A

nLnext

Lnext

q

.

.

.

Level 1 Level 2 Level 3

F
ig
u
re

4
.3
:

T
h

e
ov

er
v
ie

w
o
f

th
e

D
en

se
sc

en
ar

io
as

d
es

cr
ib

ed
in

S
ec

ti
on

4.
2.

2.
In

cr
ea

si
n

g
q

in
cr

ea
se

s
th

e
d

at
a

si
ze

ex
p

on
en

ti
al

ly
.

U
n

li
k
e

th
e

L
in

ea
r

sc
en

ar
io

,
th

e
d

ep
th

is
fi

x
ed

to
th

re
e

le
ve

ls
.

T
h

e
d

ot
s

in
th

e
fi

gu
re

sh
ow

th
e

re
cu

rs
iv

e
n
at

u
re

of
th

e
d

at
a

st
ru

ct
u

re
.

37

perform a full deep copy operation is not a viable option due to the increasing number of

intermediate pointers, which grows exponentially in this case.

Similar to the Linear scenario, the data transfer to the device is performed with UVM,

marshalling, and pointerchain. Each scheme is described in detail in Section 4.2.1.1.

4.2.2.2 Layout Scheme

In the Dense scenario, an arbitrary index of each intermediate array Li (in our case, the

last element of the array) is chosen, and then, its associated A array is transferred to the

device to perform the computational kernel. As an example, consider the configuration in

Figure 4.3. For such nested data structure, the kernel that parallelizes the code will look

like Listing 4.1, where q is the number of elements in the intermediate arrays Li, and a0 is

the main structure at the first level.

Listing 4.1: The scaling kernel used in our Dense scenario, where q is the number of elements in
the intermediate arrays Li.

1 for(int i=0;i<N;i++)

2 a0->Lnext[q-1].Lnext[q-1].Lnext[q-1].A[i] *= scale;

4.2.2.3 Data Size

The amount of data generated by the data structure tree in the Dense scenario, as shown

in Figure 4.3, is very sensitive to the input parameters, q and n. Small changes in these

parameters lead to significant increases in the data size. Equation 4.3 shows the amount of

data generated in bytes for our configuration in recursive form:

38

DataSize(q, n,D) = 24 + 8n +

q ×DataSize(q, n,D − 1)

DataSize(q, n, 0) = 12 + 8n

(4.3)

where 24 is the size of Li structures, 8 is the size of each element in array A, q is the length of

the intermediate arrays, and D is the depth of our nested data structure. DataSize(q, n, 0)

refers to the size of our last-level data structures (the L3 structures in Figure 4.3). For our

experiments in this paper, the maximum value of D is set to 3. Please note that the last-level

data structure is half of the original structure in size.

4.3 Experimental Setup

Located at the University of Houston, Sabine [97] clusters host HPE compute nodes. Each

system is equipped with two Intel Xeon E5-2680v4 CPUs, with 28 logical cores, and 256 GB

of host RAM. Sabine has both NVidia P100 and V100 GPU architectures. The P100 systems

have 16 GB global memory with 4 MB L2 caches. The V100 GPUs also have 16 GB global

memory while their L2 caches are 6 MB. Our software environment, for both system, includes

the PGI compiler 18.4.

For the Linear scenario, we developed a Python script that accepts an integer number,

count, as input and generates a set of source codes in C++ for k ∈ [2, count]. Each source

code is a stand-alone application. The data structure tree depicted in Figure 4.2 is generated

statically for each k to allow the compiler apply optimizations on the source codes efficiently.

For each k, our script generates nine files: three transfer schemes by three layout schemes.

As an example, suppose we pass 10 to our Python script. Then, the total number of files

generated by our script is 81 ((count− 2 + 1)× 3× 3 = 81).

39

Algorithm 2 Main program steps

1: function main(argc, argv)
2: 1- Allocate memory for whole tree structure
3: 2- Initialize the tree
4: 3- Transfer the tree to the device with a transfer scheme
5: 4- Run the kernel once
6: 5- Transfer the tree back to the host
7: 6- Check the results
8: 7- Measure the wall-clock time
9: end function

For the Dense scenario, we developed three different transfer schemes (UVM, marshalling,

and pointerchain) to perform the selective deep copy. Each scheme accepts two inputs, n

and q, which they were previously described in Section 4.2.

Algorithm 2 displays the steps that each benchmark application takes. At the beginning

of the application, the memory for the whole data structure tree is allocated and it is ini-

tialized with arbitrary values. Then, the whole data structure is transferred to the device

based on the various transfer schemes explained in Section 4.2. This allows us to run a

computational kernel. The kernel scales every elements of the array A by a constant value.

Based on the chosen layout scheme, whether it is allused or LLused, all or last-level A-arrays

are scaled, respectively. After running the kernel, the tree is transferred back to the host

and the results are checked.

For both Linear and Dense scenarios, two different metrics are measured: (a) the wall-

clock time of the whole application, (b) the kernel execution time. The wall-clock time is

measured to investigate the effect of each transfer scheme on each different scenario. The

kernel execution time is measured to give us an insight about how different data layouts affect

kernel’s performance. Not only the execution time, but also the total number of instructions

generated by the compiler will be affected by different transfer schemes.

We used Google Benchmark [44] to measure the execution time (i.e., the kernel and the

wall-clock time). It is a lightweight, powerful framework for benchmark functions. Through

40

a set of preliminary testing, the framework learns how many iterations are required to be

performed so that a consistent result within a low error margin is observed. Each test

case is implemented as a function, and then, the whole function is benchmarked with Google

Benchmark. For the results of the kernel time, we benchmarked only the kernel computations

on Step 4 (line 5) of Algorithm 2.

4.4 Results

We performed the experiments in this section on the Sabine systems (P100 and V100).

We measured the wall-clock and kernel time of the experiments designed for the Linear

scenario. Figure 4.4 shows the wall-clock time for different number of levels and different

layout schemes. Results are normalized with respect to the UVM approach.

4.4.1 Linear Scenario

4.4.1.1 Wall-clock Time

Results for the allinit-allused transfer scheme reveal how increasing the parameter n leads

to performance loss for all values of k. As we increase the total size of the tree (increasing

both n and k), there is no performance loss when UVM is utilized, and it has a chance to be

a viable option in comparison to other methods. Furthermore, UVM is a feasible approach

to transfer data between host and device when applications are dealing with huge amounts

of data. It provides developers more productivity with the same level of performance when

we are targeting huge data. However, when n is moderately large (n < 105) and the chain

length (k) is small, marshalling and pointerchain outperform UVM. Furthermore, there is

no subtle difference between different architectures (P100 and V100) for the allinit-allused

scheme.

41

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(a
)

a
ll

in
it

-a
ll

u
se

d
sc

h
em

e

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(b
)

a
ll

in
it

-L
L

u
se

d
sc

h
em

e

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(c
)

L
L

in
it

-L
L

u
se

d
sc

h
em

e

F
ig
u
re

4
.4
:

N
o
rm

al
iz

ed
w

al
l-

cl
o
ck

ti
m

e
w

it
h

re
sp

ec
t

to
U

V
M

fo
r

th
e

L
in

ea
r

sc
en

ar
io

.

42

On the other hand, the allinit-LLused scheme is more susceptible to the transfer scheme

rather than the underlying architecture. As n increases in the size, the gap between mar-

shalling and pointerchain increases. For larger k values, pointerchain outperforms mar-

shalling and UVM. Thus, pointerchain is the better option for a deep copy operation in

comparison to the other two options when we are dealing with huge data sets. As k increases,

the marshalling scheme performs worse while the performance of pointerchain is not af-

fected and remains constant. There is no notable difference between different architectures,

and the transfer schemes determines the performance. It is the underlying data transfer

medium, in our case the PCI-E bus, that determines the upper bound of the performance.

Finally, for the LLinit-LLused scheme, UVM has the worst performance results. The

results show how in cases that our kernel targets an array at the last-level data struc-

ture, utilizing either marshalling or pointerchain leads to better performance results. The

pointerchain scheme shows promising results when n < 105. However, for n > 105, the ar-

chitecture design determines the winner. The V100 architecture shows 2X improvements in

performance for marshalling and pointerchain schemes, while P100 was able to show 1.25X

improvement. For all values of k and n, pointerchain performed better than marshalling.

4.4.1.2 Kernel Execution Time

Figure 4.5 shows the normalized kernel time with respect to UVM for different level counts

and different layout schemes. There is no subtle difference among different transfer schemes,

different layout schemes, and different architectures. Mostly, for all values of n and k, all

results follow the same trend. However, we observe the best performance when n ∈ [104, 106].

43

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(a
)

a
ll

in
it

-a
ll

u
se

d
sc

h
em

e

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(b
)

a
ll

in
it

-L
L

u
se

d
sc

h
em

e

012
k=

2
k=

3

m
ar

sh
al

l-P
10

0
pc

-P
10

0
m

ar
sh

al
l-V

10
0

pc
-V

10
0

uv
m

k=
4

012 Normalized time to UVM

k=
5

k=
6

k=
7

10
3

10
5

10
7

012
k=

8

10
3

10
5

10
7

nk=
9

10
3

10
5

10
7

k=
10

(c
)

L
L

in
it

-L
L

u
se

d
sc

h
em

e

F
ig
u
re

4
.5
:

N
or

m
al

iz
ed

k
er

n
el

ti
m

e
w

it
h

re
sp

ec
t

to
U

V
M

fo
r

th
e

L
in

ea
r

sc
en

ar
io

.

44

Table 4.1: Total data size of our data structure tree as defined in the Linear scenario for the allinit-allused scheme. Equation 4.1 was
used to calculate these numbers. The first row is in KiB, while the rest of the numbers is in MiB.

k

n 2 3 4 5 6 7 8 9 10

102 1.61 KB 2.41 KB 3.22 KB 4.02 KB 4.83 KB 5.63 KB 6.44 KB 7.24 KB 8.05 KB

103 0.02 MB 0.02 MB 0.03 MB 0.04 MB 0.05 MB 0.05 MB 0.06 MB 0.07 MB 0.08 MB

104 0.15 MB 0.23 MB 0.31 MB 0.38 MB 0.46 MB 0.53 MB 0.61 MB 0.69 MB 0.76 MB

105 1.53 MB 2.29 MB 3.05 MB 3.81 MB 4.58 MB 5.34 MB 6.10 MB 6.87 MB 7.63 MB

106 15.26 MB 22.89 MB 30.52 MB 38.15 MB 45.78 MB 53.41 MB 61.04 MB 68.66 MB 76.29 MB

107 152.59 MB 228.88 MB 305.18 MB 381.47 MB 457.76 MB 534.06 MB 610.35 MB 686.65 MB 762.94 MB

108 1525.88 MB 2288.82 MB 3051.76 MB 3814.70 MB 4577.64 MB 5340.58 MB 6103.52 MB 6866.46 MB 7629.39 MB

45

Table 4.1 shows the total size of our data structure tree as we change k and n. For all ks,

while n < 105 the whole data fits in the L2 cache of P100 and V100 GPUs. As we increase

n, the L2 cache is not big enough anymore, which results in the mandatory cache eviction

process, subsequently, we lose performance. This is the reason that we observe an increasing

trend in the execution time in Figure 4.5. This confirms our finding: when we are dealing

with data structures with large sizes, there is no subtle difference in performance between

UVM and other transfer schemes for complex data structures.

4.4.2 Dense Scenario

We measured the wall-clock and kernel time of the experiments designed for the Dense

scenario. Figure 4.6 shows the normalized wall-clock time and kernel time with respect to

UVM for different level count and different layout schemes.

4.4.2.1 Wall-clock Time

The key factor that determines the performance of the whole application is the transfer

scheme. The pointerchain scheme performs consistently better in comparison to the mar-

shalling. In cases like n = 10 and n = 100, pointerchain basically shows two orders of

magnitude performance improvements in comparison to marshalling. In such cases, UVM

shows close to 10X improvement over marshalling.

However, as q increases, the performance gap between pointerchain and marshalling

shrinks. Moreover, Figure 4.6 shows how in the Dense scenarios, the underlying architecture

does not have any contributions to the performance. It is the transfer scheme that determines

the performance. The reason behind such performance deficiency of the marshalling scheme

is the extra job required to be done to ensure the pointer consistency on the device. For each

pointer, we are required to fix the address in the structure to point to a correct location on

46

10
3

10
1

10
1

q=
2

q=
4

m
ar

sh
al

l/u
vm

 -
P1

00
pc

/u
vm

 -
P1

00
m

ar
sh

al
l/u

vm
 -

V1
00

pc
/u

vm
 -

V1
00

uv
m

q=
6

10
3

10
1

10
1

Normalized time to UVM

q=
8

q=
10

10
1

10
3

q=
12

10
1

10
3

10
3

10
1

10
1

q=
14

10
1

10
3

n

q=
16

(a
)

W
a
ll

-c
lo

ck
ti

m
e

10
3

10
1

10
1

q=
2

q=
4

m
ar

sh
al

l/u
vm

 -
P1

00
pc

/u
vm

 -
P1

00
m

ar
sh

al
l/u

vm
 -

V1
00

pc
/u

vm
 -

V1
00

uv
m

q=
6

10
3

10
1

10
1

Normalized time to UVM

q=
8

q=
10

10
1

10
3

q=
12

10
1

10
3

10
3

10
1

10
1

q=
14

10
1

10
3

n

q=
16

(b
)

K
er

n
el

ti
m

e

F
ig
u
re

4
.6
:

N
or

m
al

iz
ed

w
al

l-
cl

o
ck

ti
m

e
a
n

d
ke

rn
el

ti
m

e
to

U
V

M
fo

r
D

en
se

sc
en

ar
io

.
T

h
e

Y
ax

es
ar

e
in

lo
ga

ri
th

m
ic

sc
al

e.
L

ow
er

is
b

et
te

r.

47

Table 4.2: Total data size of our data structure tree as defined in the Dense scenario. Equation 4.3
was used to calculate these numbers.

q

n 2 4 6 8 10 12 14 16

101 1.43 KB 7.88 KB 0.02 MB 0.05 MB 0.10 MB 0.17 MB 0.26 MB 0.39 MB
102 0.01 MB 0.07 MB 0.20 MB 0.45 MB 0.86 MB 1.46 MB 2.29 MB 3.39 MB
103 0.11 MB 0.65 MB 1.98 MB 4.47 MB 8.49 MB 0.01 GB 0.02 GB 0.03 GB
104 1.14 MB 6.49 MB 0.02 GB 0.04 GB 0.08 GB 0.14 GB 0.22 GB 0.33 GB
105 0.01 GB 0.06 GB 0.19 GB 0.44 GB 0.83 GB 1.40 GB 2.20 GB 3.26 GB

the memory space of the device.

4.4.2.2 Kernel Execution Time

Figure 4.6 also demonstrates the performance of the kernel with respect to different transfer

schemes introduced in Section 4.2. Despite no subtle differences, the marshalling scheme

leads to more performance friendly data layout in comparison to pointerchain on both

architectures. While kernels that are executed on the marshalled data perform better than

their UVM counterparts, the pointerchain scheme suffers some performance loss. Conse-

quently, in cases that a kernel is executed multiple times on the same data, the data layout

of the marshalling scheme results in a better performance. Such an effect is due to the cache

friendly layout of our implementation for marshalling. The marshalling scheme places the

arrays as close as possible to the pointers that points to them, however, this is not necessarily

the case for the pointerchain scheme. In pointerchain, the arrays are scattered around

the global memory of GPUs and they do not necessarily reside in the same memory page as

the pointer itself.

Table 4.2 shows the total size of our data structure tree as we change q and n. Increasing n

will exponentially increase the data size. However, this is not correct for q. This observation

reveals how the size of the internal array affects the total size more than the depth of the

tree. This is the reason we observe similar patterns for all qs in Figure 4.6. This figure

reveals how the performance remains consistent across all values of q but increasing n leads

48

to a reduction in performance.

4.4.3 Instruction Count

The process of dereferencing pointers generates a set of instruction to retrieve the effective

address of the pointer. For Tesla V100, the PGI compiler generates 2 instructions per each

dereference operation: 1) an instruction to load the address from global memory to a register

(ld.global.nc .u64); 2) an instruction to convert the virtual address to a physical address

on the device (cvta.to.global.u64). For every chain, the processor has to execute above

instructions to extract the effective address.

Tables 4.3 and 4.4 show total number of generated instructions by the PGI compiler

for the Linear and Dense scenarios, respectively. To count the number of instructions, we

generated the PTX files by enabling the keep flag at compile time (-ta=tesla:cc70,keep).

Then, we counted number of lines (LOC) in the generated PTX file.

The results for the Linear scenario, as shown in Table 4.3, reveals up to 31% reduction

in the generated code for GPUs. The LOC for the LLused schemes remains constant since

we are basically reducing any pointer chains in our application to one pointer. However, for

UVM and marshalling schemes, as k increases, the total generated code for them increases

as well since we have to dereference the chain of pointers. For the allinit-LLused and

LLinit-LLused schemes, one can observe how the LOC increase by two lines between two

consecutive ks. For the allinit-allused scheme, since we are dealing with multiple pointer

chains, the trend is not linear, however we save more instructions in this case. Table 4.4

shows similar results for the Dense scenario. We have two observations: 1) The marshalling

scheme did not increase the number of instructions with respect to UVM. 2) pointerchain

led to a 25% reduction in generated instructions.

49

Table 4.3: Total instruction generated by the PGI compiler (for Tesla V100) for the Linear
scenario. Mar. and PC refer to the marshalling and pointerchain schemes, respectively. The
numbers in parentheses show the increase with respect to UVM.

allinit-allused allinit-LLused LLinit-LLused

k UVM Mar. (%) PC (%) UVM Mar. (%) PC (%) UVM Mar. (%) PC (%)

2 62 62 (0%) 60 (-3%) 62 62 (0%) 60 (-3%) 62 62 (0%) 60 (-3%)

3 70 70 (0%) 67 (-4%) 64 64 (0%) 60 (-6%) 64 64 (0%) 60 (-6%)

4 78 78 (0%) 74 (-5%) 66 66 (0%) 60 (-9%) 66 66 (0%) 60 (-9%)

5 88 88 (0%) 81 (-8%) 68 68 (0%) 60 (-12%) 68 68 (0%) 60 (-12%)

6 100 100 (0%) 88 (-12%) 70 70 (0%) 60 (-14%) 70 70 (0%) 60 (-14%)

7 114 114 (0%) 95 (-17%) 72 72 (0%) 60 (-17%) 72 72 (0%) 60 (-17%)

8 130 130 (0%) 102 (-22%) 74 74 (0%) 60 (-19%) 74 74 (0%) 60 (-19%)

9 148 148 (0%) 109 (-26%) 76 76 (0%) 60 (-21%) 76 76 (0%) 60 (-21%)

10 168 168 (0%) 116 (-31%) 78 78 (0%) 60 (-23%) 78 78 (0%) 60 (-23%)

Table 4.4: Total instruction generated by the PGI compiler (for Tesla V100) for the Dense scenario.
Mar. and PC refer to the marshalling and pointerchain schemes, respectively. The numbers in
parentheses show the increase with respect to UVM.

