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Abstract

The sensitivity of the Gassmann fluid substituttenhnique to uncertainty in the
input wireline measurements data has not been atigustudied (as per commonly
available literature). This study describes thehméblogy to quantify errors present in the
fluid substituted velocity by initially calculatintpe errors for petrophysical and the linearly
elastic input parameters and then propagating dtaulated input data errors throughout
the fluid substitution process.

The synthetic pore fluid modeling technique comiypoutilizes data from the
wireline log measurements to model various porig filnixture scenarios that may give rise
to the observed amplitude variation with offset @)Mresponse. Each input parameter,
whether directly measured or derived using a coatlin of measured parameters, is
bound within an uncertainty range due to the inhiedemitations of the measuring
instrument or resulting from uncertainty in the éngpl parameter estimation. By applying
the theory of error propagation, the uncertaintgakulated at each step of the Gassmann
fluid substitution process flow and the resultantertainty in the fluid substituted velocity
is determined.

The uncertainty in the fluid substituted veloaifgn affect both the phase and the
amplitude of synthetic traces generated for difiereffset angles and therefore, can
produce anomalous AVO response in synthetic fluiosgtution models. This uncertainty
in the synthetic models can impact any direct campas with observations in order to
determine the effect of different fluid scenarigslditionally, the observed AVO data may
be imprecise due to the anomalous AVO responseltirgsueither from geologic
uncertainty, data processing artifacts, or a coatimn of both thus increasing uncertainty

in lithologic AVO interpretation.
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Chapter 1
1.1 Motivation of this study

Fluid substitution is a commonly applied technigaeredict elastic properties of a
rock saturated with one fluid using the propertiesasured when the rock is saturated with
another fluid. This technique is commonly used talel the various fluid scenarios that may
give rise to an observed amplitude anomaly, AVafior 4D response. The rock elastic
properties are typically obtained from measureménts borehole using well logs. The key
well logs that are used for this analysis are thenmga ray, formation density, neutron
porosity, resistivity, and acoustic velocities. fation bulk density and neutron porosity data
are typically acquired using nuclear logging tegoes, while the acoustic velocity data are
acquired by using monopole/dipole/quadrupole logdachnique. As with any kind of data,
the individual well log measurements are subjech&asurement errors. The quality of such
data should therefore be quantified by its accusaty precision. The accuracy and precision
errors can be summarized into a single error tedtearoot mean square error (RMS error).
The RMS errors for individual measurements andrumsénts are published by logging
companies. The instrument measurement errors areftile propagated through any
subsequent computation which utilizes the measpaeameters as inputs. The motivation for
this study is to quantify the amount of error thas been propagated from the individual
measurements to the final predicted velocitiesgrdeined for the substituted fluid, by using
the Gassmann fluid substitution relationship. Theorepresent in the fluid substituted
velocity will therefore impact any subsequent citians or interpretations performed when
using this velocity. This serves to assist any tative approach used in estimating the
uncertainty in a lithologic AVO interpretation.
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1.2 Introduction

Fluid substitution is a critical part of seismiodeling since it allows for simulation
and quantification of various scenarios that mayegise to an observed seismic response.
Gassmann (1951) derived an equation to calculaebtilk modulus of a fluid saturated
porous medium using the known porosity and bulk utioof the solid matrix, rock frame,
and the pore fluid. The inputs into the equatioa asually derived from well logging

measurements of formation properties.

Gassmann's equations allows prediction of seiselmcities in a rock saturated with
one fluid from the same saturated with a fluid dfeding bulk modulus. This process is
referred to asluid substitution. When the rock is loaded under an increment of cesgion
such as a passing seismic wave, an increment @& passure change is induced which
resists the compression and therefore stiffensatie The low frequency Gassmann (1951)-
limit of the more general Biot (1956) theory predithe resulting increase in effective bulk

modulus, kK5, of the saturated rock through the following eéprat

K _ Koy = Ky (1.1a)
Ko—Ks Ko- Kdry AK~Ky)
(1.1b)
luSat = ludry "
where
Kary = Effective bulk modulus of dry rock frame,
Keat = Effective bulk modulus of rock fully saturatedgthvpore fluid,
Ko = Bulk modulus of solid material (matrix),
Ki = Effective bulk modulus of pore fluid,
® = Porosity,



May = Effective shear modulus of dry rock (frame),

Msat = Effective shear modulus of rock fully saturateith pore fluid.

Although Gassmann’s equations are derived for pureeral and fluid components,
in practice, the moduli are averages of differiognponents and are thus referred to as being
“effective”. Gassmann's equation assumes a homaogenoneral modulus and statistical
isotropy of the pore space, but is free of asswnptof pore geometry and is valid only at
sufficiently low frequencies such that the indugede pressures are equilibrated throughout
the work space. This limitation to low frequenceglains why Gassmann's relation works
best forin-situ seismic data with frequencies (< 100 Hz) and dasstypically perform as
well at sonic logging (~10Hz) and ultrasonic frequencies (*Hx) (Mavko et al., 2003). An
implicit assumption is that there is no chemic#étiiaction between porous rock and the fluid
that affects the moduli. Several authors (Mavkoakt 2003) have pointed out that the
Gassmann-Biot theory performs poorly when the meakuery dry rock values are used for
dry rock or dry frame. To avoid artifacts of ulilay rocks it is often recommended to use
samples that are at room conditions or that hawen lepared in a constant humidity
environment for the dry rock data. Smith et al0Q2) state that if completely dry samples are
used the velocities computed can be too high adfitbiefew monolayers of water may

chemically weaken the rock frame.

1.3 Literature review
Previously published studies dealing with uncatiaanalysis in fluid substitution
have primarily concentrated on stochastic appraacthaper by Samake et al. (2000)

describes the stochastic simulation of the Gassimaquations by randomly varying the



input parameters. The input parameters selectedismigned reasonable uncertainty values
and simulation is performed by varying the inputapaeters over a large number of trials.

Most of the published literature however, doestaké into account errors propagated from
the logging instrument. As a result, the value rdferent uncertainty present in the fluid

substituted velocity due to the use of well loggilaga remains unknown.

Direct application of error propagation theonyflirid substitution was described in a
paper by Broadhead (2005) and gives a determiragficoach to determining uncertainty in
the fluid substituted velocity. This paper detdiie analytical formulae for determining the
errors in applying the Gassmann fluid substitutibhe paper however, does not address
propagated errors in mineral or fluid bulk modulingoutations when applying common
mixing laws. Additionally the paper does not prassamactual case history detailing with the
final computed propagated error using real datan@Vé&005) presents the results of
sensitivity of Gassmann's equation to analysishefitmpact of assigning error ranges of a
fixed value to the input parameters due to unaai&s in the input data.

To demonstrate the effect of error propagatiameghodology to calculate the impact
of propagated error in the Gassmann’s fluid suldgit and resulting velocities and is
derived and applied to seismic modeling. The epmpagation equation differs in form
depending on whether the variables used in the atatipn are dependent or independent.
As an example, when an equation which containsiémsity and the porosity variables where
the porosity term was previously computed fromdkeasity term using some transform, the
porosity can be considered to be a dependent Vadilolensity. The methodology described

in this study involves determining the relationshlgetween input parameters to determine



whether the variables can be considered to be depémr independent in nature. Paper by
Smith et al. (2003) is used for the basis for thiaguting the error propagation equation

Houck (2002) describes the uncertainty in AVO iiptetation as a result of geologic
uncertainty and measurement uncertainty. The meammnt uncertainty in this case does not
refer to uncertainties in the logging measurembuntsefers to uncertainties caused in AVO
interpretation as a result of seismic data proogssaitifacts, noise or other interfering events
that contribute to inaccurate information about #astic properties of the rocks that
produced the reflection.

While several authors describe the difficulties applying Gassmann's fluid
substitution equations in mixed lithologies, esplgiin sand-shale sequences, little literature
has been published regarding the effects of errmpamation from logging tool

measurements on the final computed velocities amynsubsequent computations.

1.4 Fluid substitution in shaley sediment and rock

The traditional method of fluid substitution inrpas rock requires the total porosity
and the elastic modulus of the mineral phase astiapd assumes that the fluid reaches
instantaneous hydraulic equilibrium throughout ploee space. This assumption may not be
appropriate for shaley sediment because of thepgemneability of shale and the resulting
immobility of water in it. To overcome the probleshlack of instantaneous equilibrium one
of the approaches is to treat porous wet shaleaais gb the solid matrix material. This
excludes the porosity within the shale from totatgsity measurement and the new porosity
is the effective porosity. (Dvorkin et al., 200The Gassmann equation implicitly assumes
that the rock frame is composed of single minenal #erefore strictly speaking it cannot be

used for multi-mineral rocks (Berryman et al., 1p9%owever for rocks whose minerals
5



have similar elastic constants, the accuracy osfasan fluid substitution may be adequate
providing bulk modulus of the mineral matrix candmnputed using one of the mixing laws
to determine effective mineral moduli of the rotk.the case of using highly compressible
porous shale as one of the solid components toikedmit is not clear that the approach of

Dvorkin et al., (2007) will not introduce signifiogaerror.

1.5 Linearly elastic parameter estimation in mixeddibgy

A rock is a naturally occurring mixture of minesand is normally inhomogeneous
both due to the mixed mineral content and alsotdulee presence of cracks and voids. When
the rock is composed of two or more minerals, nmising rules are based on volumetric
fractions of the individual mineral constituents predict the effective elastic modulii of a
mixture of grains and pores we need to specifthé)volume fractions of the various phases,
i) the elastic modulii of the various phases, @&jdhe geometric details of how the phases

are arranged relative to each other (Mavko eR@b3).

At any given volume fraction of the constituenke effective modulus value will fall
between upper and lower bounds but the precisee waill depend on the geometric details.
The exact geometric details of the mineral and por@angements are generally unknown and
therefore an arithmetic mean of the upper and Idweamds is used as an estimate of the
effective elastic moduli of the mixture of grainsdapores. The two commonly used
techniques for calculating the upper and lower bisunf the effective medium are the
Hashin-Strickman and Voigt-Reuss bounds. The coatjomt methodology for the two

methods is described in detail in Appendix 5. Tke of effective media bounds allows an



estimation of the range of average mineral modfdusa mixture of mineral grains and

requires that both the rock as a whole and eacstitwent is isotropic and linearly elastic

1.6  Petrophysical parameter estimation in shaley sexiim

Gassmann fluid substitution uses several petrogdlyisarameters as part of the fluid
substitution work flow. The key parameter being tstimation of water saturation (and
therefore hydrocarbon saturation), volumes of déffié mineral fractions, and porosity. The
key parameter in petrophysical parameter estimasidhe choice of a correct petrophysical
model. There are several petrophysical modelsrtizgt be used in the evaluation of shaley
sand reservoirs. The key differentiator in the choof model is whether the formation
behaves as isotropic or anisotropic from the dtdticonduction point of view. Two such
models which have an impact on the petrophysicamaters computed for Gassmann fluid
substitution are considered, isotropic and anipatravet shale. Both models use effective
porosity (which is calculated by excluding boundevan shale). The bound water is of two
kinds: i) shalebound water, generally associated with a double water laysoeated with
clay minerals, and iixapillary bound water, held by electrically charged clay surfaces.
Mollison et al. (2006) provide a description of iears models in use for petrophysical

analysis in shaley sands.
1.6.1 Wet shale anisotropic model

This model is used for formations exhibiting ef@etl anisotropy, with conductivity
values depending on the direction in which theyraeasured. Electrical anisotropy appears
primarily as a consequence of resistivity devicasirg vertical resolution insufficient to

resolve individual layers or laminations. Undersdeonditions, the measurements provide



average values of the actual or intrinsic propsrtiethe lamina, leading to measurement of
macroscopic anisotropy. This type of model is geieapplied to clastic sedimentary rocks
(or shaley sand reservoirs) and requires measutemhenresistivity (or conductivity) tensor
which is represented by its two main componentsaRd R;, which are the vertical and
horizontal resistivities respectively. This mod#bas estimation of effective porosity and
water saturations that are fundamental inputs é¢oGhassmann fluid substitution technique

especially when applying fluid substitution to shyasand reservoirs.
1.6.2 Wet shale isotropic model

The wet shale isotropic model is also an effecuiweosity model and can be used to
characterize formations whose properties are repted solely by scalar quantities. This is
the case where the electrical conductivity is irhelent of the direction in which it is
measured. This model will generally apply to thimmogenous sands where we can expect
to find rocks of complex mineralogy (but not nece#g layered) and to shaley sand
formations containing mainly dispersed shale ohigenic structural clays.

An accurate estimate of uncertainty in petrophalsiparameters would need a
detailed reservoir study and would need to integmidta from several wells. Accurate
estimation of petrophysical parameters has a dimegiact in reducing errors in the
petrophysical inputs to the Gassmann fluid sulstitutechnique. This would however
require measurements using advanced logging institsrcoupled with inputs from other
data such as measurements from core data. Lacloraprehensive data set presents a
challenge. Inadequate data can lead to incorrdéthates of petrophysical parameters and
therefore results in additional uncertainty in fthed substituted velocity. In this study, |

estimated uncertainty values are assigned to theoptg/sical parameters based on

8



experience. However this serves to emphasize ffieulty of performing fluid substitution
when faced with limited amount of petrophysicaladdthe choice of uncertainty values used

for each petrophysical parameter is described latiis document.

1.7 Expected results from this study

The final computed velocity error value is notampletely random parameter but is
a function of systematic errors present in the irgata. While it is possible that some of the
biases present in the input data will have oppasitections and will therefore tend to cancel
each other, the maximum possible error that mavrogiven that the systematic errors act in
the same direction and do not cancel each otlexpscted to be important. This would result
in differences in reflection coefficients calculdtey comparing the velocity curves with and
without including the error term. The results ofstistudy are expected to quantify the
uncertainty bounds in the fluid substituted velpe#sulting from standard set of instrument
measurement errors. Following the calculation afeutainty in the new velocity, it would
also enable calculation of uncertainty error boufodshe reflection coefficient curves used

in synthetic AVO modeling.

1.8 Applications of the results of this study.

The chief objective of this study was to quantifg amount of RMS error present in
the fluid substituted velocity as a result of esror the input measured data. Given the time
and cost constraints on the tool design, operatioeasurement conditions and the safety
considerations it may be unfeasible to further cedmeasurement errors in the logging
instruments by a significant order of magnitude.i/ecognizing that the measurement

errors will be reduced with new instrument designd ongoing research, the reduction in the

9



measurement errors will not be of an order of nagie that the impact on the calculated
data, such as the Gassmann fluid substitution, dvceduce to being negligible. In view of
this limitation, the impact of uncertainty in thieifl substituted velocity on the reflection
coefficients at various angular offsets will be etatined. As mentioned earlier in this
document, synthetic modeling for various fluid smems is a commonly applied AVO
technique. By comparing the reflection coefficieatdifferent incident angles between the
fluid substituted velocity and its upper and lowealocity error bounds can be used to
demonstrate the effect of measurement error on Au@lies. This by no means would
indicate that the error in reflection coefficiemsists but only points to the fact that it is
entirely possible that the actual reflection cagéints may lie anywhere between the upper

and lower bounds.
1.8.1 Limitations of this study for AVO synthetic modedjrapplication

The application of this study is limited to therf@tions which are considered to be
isotropic. An anisotropic rock has variations im fithysical properties that depends upon the
direction a property is measured. The Vertical Svanse Isotropy (or VTI anisotropy) is
described when the axis of symmetry is verticale V| anisotropy can either be the result
of alternating thin layers that may be individualgotropic but may have significantly
different P velocities or may be the result of kiyg in shales. The Horizontal Transverse
Isotropy (or HTI anisotropy) on the other handdescribed when the axis of symmetry is
horizontal and is caused by fractures or crackssgmt in the rock. The wireline
compressional velocity data is typically measursihg the monopole acoustic source and is
unable to detect presence of VTI anisotropy andseglently the vertical velocity is

uncorrected for the effect of VTI anisotropy whée tixis of symmetry is tilted from vertical.

10



i.e. dipping formations or in the presence of largktive dip Accounting for anisotropic
effects in the seismic method was greatly advarpedhe pioneering work of Thomsen
(Hilterman, 2001). It has also been shown that AMO gradients can be reversed by
anisotropy and hence can significantly change thssification of the AVO anomaly. As

shales are highly anisotropic this effect cannatdirapletely ignored.

One application of this study demonstrates thecefbf error the fluid substituted
velocity on reflection coefficients when analyzisynthetic models. However, it is limited by
the fact that the effect of anisotropy on reflectmurves is not accounted for. Therefore the
synthetic data may show significantly differentules when comparing with the actual data
even when the systematic error in the measured @adathe subsequent error in fluid

substituted velocity is very well understood.
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Chapter 2

2.1 Introduction

Geophysical data acquired by logging tools carcdmesidered to be a subset of a
continuous random variable measured as a funcfiatistance. In the logging domain, we
can consider the data curves that are generatled $ample values of a continuous curve at
increments of the depth level spacing. In geoplaysipplications when the data are sampled
with sufficient density and even though we may @eking at a subset of a very large data
set, the variable (or measurement) may still reéerabcontinuous random variable over a
fixed depth section. Although the available datansgy contain only 4 data points / foot, the
actual acquired data density may be much greateanfexample, wireline logging data may
be acquired at a smaller depth interval which éntaveraged out to either 4 or 2 samples per
foot as per requirement. In another example, wherdata are acquired during the course of
drilling, the data density in regions of slow ratd#spenetration (ROP), may well exceed 4
data points per foot. With "while drilling" data@dgsition, the sensor acquisition times are
generally matched with expected ROP whereas witireline log, the number of data points

per foot is controlled by the logging speed.

