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Abstract 
 

 The sensitivity of the Gassmann fluid substitution technique to uncertainty in the 

input wireline measurements data has not been adequately studied (as per commonly 

available literature). This study describes the methodology to quantify errors present in the 

fluid substituted velocity by initially calculating the errors for petrophysical and the linearly 

elastic input parameters and then propagating the calculated input data errors throughout 

the fluid substitution process.  

 The synthetic pore fluid modeling technique commonly utilizes data from the 

wireline log measurements to model various pore fluid mixture scenarios that may give rise 

to the observed amplitude variation with offset (AVO) response. Each input parameter, 

whether directly measured or derived using a combination of measured parameters, is 

bound within an uncertainty range due to the inherent limitations of the measuring 

instrument or resulting from uncertainty in the empirical parameter estimation. By applying 

the theory of error propagation, the uncertainty is calculated at each step of the Gassmann 

fluid substitution process flow and the resultant uncertainty in the fluid substituted velocity 

is determined. 

 The uncertainty in the fluid substituted velocity can affect both the phase and the 

amplitude of synthetic traces generated for different offset angles and therefore, can 

produce anomalous AVO response in synthetic fluid substitution models. This uncertainty 

in the synthetic models can impact any direct comparisons with observations in order to 

determine the effect of different fluid scenarios. Additionally, the observed AVO data may 

be imprecise due to the anomalous AVO response resulting either from geologic 

uncertainty, data processing artifacts, or a combination of both thus increasing uncertainty 

in lithologic AVO interpretation. 
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Chapter 1  

1.1  Motivation of this study 

 Fluid substitution is a commonly applied technique to predict elastic properties of a 

rock saturated with one fluid using the properties measured when the rock is saturated with 

another fluid. This technique is commonly used to model the various fluid scenarios that may 

give rise to an observed amplitude anomaly, AVO effect or 4D response. The rock elastic 

properties are typically obtained from measurements in a borehole using well logs. The key 

well logs that are used for this analysis are the gamma ray, formation density, neutron 

porosity, resistivity, and acoustic velocities. Formation bulk density and neutron porosity data 

are typically acquired using nuclear logging techniques, while the acoustic velocity data are 

acquired by using monopole/dipole/quadrupole logging technique. As with any kind of data, 

the individual well log measurements are subject to measurement errors. The quality of such 

data should therefore be quantified by its accuracy and precision. The accuracy and precision 

errors can be summarized into a single error term called root mean square error (RMS error). 

The RMS errors for individual measurements and instruments are published by logging 

companies. The instrument measurement errors are therefore propagated through any 

subsequent computation which utilizes the measured parameters as inputs. The motivation for 

this study is to quantify the amount of error that has been propagated from the individual 

measurements to the final predicted velocities, determined for the substituted fluid, by using 

the Gassmann fluid substitution relationship. The error present in the fluid substituted 

velocity will therefore impact any subsequent calculations or interpretations performed when 

using this velocity. This serves to assist any quantitative approach used in estimating the 

uncertainty in a lithologic AVO interpretation.  
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( 1.1a)

1.2  Introduction 

 Fluid substitution is a critical part of seismic modeling since it allows for simulation 

and quantification of various scenarios that may give rise to an observed seismic response. 

Gassmann (1951) derived an equation to calculate the bulk modulus of a fluid saturated 

porous medium using the known porosity and bulk moduli of the solid matrix, rock frame, 

and the pore fluid. The inputs into the equation are usually derived from well logging 

measurements of formation properties. 

 Gassmann's equations allows prediction of seismic velocities in a rock saturated with 

one fluid from the same saturated with a fluid of differing bulk modulus. This process is 

referred to as fluid substitution. When the rock is loaded under an increment of compression 

such as a passing seismic wave, an increment of pore pressure change is induced which 

resists the compression and therefore stiffens the rock. The low frequency Gassmann (1951)-

limit of the more general Biot (1956) theory predicts the resulting increase in effective bulk 

modulus, KSat, of the saturated rock through the following equations 
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Kdry = Effective bulk modulus of dry rock frame, 

Ksat =  Effective bulk modulus of rock fully saturated with pore fluid, 

K0 =  Bulk modulus of solid material (matrix), 

K fl =  Effective bulk modulus of pore fluid, 

Φ =  Porosity, 

( 1.1b)
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µdry =  Effective shear modulus of dry rock (frame), 

µsat =  Effective shear modulus of rock fully saturated with pore fluid. 

 Although Gassmann’s equations are derived for pure mineral and fluid components, 

in practice, the moduli are averages of differing components and are thus referred to as being 

“effective”. Gassmann's equation assumes a homogenous mineral modulus and statistical 

isotropy of the pore space, but is free of assumptions of pore geometry and is valid only at 

sufficiently low frequencies such that the induced pore pressures are equilibrated throughout 

the work space. This limitation to low frequencies explains why Gassmann's relation works 

best for in-situ seismic data with frequencies (< 100 Hz) and does not typically perform as 

well at sonic logging (~104 Hz) and ultrasonic frequencies (~106 Hz) (Mavko et al., 2003). An 

implicit assumption is that there is no chemical interaction between porous rock and the fluid 

that affects the moduli. Several authors (Mavko et al., 2003) have pointed out that the 

Gassmann-Biot theory performs poorly when the measured very dry rock values are used for 

dry rock or dry frame. To avoid artifacts of ultra dry rocks it is often recommended to use 

samples that are at room conditions or that have been prepared in a constant humidity 

environment for the dry rock data. Smith et al., (2003) state that if completely dry samples are 

used the velocities computed can be too high as the first few monolayers of water may 

chemically weaken the rock frame. 

1.3 Literature review 

 Previously published studies dealing with uncertainty analysis in fluid substitution 

have primarily concentrated on stochastic approaches. Paper by Samake et al. (2000) 

describes the stochastic simulation of the Gassmann's equations by randomly varying the 
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input parameters. The input parameters selected are assigned reasonable uncertainty values 

and simulation is performed by varying the input parameters over a large number of trials. 

Most of the published literature however, does not take into account errors propagated from 

the logging instrument. As a result, the value of inherent uncertainty present in the fluid 

substituted velocity due to the use of well logging data remains unknown.   

 Direct application of error propagation theory in fluid substitution was described in a 

paper by Broadhead (2005) and gives a deterministic approach to determining uncertainty in 

the fluid substituted velocity. This paper details the analytical formulae for determining the 

errors in applying the Gassmann fluid substitution. The paper however, does not address 

propagated errors in mineral or fluid bulk moduli computations when applying common 

mixing laws. Additionally the paper does not present an actual case history detailing with the 

final computed propagated error using real data. Wang (2005) presents the results of 

sensitivity of Gassmann's equation to analysis of the impact of assigning error ranges of a 

fixed value to the input parameters due to uncertainties in the input data. 

  To demonstrate the effect of error propagation, a methodology to calculate the impact 

of propagated error in the Gassmann’s fluid substitution and resulting velocities and is 

derived and applied to seismic modeling. The error propagation equation differs in form 

depending on whether the variables used in the computation are dependent or independent. 

As an example, when an equation which contains the density and the porosity variables where 

the porosity term was previously computed from the density term using some transform, the 

porosity can be considered to be a dependent variable of density. The methodology described 

in this study involves determining the relationships between input parameters to determine 
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whether the variables can be considered to be dependent or independent in nature. Paper by 

Smith et al. (2003) is used for the basis for the computing the error propagation equation  

 Houck (2002) describes the uncertainty in AVO interpretation as a result of geologic 

uncertainty and measurement uncertainty. The measurement uncertainty in this case does not 

refer to uncertainties in the logging measurements but refers to uncertainties caused in AVO 

interpretation as a result of seismic data processing artifacts, noise or other interfering events 

that contribute to inaccurate information about the elastic properties of the rocks that 

produced the reflection. 

 While several authors describe the difficulties in applying Gassmann's fluid 

substitution equations in mixed lithologies, especially in sand-shale sequences, little literature 

has been published regarding the effects of error propagation from logging tool 

measurements on the final computed velocities or on any subsequent computations.  

1.4 Fluid substitution in shaley sediment and rock 

 The traditional method of fluid substitution in porous rock requires the total porosity 

and the elastic modulus of the mineral phase as input and assumes that the fluid reaches 

instantaneous hydraulic equilibrium throughout the pore space. This assumption may not be 

appropriate for shaley sediment because of the low permeability of shale and the resulting 

immobility of water in it. To overcome the problem of lack of instantaneous equilibrium one 

of the approaches is to treat porous wet shale as part of the solid matrix material. This 

excludes the porosity within the shale from total porosity measurement and the new porosity 

is the effective porosity. (Dvorkin et al., 2007). The Gassmann equation implicitly assumes 

that the rock frame is composed of single mineral and therefore strictly speaking it cannot be 

used for multi-mineral rocks (Berryman et al., 1991). However for rocks whose minerals 
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have similar elastic constants, the accuracy of Gassmann fluid substitution may be adequate 

providing bulk modulus of the mineral matrix can be computed using one of the mixing laws 

to determine effective mineral moduli of the rock. In the case of using highly compressible 

porous shale as one of the solid components to be mixed, it is not clear that the approach of 

Dvorkin et al., (2007) will not introduce significant error. 

1.5  Linearly elastic parameter estimation in mixed lithology  

 A rock is a naturally occurring mixture of minerals and is normally inhomogeneous 

both due to the mixed mineral content and also due to the presence of cracks and voids. When 

the rock is composed of two or more minerals, most mixing rules are based on volumetric 

fractions of the individual mineral constituents. To predict the effective elastic modulii of a 

mixture of grains and pores we need to specify: i) the volume fractions of the various phases, 

ii) the elastic modulii of the various phases, and iii) the geometric details of how the phases 

are arranged relative to each other (Mavko et al., 2003). 

 At any given volume fraction of the constituents, the effective modulus value will fall 

between upper and lower bounds but the precise value will depend on the geometric details. 

The exact geometric details of the mineral and pore arrangements are generally unknown and 

therefore an arithmetic mean of the upper and lower bounds is used as an estimate of the 

effective elastic moduli of the mixture of grains and pores. The two commonly used 

techniques for calculating the upper and lower bounds of the effective medium are the 

Hashin-Strickman and Voigt-Reuss bounds. The computation methodology for the two 

methods is described in detail in Appendix 5. The use of effective media bounds allows an 
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estimation of the range of average mineral modulus for a mixture of mineral grains and 

requires that both the rock as a whole and each constituent is isotropic and linearly elastic  

1.6  Petrophysical parameter estimation in shaley sediment 

 Gassmann fluid substitution uses several petrophysical parameters as part of the fluid 

substitution work flow. The key parameter being the estimation of water saturation (and 

therefore hydrocarbon saturation), volumes of different mineral fractions, and porosity. The 

key parameter in petrophysical parameter estimation is the choice of a correct petrophysical 

model. There are several petrophysical models that may be used in the evaluation of shaley 

sand reservoirs. The key differentiator in the choice of model is whether the formation 

behaves as isotropic or anisotropic from the electrical conduction point of view. Two such 

models which have an impact on the petrophysical parameters computed for Gassmann fluid 

substitution are considered, isotropic and anisotropic wet shale. Both models use effective 

porosity (which is calculated by excluding bound water in shale). The bound water is of two 

kinds: i) shale bound water, generally associated with a double water layer associated with 

clay minerals, and ii) capillary bound water, held by electrically charged clay surfaces. 

Mollison et al. (2006) provide a description of various models in use for petrophysical 

analysis in shaley sands. 

1.6.1 Wet shale anisotropic model 

 This model is used for formations exhibiting electrical anisotropy, with conductivity 

values depending on the direction in which they are measured. Electrical anisotropy appears 

primarily as a consequence of resistivity devices having vertical resolution insufficient to 

resolve individual layers or laminations. Under these conditions, the measurements provide 
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average values of the actual or intrinsic properties of the lamina, leading to measurement of 

macroscopic anisotropy. This type of model is generally applied to clastic sedimentary rocks 

(or shaley sand reservoirs) and requires measurement of a resistivity (or conductivity) tensor 

which is represented by its two main components RV and RH, which are the vertical and 

horizontal resistivities respectively. This model allows estimation of effective porosity and 

water saturations that are fundamental inputs to the Gassmann fluid substitution technique 

especially when applying fluid substitution to shaley sand reservoirs. 

1.6.2 Wet shale isotropic model 

 The wet shale isotropic model is also an effective porosity model and can be used to 

characterize formations whose properties are represented solely by scalar quantities. This is 

the case where the electrical conductivity is independent of the direction in which it is 

measured. This model will generally apply to thick homogenous sands where we can expect 

to find rocks of complex mineralogy (but not necessarily layered) and to shaley sand 

formations containing mainly dispersed shale or authigenic structural clays.  

 An accurate estimate of uncertainty in petrophysical parameters would need a 

detailed reservoir study and would need to integrate data from several wells. Accurate 

estimation of petrophysical parameters has a direct impact in reducing errors in the 

petrophysical inputs to the Gassmann fluid substitution technique. This would however 

require measurements using advanced logging instruments coupled with inputs from other 

data such as measurements from core data. Lack of comprehensive data set presents a 

challenge. Inadequate data can lead to incorrect estimates of petrophysical parameters and 

therefore results in additional uncertainty in the fluid substituted velocity. In this study, I 

estimated uncertainty values are assigned to the petrophysical parameters based on 
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experience. However this serves to emphasize the difficulty of performing fluid substitution 

when faced with limited amount of petrophysical data. The choice of uncertainty values used 

for each petrophysical parameter is described later in this document. 

1.7  Expected results from this study 

 The final computed velocity error value is not a completely random parameter but is 

a function of systematic errors present in the input data. While it is possible that some of the 

biases present in the input data will have opposite directions and will therefore tend to cancel 

each other, the maximum possible error that may occur given that the systematic errors act in 

the same direction and do not cancel each other is expected to be important. This would result 

in differences in reflection coefficients calculated by comparing the velocity curves with and 

without including the error term. The results of this study are expected to quantify the 

uncertainty bounds in the fluid substituted velocity resulting from standard set of instrument 

measurement errors. Following the calculation of uncertainty in the new velocity, it would 

also enable calculation of uncertainty error bounds for the reflection coefficient curves used 

in synthetic AVO modeling. 

1.8  Applications of the results of this study. 

 The chief objective of this study was to quantify the amount of RMS error present in 

the fluid substituted velocity as a result of errors in the input measured data. Given the time 

and cost constraints on the tool design, operations, measurement conditions and the safety 

considerations it may be unfeasible to further reduce measurement errors in the logging 

instruments by a significant order of magnitude. While recognizing that the measurement 

errors will be reduced with new instrument designs and ongoing research, the reduction in the 
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measurement errors will not be of an order of magnitude that the impact on the calculated 

data, such as the Gassmann fluid substitution, would reduce to being negligible. In view of 

this limitation, the impact of uncertainty in the fluid substituted velocity on the reflection 

coefficients at various angular offsets will be determined. As mentioned earlier in this 

document, synthetic modeling for various fluid scenarios is a commonly applied AVO 

technique. By comparing the reflection coefficients at different incident angles between the 

fluid substituted velocity and its upper and lower velocity error bounds can be used to 

demonstrate the effect of measurement error on AVO studies. This by no means would 

indicate that the error in reflection coefficients exists but only points to the fact that it is 

entirely possible that the actual reflection coefficients may lie anywhere between the upper 

and lower bounds.  

1.8.1 Limitations of this study for AVO synthetic modeling application 

 The application of this study is limited to the formations which are considered to be 

isotropic. An anisotropic rock has variations in its physical properties that depends upon the 

direction a property is measured. The Vertical Transverse Isotropy (or VTI anisotropy) is 

described when the axis of symmetry is vertical. The VTI anisotropy can either be the result 

of alternating thin layers that may be individually isotropic but may have significantly 

different P velocities or may be the result of layering in shales. The Horizontal Transverse 

Isotropy (or HTI anisotropy) on the other hand, is described when the axis of symmetry is 

horizontal and is caused by fractures or cracks present in the rock. The wireline 

compressional velocity data is typically measured using the monopole acoustic source and is 

unable to detect presence of VTI anisotropy and subsequently the vertical velocity is 

uncorrected for the effect of VTI anisotropy when the axis of symmetry is tilted from vertical. 
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i.e. dipping formations or in the presence of large relative dip Accounting for anisotropic 

effects in the seismic method was greatly advanced by the pioneering work of Thomsen 

(Hilterman, 2001). It has also been shown that the AVO gradients can be reversed by 

anisotropy and hence can significantly change the classification of the AVO anomaly. As 

shales are highly anisotropic this effect cannot be completely ignored.  

 One application of this study demonstrates the effect of error the fluid substituted 

velocity on reflection coefficients when analyzing synthetic models. However, it is limited by 

the fact that the effect of anisotropy on reflection curves is not accounted for. Therefore the 

synthetic data may show significantly different results when comparing with the actual data 

even when the systematic error in the measured data and the subsequent error in fluid 

substituted velocity is very well understood.  
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Chapter 2  

2.1  Introduction 

 Geophysical data acquired by logging tools can be considered to be a subset of a 

continuous random variable measured as a function of distance. In the logging domain, we 

can consider the data curves that are generated to be sample values of a continuous curve at 

increments of the depth level spacing. In geophysical applications when the data are sampled 

with sufficient density and even though we may be looking at a subset of a very large data 

set, the variable (or measurement) may still resemble a continuous random variable over a 

fixed depth section. Although the available data set may contain only 4 data points / foot, the 

actual acquired data density may be much greater. As an example, wireline logging data may 

be acquired at a smaller depth interval which is then averaged out to either 4 or 2 samples per 

foot as per requirement. In another example, when the data are acquired during the course of 

drilling, the data density in regions of slow rates of penetration (ROP), may well exceed 4 

data points per foot. With "while drilling" data acquisition, the sensor acquisition times are 

generally matched with expected ROP whereas with a wireline log, the number of data points 

per foot is controlled by the logging speed. 