UVM Mar. (%) PC (%)
Dense 80 80 (0%) 60 (-25%)

50

Chapter 5

CoMD: A Case Study in Molecular

Dynamics and Our Optimization

Strategies

Previously published content:

1. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung, Margaret S., “pointerchain:
Tracing pointers to their roots - A case study in molecular dynamics simulations”.
Parallel Comput., 2019. [37]

The Co-Design Center for Particle Applications (COPA) [22], a part of Exascale Comput-

ing Project (ECP), has established a set of proxy applications for real-world applications [52]

that are either too complex or too large for code development. The goal of these proxy ap-

plications is for the vendors to understand the application and its workload characteristics

and for the application developers to understand the hardware. The tools and software

developers need them for expanding libraries, compiler and programming models as well.

CoMD [21] is a proxy application of classical molecular dynamics simulations, which

51

represents a significant fraction of the workload that the Department of Energy (DOE) is

facing [107, 71]. It computes short-range forces between each pair of atoms whose distance

is within a cutoff range. It does not include long-range and electrostatic forces inherently.

The evaluated forces are used to update atoms characteristics (position, velocity, force, and

momenta) via numerical integration [89].

Computations in CoMD are divided into three main kernels for each time step: force

computation, advancing position, and advancing velocity. The latter two kernels are consid-

ered embarrassingly parallel (EP) kernels since their associated computations are performed

on each atom independently. The velocity of an atom is updated according to the exerted

force on that atom, and the position of an atom is updated according to its updated velocity.

The most time-consuming phase, however, is the force computation phase.

Computing the forces that atoms exert on each other follows the equations of Newton’s

Laws of Motions, which is based on the distance between every pair of atoms. However,

searching for neighbors of all atoms requires an O(N2) computation complexity, which is

utterly inefficient. To overcome such an issue, CoMD exploits the link-cell method. It

partitions the system space by a rectangular decomposition method in such a way the size

of each cell exceeds the cutoff range in every dimension. In this way, neighbors are extracted

from the cell containing the atom and the 26 neighboring cells around that cell. Through

using link-cells, the computational complexity decrease to O(27 × N), which essentially is

linear. Figure 5.1 depicts an example of the cutoff range in a two dimensional arrangement

in the presence of the corresponding link-cells.

Algorithm 3 describes the CoMD phases. It follows the Verlet algorithm [105] in MD

simulations. In each time step, the velocity is advanced at an interval of a half-time step,

and then the position is updated for the full-time step based on the computed velocities.

Using updated velocity and position updates the forces for all atoms. Later, velocities are

updated for the remainder of the time step to reflect a full time step.

52

cutoff

Figure 5.1: Link-cell decomposition of space [105, 14]. The cutoff range is also shown for a specific
atom. The 2D space is divided into 5-by-5 cells. The cell containing the atom and its neighboring
cells are displayed in gray.

Updating the position of atoms leads to the migration of atoms among neighbor cells and,

in many cases, among neighbor processors. After position updates, link-cells are required to

be updated locally (intra node/processor) and globally (inter nodes/processors) in each time

step too. This process is guaranteed to be done by the RedistributeAtoms function of

Algorithm 3.

Force calculations in the Verlet algorithm are derived from the gradient of the chosen po-

tential function. A well-known interatomic potential function that governs relation of atoms

and is extensively used in MD simulations is Lennard-Jones (LJ) [51]. CoMD supports an

implementation of LJ to represent force interaction between atoms in a system. The LJ force

function will be called inside the ComputeForce kernel in Verlet algorithm (Algorithm 3).

Moreover, CoMD also supports another potential function known as the Embedded Atom

Model (EAM), which is widely used in metallic simulations. In this dissertation, due to its

simplicity in design and wide use in protein folding applications, we will be focusing on the

LJ potential function.

53

Algorithm 3 MD timesteps in Verlet algorithm

Input: sim: simulation object
Input: nSteps: total number of time steps to advance
Input: dt: amount of time to advance simulation
Output: New state of the system after nSteps.
1: function timestep(sim, nSteps, dt)
2: for i← 1 to nSteps do
3: AdvanceVelocity(sim, 0.5*dt)
4: AdvancePosition(sim, dt)
5: RedistributeAtoms(sim)
6: ComputeForce(sim)
7: AdvanceVelocity(sim, 0.5*dt)
8: end for
9: KineticEnergy(sim)

10: end function

5.1 Reference Implementations

CoMD was originally implemented in the C language and uses the OpenMP program-

ming model, to exploit the intra-node parallelism, and MPI [72], to distribute work among

nodes [21]. Cicotti et al. [19] have investigated the effect of exploiting a multithreading

library (e.g., pthreads) in contrast to using the OpenMP and MPI approach. In addition to

the OpenMP and MPI implementations, a CUDA-based implementation was also developed

in the C++ language [71]. These reference versions include all of the three main kernels;

force computation, advancing velocity, and advancing position of atoms. Developers used

CUDA to be able to fully exploit the capacity of the GPUs. As a result the data layout of

the application was significantly changed in order to tap into the rich capacity of the GPUs.

Naturally, this puts a lot of burden on the developers and the code cannot be used on any

other platforms other than NVIDIA GPUs. Both OpenMP and CUDA implementations

were optimized to utilize the full capacity of the underlying hardware. Here, we focus on the

optimizations that are beneficial to the OpenACC implementation.

54

5.2 Parallelizing CoMD with OpenACC

This section is dedicated to the discussion of porting CoMD to a heterogeneous system

using the OpenACC programming model. We started with the OpenMP code version for

this porting process instead of the serial code. This may not be the best approach because

in most cases the OpenMP codes are well-tuned and optimized for shared memory platform

but not for heterogeneous systems, especially the codes that have used OpenMP 3.x.

As the first step, we profiled the code and discovered that the force computation (line 6

in Algorithm 3) was the most time consuming portion of the code. Consequently, it sug-

gests porting the force computations to the device. This requires the transfer of both the

computational kernel and its data (the data that the kernel is working on) to the device.

However, if we only accelerate the force computation kernel, we need to transfer data back

and forth to and from the device for each time step, which will lead to dramatic performance

degradation. That is, it imposes two data transfers (between host and device) for each time

step. As a result, this pushes us to parallelize other steps (line 3, 4, and 7) too. Hence, data

transfers can be performed before (line 2) and after (line 8) the main loop.

The RedistributeAtoms step (line 5) guarantees data consistency among different

MPI [72] ranks. Since MPI functions are only allowed to be called within the host, the

data have to be transferred back to the host for synchronization purposes among the ranks.

After performing synchronization, the updated data are transferred from the host to the

device. The synchronization process is done on every time step to maintain data consistency.

Consequently, two data transfers are performed in this step between the host and the device,

and, since no remarkable computations were performed in this step, no parallelization was

required for this step.

55

Based on our analysis, the parallelization of the three above-mentioned kernels (Compute-

Force, AdvancePosition, and AdvanceVelocity) contributes the most towards the perfor-

mance of our application because they are the most time-consuming computational kernels.

Although the latter two kernels may seem insignificant due to their smaller execution time,

they will progressively affect the wall clock time of the application in the long run. Thus, the

focus of our study is on applying performance optimization of these three kernels. Our mea-

surements reveal that our OpenACC implementation was able to reach the same occupancy

level as that of the CUDA implementation. Force computation, however, is more complex

and requires more attention with respect to its optimization opportunities. However, we can

safely use OpenACC version of the ComputeForce and AdvancePosition kernels with their

CUDA counterparts with no performance loss.

There are four options to parallelize CoMD: 1) UVM, 2) deep copy, 3) significant code

changes to transfer data structures manually, and 4) pointerchain. Step 1 in our pro-

posed steps represents the UVM approach and as elaborated in Section 3.1, it has several

disadvantages. Deep copy is a feature that we cannot use right away as it is not yet fully

implemented in any compiler. The third option requires significant code changes performed

manually; as a result this is not a favorable approach for developers to adopt and it con-

tradicts the philosophy of OpenACC. That brings us to our fourth and the last option, i.e.,

pointerchain. Annotating CoMD’s source codes with pointerchain directive helps us to

easily port CoMD to OpenACC and it also helps us apply the different optimizations listed

in the Table 5.1. Please refer to the Supplementary Material of our Parallel Computing

paper [37] for a detailed description of each step.

Table 5.1 provides a brief description of the ten steps taken in this paper to parallelize

CoMD. Figure 5.2 shows the order in which we took the steps. These steps also provide a

roadmap for parallelization of any other scientific applications using OpenACC. The point-

erchain column shows whether our proposed novel directive has been used for a step or not.

56

Without the pointerchain directive, the source code needs to undergo numerous modifica-

tions. Such modifications are error-prone and cumbersome for developers.

Table 5.1: Overview of all steps that were applied to CoMD. The pc column designates whether
pointerchain was applied at that step or not.

S. Title pc Description

1 Kernel parallelization × Relying on the UVM for data transfer. Annotating
the potential kernels with #pragma acc kernels

for parallelization.

2 Efficient data transfer X Disabling UVM and specifying manual data trans-
fer between host and device. We started using
pointerchain from this step forward. #pragma

acc kernels for parallelization.

3 Manual parallelization X Utilizing #pragma acc parallel on kernels in-
stead of #pragma acc kernels. Designating gang

and vector levels on multi-level loops.

4 Loop collapsing X Collapsing tightly nested loops into one and gen-
erating one bigger, flat loop.

5a Improving data local-
ity (dummy field)

X Adding a dummy field to make data layout cache-
friendly.

5b Improving data local-
ity (data reuse)

X Improving the locality of the innermost loops by
employing local variables in the outermost loops.

5c Improving data local-
ity (layout modif.)

X Modifying layout as described in detail in the Sup-
plementary Material of our Parallel Computing pa-
per [37].

6 Pinned memory effect X Enabling pinned memory allocations instead of
regular pageable allocations.

7 Parameters of paral-
lelism

X Setting gang and vector parameters for parallel
regions.

8 Controlling resources
at compilation time

X Manually setting an upper limit on the number of
registers assigned to a vector at compilation time.

9 Unrolling fixed sized
loops

X Unrolling one of the time consuming loops with
fixed iteration count.

10 Rearranging computa-
tions

X Applying some code modifications to eliminate un-
necessary computations.

57

1

Source Code

2

3

4

5b5a 5c

6

7

8

9

10

Figure 5.2: The relationship among the optimization steps that were taken to parallelize CoMD.
For detailed description of each step, please refer to Table 5.1.

5.3 Porting CoMD: Performance Implications

We have ported CoMD to heterogeneous systems using OpenACC and applied the optimiza-

tion steps, as mentioned in Table 5.1. We discuss the influence of each step on the final

outcome.

5.3.1 Measurement Methodology

We relied on NVIDIA’s nvprof profiler for device measurement. It provides us with a

minimum, a maximum, and an average execution time, driver/runtime API calls, and a

memory operation for each GPU kernel. It is a handy tool for those who tune an application

to achieve maximum performance of GPUs. All simulations were executed in single precision.

58

5.3.2 Model Preparation

To extract optimal values for the gang and vector parameters, we traversed through a

parameter search space for them. We also investigated the effect of manually choosing the

number of registers at compile time on the performance. Then, we used the extracted optimal

values for gang, vector, and register count parameters. Please refer to the Supplementary

Material of our Parallel Computing paper [37] for detailed discussion on characterizing the

above-mentioned parameters.

5.4 Results

5.4.1 Speedup for each Parallelization Step

To observe the accumulated effect on the final result, our modifications in each step were

implemented on top of the preceding steps unless noted. Please refer to Figure 5.2 for the

causal effect between each consecutive step.

Figure 5.3 illustrates the impact of each step on our program by showing the changes in

the execution time of the three kernels. We included the results from the CUDA and OpenMP

versions. The OpenMP version was compiled with both Intel1 and PGI2 compilers, shown

as OMP-ICC and OMP-PGI, respectively. Besides targeting OpenACC for NVIDIA GPUs,

we also retargeted our OpenACC code for multicore systems (ACC-MC in the figures).

We did not modify a single line of code when retargeting our code to multicore systems

with OpenACC. We only changed the target device from NVIDIA Tesla to multicore at

compilation time. Results are shown for both small (bottom) and large (top) data sizes and

they are normalized with respect to CUDA.

1Intel Compiler flags: -Ofast -O3 -xHost -qopenmp
2PGI Compiler flags: -mp -fast -O3 -Mipa=fast

59

Ste
p 1

Ste
p 2

Ste
p 3

Ste
p 4

Ste
p 5

A
Ste

p 5
B

Ste
p 5

C
Ste

p 6
Ste

p 7
Ste

p 8
Ste

p 8
*

Ste
p 9

Ste
p 1

0
CU

DA
OM

P-I
CC

OM
P-P

GI

AC
C-

MC
10

1

10
0

10
1

10
2

10
3

10
4

79.68

42.61

7.83

7.83

8.41

4.67

4.82

4.78

2.08

1.82

2.34

6.31

1.62

1.00

14.47

20.20

16.58

7969.86

451.73

1.26

0.65

0.80

0.65

0.70

0.69

0.70

0.70

0.70

0.70

0.70

1.00

10.14

14.06

7.91

9513.64

681.39

1.76

1.20

0.90

1.20

0.88

0.88

0.89

0.89

0.88

0.89

0.88

1.00

11.87

15.38

10.54

Co
m

pu
te

Fo
rc

e
Ad

va
nc

eV
el

oc
ity

Ad
va

nc
eP

os
iti

on

Ste
p 1

Ste
p 2

Ste
p 3

Ste
p 4

Ste
p 5

A
Ste

p 5
B

Ste
p 5

C
Ste

p 6
Ste

p 7
Ste

p 8
Ste

p 8
*

Ste
p 9

Ste
p 1

0
CU

DA
OM

P-I
CC

OM
P-P

GI

AC
C-

MC
10

1

10
0

10
1

10
2

10
3

10
4

85.41

43.58

5.86

5.96

5.78

3.43

3.63

3.50

1.63

1.41

1.78

2.85

1.35

1.00

10.41

17.08

12.12

6571.96

332.58

1.50

0.98

1.06

1.01

1.07

1.00

0.92

0.96

1.04

0.96

0.93

1.00

2.37

4.29

5.16

6736.51

391.25

1.61

0.97

1.08

1.04

0.95

1.02

0.80

0.88

1.15

0.90

0.80

1.00

8.02

9.12

5.56

32,000 atoms2,048,000 atoms

Normalized execution time

F
ig
u
re

5
.3
:

N
or

m
a
li

ze
d

ex
ec

u
ti

o
n

ti
m

e
a
ft

er
ap

p
ly

in
g

al
l
op

ti
m

iz
at

io
n

st
ep

s
an

d
ru

n
on

N
V

ID
IA

P
10

0.
A

ft
er

ap
p

ly
in

g
al

l
10

st
ep

s
on

th
e

O
p

en
A

C
C

co
d

e,
w

e
w

er
e

ab
le

to
re

a
ch

6
1%

,
12

9%
,

an
d

11
2%

of
p

er
fo

rm
an

ce
of

th
e

C
U

D
A

ke
rn

el
s

fo
r
C
o
m
p
u
t
e
F
o
r
c
e
,
A
d
v
a
n
c
e
P
o
s
i
t
i
o
n
,

an
d
A
d
v
a
n
c
e
V
e
l
o
c
i
t
y
,

re
sp

ec
ti

ve
ly

.
R

es
u

lt
s

ar
e

n
or

m
al

iz
ed

w
it

h
re

sp
ec

t
to

C
U

D
A

.
O

M
P

-I
C

C
an

d
O

M
P

-P
G

I
re

fe
r

to
th

e
O

p
en

M
P

ve
rs

io
n

of
th

e
co

d
e

co
m

p
il

ed
w

it
h

th
e

In
te

l
an

d
P

G
I

co
m

p
il

er
s,

re
sp

ec
ti

ve
ly

.
A

C
C

-M
C

re
fe

rs
to

th
e

O
p

en
A

C
C

ve
rs

io
n

of
th

e
co

d
e

fo
r

th
e

m
u

lt
ic

or
e

ar
ch

it
ec

tu
re

(c
o
m

p
il

ed
w

it
h

th
e

P
G

I
co

m
p

il
er

).

60

Enabling UVM on the memory-intensive kernels impedes performance in the first few

steps. The reduction in execution time is several orders of magnitude while proceeding from

Step 1 to 2. The same trend was observed from Step 2 to 3 for all three kernels. Due to

developers’ insight on data layout and parallelism opportunities, the impact of the proposed

changes in these steps is significant in comparison to the compiler’s insights.

The next significant reduction in execution time happens when data-locality improves

by reusing variables (from Step 5A to Step 5B and Step 5C). Such an improvement is due

to the reduction in the access of the physical memory by caching it with local variables. In

order to compute exerted force on Atom A, we looped through all atoms in the vicinity and

computed the force between them. Therefore, instead of redundantly loading Atom A from

memory for each loop iteration, we have loaded it once before the inner loop and reused it

within the loop as many times as possible.

Step 7 marks the next substantial reduction in the execution time for our compute-

intensive kernel. In Step 7, we set the gang and vector parameters to their optimal values

from Section 5.3.2 and collect measurements for each kernel. Manually setting these param-

eters enables the scheduler to issue extra gangs on the device and keep the resources busy

at all time (in comparison to the choices by the compiler).

Inefficient utilization of resources leads to performance loss. We see a 16% performance

gain from Step 7 to 8, which is due to the optimal usage of register per kernel. Increasing the

number of utilized registers for all kernels is not beneficial to the performance. Kernels with

different traits require different considerations. Our experiments reveal that the memory-

intensive kernels do not benefit from a large number of registers. Hence, it is better to limit

the register count for such kernels. On the other hand, the compute-intensive kernels highly

benefit from a large number of registers since they minimize the access of global memory for

temporary variables.

61

32,000
108,000

256,000
500,000

864,000

1,372,000

2,048,000

of atoms (system size)

0

200

400

600

800

GF
LO

P/
s

CUDA-ComputeForce
CUDA-AdvancePosition
CUDA-AdvanceVelocity

ACC-ComputeForce
ACC-AdvancePosition
ACC-AdvanceVelocity

Figure 5.4: Giga floating-point operations per second (GFLOP/s). In case of the ComputeForce

kernel, despite comparable speedups with respect to CUDA, the number of floating-points oper-
ations that OpenACC implementation executes is behind CUDA’s performance. The OpenACC
implementation of AdvanceVelocity performs better than its CUDA’s counterpart. Measurements
are performed on P100 of Nvidia’s PSG cluster.

Elimination of redundant reduction operations, as described in Step 10, boosted the

performance and helped our implementation to reach performance of that of CUDA’s. Re-

arrangement of computations and elimination of unnecessary redundant operations have

definitely led to performance gain.