2.2 Types of data distributions

In geophysical applications, when the data arepgaanwith sufficient density, even
though we may be recoding only a subset of a ldeda set, the variable (or measurement)
will still resemble a continuous random variables &n example, a thick reservoir section

with constant properties which has been adequatetypled can be reconstructed to closely

12



resemble the continuous random variable with a medime and distribution. Geophysical

data can be defined by four common types of digtidins as shown below.

2.2.1 Binomial distribution

The binomial distribution generally deals withal#tat have a fixed number of trials
which are independent and each trial has two outsomm general, the binomial distribution
is least suited to logging data simply becausergindom variable is discrete, which means
that it can only have a finite humber of valuesisTbondition restricts us to use either
integers or whole numbers for the data. This caolis easy to achieve by rounding off data
values at the cost of data accuracy. The otherittondequires that we restrict the number of
trials to a fixed number and thereby limiting thesgibilities. However there are cases where
a binomial distribution can be used. An exampléiabmial distribution can be identifying
sand/shale based on gamma ray log by using cuaddies. Therefore a formation is either
identified as sand or as shale if the gamma rayevad either more or less than the cutoff

value.

2.2.2 Poisson distribution

The Poisson distribution on the other hand dealh wata that are random,
independent, and occurs over some interval. ThesBoidistribution can also approximate a
binomial distribution when the number of data pistlarge and the probability of success is
low. For example, the binomial distribution canreplaced by a Poisson distribution when
we are looking at a large number of gamma log datats logged in a well and are interested

only in determining the probability that the gamragt counts occur over a small range.
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2.2.3 Gaussian distribution

The Gaussian (or normal) distribution deals witboatinuous random variable (or
measurement) that has infinitely many values. Tébbok on Elementary Statistics by
Triola (2006) describes continuous variables asdhecorded on a continuous scale with no
gaps or interruptions. This definition comes clas¢he well log measurement where a large
number of data points are collected over a contisugepth or time scale. Triola (2006)
describes a normal distribution as a distributibra @ontinuous random variable that has a
graph that is symmetric and bell shaped. Well logglata errors are best suited to be defined
by normal distribution when the error can takeriitély different values and is not restricted

to a integer value or only two trials as in theecatbinomial distribution.
2.2.4 Uniform distribution

The Uniform distribution is used in cases wherm ¥hlue of the measured quantity
has values spread evenly over range of possibilifibe graph of a uniform distribution will
therefore be of rectangular shape. (Triola, 2066). example, matrix or grain densities of
minerals can be assumed to have values that felinva specific density range. Therefore
any density within the specified range is posste also the probabilities of having any

density value within the range are equal.

2.3  Errorsin logging measurements

Without going into the detail of the instrumentags, we will focus on errors that
result from measurement conditions. The errorshn measuring sensors are added up to
generate an RMS error estimate for a reference uriegscondition. Given below are some

common sources of measurement errors that affedogding instruments. Errors due to
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measurements made outside the tool operationalfispéions, e.g. measurements in very
high temperatures or pressures which are outside dperating specifications are not
considered. They include:

1. Tool calibration errors and tool biases,

2. Effect of borehole alteration or invasion in boglaese and time,

3. Human errors or incorrect applications of dataextion algorithms,

4. Effect of varying logging speeds on data repeatgbil
2.3.1 Different approaches to assigning data uncertainty

A sedimentary bed or layer may be composed of kyers and may be
heterogeneous at the well log scale. The indivityer thickness is generally much smaller
than the seismic wavelength. Two approaches cameftre be taken while analyzing the
data. The first approach would be to consider thatlog values should remain constant
within each sedimentary layer or sedimentary fattias are clearly identified by the seismic
wavelet. Therefore, any variation in the measuraid avithin a specified depth interval and
within the tool measurement uncertainty range can cbnsidered to be a result of
measurement error and not due to variations imtbasured property within the sedimentary
facies. The other approach that is commonly usegetnophysical analysis is to block the
data curve into zones for the discrimination ofcerlefacies. Doveton (1994) defines the
electrofacies as the set of log responses whichactexizes a bed and permits it to be
distinguished from the others. The blocking procesgslaces the original data curve by a
stepped function whose value can be considereddisceete measurement representing the
blocked zone and measured within a specified ramigeccuracy. Therefore a single

sedimentary bed unit considered in the first apgiioaay be further sub divided into several
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zones in the second approach. For the second mathoel effective it is important that the
input curves are resolution matched and the mateketital resolution is smaller than the

bed thickness.

2.3.2 Errors in nuclear measurements

Formation bulk density, neutron porosity, and gammy curves are the primary
curves generated using a radioactive source. Wiglesity and neutron porosity uses an
external radioactive source, the gamma measuremgatsures natural radiation in the
formation. The particles that are generated byoelive decay are completely random
events that are measured over a fixed intervalimé.t Since the generated particles are
completely random events, any finite amount of ¢susver a fixed interval of times is
subject to statistical fluctuations. It is importalo note here that this is a fundamental
property of radiation phenomenon and is not depende the nature and type of the
instruments that measure the radiation.

The number of particle counts (N) that the deteotiserves over a fixed interval of

time follows a Poisson distribution. The standaedidtion of the counts that are observed

over a fixed interval of time is given loy= \/N However in nuclear logging instruments
we are more concerned with the count rate (i.entsoper unit time) rather than the number
of counts by itself. The counting rate is given\ys¢ where ‘t’ is the time of observation. In
general, time is assumed to be measured with héghee of precision and therefore any error

in time is generally ignored. Therefore the staddhaviation of counting rate is given by

2.1)
o= 3N,



The count rates observed at the detectors arsforamed to bulk density or porosity
value by a transfer function. Obviously, the stai#d error from the random nature of these
events in the observed count rate gets transféoreéldde computed bulk density or porosity
value. This error is in addition to (and assumedbd¢andependent of) the systematic errors
arising from measurement conditions in a wellbdhee above described sources of errors
affect all measurements, however | list below sofriie specific factors that result in errors
in density and acoustic measurements. | have lihtfte list of factors to density and acoustic
measurements because these two data curves am@yprimeasurements that are used in the
Gassmann fluid substitution. Other important meas@nts include porosity, gamma and

resistivity curves for which a separate list oftéas is required.

2.3.3 Factors that impact accuracy of density measuresnent

1. Statistical errors which are function of radioaetsource age and activity.

2. Effect of borehole conditions: washouts, rugosellgstical boreholes.

3. Effect of logging bed boundaries in high angle bofes.

4. Density contrast between the borehole fluid anddhmation.

5. Impact of variable standoff (distance from sensgefto borehole wall). This

variation is common to LWD density logging.

0. Borehole alteration and invasion.

2.3.4 Factors that impact accuracy of acoustic measuresmen

1. Borehole irregularities, tool tilt, and tool deceitzation.
2. Velocity dispersion.
3. Effect of relative dip angle of the bed on measuem
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4, Formation anisotropy.
5. Cycle skipping.
6. Noise spike.

7. Borehole alteration and invasion.

2.4  Logging data distribution and data quality control

As stated earlier, logging data measures a cantimwandom variable and therefore
can be described by the normal or Gaussian disimibuFor a normal distribution, the
probability of a measurement having a value betweemd x+dx is given by the normal

distribution function (Triola, 2006)

ex{_ 1((X-#)ﬂ (2.2)
_ 2\ o

Y= oV2[]

Wherep is the mean of the observed values (or also cdledexpected value) and is the
mean that is used in the distribution. Thusgs the value we seek, however in reality with a
limited number of measurements in the targeted d&tion, the measured mean value may be
different from the actual mean value of the propdrat we seek. (Stein et al., 2003).

In order to analyze a collection of data pairdhauftwhich are normally distributed, a
bivariate normal distribution is defined by the mgavariances and covariances of the two
variables. The accuracies for the property beingsueed are often given in terms of Root
Mean Squared (RMS) errors. When an accuracy ofasuned property is stated, it generally
encompasses both the accuracy and precision ohéfasurement. Accuracy can be defined
as the difference between the measured value anué value. Precision of a measurement

refers to the repeatability of the measuremengdneral, the precision of the logging tools
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has greatly improved with the use of modern sdiadeselectronic systems and therefore the
electronic precision errors are generally very law opposed to errors resulting from

accuracy. The only key exception is the precisioore arising in measurements using the
nuclear radiation which are prone to precisionmsras a result of due to nuclear statistical

errors.

If the variables x and % represent normally distributed errors in accuracyl
precision of the measurement then the probabifityawing values with a specified accuracy

and precision is given by Clifford (1973).

]

Cov(x1x3)

P(x XzF;eX -1
Y Moo 1-p 20-p%)

wherep is correlation coefficient given y = , WwhereCov(xy, %) represents the co-

variance betweenyxand » matrix. If p=0, it implies that the two error variablesand » are
independent. This will be the case when we compramandependent error variables such as
accuracy and precision. Therefore parameter maasmteuncertainty, such as tool related
errors, can be defined in two dimensions. Furtleluation of electrofacies can be
represented in three dimensional space boundeditiynam and maximum log values. As
an example, bed of pure anhydrite should ideallyelpeesented by a single point. In practice,
combination of tool errors and mineral impuritiedl sause a constricted cloud to be focused
on a the ideal anhydrite point. This uncertaintyeither two or three dimensions can be
geometrically represented in the form of errorpslis or ellipsoids. In two dimensions (or
three dimensions) the error ellipses (or ellipspigie completely determined by their co-

variance matrix. Thus the error ellipses measuee lgtation and spread of Gaussian
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distributions. As a special case with=1,0, =1 44 =0, 14, =0, 0 =0, the joint probability
distribution on the x-y plane will look like a ciec When the standard deviations of the two
variables are different, the joint probability faion will look like an ellipse as shown in
figure 2.1 below. This ellipse will be thereforgabability contour that represents a pair of
values that have probability of 8mes the maximum probability. It is important tote here
that the axes of the ellipse coincide with grapbsaxvhich indicates that the co-variance is

zero (i.e. independent variables).

X2

002]: a
az
M2 </
CO,

—>

»
»

M1 X1

Figure 1 shows the error ellipse representatiamofmeasurements. The semi- axes of the
error ellipse are formed by standard deviatiortheftwo measurements. The error ellipse
allows for determination of data quality to isol#te data points which fall outside a given
probability.

However when the two measurements or their ermrereiat completely independent, the axes
of the ellipse will now be tilted. The co-varianogatrix holds the key to determine the

lengths of the axes of the ellipse and also thetithe ellipse. Computing the error ellipses
allows us to determine if the data meets our reguaonfidence level to be valid. Therefore
we can compute ellipses of different confidencelethat can help us analyze the quality of

the data. The probability contours of the ellipaa be determined by using the form below.
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In a matrix form the above equation can be given as
XKL X =¢? (2.5

X1X2

where K;liz is the inverse of the co-variance matrix, @pg{xﬂ_
XZ

In general, the equation of the ellipse is of tbmmonly known formax® + 2kxy + by2 =C

providedk® < ab. Comparing the general equation of the ellipséh wifuation 2.4, we see

that

1 1 z
7:b= 2'k2= /2)2'
0, g, 0,0,

a=

Since the value of the correlation coefficignlies between + 1, the conditiok’® < ab is
satisfied. Therefore equation 2.4 represents theatemn of an ellipse. For independent

variables, correlation coefficiept=0 therefore the above equation reduces to the aotym

BRG]

The co-variance matrix can be solved quadratidallyetermine the Eigen values. The square

known form of ellipse.

2

=c (2.6)

root of the Eigen values of the co-variance matiises the lengths of the ellipse while the

Eigen vectors specify the ellipse axes directions.

2 2 2 2 R 2
le + O-XZ + \/(O-X;l - 0-X2 ) + 40-Xy
2

Semi- majoraxis= A, = \/
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2 2 2 2 R 2
0'X1+0'X2—\/(0'X1—0' ) +40,,

Semi- minoraxis= A, = 5 X2

where); and, are the Eigen values. The direction in which tkesaare pointing can be
determined from the two solutions of
tan26 = &.
o -0 (2.7)
Therefore the probability whether the data liesd@ghe ellipse as determined by bivariate
distributions of stated standard deviations caddiermined by:
Probability(P) = 1- exp(- ¢?/2) (2.8)

If c=1, the confidence level is 39.3 % while for2cthe confidence level is 86.4% and so on.
When the true valuey] and the co-variance matrix are known, the erliiggse contains the
data estimates for variablesand % with a probability of P. Therefore we can constmrcor
ellipses for pre-selected standard deviations efdata and determine if the data meets our
guality specifications. The technique describedlmamexpanded to three variables which will
result in constructing the error ellipsoids instedérror ellipses.

The concentric ellipse represent contours of hpsel for fixed standard deviation of
the bivariate Gaussian distribution. However in saases we may not know the true value
of the parameter but we may have some knowledgatahe co-variance matrix. In such

cases the true value of the parameter can be e¢stirbg sample mean u. For independent

variables, the equation 2.6 can also be written as

BRI
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or in the matrix form asx7k* x = y2. This indicates that the independent variables are

distributed as chi-square distribution with 2 degref freedom. (Timm, 2002). Therefore the

semi-major and semi-minor axis can how be compasefllowing.

Semi- majoraxis= 4/ x°A,

Semi- minor axis= 4/ x°A,

We can therefore construct confidence ellipsesufdinownp, corresponding to a specified
probability as given in the chi-squarg)(table (Paradowski, 1997). The confidence ellipse
will describe whether the data with unknowmwill lie inside or outside the ellipse. The chi-
square distribution values for a stated probabil#jue can be obtained from tables. A small

table with commonly used values for 2 degreesed#dom is shown below.

r 0.39 2.3 2.77 4.61 5.99 9.21]
Probability (%) 50 68.3 75 90 95 99

In the above discussion, the primary intent wasléscribe a scheme to enable
analysis of data quality and to visualize the dhstion of measurement errors within the
logging measurements. However the method is equapiplicable when comparing

distributions of any two variables as a quality ttohprocess.
2.4.1 Application of bivariate analysis to this study

The primary intent of this study is to quantifgtAmount of error present in the fluid
substituted velocity as a result of measurememtr&present in the input logging data. The
result of this study will therefore determine th#M® error in the fluid substituted velocity
given the presence of systematic error in the mredstdiata and would therefore indicate the

range of values between which the actual velocigy hie. The key application of bivariate
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analysis to this study is to help determine appab@methodology for parameter calculation
by the use of probability contours. Bivariate asa@yallows visualization of spatial

distribution character of the data point cloud.sThllows the user to select the appropriate
parameter or the calculation method that reduceertainty by determining data points that

either lie inside or outside the probability corru

2.4.2 Constructing error ellipses

The error ellipses represent an area with a gpdgiirobability that the true value of
the parameter lies within its bounds. Error ellgpsan be constructed for a stated probability,
however the requirement is that the true valudefdarameter is knowgriori. In most cases
the true parameter value is usually unknown wheating with logging data and therefore it
is difficult to compute error ellipses unless ateadate measurement such as core data which

can be considered as close to the true value ikbia

2.4.3 Constructing confidence ellipses

As a general case, this technique can be usednstract confidence ellipses when
the true value is unknown but can be estimatedsinguthe mean of the data. The confidence
ellipses will therefore define confidence intervesthe unknown true value at a given value

of probability.

2.4.4 Application of confidence ellipse to this study

The confidence ellipse generated about the datnmgeses an indication of error
distribution. As an example, comparison of conficellipses generated in different depth
zones can indicate changes in error distributidi® calculation of Eigen values from the

covariance matrix further allows calculating Eigegctors. The semi-major axes coincide
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with the direction of maximum variation in errorcars also the principal component. The
ratio of the eigen vectors indicates the contridputof the individual errors to the total
variance in error.

Confidence ellipses (or ellipsoids when three disiens are considered) can be
useful when errors in velocities generated by apglywo different estimates of uncertainty
parameters. As an example, the error in water a&@bar calculation is dependent upon the
methodology applied to compute the water saturalitverefore creating error or confidence
ellipse will allow comparison of the errors in tbemputed data as a result of using differing

methodology.