2.2  Types of data distributions 

 In geophysical applications, when the data are sampled with sufficient density, even 

though we may be recoding only a subset of a large data set, the variable (or measurement) 

will still resemble a continuous random variable. As an example, a thick reservoir section 

with constant properties which has been adequately sampled can be reconstructed to closely 
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resemble the continuous random variable with a mean value and distribution. Geophysical 

data can be defined by four common types of distributions as shown below. 

2.2.1 Binomial distribution 

 The binomial distribution generally deals with data that have a fixed number of trials 

which are independent and each trial has two outcomes. In general, the binomial distribution 

is least suited to logging data simply because the random variable is discrete, which means 

that it can only have a finite number of values. This condition restricts us to use either 

integers or whole numbers for the data. This condition is easy to achieve by rounding off data 

values at the cost of data accuracy. The other condition requires that we restrict the number of 

trials to a fixed number and thereby limiting the possibilities. However there are cases where 

a binomial distribution can be used. An example of binomial distribution can be identifying 

sand/shale based on gamma ray log by using cut-off values. Therefore a formation is either 

identified as sand or as shale if the gamma ray value is either more or less than the cutoff 

value.  

2.2.2 Poisson distribution 

 The Poisson distribution on the other hand deals with data that are random, 

independent, and occurs over some interval. The Poisson distribution can also approximate a 

binomial distribution when the number of data points is large and the probability of success is 

low. For example, the binomial distribution can be replaced by a Poisson distribution when 

we are looking at a large number of gamma log data points logged in a well and are interested 

only in determining the probability that the gamma ray counts occur over a small range.  
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2.2.3 Gaussian distribution 

 The Gaussian (or normal) distribution deals with a continuous random variable (or 

measurement) that has infinitely many values. The textbook on Elementary Statistics by  

Triola (2006) describes continuous variables as those recorded on a continuous scale with no 

gaps or interruptions. This definition comes close to the well log measurement where a large 

number of data points are collected over a continuous depth or time scale. Triola (2006) 

describes a normal distribution as a distribution of a continuous random variable that has a 

graph that is symmetric and bell shaped. Well logging data errors are best suited to be defined 

by normal distribution when the error can take infinitely different values and is not restricted 

to a integer value or only two trials as in the case of binomial distribution.  

2.2.4 Uniform distribution 

 The Uniform distribution is used in cases where the value of the measured quantity 

has values spread evenly over range of possibilities. The graph of a uniform distribution will 

therefore be of rectangular shape. (Triola, 2006). For example, matrix or grain densities of 

minerals can be assumed to have values that fall within a specific density range. Therefore 

any density within the specified range is possible and also the probabilities of having any 

density value within the range are equal. 

2.3  Errors in logging measurements 

 Without going into the detail of the instrument errors, we will focus on errors that 

result from measurement conditions. The errors in the measuring sensors are added up to 

generate an RMS error estimate for a reference measuring condition. Given below are some 

common sources of measurement errors that affect all logging instruments. Errors due to 
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measurements made outside the tool operational specifications, e.g. measurements in very 

high temperatures or pressures which are outside tool operating specifications are not 

considered. They include: 

1. Tool calibration errors and tool biases, 

2. Effect of borehole alteration or invasion in both space and time, 

3. Human errors or incorrect applications of data correction algorithms, 

4. Effect of varying logging speeds on data repeatability. 

2.3.1 Different approaches to assigning data uncertainty 

 A sedimentary bed or layer may be composed of sub layers and may be 

heterogeneous at the well log scale. The individual layer thickness is generally much smaller 

than the seismic wavelength. Two approaches can therefore be taken while analyzing the 

data. The first approach would be to consider that the log values should remain constant 

within each sedimentary layer or sedimentary facies that are clearly identified by the seismic 

wavelet. Therefore, any variation in the measured data within a specified depth interval and 

within the tool measurement uncertainty range can be considered to be a result of 

measurement error and not due to variations in the measured property within the sedimentary 

facies. The other approach that is commonly used in petrophysical analysis is to block the 

data curve into zones for the discrimination of electrofacies. Doveton (1994) defines the 

electrofacies as the set of log responses which characterizes a bed and permits it to be 

distinguished from the others. The blocking process replaces the original data curve by a 

stepped function whose value can be considered as a discrete measurement representing the 

blocked zone and measured within a specified range of accuracy. Therefore a single 

sedimentary bed unit considered in the first approach may be further sub divided into several 
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zones in the second approach. For the second method to be effective it is important that the 

input curves are resolution matched and the matched vertical resolution is smaller than the 

bed thickness. 

2.3.2 Errors in nuclear measurements 

 Formation bulk density, neutron porosity, and gamma ray curves are the primary 

curves generated using a radioactive source. While density and neutron porosity uses an 

external radioactive source, the gamma measurement measures natural radiation in the 

formation. The particles that are generated by radioactive decay are completely random 

events that are measured over a fixed interval of time. Since the generated particles are 

completely random events, any finite amount of counts over a fixed interval of times is 

subject to statistical fluctuations. It is important to note here that this is a fundamental 

property of radiation phenomenon and is not dependent on the nature and type of the 

instruments that measure the radiation.  

 The number of particle counts (N) that the detector observes over a fixed interval of 

time follows a Poisson distribution. The standard deviation of the counts that are observed 

over a fixed interval of time is given by .N=σ  However in nuclear logging instruments 

we are more concerned with the count rate (i.e. counts per unit time) rather than the number 

of counts by itself. The counting rate is given by	�/� where ‘t’ is the time of observation. In 

general, time is assumed to be measured with high degree of precision and therefore any error 

in time is generally ignored. Therefore the standard deviation of counting rate is given by  

.
t

N=σ  

(2.1) 
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 The count rates observed at the detectors are transformed to bulk density or porosity 

value by a transfer function. Obviously, the statistical error from the random nature of these 

events in the observed count rate gets transferred to the computed bulk density or porosity 

value. This error is in addition to (and assumed to be independent of) the systematic errors 

arising from measurement conditions in a wellbore. The above described sources of errors 

affect all measurements, however I list below some of the specific factors that result in errors 

in density and acoustic measurements. I have limited the list of factors to density and acoustic 

measurements because these two data curves are primary measurements that are used in the 

Gassmann fluid substitution. Other important measurements include porosity, gamma and 

resistivity curves for which a separate list of factors is required. 

2.3.3 Factors that impact accuracy of density measurements 

1. Statistical errors which are function of radioactive source age and activity. 

2. Effect of borehole conditions: washouts, rugose or elliptical boreholes. 

3. Effect of logging bed boundaries in high angle boreholes. 

4. Density contrast between the borehole fluid and the formation.  

5. Impact of variable standoff (distance from sensor face to borehole wall). This 

 variation is common to LWD density logging. 

6. Borehole alteration and invasion. 

2.3.4 Factors that impact accuracy of acoustic measurements 

1. Borehole irregularities, tool tilt, and tool decentralization. 

2. Velocity dispersion. 

3. Effect of relative dip angle of the bed on measurement. 



18 

 

4. Formation anisotropy. 

5. Cycle skipping. 

6. Noise spike. 

7. Borehole alteration and invasion. 

2.4  Logging data distribution and data quality control 

 As stated earlier, logging data measures a continuous random variable and therefore 

can be described by the normal or Gaussian distribution. For a normal distribution, the 

probability of a measurement having a value between x and x+dx is given by the normal 

distribution function (Triola, 2006) 

∏
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Where µ is the mean of the observed values (or also called the expected value) and is the 

mean that is used in the distribution. Thus, µ is the value we seek, however in reality with a 

limited number of measurements in the targeted formation, the measured mean value may be 

different from the actual mean value of the property that we seek. (Stein et al., 2003).  

 In order to analyze a collection of data pairs both of which are normally distributed, a 

bivariate normal distribution is defined by the means, variances and covariances of the two 

variables. The accuracies for the property being measured are often given in terms of Root 

Mean Squared (RMS) errors. When an accuracy of a measured property is stated, it generally 

encompasses both the accuracy and precision of the measurement. Accuracy can be defined 

as the difference between the measured value and the true value. Precision of a measurement 

refers to the repeatability of the measurement. In general, the precision of the logging tools 

(2.2) 
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has greatly improved with the use of modern solid state electronic systems and therefore the 

electronic precision errors are generally very low as opposed to errors resulting from 

accuracy. The only key exception is the precision errors arising in measurements using the 

nuclear radiation which are prone to precision errors as a result of due to nuclear statistical 

errors. 

 If the variables x1 and x2 represent normally distributed errors in accuracy and 

precision of the measurement then the probability of having values with a specified accuracy 

and precision is given by Clifford (1973).  
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where ρ is correlation coefficient given by � = ��	(���)
��� , where Cov(x1, x2) represents the co-

variance between x1 and x2 matrix. If ρ=0, it implies that the two error variables x1 and x2 are 

independent. This will be the case when we compare two independent error variables such as 

accuracy and precision. Therefore parameter measurement uncertainty, such as tool related 

errors, can be defined in two dimensions. Further, evaluation of electrofacies can be 

represented in three dimensional space bounded by minimum and maximum log values. As 

an example, bed of pure anhydrite should ideally be represented by a single point. In practice, 

combination of tool errors and mineral impurities will cause a constricted cloud to be focused 

on a the ideal anhydrite point. This uncertainty in either two or three dimensions can be 

geometrically represented in the form of error ellipses or ellipsoids. In two dimensions (or 

three dimensions) the error ellipses (or ellipsoids) are completely determined by their co-

variance matrix. Thus the error ellipses measure the location and spread of Gaussian 

( 2.3) 
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distributions. As a special case with 0,0,0,1,1 2121 ===== ρµµσσ , the joint probability 

distribution on the x-y plane will look like a circle. When the standard deviations of the two 

variables are different, the joint probability function will look like an ellipse as shown in 

figure 2.1 below. This ellipse will be therefore a probability contour that represents a pair of 

values that have probability of e½ times the maximum probability. It is important to note here 

that the axes of the ellipse coincide with graph axes, which indicates that the co-variance is 

zero (i.e. independent variables).  

 

 

 

 

 

Figure 1 shows the error ellipse representation of two measurements. The semi- axes of the 
error ellipse are formed by standard deviations of the two measurements. The error ellipse 
allows for determination of data quality to isolate the data points which fall outside a given 
probability. 

 

However when the two measurements or their errors are not completely independent, the axes 

of the ellipse will now be tilted. The co-variance matrix holds the key to determine the 

lengths of the axes of the ellipse and also the tilt of the ellipse. Computing the error ellipses 

allows us to determine if the data meets our required confidence level to be valid. Therefore 

we can compute ellipses of different confidence levels that can help us analyze the quality of 

the data. The probability contours of the ellipse can be determined by using the form below. 
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In a matrix form the above equation can be given as  
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xxK is the inverse of the co-variance matrix, and .
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In general, the equation of the ellipse is of the commonly known form cbykxyax =++ 22 2  

provided abk <2 . Comparing the general equation of the ellipse with equation 2.4, we see 

that  
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Since the value of the correlation coefficient ρ lies between ± 1, the condition abk <2  is 

satisfied. Therefore equation 2.4 represents the equation of an ellipse. For independent 

variables, correlation coefficient ρ=0 therefore the above equation reduces to the commonly 

known form of ellipse. 
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The co-variance matrix can be solved quadratically to determine the Eigen values. The square 

root of the Eigen values of the co-variance matrix gives the lengths of the ellipse while the 

Eigen vectors specify the ellipse axes directions.  

( )
2
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1
2121 xyxxxx σσσσσ

λ
+−++

==  

(2.4) 

(2.6) 

(2.5)
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where λ1 and λ2 are the Eigen values. The direction in which the axes are pointing can be 

determined from the two solutions of  

 

Therefore the probability whether the data lies inside the ellipse as determined by bivariate 

distributions of stated standard deviations can be determined by: 

)2exp(1)(Pr 2cPobability −−=  

If c=1, the confidence level is 39.3 % while for c=2 the confidence level is 86.4% and so on. 

When the true value (µ) and the co-variance matrix are known, the error ellipse contains the 

data estimates for variables x1 and x2 with a probability of P. Therefore we can construct error 

ellipses for pre-selected standard deviations of the data and determine if the data meets our 

quality specifications. The technique described can be expanded to three variables which will 

result in constructing the error ellipsoids instead of error ellipses. 

 The concentric ellipse represent contours of an ellipse for fixed standard deviation of 

the bivariate Gaussian distribution. However in some cases we may not know the true value 

of the parameter but we may have some knowledge about the co-variance matrix. In such 

cases the true value of the parameter can be estimated by sample mean µ. For independent 

variables, the equation 2.6 can also be written as  
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or in the matrix form as .21

21
χ=− XKX xx

T

 
This indicates that the independent variables are 

distributed as chi-square distribution with 2 degrees of freedom. (Timm, 2002). Therefore the 

semi-major and semi-minor axis can now be computed as following. 

 

 

 

We can therefore construct confidence ellipses for unknown µ, corresponding to a specified 

probability as given in the chi-square (χ
2) table (Paradowski, 1997). The confidence ellipse 

will describe whether the data with unknown µ will lie inside or outside the ellipse. The chi-

square distribution values for a stated probability value can be obtained from tables. A small 

table with commonly used values for 2 degrees of freedom is shown below. 

χ
2 0.39 2.3 2.77 4.61 5.99 9.21 

Probability (%) 50 68.3 75 90 95 99 

 In the above discussion, the primary intent was to describe a scheme to enable 

analysis of data quality and to visualize the distribution of measurement errors within the 

logging measurements. However the method is equally applicable when comparing 

distributions of any two variables as a quality control process.  

2.4.1 Application of bivariate analysis to this study 

 The primary intent of this study is to quantify the amount of error present in the fluid 

substituted velocity as a result of measurement errors present in the input logging data. The 

result of this study will therefore determine the RMS error in the fluid substituted velocity 

given the presence of systematic error in the measured data and would therefore indicate the 

range of values between which the actual velocity may lie. The key application of bivariate 

1
2 axismajor -Semi λχ=

2
2 axisminor -Semi λχ=
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analysis to this study is to help determine appropriate methodology for parameter calculation 

by the use of probability contours. Bivariate analysis allows visualization of spatial 

distribution character of the data point cloud. This allows the user to select the appropriate 

parameter or the calculation method that reduces uncertainty by determining data points that 

either lie inside or outside the probability contours.  

2.4.2 Constructing error ellipses 

 The error ellipses represent an area with a specified probability that the true value of 

the parameter lies within its bounds. Error ellipses can be constructed for a stated probability, 

however the requirement is that the true value of the parameter is known priori. In most cases 

the true parameter value is usually unknown when dealing with logging data and therefore it 

is difficult to compute error ellipses unless an alternate measurement such as core data which 

can be considered as close to the true value is available. 

2.4.3 Constructing confidence ellipses 

 As a general case, this technique can be used to construct confidence ellipses when 

the true value is unknown but can be estimated by using the mean of the data. The confidence 

ellipses will therefore define confidence intervals for the unknown true value at a given value 

of probability.  

2.4.4 Application of confidence ellipse to this study 

 The confidence ellipse generated about the data mean gives an indication of error 

distribution. As an example, comparison of confidence ellipses generated in different depth 

zones can indicate changes in error distributions. The calculation of Eigen values from the 

covariance matrix further allows calculating Eigen vectors. The semi-major axes coincide 
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with the direction of maximum variation in error and is also the principal component. The 

ratio of the eigen vectors indicates the contribution of the individual errors to the total 

variance in error. 

 Confidence ellipses (or ellipsoids when three dimensions are considered) can be 

useful when errors in velocities generated by applying two different estimates of uncertainty 

parameters. As an example, the error in water saturation calculation is dependent upon the 

methodology applied to compute the water saturation. Therefore creating error or confidence 

ellipse will allow comparison of the errors in the computed data as a result of using differing 

methodology.  

2.5  Equations of error propagation 

 The error propagation equation allows determining the error associated with the 

dependent variable that has been propagated as a result of some transform using the 

independent variables. As an example, let U be the dependent variable where ),( yxfU =  

and where x and y are the variables for which we define the individual variances as σx, σy, and 

σxy. The error propagation equation can therefore be written as  

 

 

where 

σ
2
x  =  Variance for variable x 

σ
2
y  = Variance for variable y 

σ
2
xy  = Co-variance between variables x and y. 
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The co-variance term σ2
xy describes how fluctuations between the variables are correlated and 

is only required if the measurements are correlated in some way. The covariance term can be 

defined as  

 

 Equation 2.9 is called the error propagation equation which illustrates that the 

uncertainty in each variable contributes to the uncertainty in a function and depends on the 

partial derivative of the function with respect to that variable. If the variables x and y are 

completely independent (uncorrelated) then the above equation will reduce to the one shown 

below. For completely independent variables the co-variance term will eventually reduce to 

zero. 

 

 

Therefore, as long as we have a quantity that is a function of independent variables, the above 

equation can be expanded appropriately for as many variables as long as the standard 

deviation of each of the variables is known. Since the uncertainties are independent they can 

therefore be added quadratically using some of the rules shown below. 
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2.5.3 Sums and differences: 

If yxF ±=   

Then 1=
dx

dF
 and 1±=

dy

dF
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If we consider a data vector xi = (x,y,z,…) where x, y, z are independent variables, equation 

2.11 can be written as shown below (Stein et al., 2003). 
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Therefore if all observations or measurements have equal uncertainties ( 22 σσ =
ix ) then 

.
2

2

Nu

σσ =  

In the case of this study, this indicates that in sections of the borehole where the measurement 

conditions are constant, (i.e. no borehole washouts or other measurement issues) making N 

measurements reduces the standard deviation of the mean by 	1 √�� . This points to the fact 

that acquiring higher data points per foot in a borehole can help reduce uncertainty in the 

mean value of the data. Higher data density can be achieved by reducing logging speeds and 

thereby achieving better estimates for true value of the formation property being measured. 