We have discussed ten optimization steps that for our proxy application, CoMD, boosted

the ComputeForce kernel’s performance by 61-74% in comparison to its counterpart written

in CUDA. Although OpenACC did not reach CUDA’s efficiency, it got close to its perfor-

mance with a very small code modification footprint. Additionally, our OpenACC code is

portable to another architecture without needing to change any portion of the code. In

contrast, a CUDA-based application needs to be updated or revisited every time when the

architecture is upgraded, thus affecting the maintenance of the code base. The memory-

intensive kernels are performing better than their counterparts written in CUDA as noted

for Step 7 for both small and large data sizes. It is probably due to scheduler-friendly

instruction generation by the PGI compiler.

62

5.4.2 Floating-point Operations per Seconds

We measured the floating-point operations per second (FLOPS) of our under-study kernels

and compared them with the CUDA implementation for one GPU. There is an increasing

gap between the implementations of ComputeForce kernel and a decreasing gap for memory-

intensive kernels in Figure 5.4. For the latter ones, the difference is negligible and in case of

AdvanceVelocity, the OpenACC version is performing better than CUDA. However, the case

for ComputeForce kernel is different. As it becomes complicated for the OpenACC compiler

to apply necessary optimization techniques on that kernel, the performance gap between

the OpenACC and CUDA implementations increases. When developers take advantage of

the interoperability feature of OpenACC to run CUDA kernels within OpenACC code, they

are allowed to manually tune the bottleneck kernels that do not necessarily benefit from

the compiler-generated code. However, it will adversely affect the portability of OpenACC

codes.

Figure 5.4 shows how the OpenACC version maintains the computation sustainability

of the floating-point operations, as the number of atoms increases. Similar to the CUDA

implementation, the OpenACC implementation does not lose performance as system size

increases exponentially.

5.4.3 Scalability with Data Size

We investigated the scalability of our OpenACC implementation with respect to varying

system sizes. We varied the system size from 32,000 to 2,048,000 atoms and measured the

per-atom execution time for five implementations; OpenACC-GPU (acc-GPU), OpenACC-

Multicore (acc-MC), CUDA, Open MP-ICC (OMP-icc), OpenMP-PGI (OMP-pgi). The

results are depicted in Figure 5.5 for NVIDIA’s PSG cluster. Interestingly, our OpenACC

implementation scales with the system size without any performance loss. As discussed in

63

10 4
10 3
10 2
10 1

acc-GPU CUDA acc-MC OMP-pgi OMP-icc

10 4
10 3
10 2
10 1

Pe
rfo

rm
an

ce
 (u

s/
at

om
)

32
,00

0

10
8,0

00

25
6,0

00

50
0,0

00

86
4,0

00

1,3
72

,00
0

2,0
48

,00
0

Number of atoms

10 4
10 3
10 2
10 1

Com
puteForce

AdvancePosition
AdvanceVelocity

Figure 5.5: Scalability with different data sizes with one GPU of NVIDIA P100. One can observe
that performance is not lost when data size is increased. OpenACC-Multicore performs better in
comparison to OpenMP counterparts. The lower the value, the better the performance results.
Measurements are performed on Nvidia’s P100 from PSG.

the last section, we experienced better performance with OpenACC than using CUDA for

memory-intensive kernels.

Another interesting observation is that there is no significant gap between OpenACC-

Multicore and its OpenMP counterparts. In some cases, OpenACC performs better than the

Intel optimized OpenMP version for Haswell processors on the PSG platform. In compari-

son to the generated code for OpenMP by the PGI compiler (OMP-PGI), OpenACC code

performs better in the case of the ComputeForce kernel.

5.4.4 Scalability Measured at Different Architectures

Scalability plays an important role in utilizing upcoming architectures. We have indicated

such scalability with BigRed’s K20, UHPC’s K80, and PSG’s P100 and V100 in Figure

64

K20 K80 P100 V100
GPU Generation

100

101

102

103

104

105
Ti

m
e

(u
s)

K20 K80 P100 V100
GPU Generation

100

101

102

103

104

105

CUDA-ComputeForce
ACC-ComputeForce
CUDA-AdvancePosition

ACC-AdvancePosition
CUDA-AdvanceVelocity
ACC-AdvanceVelocity

32,000 atoms 500,000 atoms

Figure 5.6: Scalability with different architectures while exploiting one GPU in the target archi-
tecture. With new architectures, performance is improving by shortening time. Lower is better.

5.6. The gap between CUDA and OpenACC implementations narrows when the underlying

architecture evolves, particularly for the ComputeForce kernel. Results in this section are

based on utilization of one GPU in each device.

5.4.5 Scalability with Multiple GPUs

We have investigated the scalability of our OpenACC implementation for more than one

GPU. NVIDIA’s Pascal P100 has 4 GPUs inside the PCI card. For each GPU, an MPI

process is initiated and that process takes control of a single GPU. All processes communicate

through the MPI library to distribute workload among themselves. Results, depicted in

Figure 5.7, show speedups with respect to 100 timesteps of CoMD with different system sizes.

The ComputeForce kernel shows promising results for both system sizes. The OpenACC

implementation scales better in comparison to its CUDA implementation. However, the other

two memory-intensive kernels do not benefit from multi-GPU scalability of OpenACC code.

It is due to the fact that they spend most of their time waiting for memory. Consequently,

65

1 2 4
of GPUs

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

CUDA-ComputeForce
ACC-ComputeForce
CUDA-AdvancePosition
ACC-AdvancePosition
CUDA-AdvanceVelocity
ACC-AdvanceVelocity

1 2 4
of GPUs

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

32,000 atoms 2,048,000 atoms

Figure 5.7: Scalability of implementations on NVIDIA P100. The ComputeForce kernel is per-
forming linearly and its performance is close to its CUDA counterpart.

they do not benefit from the extra computational resources in comparison to our compute-

intensive kernel. Such a conclusion, however, is not true for their CUDA counterparts and

they show linear speedup for 2,0480,000 atoms.

Figure 5.8 displays results for V100. Similar to its predecessor, Pascal P100, Volta V100

also possesses 4 GPUs inside the PCI card. All the algorithms show linear (or super-linear)

scalability when our system size is large. The scalability of our implementation is comparable

to the CUDA’s, and in the case of the ComputeForce kernel, OpenACC performs better.

When our system size is not large enough, OpenACC’s scalability of the ComputeForce

kernel is 59% and 70% better for 2 and 4 GPUs, respectively. In the case of the other two

kernels, CUDA and OpenACC’s scalability are similar.

Figure 5.7 shows the super-linear scalability for the three kernels with 2,048,000 atoms.

The OpenACC’s ComputeForce kernel is super-linear due to the utilization of a cut-off

range within the algorithm. Skipping some iterations of a loop helps the kernels to reach

super-linearity. On the other hand, efficient cache utilization of CUDA’s AdvancePosition

and AdvanceVelocity kernels has led to a super-linear speedup. Figure 5.8 depicts similar

results on the V100 architecture. Due to improvements in cache performance of the V100

66

1 2 4
of GPUs

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

CUDA-ComputeForce
ACC-ComputeForce
CUDA-AdvancePosition
ACC-AdvancePosition
CUDA-AdvanceVelocity
ACC-AdvanceVelocity

1 2 4
of GPUs

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

32,000 atoms 2,048,000 atoms

Figure 5.8: Scalability of implementations on NVIDIA V100. For a 2,048,000-atom system,
OpenACC and CUDA scale linearly with the number of GPUs. In case of ComputeForce, OpenACC
shows more scalable performance in comparison to CUDA. The CUDA implementation of the
AdvanceVelocity kernel displays a super-linear performance.

architecture in comparison to P1003, the two CUDA kernels that were underutilized on P100

show linear performance. Figures 5.7 and 5.8 show how CoMD shows sub-linear speedups

for 32,000 atoms for all three kernels. It is due to the high overhead of workload distribution.

When our system size is small, CoMD does not benefit from the multi-device distribution.

However, as we increase the system size, we notice an explicit improvement in the speedup

of the kernels.

5.4.6 Effects on the Source Code

OpenACC does not impose a significant impact on the source code size and maintenance;

thus, it retains the integrity of a complex scientific application. Similar to OpenMP, devel-

opers are not required to write excessive lines of code to maintain the state of the application

and accelerators. As a result, we exploited lines of code (LOC) to quantitatively measure

the code complexity. The measurement was performed with the cloc [20] tool. Table 5.2

3The L2 cache size has increased from 4MB in P100 to 6MB in V100.

67

Table 5.2: Effect of the OpenACC adaption on the source code – lines of code (LOC) column
shows extra line required to implement this step with respect to the OpenMP implementation as
the base version. The third column (%) shows the increase with respect to the base version.

Step LOC % Step LOC %

OpenMP 3025 - Step 6 +163 5.39

Step 1 +2 0.07 Step 7 +198 6.55

Step 2 +99 3.27 Step 8 +198 6.55

Step 3 +103 3.4 Step 9 +187 6.18

Step 4 +109 3.6 Step 10 +215 7.11

Step 5A +109 3.6 CUDA +4745 1.57X

Step 5B +125 4.13

Step 5C +165 5.45

presents the results for the LOC for each step. We used reference implementation of CoMD

(the OpenMP version) as the starting point for our porting process to OpenACC. The LOC

column shows that the total extra lines of code required to implement that step with respect

to OpenMP implementation as the base version. The third column (%) shows the percentage

with respect to the base version. The CUDA implementation doubles the amount of code

size in comparison to the OpenMP version. However, for OpenACC, LOC is only less than

8%. These include the LOC from Step 2 to 10 with extra pointerchain lines. In some

transitions from one step to the other (e.g., Step 7 to 8), there is no difference in LOC. That

is, we only changed the compilation flags, which naturally does not count towards the LOC

count.

68

Chapter 6

Gecko: A Hierarchical Memory Model

Previously published content:

1. Ghane, Millad, and Chandrasekaran, Sunita, and Cheung, Margaret S., “Gecko: Hi-
erarchical Distributed View of Heterogeneous Shared Memory Architectures.” In Pro-
ceedings of the 10th International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM’19) in conjunction with PPoPP, 2019. [36]

This chapter will discuss Gecko1, a hierarchical memory model for current and future

generations of computing systems. Gecko is a model that represent current diverse memory

models in a heterogeneous system. Based on this model, we also provide a simi-

lar programming model with the similar name as a proof of concept to show

the feasibility of our hierarchical model. A preliminary investigation of Gecko was

discussed in Ghane et al. [38] as well. For a detailed discussion of all available clauses in

Gecko’s programming language, please refer to Appendix A at the end of this dissertation.

1Courtesy of Noun Project: https://thenounproject.com/ for the gecko icon at the top of the page.
The reason behind choosing gecko as the name of our framework is the resemblance of its hands to the
hierarchy that our model proposes. Its fingers resemble the leaf nodes in our proposed model.

69

vir.vir.

LocA

LocCLocB

LocG1 LocG2 LocG3 LocG4LocN1 LocN2
x

y

z

y y

z z

z z z z z z

root

leaves

tre
e

Figure 6.1: An overview of a hierarchical shared memory system. Locations are specified with
Loc prefix. Small boxes represent variables in the system. The solid lines show the location where
variables are defined. The dotted lines represent the locations in hierarchy that have access to that
variable. Virtual locations are designated with “vir.” tags. Tree is a hierarchical representation of
relationship among locations. The root location is the topmost location that has no parent. Leaves
are locations at the bottom of the tree that have no children.

6.1 The Gecko Model

Locations are the principal constructs in a Gecko model. Locations are an abstraction of

available memory and computational resources in the system and are represented as a node in

Gecko’s tree-based hierarchy model2 [55]. Similar to the Parallel Memory Hierarchy (PMH)

model [5], Gecko is a tree of memory modules with workers as the leaves of the tree. Workers

provide computational capabilities to execute the kernels; they are attached to the memory

modules. Figure 6.1 illustrates an example of the Gecko model. This model represents a

regular cluster/supercomputer node with two non-uniform memory access (NUMA) multi-

core processors [56], LocNi, and four GPUs, LocGi, similar to NVIDIA’s PSG cluster [80]

and ORNL’s Titan supercomputer [85].

2In computer science, a tree structure is the way of representing a hierarchy in the form of nodes and
relationships. Nodes relate to each other through the child-parent relationship. Each node has at most one
parent and zero to many children. The root node of the tree is the topmost node in a tree; it is the only node
with no parent. Leaves are nodes at the bottom of the tree that have no children. In Gecko’s terminology,
nodes are called locations. Please refer to Figure 6.1 for an example of a tree, a root, and leaves.

70

The location hierarchy in Gecko designates how one location shares its allocated memories

with another. When memory is allocated in a location, the allocated memory is accessible

by its children. They will have access to the same address as their parent has. However, the

allocated memory is not shared with their parent and is considered to be a private memory

with respect to their parent. Figure 6.1 shows how hierarchy will affect memory accesses

among locations. The allocated memory y is allocated in Location LocB and consequently,

it can be accessed by LocB, LocN1, and LocN2. However, LocA has no knowledge of the

variable y. By the same logic, allocated memory z can be accessed by all locations, while

accesses to x is limited to LocG1.

In Gecko, locations are categorized as follows: 1) a memory module, 2) a memory module

with worker, and 3) a virtual location. Memory modules are annotated with their attributes

(e.g., type and size); LocA in Figure 6.1 is a memory module. If a location is a memory

module with a worker attached to it, the location will be used to launch a computational

kernel by the runtime library; LocNi and LocGi are examples of memory modules with

workers. Finally, the virtual locations, LocB and LocC in Figure 6.1, are neither memory

modules nor computational ones. They are an abstract representation of their children in the

hierarchy. Grouping a set of locations under a virtual location provides a powerful feature

for the application to address such locations as a stand-alone location. Similar approaches

have been observed in related work [112, 111]. Virtual locations can also be the target of

memory allocation and kernel launch requests as well. Depending on the type of requests

and hints from the developers, the runtime library will act upon the requests and perform

them at the execution time.

Locations are abstractions of available resources in the system. Any location in Gecko,

internal or leaf locations, is possibly the target of a kernel launch by application. Virtual lo-

cations, however, provide flexibility to the applications. With virtual locations, applications

aptly fix the target of their kernel to that location while changing the underlying structure of

71

the tree for the same location. As a result, the application targeted for a multicore architec-

ture dynamically or statically morphs into a program targeting different types of accelerators

(e.g., NVIDIA GPUs, AMD GPUs, or FPGAs).

Similar to Hierarchical Place Trees (HPT) [112], Gecko provides facilities to represent any

physical machine with different abstractions [112, 111]. The best configuration depends on

the characteristics of the application, its locality requirements, and the its workload balance.

The developer or auto-tuning libraries can assist Gecko in choosing the effective abstraction.

Figure 6.2 shows how Gecko represent nodes in Summit [84] and Tianhe-2 [61]. Model a

is the most generic approach to represent Summit. The two IBM POWER9 processors

in two different sockets form a NUMA domain and all six NVIDIA Volta V100 GPUs are

represented under a virtual location.

A detailed information on Summit reveals that the first three GPUs form a spatial locality

with respect to each other while the last three ones show the same spatial locality to each

other. They are connected to the main processors and each other with an NVLink [31]

connection with a bandwidth of 100 GB/s (bidirectionally). As shown in b , applications are

able to utilize this locality by declaring two virtual locations, Ga and Gb. Such an arrangement

minimizes the interference between the two GPU sets. With this model, applications run

Kernel Ka on Ga and Kernel Kb on Gb to fully utilize all resources and perform simultaneous

execution of kernels while minimizing data bus interferences.

Gecko is a platform- and architecture-independent model. The hierarchy in c represents

a system targeting Intel Xeon Phis (e.g., Tianhe-2) with Gecko. Xeon Phis are grouped

together and declared under their parent location, Intel MIC. In cases where an application

faces a diverse set of accelerator types in a cluster or supercomputer (for instance, a node

equipped with NVIDIA GPUs and another node with Intel Xeon Phis) and they are unknown

to the application at compile time, Gecko can adapt to the current accelerator in the system

without any code alterations. Gecko also is able to adapt to changes in the workload and

72

U
VM

IB
M

PO

W
ER

9

P1

P2

N
VI

D
IA

V1
00

G
1

G
6

...

Pr
oc

es
so

r
G

PU

a
U

VM

IB
M

PO

W
ER

9

P1

P2

N
VI

D
IA

V1
00

G
a

G
b

G
1

G
2

G
3

G
4

G
5

G
6

b

e
U

VM

IB
M

PO

W
ER

9

N
VI

D
IA

V1
00

G
a

G
b

G
1

G
2

G
3

G
4

G
5

G
6

M
IC

X1

X2

X3

Ac
ce

le
ra

to
rs

M
ai

n
M

em
or

y

N
U

M
A

N
od

e
1

N
U

M
A

N
od

e
2

d

P1
P2

N
U

M
A

N
od

e
3

P3

N
U

M
A

N
od

e
4

P4
N

U
M

A
N

od
e

1
N

U
M

A
N

od
e

2

c
U

VM

In
te

l
Xe

on

P1

P2

M
IC

X1

X2

X3

Xe
on

 P
hi

F
ig
u
re

6
.2
:

G
ec

ko
’s

m
o
d

el
re

p
re

se
n
ti

n
g

va
ri

ou
s

sy
st

em
.

O
R

N
L

’s
S

u
m

m
it

(a
an

d
b
)

w
it

h
tw

o
IB

M
P

O
W

E
R

9
p

ro
ce

ss
or

s
an

d
si

x
N

V
ID

IA
V

ol
ta

V
10

0
G

P
U

s
–

T
ia

n
h

e-
2

(c
)

w
it

h
tw

o
In

te
l

X
eo

n
p

ro
ce

ss
or

s
an

d
th

re
e

In
te

l
X

eo
n

P
h

i
co

-p
ro

ce
ss

or
s

–
N

U
M

A
ar

ch
it

ec
tu

re
w

it
h

fo
u

r
N

U
M

A
n

o
d

es
(d

)
–

A
co

m
p

le
x

p
la

tf
or

m
w

it
h

m
u

lt
ip

le
ty

p
es

of
ac

ce
le

ra
to

rs
(e

)

73

employ more resources, if needed to expedite the processing, by modifying the hierarchy.

Gecko also supports NUMA-only architectures in symmetric multiprocessor (SMP) sys-

tems. Model d depicts a NUMA system with four NUMA nodes and their corresponding

processors. Processors (with multiple cores) are drawn to show how leaf nodes contain com-

pute resources. They are not a part of the model. The locality that NUMA architecture

provides in configuration in d can be exploited using Gecko, which is not possible with

the flat models of OpenMP and OpenACC. Finally, Model e shows a sophisticated de-

sign that includes all the models in b , c , and d . With this design, applications target

Accelerators location to utilize all available GPUs and MICs in a system.