2.5 Equations of error propagation

The error propagation equation allows determiniing error associated with the
dependent variable that has been propagated asuit & some transform using the
independent variables. As an example, let U bedépendent variable whete = f (x,y)
and wherex andy are the variables for which we define the indigbvariances as,, oy, and

Oxy. The error propagation equation can therefore bttemras

_ (dujz , (du ? ) z(duj du (2.9)
o,=.\|—|o;,+t|—|o,+20, | — | —
! ax) ¢ ldy) YL dx N\ dy

where

o’ = Variance for variable x

o7y = Variance for variable y

cszxy = Co-variance between variables x and y.
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The co-variance termzxydescribes how fluctuations between the variablesarrelated and

is only required if the measurements are correlatesme way. The covariance term can be

defined as oy, =lim Z (% =Y, =)

N -
(2.10
Equation 2.9 is called the error propagation equoatvhich illustrates that the
uncertainty in each variable contributes to theeutainty in a function and depends on the
partial derivative of the function with respectttemt variable. If the variables x and y are
completely independent (uncorrelated) then the al@muation will reduce to the one shown

below. For completely independent variables the/ardance term will eventually reduce to

o,=.—|0o g
! dx ) dy Y

Therefore, as long as we have a quantity thatusetion of independent variables, the above

Zero.

equation can be expanded appropriately for as mamables as long as the standard
deviation of each of the variables is known. Sitileeuncertainties are independent they can

therefore be added quadratically using some ofules shown below.

2.5.1 Uncertainty of a product:

2
If F=xly Theno; :\/(?j_ij o+ (?;;J o,

2.5.2 Uncertainty of a ratio:

dF \? dF g X
If g :§ ThenUF :\/(d—) 0'3 ( J 0—5 = _2+_40—§




2.5.3 Sums and differences:

If F=xzty

Thend™ =1 andF 41 0. = (d—Fj202+ - 2 2:\/(1)202+(il)202
dx dy dx ) * ldy) "’ § Y

If we consider a data vectar= (x,y,z,...) where X, y, z are independent varighéguation

2.11 can be written as shown below (Stein et D32

X;
i=1 i=1

2 2
X du L1 0 18, (2.12)
g = 0',2 — | = g —— g = — )Y o
Therefore if all observations or measurements legual uncertainties in = 02) then

u

2
o2=9_ (2.13)
N

In the case of this study, this indicates thatictions of the borehole where the measurement

conditions are constant, (i.e. no borehole washoutsther measurement issues) making N
measurements reduces the standard deviation ohdlam by 1/ NIk This points to the fact
that acquiring higher data points per foot in aelhote can help reduce uncertainty in the

mean value of the data. Higher data density caach&ved by reducing logging speeds and

thereby achieving better estimates for true vafubeformation property being measured.

2.6 Interpreting data uncertainty

The results of this study, as shown in chapteuéntified the amount of uncertainty
in the fluid substituted velocity and stated thguieas an RMS error value. It is important to

understand that all the errors are not completalydom and many of them (with the
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exception of nuclear statistical errors) are simfilg result of systematic error or bias.
Therefore the final RMS error value does not indicthat the data would randomly lie
anywhere between the upper and lower RMS error dmult does, however, indicate that
given the systematic bias in the input data, ipd@ssible that the computed data may be
deviated from the true value by a maximum amounigktp the RMS error value. It is also
possible that some of the errors may cancel edwr and further reduce the total RMS error.
One of the difficult problems in application of $hstudy is to determine the direction (i.e.
whether positive or negative) and the actual amofirslystematic bias in the data since the
true value of the parameter may be unknown. Detengithe direction and the amount of
systematic bias in the data is only possible weibeated measurements with different sets of
instruments. Since all the input parameters spetifie uncertainty haves Tonfidence, it is

expected that the end result would also have simdafidence level.

2.6.1 Uncertainty variation within the instrument measoeat range

Logging instrument literature generally quotesirggle value for data uncertainty
based on tests on a wide range of rock propemidsatia given confidence level. This single
uncertainty value does not indicate that the ewalue remains constant over the entire
measurement range that the instrument is capalbheeaturing. In addition and apart from
the measurement conditions the instrument accusajso a function of the rock property
and will therefore vary with variations in the ropkoperty. For example, the resistivity
measuring devices are very accurate at low remistiwit are incapable of measuring
formations with high resistivity with the same lewé accuracy. In this study | have used a
single value for a parameter uncertainty, howewé possible that this value may be lower

or higher than the quoted value.
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Chapter 3
3.1 Introduction

This chapter describes the procedure used irstudy to estimate the uncertainty in
fluid substituted velocity. This chapter also ddses the input parameters, petrophysical and
uncertainty constants used in this study, follolwgd brief description of the process used to
generate and compare synthetic traces and thdatideuof amplitudes at different incidence

angles.

3.2 Description of terms used in this study

The following methodology is used to describe ttega mnemonics used in this
document. The original data as recorded by theitggmstrument do not use a numerical
suffix, while similar data that have been computeihg the original data as input use a
numerical suffix. As an example, the input compieed velocity as recorded by the logging
instrument is termed aspWvhile the fluid substituted velocity obtained bgneputation is
termed as .

Similarly, the initial bulk moduli value computdidm original data do not carry the
numerical suffix while the computed moduli termseus suffix of "2". Therefore, the
saturated bulk modulus calculated from the inputida termed as &, while the fluid
substituted (or derived) bulk modulus is termed&ag, Suffix of 'Min' or 'Max' are also used

to denote upper and lower bounds of the data \aitlye of uncertainty.

3.3 Description of the procedure used in this study

This study involves calculation of new velocitieg applying the Gassmann's fluid

substitution process to the measured well loggitg.d used the methodology as described
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by Smith et al. (2003) to compute the new velositier the substituted fluid. The data
uncertainty for each parameter at each depth lsvebmputed using the error propagation
equation described earlier. Since the intent of gtudy is to determine the effect of error
propagation from logging measurements on the coedpuelocities, other effects such as
correlations between individual parameters in telel fare not considered in this study. As an
example, since velocity and density data are medsimdependently, they would be
considered to be independent variables for thequarpf this study, and the velocity-density
relationship is not required to be establishedetzine their inter-dependency. The result
of applying the error propagation equation allowsta compute the uncertainty in the fluid
substituted velocity, and therefore enables theutation of the likely upper and lower
bounds of the substituted velocity. The uncertaibtpunds indicate the maximum and
minimum values that the substituted velocity calh iathin at a given confidence level.
Following the calculation of fluid substituted geity and its RMS error, | compared
the amplitudes of the synthetic seismic tracesfigrdnt angular offsets up to a maximum of
30 deg between the computed velocity and its prebatper and lower velocity bounds. The
synthetic traces were calculated using the Zoepmduations in order to determine the
differences in reflectivity coefficients (or ampides) between the computed velocity and the
probable velocity curve (which is calculated by iaddor subtracting the RMS velocity
error). The purpose of this comparison is to euvelibe impact of data uncertainty in the
Gassmann fluid substitution process on synthetiplitsdes for AVO models that are
commonly used in the AVO analysis and which canltés variations that are purely due to

the tool measurement errors.
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3.4 Process diagram

Log curves preparation

* Curve data edits
* Preparation of input data

Calculate bulk modulus of the rock with
substituted fluid (K4 and estimate data
uncertainty in kKapo.

Compute petrophysical parameters

Water saturation, volume of shale, porosit
and its associated uncertainty.

<

Calculate new acoustic velocities with
substituted fluid using K;,and estimate the
uncertainty in the new velocity.

\ 4

Compute linearly elastic parameters

Bulk modulus of fluid, mineral matrix, rock]
frame and its associated uncertainty.

v
Calculate bulk modulus of the in-situ rock
(Ksa using borehole logging data and data
uncertainty in Ky
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Generate synthetic velocity curve using erro
bounds and convolute with seismic wavelet a
compare seismic traces.

hd

A 4

Compare differences in the synthetic amplitud
of fluid substituted velocity (\,) and the
velocity bounds of }, curve range (i.€. ¥max,
Vyamin) at different incident angles.




3.5 Method to compute uncertainty in the fluid sulhsé&t velocity

The paper by Smith et al. (2003) describes thehouetiogy to perform fluid
substitution in using the Gassmann fluid substtutnethodology. The key equation relating
saturated bulk modulus of the rock to its porodite, bulk modulus of the porous rock frame,
the bulk modulus of the mineral matrix and the bolkdulus of the pore filling fluids is

shown below.

K\’
(Wj
|<Sat - K * + o . (3.1)
9,09 _K
K fl KO K02
where
¢ = Porosity
K* = Bulk modulus of porous rock frame
Ko = Bulk modulus of the mineral matrix
Ks = Bulk modulus of the pore fluid
Kt = Saturated bulk modulus of the in-situ rock

The saturated bulk modulus of the rock can alscdneputed using the log
measurements namely compressional velocity, sheacity and the formation bulk density

through the following relationship.

(3.2)
_ 2 _ 4,2
KSat =5 Vp __Vs
3
where
Vp = Compressional velocity of the rock
Vs = Shear velocity of the rock
Db = Bulk density of the rock
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The application of the equation 3.2 is a two padcess where the bulk modulus of
the porous rock frameKf) is determined in the first stage. Once the patame* is
computed it allows us to calculate the bulk modwtishe rock saturated with any desired

fluid. Equation 3.1 can be rewritten in terms of &

KSa{¢K<O +1_¢j -K

fl
K =
K, K

KfI K0

(3.3)

_1_¢

The calculation of petrophysical parameters aerdittear elastic parameters used in
the above equation is described separately in Agipetr (Chapter 5) . The methodology
used to determine the uncertainty in the petrogiaysand the elastic parameters is also
described in Appendix B (chapter 6).

In the equation 3.1, the porosity term has beetailnkdd from the bulk density
measurement and therefore bothand porosity are dependent functions of densibis T
implies that any error in bulk density measuremsigropagated to the porosity and also to
the computed K, parameter as calculated using equation 3.1. ifidependent measurement
of porosity (using a separate instrument) was alibg| the K, term would still be dependent
on the density parameter however the porosity igould be completely independent from a
measurement error perspective.

It is possible to determine propagated error inak# then determine the uncertainty
in the saturated bulk modulus with the substitdteid (Kssy) as shown in equation 3.3. This
method however is complicated since it would ineotiffferentiating the new saturated bulk

modulus (Ksa) with respect to K* parameter which itself has me@mputed previously
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using equation 3.3 and is also a function of thgimal saturated bulk modulus §ky) and
porosity. Another drawback of this method is thguieement to determine the relationship
between K, and porosity. This task is difficult due to thesabce of core or any other

additional data. If additional data was availabtattcan help expresssi and porosity

relationship, it would help simplify the differeation of terms such ag’k™ and dk " .
dK g, do

Solving these terms involves determining solutiéms inter-dependent variablessKand
porosity that are contained within in the term K*@er the equation 3.3.

An alternate methodology suggested by Brodhea@5R6implifies the solution by
eliminating the term K* in the calculation of thendl saturated bulk modulus §k) as
shown below. The low frequency Gassmann-Biot theelgtes the bulk moduli of the rock

saturated with two different pore fluids as

Ken  _ K — Ketz  _ Ko (3.4)
KO_KSatl ¢(K0_Kﬂ1) KO_KSatZ ¢(K0_Kﬂ2)

By rewriting the above equation in terms of,Kwe obtain

Ko, =Ky —2 (3.5)
1+X)

KSs\tl KfIl + Kfl2

where X = - .
KO_KSatl ¢(K0_Kﬂ1) ¢(K0_Kﬂ2)

The above equation now allows calculation of emoKs, term Eksar) Without the
need to determine error in the rock frame moduk#3. ( have applied the error propagation
equation to initially determine errors in individyzetrophysical and elastic parameters and

then calculated the propagated error in the finahmuted velocities for the substituted fluid.
34



The uncertainty equation as stated by Broadhead5§2i3 shown below and contains the
covariance term20 satp» Which is the covariance between the saturatek imadulus and
porosity.

o= \/{szmz}*oz {d@a}*oz{d@a}*oz {deT*oz {szmz:I*oz m{d@ﬂd@ﬂ
FLds | O L do e L R Y Ay

(3.6)

Following the calculation of the error in the neaturated bulk modulus, the error in

the new velocity is calculated by reapplying theoepropagation equation to equation 3.2

which has been rearranged in the appropriate foroatculate new velocity. This is further

described in Appendix B in section 6.3.8.

3.5.1 Clarification on the use of covariance term

It is necessary to clarify the application of coaace terms in the calculation of
propagated error in this study. The objective ©f 8iudy is to determine the uncertainty in
the final computed velocities as a result of eppagated from the logging instruments.
The logging measurements of density, velocitiesistiwity, etc. are used to compute both
petrophysical and linearly elastic parameters uiegnethodology as described by Smith et
al. (2003).

The paper by Broadhead (2005) considers paramstets as bulk modulii of the
mineral matrix and the fluid to be statisticallyd@pendent, while considering the saturated
bulk modulii of the rock and the porosity to shovsteong negative correlation. While this
consideration is accurate when all input paramdtaxe been acquired independently (i.e.

from core measurements or reservoir studies),esdwmt directly apply to this study. In this
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study, | calculated both petrophysical and lineaglgstic parameters using basic rock
physical properties and also computed the propdgaiteor for each calculated term. The
input data for this study will show varying degresscorrelation between several sets of
variables. As an example, several data pairs, aaatensity vs. velocity, Jvs. velocity, etc.

(to name a few), may also show varying degreesooktation. In such a case, covariance's
for each data pair would then have to be includethé error propagation equation. For the
purpose of this study, unless the calculated paemnédave been derived from a common
variable and therefore show direct dependence oh ether, the covariance term for each
data pair will not be calculated. As an examplengsuch as porosity andsig are both

calculated from the density measurement, whereityaaghe independent variable measured

by the logging instrument. Therefore when deterngrthe solution to terms such &§s. or
do

dKepo | the porosity term cannot be considered to bendegendent variable for the purposes
dK

sn
of error propagation from logging data measuremehtbe total (or effective) porosity term

was measured by an independent instrument (i.epentent porosity instrument such as
Neutron or NMR) the uncertainty in the porosity nieccan then be considered to be
independent and will not require inclusion of tlevariance term in the equation. This topic
is discussed again in Appendix B (6.3.5 sectionkalculating propagated error for the K*

term where it has direct application.

3.6  Application of uncertainty calculation for fluidigstituted velocity

One technique to determine the impact of the ¢atled error in the new velocity is
by comparing the acoustic impedance curves andduttansforming them into a reflection

amplitude time-format. This allows comparison af geismic traces generated by the fluid
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substitution process both with and without considethe effect of uncertainty in the
measured data set. The differences between thaisdraces would point to the minimum
and maximum reflection coefficients (or amplitudéferences that can arise simply as a

result of measured data uncertainty.

3.6.1 Method to compute synthetic seismogram

The process for converting the velocity-densityves to a synthetic seismic trace
can be termed as forward synthetic. The basic gstbumused in the generation of synthetic
seismograms is that plane waves propagate veytithlough a horizontally stratified
medium and that reflectivity is governed solely bty acoustic impedance contrasts
encountered within the layered medium. The reftectioefficient is then computed by taking
the difference of the two acoustic impedances éwilly their sum. The convolutional model
of the seismic trace can be represented;by r, * w; + n,, where the symbdllrepresents
the convolution of the reflection coefficients with the wavelet 'W and 'gd is the additive
random noise. In this study, | did not consider dffect of additive noise, however the
random noise would be a consideration for any ser&tudy involving comparison of the
synthetics with actual seismic traces. | have dthtdow some of the processing steps that |
used to generate the synthetic seismogram. | heae Hampson-Russell software to convert

the velocity - density data in depth domain torségraces in the time domain.

1. The sonic velocity and the density curves weretidiggl to a sample interval of 0.5 ft.
2. The curves can be 'blocked' to a larger sampleviaitéaking care that the log values
are not aliased in the process of creating theetasgmple interval. | used a blocking

interval of 2 feet which is greater than the highveave number that can be sampled
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i.e. Nyquist criteria would limit the highest wamamber to 1 foot (2 x 0.5 ft.). Since
the vertical resolution of the acoustic instrumisrdpproximately 2 feet (or greater),
the wavenumbers higher than value of 1 cannot bepleal due to the intrinsic
resolution limit and therefore would not contribtibedata aliasing.

3. The blocked acoustic impendence curve is then useccompute reflection

coefficients at each interface between contrastietpcities using the equation

_ A4
= L=t
Ary11Ae

, Where At is the acoustic impedance.
4. A wavelet is generally chosen that has frequensporse and bandwidth similar to
nearby seismic data. For this study | have chosedRicaer wavelet with peak

frequency of 70 Hz. This synthetic wavelet was aived with the reflection series

for the entire well data to generate a syntheignsie trace.

3.7 Calculating reflection coefficients as functioninefident angle

The P - wave reflection coefficient as a functajrthe incidence angle is defined as
the ratio of the amplitude of the reflected P-wawgethat of the incidence wave and is
dimensionless because the respective amplitudeskbeen normalized (Hilterman, 2001).

At normal incidence, there is no mode conversionSt wave and the P-wave

. . . . Ipy—1I .
reflection coefficient is given byRp =% where b, and Ip; are the impedances of
P

2tIpy
medium2 (.,*Vp) and mediumi{(*Vp;). The variation of reflection and transmission
coefficients with incident angle (and correspondimgyeasing offset) is referred to as offset
dependent reflectivity and is the basis for ampktwersus offset analysis. Knott (1899) and
Zoeppritz (1919) invoked continuity of displacemend stress at the reflecting interface as

boundary conditions to solve for the reflection arashsmission coefficients as a function of
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the incident angle and the media elastic propelzastagna et al., 1993) The common
incidence angles in exploration applications aregeneral, less than 30 deg. Since the
observed seismic data measure reflection coefficieat only reflection amplitudes with the
assumption that there is an equivalence betwedectieih coefficients and the observed
amplitudes, | have compared the amplitudes up tdefiees by using Zoeppritz equations
and with the assistance of Hampson-Russel softwée. intent of this analysis was to
compare the differences in the amplitudes betwied $ubstituted impedance contrast and

its upper and lower uncertainty bounds.