2.6  Interpreting data uncertainty  

 The results of this study, as shown in chapter 4, quantified the amount of uncertainty 

in the fluid substituted velocity and stated the result as an RMS error value. It is important to 

understand that all the errors are not completely random and many of them (with the 

(2.12) 

(2.13) 
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exception of nuclear statistical errors) are simply the result of systematic error or bias. 

Therefore the final RMS error value does not indicate that the data would randomly lie 

anywhere between the upper and lower RMS error bounds. It does, however, indicate that 

given the systematic bias in the input data, it is possible that the computed data may be 

deviated from the true value by a maximum amount equal to the RMS error value. It is also 

possible that some of the errors may cancel each other and further reduce the total RMS error. 

One of the difficult problems in application of this study is to determine the direction (i.e. 

whether positive or negative) and the actual amount of systematic bias in the data since the 

true value of the parameter may be unknown. Determining the direction and the amount of 

systematic bias in the data is only possible with repeated measurements with different sets of 

instruments. Since all the input parameters specified the uncertainty have 1σ confidence, it is 

expected that the end result would also have similar confidence level. 

2.6.1 Uncertainty variation within the instrument measurement range 

 Logging instrument literature generally quotes a single value for data uncertainty 

based on tests on a wide range of rock properties and at a given confidence level. This single 

uncertainty value does not indicate that the error value remains constant over the entire 

measurement range that the instrument is capable of measuring. In addition and apart from 

the measurement conditions the instrument accuracy is also a function of the rock property 

and will therefore vary with variations in the rock property. For example, the resistivity 

measuring devices are very accurate at low resistivity but are incapable of measuring 

formations with high resistivity with the same level of accuracy. In this study I have used a 

single value for a parameter uncertainty, however it is possible that this value may be lower 

or higher than the quoted value. 
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Chapter 3 

3.1  Introduction 

 This chapter describes the procedure used in this study to estimate the uncertainty in 

fluid substituted velocity. This chapter also describes the input parameters, petrophysical and 

uncertainty constants used in this study, followed by a brief description of the process used to 

generate and compare synthetic traces and the calculation of amplitudes at different incidence 

angles. 

3.2  Description of terms used in this study 

 The following methodology is used to describe the data mnemonics used in this 

document. The original data as recorded by the logging instrument do not use a numerical 

suffix, while similar data that have been computed using the original data as input use a 

numerical suffix. As an example, the input compressional velocity as recorded by the logging 

instrument is termed as VP while the fluid substituted velocity obtained by computation is 

termed as Vp2. 

 Similarly, the initial bulk moduli value computed from original data do not carry the 

numerical suffix while the computed moduli terms use a suffix of "2". Therefore, the 

saturated bulk modulus calculated from the input data is termed as KSat, while the fluid 

substituted (or derived) bulk modulus is termed as KSat2. Suffix of 'Min' or 'Max' are also used 

to denote upper and lower bounds of the data with range of uncertainty. 

3.3  Description of the procedure used in this study 

 This study involves calculation of new velocities by applying the Gassmann's fluid 

substitution process to the measured well logging data. I used the methodology as described 
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by Smith et al. (2003) to compute the new velocities for the substituted fluid. The data 

uncertainty for each parameter at each depth level is computed using the error propagation 

equation described earlier. Since the intent of this study is to determine the effect of error 

propagation from logging measurements on the computed velocities, other effects such as 

correlations between individual parameters in the field are not considered in this study. As an 

example, since velocity and density data are measured independently, they would be 

considered to be independent variables for the purpose of this study, and the velocity-density 

relationship is not required to be established to determine their inter-dependency. The result 

of applying the error propagation equation allows us to compute the uncertainty in the fluid 

substituted velocity, and therefore enables the calculation of the likely upper and lower 

bounds of the substituted velocity. The uncertainty bounds indicate the maximum and 

minimum values that the substituted velocity can fall within at a given confidence level. 

 Following the calculation of fluid substituted velocity and its RMS error, I compared 

the amplitudes of the synthetic seismic traces at different angular offsets up to a maximum of 

30 deg between the computed velocity and its probable upper and lower velocity bounds. The 

synthetic traces were calculated using the Zoeppritz equations in order to determine the 

differences in reflectivity coefficients (or amplitudes) between the computed velocity and the 

probable velocity curve (which is calculated by adding or subtracting the RMS velocity 

error). The purpose of this comparison is to evaluate the impact of data uncertainty in the 

Gassmann fluid substitution process on synthetic amplitudes for AVO models that are 

commonly used in the AVO analysis and which can result in variations that are purely due to 

the tool measurement errors.  
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3.4  Process diagram 

 

 

  

  

Compare differences in the synthetic amplitudes  
of fluid substituted velocity (Vp2)  and the 

velocity bounds of Vp2 curve range (i.e. Vp2Max, 
Vp2Min) at different incident angles. 

Calculate bulk modulus of the in-situ rock 
(KSat) using borehole logging data and data 
uncertainty in KSat 

Log curves preparation 

• Curve data edits 
• Preparation of input data 

Compute petrophysical parameters 

Water saturation, volume of shale, porosity 
and its associated uncertainty. 

Compute linearly elastic parameters 

Bulk modulus of fluid, mineral matrix, rock 
frame and its associated uncertainty. 

Calculate bulk modulus of the rock with 
substituted fluid (KSat2) and estimate data 

uncertainty in KSat2. 

Calculate new acoustic velocities with 
substituted fluid using KSat2 and estimate the 

uncertainty in the new velocity. 

Generate synthetic velocity curve using error 
bounds and convolute with seismic wavelet and 

compare seismic traces. 
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3.5  Method to compute uncertainty in the fluid substituted velocity 

 The paper by Smith et al. (2003) describes the methodology to perform fluid 

substitution in using the Gassmann fluid substitution methodology. The key equation relating 

saturated bulk modulus of the rock to its porosity, the bulk modulus of the porous rock frame, 

the bulk modulus of the mineral matrix and the bulk modulus of the pore filling fluids is 

shown below.  
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where  

φ  =  Porosity 

K* = Bulk modulus of porous rock frame 

K0  =  Bulk modulus of the mineral matrix 

Kfl  =  Bulk modulus of the pore fluid  

KSat  =  Saturated bulk modulus of the in-situ rock 

 The saturated bulk modulus of the rock can also be computed using the log 

measurements namely compressional velocity, shear velocity and the formation bulk density 

through the following relationship. 
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where  

Vp = Compressional velocity of the rock 

Vs = Shear velocity of the rock 

ρb = Bulk density of the rock 

( 3.1) 

( 3.2) 



33 

 

 
 The application of the equation 3.2 is a two part process where the bulk modulus of 

the porous rock frame (K*) is determined in the first stage. Once the parameter K* is 

computed it allows us to calculate the bulk modulus of the rock saturated with any desired 

fluid. Equation 3.1 can be rewritten in terms of K* as 
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 The calculation of petrophysical parameters and the linear elastic parameters used in 

the above equation is described separately in Appendix A (Chapter 5) . The methodology 

used to determine the uncertainty in the petrophysical and the elastic parameters is also 

described in Appendix B (chapter 6).  

 In the equation 3.1, the porosity term has been obtained from the bulk density 

measurement and therefore both KSat and porosity are dependent functions of density. This 

implies that any error in bulk density measurement is propagated to the porosity and also to 

the computed KSat parameter as calculated using equation 3.1. If an independent measurement 

of porosity (using a separate instrument) was available, the KSat term would still be dependent 

on the density parameter however the porosity term would be completely independent from a 

measurement error perspective. 

 It is possible to determine propagated error in K* and then determine the uncertainty 

in the saturated bulk modulus with the substituted fluid (KSat2) as shown in equation 3.3. This 

method however is complicated since it would involve differentiating the new saturated bulk 

modulus (KSat2) with respect to K* parameter which itself has been computed previously 

(3.3) 
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using equation 3.3 and is also a function of the original saturated bulk modulus (KSat1) and 

porosity. Another drawback of this method is the requirement to determine the relationship 

between KSat and porosity. This task is difficult due to the absence of core or any other 

additional data. If additional data was available that can help express KSat and porosity 

relationship, it would help simplify the differentiation of terms such as 
SatdK

dK *
and 

φd

dK * . 

Solving these terms involves determining solutions for inter-dependent variables KSat and 

porosity that are contained within in the term K* as per the equation 3.3. 

 An alternate methodology suggested by Brodhead (2005) simplifies the solution by 

eliminating the term K* in the calculation of the final saturated bulk modulus (KSat2) as 

shown below. The low frequency Gassmann-Biot theory relates the bulk moduli of the rock 

saturated with two different pore fluids as 
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By rewriting the above equation in terms of KSat2 we obtain 
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 The above equation now allows calculation of error in KSat2 term (σKSat2) without the 

need to determine error in the rock frame modulus (K*). I have applied the error propagation 

equation to initially determine errors in individual petrophysical and elastic parameters and 

then calculated the propagated error in the final computed velocities for the substituted fluid. 

(3.4) 

(3.5) 
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The uncertainty equation as stated by Broadhead (2005) is shown below and contains the 

covariance term φσ Sat2 , which is the covariance between the saturated bulk modulus and 

porosity. 
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 Following the calculation of the error in the new saturated bulk modulus, the error in 

the new velocity is calculated by reapplying the error propagation equation to equation 3.2 

which has been rearranged in the appropriate form to calculate new velocity. This is further 

described in Appendix B in section 6.3.8.

 

3.5.1 Clarification on the use of covariance term 

 It is necessary to clarify the application of covariance terms in the calculation of 

propagated error in this study. The objective of this study is to determine the uncertainty in 

the final computed velocities as a result of error propagated from the logging instruments. 

The logging measurements of density, velocities, resistivity, etc. are used to compute both 

petrophysical and linearly elastic parameters using the methodology as described by Smith et 

al. (2003).  

 The paper by Broadhead (2005) considers parameters such as bulk modulii of the 

mineral matrix and the fluid to be statistically independent, while considering the saturated 

bulk modulii of the rock and the porosity to show a strong negative correlation. While this 

consideration is accurate when all input parameters have been acquired independently (i.e. 

from core measurements or reservoir studies), it does not directly apply to this study. In this 

(3.6) 
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study, I calculated both petrophysical and linearly elastic parameters using basic rock 

physical properties and also computed the propagated error for each calculated term. The 

input data for this study will show varying degrees of correlation between several sets of 

variables. As an example, several data pairs, such as density vs. velocity, K0 vs. velocity, etc. 

(to name a few), may also show varying degrees of correlation. In such a case, covariance's 

for each data pair would then have to be included in the error propagation equation. For the 

purpose of this study, unless the calculated parameters have been derived from a common 

variable and therefore show direct dependence on each other, the covariance term for each 

data pair will not be calculated. As an example, terms such as porosity and KSat1 are both 

calculated from the density measurement, where density is the independent variable measured 

by the logging instrument. Therefore when determining the solution to terms such as 
φd

dK Sat  or 

1

2

Sat

Sat

dK

dK , the porosity term cannot be considered to be an independent variable for the purposes 

of error propagation from logging data measurements. If the total (or effective) porosity term 

was measured by an independent instrument (i.e. independent porosity instrument such as 

Neutron or NMR) the uncertainty in the porosity term can then be considered to be 

independent and will not require inclusion of the covariance term in the equation. This topic 

is discussed again in Appendix B (6.3.5 section) on calculating propagated error for the K* 

term where it has direct application.  

3.6  Application of uncertainty calculation for fluid substituted velocity  

 One technique to determine the impact of the calculated error in the new velocity is 

by comparing the acoustic impedance curves and further transforming them into a reflection 

amplitude time-format. This allows comparison of the seismic traces generated by the fluid 
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substitution process both with and without considering the effect of uncertainty in the 

measured data set. The differences between the seismic traces would point to the minimum 

and maximum reflection coefficients (or amplitude) differences that can arise simply as a 

result of measured data uncertainty. 

3.6.1 Method to compute synthetic seismogram 

 The process for converting the velocity-density curves to a synthetic seismic trace 

can be termed as forward synthetic. The basic assumption used in the generation of synthetic 

seismograms is that plane waves propagate vertically through a horizontally stratified 

medium and that reflectivity is governed solely by the acoustic impedance contrasts 

encountered within the layered medium. The reflection coefficient is then computed by taking 

the difference of the two acoustic impedances divided by their sum. The convolutional model 

of the seismic trace can be represented by �� = �� ∗ �� + ��, where the symbol ∗ represents 

the convolution of the reflection coefficients 'rt' with the wavelet 'wt', and 'nt' is the additive 

random noise. In this study, I did not consider the effect of additive noise, however the 

random noise would be a consideration for any serious study involving comparison of the 

synthetics with actual seismic traces. I have stated below some of the processing steps that I 

used to generate the synthetic seismogram. I have used Hampson-Russell software to convert 

the velocity - density data in depth domain to seismic traces in the time domain.  

1. The sonic velocity and the density curves were digitized to a sample interval of 0.5 ft. 

2. The curves can be 'blocked' to a larger sample interval taking care that the log values 

are not aliased in the process of creating the larger sample interval. I used a blocking 

interval of 2 feet which is greater than the highest wave number that can be sampled 
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i.e. Nyquist criteria would limit the highest wave number to 1 foot (2 x 0.5 ft.). Since 

the vertical resolution of the acoustic instrument is approximately 2 feet (or greater), 

the wavenumbers higher than value of 1 cannot be sampled due to the intrinsic 

resolution limit and therefore would not contribute to data aliasing. 

3. The blocked acoustic impendence curve is then used to compute reflection 

coefficients at each interface between contrasting velocities using the equation 

�� = �������
���� ��, where At is the acoustic impedance. 

4. A wavelet is generally chosen that has frequency response and bandwidth similar to 

nearby seismic data. For this study I have chosen a Ricker wavelet with peak 

frequency of 70 Hz. This synthetic wavelet was convolved with the reflection series 

for the entire well data to generate a synthetic seismic trace.  

3.7  Calculating reflection coefficients as function of incident angle 

 The P - wave reflection coefficient as a function of the incidence angle is defined as 

the ratio of the amplitude of the reflected P-wave to that of the incidence wave and is 

dimensionless because the respective amplitudes have been normalized (Hilterman, 2001). 

 At normal incidence, there is no mode conversion to S wave and the P-wave 

reflection coefficient is given by !" = #$�#$�
#$ #$� where IP2 and IP1 are the impedances of 

medium2 (ρ2*V P2) and medium1(ρ1*V P1). The variation of reflection and transmission 

coefficients with incident angle (and corresponding increasing offset) is referred to as offset 

dependent reflectivity and is the basis for amplitude versus offset analysis. Knott (1899) and 

Zoeppritz (1919) invoked continuity of displacement and stress at the reflecting interface as 

boundary conditions to solve for the reflection and transmission coefficients as a function of 
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the incident angle and the media elastic properties (Castagna et al., 1993) The common 

incidence angles in exploration applications are, in general, less than 30 deg. Since the 

observed seismic data measure reflection coefficients but only reflection amplitudes with the 

assumption that there is an equivalence between reflection coefficients and the observed 

amplitudes, I have compared the amplitudes up to 30 degrees by using Zoeppritz equations 

and with the assistance of Hampson-Russel software. The intent of this analysis was to 

compare the differences in the amplitudes between fluid substituted impedance contrast and 

its upper and lower uncertainty bounds. 

3.8  Constants used in the petrophysical and linearly elastic parameters  

 In the absence of additional data such as core, fluid, or reservoir data for use in this 

study, I used the following constants for the purposes of this study.  

Constants used for calculating water saturation- (Archie's method) 

− Resistivity of formation water : 0.075 ohm-m 

− Cementation exponent (m) : 2.0 

− Saturation Exponent (n)  : 2.0 

Constants used for density-porosity conversion  

− Grain density of mineral matrix  : 2.65 g/cc 

− Density of formation water  : 1.00 g/cc 

− Density of dry clay    : 2.60 g/cc 

Constants used for calculating bulk modulus of the reservoir fluid:  

− Sea water temperature at mudline : 40 deg F 

− Formation temperature gradient  : 1.1 deg/100 ft 
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− Formation pressure gradient     :0.465 psi/ft 

− API value of the hydrocarbon in the reservoir: -original fluid  : 20 

− Gas gravity of dissolved gas in the reservoir: - original fluid  : 0.6 

− API value of the hydrocarbon in the reservoir - substituted fluid  : 45 

− Gas gravity of dissolved gas in the reservoir: - substituted fluid  : 0.6 

Constants used for calculating bulk modulus of the mineral matrix 

− Bulk modulus of quartz (KQuartz) : 37 GPa 

− Bulk modulus of clay (KClay) : 15 GPa 

− Shear modulus of quartz(µQuartz) : 45 GPa 

− Shear modulus of clay (µClay) : 9 GPa 

3.9  Parameter uncertainty assignments 

 The uncertainty assignments to the measured data that was used this study is shown 

in the table below. All measured parameters are typically quoted at one standard deviation 

confidence level by data acquisition companies. It is possible to use alternate values for data 

uncertainty for use in specific applications, however in view of no other tool or borehole 

quality information I used only published values for this study. The confidence levels for the 

calculated parameters are undetermined and would need additional study. The calculated 

parameters required assigning uncertainty values either due to limited data availability or 

complexity of determining the true data uncertainty. As an example, calculating the water 

saturation parameter in shaley sands requires the use of advanced interpretative tools and 

measuring instruments in order to reliably estimate the parameter and therefore required 

assigning uncertainty values based on expected uncertainty. 
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S/N Parameter Type Description Uncertainty 
Measured Parameters 

1 Density Measured Formation Bulk Density ± 0.025 g/cc 
2 DTP Measured Slowness- Compressional ± 5 % of measured 

value 
3 DTS Measured Slowness- Shear ± 5 % of measured 

value 
4 Res 90 Measured Resistivity at 90" DOI ± 1 % of measured 

value 
Calculated Parameters 

5 Sw (Archie) Assigned Water Saturation ± 20 % of 
calculated value 

6 VShale Assigned Volume of Shale ± 5 % of 
calculated value 

7 DenPor Assigned Porosity Calculated from Density ± 5 % of 
calculated value 

8 Density 2 Assigned Fluid Substituted ± 0.025 g/cc 
9 KWater / KOil Assigned Fluid Bulk Modulus (Water/Oil) ± 5 % of 

calculated value 
 

3.10  Petrophysical cutoff values 

 Due to limited data availability, several petrophysical parameters required the use of 

cut-off values in order to constrain the solution to a meaningful value. If additional data is 

available the limits imposed by the cutoff values can either be loosened or eliminated by 

taking advantage of the additional information. The cutoff values are chosen such that there 

would not be any significant improvements to the derived results if the selected cutoff values 

were not applied.  
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Parameter Cut off Application 

Volume of Shale (VSh) 70 % − VSh > 70 then rock type is regarded as shale 

− VSh > 70 then SW = 1, disregard minor 
hydrocarbons in shale dominated rock. 