Gecko is implemented on top of the OpenMP [83] and OpenACC [82] programming

models to generate code for the computational kernels. Using these programming models

helps us to achieve portability with one single source code for the computational kernels in

our applications. To use Gecko, developers will write their kernels once and then Gecko will

use those kernels to target different architectures. This is only achievable only through the

above-mentioned programming models. Section 6.5 discusses how we implemented Gecko

and put to use OpenMP and OpenACC.

6.2 Key Features of Gecko

This section is dedicated to key features that Gecko provides, which makes it superior com-

pared to the current flat models.

6.2.1 Minimum Code Changes

Gecko’s hierarchical tree leads to minimum source code modification. Applications are able

to introduce an arbitrary number of virtual locations to the hierarchy at the execution time

74

and reform themselves based on the availability of the resources. This provides a great

opportunity for the single-code base approach. Figure 6.3a is another representation of

the model in Figure 6.1; the same configuration with an extra virtual location: LocV. The

dotted lines represent the potential relationships between locations. Such relationships have

not been finalized by the application yet. The new virtual location, LocV, acts like a handle

for applications. Applications are able to launch their parallel regions in the code on this

location while they basically know nothing about the hierarchy structure beneath LocV.

At execution time, an application is able to change the potential subtrees deliberately. By

enabling the left (case b) or right (case c) relationship in the tree, kernels that are launched

on LocV will be executed on a multicore or multi-GPU architecture, respectively. This shows

how Gecko adapts to different architectures by a simple change in the association among the

locations in the hierarchy.

6.2.2 Dynamic Hierarchy Tree

Unlike Sequoia [28] and HPT [112] that build their hierarchy at the compile time, Gecko

dynamically constructs its hierarchy at execution time. An application defines the whole tree

at the execution time and adds or removes other branches to or from the hierarchy as the

application progresses. This enables an application to react to the changes in the workload

size by adding and removing resources accordingly, as needed. This feature also enables

applications to adapt themselves to the workload type. For instance, for applications that

benefit from multicore architectures, like traversing a linked list in a graph, Gecko helps the

applications to use multicore processors instead of accelerators.

Transforming from the case a to the cases b and c in Figure 6.3 shows the polymor-

phic capabilities of Gecko. Similarly, Gecko enables the vertical expansion of the hierarchy.

Figure 6.3d shows the equivalent model of the model represented in Figure 6.3a. The only

75

Multicore

GPUs

(b)

(c)

(d)

Introducing extra
virtual locations

LocV

LocP

LocV

LocP

LocX

(e)

LocV

(a)

Bringing Xeon PHIs
into the hierarchy

Figure 6.3: Polymorphic capabilities of Gecko lead to fewer source code modifications. We can
change the location hierarchy at run time. Our computational target can be chosen at runtime:
processors (b) or GPUs (c). Gecko also supports deep hierarchies in order to provide more flexibility
to applications (d). We are able to extend the hierarchy as workload size changes (e).

76

difference is the extra virtual locations in the hierarchy. We have introduced three new vir-

tual locations to the model on the right branch of LocV. Such changes to the model do not

affect the workload distribution in any ways since virtual locations do not have any physi-

cal manifestations. The workload submitted to LocV is simply passed down to its children

and distributed according to the chosen execution policy (will be discussed in Section 6.5).

Virtual locations are also effective in the adaptation of an application to changes in the

environment or the workload. Suppose an application has already allocated four GPUs and

wants to incorporate two new Intel Xeon Phis to the hierarchy tree due to a sudden increase

in the workload. The application defines a virtual location, LocX, and declares the new Xeon

Phis as its children. Then, by declaring LocX as a child of LocP in Figure 6.3d, Gecko is able

to utilize the Xeon Phis to distribute the workload. Hereafter, the computational workloads

that were previously distributed on four GPUs under LocP will be distributed among the

four GPUs and the two newly added Xeon Phis. Figure 6.3e shows the new model with two

Xeon Phis included in the hierarchy. Later, one can detach the LocX location from the tree

and return to the model shown in Figure 6.3d.

Gecko offers a location coverage feature that helps extend the adaptation capabilities

of virtual locations. Location coverage creates a virtual location to represent all resources

with the same location type. In many cases, the number of locations of a specific type is

unknown till the execution time. Although the application is not aware of the number of

available resources of such type, it is looking for all available ones. The location coverage

feature brings relief to developers and makes the code more portable and robust to the new

environments.

77

6.3 Challenges Raised by the Key Features

Gecko addresses such flexibility with its novel hierarchical approach to represent available

resources. However, this representation raises many challenges that need to be addressed

such as: 1) Given a set of variables scattered in various locations on the hierarchy tree, which

location is responsible to execute a kernel? 2) How to distribute execution among children of

a location? 3) Considering the dynamism that we introduce, how is memory allocated since

the targeted location is only known at the execution time? We discuss how Gecko addresses

some of these challenges.

6.3.1 Finding Location to Execute Code

Data placement is not a trivial job. Agarwal et al. [1] and Arunkumar et al. [8] emphasize

how either an “expert programmer” needs to do it or extensive profiling is required to find the

efficient placement. Each approach has its own advantages and drawbacks. For this work,

Gecko relies on the expertise of the programmer to place the data in their proper location.

The programmer, using Gecko’s directives, allocates a block of memory in any location. This

allows Gecko to have up-to-date knowledge about where each allocated memory is placed.

As an application progresses over time, it allocates memory in different locations. The

location that is chosen depends on various criteria (e.g., requesting bandwidth- or capacity-

optimized memory). This, in turn, causes the allocated memory to be scattered around

different locations within the hierarchy. Therefore, if a computational kernel utilizes multiple

memory allocations that are not in the same location, a location that is the most suitable has

to be chosen, which has to be accessible by all the allocated memory throughout the hierarchy.

We follow the Most Common Descendent (MCD) algorithm (described in Section 6.3.1.2) to

execute this strategy.

78

6.3.1.1 Data Locality

Moving data around is quite a costly operation, which can be addressed by adopting better

data locality optimization strategies. As a result, Gecko migrates the computations to the

targeted location instead of moving data. Therefore, when a kernel is initiated on previously-

allocated memory, Gecko locates them in the hierarchy, and then it finds the proper location

to execute the computational kernel. Choosing the proper location depends on where the

memory is scattered within the hierarchy. Section 6.3.1.2 proposes an efficient algorithm

that finds the final location in the hierarchy to execute the computational kernel.

6.3.1.2 Most Common Descendent (MCD) Algorithm

Given a hierarchy tree and a set of locations within the tree, the Most Common Descen-

dent (MCD) algorithm finds a location in the set that is the child and/or grandchild of all

other locations in the input set. Such a location is also the deepest location in the hierarchy

among the locations in the input set. Algorithm 4 shows this algorithm in detail.

The MCD algorithm is the exact opposite of the Lowest Common Ancestor (LCA) algo-

rithm [3]. While LCA traverses upwards in the tree to find the most common parent among a

given set of locations, MCD traverses the tree downwards in order to find the most common

child. Unlike LCA, MCD may not have a final answer for a given input set.

Algorithm overview: Figure 6.4 demonstrates three scenarios that will happen when

we run the MCD algorithm as shown in Algorithm 4. First, we set the first location as the

final answer and record its path to the root as the final path (shown as a). Then, we loop

over other locations. For each location, there are three possible scenarios, which are shown

in (b), (c), and (d) of Figure 6.4. If a location is found on the final path (as shown in b),

we already have the final answer, so we will skip this location. If a location has a path to

the root that does not overlap with the current final path (as shown in c), there is no final

79

Algorithm 4 Most Common Descendent (MCD) Algorithm

Input: T : Gecko’s hierarchical tree structure.
Input: L: List of locations.
Input: pathToRoot(t, n): returns the locations on the path from node n to root of the Tree

t
Output: The most common descendent or null

1: function mcdAlgorithm(T, L)
2: commonChild← L0
3: commonPath← pathToRoot(T, L0)
4: for each Li ∈ L do
5: if Li /∈ commonPath then
6: newPath← pathToRoot(T, Li)
7: if commonChild /∈ newPath then
8: return null
9: end if

10: commonChild← Li
11: commonPath← commonPath

12: end if
13: end for
14: return commonChild

15: end function

(a) (b)

(c) (d)

Figure 6.4: Four different possible scenarios in the MCD algorithm.

80

answer that satisfies the provided input, and consequently, the program halts. And finally,

if a location has a path to the root that includes the current final answer (as shown in d),

the final answer and the final path are changed to this new location and path. To put it

briefly, the MCD algorithm tries to find a common path among all input locations. If one is

found, the deepest location in the hierarchy is returned. Otherwise, there is no result with

respect to the provided input.

Complexity: The complexity of the MCD algorithm in the worst case scenario is

O(n log(n)). The for-loop on Line 4 of Algorithm 4 has to check every node in the list.

The complexity of Line 6 (pathToRoot(T, Li)) of Algorithm 4 is related to the height of

the tree. For a complete tree where each location has m children, extracting a path from

any arbitrary location to root has a complexity of O(logm(n)). In the worst case, m is 2.

Hence, the complexity becomes O(n log(n)).3

6.3.2 Workload Distribution Policy

The next step after determining where to execute the kernel is to determine how the workload

should be distributed among the children of that location. Assigning all the iteration space

to one single child of a location will heavily underutilize our computational resources. While

one of them is doing all the work, all the other ones are idle. This is not an ideal scenario for

the current HPC systems. The efficient scenario is to partition the iteration space equally.

If all children are of the same kind (e.g., all of the children are of the same GPU device),

the iteration space should be partitioned in equal sizes. However, in case the children are of

different kinds, the iteration space should be distributed according to their computational

capabilities. If one of them is computationally more powerful that the rest, we should assign

more iteration space to that location in comparison to the other children. As a result, we

3Declaring paths as sets (e.g., unordered set in C++ STL) leads to an O(1) complexity for searching a
location in the path.

81

need different strategies in workload distribution to accommodate with different cases.

Gecko provides a set of distribution policies (or in other words, strategies) that a pro-

grammer is able to select among them. These policies enable the application developers to

support the above-mentioned cases to keep all the resources busy at all times. Gecko parti-

tions the iterations of a for-loop and assigns each partition to a location. The partitioning

process is governed by our distribution policies. Figure 6.5 demonstrates how these policies

partition a for-loop with 1,000,000 iterations. These policies are called static, flatten,

percentage, range, and any. They are discussed in detail in the following subsections.

6.3.2.1 Static

In the static distribution, the iteration space is divided evenly among children of that lo-

cation. This policy is similar to the default distribution approach in the directives-based

approaches OpenACC [82] and OpenMP [83]. Figure 6.5 shows how the iteration space,

shown as a box, is partitioned among location. Since the destination location has two chil-

dren, the space is partitioned into two parts. The partition assigned to each child is further

divided among its children until the leaf nodes of the tree are reached. As a result, the leaf

nodes that are closer to the root will have bigger shares in comparison to the others.

6.3.2.2 Flatten

The flatten distribution is similar to the static distribution in its approach. In static, all

siblings of a location take an equal share of the workload. However, in the case of the flatten

distribution, all the leaf nodes contribute equally. Figure 6.5b shows how the iteration space

is partitioned into eight equally-sized parts since we have eight leaf nodes in total. Each

partition is assigned to a single location.

82

0
1,
00
0,
00
0

Ite
ra
tio
n

Sp
ac
e

(a
) s

ta
tic

(c
) p

er
ce

nt
ag

e
or

 ra
ng

e

22
.5
%

22
.5
%

22
.5
%

22
.5
%

5%
5%

0
1,
00
0,
00
0

(b
) fl

at
te

n

0
1,
00
0,
00
0

0
1,
00
0,
00
0

(d
) a

ny

Fr
ee

 L
oc

at
io

n

Bu
sy

 L
oc

at
io

n

F
ig
u
re

6
.5
:

F
o
u

r
d

iff
er

en
t

w
or

k
lo

ad
d

is
tr

ib
u

ti
on

p
ol

ic
ie

s
th

at
ar

e
su

p
p

or
te

d
in

G
ec

k
o.

83

6.3.2.3 Percentage or Range

Gecko also provides customized workload distribution among locations. An application de-

veloper is able to partition the iteration space among children of a location. The range

policy accepts an array of integers that specifies the partition size for each child. The per-

centage policy accepts an array of percentages that specifies the partition in percentages

with respect to the whole iteration space. In case the number of children of a location is

fewer than the partitions specified by the developer, Gecko assigns the rest of the partitions

in a round-robin or work-stealing fashion. Figure 6.5c shows an example of how the range

and percentage policies partition the iteration space. The example shows the percent-

age:[5,5,22.5,22.5,22.5,22.5] case. The locations on the left are assigned only 5% of

the iteration space, while each location on the right is assigned 22.5% of the whole iteration

space.

6.3.2.4 Any

In some cases, we are interested in engaging only one of the children in the execution process.

In such cases, Gecko finds an idle location among children of the chosen target. Alternatively,

based on the recorded history, Gecko can choose the best architecture for this kernel if we

are targeting a multi-architecture virtual location. Figure 6.5d shows an example of how

the any policy works. One can observe how Gecko chooses the yellow location since the first

four gray ones are busy with other jobs, and the yellow location is the first available child of

the light-gray location.

84

Application

Gecko Runtime Library

O
th

er
 li

br
ar

ie
s

lib
N

U
M

A

Multicore
X86_64

OpenACC

C
U

D
A

R
un

tim
e

Li
br

ar
y

pthread
library

IBM
Power9

NVIDIA
GPU FPGA

CUDA Driver API

Figure 6.6: An overview of Gecko’s architecture. This figure shows how the Gecko Runtime
Library (GRL) sits on top of other libraries to abstract the application from the various hardware
and software combinations.

6.3.3 Gecko Runtime Library

Figure 6.6 displays how Gecko is placed in the software stack of the high-performance com-

puting. In this architecture, the application sits on top of Gecko; as a result, Gecko provides

a high-level of abstraction to the application. The application on top of the architecture

deals with a set of abstract entities. At execution time, such entities would be associated

with the available hardware in the system.

Below Gecko, there are many different software libraries and programming models that

let Gecko target various architectures and platforms (shown at the bottom of Figure 6.6). In

a nutshell, Figure 6.6 shows how an application does not need to change when the underlying

platforms are changed.

6.3.3.1 Hierarchy Maintenance

The Gecko Runtime Library (GRL) utilizes an internal tree data structure to maintain the

hierarchy that Gecko proposes. Each location in the tree has another location as its parent

and multiple (or no) locations as its children. The root location of the tree has no parent.

85

double *X, *Y, *Z;
#pragma gecko memory allocate(X[0:N1]) type(double) location("LocN")
#pragma gecko memory allocate(Y[0:N2]) type(int) location("LocG")
#pragma gecko memory allocate(Z[0:N3]) type(char) location("LocP")

printf("X = %p\n", X); // X = 0x123;
printf("Y = %p\n", Y); // Y = 0x789;
printf("Z = %p\n", Z); // Z = 0x159;

LocG

LocG

LocP

LocN

Key Value

0x123 location("LocN"), datasize(8), count(N1)

0x789 location("LocG"), datasize(4), count(N2)

0x159 location("LocP"), datasize(1), count(N3)

0x789

LocN

0x123

Gecko Memory Table (GMT)

LocP

0x159

LocP
LocN

Reversed
Hash Table

.

.

.

LocG

Key Value

.

.

.

Figure 6.7: Reversed Hash Table (RHT) with a code snippet that demonstrates the memory

allocate clause in Gecko and its effect on the Gecko Memory Table (GMT).

Locations are accessed by their unique name. However, traversing the tree each time to

find a location is not a performance-friendly approach. Hence, Gecko uses a Reversed Hash

Table (RHT) to find and access a location. RHT is a key-value-based container that maps

a string of characters (representing the name of a location) to its corresponding location4 in

the tree. Figure 6.7 shows RHT for a sample tree in Gecko. Every location has an entry in

RHT. When we add or remove a location to or from the hierarchy, RHT is updated with

the changes. Such a design allows Gecko to access a location in O(1) complexity instead of

O(n). In our implementation, we declared RHT as an unordered map from C++ Standard

Template Library (STL).

4The value column in RHT contains a pointer that points to its corresponding node in the internal tree.

86

Algorithm 5 The Region Pseudocode

Input: T : Gecko’s hierarchical tree structure.
Input: varList: List of variables
Input: policy: The chosen distribution policy
Input: kernel: The computational kernel

1: function region(T, varList, policy)
. Refer to Algorithm 6 for binding algorithm.

2: threadList← bindThreadsToLeafLocations(T)
3: locList← extractLoc(varList)
4: loc← mcdAlgorithm(T, locList)
5: leafList, configs← splitIterSpace(loc, policy)
6: for each th ∈ threadList do
7: if th.loc ∈ leafList then
8: S← configs[th.loc]

9: kernel.execute(th.loc, S.begin, S.end)
10: end if
11: end for
12: threadList.waitAll()
13: end function

6.3.3.2 Workload Maintenance

GRL is also responsible for workload distribution among locations. As a program encounters

a for-loop that is decorated with Gecko directives to distribute the workload, the iteration

space is partitioned among the children based on the execution policy that is chosen.

Algorithm 5 shows the steps that are followed by Gecko. First up, as shown in Line 2,

all leaf locations in the hierarchy are extracted, and a thread is assigned to them as we will

discuss in Section 6.3.3.3. Each thread is responsible for initiating a job on the location and

waiting for the location to finish its job.

Secondly, we use the MCD algorithm to find the proper location to execute the kernel.

We extract the list of locations from the variables used in the region (Line 3). Then, Line 4

in Algorithm 5 shows how to call the MCD algorithm to choose our target location. Thirdly,

on Line 5, the iteration space is partitioned among the children of a location based on

the execution policy chosen as discussed in Section 6.3.2. Fourthly, Line 6 of Algorithm 5

87

Algorithm 6 The Binding Algorithm

Input: T : Gecko’s hierarchical tree structure.
Output: Allocated Threads

1: function bindThreadsToLeafLocations(T)
2: if T.isModifiedSinceLastV isit() then
3: numLocs, listLocs← findAllLeafNodes(T)
4: allocatedThreads.releaseAll()
5: allocatedThreads.create(numLocs)
6: i← 0
7: for each loc ∈ listLocs do
8: allocatedThreads[i].assign(loc)
9: i← i + 1

10: end for
11: end if
12: return allocatedThreads

13: end function

specifies how threads dispatched on Line 2 take control of their corresponding location and

execute their share of iteration space. And finally, in Line 12, Gecko waits for all threads to

finish their assigned job. After Line 12, the devices are free for the next round of execution.

6.3.3.3 Thread Assignment

The assignment of threads follows the steps in Algorithm 6. If the tree structure that

represents the hierarchy in Gecko remains unmodified since our last visit, Gecko does nothing,

since threads are already assigned to the locations. However, the hierarchy may alter between

the execution of consecutive regions. In such cases, the updated leaf locations are extracted

from the hierarchy (Line 3 in Algorithm 6). In Lines 4-5, threads are released, and then, in

Lines 6-10, threads are updated with their new assignments.