3.8 Constants used in the petrophysical and linedalstie parameters
In the absence of additional data such as carid, ®r reservoir data for use in this
study, | used the following constants for the psgmof this study.
Constants used for calculating water saturatiomelife's method)
— Resistivity of formation water : 0.075 ohm-m
— Cementation exponent (m) :2.0
— Saturation Exponent (n) : 2.0

Constants used for density-porosity conversion

— Grain density of mineral matrix . 2.65 gl/cc
— Density of formation water :1.00 g/cc
— Density of dry clay : 2.60 g/cc

Constants used for calculating bulk modulus ofrészrvoir fluid:
— Sea water temperature at mudline 140 deg F

— Formation temperature gradient 1.1 deg/100 ft
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— Formation pressure gradient :0.465 psilft
— APl value of the hydrocarbon in the reservoir: goral fluid : 20

— Gas gravity of dissolved gas in the reservoirigiaal fluid :0.6

— API value of the hydrocarbon in the reservoir -gitbted fluid : 45

— Gas gravity of dissolved gas in the reservoir:bssituted fluid : 0.6

Constants used for calculating bulk modulus ofrtineeral matrix

Bulk modulus of quartz (Kar) : 37 GPa

Bulk modulus of clay (|§ay) 115 GPa

Shear modulus of quartzfjs) : 45 GPa

Shear modulus of clay {4,) : 9 GPa

3.9 Parameter uncertainty assignments

The uncertainty assignments to the measured HataMas used this study is shown
in the table below. All measured parameters aredjly quoted at one standard deviation
confidence level by data acquisition companiess fiossible to use alternate values for data
uncertainty for use in specific applications, hoarin view of no other tool or borehole
guality information | used only published values tlois study. The confidence levels for the
calculated parameters are undetermined and wowdd additional study. The calculated
parameters required assigning uncertainty valuggeredue to limited data availability or
complexity of determining the true data uncertairhg an example, calculating the water
saturation parameter in shaley sands requires sheofi advanced interpretative tools and
measuring instruments in order to reliably estimide parameter and therefore required

assigning uncertainty values based on expectedtands.
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ured

SN | Parameter | Type | Description |  Uncertainty
M easur ed Parameters
1 Density Measured Formation Bulk Density + 0.02%cqg
2 DTP Measured| Slowness- Compressional + 5 % ofbured
value
3 DTS Measured| Slowness- Shear + 5 % of meas
value
4 Res 90 Measured Resistivity at 90" DOI + 1 % ebsured
value
Calculated Parameters
5 Sw (Archie)| Assigned| Water Saturation + 20 % of
calculated value
6 Vshale Assigned | Volume of Shale +5 % of
calculated value
7 DenPor Assigned| Porosity Calculated from Density 5 % of
calculated value
8 Density 2 Assigned| Fluid Substituted + 0.025 g/cc
9 Kwater/ Koi Assigned | Fluid Bulk Modulus (Water/Qil)| +5 % of
calculated value

3.10 Petrophysical cutoff values

Due to limited data availability, several petropical parameters required the use of

cut-off values in order to constrain the solutionat meaningful value. If additional data is

available the limits imposed by the cutoff values ®ither be loosened or eliminated by

taking advantage of the additional information. Tuoff values are chosen such that there

would not be any significant improvements to thewsel results if the selected cutoff values

were not applied.
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Parameter

Cut off

Application

Volume of Shale ()

70 %

- Vsp > 70 then rock type is regarded as shale

—Vgp> 70 then & = 1, disregard minor
hydrocarbons in shale dominated rock.

-Vsn> 70 then porosity <= 0.05, improve
porosity computation in shale dominated
rock

Water Saturation (Sw

70 %

- Sy > 0.7 then Sw=1.0, disregard negligible
hydrocarbon saturation
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Chapter 4
4.1 Introduction

Fluid substitution is widely used as a tool to mlodarious scenarios which might
give rise to an observed amplitude variation witiset or to model 4D response whigrsitu
hydrocarbons are replaced with water or brine duvirater flooding operations. Wireline
logging data is the most common type of data algland is used to study the impact of
fluid substitution. The primary intent of this sjuelas to derive an estimate of the propagated
error in the fluid substituted velocity as a resfltuncertainty in the input data. In the first
part of the study | calculated the impact of ureety in the various petrophysical
parameters on the fluid substituted velocity byngsiynthetic data models. Following the use
of synthetic data models, | performed similar cotafians on actual well log data set. To
determine the consequence of the error in the Buluktituted velocity, | tested the impact of
this uncertainty on amplitude variations by cregtim synthetic AVO model by using
approximations to the Zoeppritz equations. It niaesunderstood that in the seismic datasets,
the subsurface reflection coefficients are nevexaily measured. The reflection coefficients
from seismic data can only be estimated using Avi@ision techniques which involves
inverting the AVO data to estimate the subsurfalestie parameters. For the inversion
process to be reliable, it is important that thisma& data processing output represents 'true
amplitude' processing. Therefore when examiningripact of errors in the Gassmann fluid
substitution output, | compared the impact of thesers on seismic amplitudes rather than

on reflection coefficients. The results of thiststare presented in this chapter.
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4.2  Description of the terms used in the figures

Vp = P- Velocity - Measured

V2 = New P- Velocity - Fluid substituted

Vs = S- Velocity - Measured

Vs = New S - Velocity - Post fluid substitution

RHOB = Bulk Density -Measured

RHOB, = New Bulk Density - Fluid substituted

RMS Error = Root Mean Square Error

FI.Sub = Fluid substituted

Max = Subscript of 'Max' represents the parametgived by adding the

RMS error to the parameter value and represemtaufiper bound
of the possible parameter value

Min = Subscript of 'Min' represents the parameterivitd by subtracting
the RMS error from parameter and represents diaerl bound of

the possible parameter value.

4.3  Synthetic modeling

The objective of synthetic modeling was to deteenithe error in the fluid
substituted velocity as a result of uncertaintythie petrophysical input parameters using
published rock property data. The results from giethetic modeling can then be used to
predict the major sources of error when appliedattual data sets. It is important to
distinguish here that the measured data may hagiathl errors as a result of well bore

conditions which may not be accounted for in thatlsgtic data modeling.
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The synthetic modeling was performed in two paitsthe first part, | used constant
rock properties for a high porosity water saturagaddstone, while for the second stage the
computation was performed over range of velociils® for a water-saturated sandstone. In
both cases the original fluid (brine) was substitinvith hydrocarbon. The rock properties for
both stages were derived from the Rock Physics blawkl (Mavco et al., 2003). The fluid
properties for both original and substituted fluigtre generic fluid properties and held

constant since the exact pressure - temperatuditioms of rock deposition are unknown.

4.3.1 Synthetic model : Part 1

Objective of synthetic modeling for the first pavas to compute error curves for
final velocity when the errors in the input petrgpical parameters are varied. Therefore, by
varying the uncertainty in the petrophysical pargarsea set of curves representing errors in
final velocity were computed. When determining th#ect of error for a specific
petrophysical parameter, the errors from other tinpetrophysical parameters have been
ignored. As an example, when determining impacerobr in Sw, the uncertainty in other
petrophysical parameters (such ag) \have been assumed to be zero. In some cases two
different properties for sandstone were used insgrghetic modeling. The rock properties
for high porosity sandstone and medium porositydstome used in the synthetic model are

shown below.

High Porosity Sandstone
Vp (Km/s) =3.80 Bulk Modulus of Bd (GPa) = 3.35 (Original Fluid
Vs (Km/s) =2.16 Bulk Modulus ofl@cPa) =1.50 (Sub. Fluid)
Porosity (frac) =0.20 Volume of Shale =20% (Assumed)
Bulk Density (g/cc) = 2.33 Density of Orig. / Suuid (g/cc)= 1.00/ 0.85
Medium Porosity Sandstone
Vp (Km/s) =4.09 Bulk Modulus of Bd (GPa) = 3.35 (Original Fluid
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Vs (Km/s) =241 Bulk Modulus of @GPa) = 1.50 (Sub. Fluid)
Porosity (frac) =0.16 Volume of Shale =20% (Assumed)
Bulk Density (g/cc) =2.37 Density of Orig. / Suuid (g/cc)= 1.00 / 0.85

The values for the bulk moduli of brine and hydrboe were assumed for the purposes of
this modeling study. The fluid substitution modgliassumed replacement of the entire
original fluid with the substituted fluid . Resultd the first part of the synthetic are given
shown below.
4.3.1.1 Effect of error from water saturation (Sw) on flsdbstituted velocity

As described above, the original rock is assuneetlet completely saturated with
water (Sw=1) and therefore the error in the inpatew saturation (Sw-Original) is assumed
to be zero. Additionally, the error in the bulk diwy of the original fluid is considered to be
zero. When determining errors in the new velocityew the original fluid is saturated with
two (or more) fluids, the errors in water saturatfor both the original and the new fluid
would have to be considered. In this case | havg ancounted for the error in water

saturation after substituting the original fluid.
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Figure 2 shows the error in the bulk modulus of rilend vs. water saturation. The individual
curves show the percent error in the water satmaths an example, the dotted black line
shows the error in Kfluid of ~0.45 GPa for Sw=0rdlavhen uncertainty in Sw estimated at
30%. This indicates that after replacing 30% of dnminal fluid with hydrocarbon (Sw

reduced from 1.0 to 0.7) and assuming 30% errd@vincalculation, the error in the bulk
modulus of the new fluid is ~0.45 GPa.
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RMS Error in New Velocity (Vp vs. Water Saturation
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Figure 3 shows velocity errors for errors in wageturation. The dotted black line shows the
error in velocity of 0.026 Km/s for the water saiiwn of 0.7 and for uncertainty in Sw at
30%. As seen in the plot, the error in the new cigjois large when substituting partial

fractions of the original fluid with the substitdtdluid. To restate, the original rock was

assumed to be completely saturated with brine hacdetore the error in the original Sw is

considered to be zero.

4.3.1.2 Effect of error from volume of shale (Vsh) on fligdbstituted velocity

The clean high porosity sandstone was assumedvio tecorded 1%, 5%, 10%, and
20% volume of shale for the purposes of this modetitudy. Since this study is conducted
for a fixed lithology, the impact of error for ireasing fractions of Vsh beyond 20% could
not be modeled, since any incremental increase sh Would also affect other input
parameters (i.e. density, porosity, velocity, etgh)ch are also dependent on the Vsh. Values
for other input parameters would also have to beaknpriori for each incremental value of

Vsh.
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RMS Error in Effective Mineral Modulus (K0) vs. Error in Volume of Shale
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Figure 4 shows effect of uncertainty in volume ofle (Vsh) on the effective mineral
modulus for different fractional shale volume umtmaximum volume of 20%.
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RMS Error in Fluid Substituted Bulk Modulus (KSat). Percent Error in Volume of Sh
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Figure 5 shows effect of uncertainty in volumesbéle on the new saturated bulk modulus.
The dotted line shows the error in KSat2 to be 63R.GPa for 10% error in volume of shale
for the volume of shale of 20%. The error in KSat@irectly a result of error in the effective
bulk modulus shown in figure 4.

50



RMS Error in Fluid Substituted Velocity (Vp2) vseffeent Error in Volume of Shale (V¢
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Figure 6 shows effect of error in volume of shatetloe new velocity. The dotted line shows
the error in new velocity to be ~+2.2 m/s for 108oein volume of shale for the volume of
shale value of 20%. The error in Vsh is a minortebuator to the error in new velocity for
relatively cleaner sands.
4.3.1.3 Effect of error from travel time (delta T) on flugdibstituted velocity

The error in the measured value of delta T caraohfhe substituted velocity results.
The delta T measurement can be affected by anmoteaffects as a result of large relative
dips as well as operational factors such as resuftom hole enlargement and drilling fluid

substitution. Shown below is the effect of uncettain both compressional and shear Delta

T measurements on the final substituted velocity.
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Error in DTP vs. Error in New Velocity
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Figure 7 shows effect of error in delta T (measpmdthe new velocity. As indicated by the
dotted black line, for 5% error in delta T value the compressional velocity can result in a
erroneous fluid substituted velocity of ~0.32 Knd$er the medium porosity sandstone. All
other input parameters have been kept constanighowt the calculation.

4.3.1.4 Effect of error from measured bulk density on flaithstituted velocity

The high porosity sandstone used in this modediagy had a bulk density of 2.33
g/cc. | calculated the error in saturated bulk nosias a result of the error in bulk density.
Following the calculation of error in the saturatedk modulus of the in-situ rock, the error
in the new saturated modulus using the substitfited was calculated. The porosity value
used in the fluid substitution process is ofterivabel from the bulk density measurement and
in this study is termed as the dependent pora&ity. error in the measured bulk density is

therefore propagated to the calculated porosigpnhputed the error in the new velocity by
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considering the porosity term to be either dependeran independent variable. When the

porosity term was derived from density, the ern@mpagation equation was used to calculate

the error in the to the porosity term. For the pegs of this calculation, the error in matrix

density and the fluid density was assumed to bea@&1% respectively. When porosity was

considered to be an independent variable a constamt value of 5% was assigned to the

porosity variable.
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Figure 8 shows effect of error in the bulk densitythe new velocity. The blue curve shows
the error when porosity is derived from the densigasurement. In this figure, both density
and porosity instrument errors are considered teraip simultaneously which results in
errors in the new velocity. It is seen that thetdbation of the error in porosity is minor

especially for clean formations.
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4.3.1.5 Effect of error in independently measured porosityfluid substituted velocity

The modeling was conducted for both medium and pmiosity sandstones with porosity of
16% and 20% respectively. The error in the measp@dsity term directly affects the

calculation of new saturated bulk modulus. Follayvthe calculation of the error in the new
saturated bulk modulus, the error in the new beliksity was calculated. Finally the errors in
new saturated bulk modulus and the new bulk demgitye combined to calculate the error in

the new velocity. In this case. the errors in @aied measurements were considered to be

zero.
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g e Errorin New KSat_ Hi Por St .
© 0.35[ | m Errorin New KSat_Sst \
[} [ ]
>
g b m
S 0.30¢ % &
z . .
= |
3 0.25} p— -
©
5 0.20t . =
5 .
z e "
2 0.15¢ ° .
£ * S
o °
£ 010 P
%) o H
= o T
o 0.05f u

|
[ ]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20|21
Percent Error in Porosity (%)

Figure 9 shows the effect of error in the porogistrument on the error in new saturated
bulk modulus. Uncertainities in all other measuretadave been assumed to be zero.
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Figure 10 shows the effect of error in the measpadsity on the error in the new velocity.
It must be understood that the volume of shaldig modeling study is low, however higher
shale fraction tends to increase the uncertaintigerporosity measurement.

4.3.1.6 Conclusions from Part 1 Modeling

Using the parameter uncertainty assignments statedction 3.9 and which can be

considered to be generic error ranges preseneimiéasured data, the table below gives the

RMS error in the final velocity for the high poryssandstone.

Petrophysical RMS Error in Petrophysicai RMS Error in Final
Parameter Parameter Velocity (Km/s)
Sw +20% +0.01

Density +0.025 (g/cc) +0.02

Travel Time (DTP) + 5% +0.32

Volume of shale +10% +0.002

Porosity +5% +0.005
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Following conclusions can be drawn from the resofithe modeling from part 1.

4.3.2

The largest source of error in the fluid substitntprocess is the error in the input
travel time measurement. Therefore any attemptmgrave accuracy of the fluid

substituted velocity should focus on improving tngality of the measured travel
time by the logging instrument. This improvementlimles anisotropic corrections

for relative dip angles and the compensation falirdy fluid substitution effects.

The second major contributor to the error in fimalocity is the error in density

measurement.

Error in water saturation has a larger impact wdsstituting partial fractions of the
original fluid with the new fluid. This is espedialtrue when the substituting fluid
remains a minor component (less than 50% by volurhéhe final fluid. Therefore

when substituting original fluid containing two orore components, improving the

accuracy of Sw estimates is a key step in redusirgy in total error in final velocity.

Uncertainty in porosity measurement (when usingralependent instrument) and
the uncertainty in volume of shale are minor cdntiors to the total error in final

velocity.