−VSh > 70 then porosity <= 0.05, improve 
porosity computation in shale dominated 
rock 

Water Saturation (Sw) 70 % − SW > 0.7 then Sw=1.0, disregard negligible 
hydrocarbon saturation 
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Chapter 4 

4.1  Introduction 

 Fluid substitution is widely used as a tool to model various scenarios which might 

give rise to an observed amplitude variation with offset or to model 4D response when in-situ 

hydrocarbons are replaced with water or brine during water flooding operations. Wireline 

logging data is the most common type of data available and is used to study the impact of 

fluid substitution. The primary intent of this study was to derive an estimate of the propagated 

error in the fluid substituted velocity as a result of uncertainty in the input data. In the first 

part of the study I calculated the impact of uncertainty in the various petrophysical 

parameters on the fluid substituted velocity by using synthetic data models. Following the use 

of synthetic data models, I performed similar computations on actual well log data set. To 

determine the consequence of the error in the fluid substituted velocity, I tested the impact of 

this uncertainty on amplitude variations by creating a synthetic AVO model by using 

approximations to the Zoeppritz equations. It must be understood that in the seismic datasets, 

the subsurface reflection coefficients are never directly measured. The reflection coefficients 

from seismic data can only be estimated using AVO inversion techniques which involves 

inverting the AVO data to estimate the subsurface elastic parameters. For the inversion 

process to be reliable, it is important that the seismic data processing output represents 'true 

amplitude' processing. Therefore when examining the impact of errors in the Gassmann fluid 

substitution output, I compared the impact of these errors on seismic amplitudes rather than 

on reflection coefficients. The results of this study are presented in this chapter. 



44 

 

4.2  Description of the terms used in the figures 

Vp  = P- Velocity - Measured 

Vp2  = New P- Velocity - Fluid substituted 

Vs  = S- Velocity - Measured 

Vs2  = New S - Velocity - Post fluid substitution 

RHOB  =  Bulk Density -Measured 

RHOB2  = New Bulk Density - Fluid substituted 

RMS Error =  Root Mean Square Error 
 
Fl.Sub  =  Fluid substituted 
 
Max = Subscript of 'Max' represents the parameter derived by adding the 

 RMS error to the parameter value and represents the upper bound 

 of the possible parameter value 

Min = Subscript of 'Min' represents the parameter derived by subtracting 

 the RMS error  from parameter and represents the lower bound of 

 the possible parameter value.  

4.3  Synthetic modeling 

 The objective of synthetic modeling was to determine the error in the fluid 

substituted velocity as a result of uncertainty in the petrophysical input parameters using 

published rock property data. The results from the synthetic modeling can then be used to 

predict the major sources of error when applied to actual data sets. It is important to 

distinguish here that the measured data may have additional errors as a result of well bore 

conditions which may not be accounted for in the synthetic data modeling. 
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 The synthetic modeling was performed in two parts . In the first part, I used constant 

rock properties for a high porosity water saturated sandstone, while for the second stage the 

computation was performed over range of velocities also for a water-saturated sandstone. In 

both cases the original fluid (brine) was substituted with hydrocarbon. The rock properties for 

both stages were derived from the Rock Physics Handbook (Mavco et al., 2003). The fluid 

properties for both original and substituted fluid were generic fluid properties and held 

constant since the exact pressure - temperature conditions of rock deposition are unknown.  

4.3.1 Synthetic model : Part 1  

 Objective of synthetic modeling for the first part was to compute error curves for 

final velocity when the errors in the input petrophysical parameters are varied. Therefore, by 

varying the uncertainty in the petrophysical parameters a set of curves representing errors in 

final velocity were computed. When determining the effect of error for a specific 

petrophysical parameter, the errors from other input petrophysical parameters have been 

ignored. As an example, when determining impact of error in Sw, the uncertainty in other 

petrophysical parameters (such as Vsh) have been assumed to be zero. In some cases two 

different properties for sandstone were used in the synthetic modeling. The rock properties 

for high porosity sandstone and medium porosity sandstone used in the synthetic model are 

shown below.  

High Porosity Sandstone 

Vp (Km/s)                = 3.80 Bulk Modulus of Brine (GPa)  =  3.35 (Original Fluid) 

Vs  (Km/s)                = 2.16 Bulk Modulus of Oil (GPa)      = 1.50  (Sub. Fluid) 
Porosity (frac)          = 0.20 Volume of Shale                       = 20% (Assumed) 
Bulk Density (g/cc) = 2.33 Density of Orig. / Sub. Fluid (g/cc)= 1.00 / 0.85 

Medium Porosity Sandstone 
Vp  (Km/s)               = 4.09 Bulk Modulus of Brine (GPa)  =  3.35 (Original Fluid) 
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Vs  (Km/s)               = 2.41 Bulk Modulus of Oil (GPa)     = 1.50  (Sub. Fluid) 
Porosity (frac)          = 0.16 Volume of Shale                       = 20% (Assumed) 
Bulk Density (g/cc)  = 2.37 Density of Orig. / Sub. Fluid (g/cc)= 1.00 / 0.85 

The values for the bulk moduli of brine and hydrocarbon were assumed for the purposes of 

this modeling study. The fluid substitution modeling assumed replacement of the entire 

original fluid with the substituted fluid . Results of the first part of the synthetic are given 

shown below.  

4.3.1.1 Effect of error from water saturation (Sw) on fluid substituted velocity 

 As described above, the original rock is assumed to be completely saturated with 

water (Sw=1) and therefore the error in the input water saturation (Sw-Original) is assumed 

to be zero. Additionally, the error in the bulk density of the original fluid is considered to be 

zero. When determining errors in the new velocity when the original fluid is saturated with 

two (or more) fluids, the errors in water saturation for both the original and the new fluid 

would have to be considered. In this case I have only accounted for the error in water 

saturation after substituting the original fluid.  
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RMS Error in New KFluid (KFluid2) vs. Water Saturation
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Figure 2 shows the error in the bulk modulus of new fluid vs. water saturation. The individual 
curves show the percent error in the water saturation. As an example, the dotted black line 
shows the error in Kfluid of ~0.45 GPa for Sw=0.7 and when uncertainty in Sw estimated at 
30%. This indicates that after replacing 30% of the original fluid with hydrocarbon (Sw 
reduced from 1.0 to 0.7) and assuming 30% error in Sw calculation, the error in the bulk 
modulus of the new fluid is ~0.45 GPa. 
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RMS Error in New Velocity (Vp2) vs. Water Saturation
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Figure 3 shows velocity errors for errors in water saturation. The dotted black line shows the 
error in velocity of 0.026 Km/s for the water saturation of 0.7 and for uncertainty in Sw at 
30%. As seen in the plot, the error in the new velocity is large when substituting partial 
fractions of the original fluid with the substituted fluid. To restate, the original rock was 
assumed to be completely saturated with brine and therefore the error in the original Sw is 
considered to be zero. 

4.3.1.2 Effect of error from volume of shale (Vsh) on fluid substituted velocity 

 The clean high porosity sandstone was assumed to have recorded 1%, 5%, 10%, and 

20% volume of shale for the purposes of this modeling study. Since this study is conducted 

for a fixed lithology, the impact of error for increasing fractions of Vsh beyond 20% could 

not be modeled, since any incremental increase in Vsh would also affect other input 

parameters (i.e. density, porosity, velocity, etc.) which are also dependent on the Vsh. Values 

for other input parameters would also have to be known priori for each incremental value of 

Vsh. 
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Figure 4 shows effect of uncertainty in volume of shale (Vsh) on the effective mineral 
modulus for different fractional shale volume up to a maximum volume of 20%. 
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RMS Error in Fluid Substituted Bulk Modulus (KSat2) vs. Percent Error in Volume of Shale
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 Figure 5 shows effect of uncertainty in volume of shale on the new saturated bulk modulus. 
The dotted line shows the error in KSat2 to be ~±0.032 GPa for 10% error in volume of shale 
for the volume of shale of 20%. The error in KSat2 is directly a result of error in the effective 
bulk modulus shown in figure 4. 
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RMS Error in Fluid Substituted Velocity (Vp2) vs. Percent Error in Volume of Shale (Vsh)
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Figure 6 shows effect of error in volume of shale on the new velocity. The dotted line shows 
the error in new velocity to be ~±2.2 m/s for 10% error in volume of shale for the volume of 
shale value of 20%. The error in Vsh is a minor contributor to the error in new velocity for 
relatively cleaner sands.  
 

4.3.1.3 Effect of error from travel time (delta T) on fluid substituted velocity 

 The error in the measured value of delta T can impact the substituted velocity results. 

The delta T measurement can be affected by anisotropic effects as a result of large relative 

dips as well as operational factors such as resulting from hole enlargement and drilling fluid 

substitution. Shown below is the effect of uncertainty in both compressional and shear Delta 

T measurements on the final substituted velocity. 
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Error in DTP vs. Error in New Velocity
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Figure 7 shows effect of error in delta T (measured) on the new velocity. As indicated by the 
dotted black line, for 5% error in delta T value for the compressional velocity can result in a 
erroneous fluid substituted velocity of ~0.32 Km/Sec for the medium porosity sandstone. All 
other input parameters have been kept constant throughout the calculation. 

 

4.3.1.4 Effect of error from measured bulk density on fluid substituted velocity 

 The high porosity sandstone used in this modeling study had a bulk density of 2.33 

g/cc. I calculated the error in saturated bulk modulus as a result of the error in bulk density. 

Following the calculation of error in the saturated bulk modulus of the in-situ rock, the error 

in the new saturated modulus using the substituted fluid was calculated. The porosity value 

used in the fluid substitution process is often derived from the bulk density measurement and 

in this study is termed as the dependent porosity. Any error in the measured bulk density is 

therefore propagated to the calculated porosity. I computed the error in the new velocity by 
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considering the porosity term to be either dependent or an independent variable. When the 

porosity term was derived from density, the error propagation equation was used to calculate 

the error in the to the porosity term. For the purposes of this calculation, the error in matrix 

density and the fluid density was assumed to be 2% and 1% respectively. When porosity was 

considered to be an independent variable a constant error value of 5% was assigned to the 

porosity variable.  

RMS Error in Fluid Substituted Velocity (Vp2) vs. Error in Bulk Density
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Figure 8 shows effect of error in the bulk density on the new velocity. The blue curve shows 
the error when porosity is derived from the density measurement. In this figure, both density 
and porosity instrument errors are considered to operate simultaneously which results in 
errors in the new velocity. It is seen that the contribution of the error in porosity is minor 
especially for clean formations. 
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4.3.1.5 Effect of error in independently measured porosity on fluid substituted velocity 

The modeling was conducted for both medium and high porosity sandstones with porosity of 

16% and 20% respectively. The error in the measured porosity term directly affects the 

calculation of new saturated bulk modulus. Following the calculation of the error in the new 

saturated bulk modulus, the error in the new bulk density was calculated. Finally the errors in 

new saturated bulk modulus and the new bulk density were combined to calculate the error in 

the new velocity. In this case. the errors in all other measurements were considered to be 

zero.  

RMS Error in New Saturated Bulk Modulus vs. Percent Error in Porosity
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Figure 9 shows the effect of error in the porosity instrument on the error in new saturated 
bulk modulus. Uncertainities in all other measurements have been assumed to be zero. 
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RMS Error in Fluid Substituted Velocity (Vp2) vs. Percent Error in Porosity Measurement
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Figure 10 shows the effect of error in the measured porosity on the error in the new velocity. 
It must be understood that the volume of shale in this modeling study is low, however higher 
shale fraction tends to increase the uncertainty in the porosity measurement. 

  

4.3.1.6 Conclusions from Part 1 Modeling 

 Using the parameter uncertainty assignments stated in section 3.9 and which can be 

considered to be generic error ranges present in the measured data, the table below gives the 

RMS error in the final velocity for the high porosity sandstone. 

Petrophysical 
Parameter 

RMS Error in Petrophysical 
Parameter 

RMS Error in Final 
Velocity (Km/s) 

Sw ±20% ±0.01 

Density ±0.025 (g/cc) ±0.02 

Travel Time (DTP) ± 5% ±0.32 

Volume of shale ±10% ±0.002 

Porosity ±5% ±0.005 
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Following conclusions can be drawn from the results of the modeling from part 1. 

1. The largest source of error in the fluid substitution process is the error in the input 

travel time measurement. Therefore any attempt to improve accuracy of the fluid 

substituted velocity should focus on improving the quality of the measured travel 

time by the logging instrument. This improvement includes anisotropic corrections 

for relative dip angles and the compensation for drilling fluid substitution effects. 

2. The second major contributor to the error in final velocity is the error in density 

measurement.  

3. Error in water saturation has a larger impact when substituting partial fractions of the 

original fluid with the new fluid. This is especially true when the substituting fluid 

remains a minor component (less than 50% by volume) of the final fluid. Therefore 

when substituting original fluid containing two or more components, improving the 

accuracy of Sw estimates is a key step in reducing error in total error in final velocity. 

4. Uncertainty in porosity measurement (when using an independent instrument) and 

the uncertainty in volume of shale are minor contributors to the total error in final 

velocity.  

4.3.2 Synthetic Model : Part 2  

 The objective of part 2 of synthetic modeling was to determine the variation in the 

error curves over a range of velocities (or over a range of velocity-density trend) . The rock 

type used for the synthetic model was water-saturated sandstone with following rock 

properties.  
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Minimum Maximum 
Vp (Km/s) 3.13 5.52 
Vs (Km/s) 1.73 3.6 
Density 2.09 2.64 

 

The volume of shale for this sandstone was assumed to be 10% to account for presence of 

minor quantities of shaley material in the rock matrix. 

 A linear velocity-density relationship was established using the values shown in the 

table to create set of 240 data points covering the range defined by minimum and maximum 

values. This water saturated sandstone was subject to fluid substitution with the constraint 

that 90 % of the original fluid is substituted . The fluid properties used in this substitution are 

given below. 

Brine (Original fluid) Hydrocarbon (Sub. Fluid) 
Bulk Modulus (GPa) 3.35 1.50 
Density (g/cc) 1.00 0.80 
Error in Bulk Modulus (%)  5.00 5.00 

 

 The results of the synthetic model over a velocity-density range are given below. A 

fixed uncertainty range for the petrophysical parameters was used as given in section 3.9 for 

the entire velocity-density range.  
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Figure 11 shows the linear velocity-density relationship used for synthetic fluid substitution 
model. 

 

4.3.2.1 Effect of error from travel time (delta T) on fluid substituted velocity 

 As observed from the results from the first part of the synthetic modeling, the RMS 

error in measured travel time is the largest contributor to the total RMS error in the fluid 

substituted velocity. Using a fixed RMS error value of ± 5% in the travel time over the range 

of velocities, the error in the new saturated bulk modulus was initially calculated. This was 

followed by propagating the error in the new saturated bulk modulus to the velocity 

calculation to compute the RMS error in the new fluid substituted velocity. Figure 12 below 

shows the error curves for the new saturated bulk modulus.  
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RMS Error in Saturated Bulk Modulus (KSat2) vs. Fluid Substituted Velocity
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Figure 12 shows the errors in the saturated bulk modulii over the fluid substituted velocity 
range. The variation in the errors in the saturated bulk modulus over the entire velocity range 
is shown for two cases. i.e. when the porosity is derived from the density measurement and 
when an independent porosity measurement is available. 
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RMS Error in Velocity vs. Fluid Substituted Velocity (Vp2) 
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Figure 13 shows the RMS error in the new velocity for the two cases i.e. when the porosity is 
derived from the density measurement and when an independent porosity measurement is 
available. 

4.3.2.2 Effect of error from bulk density (RHOB), volume of shale (Vsh) and water 

saturation (Sw) on fluid substituted velocity 

 RMS error in the new velocity was calculated for each of the petrophysical 

parameters described above. In this calculation only single parameter error was applied for a 

single iteration while keeping the errors for remainder of the parameters at zero. This process 

for repeated for each of the petrophysical parameters. A combined graph of the RMS error 

contribution from each of the petrophysical parameters is shown in figure 14. 
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RMS Error in Fluid substituted Velocity (Vp2) for Various Petrophysical Parameters
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Figure 14 shows the RMS errors in the new velocity which have been calculated for each of 
the input petrophysical parameters. In addition to the RMS error curves resulting from errors 
in Sw and Vsh, the two other cases are presented for errors in density measurement (i.e. 
porosity has been derived from density) and for the combined contribution of density and 
porosity (i.e. when the porosity is an independent measurement. The two cases represents 
instances when the porosity is derived from the density measurement and when an 
independent porosity measurement is available. 