6.3.4 Memory Allocation in Gecko

This section discusses challenges that Gecko faces with respect to memory allocation.

88

6.3.4.1 Uncertainty in Location Type

Uncertainty in location type makes memory allocation a challenging problem. The process

of allocation has to be postponed to execution time since only then does Gecko have enough

knowledge to perform the allocation. Consequently, the memory allocation process is not

straightforward and becomes a challenge.

Algorithm 7 shows how Gecko allocates memory. It starts by recognizing if the location

chosen is a leaf location in the tree or not. Allocated memory in leaf locations is private

memory that is only accessible to the location. Based on the location type, the malloc or

cudaMalloc APIs are called.

If the location chosen is not a leaf location, Gecko traverses the subtree beneath the

location and determines whether all of its children are multicore or not. If they are all

multicore, we will use a host-based memory allocation API [30, 27], such as malloc and

numa alloc [56]. Otherwise, Gecko allocates memory from the memory domain introduced

by CUDA known as Unified Virtual Memory (UVM) [57].

Gecko utilizes another hash table, known as Gecko Memory Table (GMT), to trace the

memory allocations within the system. Figure 6.7 displays a code snippet that utilizes

Gecko’s directives to allocate memories in the system. It shows the sequence of actions

that takes place when memory is allocated. First up, Gecko allocates a block of memory to

the designated location with the data type and the total number of elements that the user

requested (known as memory traits). For instance, in the second line of the code snippet

in Figure 6.7, the programmer requests N1 double-precision elements in LocN. Algorithm 7

returns the suitable allocation mechanism. After using the API function returned by Al-

gorithm 7, the target variable (in this case, X) holds the memory address (0x123). Then,

Gecko inserts an entry into GMT with 0x123 as the key and the memory traits as the value.

The extractLoc function in Algorithm 5 utilizes GMT to find the location in which each

89

Algorithm 7 Memory Allocation Algorithm

Input: gTree: Gecko’s hierarchical tree structure.
Input: loc: the target Location.
Output: Memory Allocation API.
1: function memAlloc(gTree, loc)
2: allocFunc← null . Chosen Allocation API
3: if gTree.isLeaf(loc) then
4: if gTree.getType(loc) == host then
5: allocFunc← multiCoreAlloc
6: else if gTree.getType(loc) == gpu then
7: allocFunc← cudaMalloc
8: end if
9: else

10: children← gTree.getChildren()
11: if children.areAllMC() then
12: allocFunc← multiCoreAlloc
13: else if gTree.getType(loc) ∈ {gpu, multicore} then
14: allocFunc← cudaMallocManaged
15: else
16: return Err UnrecognizedLocationType
17: end if
18: end if
19: return allocFunc

20: end function

variable in its input parameter, varList, resides.

6.3.4.2 Distance-based Memory Allocations

Gecko provides distance-based allocations to the programmer. Unlike the ordinary alloca-

tions that were discussed in Section 6.3.4.1, the programmer does not specify the target

location. In the case of ordinary allocations, a programmer manually specifies the target

location for the memory block. However, in distance-based allocations, GRL should infer

the target location at execution time. Such memory allocations are performed with respect

to the location that the computational kernel is targeted to be executed.

Distance-based allocations in Gecko are declared, as either close or far. Close allo-

cations are performed within the location targeted for running the kernel. However, far

90

allocations are performed within the parent (or grandparents) of the targeted location. For

instance, in Figure 6.7, if location LocH is chosen for kernel execution, declaring a memory

as close will allocate memory within LocH, while declaring it as far:3 will allocate it in

LocD (since it is its third grandparent).

Gecko also provides realloc and move keywords for distance-based memory allocations.

The realloc keyword causes a memory block to be allocated when entering a region and to

be freed when exiting a region. However, with move, a memory block is allocated on the first

touch. Then, if required, it is moved around within the hierarchy between the subsequent

Gecko regions in the source code.

Gecko addresses the distance-based memory allocation challenge by declaring and uti-

lizing the distance-based allocations with minimum code changes. Figure 6.8 shows the se-

quence of actions that takes place so that Gecko performs a distance-based allocation. The

code snippet in Figure 6.8, annotated with Gecko directives, is utilizing X and Y variables

where each variable points to N double precision floating-point numbers that are allocated in

LocN and LocG, respectively. We declare a distance-based memory space, named d, that is

designated as a close memory (1). Gecko starts by allocating a dummy memory block on

the heap (2). The dummy block is basically a handle to distinguish the distance-based allo-

cations from the regular ones. Then, Gecko inserts an entry into GMT to record the memory

request (3), and allocates a memory block as soon as it determines the destination loca-

tion. We updated the structure of GMT, as shown in Figure 6.8, to handle distance-based

allocations. The two new fields, distance and real addr, hold the distance parameter and

the address of allocated memory block in the destination target, respectively.

As we reach the region section in our code (4), Gecko finds the target location to run

the kernel. Based on the fact that the X and Y variables are our non-distance-based variables

in the Gecko region (5), the MCD algorithm will choose LocG as the location to execute

the region and the target location to allocate variable d. Then, Gecko allocates a memory

91

double *X, *Y, *d;
#pragma gecko memory allocate(X[0:N]) type(double) location("LocN")
#pragma gecko memory allocate(Y[0:N]) type(double) location("LocG")
#pragma gecko memory allocate(d[0:N]) type(double) distance(close)

#pragma gecko region variable_list(X,Y,d)
for (int i = a; i<b; i++) {
 d[i] = compute1(X[i]);
 Y[i] = compute2(d[i], X[i]);
}
#pragma gecko region end

1

dummy

*d
Application Memory

2

4

LocG

LocG

LocN
5

6

8

9

Key Value

0x123 location("LocN"), datasize(8), count(N), distance(), real_addr(NULL)

0x789 location("LocG"), datasize(8), count(N), distance(), real_addr(NULL)

0x831 location(""), datasize(8), count(N), distance(close), real_addr(0x981)

Gecko Memory Table (GMT)
3

7

Figure 6.8: Steps taken by Gecko that show how distance-based memory allocations are per-
formed with minimum code modification. By simply annotating the memory allocation clause with
distance, Gecko governs the correct state of the pointers internally.

block within LocG, reassigns the variable d to the new allocation (6), and finally, updates

GMT with the new address (populating the real addr field as shown with 7). Until the

end of the region, the variable d points to the valid memory block in LocG. As we reach the

end of the region (8), the variable d reverts to its original value, which was the dummy

variable allocated before (9).

92

6.4 Gecko in Use

This section is dedicated to demonstrate how to write a simple application with Gecko. We

will show how a single source code can be used to target single or multiple CPUs, single

or multiple GPUs, and a combination of them. For a complete list of Gecko’s capabilities,

please refer to Gecko’s Github repository5.

The right side of Figure 6.9 shows the source code of the Stream benchmark in Gecko.

We will go through the lines of this code and clarify what each line does. Line 1 loads the

configuration file from the disk. The configuration file includes the definition of location

types, the definition of locations, and the declaration of hierarchies among locations. The

top left of Figure 6.9 shows an example of a configuration file for Configuration a in the

bottom left of Figure 6.9. Lines 3-5 will allocate memory with array size elements and

type T at the location “LocH”.6 We hard-coded the destination location to “LocH” for the

three memory allocations. This provides greater flexibility to the application. We can place

“LocH” anywhere in the hierarchy since we have defined it to be a virtual location in our

configurations.

We tested our application with different configurations. A list of all configurations that

we targeted is shown in Figure 6.9 (bottom left). For example, Configurations a and b target

only multicore systems. However, Configurations c-e target single- and multi-GPU systems.

Finally, Configuration f targets a multi-architecture system to execute our application. If we

change the configuration file so that it represents any of the configurations of a to f, without

recompiling the source code, our program is able to target different architectures without

significant performance loss.

Lines 7-13 show a computational kernel that initializes three arrays that were allocated

5https://github.com/milladgit/gecko
6The array size parameter is an input to the program. The T type is a template parameter that accepts

a data type. We chose double.

93

F
ig
u
re

6
.9
:
R
ig
h
t:

A
sn

a
p

sh
o
t

of
th

e
S

tr
ea

m
b

en
ch

m
ar

k
w

it
h

G
ec

ko
’s

d
ir

ec
ti

ve
s.

T
o
p
L
e
ft
:

A
sa

m
p

le
co

n
fi

gu
ra

ti
on

fi
le

th
at

re
p

re
se

n
ts

C
o
n

fi
gu

ra
ti

o
n

(a
)

on
th

e
b

o
tt

o
m

le
ft

.
T

h
e

fi
rs

t
tw

o
li

n
es

ar
e

co
m

m
en

ts
.
B
o
tt
o
m

L
e
ft
:

V
is

u
al

iz
at

io
n

of
d

iff
er

en
t

co
n

fi
gu

ra
ti

on
s.

N
ot

e
h

ow
p

la
ci

n
g

“L
o
cH

”
in

d
iff

er
en

t
p

os
it

io
n

s
in

th
e

h
ie

ra
rc

h
y

re
su

lt
s

in
ta

rg
et

in
g

d
iff

er
en

t
ar

ch
it

ec
tu

re
s.

C
on

fi
gu

ra
ti

on
(a

)
an

d
(b

)
ta

rg
et

g
en

er
a
l-

p
u

rp
o
se

p
ro

ce
ss

o
rs

.
C

o
n

fi
gu

ra
ti

o
n

s
(c
)

an
d

(d
)

ta
rg

et
on

e
si

n
gl

e
G

P
U

.
C

on
fi
gu

ra
ti

on
s
(e
)

an
d

(f
)

ta
rg

et
m

u
lt

i-
G

P
U

an
d

m
u

lt
i-

ar
ch

it
ec

tu
re

sy
st

em
s,

re
sp

ec
ti

ve
ly

.

94

previously. The runtime execution policy specifies that Gecko will extract the main policy

from an environmental variable (known as GECKO POLICY) at the execution time. One should

set this variable to any of the policies previously defined in Section 6.3.2. The pause state-

ment in Line 14 asks Gecko to wait on all computational resources (processors and GPUs in

our case) to finish their assigned job before continuing with the next statement in the code.

Lines 19-27 show a loop that contains the main TRIAD kernel of the Stream benchmark

and calls the kernel num times times. Similar to the original TRIAD kernel, it is a for-loop

that multiplies each element in array c to an scalar value, adds it to an element in array b,

and stores the final value in array a. Depending on the chosen configuration and execution

policy, at the run time, Gecko splits the iterations of the main loop in Line 22 (from 0 to

array size) among the processors and GPUs. For instance, for Configuration e where the

number of GPUs is four, each GPU will process array size/4 iterations.

The benchmark calls the high resolution timers in Lines 18 and 28 before and after the

for-loop to measure the total execution time of the TRIAD kernel. And finally, Line 34 asks

Gecko to free all memories allocated in the system.

For a detailed description of Gecko’s directives and their clauses, please refer to Appendix

A at the end of this dissertation.

6.5 Gecko’s Implementation

To implement Gecko, we developed a Python script that takes a Gecko-annotated source

code as input and generates a conformed C++ source code with the OpenMP and OpenACC

directives as output. Utilizing these directive-based programming models leads to minimizing

source code modification. Since our model is developed as a language feature, it can be easily

extended to other languages, like C and Fortran, as well.

95

Figure 6.10 shows the compilation framework that is used to compile a Gecko-annotated

source code. After the transformation process, we will set the compiler flag to generate

code for both multicore and GPU. During the execution time, Gecko will choose the correct

device (multicore or GPUs) accordingly. Our motivation behind utilizing a script rather

than a compiler is to minimize the prototyping process and implement our proof-of-concept

approach.

The output executable file is a fat binary file which contains the executable code for all

kernels in the code and for both multicore and GPU architectures. At runtime, Gecko will

choose the correct version of the code.

Similar to the OpenACC and OpenMP programming models, Gecko is a directive-based

programming model. With Gecko’s directives, applications are able to declare locations,

perform memory operations (allocation, free), run kernels on different locations, and wait

on kernels to finish their allocated job7. Directives provide a level of flexibility that library-

based approaches do not necessarily provide. Directives also require users to add fewer

additional lines most of the times to the code thus not increasing the Lines of Code (LOC)

by a large number. Using directives mostly means fewer code alterations and developers can

start from a serial version of the code. Furthermore, directives can be ignored in some cases

(like debugging, testing, targeting multicore) without any code modification.

6.6 Results

This section is dedicated to assessing the performance of Gecko on homogeneous and het-

erogeneous platforms. At first, the experimental setup that was used to assess Gecko is

described briefly. Then, we will utilize the Stream benchmark developed in the previous

7In addition to the above capabilities, Gecko also provides copying and moving data among different
locations in the hierarchy. It also provides facilities to register and unregister already allocated memory to
Gecko. Please refer to the Github repository of Gecko for more information.

96

Gecko

Source
Code

Source-to-source
Translator

Configuration
File

Gecko
Runtime
Library

OpenACC
Compatible

Source
Code

OpenACC
Compiler/Linker

OpenACC
Runtime
Library

Fat Binary File

Multicore Binary
(X86_64, IBM POWER)

Accelerator Binary
(NVIDIA GPU, AMD APU,

...)

a.out

Figure 6.10: An overview of the compilation stack in Gecko.

97

Table 6.1: List of all the benchmarks from Rodinia that were ported to Gecko and their associated
domains

Benchmark Brief Description

bfs Breadth-First search (Graph traversal)

cfd Computational fluid dynamics (CFD) solver (Fluid dynamics)

gaussian Gaussian elimination (Linear algebra)

hotspot Hotspot for chip design (Physics simulation)

lavaMD N-Body simulation (Molecular dynamics)

lud Lower-upper (LU) Decomposition (Dense linear algebra)

nn k-Nearest Neighbor (Data mining)

nw Needleman-Wunsch (Bioinformatics)

particlefilter Medical imaging

pathfinder Grid traversal

srad v2 Image processing

section to measure the sustainable bandwidth of different architectures. Furthermore, the

Rodinia suite [16, 17] was ported to Gecko [36] to assess the effect of utilizing multiple GPUs

in a single-GPU benchmark with minimum code intervention.

The Rodinia benchmarking suite is a collection of scientific benchmarks to assess the

performance of heterogeneous computing infrastructures. Benchmarks in Rodinia have been

developed in OpenMP, OpenCL, and CUDA. For comparison purposes with the above-

mentioned programming models, we ported benchmarks in the Rodinia suite to Gecko [36].

They are available online on Github8. Table 6.1 shows the list of the ported benchmarks

with a brief description of the domain they belong to.

6.6.1 Steps in Porting Applications to Gecko

We successfully ported benchmarks from the Rodinia suite to Gecko by annotating their

source code with Gecko’s proposed directives.9 The annotation process is as follows: 1) The

8https://github.com/milladgit/gecko-rodinia
9We were unable to compile backprop, hearwall, kmeans, leukocyte, myocyte, streamcluster of the Rodinia

suite using OpenACC 2.6 and PGI 18.4 despite many attempts to resolve their issues. Hence we skipped
them and did not port them to Gecko.

98

application asks Gecko to load the configuration file; 2) Every malloc’ed memory is replaced

with a memory allocate clause in the code; 3) All OpenACC parallel regions are guarded

with a region clause; 4) All OpenACC’s update, copy, copyin, and copyout clauses in

the code are removed; 5) A pause clause is placed at certain locations in the code to ensure

the consistency of the algorithm; and finally 6) All the memory deallocations are replaced

with memory free clauses. Basically, these are the modifications required for any code to

use Gecko.

6.6.2 Experimental Setup

We use the NVIDIA Professional Services Group (PSG) cluster [80] and Sabine [97]. PSG

is a dual socket 16-core Intel Haswell E5-2698v3 at 2.30GHz with 256 GB of RAM. Four

NVIDIA Volta V100 GPUs are connected to this node through a PCI-E bus. Each GPU

has 16 GB of GDDR5 memory. We used CUDA Toolkit 10.1 and PGI 18.10 (community

edition) for the OpenACC and CUDA codes, respectively.

Sabine is a dual socket 14-core Intel Haswell E5-2680v4 at 2.40GHz with 256 GB of RAM.

Two NVIDIA Pascal P100 GPUs are connected to this node through a PCI-E bus. Each

GPU has 16 GB of GDDR5 memory. We used CUDA Toolkit 10.1 and PGI 18.10 for the

OpenACC and CUDA codes, respectively.

6.6.3 Sustainable Bandwidth

Figure 6.11 shows the sustainable memory bandwidth by different programming models and

libraries. We used the BabelStream benchmark [23] to measure the memory bandwidth.

BabelStream provides a set of Stream benchmarks in various programming models and

libraries: OpenMP, CUDA, OpenACC, Kokkos, and RAJA. We also implemented a version

of Stream benchmark based on Gecko, to compare the sustainable bandwidth each approach

99

provides. The Gecko version of Stream is shown on the right side of Figure 6.9. Results are

shown for both systems (PSG and Sabine) and for three different scenarios: (1) multicore

execution, (2) multi-GPU execution, and (3) heterogeneous execution. In our experiments

with Stream, we set the array size to 256,000,000 double-precision elements for each array,

which results in 6 GB of data in total. We ran the TRIAD loop 200 times and took the

average of their wall-clock time to report the execution time. The multicore results reveal

a negligible difference between the Gecko version of Stream with other methods (less than

5 GB/s difference in comparison to OpenACC for both PSG and Sabine). Gecko’s results

are reported for configurations (a) and (b). Sabine’s main processor provides 18 GB/s more

bandwidth to access the main memory in comparison to PSG. It is due to a subtle difference

in their memory bandwidth. The theoretical peak memory bandwidth for Sabine’s dual

processors is 153.6 GB/s, however, the peak bandwidth for the dual processors in PSG is

136 GB/s.

Gecko’s memory allocation algorithm provides a better locality for Configuration (b) in

comparison to Configuration (a). Moreover, despite the better locality of Configuration (b)

in comparison to Configuration (a), we did not see a notable difference in the results. The

maximum difference between those configurations for both PSG and Sabine was less than

0.5 GB/s in our experiments.

Similarly, Gecko’s performance is not significantly affected when we target GPUs. Single-

and multi-GPU results are shown in Figure 6.11. Despite the difference in their hierarchy,

Configurations c and d provide the same bandwidth since our memory allocation algorithm

returns the same API function in both cases. However, since CUDA, Kokkos [15], RAJA [46],

and OpenACC versions of Stream use non-UVM (Unified Virtual Memory) memory to per-

form the benchmark, there is a 17 GB/s difference in the bandwidth. In addition, Gecko

provides single- and multi-GPU execution with one single source code while other program-

ming models and libraries support only one single GPU in their implementation. Multi-GPU

100

02040608010
0

Bandwidth (GB/s)
PS

G
- M

ul
tic

or
e

0

50
0

10
00

15
00

20
00

Bandwidth (GB/s)

PS
G

- M
ul

ti-
GP

U

1
2

3
4

90
.0

0
80

.0
0

70
.0

0
60

.0
0

50
.0

0
40

.0
0

30
.0

0
20

.0
0

10
.0

0
5.