Synthetic Model : Part 2

The objective of part 2 of synthetic modeling wasdetermine the variation in the

error curves over a range of velocities (or oveargge of velocity-density trend) . The rock

type used for the synthetic model was water-sadragandstone with following rock

properties.
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Minimum Maximum
Vp (Km/s) 3.13 5.52
Vs (Km/s) 1.73 3.6
Density 2.09 2.64

The volume of shale for this sandstone was assutioniee 10% to account for presence of

minor quantities of shaley material in the rock rixat

A linear velocity-density relationship was estabéd using the values shown in the

table to create set of 240 data points coveringahge defined by minimum and maximum

values. This water saturated sandstone was subjélaid substitution with the constraint

that 90 % of the original fluid is substituted .€Muid properties used in this substitution are

given below.
Brine (Original fluid) Hydrocarbon (Sub. Fluid)
Bulk Modulus (GPa) 3.35 1.50
Density (g/cc) 1.00 0.80
Error in Bulk Modulus (%) 5.00 5.00

The results of the synthetic model over a veledewpsity range are given below. A
fixed uncertainty range for the petrophysical pagtars was used as given in section 3.9 for

the entire velocity-density range.
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Water Saturated Sandstone (Model Data)
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Figure 11 shows the linear velocity-density relasioip used for synthetic fluid substitution
model.

4.3.2.1 Effect of error from travel time (delta T) on fluglibstituted velocity

As observed from the results from the first pdrthe synthetic modeling, the RMS
error in measured travel time is the largest cbaotdr to the total RMS error in the fluid
substituted velocity. Using a fixed RMS error vabfet 5% in the travel time over the range
of velocities, the error in the new saturated tlkdulus was initially calculated. This was
followed by propagating the error in the new satdabulk modulus to the velocity
calculation to compute the RMS error in the nevidflsubstituted velocity. Figure 12 below

shows the error curves for the new saturated bolduius.
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RMS Error in Saturated Bulk Modulus (KSat2) vs.i8l8ubstituted Velocity

RMS Error in Saturated Bulk Modulus (GPa)

e RMS Error in KSat2 (Porosity Derived from Density)
m  RMS Error in KSat2 (Independent Porosity)

30 32 34 36 38 40 42 44 46 48 50 52
Fluid Substituted Velocity (Km/Sec)

5.6

Figure 12 shows the errors in the saturated bullButiioover the fluid substituted velocity

range. The variation in the errors in the saturbtgll modulus over the entire velocity range
is shown for two cases. i.e. when the porosityeisved from the density measurement and
when an independent porosity measurement is al&ilab
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Figure 13 shows the RMS error in the new veloaitythe two cases i.e. when the porosity is
derived from the density measurement and when dependent porosity measurement is
available.

4.3.2.2 Effect of error from bulk density (RHOB), volume stiale (Vsh) and water
saturation (Sw) on fluid substituted velocity
RMS error in the new velocity was calculated facle of the petrophysical
parameters described above. In this calculation sinigle parameter error was applied for a
single iteration while keeping the errors for renagr of the parameters at zero. This process
for repeated for each of the petrophysical parameete combined graph of the RMS error

contribution from each of the petrophysical parargeis shown in figure 14.
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Figure 14 shows the RMS errors in the new velositych have been calculated for each of
the input petrophysical parameters. In additiothewsRMS error curves resulting from errors
in Sw and Vsh, the two other cases are presentedrfors in density measurement (i.e.
porosity has been derived from density) and fordbmbined contribution of density and
porosity (i.e. when the porosity is an independeetisurement. The two cases represents
instances when the porosity is derived from thesdgnmeasurement and when an
independent porosity measurement is available.

Following conclusions can be drawn from the resoiithe modeling from part 2.

1. In general, the total RMS error in the new velodityreases with increase in the new
velocity. Although this increase in the RMS errauld be attributed to using a
constant uncertainty value for the measurement tveentire velocity (and density)
range, in reality this is unavoidable. Parameteceuainty values tied to the
measured data value are rarely available. Theréfoneost cases it is only possible

to utilize a single value for parameter uncertawtyich is applicable over a large

range of measurements.

61



4.4

441

This model assumes that at high velocities (anth klignsity) the porosity value is
proportionally reduced as derived from the Wyllie'guation. This would be a
reasonable assumption in most cases. As a rekaltcalculation of errors in new
velocity becomes unstable at very high velocitiasd( low porosities) especially
when the new saturated bulk modulii value equalsxmeeds the effective mineral
modulii.

The primary contributors to the total error in thew velocity is the delta T and the
density measurement. It is important to predeteemithe density-porosity
relationship as accurately as possible in ordeedoice propagated errors in the final
velocity. As an example, if an independent porositgasurement is available, it
should be used in lieu of generic porosity estiorathe density measurement.

RMS errors in Sw and Vsh generally have a lowertrdgaution in the overall RMS
errors in the new velocity. This is especially tfae Sw when dealing with reservoir
properties having low porosity. RMS errors in Swynteave a higher effect when

dealing pores that are partially saturated withagaliquid hydrocarbons.

Determining RMS error in fluid substituted velgedn actual data set

Review of input data used in this study

Detailed description of petrophysical and elagiizameters used in this study is

given in chapter 3. | briefly state the data thaswised in this study for the purposes of

demonstration of the results.
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4.4.2 Well logging data used in this study
The methodology as developed in this study waedesn logging data from the two

wells drilled in the Gulf of Mexico and have bedemtified below.

Depth Interval |Water
S/N | Well Name API Number (ft) Depth (ft) Data available
From To
1 GC 782-1 608114026100 17095 20268 4423 Den,ReBBGRDTS
GC 782-1
2 STO3BPOO | 608114026103 14596 20362 4420 Den,Res, GRS

4.4.3 Fluid properties for original and substituted fluid

The hydrocarbon-bearing sands were targeted fi@rmaing the errors in the fluid
substituted velocity using the Gassmann's equaifiba.API value and the gas gravity for the
hydrocarbon was assumed to be 45 and 0.6 respgcliveras assumed that over 90% of the
original hydrocarbon fluid was substituted withrnai This allowed assigning errors in water

saturation for both the original and the substduteid.
4.4.4 Results of the uncertainty calculation study omialctiata set

The total RMS error in the fluid substituted vetgavas calculated for the two wells
using individual parameter uncertainties as showisaction 3.9. The uncertainties in the
section 3.9 represents a common set of uncertamtyes that can be assigned to
petrophysical parameters for most cases and cagfohe be considered to be standard set of
errors. Individual parameter error may be greatdower than the stated value depending on
the specific cases. The mean RMS error in the redecity for all depth levels was computed

to be around ~190 m/s with an standard deviatiof ©20 m/s. It is important to remember
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here that the uncertainty value for each inputgpdtysical parameter was kept constant
during the entire calculation. This assumption nm@y always be true and therefore the
resultant errors in the fluid substituted velocityay show a larger variation than that
observed in this study.

The RMS error in the new S velocity value as altexf the fluid substitution process
is very small to negligible and can be ignored ioshrcases. The S velocity is only affected
by the changes to the rock bulk density as a reduhe changes in the density of the pore
fluid. Therefore unless the fluid substitution pees involves replacement of gas, the impact
on new rock bulk density is small which in turn l@asinimal effect on the new S velocity .

As mentioned earlier, the final RMS error valueath depth level does not indicate
that the data would randomly lie anywhere betwéenupper and lower RMS error bounds
for that depth level. It does however indicate tigen the systematic bias in the input data,
it is possible that the computed data may be dedifitom the true value by a maximum
amount equal to the RMS error value. One of th&cdit problems in application of this
study is to determine the direction and the acamabunt of systematic bias in the data and
this is only possible with repeated data measur&mesing with different sets of instruments

in order to determine the direction and the amadfihias in the data.
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Figure 15 shows the histogram of RMS errors catedlat all depth levels for well 1 and

well 2.

Following the calculation of total RMS error inetimew velocity, error contribution
from each petrophysical parameter was calculatedtiie hydrocarbon-bearing depth
intervals. The intent behind selecting only the rogdrbon-bearing intervals was to allow

estimation of error contribution from the waterusation parameter. Figures 16 and 17

illustrate the contributions of individual petroggal parameters for the two wells.
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Figure 16 shows the histogram of error contribufimm individual petrophysical parameter
for the hydrocarbon-bearing interval for well 1.€Tkrror term for "Indep.Por" within
brackets indicates that the error for the poros#ym was separately assigned and kept
independent of error propagation from the densitgnt
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Histogram of Petrophysical Parameter Errors
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Figure 17 shows the histogram of error contribufimm individual petrophysical parameter
for the hydrocarbon-bearing interval for well 2.

4.4.5 Conclusions of uncertainty calculation on actuahdset

The following conclusions can be drawn from theertainty calculation performed
using an actual data set.

1. As would be expected, the uncertainty in the ogbivelocity can be the largest
contributor of uncertainty in the fluid substituteelocity. In this study, the measured
travel time curve has been assigned an uncertaathtye of + 5% at & confidence. If
the study area has multiple measurements of vglotiis possible to reduce the
uncertainty value of the velocity and thereby digantly reduce the RMS error in

the new velocity. Any edits or corrections that ¢cenapplied to the measured travel
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time measurements will therefore have the largiisttein lowering the uncertainty
in the fluid substituted velocity.

The velocity errors from density, porosity, wataturation, and volume of shale
overlap each other. This makes it difficult to detme the causes of errors in new
velocity and attribute the causes to a specifiapeter.

Uncertainty values for parameters such as wateratan are difficult to determine.
This is especially true for mixed lithologies swahshaley sands. In this study, | have
used an uncertainty of 20% for the water saturat@nboth the original and the
substituted fluid. However in the presence of ghs,uncertainty value assigned to
Sw may not correctly account for the error in tlevrvelocity. In such cases, the
uncertainty value for oil saturation would haveb® separately assigned in addition
to the uncertainty in water saturation while cadtinlg the uncertainty in the fluid
modulus. Additionally confidence ellipses can biewgated to determine quality of a
parameter can be used. Use of confidence ellipsebban previously described in
section 2.4.3. Figure 18 shows confidence elligg@svn for Sw curves calculated
using two different methods and using two sets afogpities for the same depth
interval. Both ellipses have been drawn at 95%idente levels. From the figure it
is apparent that the Sw calculation using mixtunaley sand model is better
constrained than the Sw calculation using Archieethod. Therefore choosing the
Sw curve calculated from the former model wouldehboxwver parameter uncertainty

than the latter.
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Figure 18 shows water saturation (Sw) calculatismgi two models calculated using two
separate porosity curves. The calculation was pedd for welll in the hydrocarbon-bearing
section from 19742 - 19818 ft. The confidence sép constructed for the two data sets are
for 95% confidence level. The Sw calculation usiing mixture shaley sand model is better
constrained.

4. Using an independent measurement of porosity cgmiheeducing the total RMS
error in the velocity calculation. In this studyydadue to limited data availability, |
did not use a independent porosity measurementoweter assigned a separate
uncertainty value of = 5% for porosity term deriviedm the density measurement.
Similar to the uncertainty in the water saturat@aculation, the uncertainty in the
porosity parameter can also be difficult to deteemin mixed lithology. Better
constraining the porosity parameter may help inucedy the uncertainty value
assigned to the porosity term by ignoring the poyamponent resulting from clay-

bound water. A combination of different methodspafrosity measurements may
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help in determining effective porosity which canedsin lieu of total porosity

especially in mixed lithologies.

4.5 Amplitude variation with offset

The complete solution for the amplitudes of tramisa and reflected P and S waves
for both incident P and S waves is given by Zodppii919) equations (Castagna, 1993).
Although Zoeppritz equations can be evaluated nizalgy, it is useful to use simpler
approximations. Several authors have presentecdsippations to the Zoeppritz equations.
The isotropic form of the AVO technique stems frtime study of Ostrander (1984) who
showed that the P-wave data could be used to dekectges in the velocity ratio at an
interface. The classical AVO equation for two ispic media with elastic properties and
moderate incidence angles can be written as

Rpp(0) = Rpy + Bsin? 6 + C(tan?6 — sin?6)

where

1 (AV A 1{Av vé (A AV 1AV
Axi(B242) pal(Be gk (P24 als)) =1t
2\Vp P 2\ Vvp Vp \p Vs 2Vp

AVP = sz - VPll AVS = VSZ - VSl’ Ap = pz - pl, and 9 = (02 + 91)/2, butO is
often approximated b§;.
This form of the equation can be interpreted imge of different angular ranges

(Castagna, 1993). In the above equatieg IR the normal incidence reflection coefficient

expressed by

N — e - —

R — Ipa=Ipy Alp . 1 (AVP + A_p) —6.1
po Ipz+Ipy 2Ip 2\Vp p
The parameter B describes the variation at intermeaffsets and is often called the AVO

gradient and the parameter C dominates at farteffsear the critical angle. As mentioned
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earlier, | compared the effects of errors in thadflsubstitution results on the amplitudes of
synthetic traces with the assumption that ther@ good equivalence between the reflection

coefficients and the observed amplitudes.

4.6 Limitation of the results from AVO modeling

Comparison of observed AVO signature with syntday modeled data can be
useful in distinguishing between real and artitid&'O responses. In this study | calculated
the uncertainty in the fluid substituted velocityieh in turn introduces error in the synthetic
AVO model. In addition to the errors in synthetiodels, the observed data may also be
imperfect as a result of acquisition and processmgrs. | therefore state two potential
limitations of using synthetic AVO models to dingctompare the results of the synthetic

models to observed data.

4.6.1 Lack of equivalence between reflection coefficiantl reflection amplitudes

Although reflection coefficients are dependentmugontrasts of physical properties
across isolated subsurface reflectors howeverdthection amplitudes depend on wide range
of factors. Castagna et al., (1993) lists sevexetiolrs affecting seismic amplitudes . Some of
the key factors that distort reflection amplitudge coupling and random noise, divergence
and transmission losses of seismic energy, inelastenuation, interference by neighboring
reflections, multiples, etc. Presence of theseofactadd to the complexity of AVO
processing. As a result of these factors, the seiseflection amplitudes observed on real

data may not be directly equivalent to the reftatitoefficients.
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4.6.2 Effect of anisotropy

Thomsen (1988) demonstrated the effects of VTsanopy on AVO. The AVO
gradient (parameter B) can be reversed by anispiod hence can significantly change the
classification of AVO anomaly. If the overburdemststs predominantly of shales or clay,
then VTI anisotropy also means that the phase gmgleessary for calculating reflectivity)
and group angle (for geometric ray path) are nettidal (Macbeth, 2002). The P-wave
reflection coefficient for weakly anisotropic VTl edia in the limit of small impedance

contrast is given by (Thomsen, 1993)
Rpp 0) = Rpp Iso @) + Rpp Aniso ).

The reflection coefficient for isotropic media raims unchanged as shown in the
equation 6.1, however the reflection coefficient émisotropic media is now controlled by
the Thomsen parameters nam&nde is as shown in equation 6.2

Rpp aniso(8) = = sin?(6) + == sin?(0)tan?(6). —6.2
The parameter delta controls the AVO behavior atlsto moderate angles and can take both
positive and negative values.

Therefore even if the systematic errors in theuingata and its effect on fluid
substituted velocity is completely understood,dtferences between the actual and modeled
AVO curves cannot be attributed only to the presesfcsystematic errors in the input data.
Therefore presence of VTI anisotropy may eitherkwinrmasking or in enhancing the errors
when comparing modeled versus actual reflectionfficoents even in cases when the

systematic errors are well understood and accoudated
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4.7  Procedure to calculate synthetic AVO model

This section describes the procedure to buildsyimehetic AVO models for the fluid
substituted impedance curve and its upper and lobarinds. This would allow an
comparison of the amplitudes of the traces in otderonfirm the impact of error present in
the wireline data set that is commonly used foidflaubstitution modeling. | used the

following steps to calculate the synthetic AVO misde
4.7.1 Calculating impedance curves

The computed error in the fluid substituted vetpédr each of the wells was used to
determine its impact on synthetic AVO modeling. do this, | computed the impedance
curves and the reflectivity series for three camagely the fluid substituted impedance and
its upper and lower bound. | used the followinggpaeters and naming convention to identify
impedance curves for the three cases. The thress capresent the worst cases wherein the

contributions of all errors act in the directionasto add to the total error.

Case 1: FI.Sub_Impedance =X RHOB,
Case 2 : FI.Sub_Impedance_Min 7 Wiin X RHOB, win
Case 3 : Fl.Sub_Impedance_Max 7 YiaxX RHOB, max

4.7.2 Application of Zoeppritz equations

Following the computation of impedance curves,amplitudes at different angles of
incidence (up to a maximum of 30 deg) was deterchineusing the Zoeppritz equations. For
this study | used the Hampson-Rusell software tomde the synthetic traces for incidence
angles up to 30 deg by convolving the reflectivggries with a 70 Hz Ricker wavelet. To

determine the impact of errors in synthetic AVO mlaty, | compared the differences in the
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amplitudes of the synthetic traces created fronflthe substitution process and its upper and
lower bound. As indicated earlier in this documdéiné, data error bounds do not indicate that
the data will randomly lie anywhere within the upp@&d lower bounds but it does point to
the possibility that the synthetics generated uliegjogging data may produce an anomalous
AVO response and should be taken into consideratiben comparing it to the observed

data.
4.7.3 Comparisons between synthetic AVO responses

For purposes of this comparison | selected a loathbmn-bearing sand section of
sufficient thickness that showed a strong impedaocgrast and also shows a reflection from
both top and bottom of the reservoir. The presafdg/drocarbon was notionally interpreted
using the resistivity log.