Following conclusions can be drawn from the results of the modeling from part 2. 

1. In general, the total RMS error in the new velocity increases with increase in the new 

velocity. Although this increase in the RMS error could be attributed to using a 

constant uncertainty value for the measurement over the entire velocity (and density) 

range, in reality this is unavoidable. Parameter uncertainty values tied to the 

measured data value are rarely available. Therefore in most cases it is only possible 

to utilize a single value for parameter uncertainty which is applicable over a large 

range of measurements.  
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2. This model assumes that at high velocities (and high density) the porosity value is 

proportionally reduced as derived from the Wyllie's equation. This would be a 

reasonable assumption in most cases. As a result, the calculation of errors in new 

velocity becomes unstable at very high velocities (and low porosities) especially 

when the new saturated bulk modulii value equals or exceeds the effective mineral 

modulii. 

3. The primary contributors to the total error in the new velocity is the delta T and the 

density measurement. It is important to predetermine the density-porosity 

relationship as accurately as possible in order to reduce propagated errors in the final 

velocity. As an example, if an independent porosity measurement is available, it 

should be used in lieu of generic porosity estimation the density measurement.  

4. RMS errors in Sw and Vsh generally have a lower contribution in the overall RMS 

errors in the new velocity. This is especially true for Sw when dealing with reservoir 

properties having low porosity. RMS errors in Sw may have a higher effect when 

dealing pores that are partially saturated with gas and liquid hydrocarbons. 

4.4  Determining RMS error in fluid substituted velocity on actual data set 

4.4.1 Review of input data used in this study 

 Detailed description of petrophysical and elastic parameters used in this study is 

given in chapter 3. I briefly state the data that was used in this study for the purposes of 

demonstration of the results.  
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4.4.2 Well logging data used in this study 

 The methodology as developed in this study was tested on logging data from the two 

wells drilled in the Gulf of Mexico and have been identified below. 

 

S/N Well Name API Number 
Depth Interval 

(ft) 
Water  
Depth (ft) Data available 

      From  To     

1 GC 782-1 608114026100 17095 20268 4423 Den,Res,GR,DTP,DTS 

2 
GC 782-1 
ST03BP00 608114026103 14596 20362 4420 Den,Res,GR,DTP,DTS 

 

4.4.3 Fluid properties for original and substituted fluid 

 The hydrocarbon-bearing sands were targeted for determining the errors in the fluid 

substituted velocity using the Gassmann's equation. The API value and the gas gravity for the 

hydrocarbon was assumed to be 45 and 0.6 respectively. It was assumed that over 90% of the 

original hydrocarbon fluid was substituted with brine. This allowed assigning errors in water 

saturation for both the original and the substituted fluid. 

4.4.4 Results of the uncertainty calculation study on actual data set  

 The total RMS error in the fluid substituted velocity was calculated for the two wells 

using individual parameter uncertainties as shown in section 3.9. The uncertainties in the 

section 3.9 represents a common set of uncertainty values that can be assigned to 

petrophysical parameters for most cases and can therefore be considered to be standard set of 

errors. Individual parameter error may be greater or lower than the stated value depending on 

the specific cases. The mean RMS error in the new velocity for all depth levels was computed 

to be around ~190 m/s with an standard deviation of ± ~20 m/s. It is important to remember 
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here that the uncertainty value for each input petrophysical parameter was kept constant 

during the entire calculation. This assumption may not always be true and therefore the 

resultant errors in the fluid substituted velocity may show a larger variation than that 

observed in this study.  

 The RMS error in the new S velocity value as a result of the fluid substitution process 

is very small to negligible and can be ignored in most cases. The S velocity is only affected 

by the changes to the rock bulk density as a result of the changes in the density of the pore 

fluid. Therefore unless the fluid substitution process involves replacement of gas, the impact 

on new rock bulk density is small which in turn has a minimal effect on the new S velocity . 

 As mentioned earlier, the final RMS error value at each depth level does not indicate 

that the data would randomly lie anywhere between the upper and lower RMS error bounds 

for that depth level. It does however indicate that given the systematic bias in the input data, 

it is possible that the computed data may be deviated from the true value by a maximum 

amount equal to the RMS error value. One of the difficult problems in application of this 

study is to determine the direction and the actual amount of systematic bias in the data and 

this is only possible with repeated data measurements using with different sets of instruments 

in order to determine the direction and the amount of bias in the data. 
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Histogram of RMS Errors in Velocity
Well 1 and Well 2
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Figure 15 shows the histogram of RMS errors calculated at all depth levels for well 1 and 
well 2. 

 Following the calculation of total RMS error in the new velocity, error contribution 

from each petrophysical parameter was calculated for the hydrocarbon-bearing depth 

intervals. The intent behind selecting only the hydrocarbon-bearing intervals was to allow 

estimation of error contribution from the water saturation parameter. Figures 16 and 17 

illustrate the contributions of individual petrophysical parameters for the two wells. 
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Histogram of Petrophysical Parameter Errors 
Well 1 (19742 ft. - 19818 ft.)
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Figure 16 shows the histogram of error contribution from individual petrophysical parameter 
for the hydrocarbon-bearing interval for well 1. The error term for "Indep.Por" within 
brackets indicates that the error for the porosity term was separately assigned and kept 
independent of error propagation from the density term. 
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Histogram of Petrophysical Parameter Errors 
Well 2 (19990 ft. - 20264 ft.)
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Figure 17 shows the histogram of error contribution from individual petrophysical parameter 
for the hydrocarbon-bearing interval for well 2. 

4.4.5 Conclusions of uncertainty calculation on actual data set 

 The following conclusions can be drawn from the uncertainty calculation performed 

using an actual data set. 

1. As would be expected, the uncertainty in the original velocity can be the largest 

contributor of uncertainty in the fluid substituted velocity. In this study, the measured 

travel time curve has been assigned an uncertainty value of ± 5% at 1σ confidence. If 

the study area has multiple measurements of velocity, it is possible to reduce the 

uncertainty value of the velocity and thereby significantly reduce the RMS error in 

the new velocity. Any edits or corrections that can be applied to the measured travel 
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time measurements will therefore have the largest effect in lowering the uncertainty 

in the fluid substituted velocity. 

2.  The velocity errors from density, porosity, water saturation, and volume of shale 

overlap each other. This makes it difficult to determine the causes of errors in new 

velocity and attribute the causes to a specific parameter. 

3. Uncertainty values for parameters such as water saturation are difficult to determine. 

This is especially true for mixed lithologies such as shaley sands. In this study, I have 

used an uncertainty of 20% for the water saturation for both the original and the 

substituted fluid. However in the presence of gas, the uncertainty value assigned to 

Sw may not correctly account for the error in the new velocity. In such cases, the 

uncertainty value for oil saturation would have to be separately assigned in addition 

to the uncertainty in water saturation while calculating the uncertainty in the fluid 

modulus. Additionally confidence ellipses can be calculated to determine quality of a 

parameter can be used. Use of confidence ellipse has been previously described in 

section 2.4.3. Figure 18 shows confidence ellipses drawn for Sw curves calculated 

using two different methods and using two sets of porosities for the same depth 

interval. Both ellipses have been drawn at 95% confidence levels. From the figure it 

is apparent that the Sw calculation using mixture shaley sand model is better 

constrained than the Sw calculation using Archie's method. Therefore choosing the 

Sw curve calculated from the former model would have lower parameter uncertainty 

than the latter. 
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Water Saturation (Sw) Calculation Using Different Porosity Measurements
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Figure 18 shows water saturation (Sw) calculation using two models calculated using two 
separate porosity curves. The calculation was performed for well1 in the hydrocarbon-bearing 
section from 19742 - 19818 ft. The confidence ellipses constructed for the two data sets are 
for 95% confidence level. The Sw calculation using the mixture shaley sand model is better 
constrained.  

4. Using an independent measurement of porosity can help in reducing the total RMS 

error in the velocity calculation. In this study, and due to limited data availability, I 

did not use a independent porosity measurement. I however assigned a separate 

uncertainty value of ± 5% for porosity term derived from the density measurement. 

Similar to the uncertainty in the water saturation calculation, the uncertainty in the 

porosity parameter can also be difficult to determine in mixed lithology. Better 

constraining the porosity parameter may help in reducing the uncertainty value 

assigned to the porosity term by ignoring the porosity component resulting from clay-

bound water. A combination of different methods of porosity measurements may 
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help in determining effective porosity which can used in lieu of total porosity 

especially in mixed lithologies.  

4.5 Amplitude variation with offset 

 The complete solution for the amplitudes of transmitted and reflected P and S waves 

for both incident P and S waves is given by Zoeppritz (1919) equations (Castagna, 1993). 

Although Zoeppritz equations can be evaluated numerically, it is useful to use simpler 

approximations. Several authors have presented approximations to the Zoeppritz equations. 

The isotropic form of the AVO technique stems from the study of Ostrander (1984) who 

showed that the P-wave data could be used to detect changes in the velocity ratio at an 

interface. The classical AVO equation for two isotropic media with elastic properties and 

moderate incidence angles can be written as  

!""(%) ≈ !"' + ( sin, % + -(�.�,% − 01�,%) 
where  

2 ≈ 3
, 4∆6$6$ + ∆7

7 8 , ( ≈ 3
,9∆6$6$ − 2 6;


6$ 4

∆7
7 + 2 ∆6;6; 8<, 		- = 3

,
∆6$
6$  

∆=" = =", − ="3,					∆=> = =>, − =>3,				∆� = �, − �3, and 	% = (%, + %3) 2⁄ , but θ is 

often approximated by θ1. 

 This form of the equation can be interpreted in terms of different angular ranges 

(Castagna, 1993). In the above equation RP0 is the normal incidence reflection coefficient 

expressed by 

	!@' =		 #$�#$�#$ #$� 		≈ 		 ∆#$,#$ 	≈ 		 3, 4∆6$6$ + ∆7
7 8 

The parameter B describes the variation at intermediate offsets and is often called the AVO 

gradient and the parameter C dominates at far offsets near the critical angle. As mentioned 

─ 6.1 
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earlier, I compared the effects of errors in the fluid substitution results on the amplitudes of 

synthetic traces with the assumption that there is a good equivalence between the reflection 

coefficients and the observed amplitudes.  

4.6  Limitation of the results from AVO modeling  

 Comparison of observed AVO signature with synthetically modeled data can be 

useful in distinguishing between real and artificial AVO responses. In this study I calculated 

the uncertainty in the fluid substituted velocity which in turn introduces error in the synthetic 

AVO model. In addition to the errors in synthetic models, the observed data may also be 

imperfect as a result of acquisition and processing errors. I therefore state two potential 

limitations of using synthetic AVO models to directly compare the results of the synthetic 

models to observed data.  

4.6.1 Lack of equivalence between reflection coefficient and reflection amplitudes 

 Although reflection coefficients are dependent upon contrasts of physical properties 

across isolated subsurface reflectors however the reflection amplitudes depend on wide range 

of factors. Castagna et al., (1993) lists several factors affecting seismic amplitudes . Some of 

the key factors that distort reflection amplitudes are coupling and random noise, divergence 

and transmission losses of seismic energy, inelastic attenuation, interference by neighboring 

reflections, multiples, etc. Presence of these factors add to the complexity of AVO 

processing. As a result of these factors, the seismic reflection amplitudes observed on real 

data may not be directly equivalent to the reflection coefficients.  
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4.6.2 Effect of anisotropy  

 Thomsen (1988) demonstrated the effects of VTI anisotropy on AVO. The AVO 

gradient (parameter B) can be reversed by anisotropy and hence can significantly change the 

classification of AVO anomaly. If the overburden consists predominantly of shales or clay, 

then VTI anisotropy also means that the phase angle (necessary for calculating reflectivity) 

and group angle (for geometric ray path) are not identical (Macbeth, 2002). The P-wave 

reflection coefficient for weakly anisotropic VTI media in the limit of small impedance 

contrast is given by (Thomsen, 1993) 

!@@(%) = !@@	#A�(%) + !@@	�BCA�(%). 

 The reflection coefficient for isotropic media remains unchanged as shown in the 

equation 6.1, however the reflection coefficient for anisotropic media is now controlled by 

the Thomsen parameters namely δ and ε is as shown in equation 6.2  

!@@	�BCA�(%) ≈ ∆D
, 01�,(%) + ∆E

, 01�,(%)�.�,(%). 
The parameter delta controls the AVO behavior at small to moderate angles and can take both 

positive and negative values. 

 Therefore even if the systematic errors in the input data and its effect on fluid 

substituted velocity is completely understood, the differences between the actual and modeled 

AVO curves cannot be attributed only to the presence of systematic errors in the input data. 

Therefore presence of VTI anisotropy may either work in masking or in enhancing the errors 

when comparing modeled versus actual reflection coefficients even in cases when the 

systematic errors are well understood and accounted for. 

 

─ 6.2 
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4.7  Procedure to calculate synthetic AVO model  

 This section describes the procedure to build the synthetic AVO models for the fluid 

substituted impedance curve and its upper and lower bounds. This would allow an 

comparison of the amplitudes of the traces in order to confirm the impact of error present in 

the wireline data set that is commonly used for fluid substitution modeling. I used the 

following steps to calculate the synthetic AVO models.  

4.7.1 Calculating impedance curves  

 The computed error in the fluid substituted velocity for each of the wells was used to 

determine its impact on synthetic AVO modeling. To do this, I computed the impedance 

curves and the reflectivity series for three cases, namely the fluid substituted impedance and 

its upper and lower bound. I used the following parameters and naming convention to identify 

impedance curves for the three cases. The three cases represent the worst cases wherein the 

contributions of all errors act in the direction so as to add to the total error.  

Case 1 : Fl.Sub_Impedance  = Vp2 x RHOB2 

Case 2 : Fl.Sub_Impedance_Min = Vp2_Min x RHOB2_Min 

Case 3 : Fl.Sub_Impedance_Max = Vp2_Max x RHOB2_Max 

4.7.2 Application of Zoeppritz equations 

 Following the computation of impedance curves, the amplitudes at different angles of 

incidence (up to a maximum of 30 deg) was determined by using the Zoeppritz equations. For 

this study I used the Hampson-Rusell software to compute the synthetic traces for incidence 

angles up to 30 deg by convolving the reflectivity series with a 70 Hz Ricker wavelet. To 

determine the impact of errors in synthetic AVO modeling, I compared the differences in the 
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amplitudes of the synthetic traces created from the fluid substitution process and its upper and 

lower bound. As indicated earlier in this document, the data error bounds do not indicate that 

the data will randomly lie anywhere within the upper and lower bounds but it does point to 

the possibility that the synthetics generated using the logging data may produce an anomalous 

AVO response and should be taken into consideration when comparing it to the observed 

data.  

4.7.3 Comparisons between synthetic AVO responses  

 For purposes of this comparison I selected a hydrocarbon-bearing sand section of 

sufficient thickness that showed a strong impedance contrast and also shows a reflection from 

both top and bottom of the reservoir. The presence of hydrocarbon was notionally interpreted 

using the resistivity log.  

 I show the differences in the amplitudes for the synthetic AVO models created for the 

impedance contrast and its upper and lower bounds using equations shown in 4.5.1. Also 

shown in figures 20 and 22 are the differences in amplitudes for the hydrocarbon-bearing 

sands in the two wells. 

Example 1: Hydrocarbon-bearing sand from well 1 

 I have compared the variation in AVO response in a hydrocarbon-bearing sand at 

nominal depth of 20000 ft and which is clearly marked by a strong impedance contrast at the 

top and the base of sand. The synthetic traces shows a peak on top of the hydrocarbon-

bearing sand followed by a trough at the bottom of the sand as is expected. The marked 

dotted lines in figure 19 were used as depth markers in order to compute and compare the 

amplitudes of the synthetic traces. The amplitudes of the synthetic traces have not been 

corrected for normal moveout. 
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Figure 19 shows the synthetic AVO model with synthetic traces created for incidence angles 
up to 30 degrees using the Zoeppritz equations. The hydrocarbon-bearing reservoir at 19990 
ft (indicated by dotted lines) shows a strong impedance contrast and is therefore chosen to 
compare differences in AVO response resulting from errors in the fluid substituted velocity. 
The suffix of upper and lower bound indicates AVO synthetic traces created using velocity 
and density bounds as indicated in figure 20. 

 Figure 20 shows the amplitude variations with angle of incidence for the three synthetic 

traces seen in figure 19. 
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Well 1 - Hydrocarbon-Bearing Sand at 20000 ft.
Reflection Coefficient Comparison
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Figure 20 shows the differences in amplitudes in the synthetic AVO models for the new 
impedance contrast and its upper and lower bounds for the top and bottom of the 
hydrocarbon-bearing. The amplitude curves for the top of the hydrocarbon-bearing interval 
which represents the peak of the seismic wavelet shows a smaller range of uncertainty bounds 
in reflection amplitudes as compared to the range of uncertainty bounds for the trough of the 
seismic wavelet at the base of the hydrocarbon-bearing interval. The cause of this difference 
may be attributed to a relatively strong impedance contrast at the base of the reservoir as 
compared with the top of the reservoir.  

 

Example 2: Hydrocarbon-bearing sand from well 2 

 Similar to the first example for well 1, I have compared the variation in AVO 

response in a hydrocarbon-bearing sand at nominal depth of 19850 ft and is marked by a 

strong impedance contrast at the top and base of sand. While the first example serves as a 

good indicator of the impact of the errors in the new velocity determined by Gassmann fluid 
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substitution on the AVO synthetics, the second example confirms the results for a similar 

hydrocarbon-bearing interval and is presented here for completeness. 

 

Figure 21 shows the synthetic AVO model with traces created for incidence angles up to 30 
degrees using the Zoeppritz equations. The hydrocarbon-bearing reservoir at 19850 ft 
(indicated by dotted lines) shows a strong impedance contrast and is similar to the first 
example from well 1. 
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Well 2 - Hydrocarbon-Bearing Sand at 19850 ft. 
Reflection Coefficient Comparison
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Figure 22 also shows the differences in amplitudes in the synthetic AVO models for the new 
impedance contrast and its upper and lower bounds for the top and bottom of the 
hydrocarbon-bearing for well 2. 