00
1.

00
0.

50
0.

10
0.

01

Host Contribution (HC)

PS
G

- H
et

er
og

en
eo

us
 E

xe
cu

tio
n

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

Bandwidth (GB/s)

Ope
nM

P Ko
kko

s
RAJA Ope
nA

CC Geck
o (

a) Geck
o (

b)

02040608010
0

Bandwidth (GB/s)

Sa
bi

ne
 -

M
ul

tic
or

e

CUDA Ko
kko

s RAJA
Ope

nA
CC

Geck
o (

c)
Geck

o (
d)

Geck
o (

e)-
k=

2

Geck
o (

e)-
k=

3

Geck
o (

e)-
k=

4

0

50
0

10
00

15
00

20
00

Bandwidth (GB/s)
Sa

bi
ne

 -
M

ul
ti-

GP
U

1
2

GP
U

Co
un

t (
k)

 in
 G

ec
ko

 (e
)

90
.0

0
80

.0
0

70
.0

0
60

.0
0

50
.0

0
40

.0
0

30
.0

0
20

.0
0

10
.0

0
5.

00
1.

00
0.

50
0.

10
0.

01

Host Contribution (HC)

Sa
bi

ne
 -

He
te

ro
ge

ne
ou

s E
xe

cu
tio

n

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Bandwidth (GB/s)

F
ig
u
re

6
.1
1
:

S
u

st
a
in

a
b

le
b

a
n

d
w

id
th

o
f

th
e

S
tr

ea
m

b
en

ch
m

ar
k

on
P

S
G

an
d

S
ab

in
e.

L
e
ft
:

m
u

lt
ic

or
e

sy
st

em
s,

C
e
n
te
r:

si
n

gl
e-

an
d

m
u

lt
i-

G
P

U
sy

st
em

s,
a
n

d
R
ig
h
t:

h
et

er
og

en
eo

u
s

sy
st

em
s.

101

execution of Stream for above-mentioned methods requires significant source code modifica-

tion.

Gecko’s Stream source code, as shown in Figure 6.9, is able to utilize GPUs by only

modifying the configuration file. Gecko was able to provide 1.8 TB/s and 1.9 TB/s with four

GPUs on PSG and Sabine, respectively. Figure 6.11 shows the results of GPU execution

(Center), which are represented with “Gecko (e)-k”, where k specifies the number of GPUs

in the hierarchy. Gecko supports heterogeneous execution as well with no code alteration.

Heatmap plots in Figure 6.11 (Right) show the sustainable bandwidth for the heterogeneous

execution of Stream on the main processor and GPUs in the system, simultaneously. Host

contribution (HC), which specifies the amount of workload assigned to the host processor,

varies from 0.01% to 90% of the total iterations of the TRIAD kernel, and the rest is di-

vided equally between the GPUs. For instance, in the case of K=4 and HC=1%, 2,560,000

out of 256,000,000 iterations are assigned to the host processor and the rest (253,440,000

iterations) is divided among four GPUs; it means Gecko assigns 63,360,000 iterations to

each GPU. We utilized the percentage execution policy to represent the above-mentioned

cases. For instance, the equivalent execution policy in Gecko for the above example would

be “percentage:[1.00,24.75,24.75,24.75,24.75]”.

The low values of HC (less than 1%) show promising bandwidth results. Sabine’s hetero-

geneous execution is able to reach 838 GB/s when HC is 0.5% and both GPUs are utilized.

In the case of Sabine, the heterogeneous execution does not improve the bandwidth since the

bandwidth of multi-GPU execution of Stream has surpassed 1 TB/s (1056 GB/s as shown

in the Center plot for Sabine). However, it is not the case for PSG. Heterogeneous execu-

tion has improved the bandwidth on PSG. While multi-GPU execution on all four GPUs of

PSG has reached 1.88 TB/s, the bandwidth for heterogeneous execution has improved and

reached 2.31 TB/s, where HC is 1% and three GPUs are utilized.

102

Table 6.2: List of benchmarks in the Rodinia Suite that were ported to Gecko - A: Number of
kernels in the code. B: Total kernel launches. SP: Single Precision - DP: Double Precision - int:
Integer - Mixed: DP+int

Application Input Data Type A B
bfs 1,000,000-edge graph Mixed 5 39
cfd missile.domn.0.2M Mixed 5 9
gaussian 4096 × 4096 matrix SP 3 12285
hotspot 1024 data points DP 2 20
lavaMD 50× 50× 50 boxes Mixed 1 1
lud 2048 data points SP 2 4095
nn 42764 elements SP 1 1
nw 2048 × 2048 data points int 4 4095
particlefilter 1024 x 1024 x 40 particles Mixed 9 391
pathfinder width: 1,000,000 int 1 499
srad 2048 x 2048 matrix Mixed 7 12

6.6.4 Rodinia Benchmarks

The Rodinia benchmark suite includes a number of benchmark applications where each

one acts as a representative of various domains. Our justification behind choosing these

benchmarks was their diverse computational pattern and their state-of-the-art algorithms,

which will be discussed below.

Recent advances in artificial intelligence and machine learning owe most of their success to

the linear algebra methods (e.g., Gaussian elimination and LU10 decomposition). Moreover,

advances in autonomous driving and health domain were achievable due to the advances in

image processing and data mining. Last but not least, we also considered the workloads

of the scientific simulation frameworks, like N-body simulations in molecular dynamics and

CFD11 solvers in fluid dynamics simulations, in our investigations. Table 6.1 shows the list

of benchmarks that we picked to be ported to Gecko.

We used our version of the updated Rodinia suite [36]. Table 6.2 shows the list of

benchmarks used in this paper with their corresponding input, data type, the total number

10Lower-upper
11Computational fluid dynamics

103

of kernels, and the total kernel launches at the execution time. Figure 6.12 shows the

multi-GPU speedup of all applications (Left) and heterogeneous execution time of cfd and

srad v2 (Right) on PSG and Sabine. Speedup results were obtained by utilizing the static

execution policy to equally distribute the workload among the GPUs. For the heterogeneous

execution, we followed a similar approach as we did for the Stream benchmark. For the

speedup results, the X axis shows the applications of the Rodinia benchmark, and the Y

axis shows the speedup with respect to a single GPU. Each bar represents different number

of GPUs (represented by K).

The results indicate that multi-GPU utilization is not a suitable option for all bench-

marks in Rodinia. The cfd and srad v2 benchmark applications show promising results in

scalability. The performance of cfd improves with each additional GPU. This performance

increase ceases after three GPUs are in use. Adding a fourth GPU to the configuration does

not improve performance. However, srad v2 performs differently. As we increase the number

of GPUs, the overall speedup improves as well. As shown on the right side of Figure 6.12, the

heterogeneous execution of cfd on PSG does not lead to a performance improvement. How-

ever, the heterogeneous execution of cfd on Sabine (two GPUs and 50% host contribution)

leads to a 2X speedup with respect to one single GPU. The reason behind the superiority

of Sabine over PSG is due to two reasons: 1) Sabine has better host memory bandwidth.

Results in Figure 6.11 reveal the 17 GB/s difference in main memory bandwidth (Left) be-

tween Sabine and PSG. 2) Utilizing all available GPUs is not always a good idea. Splitting

the iteration space among many GPUs leads to less amount of work to be done by GPU,

which implicitly leads to more overhead. The cfd results on PSG confirm our finding as

well. For all values of HC (except HC=0), utilizing two GPUs leads to better performance

in comparison to three or four GPUs. The srad v2 benchmark benefits more from the het-

erogeneous execution as the heatmap results show. In comparison to one single GPU (one

GPU and HC=0), if we utilize three or four GPUs while HC is 90%, the speedup is 15X for

104

bfs
cfd ga

uss
ian

ho
tsp

ot lav
aM

D
lud
nn
nw pa

rtic
lef

ilte
r

pa
thf

ind
er sra

d_v
2

01234 Speedup
PS

G
Ge

ck
o(

e)
-K

=1
Ge

ck
o(

e)
-K

=2
Ge

ck
o(

e)
-K

=3
Ge

ck
o(

e)
-K

=4

1
2

3
4

Nu
m

. o
f G

PU
s

90 80 70 60 50 40 30 20 10 00Host Contribution (HC)

cf
d

on
 P

SG

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00
11

00
00

12
00

00
13

00
00

14
00

00

Execution Time (s)
1

2
3

4
Nu

m
. o

f G
PU

s

90 80 70 60 50 40 30 20 10 00Host Contribution (HC)sr
ad

_v
2

on
 P

SG

102030405060708090
Execution Time (s)

bfs
cfd ga

uss
ian

ho
tsp

ot lav
aM

D
lud
nn
nw pa

rtic
lef

ilte
r pa

thf
ind

er sra
d_v

2

0.
0

0.
5

1.
0

1.
5

2.
0

Speedup

Sa
bi

ne

1
2

Nu
m

. o
f G

PU
s

90 80 70 60 50 40 30 20 10 00Host Contribution (HC)cf
d

on
 S

ab
in

e 10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Execution Time (s)

1
2

Nu
m

. o
f G

PU
s

90 80 70 60 50 40 30 20 10 00Host Contribution (HC)

sr
ad

_v
2

on
 S

ab
in

e

102030405060708090

Execution Time (s)

F
ig
u
re

6
.1
2
:

L
e
ft
:

S
p

ee
d

u
p

re
su

lt
s

o
f

th
e

m
u

lt
i-

G
P

U
ex

ec
u
ti

on
of

th
e

R
o
d

in
ia

b
en

ch
m

ar
k
s

on
P

S
G

an
d

S
ab

in
e,

sp
ec

ifi
ed

w
it

h
C

o
n

fi
gu

ra
ti

on
(e
)

in
F

ig
u

re
6.

9.
R
ig
h
t:

H
ea

tm
ap

of
th

e
ex

ec
u

ti
on

ti
m

e
of

cf
d

an
d

sr
a
d

v2
fo

r
d

iff
er

en
t

h
os

t
co

n
tr

ib
u

ti
on

s
an

d
n
u

m
b

er
of

G
P

U
s.

105

PSG. Similarly, for Sabine, the speedup becomes 11.5X, when two GPUs are utilized and

HC is 90%.

Other benchmark applications (bfs, lavaMD, and particlefilter) do not scale as we increase

the number of utilized GPUs. The performance degradation is due to uncoalesced and

random memory accesses in such applications. The bfs benchmark traverses all the connected

components in a graph. Thus, the memory accesses follow a random pattern. The lavaMD

benchmark goes through all atoms in the system and computes the force, velocity, and new

position of each atom. It uses a cutoff range to limit unnecessary computations. However,

such cutoff ranges may include atoms that are currently residing in another GPU device.

The particlefilter benchmark visits elements of a matrix using two nested for -loops. In all

of the above-mentioned benchmarks, the false sharing [40] effect on the inter-device level is

the primary source of performance degradation. It is highly probable that when device d1 is

executing iteration i, it needs to access other data that are currently residing on device d2.

In such cases, many memory pages have to be invalidated to perform iteration i. The

invalidated page has to travel via the PCI-E and NVlink buses, which are not performance-

friendly. Heterogeneous execution of bfs, lavaMD, and particlefilter benchmarks does not

improve the speedup either. Utilizing the host processor has caused a gradual performance

degradation for these benchmarks. In the case of other benchmarks (gaussian, hotspot, lud,

nn, nw, and pathfinder), the performance loss is severe. Algorithms that follow a very random

memory access pattern like bfs and gaussian are not a suitable option for either multi-GPU

or heterogeneous execution.

106

Chapter 7

Conclusion

Hardware design of High Performance Computing (HPC) systems are getting more complex

and complicated as demand for more performance is increasing. Consequently, the software

should adapt itself to these changes and provide facilities to the application to utilize such

resources efficiently and easily.

7.1 Current Effort

As scientific applications evolve during their development lifetime, they become more com-

plex in their design. Current applications are developed with nested data structures in their

source code. These nested structures adversely affect software development for heterogeneous

systems due to the unique nature of such systems: having two separate memory spaces, one

for the conventional processor and one for the accelerator. Hence, developers are required to

keep track of the data objects in the above-mentioned separate memory spaces and trans-

fer the data between spaces back and forth at arbitrary times. This is a cumbersome task

for developers if we are dealing with nested data structures. To that end, we proposed a

107

novel high-level directive, pointerchain, to reduce the burden of data transfers in a scien-

tific application that executes on heterogeneous systems. We developed a source-to-source

transformation script to transform the pointerchain directive to a number of conformed

statements in the C/C++ languages. We observed that using the pointerchain directive

leads to 36% reduction in both generated and executed code (assembly and binary codes)

on the GPU devices. We evaluated the proposed directive using CoMD, a Molecular Dy-

namics (MD) proxy application. By exploiting OpenACC directives on the CoMD code, the

pointerchain implementation outperforms the CUDA implementation on two out of three

kernels while it achieves 61% of the CUDA performance on the third kernel. We show a

linear scalability with growing system sizes when utilizing OpenACC. We have provided a

step-by-step approach readily available for any other application.

Additionally, we designed and developed Gecko, a novel hierarchical portable model.

Gecko is able to target heterogeneous shared memory architectures which are commonly

found in modern platforms. Following are some of the unique features of Gecko: (1) The

model allows developers to dynamically define available memory spaces in the system in a

hierarchical manner, and it provides the flexibility to allocate memories anywhere in the sys-

tem. (2) Once the developer scatters data around the system, the decision on the “executor”

location is relegated to the runtime library. With this feature, Gecko provides the concept of

‘moving code to data’ to minimize data transfers within a system. (3) Gecko is highly user-

friendly, dynamic, and flexible, and it responds to any changes in the underlying hardware,

minimizing source code alteration whenever the architecture and the program requirements

vary.

Gecko, due to its high-level features, is a potential candidate for ‘X’ in the ‘MPI+X’

programming model in the exascale era. Gecko paves the way to utilize every level of the

memory hierarchy in current architectural advancements of HPC systems with less code in-

tervention. The increasing trend in designing new memory hierarchies to tackle the memory

108

wall makes their utilization a challenging job. Application developers need a better approach

for the upcoming future systems. Results of the experiments with Gecko reveals how it is a

well-suited method for a multi-GPU platform as it delivers a portable and scalable solution

primarily for benchmarks where the false sharing effect among devices is minimal.

To investigate the effectiveness of Gecko on real applications, we used the Rodinia bench-

mark and ported its applications to Gecko. The suite contains a number of benchmarks that

have real applications in scientific domains. All the benchmarks represent different scien-

tific domains that range from solving a system of linear algebra equations to traversing and

parsing graphs in graph-based algorithms. With the help of Gecko, these applications were

targeted to multiple architectures without any code modifications. We were able to achieve

this with only one single codebase for each application.

7.2 Next Steps Looking Forward

Our model has the potential to be extended to support the rich functionalities of Processing-

In-Memory (PIM) architectures. By extending the Gecko Runtime Library, applications will

be able to easily utilize the PIM-enabled memory domains while little to no code modifi-

cation is required by the main applications. Supporting other memory technologies, like

Hybrid Memory Cube (HMC) [88], Non-volatile memory (NVM) [58], and Intel Persistent

Memory [47, 26], can be added to Gecko so that a broad range of hardware is targeted.

Additionally, the feasibility of automatic data transfer between different locations can

be explored in Gecko. Currently, allocated memory is not relocated automatically and an

explicit request from the developer is required to move data among locations. However,

explicit data movements will lead to inefficient performance since they are required to be

performed every time. To address this shortcoming, Gecko has to support implicit data

movements among locations. As a result, Gecko has to take the following criteria into

109

account when it needs to perform data movements: (1) the data size, (2) the bandwidth

between source and destination locations, (3) the data size of other allocated memories

targeted by that compute region, (4) predicted execution time of a compute region, and so

on. This is a multi-objective optimization problem, which requires further investigation.

7.2.1 Big Picture

Enabling automatic data movement as discussed above will significantly improve the usability

and portability of Gecko, especially with the current diversity in computer architecture and

hardware design. An intelligent run time library will be able to decide which location would

be the optimal location to keep a particular data item in steady state. As the application runs

for a long period of time, an intelligent runtime library will observe different accesses among

locations in the system and learn from those accesses. Building on top of such knowledge,

future accesses will trigger the decision mechanism on whether the data or the kernel should

be moved; in other words, which one would be more efficient to transfer, data or code?

7.2.2 Other Scientific Areas

Gecko also enables scientists from other domains to utilize their future high-end systems

with a single codebase. For instance, scientists will be able to parallelize their model de-

velopments for weather prediction [33, 41] with Gecko. Astrophysical modeling will benefit

from directive-based methods like Gecko to parallelize their adaptive mesh refinement kernels

in their code [116]. The authors in [116] mention how portability is the key design goal of

their development. Their goal was to target different platforms with the same kernel code.

Aerospace engineers are also able to utilize Gecko to parallelize their applications. Gecko

enables them to improve the performance of their computational fluid dynamics (CFD) ker-

nels [68]. Our experiments show that Gecko is a suitable option to parallelize applications

110

and enable them to utilize different devices. The above-mentioned examples also show how

Gecko’s use cases are not limited to only the molecular dynamics use case and other scientific

domains will benefit from it as well.

111

Bibliography

[1] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler. Page
Placement Strategies for GPUs within Heterogeneous Memory Systems. In Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 607–618, New York, NY, USA,
2015. ACM.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled Instructions. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture, ISCA ’15, pages
336–348, New York, NY, USA, 2015. ACM.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On Finding Lowest Common Ancestors
in Trees. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC ’73, pages 253–265, New York, NY, USA, 1973. ACM.

[4] A. Almgren, P. DeMar, J. Vetter, K. Riley, K. Antypas, D. Bard, R. Coffey, E. Dart,
S. Dosanjh, R. Gerber, J. Hack, I. Monga, M. E. Papka, L. Rotman, T. Straatsma,
J. Wells, D. E. Bernholdt, W. Bethel, G. Bosilca, F. Cappello, T. Gamblin, S. Habib,
J. Hill, J. K. Hollingsworth, L. C. McInnes, K. Mohror, S. Moore, K. Moreland,
R. Roser, S. Shende, G. Shipman, and S. Williams. Advanced Scientific Comput-
ing Research Exascale Requirements Review. An Office of Science review sponsored by
Advanced Scientific Computing Research. , Technical Report, Argonne National Lab.
(ANL), Argonne, IL, 2017.

[5] B. Alpern, L. Carter, and J. Ferrante. Modeling Parallel Computers as Memory Hi-
erarchies. In Proceedings of Workshop on Programming Models for Massively Parallel
Computers, pages 116–123, Berlin, Germany, 1993.