I show the differences in the amplitudes for thetlsetic AVO models created for the
impedance contrast and its upper and lower bousitsylequations shown in 4.5.1. Also
shown in figures 20 and 22 are the differencesnipléudes for the hydrocarbon-bearing
sands in the two wells.

Example 1: Hydrocarbon-bearing sand from well 1

| have compared the variation in AVO response inydrocarbon-bearing sand at
nominal depth of 20000 ft and which is clearly neatlby a strong impedance contrast at the
top and the base of sand. The synthetic traces sslaoweak on top of the hydrocarbon-
bearing sand followed by a trough at the bottonthef sand as is expected. The marked
dotted lines in figure 19 were used as depth markeworder to compute and compare the
amplitudes of the synthetic traces. The amplitudieshe synthetic traces have not been
corrected for normal moveout.
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Figure 19 shows the synthetic AVO model with sytitheaces created for incidence angles
up to 30 degrees using the Zoeppritz equations.hjdeocarbon-bearing reservoir at 19990
ft (indicated by dotted lines) shows a strong ingrex contrast and is therefore chosen to
compare differences in AVO response resulting feanors in the fluid substituted velocity.
The suffix of upper and lower bound indicates AVAithetic traces created using velocity

and density bounds as indicated in figure 20.

Figure 20 shows the amplitude variations with angl incidence for the three synthetic

traces seen in figure 19.
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Well 1 - Hydrocarbon-Bearing Sand at 20000 ft.
Reflection Coefficient Comparison
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Figure 20 shows the differences in amplitudes i shnthetic AVO models for the new
impedance contrast and its upper and lower boumdstife top and bottom of the
hydrocarbon-bearing. The amplitude curves for tge df the hydrocarbon-bearing interval
which represents the peak of the seismic waveltsta smaller range of uncertainty bounds
in reflection amplitudes as compared to the rarfgenoertainty bounds for the trough of the
seismic wavelet at the base of the hydrocarbonxiigeanterval. The cause of this difference
may be attributed to a relatively strong impedaccstrast at the base of the reservoir as
compared with the top of the reservaoir.

Example 2: Hydrocarbon-bearing sand from well 2

Similar to the first example for well 1, | havengpared the variation in AVO
response in a hydrocarbon-bearing sand at nomeyathdof 19850 ft and is marked by a
strong impedance contrast at the top and basendf §&hile the first example serves as a

good indicator of the impact of the errors in tlesvrvelocity determined by Gassmann fluid
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substitution on the AVO synthetics, the second gtanconfirms the results for a similar

hydrocarbon-bearing interval and is presented foereompleteness.
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Figure 21 shows the synthetic AVO model with tracesated for incidence angles up to 30
degrees using the Zoeppritz equations. The hydoocabearing reservoir at 19850 ft
(indicated by dotted lines) shows a strong impedaomntrast and is similar to the first
example from well 1.
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Well 2 - Hydrocarbon-Bearing Sand at 19850 ft.
Reflection Coefficient Comparis
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Figure 22 also shows the differences in amplituddbhe synthetic AVO models for the new
impedance contrast and its upper and lower boumdsttife top and bottom of the
hydrocarbon-bearing for well 2.

4.8 Conclusions from this study

The synthetic modeling and calculation using datlada demonstrates the impact of
propagation of errors from the petrophysical patanseto the fluid substituted velocity and
on the synthetic AVO modeling. While it is possilite quantify the RMS errors in the
velocity by using reasonable estimates of paramateertainty, the determination of the
direction of systematic biases in the input dataai@s a difficult problem. For some inputs,
it is possible to generate a parameter uncertaimtye over the logging interval. Using depth
based uncertainty data should be encouraged rheiusing a single uncertainty value over

the entire depth range. The results of this studgresizes the role of quality control during
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the data acquisition phase, selection of apprappatrophysical models, data correction, and
during subsequent data processing. This is espediaportant when determining the
petrophysical parameters that are used in the 8ulgktitution modeling. When comparing
synthetic AVO models with observed AVO data it spible that the perfect match between
the two could be a result of a false positive mdtehack thereof) which could be a result of
combination of uncertainties in the synthetic modsl well as in the processing of the
observed data set. By calculating the uncertaintyes for reflection coefficients can be
helpful in improving the confidence in the AVO resige comparison study. This study also
serves to reiterate the importance of petrophysletd integration and data quality control

into the fluid substitution processes in ordergsist with interpretation.

4.8.1 Estimating logging data accuracy requirements

The results derived above show considerable infleeof logging data error
propagation in the Gassmann’s fluid substitutiofthdugh in some cases the errors may
appear to be exaggerated and may not seem to hificsigt observation, it is important to
note that some of the differences between prediatet actual velocities may come from
errors in the logging data. The question now arisewhether it is possible to estimate the
required logging data accuracy to reduce uncewpaimthe predicted velocities. This would
actually be a reverse of the process that has teseribed above. To explain this further, if
we knew the maximum standard deviation of thg, arameter that can be tolerated, what
would be the maximum RMS error of the logging datt would be required. Yardley Beers
(1958) quotes the following formulas that can bedu® make this calculation.

Suppose the value oks, (standard deviation of &) has been computed by using

average data from 10 measurements for bulk deasifyvelocities in a formation. By simple
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averaging the 10 measurements we assumed thaotiébation of each of the individual
measurement is equal. This implies that all 10 mnegsents were conducted in similar
logging environment where the hole or logging ctinds were similar and therefore their
error contributions are equal. To obtain the resplistandard deviation ingl§ the standard

deviation for bulk density and the acoustic veiesittan be computed as follows.

__ O o = Oy g = Oy

BTy Sy "SR S
N sat \/ﬁ sat N sat
N 0, N N N,

p S
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Therefore by reducing the error in the original poation of saturated bulk modulus can

help reduce the propagation of error throughoutGassmann'’s fluid substitution process.

4.8.2 Suggested future work

While it is well known that the uncertainties inetinput parameters can have a
impact on subsequent computed results, the cotitibof the individual error component in
the final error value still needs additional studsing large data set. Additionally, the
integration of petrophysical models for shaley sandlysis in the fluid substitution is much
less understood outside the petrophysical communitjs however has a direct impact on
rock physics modeling. Most of the current literatwon the Gassmann fluid substitution
refers to fairly simple models to in order to detare the input parameters used in the
calculation. As an example, most literature limitee calculation of water saturation
calculation to the Archie's equation or using sinfshnsforms for porosity which may not
give accurate results in mixed lithology. Additibdaterministic studies using are required to

understand the variation in the fluid substituteglogities as a result of varying data
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uncertainty values and lithology over the loggingeival. Rapidly changing parameter
uncertainty values may result in variation in thege of the synthetic traces generated in
AVO modeling. Deterministic error calculation usipgrtial fluid saturation or in multi fluid
phases with partial gas saturation would be anctinea of interest. Additional statistical
methods to identify the parameter(s) that play gomle in the overall uncertainty in the
result with changing parameter uncertainties waldb be an area of interest. Additionally
this analytical study can also be performed usimontd Carlo statistical technique which

would be an additional area of interest.
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Appendix A - Chapter 5
5.1 Introduction

Appendix A describes the procedure used to computepetrophysical and the
linearly elastic parameters. Materials are calleddr elastic when stress is proportional to
strain and are related by Hooke's law. As an exampulk and shear modulii can be
described for linear elastic materials. Bulk modukl!' is defined as the ratio of hydrostatic
stress to volumetric strain while the shear modiluss defined as the ratio of shear stress to
shear strain. Mavko et al. (2003) gives a detagbgalanation of the moduli in terms of stress
and strain tensors.

The logging data set contained gamma ray, bullsileracoustic travel time, and
resistivity data curves. These data were used loulede the petrophysical parameters,
namely porosity, volume of shale, and water satumawhich were followed by calculation
of linearly elastic parameters such as the bulk strehr moduli of the saturated rock, bulk
modulii for the mineral matrix, porous rock franand the pore fluid. | have described the
methodology used to compute each of the indivigaahmeters and are stated here as a table

for quick reference.

No Type Parameter No Type Parameter
: : . | Bulk Modulus of
5.2.1 |Petrophysical Porosity () 5.3.3 |Elastic Mineral Matrix(Ko)
Bulk Modulus of
5.2.2 |Petrophysicgl Volume of Shale () 5.3.4 |Elastic| Porous Rock
Frame(K*)
, . .| Bulk Modulus of
5.2.3 |Petrophysicgl Water Saturation($ 5.3.5 |Elastic Formation Fluid(K)
Bulk Modulus of
5.3.1 Elastic Eglgk,\éllzd; lus of Saturated 5.3.6 |Elastic| Saturated
° Rock(Ksat)
5.3.2 Elastic Srhﬁ?r Modulus of Rock(G 5.3.7 | Base| Velocity (Vp or Vs)
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5.2 Calculating petrophysical parameters

This section describes the methodology used to poten the petrophysical

parameters such as porosity, volume of shale, atdrsaturation.

5.2.1 Calculating porosity

Porosity was calculated from the density measunéntiedependent porosity curves
from neutron porosity measurements were availablésfo wells. However, neutron porosity
measurements require a wide variety of environmetarections for lithology matrix,
borehole size, mud weight, salinity to name a feworder to arrive at the final porosity
value. This additional information related to typed nature of environmental corrections
applied to the measurement was unavailable andftrerin order to maintain consistency, |
used the density data at each depth point to aaivihe porosity measurement using the

standard porosity equation stated below.

0= Pyrain ~ Pouik ' (5.1)
Pgrain ~ Phuid
where
® = Porosity in fractions
Pgrain = Matrix grain densitypgrain)
Pfuid = Density of the pore fluid
Pouk = Density of the rock as measured by the loggistriment

When the shale is present in the rock, using theve equation will result in
calculation of either additional or reduced ponpsithis error in porosity is a result of

presence of shale with bulk density either lowehigher than the density of the dominant
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mineral matrix . Presence of shale should therdferaccounted for in the bulk density of the
mineral matrix fq.ir) Used in the porosity calculation. This can beedbg subtracting the
erroneous porosity contribution by using the sliglesity and the shale volume fraction. This
method is, however, subject to errors since it mesuthat the density of shale is constant
throughout the well and that the correction foroeaous porosity may not be linear as a
function of the shale volume and it also dependthertype of shale. The structural shale, for
example, can only be present as a replacementeofsdind grains, while laminar shale
replaces the sandstone portion of the rock and boiesccupy or alter the intergranular sand
porosity. Therefore knowledge of type of shaleeiguired for true determination of effective
porosity and is therefore a much more complex mmlthan that can be addressed simply by
adjusting the total porosity for presence of shale.

The total porosity equation shown above, alsorassuthat the total porosity is the
effective porosity and does not account for fluidstained in the clay mineral structure or
the capillary bound water both of which are constit of the total porosity but are termed as
non-movable fluids. Presence of non-movable fluidslates the key assumption of
Gassmann's fluid substitution which requires thHa¢ toropagating stress wave must
equilibrate instantaneously in the pore space.

One of the methods suggested by Dvorkin et @1@2 considers porous wet shale as
part of the solid grain material and excludes pityosithin the shale from total porosity.
However the computation of effective porosity aggasted in the above paper requires
availability of data from advanced porosity instenmts such as NMR and requires the
determination of the porosity of clay tergy§,) for the calculation of effective porosity. This

data was unavailable for the purposes of this samty hence | considered total porosity as
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effective porosity and adjusted the effective pibyosith cutoff values to account for errors

in porosity due to the presence of shale.

5.2.2 Calculating volume of shale (Y

Natural Gamma ray measurement can be used asi@a dlag indicator. It is
important to note here that the terms clay andeshale been used interchangeably. The term
clay is used for clastic rocks having particle dess than 1/256 mm while the term shale
represents sedimentary rock showing laminationsfesde nature. Therefore a shale is a
sedimentary rock composed of clay minerals andtéhe Vi, is used interchangeably to
represent volumetric fraction of either clay orlsha

The volume of shale was computed using the ganaydog which responds to the
natural radiation of the formation. In the deriwatiof shale content, the assumption is that
the radioactive component of the formation is shakais increasing natural radiation implies
increasing shale content. The presence of otheépaetiive minerals such as present in

radioactive sands will cause the shale volume ttmbénigh.

V _ GRog _GRnin (52)
" GR’nax _GR'nin

where
GRo= Gamma ray measurement
GRmin= Gamma ray measurement in a clean sand line

GRna= Gamma ray measurement in a thick shale
The volume of shale computed using equation absva linear approximation.

However the gamma ray measurement may sometimesahagn-linear response to the clay
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content of the rock. The volume of shale can tlmeefbe corrected using the Steiber
relationship for miocine-pliocine rocks (Hearstkt 2000). The Steiber relationship for shale
volume, adjusted for the age of the rock can bedtas

Vol.OfShale= Vol Ofshale (5.3)

a—-b*Vol OfShale’

Where, a = 3 and b = 2 for miocene-pliocene rocks.

Application of the Steiber relationship in order determine the volume of shale
would require reservoir level knowledge in orderassign accurate values for the 'a' and 'b’
coefficients. | have therefore used the linear agipnation for calculating the volume of
shale.
5.2.3 Calculating water saturation (Sw)

Water saturation was computed using the standerdiéequation. The Archie

equation is a total porosity - total water sataratielationship and is given by the equation

1
n
S, = {ﬂ} (5.4)
¢'R

where
Ry = Resistivity of water in filling the pores of tiheck
R = True resistivity of the rock
@ = Porosity (v/v)
amn = Constants based on empirical data.

For well consolidated sandstones the typical vafoe 'a’, 'm’, and 'n' are 1, 2, and 2
respectively. Actual values of 'a’, 'm', and e’ gypically derived from core measurements. A
wide variety of formulations have been used to rhodesistivity-water saturation

relationships in shaley sands. Worthington (198&gcdbes over thirty shaley sand models
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used to compute water saturation. The correct ndelbgy to compute water saturation
would involve defining the type of shaley sand modde advantage of using a specific
equation suitable in a particular field is to regldbe error in estimates of water saturation.
Application of a specific shaley sand model wouddjuire additional information that is

normally obtained from core data. In the absencerof core data, | have restricted the
calculation of water saturation to using Archiggsi@ion. While this restriction may increase
the uncertainty in the value of water saturatibe, éxact computation using any of the other
methods may not necessarily help reducing the taingy due to a large number of variables

used and the complexity of the calculation. Thisdas further explained in chapter 6.

5.3 Calculating linearly elastic parameters

This section describes the methodology used tgaterthe linearly elastic
parameters such as the bulk modulii of the satdnatek, mineral matrix, fluids and the rock

frame.
5.3.1 Bulk modulus of saturated rock £K)

The bulk modulus of the rock was calculated usiigline data for thén-situ rock
that is undrained of pore fluids. The well log datm be used to relate bulk modulus of a
rock (Ksa) to its compressional, shear velocity and bulk sitgnthrough the following

relationship which is simple to implement.
4
Keat = pb[vpz —EVSZJ. (5.5)

where

Pb Bulk density in g/cc
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Vp = Compressional velocity in Km/sec
Vs = Shear velocity in Km/sec
Ksat = Saturated bulk modulus in Gigapascals (GPa)

5.3.2 Shear modulus of rock (G or W)

The shear modulus can be calculated from the &pven by

G=p,*Vs. (5.6)
where
G = Shear modulus in GPa
Pb = Bulk density of the rock (g/cc)
Vs = Shear velocity (Km/sec)

Berryman (1999) states that for purely mechareffgcts, the shear modulus for the
case with trapped fluids (undrained) is the santhasfor the case with no fluid (drained).
u(undrained) = u(dry)
Therefore monitoring any changes in shear moduwiitis changes of fluid content
provides a test of both Gassmann's assumptionseantts. Throughout the process of fluid

substitution the value of shear modulus of the 1@&kis kept constant.
5.3.3 Bulk modulus of mineral matrix (&

To predict the effective elastic moduli of a mbdwf grains and pores theoretically,
we need to specify the volume fractions, elasticlotioof various phases and the geometric
details of how the phases are arranged with redpeetich other. If we specify only the

volume fractions and the constituent moduli thet bes can do is predict the upper and the
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lower bounds (Mavko et al,2003). In order to predie bulk modulus of mineral matrix,
information about the composition of the rock mbstavailable (Smith et al., 2003). The
rock composition may be determined by various ti&ghes such as thin section analysis of
core samples or X-ray diffraction etc. Alternatedpgcialized wireline logs may be available
which measure the elemental composition of the.rock

The actual rock composition data was not avadldolr this study and hence |
assumed a two mineral rock composition consistihguartz and clay. To calculate the
effective moduli | used the average of upper anglefobound value at a given volume
fraction of clay. | used two approaches to caleuldte upper and lower bounds, the first
approach is the Hashin - Shtrikman bound and therd¥oigt- Reuss bound. The Hashin-

Shtrikman bounds for two phases are given by
f2

KHSi — Kl + 4
(Kz - Kl)_l + fl(Kl +§:u1)_l

(5.7)

where

Ky Ky = bulk moduli of individual phases

M1, P2, = shear moduli of individual phases
fi,f, = volume fractions of individual phases

The above expression gives upper bound whengtiffiaterial is termed '1' and

lower bound when the softest material is termedlié Voigt upper bound is defined as

where
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fi = Volume fraction of the'i medium

Elastic modulus of th&'imedium.