4.8  Conclusions from this study  

 The synthetic modeling and calculation using actual data demonstrates the impact of 

propagation of errors from the petrophysical parameters to the fluid substituted velocity and 

on the synthetic AVO modeling. While it is possible to quantify the RMS errors in the 

velocity by using reasonable estimates of parameter uncertainty, the determination of the 

direction of systematic biases in the input data remains a difficult problem. For some inputs, 

it is possible to generate a parameter uncertainty curve over the logging interval. Using depth 

based uncertainty data should be encouraged rather than using a single uncertainty value over 

the entire depth range. The results of this study emphasizes the role of quality control during 
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the data acquisition phase, selection of appropriate petrophysical models, data correction, and 

during subsequent data processing. This is especially important when determining the 

petrophysical parameters that are used in the fluid substitution modeling. When comparing 

synthetic AVO models with observed AVO data it is possible that the perfect match between 

the two could be a result of a false positive match (or lack thereof) which could be a result of 

combination of uncertainties in the synthetic model as well as in the processing of the 

observed data set. By calculating the uncertainty curves for reflection coefficients can be 

helpful in improving the confidence in the AVO response comparison study. This study also 

serves to reiterate the importance of petrophysical data integration and data quality control 

into the fluid substitution processes in order to assist with interpretation.  

4.8.1 Estimating logging data accuracy requirements 

 The results derived above show considerable influence of logging data error 

propagation in the Gassmann’s fluid substitution. Although in some cases the errors may 

appear to be exaggerated and may not seem to be significant observation, it is important to 

note that some of the differences between predicted and actual velocities may come from 

errors in the logging data. The question now arises is, whether it is possible to estimate the 

required logging data accuracy to reduce uncertainty in the predicted velocities. This would 

actually be a reverse of the process that has been described above. To explain this further, if 

we knew the maximum standard deviation of the KSat parameter that can be tolerated, what 

would be the maximum RMS error of the logging data that would be required. Yardley Beers 

(1958) quotes the following formulas that can be used to make this calculation.  

 Suppose the value of σKSat (standard deviation of KSat) has been computed by using 

average data from 10 measurements for bulk density and velocities in a formation. By simple 
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averaging the 10 measurements we assumed that the contribution of each of the individual 

measurement is equal. This implies that all 10 measurements were conducted in similar 

logging environment where the hole or logging conditions were similar and therefore their 

error contributions are equal. To obtain the required standard deviation in Ksat, the standard 

deviation for bulk density and the acoustic velocities can be computed as follows. 
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Therefore by reducing the error in the original computation of saturated bulk modulus can 

help reduce the propagation of error throughout the Gassmann’s fluid substitution process.  

4.8.2 Suggested future work 

 While it is well known that the uncertainties in the input parameters can have a 

impact on subsequent computed results, the contribution of the individual error component in 

the final error value still needs additional study using large data set. Additionally, the 

integration of petrophysical models for shaley sand analysis in the fluid substitution is much 

less understood outside the petrophysical community. This however has a direct impact on 

rock physics modeling. Most of the current literature on the Gassmann fluid substitution 

refers to fairly simple models to in order to determine the input parameters used in the 

calculation. As an example, most literature limits the calculation of water saturation 

calculation to the Archie's equation or using simple transforms for porosity which may not 

give accurate results in mixed lithology. Additional deterministic studies using are required to 

understand the variation in the fluid substituted velocities as a result of varying data 
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uncertainty values and lithology over the logging interval. Rapidly changing parameter 

uncertainty values may result in variation in the phase of the synthetic traces generated in 

AVO modeling. Deterministic error calculation using partial fluid saturation or in multi fluid 

phases with partial gas saturation would be another area of interest. Additional statistical 

methods to identify the parameter(s) that play a major role in the overall uncertainty in the 

result with changing parameter uncertainties would also be an area of interest. Additionally 

this analytical study can also be performed using Monte Carlo statistical technique which 

would be an additional area of interest. 
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Appendix A - Chapter 5 

5.1  Introduction 

 Appendix A describes the procedure used to compute the petrophysical and the 

linearly elastic parameters. Materials are called linear elastic when stress is proportional to 

strain and are related by Hooke's law. As an example, bulk and shear modulii can be 

described for linear elastic materials. Bulk modulus 'K' is defined as the ratio of hydrostatic 

stress to volumetric strain while the shear modulus 'µ' is defined as the ratio of shear stress to 

shear strain. Mavko et al. (2003) gives a detailed explanation of the moduli in terms of stress 

and strain tensors.  

 The logging data set contained gamma ray, bulk density, acoustic travel time, and 

resistivity data curves. These data were used to calculate the petrophysical parameters, 

namely porosity, volume of shale, and water saturation, which were followed by calculation 

of linearly elastic parameters such as the bulk and shear moduli of the saturated rock, bulk 

modulii for the mineral matrix, porous rock frame, and the pore fluid. I have described the 

methodology used to compute each of the individual parameters and are stated here as a table 

for quick reference.  

No Type Parameter No Type Parameter 

5.2.1 Petrophysical Porosity (φ) 5.3.3 Elastic 
Bulk Modulus of 
Mineral Matrix(K0) 

5.2.2 Petrophysical Volume of Shale (VSh) 5.3.4 Elastic 
Bulk Modulus of 
Porous Rock 
Frame(K*) 

5.2.3 Petrophysical Water Saturation(SW) 5.3.5 Elastic 
Bulk Modulus of 
Formation Fluid(Kfl) 

5.3.1 Elastic 
Bulk Modulus of Saturated 
Rock (Ksat) 

5.3.6 Elastic 
Bulk Modulus of 
Saturated 
Rock(KSat2) 

5.3.2 Elastic 
Shear Modulus of Rock(G 
or µ) 

5.3.7 Base Velocity (Vp or Vs) 
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5.2  Calculating petrophysical parameters 

 This section describes the methodology used to compute the petrophysical 

parameters such as porosity, volume of shale, and water saturation.  

5.2.1 Calculating porosity 

 Porosity was calculated from the density measurement. Independent porosity curves 

from neutron porosity measurements were available for two wells. However, neutron porosity 

measurements require a wide variety of environmental corrections for lithology matrix, 

borehole size, mud weight, salinity to name a few, in order to arrive at the final porosity 

value. This additional information related to type and nature of environmental corrections 

applied to the measurement was unavailable and therefore in order to maintain consistency, I 

used the density data at each depth point to arrive at the porosity measurement using the 

standard porosity equation stated below. 

.
fluidgrain

bulkgrain

ρρ
ρρ

φ
−
−

=  

where  

Φ = Porosity in fractions 

ρgrain  = Matrix grain density (ρgrain)  

ρfluid  = Density of the pore fluid  

ρbulk = Density of the rock as measured by the logging instrument 

 When the shale is present in the rock, using the above equation will result in 

calculation of either additional or reduced porosity. This error in porosity is a result of 

presence of shale with bulk density either lower or higher than the density of the dominant 

( 5.1) 
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mineral matrix . Presence of shale should therefore be accounted for in the bulk density of the 

mineral matrix (ρgrain) used in the porosity calculation. This can be done by subtracting the 

erroneous porosity contribution by using the shale density and the shale volume fraction. This 

method is, however, subject to errors since it assumes that the density of shale is constant 

throughout the well and that the correction for erroneous porosity may not be linear as a 

function of the shale volume and it also depends on the type of shale. The structural shale, for 

example, can only be present as a replacement of the sand grains, while laminar shale 

replaces the sandstone portion of the rock and does not occupy or alter the intergranular sand 

porosity. Therefore knowledge of type of shale is required for true determination of effective 

porosity and is therefore a much more complex problem than that can be addressed simply by 

adjusting the total porosity for presence of shale. 

 The total porosity equation shown above, also assumes that the total porosity is the 

effective porosity and does not account for fluids contained in the clay mineral structure or 

the capillary bound water both of which are constituent of the total porosity but are termed as 

non-movable fluids. Presence of non-movable fluids violates the key assumption of 

Gassmann's fluid substitution which requires that the propagating stress wave must 

equilibrate instantaneously in the pore space. 

 One of the methods suggested by Dvorkin et al., (2010) considers porous wet shale as 

part of the solid grain material and excludes porosity within the shale from total porosity. 

However the computation of effective porosity as suggested in the above paper requires 

availability of data from advanced porosity instruments such as NMR and requires the 

determination of the porosity of clay term (φclay) for the calculation of effective porosity. This 

data was unavailable for the purposes of this study and hence I considered total porosity as 
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effective porosity and adjusted the effective porosity with cutoff values to account for errors 

in porosity due to the presence of shale. 

5.2.2 Calculating volume of shale (Vsh) 

 Natural Gamma ray measurement can be used as a basic clay indicator. It is 

important to note here that the terms clay and shale have been used interchangeably. The term 

clay is used for clastic rocks having particle size less than 1/256 mm while the term shale 

represents sedimentary rock showing laminations and fissile nature. Therefore a shale is a 

sedimentary rock composed of clay minerals and the term Vsh is used interchangeably to 

represent volumetric fraction of either clay or shale.  

 The volume of shale was computed using the gamma ray log which responds to the 

natural radiation of the formation. In the derivation of shale content, the assumption is that 

the radioactive component of the formation is shale. Thus increasing natural radiation implies 

increasing shale content. The presence of other radioactive minerals such as present in 

radioactive sands will cause the shale volume to be too high. 

minmax

minlog

GRGR

GRGR
Vsh −

−
=  

where 

GRlog= Gamma ray measurement 

GRmin= Gamma ray measurement in a clean sand line 

GRmax= Gamma ray measurement in a thick shale 

 The volume of shale computed using equation above is a linear approximation. 

However the gamma ray measurement may sometimes have a non-linear response to the clay 

(5.2) 
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content of the rock. The volume of shale can therefore be corrected using the Steiber 

relationship for miocine-pliocine rocks (Hearst et al., 2000). The Steiber relationship for shale 

volume, adjusted for the age of the rock can be stated as  

.
.*

.
.

OfShaleVolba

OfShaleVol
OfShaleVol

−
=  

Where, a = 3 and b = 2 for miocene-pliocene rocks. 
 
 Application of the Steiber relationship in order to determine the volume of shale 

would require reservoir level knowledge in order to assign accurate values for the 'a' and 'b' 

coefficients. I have therefore used the linear approximation for calculating the volume of 

shale.  

5.2.3 Calculating water saturation (Sw) 

 Water saturation was computed using the standard Archie equation. The Archie 

equation is a total porosity - total water saturation relationship and is given by the equation 

n
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where  

Rw =  Resistivity of water in filling the pores of the rock 

Rt = True resistivity of the rock 

Φ =  Porosity (v/v) 

a, m, n = Constants based on empirical data. 

 For well consolidated sandstones the typical values for 'a', 'm', and 'n' are 1, 2, and 2 

respectively. Actual values of 'a', 'm', and 'n' are typically derived from core measurements. A 

wide variety of formulations have been used to model resistivity-water saturation 

relationships in shaley sands. Worthington (1985) describes over thirty shaley sand models 

( 5.3) 

( 5.4) 
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used to compute water saturation. The correct methodology to compute water saturation 

would involve defining the type of shaley sand model. The advantage of using a specific 

equation suitable in a particular field is to reduce the error in estimates of water saturation. 

Application of a specific shaley sand model would require additional information that is 

normally obtained from core data. In the absence of any core data, I have restricted the 

calculation of water saturation to using Archie's equation. While this restriction may increase 

the uncertainty in the value of water saturation, the exact computation using any of the other 

methods may not necessarily help reducing the uncertainty due to a large number of variables 

used and the complexity of the calculation. This topic is further explained in chapter 6. 

5.3  Calculating linearly elastic parameters 

 This section describes the methodology used to compute the linearly elastic 

parameters such as the bulk modulii of the saturated rock, mineral matrix, fluids and the rock 

frame.  

5.3.1 Bulk modulus of saturated rock (KSat ) 

 The bulk modulus of the rock was calculated using wireline data for the in-situ rock 

that is undrained of pore fluids. The well log data can be used to relate bulk modulus of a 

rock (KSat) to its compressional, shear velocity and bulk density through the following 

relationship which is simple to implement. 

.
3

4 22







 −= spbSat VVK ρ  

where 

ρb  = Bulk density in g/cc 

( 5.5) 
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Vp = Compressional velocity in Km/sec 

Vs  = Shear velocity in Km/sec 

KSat  = Saturated bulk modulus in Gigapascals (GPa) 

5.3.2 Shear modulus of rock (G or µ) 

 The shear modulus can be calculated from the form given by 

2* Sb VG ρ= . 

where 

G  =  Shear modulus in GPa 

ρb =  Bulk density of the rock (g/cc) 

Vs =  Shear velocity (Km/sec) 

 Berryman (1999) states that for purely mechanical effects, the shear modulus for the 

case with trapped fluids (undrained) is the same as that for the case with no fluid (drained). 

F(G�H�.1�IH) = F(H�J) 
 Therefore monitoring any changes in shear modulus with changes of fluid content 

provides a test of both Gassmann's assumptions and results. Throughout the process of fluid 

substitution the value of shear modulus of the rock (G) is kept constant.  

5.3.3 Bulk modulus of mineral matrix (K0) 

 To predict the effective elastic moduli of a mixture of grains and pores theoretically, 

we need to specify the volume fractions, elastic moduli of various phases and the geometric 

details of how the phases are arranged with respect to each other. If we specify only the 

volume fractions and the constituent moduli the best we can do is predict the upper and the 

(5.6) 
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lower bounds (Mavko et al,2003). In order to predict the bulk modulus of mineral matrix, 

information about the composition of the rock must be available (Smith et al., 2003). The 

rock composition may be determined by various techniques such as thin section analysis of 

core samples or X-ray diffraction etc. Alternately, specialized wireline logs may be available 

which measure the elemental composition of the rock. 

  The actual rock composition data was not available for this study and hence I 

assumed a two mineral rock composition consisting of quartz and clay. To calculate the 

effective moduli I used the average of upper and lower bound value at a given volume 

fraction of clay. I used two approaches to calculate the upper and lower bounds, the first 

approach is the Hashin - Shtrikman bound and the other Voigt- Reuss bound. The Hashin-

Shtrikman bounds for two phases are given by  
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where 

K1, K2 = bulk moduli of individual phases 

µ1, µ2, = shear moduli of individual phases 

f1, f2 = volume fractions of individual phases 

 The above expression gives upper bound when stiffest material is termed '1' and 

lower bound when the softest material is termed '1'. The Voigt upper bound is defined as  
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fi = Volume fraction of the ith medium 

Mi =  Elastic modulus of the ith medium. 

 

The Reuss lower bound of the effective elastic modulus, MR is given by 
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I have used the following constants for calculating the upper and lower bounds using both 

methods described above. 

Kquartz = 37 GPa,  µquartz = 45 GPa  

Kclay = 15 GPa,  µclay = 9 GPa 

 I have calculated the effective elastic modulii using both Hashin-Shtrikman and 

Voigt-Reuss methods, in the final computation I have only used the Voigt-Reuss method to 

compute the average effective modulii.  

5.3.4 Bulk modulus of the porous rock frame (K*) 

 Prior to applying the Gassmann's relationship it is necessary to determine the bulk 

modulus of the porous rock frame. Bulk modulus of porous rock frame (K*) can be computed 

using the equation shown below: 
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where  

φ  =  Porosity 

(5.8) 
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K0  =  Bulk modulus of the mineral matrix 

K fl  =  Bulk modulus of the pore fluid  

KSat  =  Saturated bulk modulus of the in-situ rock 

 The K* term is derived either from (i) velocity measurements on controlled humidity 

dried cores or (ii) application of empirical relationships or effective medium theory or (iii) 

from direct calculation from log data. (Smith et al, 2002). In the absence of core analysis data 

I calculated K* term directly from the log measurements. The implication of this calculation 

is that existing uncertainties in the log data are now propagated through the K* calculation.  

 The porous rock frame modulus is sometimes also termed as 'dry' rock modulus. This 

refers to the incremental bulk deformation resulting from an increment of applied confining 

pressure with pore pressure held constant. This corresponds to a drained experiment in which 

the pore fluids can flow freely in and out of the sample to ensure constant pore pressure. 

(Mavko, et al., 2003) As a note of caution, laboratory measurements on very dry rock can 

give incorrect results by lowering the frame moduli as a result of disrupting surface forces 

acting on pore surfaces. In view of this, slightly wet or drained measurement of K* should be 

used. (Smith et al,2002). This observation will assume importance when an independent 

value of K* obtained from core measurements is used rather than calculating this from the 

logging measurements. In this study, I have not directly used the parameter K* for 

uncertainty calculation because of the complexity of its dependence on several variables. The 

calculation of the parameter has been described for completeness. 

5.3.5 Bulk modulus of formation fluid (Kfl) 

 The bulk modulus of individual fluid phases can be calculated using the Reuss 

average. Since the fluids do not have shear moduli, the Hashin-Shtrikman lower bound is the 
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same as the Reuss bound (Mavko et al., 2003). I have assumed that the reservoir fluids 

consist of only two phases namely brine and oil. Volumetric fractions of the two reservoir 

fluids was determined by calculating the water saturation using the Archie's equation as 

described earlier. To calculate the bulk modulus of the reservoir fluid, information about the 

reservoir temperature, pressure, salinity and fluid type is required. In the absence of well 

specific information I used the following methodology to compute these parameters. 