[6] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy, M. Hall,
R. Harrison, W. Harrod, K. Hill, and Others. Exascale Software Study: Software
Challenges in Extreme Scale Systems. , Technical Report, DARPA IPTO, Air Force
Research Labs, 2009.

[7] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio,
S. D. Hammond, K. S. Hemmert, S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick, A. F.
Rodrigues, J. Shalf, D. Stark, D. Unat, and N. J. Wright. Abstract Machine Models
and Proxy Architectures for Exascale Computing. In Proceedings of Co-HPC 2014:
1st International Workshop on Hardware-Software Co-Design for High Performance

112

Computing - Held in Conjunction with SC 2014: The International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 25–32, New
Orleans, LA, 2014. IEEE.

[8] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, C.-J. Wu,
and D. Nellans. MCM-GPU: Multi-Chip-Module GPUs for Continued Performance
Scalability. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 320–332, New York, NY, USA, 2017. ACM.

[9] K. Asadi, H. Ramshankar, H. Pullagurla, A. Bhandare, S. Shanbhag, P. Mehta,
S. Kundu, K. Han, E. Lobaton, and T. Wu. Vision-based Integrated Mobile Robotic
System for Real-time Applications in Construction. Automation in Construction,
96:470–482, 2018.

[10] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems. In
Proceedings of the Tenth International Symposium on Hardware/Software Codesign,
CODES ’02, pages 73–78, Estes Park, CO, 2002. IEEE.

[11] L. Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm. Computer,
35(1):70–78, 2002.

[12] J. Beyer, D. Oehmke, and J. Sandoval. Transferring User-defined Types in OpenACC.
In Cray User Group, CUG ’14, 2014.

[13] S. Borkar and A. A. Chien. The Future of Microprocessors. Communications of the
ACM ACM, 54(5):67–77, 2011.

[14] D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki. A Domain Decomposition
Parallelization Strategy for Molecular Dynamics Simulations on Distributed Memory
Machines. Computer Physics Communications, 74(1):67–80, 1993.

[15] H. Carter Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling Manycore
Performance Portability Through Polymorphic Memory Access Patterns. Journal of
Parallel and Distributed Computing, 74(12):3202–3216, 2014.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In IEEE International
Symposium on Workload Characterization, IISWC ’09, pages 44–54. IEEE, 2009.

[17] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron. A
characterization of the Rodinia benchmark suite with comparison to contemporary
CMP workloads. In IEEE International Symposium on Workload Characterization
(IISWC), pages 1–11. IEEE, 2010.

[18] T. Chen, Z. Sura, and H. Sung. Automatic Copying of Pointer-Based Data Structures.
In Languages and Compilers for Parallel Computing, pages 265–281, Rochester, NY,
2017. Springer International Publishing.

113

[19] P. Cicotti, S. M. Mniszewski, and L. Carrington. An Evaluation of Threaded Models for
a Classical MD Proxy Application. In Proceedings of Co-HPC 2014: 1st International
Workshop on Hardware-Software Co-Design for High Performance Computing, pages
41–48, New Orleans, LA, 2014. IEEE.

[20] Cloc. https://github.com/AlDanial/cloc. Accessed: 2018-04-10.

[21] CoMD Proxy Application. https://github.com/ECP-copa/CoMD. Accessed: 2018-04-
02.

[22] COPA: Codesign Center for Particle Applications. Exascale Computing Project (ECP),
2018.

[23] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. GPU-STREAM v2.0:
Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across
Diverse Parallel Programming Models. In International Conference on High Perfor-
mance Computing, pages 489–507. Springer International Publishing, 2016.

[24] R. H. Dennard, F. H. Gaensslen, Y. U. Hwa-Nien, V. Leo Rideout, E. Bassous, and
A. R. Leblanc. Design of Ion-Implanted MOSFETs with Very Small Physical Dimen-
sions. IEEE Journal of Solid-State Circuits, 87(4):668–678, 1999.

[25] J. Dongarra and A. L. Lastovetsky. High Performance Heterogeneous Computing,
volume 78 of Wiley Series on Parallel and Distributed Computing. John Wiley &
Sons, 2009.

[26] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson. System Software for Persistent Memory. In Proceedings of the Ninth
European Conference on Computer Systems, pages 1–15. ACM, 2014.

[27] D. Elias, R. Matias, M. Fernandes, and L. Borges. Experimental and Theoretical
Analyses of Memory Allocation Algorithms. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC ’14, pages 1545–1546, New York, NY, USA,
2014. ACM.

[28] K. Fatahalian, W. J. Dally, P. Hanrahan, D. R. Horn, T. J. Knight, L. Leem, M. Hous-
ton, J. Y. Park, M. Erez, M. Ren, and A. Aiken. Sequoia: Programming the Memory
Hierarchy. In Proceedings of the ACM/IEEE conference on Supercomputing, SC ’06,
New York, NY, USA, 2006. ACM.

[29] M. Feig, I. Yu, P. H. Wang, G. Nawrocki, and Y. Sugita. Crowding in Cellular En-
vironments at an Atomistic Level from Computer Simulations. Journal of Physical
Chemistry B, 121(34):8009–8025, 2017.

[30] T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo. An Experimental Study on
Memory Allocators in Multicore and Multithreaded Applications. In Proceedings of
Parallel and Distributed Computing, Applications and Technologies, PDCAT ’11, pages
92–98, Gwangju, South Korea, 2011.

114

[31] D. Foley and J. Danskin. Ultra-Performance Pascal GPU and NVLink Interconnect.
IEEE Micro, 37(2):7–17, 2017.

[32] R. Friedman, K. Boye, and K. Flatmark. Molecular Modelling and Simulations in Can-
cer Research. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1836(1):1–
14, 2013.

[33] O. Fuhrer, C. Osuna, and X. Lapillonne. Towards A Performance Portable, Architec-
ture Agnostic Implementation Strategy for Weather and Climate Models. Supercom-
puting Frontiers and Innovations, 1(1):45–62, 2014.

[34] M. Ghane, M. Arjomand, and H. Sarbazi-Azad. An Opto-electrical NoC with Traffic
Flow Prediction in Chip Multiprocessors. In Proceedings of 22nd Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing, PDP ’14,
pages 440–443, Torino, Italy, 2014. IEEE.

[35] M. Ghane, S. Chandrasekaran, and M. S. Cheung. Assessing Performance Implications
of Deep Copy Operations via Microbenchmarking. arXiv preprint, 2019.

[36] M. Ghane, S. Chandrasekaran, and M. S. Cheung. Gecko: Hierarchical Distributed
View of Heterogeneous Shared Memory Architectures. In Proceedings of the 10th In-
ternational Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM ’19, pages 21–30, New York, NY, USA, 2019. ACM.

[37] M. Ghane, S. Chandrasekaran, and M. S. Cheung. Pointerchain: Tracing Pointers to
Their Roots A Case Study in Molecular Dynamics Simulations. Parallel Computing,
85:190–203, 2019.

[38] M. Ghane, S. Chandrasekaran, R. Searles, M. Cheung, and O. Hernandez. Path For-
ward for Softwarization to Tackle Evolving Hardware. In Proceedings of SPIE - The
International Society for Optical Engineering, SPIE ’18, Orlando, Florida, 2018. SPIE.

[39] M. Ghane, J. Larkin, L. Shi, S. Chandrasekaran, and M. S. Cheung. Power and
Energy-efficiency Roofline Model for GPUs. arXiv preprint, 2018.

[40] M. Ghane, A. M. Malik, B. Chapman, and A. Qawasmeh. False Sharing Detection
in OpenMP Applications Using OMPT API. In International Workshop on OpenMP,
IWOMP ’15, pages 102–114, Aachen, Germany, 2015. Springer International Publish-
ing.

[41] C. Gheller, P. Wang, F. Vazza, and R. Teyssier. Numerical Cosmology on the GPU
with Enzo and Ramses. In Journal of Physics: Conference Series, volume 640, Boston,
MA, 2015. IOP Publishing.

[42] G. Giupponi, M. J. Harvey, and G. De Fabritiis. The impact of accelerator processors
for high-throughput molecular modeling and simulation. Drug Discovery Today, 13(23-
24):1052–1058, 2008.

115

[43] J. Goodacre and A. N. Sloss. Parallelism and the ARM Instruction Set Architecture.
Computer, 38(7):42–50, 2005.

[44] Google Benchmark. https://github.com/google/benchmark. Accessed: 2018-04-10.

[45] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale, A. C. Mallinson, and S. A.
Jarvis. Achieving Portability and Performance Through OpenACC. In Proceedings of
the 1st Workshop on Accelerator Programming Using Directives, pages 19–26, New
Orleans, LA, 2015.

[46] R. D. Hornung and J. A. Keasler. The RAJA Portability Layer: Overview and Status. ,
Technical Report, Lawrence Livermore National Laboratory (LLNL-TR-661403), 2014.

[47] Intel. https://software.intel.com/en-us/persistent-memory. Accessed: 2019-04-10.

[48] Intel Corp. Intel R© 64 and IA-32 Architectures Software Developer Manuals.

[49] D. Jaggar. ARM Architecture and Systems. IEEE Micro, 17(04):9–11, 1997.

[50] JEDEC. High Bandwidth Memory (HBM) DRAM - http://www.jedec.org/standards-
documents/results/jesd235. Accessed: 2019-04-10.

[51] J. E. Jones. On the Determination of Molecular Fields - II. From the Equation of
State of a Gas. In Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, volume 106, pages 463–477, Trinity College, Cambridge, UK,
1924. The Royal Society.

[52] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito, R. Haque,
D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. H. Still. Exploring
Traditional and Emerging Parallel Programming Models Using A Proxy Application.
In Proceedings of International Parallel and Distributed Processing Symposium, IPDPS
’13, pages 919–932, Boston, MA, 2013. IEEE.

[53] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the
Future of Parallel Computing. IEEE Micro, 31(5):7–17, 2011.

[54] Khronos OpenCL Working Group. The OpenCL Specification 1.1. Khronos Group,
2011.

[55] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1997.

[56] C. Lameter. NUMA (Non-Uniform Memory Access): An Overview. Queue, 11(7):40,
2013.

[57] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt. An Investigation of Unified
Memory Access Performance in CUDA. In IEEE High Performance Extreme Comput-
ing Conference, HPEC ’14, pages 1–6, Waltham, MA, 2014.

116

[58] M. H. Lankhorst, B. W. Ketelaars, and R. A. Wolters. Low-cost and Nanoscale Non-
volatile Memory Concept for Future Silicon Chips. Nature Materials, 4(4):347–352,
2005.

[59] A. Lastovetsky. Heterogeneity in Parallel and Distributed Computing. Journal of
Parallel and Distributed Computing, 73(12):1523–1524, 2013.

[60] S. Lee and J. S. Vetter. Early Evaluation of Directive-based GPU Programming Models
for Productive Exascale Computing. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 1–11, Salt Lake City, UT,
2012. IEEE.

[61] X. Liao, L. Xiao, C. Yang, and Y. Lu. MilkyWay-2 Supercomputer: System and
Application. Frontiers of Computer Science, 8(3):345–356, 2014.

[62] Y. Lin, C. Chuang, C. Yen, S. Huang, P. Huang, J. Chen, and S. Lee. Artificial
Intelligence of Things Wearable System for Cardiac Disease Detection. In IEEE Inter-
national Conference on Artificial Intelligence Circuits and Systems, AICAS ’19, pages
67–70, Hsinchu, Taiwan, 2019.

[63] E. Lindahl, B. Hess, and D. van der Spoel. A Package for Molecular Simulation and
Trajectory Analysis. Journal of Molecular Modeling, 7(8):306–317, 2001.

[64] G. H. Loh. 3D-stacked Memory Architectures for Multi-core Processors. In Proceed-
ings of International Symposium on Computer Architecture, ISCA ’08, pages 453–464,
Beijing, China, 2008.

[65] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter, D. Roberts, M. Meswani, D. Ping, and
Z. Mike. A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function
PIM. In Proceeding of the Workshop on Near-Data Processing, in conjunction with
MICRO, WoNDP ’13, pages 1–5, Davis, CA, 2013.

[66] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. Colwell, W. Dally, J. Dongarra, A. Geist, R. Haring, J. Hittinger, A. Hoisie,
D. M. Klein, P. Kogge, R. Lethin, V. Sarkar, R. Schreiber, J. Shalf, T. Sterling,
R. Stevens, J. Bashor, R. Brightwell, P. Coteus, E. Debenedictus, J. Hiller, K. H. Kim,
H. Langston, R. M. Murphy, C. Webster, S. Wild, G. Grider, R. Ross, S. Leyffer, and
J. Laros III. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC)
Report: Top Ten Exascale Research Challenges. , Technical Report, USDOE Office of
Science, United States, 2014.

[67] A. Luckow, K. Kennedy, M. Ziolkowski, E. Djerekarov, M. Cook, E. Duffy, M. Schleiss,
B. Vorster, E. Weill, A. Kulshrestha, and M. C. Smith. Artificial Intelligence and
Deep Learning Applications for Automotive Manufacturing. In IEEE International
Conference on Big Data, Big Data ’18, pages 3144–3152, Seattle, WA, 2018.

[68] L. Luo, J. R. Edwards, H. Luo, and F. Mueller. Advanced Optimizations of An
Implicit Navier-Stokes Solver on GPGPU. In 53rd AIAA Aerospace Sciences Meeting,
Kissimmee, Florida, 2015.

117

[69] A. Marowka. Back to Thin-core Massively Parallel Processors. Computer, 44(12):49–
54, 2011.

[70] A. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. Das. Architecting On-
chip Interconnects for Stacked 3D STT-RAM Caches in CMPs. In Proceeding of the
38th annual international symposium on Computer architecture, volume 39 of ISCA
’11, pages 69–80, San Jose, CA, 2011.

[71] J. Mohd-Yusof and N. Sakharnykh. Optimizing CoMD: A Molecular Dynamics Proxy
Application Study. In GPU Technology Conference, GTC ’14, San Jose, CA, 2014.

[72] MPI Forum. MPI: A Message-passing Interface Standard. Version 2.2. Accessed:
2018-04-10.

[73] National Strategic Computing Initiative (NSCI). https://nsf.gov/cise/nsci/. Accessed:
2016-07-01.

[74] Nuwan Jayasena, Dong Ping Zhang, Amin Farmahini-Farahani and M. Ignatowski. Re-
alizing the Full Potential of Heterogeneity through Processing in Memory. In 3rd Work-
shop on Near-Data Processing, in conjunction with MICRO, WoNDP ’15, Waikiki,
Hawaii, 2015.

[75] NVidia. CUDA C Programming Guide. Accessed: 2019-08-18.

[76] NVidia. NVidia Autonomous Machines. Accessed: 2019-08-18.

[77] NVidia. NVidia Clara. Accessed: 2019-08-18.

[78] NVidia. NVidia DGX Systems. Accessed: 2019-08-18.

[79] NVidia. NVidia Jetson Systems. Accessed: 2019-08-18.

[80] NVidia PSG Cluster. http://psgcluster.nvidia.com/trac. Accessed: 2017-12-03.

[81] OpenACC Committee. Technical Report: Deep Copy Attach and Detach (TR-16-1).
Accessed: 2017-12-03.

[82] OpenACC Committee. OpenACC Application Programming Interface, 2019.

[83] OpenMP Architecture Review Board. OpenMP Application Programming Interface,
2019.

[84] ORNL’s Summit Supercomputer. https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/. Accessed: 2018-08-08.

[85] ORNL’s Titan Supercomputer. https://www.olcf.ornl.gov/for-users/system-user-
guides/titan/. Accessed: 2018-08-08.

[86] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling Exascale
Software Challenges in Molecular Dynamics Simulations with GROMACS. Solving
Software Challenges for Exascale, 8759:3–27, 2015.

118

[87] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das. Scheduling Techniques for GPU Architectures with Processing-In-
Memory Capabilities. In Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation, PACT ’16, pages 31–44, Haifa, Israel, 2016.

[88] J. T. Pawlowski. Hybrid Memory Cube (HMC). In IEEE Hot Chips 23 Symposium,
HCS ’11, pages 1–24, Stanford, CA, 2011. IEEE.

[89] O. Pearce, H. Ahmed, R. W. Larsen, and D. F. Richards. Enabling Work Migration
in CoMD to Study Dynamic Load Imbalance Solutions. In Proceedings of the 7th
International Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computing Systems, PMBS ’16, pages 98–107, Piscataway, NJ,
USA, 2016. IEEE Press.

[90] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. De-
Bolt, D. Ferguson, G. Seibel, and P. Kollman. AMBER, A Package of Computer Pro-
grams for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics
and Free Energy Calculations to Simulate the Structural and Energetic Properties of
Molecules. Computer Physics Communications, 91(1-3):1–41, 1995.

[91] J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack, H. Yu,
Z. Wu, and K. Schulten. Molecular Dynamics Simulations of Large Macromolecular
Complexes. Current Opinion in Structural Biology, 31:64–74, 2015.

[92] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kalé, and K. Schulten. Scalable Molecular Dynamics with NAMD.
Journal of Computational Chemistry, 26(16):1781–1802, 2005.

[93] S. Plimpton. Fast Parallel Algorithms for ShortRange Molecular Dynamics. Journal
of Computational Physics, 117:1–42, 1995.

[94] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main
Memory System Using Phase-change Memory Technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09, Austin, TX,
2009.

[95] R. Reyes, I. López, J. J. Fumero, and F. de Sande. Directive-based Programming
for GPUs: A Comparative Study. In IEEE 14th International Conference on High
Performance Computing and Communication and IEEE 9th International Conference
on Embedded Software and Systems, HPCC ’09, pages 410–417, Liverpool, UK, 2012.

[96] K. Rupp. https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.
Accessed: 2019-02-27.

[97] Sabine Cluster. https://www.uh.edu/cacds/resources/hpc/sabine/. Accessed: 2019-
02-20.

[98] R. R. Schaller. Moore’s Law: Past, Present and Future. IEEE Spectrum, 34(6):52–59,
1997.

119

[99] A. Singharoy and C. Chipot. Methodology for the Simulation of Molecular Motors at
Different Scales. The Journal of Physical Chemistry B, 121(15):3502–3514, 2017.

[100] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated Molecular
Modeling Coming of Age. Journal of Molecular Graphics and Modelling, 29(2):116–125,
2010.

[101] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[102] A. Tate, A. Kamil, A. Dubey, A. Größlinger, B. Chamberlain, B. Goglin, C. Ed-
wards, C. J. Newburn, D. Padua, D. Unat, E. Jeannot, F. Hannig, T. Gysi, H. Ltaief,
J. Sexton, J. Labarta, J. Shalf, K. Fürlinger, K. O’brien, L. Linardakis, M. Besta,
M.-C. Sawley, M. Abraham, M. Bianco, M. Pericàs, N. Maruyama, P. H. J. Kelly,
P. Messmer, R. B. Ross, R. Cledat, S. Matsuoka, T. Schulthess, T. Hoefler, and V. J.
Leung. Programming Abstractions for Data Locality. In Workshop in Programming
Abstractions for Data Locality, Lugano, Switzerland, 2014.