=
I

The Reuss lower bound of the effective elastic maojuikis given by

1 &
MR_ZMi'

i=1

| have used the following constants for calculatimg upper and lower bounds using both

methods described above.

Kquartz = 37 GPa, karz = 45 GPa

Keay = 15 GPa, blay

9 GPa
| have calculated the effective elastic moduliingsboth Hashin-Shtrikman and
Voigt-Reuss methods, in the final computation ldawly used the Voigt-Reuss method to

compute the average effective modulii.
5.3.4 Bulk modulus of the porous rock frame (K*)

Prior to applying the Gassmann's relationshigs inécessary to determine the bulk
modulus of the porous rock frame. Bulk modulus afouis rock frame (K can be computed
using the equation shown below:

KSat[¢<O+1_¢J_ Ko

fl
s , K
K fl I‘<0

K" = (5.8)

where
¢ = Porosity
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Ko = Bulk modulus of the mineral matrix
K = Bulk modulus of the pore fluid
Ksat = Saturated bulk modulus of the in-situ rock

The K* term is derived either from (i) velocity msurements on controlled humidity
dried cores or (ii) application of empirical retatships or effective medium theory or (iii)
from direct calculation from log data. (Smith et2002). In the absence of core analysis data
| calculated K* term directly from the log measumatts. The implication of this calculation
is that existing uncertainties in the log datareoe propagated through the K* calculation.

The porous rock frame modulus is sometimes alsoe@ as 'dry’ rock modulus. This
refers to the incremental bulk deformation resgltirom an increment of applied confining
pressure with pore pressure held constant. Thiggponds to a drained experiment in which
the pore fluids can flow freely in and out of thergple to ensure constant pore pressure.
(Mavko, et al., 2003) As a note of caution, labonatmeasurements on very dry rock can
give incorrect results by lowering the frame modadi a result of disrupting surface forces
acting on pore surfaces. In view of this, slightlgt or drained measurement of K* should be
used. (Smith et al,2002). This observation willuase importance when an independent
value of K* obtained from core measurements is usglder than calculating this from the
logging measurements. In this study, | have noedlly used the parameter K* for
uncertainty calculation because of the complexitysodependence on several variables. The

calculation of the parameter has been describecbiopleteness.
5.3.5 Bulk modulus of formation fluid (K

The bulk modulus of individual fluid phases can dmculated using the Reuss

average. Since the fluids do not have shear mathaliHashin-Shtrikman lower bound is the
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same as the Reuss bound (Mavko et al., 2003). ¢ la@gumed that the reservoir fluids
consist of only two phases namely brine and oillufetric fractions of the two reservoir
fluids was determined by calculating the water rsdion using the Archie's equation as
described earlier. To calculate the bulk modulughefreservoir fluid, information about the
reservoir temperature, pressure, salinity and fiyjae is required. In the absence of well
specific information | used the following methodgjoto compute these parameters.
Reservoir fluid : The API value of the hydrocarbon component in riagervoir fluid was

nominally set at 45 grade. If the density of theergoir fluid is available the API value can

be calculated using the API conversion formula giesAPI = %— 131.5, wherep is

density of oil measured at 15.6 deg C and at atheéppressure. The gas density was also
nominally set at 0.6. These values were used tulzded the bulk moduli of the hydrocarbon
used in the calculation.

Formation pressure: | used a hydrostatic pressure gradient of 0.465t pghich is typical

for offshore Gulf of Mexico (Dutta, 2002) to compuhe properties of fluid bulk modulus.

Formation temperature: In the absence of formation temperature data flmmtells, | used

a temperature gradient of 1.1 deg F/100 feet. €hwperature at the mudline for each of the
wells was assumed to be 40 deg F.

Salinity of Brine: The salinity of the brine can be estimated by eataihg the resistivity of
the brine at 100 percent water saturation. Thiadsomplished by using the Pickett plot
method. (Hearst et al., 2000) Accurate estimatef®rofiation temperature and pressure are
required to be able to convert the water resistitot the salinity of formation water. In the
absence of formation temperature and pressurevdhia | assumed salinity value of 80000

ppm @ 77 deg F which is a typical value for thef@tMexico (Dutta, 2002).
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The fluid bulk modulus was calculated using théofeing equation

K = 04,4 * V> 11000 (5.9)
where
K = Bulk modulus of the fluid, mPa
P = Bulk density of the fluid, g/cc
Y = Acoustic velocity of the fluid, m/s

The factor of 1000 in the velocity calculation isedto the fact that bulk density unit is in the
CGS system while the other quantities are expreisstie MKS system. The exact equations
for calculating the acoustic velocity and bulk dgnef the fluid as a function of pressure and

temperature are given by Batzle et al. (1992) aadat reproduced here.

5.3.6 Calculating new saturated bulk modulus with subtgd fluid(Ksa)

The new saturated bulk modulus for substitutedd fltan be computed using the
equation 5.10 as described by Smith et al. (2008)s equation was unsuitable for the
purposes of determining the uncertainty in thedflsubstituted velocity primarily because of
the presence of K* term. The nature of complexgyaaesult of K* term is further explained

in section 5.10

K'Y
(1_ j
KO
K, = K* + i (5.10

An alternate form for calculating the saturatedkbonodulus is shown below in

equation 5.11 and involves eliminating the K* teshown in the equation 5.10.
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(5.11)

X K K K
K =Ko gy ere X 9K Ko 9K~ Ko
0 Satl 0 fll 0 fl2

All parameters in the above equation can be eaalulated from the logging measurements
as described earlier in this chapter. For the ¢aticun involving bulk modulus of the new
fluid (Ky2) | used the cutoff value of 0.7 for water satwatierm (Sw) in order to delineate
the hydrocarbon and water-bearing zones. The cutaftie implies that any minor
hydrocarbons present in zones having water saburagreater than 0.7 are effectively

ignored.

5.3.7 Calculating velocities with substituted fluid & V s

The new velocities using the substituted fluid bareasily computed using the

4 5.12
Vp=,4Km+3G and Vs= /3 (512)
o Po

The equations are relatively simple to impleménotyever the only requirement is to

equations stated below

recalculate the bulk density parameter when udiegsubstituted fluid. The initial step to

calculate the new bulk density is to first comptite apparent grain density of the matrix

using the measured bulk density and then keepiaggthin density and the porosity terms

constant substitute the density of the substitfited in the standard porosity equation.
pp=Pg(1 — @)+ pre

The apparent grain density was initially calculatsthg the equation

(DenMat* (1- Porosity —Vsh) + DenShale* Vsh (5.13)
1-Porosity

AGD =
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where

AGD = Apparent grain density (g/cc) g, (n the standard porosity equation)
DenMat = Matrix grain density (constant : 2.65 ¢/cc

Vsh = Volume of shale in fractions

DenShale = Density of dry shale (constant : 2.68)g/

In the absence of any additional data, | haverasduthe density of dry shale to be
2.6 g/cc. The cutoff values for porosity ang, Wave been selected such that if the volume of
shale is greater than 0.7 the porosity value issitamed at 5%. This porosity cutoff is
required to limit the spurious calculation of apgdrgrain density when the majority of the
mineral constituent of the rock is shale. Whilesipossible to assign an uncertainty value to
each of the terms used in the above equation ad dhlculate the uncertainty in the new
bulk density, | used an uncertainty value of +0.@#&c for the recomputed bulk density
parameter which is similar to the uncertainty ire tmeasured density. This assigned
uncertainty value has been kept constant to erthatethe data is not unnecessarily biased
due to inherent assumptions due to limited datalabibty. By replacing the grain density
and the bulk density of the substituted fluid ie gtandard porosity equation, the new bulk
density can be calculated. Other input parametergthé velocity calculation have been

computed previously and are used to compute nesciigs using the substituted fluid.
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Appendix B - Chapter 6
6.1 Introduction

Appendix B describes the methodology used to tatieuhe error for each of the
petrophysical and linearly elastic parameters ltlaae been described in the previous chapter.
The error in each individual input component wakwated using the error propagation

equations described in section 3.

Errorsin petrophysical parameters. | describe the methodology used to determinergrro
for the petrophysical parameters namely errorsulk lblensityp), porosity(p), volume of
shale(Vsh) and water saturation(Sw). One of thédiions to petrophysical data analysis is
that each instrument uses different principles @asurement and has its own depth of
investigation. It will therefore respond differgntto various formation properties. The
combined effects of measurement principles, soteceiver spacing and measurement
conditions will produce a different sensitive volnifor each measurement. The key
assumption that is commonly applied is that all sneaments respond to almost the same

volume of investigation and this assumption mayl®otrue in most cases.

Errorsin linearly elastic parameters: Most of the elastic parameter calculation recuire
petrophysical parameters as the input and thereégpa@res the calculation of uncertainty in
the petrophysical parameteaspriori, before the calculation of errors in linearly dias

parameters. The errors in some input parametetsasibulk moduli of a specific mineral is
considered to be a constant and therefore assignedlue of zero. The methodology
describing the error computation for each of theapeeters is given below and their section

numbers are given here as a table for quick reteren
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No Type Parameter No Type Parameter
. . : .| Error in Saturated Bulk
6.2.1| Petrophysical Error in Density §) 6.3.2 | Elastic Modulus(KSat)
. . , .| Error in Bulk Modulus
6.2.2 | Petrophysical Error in Porosity ¢) 6.3.3 | Elastic of Pore Fluid(K)
Error in Acoustic Error in Saturated Bulk
6.2.3| Petrophysical : 6.3.4 | Elastic | Modulus (substituted
Velocity (Vp, Vs) :
fluid) (Ksat)
Error in Volume of Error in Bulk Modulus
6.2.4| Petrophysical Shale (\4) 6.3.5 | Elastic | of Porous Rock
Frame(K*)
.| Error in Water .| Error in Shear
6.2.5| Petrophysical Saturation (%) 6.3.6 | Elastic Modulus (G)
Error in Bulk Error in Computed
6.3.1 Elastic Modulus of Mineral | 6.3.7 | Elastic Velocity (V E)/ )
Matrix(K) Y Ve Vs

6.2 Errors in petrophysical parameters

6.2.1 Error in bulk density

Formation density instruments using radioactiverses relate electronic density (i.e.
number of electrons per cubic centimeter) to foromatdensity. Several factors affect
accuracy and precision of the measurement resutftidgta uncertainty. The primary factors
are internal to instrument design and calibratiorors. However in addition to these

systematic errors, the measurement conditions dh&d contribute to errors in density

measurements are described below.

1. Statistical errors which are function of radioaetsource age and activity.

2. Effect of borehole conditions: washouts, rugosellgstical boreholes.

3. Effect of logging bed boundaries in high angle botes.

4. Density contrast between the borehole fluid anddhmation.
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5. Impact of variable standoff (distance from sensacef to borehole wall). This

variation is common to LWD density logging.

| used an RMS error value of £ 0.025 g/cc atcbnfidence as the error in density
measurement. This value is typically used in texdinbrochures provided by instrument
manufacturers. In reality the uncertainty valuen@ a constant and varies with changing
formation properties as well as wellbore conditiolisan independent density uncertainty
curve with depth is available it can be used irdiafaa constant value. However this type of
data is generally not available and hence a congtdime for uncertainty has been used.
6.2.2 Error in porosity

Porosity can be obtained independently by theitgginstrument such as nuclear
magnetic resonance or neutron porosity measurentfetite porosity has been obtained
independently then the error in porosity as publishy the instrument manufacturer can be
used directly. For this study | derived the porogibm the density measurement. The error in
porosity can be determined from the density measené using the error propagation

equation shown below.

2 2 2 6.1
0¢ = (aaiJ * 0—; +(aa_¢] * 0—; +(aa_¢j * 0—; ( )
Prra " L ! Prra *

The above equation is solved as shown below.

2 2 2
o = lolog_lofl *0.2 + pma_plog *0.2 + 1 *0.2
’ (pma ~ P )2 e (pma ~ P )2 g (pma ~ P )2 o
where

Pma = Density of the mineral matrix
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Pt Density of the fluid in the pore space
Plog = Density of the formation as measured by theilgg@strument.

As seen from the above equation, the accurate at@tipn of error in porosity would
require some knowledge of the uncertainty in thérisnadensity and the density of the fluid.
The errors caused by incorrect valuesppican be large if there is partial gas saturation
instead of assuming completely fluid-filled poreasp. Since the uncertainty values fgg
andpy are unknown the solution would require assigniestlestimates of uncertainty based
on empirical data or field experience. Further, wheertainty values used for the density of
matrix would also be dependent on volume of sHaleeneral the error in matrix density
would increase with increase in the shale fractidme only parameter which is available is
the error in density measurement as published dyngtrument manufacturer and is assumed

to be constant for a range of densities and boeetmhditions. In view of the uncertainties in

the input parameters, | used a constant uncertaaltye of,op = 0.05 * porosity, for the

porosity term. This value is not a unreasonablarapsion since several porosity instruments

typically quote a uncertainty value of 5% ata-donfidence level.
6.2.3 Error in acoustic travel times (DTP, DTS)

Logging instruments measure formation slownesaigroseconds/foot rather than in
direct velocity units. In addition to borehole cdiahs that affect the measurement, acoustic
travel time data also suffers from anisotropic effeelated to micro-anisotropy of shales and
thin bed laminations of sand-shale sequences impthsence of large relative dip angles
(Vernik, 2007). The large relative dip angles magpdy result due to well deviation even in
areas of relatively low formation dip. The main tfas that affect accuracy of acoustic

velocity are given below.
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1. Borehole irregularities, tool tilt and logging instent decentralization.

2. Velocity dispersion.

3. Effect of relative dip angle of the bed on measumem

4. Formation anisotropy as a result of large reladiigeangle.

5. Cycle skipping.

6. Noise spikes.
Instrument manufacturers generally state measurenmzertainties for slowness rather than
in direct velocity terms. | have used an uncenaiot 5% at + & confidence level for
slowness value and converted the uncertainty wrségs to uncertainty in velocity for each

data point.
6.2.4 Computing error in volume of shale 4y

Volume of shale was computed using the gammaogyvhich responds to the

natural radiation of the formation as shown in eigme6.2.

V — GRog _GR'nin (62)
=g n
GRnax _GRnin
where
GRoy = Gamma ray measurement
GRyin = Gamma ray measurement in a clean sand line
GRypax = Gamma ray measurement in a thick shale

The number of nuclear particle counts (N) that dletector observes over a fixed

interval of time follows a Poisson distribution. & ktandard deviation of the counts that are

observed over a fixed interval of time is givencby N . However in nuclear logging

instruments we are more concerned with the couat(ra. counts per unit time) rather than
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the number of counts by itself. In general, timassumed to be measured with high degree
of precision and therefore any error or variatiortime is generally ignored. Therefore the

standard deviation of counting rate is given by

(6.3)

e

The count rates observed at the detectors arddrarexd to Gamma ray APl value by means
of a transfer function. The statistical error frahe random nature of these events in the
observed count rate gets transferred to the cordpAi®é value. This error is in addition (and
independent) to the systematic errors arising frosasurement conditions in a wellbore.
Since the actual logging tool instrumentation téchinparameters are confidential to the
manufacturer and are therefore unknown, | usechargevalue of 5 % error in the volume of
shale computation. By inference, similar value d¥5error was used for volume of sand

fraction which is directly computed from the voluieshale.

6.2.5 Error in water saturation (Sw)

| calculated water saturation using the Archigisation as shown below.

I

" @"R (6.4)
where
Ry = Resistivity of water in filling the pores of theck
R = True resistivity of the rock
® = Porosity (v/v)
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The a, m, n= constants are based on empirical &atawell consolidated sandstones the
values are 'a'=1, 'm' and 'n'=2. Actual values'ofh’, and 'n' are typically derived from core
measurements and were not available for this study.

As is apparent from the equation above, one ok#inputs to the equation is the
true resistivity of the rocks. While it is possilite apply the error propagation equation to
compute the uncertainty in the water saturatiomguginy of the shaley sand models, the
actual computation is difficult since it would reéiuaccurate knowledge of resistivity tool
response functions at various vertical resolutams at varying formation resistivity.

Numerous authors have described the challengesiatesd with the evaluation of a
low resistivity, low contrast laminated sand-shadservoir. When the thickness of the
laminations is significantly less than the verticasolution of conventional logging
instruments, the formation displays a macroscopisatropy with respect to properties such
as conductivity and permeability. These propentiéls have different values depending on
the directionality of the measurements with maximammsotropy occurring when measured
parallel and perpendicular to the bedding plané® petrophysical model for interpreting
sand-shale reservoirs is based on the concepteofdlumetric shale distribution model
(Thomas and Stieber, 1975) and a tensor resistiviigiel to determine laminar shale volume
and laminar sand resistivity (Mollison, et al., 292000; Schoen et al., 1999). The resistivity
tensor utilizes macroscopic electrical anisotropfireed by the combination of the horizontal
parallel and vertical series resistivity equatifidagiwara, 1997, 1998; Klein, 1996; Klein et
al., 1997; and Herrick and Kennedy, 1996; Mezzatestl., 2002; Popta et al., 2004).