Reservoir fluid : The API value of the hydrocarbon component in the reservoir fluid was 

nominally set at 45 grade. If the density of the reservoir fluid is available the API value can 

be calculated using the API conversion formula given as 2KL = 3M3.N
7 − 131.5, where ρ is 

density of oil measured at 15.6 deg C and at atmospheric pressure. The gas density was also 

nominally set at 0.6. These values were used to calculated the bulk moduli of the hydrocarbon 

used in the calculation. 

Formation pressure: I used a hydrostatic pressure gradient of 0.465 psi/ft which is typical 

for offshore Gulf of Mexico (Dutta, 2002) to compute the properties of fluid bulk modulus. 

Formation temperature: In the absence of formation temperature data from the wells, I used 

a temperature gradient of 1.1 deg F/100 feet. The temperature at the mudline for each of the 

wells was assumed to be 40 deg F.  

Salinity of Brine: The salinity of the brine can be estimated by evaluating the resistivity of 

the brine at 100 percent water saturation. This is accomplished by using the Pickett plot 

method. (Hearst et al., 2000) Accurate estimates of formation temperature and pressure are 

required to be able to convert the water resistivity to the salinity of formation water. In the 

absence of formation temperature and pressure data value I assumed salinity value of 80000 

ppm @ 77 deg F which is a typical value for the Gulf of Mexico (Dutta, 2002).  
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The fluid bulk modulus was calculated using the following equation 

1000/* 2νρ fluidK =  

where  

K =  Bulk modulus of the fluid, mPa 

Ρ =  Bulk density of the fluid, g/cc 

ν = Acoustic velocity of the fluid, m/s 

The factor of 1000 in the velocity calculation is due to the fact that bulk density unit is in the 

CGS system while the other quantities are expressed in the MKS system. The exact equations 

for calculating the acoustic velocity and bulk density of the fluid as a function of pressure and 

temperature are given by Batzle et al. (1992) and are not reproduced here. 

5.3.6 Calculating new saturated bulk modulus with substituted fluid(Ksat2) 

 The new saturated bulk modulus for substituted fluid can be computed using the 

equation 5.10 as described by Smith et al. (2003). This equation was unsuitable for the 

purposes of determining the uncertainty in the fluid substituted velocity primarily because of 

the presence of K* term. The nature of complexity as a result of K* term is further explained 

in section 5.10 
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 An alternate form for calculating the saturated bulk modulus is shown below in 

equation 5.11 and involves eliminating the K* term shown in the equation 5.10.  

(5.10) 

(5.9) 
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All parameters in the above equation can be easily calculated from the logging measurements 

as described earlier in this chapter. For the calculation involving bulk modulus of the new 

fluid (K fl2) I used the cutoff value of 0.7 for water saturation term (Sw) in order to delineate 

the hydrocarbon and water-bearing zones. The cutoff value implies that any minor 

hydrocarbons present in zones having water saturation greater than 0.7 are effectively 

ignored. 

5.3.7 Calculating velocities with substituted fluid (Vp2 & V s2) 

 The new velocities using the substituted fluid can be easily computed using the 

equations stated below 
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 The equations are relatively simple to implement, however the only requirement is to 

recalculate the bulk density parameter when using the substituted fluid. The initial step to 

calculate the new bulk density is to first compute the apparent grain density of the matrix 

using the measured bulk density and then keeping the grain density and the porosity terms 

constant substitute the density of the substituted fluid in the standard porosity equation.  

�Q	R�S(1 − T) + �UVT 

The apparent grain density was initially calculated using the equation 

Porosity

VshDenShaleVshPorosityDenMat
AGD

−
+−−=
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(5.11) 

(5.12) 

(5.13) 
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where 

AGD  = Apparent grain density (g/cc) or (ρg in the standard porosity equation) 

DenMat = Matrix grain density (constant : 2.65 g/cc) 

Vsh  = Volume of shale in fractions 

DenShale = Density of dry shale (constant : 2.60 g/cc) 

 In the absence of any additional data, I have assumed the density of dry shale to be 

2.6 g/cc. The cutoff values for porosity and Vsh have been selected such that if the volume of 

shale is greater than 0.7 the porosity value is constrained at 5%. This porosity cutoff is 

required to limit the spurious calculation of apparent grain density when the majority of the 

mineral constituent of the rock is shale. While it is possible to assign an uncertainty value to 

each of the terms used in the above equation and then calculate the uncertainty in the new 

bulk density, I used an uncertainty value of ±0.025 g/cc for the recomputed bulk density 

parameter which is similar to the uncertainty in the measured density. This assigned 

uncertainty value has been kept constant to ensure that the data is not unnecessarily biased 

due to inherent assumptions due to limited data availability. By replacing the grain density 

and the bulk density of the substituted fluid in the standard porosity equation, the new bulk 

density can be calculated. Other input parameters in the velocity calculation have been 

computed previously and are used to compute new velocities using the substituted fluid. 
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Appendix B - Chapter 6 

6.1  Introduction 

 Appendix B describes the methodology used to calculate the error for each of the 

petrophysical and linearly elastic parameters that have been described in the previous chapter. 

The error in each individual input component was calculated using the error propagation 

equations described in section 3. 

Errors in petrophysical parameters: I describe the methodology used to determine errors 

for the petrophysical parameters namely errors in bulk density(ρ), porosity(φ), volume of 

shale(Vsh) and water saturation(Sw). One of the limitations to petrophysical data analysis is 

that each instrument uses different principles of measurement and has its own depth of 

investigation. It will therefore respond differently to various formation properties. The 

combined effects of measurement principles, source-receiver spacing and measurement 

conditions will produce a different sensitive volume for each measurement. The key 

assumption that is commonly applied is that all measurements respond to almost the same 

volume of investigation and this assumption may not be true in most cases. 

Errors in linearly elastic parameters: Most of the elastic parameter calculation requires 

petrophysical parameters as the input and therefore requires the calculation of uncertainty in 

the petrophysical parameters a priori, before the calculation of errors in linearly elastic 

parameters. The errors in some input parameters such as bulk moduli of a specific mineral is 

considered to be a constant and therefore assigned a value of zero. The methodology 

describing the error computation for each of the parameters is given below and their section 

numbers are given here as a table for quick reference.  
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No Type Parameter No Type Parameter 

6.2.1 Petrophysical Error in Density (ρ) 6.3.2 Elastic 
Error in Saturated Bulk 
Modulus(KSat) 

6.2.2 Petrophysical Error in Porosity (φ) 6.3.3 Elastic 
Error in Bulk Modulus 
of Pore Fluid(Kfl) 

6.2.3 Petrophysical 
Error in Acoustic 
Velocity (Vp, Vs) 

6.3.4 Elastic 
Error in Saturated Bulk 
Modulus (substituted 
fluid) (KSat2) 

6.2.4 Petrophysical 
Error in Volume of 
Shale (VSh) 

6.3.5 Elastic 
Error in Bulk Modulus 
of Porous Rock 
Frame(K*) 

6.2.5 Petrophysical 
Error in Water 
Saturation (SW) 

6.3.6 Elastic 
Error in Shear 
Modulus (G) 

6.3.1 Elastic 
Error in Bulk 
Modulus of Mineral 
Matrix(K0) 

6.3.7 Elastic 
Error in Computed 
Velocity (Vp2,Vs2) 

 

6.2 Errors in petrophysical parameters 

6.2.1 Error in bulk density 

 Formation density instruments using radioactive sources relate electronic density (i.e. 

number of electrons per cubic centimeter) to formation density. Several factors affect 

accuracy and precision of the measurement resulting in data uncertainty. The primary factors 

are internal to instrument design and calibration errors. However in addition to these 

systematic errors, the measurement conditions that also contribute to errors in density 

measurements are described below. 

1. Statistical errors which are function of radioactive source age and activity. 

2. Effect of borehole conditions: washouts, rugose or elliptical boreholes. 

3. Effect of logging bed boundaries in high angle boreholes. 

4. Density contrast between the borehole fluid and the formation. 
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5. Impact of variable standoff (distance from sensor face to borehole wall). This 

variation is common to LWD density logging. 

 I used an RMS error value of ± 0.025 g/cc at 1σ confidence as the error in density 

measurement. This value is typically used in technical brochures provided by instrument 

manufacturers. In reality the uncertainty value is not a constant and varies with changing 

formation properties as well as wellbore conditions. If an independent density uncertainty 

curve with depth is available it can be used instead of a constant value. However this type of 

data is generally not available and hence a constant value for uncertainty has been used. 

6.2.2 Error in porosity 

 Porosity can be obtained independently by the logging instrument such as nuclear 

magnetic resonance or neutron porosity measurement. If the porosity has been obtained 

independently then the error in porosity as published by the instrument manufacturer can be 

used directly. For this study I derived the porosity from the density measurement. The error in 

porosity can be determined from the density measurement using the error propagation 

equation shown below. 
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The above equation is solved as shown below.
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where 

ρma = Density of the mineral matrix 

(6.1) 
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ρfl = Density of the fluid in the pore space  

ρlog = Density of the formation as measured by the logging instrument.  

 As seen from the above equation, the accurate computation of error in porosity would 

require some knowledge of the uncertainty in the matrix density and the density of the fluid. 

The errors caused by incorrect values of ρfl can be large if there is partial gas saturation 

instead of assuming completely fluid-filled pore space. Since the uncertainty values for ρma 

and ρfl are unknown the solution would require assigning best estimates of uncertainty based 

on empirical data or field experience. Further, the uncertainty values used for the density of 

matrix would also be dependent on volume of shale. In general the error in matrix density 

would increase with increase in the shale fraction. The only parameter which is available is 

the error in density measurement as published by the instrument manufacturer and is assumed 

to be constant for a range of densities and borehole conditions. In view of the uncertainties in 

the input parameters, I used a constant uncertainty value of, Wφ = 0.05 ∗ p[�[01�J, for the 

porosity term. This value is not a unreasonable assumption since several porosity instruments 

typically quote a uncertainty value of 5% at ± 1σ confidence level. 

6.2.3 Error in acoustic travel times (DTP, DTS) 

 Logging instruments measure formation slowness in microseconds/foot rather than in 

direct velocity units. In addition to borehole conditions that affect the measurement, acoustic 

travel time data also suffers from anisotropic effects related to micro-anisotropy of shales and 

thin bed laminations of sand-shale sequences in the presence of large relative dip angles 

(Vernik, 2007). The large relative dip angles may simply result due to well deviation even in 

areas of relatively low formation dip. The main factors that affect accuracy of acoustic 

velocity are given below. 
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1. Borehole irregularities, tool tilt and logging instrument decentralization. 

2. Velocity dispersion. 

3. Effect of relative dip angle of the bed on measurement. 

4. Formation anisotropy as a result of large relative dip angle. 

5. Cycle skipping. 

6. Noise spikes. 

Instrument manufacturers generally state measurement uncertainties for slowness rather than 

in direct velocity terms. I have used an uncertainty of 5% at ± 1σ confidence level for 

slowness value and converted the uncertainty in slowness to uncertainty in velocity for each 

data point. 

6.2.4 Computing error in volume of shale (Vsh) 

 Volume of shale was computed using the gamma ray log which responds to the 

natural radiation of the formation as shown in equation 6.2. 

minmax

minlog

GRGR

GRGR
Vsh −

−
=  

where 

GRlog =  Gamma ray measurement 

GRmin =  Gamma ray measurement in a clean sand line 

GRmax =  Gamma ray measurement in a thick shale 

 The number of nuclear particle counts (N) that the detector observes over a fixed 

interval of time follows a Poisson distribution. The standard deviation of the counts that are 

observed over a fixed interval of time is given by N=σ . However in nuclear logging 

instruments we are more concerned with the count rate (i.e. counts per unit time) rather than 

(6.2) 
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the number of counts by itself. In general, time is assumed to be measured with high degree 

of precision and therefore any error or variation in time is generally ignored. Therefore the 

standard deviation of counting rate is given by  

.
t

N=σ
 

The count rates observed at the detectors are transformed to Gamma ray API value by means 

of a transfer function. The statistical error from the random nature of these events in the 

observed count rate gets transferred to the computed API value. This error is in addition (and 

independent) to the systematic errors arising from measurement conditions in a wellbore. 

Since the actual logging tool instrumentation technical parameters are confidential to the 

manufacturer and are therefore unknown, I used a generic value of 5 % error in the volume of 

shale computation. By inference, similar value of 5 % error was used for volume of sand 

fraction which is directly computed from the volume of shale. 

6.2.5 Error in water saturation (Sw) 

 I calculated water saturation using the Archie's equation as shown below.  

n

t
m

w
w R

aR
S

1









=

φ
 

where  

Rw =  Resistivity of water in filling the pores of the rock 

Rt = True resistivity of the rock 

Φ =  Porosity (v/v) 

(6.3) 

(6.4) 
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The a, m, n= constants are based on empirical data. For well consolidated sandstones the 

values are 'a'=1, 'm' and 'n'=2. Actual values of 'a', 'm', and 'n' are typically derived from core 

measurements and were not available for this study. 

 As is apparent from the equation above, one of the key inputs to the equation is the 

true resistivity of the rocks. While it is possible to apply the error propagation equation to 

compute the uncertainty in the water saturation using any of the shaley sand models, the 

actual computation is difficult since it would require accurate knowledge of resistivity tool 

response functions at various vertical resolutions and at varying formation resistivity.  

 Numerous authors have described the challenges associated with the evaluation of a 

low resistivity, low contrast laminated sand-shale reservoir. When the thickness of the 

laminations is significantly less than the vertical resolution of conventional logging 

instruments, the formation displays a macroscopic anisotropy with respect to properties such 

as conductivity and permeability. These properties will have different values depending on 

the directionality of the measurements with maximum anisotropy occurring when measured 

parallel and perpendicular to the bedding planes. The petrophysical model for interpreting 

sand-shale reservoirs is based on the concepts of the volumetric shale distribution model 

(Thomas and Stieber, 1975) and a tensor resistivity model to determine laminar shale volume 

and laminar sand resistivity (Mollison, et al., 1999, 2000; Schoen et al., 1999). The resistivity 

tensor utilizes macroscopic electrical anisotropy defined by the combination of the horizontal 

parallel and vertical series resistivity equations (Hagiwara, 1997, 1998; Klein, 1996; Klein et 

al., 1997; and Herrick and Kennedy, 1996; Mezzatesta et al., 2002; Popta et al., 2004). 

 While several methods of calculation of water saturation are described in the 

literature, the use of Archie's method seems to be the most common used. The primary reason 
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for this seems to be the ease of use and the availability of published empirical data. As a note 

of caution, using Archie's methods for Sw estimation is prone to errors especially in shaley 

sand lithology and therefore the uncertainty value for Sw may have a much wider range than 

for other petrophysical parameters. 

6.3  Errors in linearly elastic parameters 

 Propagated error from logging data was used to compute uncertainty in each of the 

linearly elastic parameters. I have described the methodology used to compute errors for each 

of the elastic parameter used in Gassmann fluid substitution. 

6.3.1 Computing error in bulk modulus of mineral matrix (K0) 

 The error in bulk modulus of mineral matrix was calculated using both methods of 

estimating effective elastic moduli. The two methods were Hashin-Shtrikman bounds and 

Voigt-Reuss bounds. The methodology for calculating the effective elastic moduli for both 

methods is described below. While only the Voigt-Reuss method was used in the 

computation of the error in the K0 parameter for this study, I have described the methodology 

to compute the error in the Hashin-Shtrikman method for completeness.  

 For the Hashin-Shtrikman bounds, the error in K0 can be calculated from the equation 

shown below. The elastic constants of individual minerals are considered to be constants and 

it is therefore assumed that the only source of error is in the volumetric fractions of the 

minerals. The volumetric fractions have been computed using the gamma ray log, which in 

turn is computed from the natural radioactivity of the minerals and is therefore a function of 

statistical precision of the natural radioactivity and the tool calibration constants. It is difficult 

to comprehensively compute the error in the volumetric fractions in the absence of other 
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information such as radioactive count rates or tool measurement errors, etc., to name the few 

error sources, and therefore a constant volumetric error value of 5% is assumed. 
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The expression which computes the error in K0 is given as  
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The upper and the lower bounds of the mineral modulus is a function of several variables 

such as bulk and shear modulii of the individual minerals and their volumetric fractions. 

    ),,,,,( 2121210 ffKKfK HS µµ=
±

 

As mentioned earlier, only the error in mineral volumetric fractions is considered and the 

elastic constants for the minerals are considered to be constants and therefore the error is 

zero. The equation for Hashin-Shtrikman bounds can therefore be written as  
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where C1,C2 are constants and can be expressed as  
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112
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121
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It is noted here that the upper and lower bounds are computed by interchanging which 

material is termed 1 and which is termed as 2. The constants C1 and C2 are used when the 

stiffest material (quartz) is termed as 1. However in order to improve clarity, new constants 

(6.5) 

(6.6) 

(6.7) 
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C3 and C4 are used so that the material indices can remain unchanged. Therefore quartz will 

continue to be termed as material 1 and clay as material 2 when computing the lower bound. 

Therefore the equation 5.6 for lower bound is stated as  

.
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Using the error propagation equation, the error in Hashin-Shtrikman bounds can be defined as  
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σf1 and σf2 in the above equation are the error in volumetric fractions of quartz and clay 

components respectively. 

Additionally, 
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In the above equations, the materials termed as 1 and 2 remained unchanged giving the 

equation as  

(6.8) 
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Substituting error value for volume fractions ( σf1 and σf2) as 5% in the above equation we 

obtain. 
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 The second approach for calculating the effective elastic moduli is the Voigt-Reuss 

bounds. The Voigt upper bound of the effective elastic modulus Mv of 'N' phases is given by  
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The Reuss lower bound of the effective elastic modulus is given by 
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where 

f i  = Volume fraction of the ith medium. 