[103] Top500. https://www.top500.org. Accessed: 2018-04-10.

[104] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain,
R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot, A. Kamil,
J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. Newburn, and
M. Pericas. Trends in Data Locality Abstractions for HPC Systems. IEEE Transactions
on Parallel and Distributed Systems, 28(10):1–1, 2017.

[105] L. Verlet. Computer ”Expermiments” on Classical Fliuds I: Thermodynamical Prop-
erties of Lennard Jones Molecules. Physical Review, 159(1):98–103, 1967.

[106] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. Antypas,
D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D. Bernholdt,
S. Byna, K. Cameron, F. Cappello, B. Chapman, A. Chien, M. Hall, R. Hartman-
Baker, Z. Lan, M. Lang, J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey, P. Peltz Jr.,
T. Peterka, M. Strout, and J. Wilke. Extreme Heterogeneity 2018 - Productive Com-
putational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Work-
shop on Extreme Heterogeneity. , Technical Report, USDOE Office of Science (SC),
Washington, D.C., 2018.

[107] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, and W. J.
Dally. Scaling the Power Wall: A Path to Exascale. In International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’14, pages
830–841, New Orleans, LA, 2014. IEEE.

[108] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC - First Experiences
with Real-World Applications. In Euro-Par 2012 Parallel Processing, pages 859–870,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

120

[109] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson. Phase Change Memory. In Proceedings of the IEEE, volume 98,
pages 2201–2227, 2010.

[110] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee. An Optimized 3D-stacked Mem-
ory Architecture by Exploiting Excessive, High-density TSV Bandwidth. In The Six-
teenth International Symposium on High-Performance Computer Architecture, HPCA
’10, pages 1–12, Bangalore, India, 2010.

[111] Y. Yan, R. Brightwell, and X.-H. Sun. Principles of Memory-Centric Programming for
High Performance Computing. In Proceedings of the Workshop on Memory Centric
Programming for HPC, MCHPC ’17, pages 2–6, New York, NY, USA, 2017. ACM.

[112] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical Place Trees: A Portable Abstrac-
tion for Task Parallelism and Data Movement. In Lecture Notes in Computer Science,
pages 172–187, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[113] Z. Yang, F. Gao, and S. Shen. Real-time Monocular Dense Mapping on Aerial Robots
Using Visual-inertial Fusion. In IEEE International Conference on Robotics and Au-
tomation, ICRA ’17, pages 4552–4559, Singapore, Singapore, 2017.

[114] H. Zhang, G. Hou, M. Lu, J. Ahn, I. J. L. Byeon, C. J. Langmead, J. R. Perilla, I. Hung,
P. L. Gor’Kov, Z. Gan, W. W. Brey, D. A. Case, K. Schulten, A. M. Gronenborn, and
T. Polenova. HIV-1 Capsid Function Is Regulated by Dynamics: Quantitative Atomic-
Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD.
Journal of the American Chemical Society, 138(42):14066–14075, 2016.

[115] H. Zhao and A. Caflisch. Molecular Dynamics in Drug Design. European Journal of
Medicinal Chemistry, 91:4–14, 2014.

[116] M. Zingale, A. S. Almgren, M. G. B. Sazo, V. E. Beckner, J. B. Bell, B. Friesen,
A. M. Jacobs, M. P. Katz, C. M. Malone, A. J. Nonaka, D. E. Willcox, and W. Zhang.
Meeting the Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro,
Maestro, and the AMReX Astrophysics Suite. Journal of Physics: Conference Series,
1031:12024, 2018.

121

Appendix A

Gecko’s Directives

This appendix describes the Gecko’s programming model in detail. All directives in Gecko

and its clauses are described below. All keywords mentioned in this Appendix are mandatory

unless they are put inside []. In that case, they are considered optional. The most up-to-

date version of this manual is accessible on its associated Github page1.

A.1 Location Type

The first step in using Gecko is to declare all the location types at the beginning of the

application. This is achieved with the loctype construct. Below we show the syntax of

loctype.

1 #pragma gecko loctype name(char*) kind(char*, char*)

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

1https://github.com/milladgit/gecko.

122

• name: the user-defined name for our type (char*).

• kind: the system-defined type for the location type (char* , char*).

Note: The “virtual” location name is reserved for the virtual location type.

Note 2: For a list of supported memory kinds, please see the following example.

Example: The first line in the following code snippet declares that our application needs

a conventional processor with 4 cores and of Intel’s Skylake type. The second line declares

a minimum NVidia GPU with Compute Capability of 5.0 (‘cc50‘) and calls it ‘tesla‘ for

future reference. The third line specifies the main memory module in our system with 16

GB in size. The last line declares the location type for permanent storage. In the current

implementation, it is a file on the file system tree.

1 #pragma gecko loctype name("host") kind("x64", "Skylake") num_cores(4) mem("4MB")

2 #pragma gecko loctype name("tesla") kind("NVIDIA", "cc50") mem("4GB")

3 #pragma gecko loctype name("NODE_MEMORY") kind("Unified_Memory") size("16GB")

4 #pragma gecko loctype name("HDD") kind("Permanent_Storage")

A.2 Location

Locations in Gecko are defined using the location construct as shown below. An example

of its syntax is shown below.

1 #pragma gecko location name(char*) type(char*) [all]

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• name: the name of the location (char*).

123

• type: the type of the location (char*) from the declared ones by loctype.

• all: defining all devices with similar location type under one umbrella. This will

result in the following naming conversion for the devices: <name>[i] where <name> is

the name of the location and [i] provides a way to distinguish the locations.

Example: The following lines define the locations used in the model shown above. The

code snippet below declares LocA as our main memory location. Virtual locations in this

snippet are LocB and LocC. Other locations in the snippet are from the host and tesla type,

which were defined previously with the loctype clause in the last code snippet. The fourth

line of the code snippet shows how we are declaring four GPUs in the system. However, if

the number of available devices from that type are unknown at the time of writing the code,

one can ask the runtime library to utilize all available devices at the execution time. One

can enable this feature by using the all clause (as shown in Line 5).

1 #pragma gecko location name("LocA") type("NODE_MEMORY")

2 #pragma gecko location name("LocB","LocC") type("virtual")

3 #pragma gecko location name("LocN1", "LocN2") type("host")

4 #pragma gecko location name("LocG1", "LocG2", "LocG3", "LocG4") type("tesla")

5 #pragma gecko location name("LocG") type("tesla") all

A.3 Hierarchy

The hierarchy in Gecko determines the relationship among the locations with respect to each

other. The relationship between locations is declared with the hierarchy clause. Every

location in Gecko has a parent and a number of children. An example of its syntax is shown

below.

1 #pragma gecko hierarchy children(<op> : <list>) parent(char*) [all]

124

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• parent: the parent location in the relationship (char*).

• children: the list of all locations to be the children of parent. The keyword accepts

an operation and the children list: (<op> : <list>). The op can be + and - signs

or a char variable that is either + or -. The <list> is the comma-separated list of

defined locations (name of the locations in char*).

• all: similar to the all keyword in the hierarchy, this keyword is used to include

all locations under this hierarchy.

Example: The lines below shows how to use the hierarchy construct. Lines 2-3 add

and remove children to locations LocA and LocB, respectively. The statement in Line 4

introduces the LocGi locations as the children of LocC. One can reverse the operation at run

time by changing the value of the op variable. Please note how + and ’+’ are equivalent.

1 char op = ’+’;

2 #pragma gecko hierarchy children(+:"LocB","LocC") parent("LocA")

3 #pragma gecko hierarchy children(’-’:"LocN1","LocN2") parent("LocB")

4 #pragma gecko hierarchy children(op:"LocG1","LocG2","LocG3","LocG4") parent("LocC")

A.4 Configuration File

The whole structure of the hierarchy tree can be stored within a configuration file. Gecko can

load such a file and populate the tree automatically. This brings a great degree of flexibility

to application developers and makes the application extremely portable. An example of its

syntax is shown below.

125

• file: the configuration file name.

• env: the GECKO CONFIG FILE environment variable contains the path to the file. Please

refer to the section describing the environmental variables below.

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

1 #pragma gecko config env

2 #pragma gecko config file("/path/to/config/file")

Note: The file and env cannot be chosen simultaneously.

Example: An example of a configuration file for above-mentioned hierarchy tree is shown

below:

An example of a configuration file in Gecko

loctype;kind,x64,Skylake;num cores,4;mem,4MB;name,host;

loctype;name,tesla;kind,CC7.0,Volta;mem,4GB

loctype;name,NODE MEMORY;kind,Unified Memory;size,16GB

location;name,LocA;type,NODE MEMORY;

location;name,LocB,LocC;type,virtual

location;name,LocN1,LocN2;type,host;

location;name,LocG1,LocG2,LocG3,LocG4;type,tesla

hierarchy;children,+,LocB,LocC;parent,LocA

hierarchy;children,+,LocN1,LocN2;parent,LocB

hierarchy;children,+,LocG1,LocG2,LocG3,LocG4;parent,LocC

126

A.5 Drawing

For convenience, Gecko can generate the hierarchical tree for visualization purposes. Using

the draw construct, at any point in executing the program, the runtime library will generate

a compatible DOT file. One can convert a DOT file to a PDF file using the dot command:

dot -Tpdf gecko.conf -o gecko-tree.pdf

1 #pragma gecko draw filename(char*)

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• filename: the target DOT file name (char*). It can be an absolute or relative path.

The default value for this keyword is "gecko.dot".

Example:

1 #pragma gecko draw filename("/path/to/DOT/file")

A.6 Memory Operations

A.6.1 Allocating/Freeing Memory

Memory operations in Gecko are supported by the memory construct. To allocate memory,

use the allocate keyword and to free the object, use free. Optional features are specified

inside brackets ([]).

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

127

1 #pragma gecko memory allocate(<ptr>[0:<count>]) type(<datatype>) location(char*) [

distance(<dist>) [realloc/auto]] [file(char*)]

2 #pragma gecko free(<ptr_list>)

• allocate(<ptr>[0:<count>]): the input to the allocate keyword accepts a pointer

(<ptr>) and its number of elements (<count>). <count> can be a constant or a variable.

Please see the example below.

• datatype: the data type of the ptr variable.

• <ptr list>: the comma-separated list of allocated variables with the allocate con-

struct.

• <dist>: specifies the distance of the allocation in distance-based allocations. For

these types of allocations, the allocation is performed when the destination location to

execute the region is chosen. As a result, the allocation is postponed until the region

is ready to be executed. It accepts the following values:

– near: the allocation is performed in the chosen execution location.

– far[:<n>]: the allocation is performed in the n-th grandparent with respect

to the chosen execution location. For n==0 and n==1, the immediate parent is

chosen. In cases that n causes the location to be chosen to go further than the

root location, the root location is chosen.

• <realloc/auto>: the policy to perform the allocation.

– realloc: the allocated memory is freed after the associated region is finished.

– auto: the allocated memory is not freed after the region is finished and it is

moved around the hierarchy as needed. The allocated memory can be used with

other regions of the application.

128

• file: the file name in case the location type is Permanent Storage. It is the path to

a file in the file system.

Example:

1 int N = 2000;

2 // place-holders for our arrays

3 double *X, *Y, *Z, *W;

4 #pragma gecko memory allocate(X[0:N]) type(double) location("LocA")

5 #pragma gecko memory allocate(Y[0:N]) type(double) location("LocB")

6 #pragma gecko memory allocate(Z[0:N]) type(double) location("LocC")

7 #pragma gecko memory allocate(W[0:N]) type(double) location("LocG1")

8 //...<some computation>...

9 #pragma gecko memory free(X, Y, Z, W)

Note: Please refer to the region section to see an example of distance-based allocations.

A.6.2 Copy and Move

One can copy memory between two different memory locations. It is similar to the regular

memcpy operations; however, it is performed between different platforms and architectures.

1 // Copying elements from src[s1, e1] to dst[s2, e2]

2 #pragma gecko memory copy from(src[s1:e1]) to(dst[s2:e2])

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• src: the source memory location to perform the copy operation from index s1 to e1.

• dst: the destination memory location to perform the copy operation from index s2 to

e2.

Example:

129

1 #pragma gecko memory copy from(X[0:N]) to(Y[0:N])

In some cases, we have to move a set of data elements from Location P to Location Q. In

such cases, the source location no longer possesses the variable and the destination location

has to own the variable.

1 #pragma gecko memory move(<var>) to(char*)

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• var: the source memory location to perform the move operation.

• to: the destination location for the move operation.

Example:

1 // Moving the Q array from its current location

2 // to LocA

3 #pragma gecko memory move(Q) to("LocA")

A.6.3 Register/Unregister

There are many cases where we are dealing with variables that were allocated before and we

want to use them with Gecko. With the register/unregister clauses one can introduce

them properly to Gecko.

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• <var>: the already allocated memory.

130

1 #pragma gecko memory register(<var>[<start>:<end>]) type(<type>) loc(char*)

2 #pragma gecko memory unregister(<var>)

• <type>: type of the memory.

• loc: the name of the proper location that this variable originated from.

Note: Developers are responsible to free the registered arrays with Gecko. Gecko does

not free them automatically.

Example: Line 3 registers the already allocated memory space by vector class to Gecko

in LocN. We assume that LocN is a host location since the vector class allocates its memories in

the host memory. Lines 5-6 show how we used register to register GPU-allocated memories.

Lines 8-9 show the unregister operations for both the host and device locations.

1 vector<double> v(100);

2 double *v_addr = (double*) v.data();

3 #pragma gecko memory register(v_addr[0:100]) type(double) loc("LocN")

4 double *d_addr;

5 cudaMalloc((void**) &d_addr, sizeof(double) * 100);

6 #pragma gecko memory register(d_addr[0:100]) type(double) loc("LocG1")

7 // ...

8 #pragma gecko memory unregister(d_addr)

9 #pragma gecko memory unregister(v_addr)

A.7 Region

Gecko recognizes the computational kernels with the region construct. The end of the

region is recognized with the end keyword.

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• datatype: the execution policy to execute the kernel. Please refer to execution policy

section for more details.

131

1 #pragma gecko region exec_pol(char*) variable_list(<ptr_list>) \\

2 [gang[(<gang_count>)]] [vector[(<vector_count>)]] [independent] \\

3 [reduction(<op>:<var>)] [at(char*)]

4 for(...) {

5 /* some computations */

6 }

7 #pragma gecko region end

• <ptr list>: list of utilized variables within the region.

• gang, vector, independent, reduction: please refer to the OpenACC specification

to learn more about these keywords.

– Note: Gecko relies on OpenACC to generate code for different architectures.

• at: [optional] the destination location to execute the code.

– Note: In the new version of Gecko, the destination location is chosen based on the

variables used in the region (<ptr list>). However, the developer can override

Gecko and specify where to execute the code.

Example: The following example shows how to multiply every elements of the X array

by coeff and store the results in the Z array for all the indices between a and b. The static

execution policy is chosen and the location that executes the code is chosen with respect to

the arrays used in this kernel: X and Z.

1 double coeff = 3.4;

2 int a = 0;

3 int b = N;

4 #pragma gecko region exec_pol("static") variable_list(Z,X)

5 for (int i = a; i<b; i++) {

6 Z[i] = X[i] * coeff;

7 }

8 #pragma gecko region end

Example of distance-based allocations: Listing A.1 shows an example of distance-

based allocations. Arrays T1, T1 realloc, T1 auto, T2, T2 far2, T2 far variable,

132

and Perm are distance-based arrays, whose allocation location is determined at run time.

For this scenario, their location depends on the location of variables X and Z since these

variables determine the execution location of the kernel at Line 15.

Listing A.1: An example of utilizing distance-based allocation in Gecko.

1 double *T1, *T1_realloc, *T1_auto, *T2, *T2_far2, *T2_far_variable;

2 #pragma gecko memory allocate(T1[0:N]) type(double) distance(near)

3 #pragma gecko memory allocate(T1_realloc[0:N]) type(double) distance(near) realloc

4 #pragma gecko memory allocate(T2[0:N]) type(double) distance(far) file("T2.obj")

5 #pragma gecko memory allocate(T2_far2[0:N]) type(double) distance(far:2) file("T2_far

.obj")

6 int far_distance = 10;

7 #pragma gecko memory allocate(T2_far_variable[0:N]) type(double) distance(far:

far_distance) file("T2_far_variable.obj")

8
9 double *Perm;

10 #pragma gecko memory allocate(Perm[0:N]) type(double) location("LocHDD") file("perm.

obj")

11
12 a = 0;

13 b = N;

14 long total = 0;

15 #pragma gecko region exec_pol("static") variable_list(Perm,Z,X,T1,T2_far_variable)

reduction(+:total)

16 for (int i = a; i<b; i++) {

17 Z[i] = X[i] * coeff;

18 T1[i] *= 2;

19 T2_far_variable[i] *= 2;

20 total += (i+1);

21 Perm[i] = i;

22 }

23 #pragma gecko region end

A.8 Synchronization Point

By default, regions in Gecko are executed asynchronously. Synchronization points in Gecko

are expressed with the pause construct. The granularity at which the synchronization hap-

pens can be controlled is specified with the at keyword. The location is an optional input.

If the location is not specified, Gecko waits for all resources to finish their work.

133

1 #pragma gecko region pause [at(char*)]

It accepts the following clauses. The type of the input to each clause is specified in the

parentheses.

• at: the location to wait on

Example: The following line ensures that the application will wait on all the computa-

tional resources for the child of LocA to finish its assigned job.

1 #pragma gecko region pause at("LocA")

134

Appendix B

Funding and Source Code

B.1 Funding

This material is based upon work supported by the National Science Foundation (NSF) Grant

numbers 1531814 (NSF MRI1) and 1412532, and the Department of Energy (DOE) Grant

No. DE-SC0016501. This research was also supported in part by the Lilly Endowment, Inc.,

through its support for the Indiana University Pervasive Technology Institute, and in part

by the Indiana METACyt Initiative. We are also very grateful to NVIDIA for providing

us access to its PSG cluster and thankful to the OpenACC technical team, especially Mat

Colgrove, Pat Brooks, and Michael Wolfe.

B.2 Source Code

All source code is available online at the following URLs:

pointerchain:

1https://uhpc-mri.uh.edu/

135

https://github.com/milladgit/pointerchain

Deep copy microbenchmark:

https://github.com/milladgit/deepcopy-benchmark

Gecko:

https://github.com/milladgit/gecko

The STREAM benchmark ported to Gecko:

https://github.com/milladgit/Gecko-BabelStream

The Rodinia Benchmark Suite in Gecko:

https://github.com/milladgit/gecko-rodinia

136