M i  = Elastic moduli of the ith medium. 
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(6.9) 

(6.12) 

(6.10) 

(6.11) 
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Since we consider the error in volumetric fractions (f1 and f2) to be 5% we obtain 
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Substituting error value for volume fractions ( σf1 and σf2) as 0.05 in the above equation we 

obtain. 
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Substituting into equation 6.12 we get  
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6.3.2 Computing error in saturated bulk modulus (Ksat) 

 I used formation bulk density and acoustic velocities measured by the logging 

instruments to calculate bulk modulus of the in-situ rock (KSat) using the relationship  
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where 

ρb  = Bulk density in g/cc 

Vp  = Compressional velocity in Km/sec 

Vs  = Shear velocity in Km/sec 

KSat  = Saturated bulk modulus in Gigapascals (GPa) 

 By applying the error propagation equation, I calculated the error in the saturated 

bulk modulus for each data point. Since the data are independent, the error propagation 

equation for error in KSat is as shown below. 
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In the above equations, I used an uncertainty of ±5 % in the slowness value computed by the 

logging tool for acoustic velocities and ±0.025 g/cc as uncertainty in the bulk density at 1σ 

confidence level.  

(6.13) 

(6.14) 

(6.15) 
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6.3.3 Computing error in bulk modulus of pore fluid (Kfluid) 

 The bulk modulus of the pore fluid can be calculated using the equation 
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where Kfluid is the bulk modulus of the reservoir fluid, Si is the saturation of the individual 

fluid phases and Ki  is the bulk modulus of the individual fluid phase. Since I am using a two- 

component system the above equation can be expanded to read as  
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 Although the error values for Sw and Kfluid can be computed separately, the exact 

sources of error sources would need to be known priori and accounted for. As an example, 

the acoustic velocity is a function of pressure and temperature. Therefore the errors in the 

these measurements will be required to be included in the computation. In some cases, the 

exact sources of this error are unknown and therefore it is prudent to use a generic error value 

for estimating the error of a parameter which is a function of several variables and whose 

measurement characteristics is unknown. I used the following generic error values for water 

saturation, the bulk modulus of the fluid phases. 

• RMS error in water saturation (σSw) = 20 % 

• RMS error in fluid bulk modulii (σKoil, σKwater) = 5 % 

Using the above values the error in bulk modulus of reservoir fluid was computed as per the 

equation shown below. 

(6.17) 

(6.16) 
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The equation 6.18 was determined by applying the error propagation equation to the value of 

bulk modulus of fluid which in turn is a function of three variables namely Sw, Koil and Kbrine. 

6.3.4 Computing error in saturated bulk modulus with substituted fluid (Ksat2) 

 The saturated bulk modulus using the substituted fluid was calculated using the 
equation 
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where  

KSat2  = Saturated bulk modulus of rock with the substituted fluid, 

Φ =  Porosity, 

K* = Bulk modulus of porous rock frame, 

K0  =  Bulk modulus of the mineral matrix, 

Kfl2  =  Bulk modulus of the substituted pore fluid,  

KSat  =  Saturated bulk modulus of the in-situ rock. 

 As is apparent from the above equation, KSat2 is a function of K*, K0, φ and Kfl2. 

Additionally K* itself is a function of KSat1, Kfl1, K0 and φ. It is also possible to calculate KSat2 

by eliminating the term K* as shown earlier in the section 5.3.4. Eliminating the term K* 

(6.18) 

(6.19) 
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greatly simplifies the calculation of the error in KSat2 using the error propagation equation by 

reducing the complexity of calculation involving dependent variables. The form of the error 

propagation equation for calculating error in saturated bulk modulus with substituted fluid is 

shown below. By eliminating the term K* we have  
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The error term σKSat2, for the parameter KSat2 is a result of the error propagated from the 

logging measurements and is given as  
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The term 2W>\�3∅ in the above equation represents the covariance between KSat1 and porosity. 

The bulk modulus of the saturated rock and the porosity are negatively correlated and 

therefore requires the covariance term in the equation (Broadhead, 2005). This strong 

negative correlation is commonly observed in the data but is not a result of any inter-

dependence of the calculated parameters. As discussed earlier in chapter 1, the objective of 

this study is to determine the measurement error propagated from the logging instruments and 

therefore it is not necessary to include the covariance term in the error propagation equation 

unless both parameters have been derived from a common variable. In this case, both porosity 

and KSat1 are both functions of density measurement, where density is the independent 

variable. And therefore when determining the solution to terms such as 
^_;`�
^∅ 	[�	 ^_;`�^_;`��	 as 

shown in equation 6.21, the porosity term cannot be considered to be an independent variable 

(6.21) 

(6.20) 
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for the purposes of this study. This is due to the fact that the porosity has been computed from 

the formation density using the standard porosity equation for a constant matrix and fluid 

density and therefore shows strong negative correlation with density. If the total (or effective) 

porosity term was measured by an independent instrument (i.e. porosity instrument such as 

Neutron or NMR) the measurement error in porosity can then be considered to be 

independent and would have no dependence on the density parameter and vice versa. 

Additionally, including the covariance term to define relationship for just one pair of 

variables would be incorrect since several other sets (such as density and velocity or K0 and 

velocity etc.) may also show similar correlations and covariance's for such sets would then 

need to be included in the error propagation equation. Including covariance terms for 

individual sets of data may be impractical since several other factors such as burial history, 

age, compaction, shape and sorting of the individual grains, presence of shale, to name a few, 

play an important role in determining degree and direction of individual correlations. As an 

example, presence of shale can reduce the density in varying amounts depending whether the 

shale is present in laminated or dispersed form. Another assumption that is commonly made 

is that shale has the same properties regardless of how it is distributed in the rock. The 

solutions to the individual terms in the equation 6.21 as stated by Broadhead (2005) are given 

below. 
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 In the above equations, the variables K0, Kfl1, and Kfl2 are considered to be 

independent and obtaining their solution for the variation of KSat2 with respect to these terms 

is straightforward. However when determining the solution to the terms ̂
_;`�
^∅ 	 and ̂

_;`�
^_;`��, 

Brodhead (2005) considers the porosity term to be an independent variable. However since 

Wyllie's equation has been used to calculate porosity from the density measurement, the 

solutions to the terms 
^_;`�
^∅  and ̂

_;`�
^_;`�� will require porosity and the density to be considered 

as dependent variables. The solution to the terms 
^_;`�
^∅  and  ̂

_;`�
^_;`�� can be easily determined 

by rewriting KSat1 as  

a>\�3 = 2.65 − 1.65∅c=", − 43=>,e, 
where density is expressed by density = 2.65- 1.65 * φ  
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where ̂
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^∅ = 1.65 4Mf=>, − =",8 
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Similarly the term ̂
_;`�

^_;`��	 can be written as 
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where 
^∅

^_;`�� = 3^_;`�� ^∅�  

The equations shown above have been used to calculate propagated error in the KSat2 term 

without the need to use the bulk modulus of rock frame (K*) term. This greatly simplifies the 

calculation. All parameters with the exception of bulk modulus of the new fluid (Kfl2)have 

been previously computed. The bulk modulus of new fluid (Kfl2) calculation is similar to as 

described in section 5.3.5. As in the original calculation, a value of 0.7 was used as a cutoff 

value for water saturation(Sw) to delineate hydrocarbon and water-bearing zones. Therefore 

minor hydrocarbons present in zones showing computed water saturation > 0.7 are effectively 

ignored by the fluid substitution process. This helps target the fluid substitution process to the 

hydrocarbon-bearing intervals. It is important to take care when applying the Wyllies porosity 

equation in formations that have higher fractions of shale, the porosity is first corrected for 

the presence of shale the shale fraction. 

6.3.5 Computing error in bulk modulus of the porous rock frame (K*) 

 Although I describe the methodology to calculate the error in the K* term, it is not 

used in this study since the K* term has been eliminated as per equation 6.20. The paper by 

Smith et al. (2003) describes the method to compute the bulk modulus of the porous rock 

frame (K*) using the equation shown below 
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where  

φ  =  Porosity 

K0  =  Bulk modulus of the mineral matrix 

K fl  =  Bulk modulus of the pore fluid  

KSat  =  Saturated bulk modulus of the in-situ rock 

The K* parameter is calculated using the logging data representing the rock containing 

original fluid in the pore space. The error propagation equation for calculating the uncertainty 

in K* due to error propagation from logging measurements can be written as 
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where the term φσ
SatK  is the covariance between KSat and porosity (φ). 

I have previously computed variables K0 and Kfl and their respective uncertainties. As 

described in section 6.3.4, the porosity (φ) and the saturated bulk modulus (KSat) are both 

functions of the formation bulk density and the uncertainty calculation for KSat and φ would 

include propagated error from the density measurement. When calculating the solution to the 

term such as ̂
_∗
^∅  from equation 6.23 implies that a variation (or uncertainty) in the porosity 

parameter is a result of variation (or uncertainty) in the density parameter for a given matrix 

(6.23) 

(6.22) 
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density and pore fluid. The uncertainty in the density term would then result in the 

uncertainty of the KSat parameter. This interdependency is due to the fact that the porosity 

term has been calculated using the standard equation from the density measurement for a 

constant matrix density. In this study, I uses a constant value to define for uncertainty in the 

density term. This however is not a requirement and a separate uncertainty curve for density 

can be used if it is available, which will take into account the variation with depth as a result 

of changing physical properties and borehole conditions. If the total (or effective) porosity 

term was measured by an independent porosity instrument (i.e. such as Neutron or NMR 

instruments) the measurement uncertainty in the porosity term would be independent of the 

uncertainty in the density term. Therefore using an independent porosity measurement will 

allow the terms KSat and φ  to be considered as independent variables for the purposes of error 

propagation from logging instruments and greatly simplifies the solution to the terms 
gh∗
g∅  or 

gh∗
gh ijk . 

 I state below three methods of calculating the uncertainty in K* by considering the 

porosity and KSat to be dependent variables while K0 and Kfl are recognized as independent 

variables. The suggested methods state the procedures to express φ and KSat in terms of each 

other, therefore allowing us to determine 
gh∗
g∅  or 

gh∗
gh ijk terms. This calculation is unnecessary 

for the purposes of achieving objectives of this study, since the error in KSat2 was already 

determined without the need to calculate the error in K*. Nevertheless the methods to 

calculate uncertainty in K* are discussed here for completeness. 
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Method 1: 

 The bulk modulus of porous rock frame (K*) is expressed by equation 6.22. This 

equation contains the two dependent variables, namely porosity and KSat. Therefore, simple 

partial differential method cannot be used directly since it would require the two variables to 

be independent. In order to determine solution to the terms such as ̂
_∗

^_>\� and ̂
_∗
^∅ , the first 

method would be to express porosity in terms of KSat using the following set of equations. 

Density is expressed in terms of porosity as density = 2.65-1.65*φ for constant matrix and 

fluid densities by using the standard porosity equation. The relationship between porosity and 

KSat can be derived as shown below. 

)3
4(* 22

SPSat VVDensityK −=
. 

By expressing the density term of KSat gives the porosity as  
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By substituting the porosity term in the equation 6.22 gives the following expression. 
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 By expressing porosity in terms of KSat, allows us to differentiate K* with respect to 

KSat i.e. the term ̂
_∗

^_;`�. In the equation 6.24, the velocities Vp and Vs can be considered to be 

(6.24) 
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constants because they have been measured by an independent instrument and this allows 

their uncertainties to remain independent. The above equation appears tedious to solve but 

has been made much easier by directly expressing porosity in terms of KSat and allows 

solving for dependent variables. We can use the similar methodology as used above to 

determine solution to the term 
^_∗
^∅  by expressing KSat in terms of density, Vp, and Vs. and then 

further expressing density in terms of porosity. This allowed me to replace KSat terms in the 

equation 6.22 with the alternate form as shown below. 

a>\� = (2.65 − 1.65 ∗ K[�[01�J) c=l, − 43=0,e 

The expression for K* when KSat is expressed in terms of porosity is shown below.  
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Again the velocity terms are considered to be constants and the above equation allows us to 

determine ̂
_∗
^∅  for the dependent variables KSat and φ. The co-variance between porosity and 

KSat in the equation 6.23 can be determined using the data for the entire log interval. The 

derivative of K* with respect to remaining two variables namely bulk moduli of the pore fluid 

(K fl) and the mineral matrix (K0) is relatively simple to compute since the uncertainties in the 

two variables are completely independent. The actual expressions for derivative terms are 

shown below for completeness.  

(6.25) 
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Method 2: 

 The second suggested method to determine relationship between KSat and φ involves 

using the Gassmann equation of the form shown below.  

)(* 00

*

0 f

f

Sat

Sat

KK

K

KK

K

KK

K

−
+

−
=

− φ
 

For a specific value of K*, a relationship between KSat and porosity can be determined by 

rearranging the above equation to the form 
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where -1 = _∗
_m�_∗ and -2 = _n

∅o_m�_np 

K*= Bulk modulus of porous rock frame. 

K f= Bulk modulus of pore fluid 

K0=Bulk modulus of the mineral matrix 

 An empirical relationship between KSat and φ can be determined for specific range of 

K* values that are observed in the well in order to determine the relationship between KSat 

and porosity by using a suitable data fitting function. This method would generate several sets 

of empirical relationships between KSat and porosity, each for a specific value of K*. While 

the relationship between KSat and porosity can be derived for different values of K*, in 

reality, a specific well may only have few values of K*. 

Method 3:  

 In another method as suggested by Mavko et al., (1995) allows determining 

relationship between KSat and porosity using the equations below. 

~
0

11

φ

φ
KKK Sat

+=  

where 
f

f

KK

KK
KK

−
+=

0

0~
φφ  

K f= pore fluid bulk modulus 

K~
Φ=dry pore space stiffness 

K0=Bulk modulus of the mineral matrix 



121 

 

The method described above would require availability of core data in order to determine the 

pore space stiffness parameter. This data was unavailable and hence the method could not be 

directly applied for this study. Another method described by, Murphy et al. (1993) uses the 

contact theory to predict that the frame moduli K* and G that are simple functions of porosity 

and state that the theory predicts that the modulus ratio K*/G is constant between 0.667 and 

1.667. The authors base this on contact theory which predicts that as grain contacts grow in 

size the porosity decreases. The relationship between K* and porosity can be determined if 

the contact area between individual grains is known. This method presents a unique problem 

since elastic properties of both matrix and cement along with an estimate of contact area 

would need to be known priori in order to determine relationship between K* and porosity. 

Once the relationship between K* and porosity is known it is possible to determine the 

relationship between KSat and porosity. 

 Although there is no need to calculate the error in K* for determining the error in the 

fluid substituted velocity, the three methods stated here can assist in determining the 

relationship between KSat and porosity if it is desired to use the substitution method as 

suggested by Smith et al. (2003). 

6.3.6 Computing error in shear modulus (G) 

 Calculation of uncertainty in the shear modulus is relatively simple. As described in 

section 5.6, the shear modulus is calculated using the equation. 

2* Sb VG ρ= . 

where 

G  = Shear modulus in GPa. 
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ρb = Bulk density of the rock (g/cc) 

Vs = Shear velocity (Km/sec) 

By applying the error propagation equation we get  

.***4* 22222
VsbSbSG VV σρσσ +=  

where  

σG = RMS error in shear modulus in GPa 

σVs = RMS error in shear velocity in Km/sec 

 Throughout the process of fluid substitution the value of shear modulus of the rock 

(G) is kept constant. However if the value of G is computed from the logging data then an 

uncertainty associated with the Vs measurement will be propagated to the shear modulus 

derived from the logging data. 

6.3.7 Computing error in fluid substituted bulk density  

 The paper by Smith et al. (2003) states that the new bulk density can be computed 

using the standard porosity equation given as �Q = �S(1 − T) + �UVT. I replaced the term �S 

with apparent grain density as described in section 5.3.7 to account for variation in the bulk 

density due to the presence of clay. The apparent grain density calculation is shown below. 

.
1

*)1(*(

Porosity

VshDenShaleVshPorosityDenMat
AGD

−
+−−=  

where 

AGD  =  Apparent grain density (g/cc) or (ρg in the standard porosity  

   equation) 
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DenMat =  Matrix grain density (constant - 2.65 g/cc) 

Vsh  =  Volume of shale in fraction 

DenShale =  Density of dry shale (constant - 2.60 g/cc) 

 The uncertainty in the apparent grain density is one of the contributors to the error in 

bulk density. The calculation of the uncertainty in the fluid substituted bulk density would 

first require determination of uncertainty in parameters such as the apparent grain density and 

the density of the substituted fluid. For clean rocks (low shale fraction) a single value can be 

assigned for the matrix density and a reasonable assumption for uncertainty in the value of 

density of matrix and the density of fluid can be made. For example, an error in matrix 

density and density of fluid for clean sandstones can be ±0.01 or ±0.02 g/cc respectively 

unless an alternate uncertainty value is otherwise available. However when the fraction of 

shale in the rock matrix increases, it becomes difficult to estimate the error in the apparent 

grain density, since the error parameters such as Vsh, DenShale etc would have to be known 

priori. Calculating uncertainty in these parameters would then require several assumptions of 

its uncertainty values and would therefore make the calculation unreliable. I therefore used a 

constant uncertainty value of ±0.025 g/cc which is the same as the uncertainty in the input 

density parameter used in this study. 

6.3.8 Computing error in fluid substituted velocity 

 This is the final step in the calculation of uncertainty in the fluid substituted velocity. 

The P and S velocities have been calculated using the equations stated below. 

b

Sat GK
Vp

ρ
3

4
2 +

=    and 
b

G
Vs

ρ
=  
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All variables in the above equations are considered to be statistically independent and 

therefore do not require the use of covariance term in the error propagation equation. This 

parameter independence with respect to data uncertainty is for the purposes of this study. 

Therefore the error propagation equation can be solved as per equations below. 
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The terms σKSat2, σG, and σρb2 represent the uncertainty in the saturated bulk modulus with 

substituted fluid, uncertainty in the shear modulus and the uncertainty in the bulk density with 

substituted fluid respectively. 

END OF THESIS 
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