While several methods of calculation of water s#tan are described in the

literature, the use of Archie's method seems tthéenost common used. The primary reason
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for this seems to be the ease of use and the biigjlaf published empirical data. As a note
of caution, using Archie's methods for Sw estimai® prone to errors especially in shaley
sand lithology and therefore the uncertainty vdwreSw may have a much wider range than

for other petrophysical parameters.

6.3 Errorsin linearly elastic parameters

Propagated error from logging data was used topotenuncertainty in each of the
linearly elastic parameters. | have described tathodology used to compute errors for each

of the elastic parameter used in Gassmann fluidtgution.

6.3.1 Computing error in bulk modulus of mineral mattikO(

The error in bulk modulus of mineral matrix wadcodated using both methods of
estimating effective elastic moduli. The two methaglere Hashin-Shtrikman bounds and
Voigt-Reuss bounds. The methodology for calculatimg effective elastic moduli for both
methods is described below. While only the Voigt#e method was used in the
computation of the error in thegparameter for this study, | have described theéhodlogy
to compute the error in the Hashin-Shtrikman metloodompleteness.

For the Hashin-Shtrikman bounds, the error jrclh be calculated frothe equation
shown below. The elastic constants of individuahenals are considered to be constants and
it is therefore assumed that the only source dbreils in the volumetric fractions of the
minerals. The volumetric fractions have been coembutsing the gamma ray log, which in
turn is computed from the natural radioactivitytieé minerals and is therefore a function of
statistical precision of the natural radioactivatyd the tool calibration constants. It is difficult

to comprehensively compute the error in the voluimdtactions in the absence of other
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information such as radioactive count rates or tneasurement errors, etc., to name the few

error sources, and therefore a constant volumettrar value of 5% is assumed.

Ko(Avg) :%(Kg|3+ + K(;—|S’) (65)
The expression which computes the error giskjiven as
2 2
6.6
o7 = {GKO:I*UE J{ aKO}*JE (6.6)
0 aKHS+ Hst aKHS’ HS™

The upper and the lower bounds of the mineral melig a function of several variables

such as bulk and shear modulii of the individuah@nals and their volumetric fractions.

HS® _
Koo = F(K, Ky, th iy, 11, 1)
As mentioned earlier, only the error in mineraluraktric fractions is considered and the
elastic constants for the minerals are consideoelet constants and therefore the error is

zero. The equation for Hashin-Shtrikman boundstlearefore be written as

f2

KM =K+ —2—.
Cl +C2fl

(6.7)

where G,C, are constants and can be expressed as

_ 4
C, =(K,-K)) 1’02 = (K, +§:U1) g

It is noted here that the upper and lower bounds camputed by interchanging which
material is termed 1 and which is termed as 2. ddrestants Cand G are used when the

stiffest material (quartz) is termed as 1. Howeweorder to improve clarity, new constants
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C; and G are used so that the material indices can remaihanged. Therefore quartz will
continue to be termed as material 1 and clay asmab2 when computing the lower bound.

Therefore the equation 5.6 for lower bound is stai®

fy

KFS =K, +——L
C,+C,f,

- 4 _
C; = (K, - K,) 11C4:(K2+3_/12) L.

Using the error propagation equation, the errddashin-Shtrikman bounds can be defined as

2 2
P2< = al(HS *O-fZ + aKHS *O-fZ ) (6-8)
nst afl 1 afz 2

on andog, in the above equation are the error in volumefidctions of quartz and clay

components respectively.
Additionally,

2 _szz

= *g? +

g’ . — 0,
' (C,+C,f,) " C+C,f "

and similarly

2 1 * 52 4 _C4f1 *0-2

oo = .
s C,+C,f, " (C,+C,f,)} "
In the above equations, the materials termed &l 2 aemained unchanged giving the

equation as
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2 2 2 2
aﬁO:} L‘rzz *a-fz +( 1 J*a-fz +( 1 ]*a-fz_i_ _C4f1 . *O.fZ .
4\\(c +C,f) GGt ) PG+ Tt (Gt :

Substituting error value for volume fractionsi(andoy,) as 5% in the above equation we

obtain.

2 2 2 2
o2 =oooe2s)| ~Cf | [ 1 + 1 N A
K (Cl +C, f1)2 C, +GC,f) C;+C, 1, (C3 +C, fz)2
(6.9)

The second approach for calculating the effectlastic moduli is the Voigt-Reuss

bounds. The Voigt upper bound of the effectivetedanodulus Mv of 'N' phases is given by

M, :ZN: M. (6.10)

The Reuss lower bound of the effective elastic melis given by

1 _ ZN:L (6.11)
M R i=1 M i

where

fi = Volume fraction of théimedium.

M = Elastic moduli of the"imedium.

1
Ko :E[MV+MR]

2 2
ot ~1)1 9Ky *g?2 + Ko *g? (6.12)
° 4| oM v aM, ®

v
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where

2 2
of,M of,M
o= | o S|
of, ' of, ?
Since we consider the error in volumetric fracti(fasand §) to be 5% we obtain

o2, =0.0025* (M2 +M?2).

Similarly

where

-1
M R = L +L
Ml MZ
2 2
_ M 2 _ M 2
%= | 9 | o
R Ml 1 MZ 2
Substituting error value for volume fractionsi(andoy,) as 0.05 in the above equation we
_ 2 2 _ 2 2
Jf,l = 0.0025* Mg + Mg
i Ml M 2

Substituting into equation 6.12 we get

obtain.
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g2 =00025 ) 2 4 2y o[ “Me [~ M (6.13)
0 4 Ml M2

6.3.2 Computing error in saturated bulk modulug K

| used formation bulk density and acoustic velesitmeasured by the logging

instruments to calculate bulk modulus of the inrsiick (Ksa) using the relationship

Ko = pb(vpz _ gvszj (6.14)
where
Pb = Bulk density in g/cc
Vp = Compressional velocity in Km/sec
Vs = Shear velocity in Km/sec
Ksat = Saturated bulk modulus in Gigapascals (GPa)

By applying the error propagation equation, | akdted the error in the saturated
bulk modulus for each data point. Since the dagiadependent, the error propagation

equation for error in K is as shown below.

2 2 2
g, = dK_SﬁI (o™ o, T d Ksat o+ % Oo?vs
Ko do, Colav, S \VA

2 2
Okeu = \/(sz ‘ngz j [0y, +[2Ppr]202vp +(—g Pszj (0020 (6.15)

In the above equations, | used an uncertainty d¥atih the slowness value computed by the
logging tool for acoustic velocities and +0.0250g&s uncertainty in the bulk density at 1

confidence level.
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6.3.3 Computing error in bulk modulus of pore fluid}5)

The bulk modulus of the pore fluid can be caledaising the equation
n S 1
Khuia = Z_ (6.16)

where Ky is the bulk modulus of the reservoir fluid, i$ the saturation of the individual
fluid phases and Kis the bulk modulus of the individual fluid pha&ince | am using a two-
component system the above equation can be expamdead as

K fui :|:i+ﬂ:|_l. (6.17)
uid K K

w ol

Although the error values for,,&nd K,g can be computed separately, the exact
sources of error sources would need to be knowsripand accounted for. As an example,
the acoustic velocity is a function of pressure &rdperature. Therefore the errors in the
these measurements will be required to be incliddtie computation. In some cases, the
exact sources of this error are unknown and thexefaes prudent to use a generic error value
for estimating the error of a parameter which i ction of several variables and whose
measurement characteristics is unknown. | usedoll@ving generic error values for water
saturation, the bulk modulus of the fluid phases.

* RMS error in water saturationd,) = 20 %
* RMS error in fluid bulk modulii §xeil, Skwate) = 5 %

Using the above values the error in bulk modulusesérvoir fluid was computed as per the

equation shown below.
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o 2 P 2
gé"md =| - ﬁ.;. (1_Sw) * i_ 1 *052)N+ — ﬁ+ (1_SW) * _Szw *a}iw+
Kw Koil KW Koil KW Koil Kw

s, , a-s)] " [-a-s)][ .
[_-[P(+I<.} {I<:?}] T kil (6.18)

w oil oil

The equation 6.18 was determined by applying ther @ropagation equation to the value of

bulk modulus of fluid which in turn is a functiofi three variables namely,SKqi and Kyine.

6.3.4 Computing error in saturated bulk modulus with sitdoed fluid (Ksat)

The saturated bulk modulus using the substituted Was calculated using the
equation

K\
[“J
Kep, = K*+ 0 _ (6.19)
p -9 K

Kﬂ2 Ko Kf
where
Ksap = Saturated bulk modulus of rock with the subtsiufluid,
() = Porosity,
K* = Bulk modulus of porous rock frame,
Ko = Bulk modulus of the mineral matrix,
Kz = Bulk modulus of the substituted pore fluid,
Kt = Saturated bulk modulus of the in-situ rock.

As is apparent from the above equatioRgKs a function of K*, k, ¢ and K.
Additionally K* itself is a function of K, Ki1, Ko ande. It is also possible to calculate ¢

by eliminating the term K* as shown earlier in thection 5.3.4. Eliminating the term K*
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greatly simplifies the calculation of the errordi,., using the error propagation equation by
reducing the complexity of calculation involvingp#mdent variables. The form of the error
propagation equation for calculating error in satied bulk modulus with substituted fluid is

shown below. By eliminating the term K* we have

X where, X = Ko _ Ko + Ko

“o %) Ko-Kan  #(Ko=Ky)  #(Ko=Kpp)

KSatZ -

(6.20)

The error termogsa for the parameter &, is a result of the error propagated from the

logging measurements and is given as

o ‘/{d@ﬂ} i {deT* ou[d‘%ﬂ} \ %{d@ﬂ} vt {d@ﬂ . aﬁﬁzgiw{d@ﬂd@e}
dKk, de 7 dKyy dK;, | Ky, dKee | de

(6.21)

The term2og,.14 In the above equation represents the covarianeeeba Ks.n and porosity.
The bulk modulus of the saturated rock and the gtyrcare negatively correlated and
therefore requires the covariance term in the éguatBroadhead, 2005). This strong
negative correlation is commonly observed in théadaut is not a result of any inter-
dependence of the calculated parameters. As dedeslier in chapter 1, the objective of
this study is to determine the measurement erapagated from the logging instruments and
therefore it is not necessary to include the cewvere term in the error propagation equation
unless both parameters have been derived from enoomariable. In this case, both porosity

and Ksan are both functions of density measurement, whemsitie is the independent

,.,d,KSatz dKSatz
asS T

variable. And therefore when determining the solutio terms such 10 K
Sat1

as

shown in equation 6.21, the porosity term cannatdyesidered to be an independent variable
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for the purposes of this study. This is due tofttet that the porosity has been computed from
the formation density using the standard porosgjya¢ion for a constant matrix and fluid
density and therefore shows strong negative caiwalavith density. If the total (or effective)
porosity term was measured by an independent msint (i.e. porosity instrument such as
Neutron or NMR) the measurement error in porosign dhen be considered to be
independent and would have no dependence on thsitylggarameter and vice versa.
Additionally, including the covariance term to dwedi relationship for just one pair of
variables would be incorrect since several oth&s @ich as density and velocity og &d
velocity etc.) may also show similar correlatiomsl a&ovariance's for such sets would then
need to be included in the error propagation eqoatincluding covariance terms for
individual sets of data may be impractical sinceesal other factors such as burial history,
age, compaction, shape and sorting of the indivigtans, presence of shale, to name a few,
play an important role in determining degree aréation of individual correlations. As an
example, presence of shale can reduce the densigrying amounts depending whether the
shale is present in laminated or dispersed fornatier assumption that is commonly made
is that shale has the same properties regardles®wfit is distributed in the rock. The

solutions to the individual terms in the equatiod16as stated by Broadhead (2005) are given

below.
Ko X co Ko o Ken Ky _ Koz
dKo 1+X (1+ X)2 (Ko - KSat1)2 ¢(Ko - Kﬂl)2 ¢(Ko - Kﬂz
dKSatz - Ko K _ Kz
de (1+ X)2 ¢2(K0 - Kfll) ¢2 (Ko - KfIZ)
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dKSatZ — Ko ( Ko ]
dKSatl (1+ X)Z (KO_KSatl)Z

dK sz _ Ky Ko
dy, (1"' X)2 ¢(K0 - Kﬂl)2

dK s — Ko Ko
dy, (1+X)2 ¢(K0_Kﬂ2)2
In the above equations, the variableg, Ky, and kK, are considered to be

independent and obtaining their solution for thdateon of Ky, With respect to these terms

is straightforward. However when determining th&uson to the termg: K;g“ and 325‘”2,
Sat1

Brodhead (2005) considers the porosity term to béndependent variable. However since
Wyllie's equation has been used to calculate piyrdedbm the density measurement, the

Ksat2

. d dK
solutions to the terms and—3%2

dag dKsat1

will require porosity and the density to be coesatl

dKsat2

as dependent variables. The solution to the téiﬁ(%% and T
Sat1

can be easily determined
by rewriting Ksan as

2 4 2
KSatl == 2.65 - 1.65@ (VP - §VS ),

where density is expressed by density = 2.65- 165

dKeyy _ KO[ KO LKy, Ku Ky ]

de _(1+X)2 (KO_K1)2 dg ¢2(K0_Kﬂ1) ¢2(K0_Kﬂ2)

dKsat1 _ 42 2
Whered—m = 1.65 (3 V¢ VP)
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- dK .
Similarly the terdeS—‘”2 can be written as
Sat1

Keo_ Ko o Ko 1, dg [ Kp _ Kpo
dKsr  (@+X)? | (Ko=Ky ) 87 dKSaulKo‘Kﬂl Ko=Ki2

do 1

where =
dKSatl dKSatl/d®

The equations shown above have been used to dalqiapagated error in theglt term
without the need to use the bulk modulus of roekne (K*) term. This greatly simplifies the
calculation. All parameters with the exception afkomodulus of the new fluid (k¥)have
been previously computed. The bulk modulus of nlexd f(Ky,) calculation is similar to as
described in section 5.3.5. As in the original akdtion, a value of 0.7 was used as a cutoff
value for water saturation(Sw) to delineate hydrbca and water-bearing zones. Therefore
minor hydrocarbons present in zones showing condpwgger saturation > 0.7 are effectively
ignored by the fluid substitution process. Thigosdhrget the fluid substitution process to the
hydrocarbon-bearing intervals. It is importantdake care when applying the Wyllies porosity
equation in formations that have higher fractiohstmle, the porosity is first corrected for

the presence of shale the shale fraction.

6.3.5 Computing error in bulk modulus of the porous réekne (K*)

Although | describe the methodology to calcul&i érror in the K* term, it is not
used in this study since the K* term has been alitaid as per equation 6.20. The paper by
Smith et al. (2003) describes the method to comngtddulk modulus of the porous rock

frame (K) using the equation shown below
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K = K (6.22)
¢<0 + KSat _l_w
KfI KO
where
¢ = Porosity
Ko = Bulk modulus of the mineral matrix
K = Bulk modulus of the pore fluid
Ksaa = Saturated bulk modulus of the in-situ rock

The K* parameter is calculated using the loggintadapresenting the rock containing
original fluid in the pore space. The error progageequation for calculating the uncertainty

in K* due to error propagation from logging measneats can be written as

« 2 « 72 « . « 2 .2
o = dK ‘o? dK” vot+20t dk” [ dK" |, | oK - dK ‘g2
dK g, = | dg =# dKg, | de | |dK, "l dK, °

where the tero,_, is the covariance betweenJand porosity ). (6.23)

| have previously computed variables BEnd K; and their respective uncertainties. As
described in section 6.3.4, the porosipy &nd the saturated bulk moduluss{Kare both
functions of the formation bulk density and the enainty calculation for K, ande would

include propagated error from the density measunénvghen calculating the solution to the
term such a% from equation 6.23 implies that a variation (ocentainty) in the porosity

parameter is a result of variation (or uncertaity)he density parameter for a given matrix
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density and pore fluid. The uncertainty in the dgnserm would then result in the
uncertainty of the K, parameter. This interdependency is due to thetfattthe porosity
term has been calculated using the standard equftben the density measurement for a
constant matrix density. In this study, | uses astant value to define for uncertainty in the
density term. This however is not a requirement asgparate uncertainty curve for density
can be used if it is available, which will takedrdaccount the variation with depth as a result
of changing physical properties and borehole camulit If the total (or effective) porosity
term was measured by an independent porosity mstt (i.e. such as Neutron or NMR
instruments) the measurement uncertainty in thegpiyr term would be independent of the
uncertainty in the density term. Therefore usingradependent porosity measurement will

allow the terms K,.and ¢ to be considered as independent variables fopuhgoses of error

propagation from logging instruments and greatigmifies the solution to the terrr%%‘ or

dK=*
dKsat

| state below three methods of calculating theewainty in K* by considering the
porosity and K, to be dependent variables whilg &d K, are recognized as independent

variables. The suggested methods state the praetiuexprese and Ks, in terms of each

. dKx _dK : .
other, therefore allowing us to determrgg* ord—K* terms. This calculation is unnecessary
t

Sa

for the purposes of achieving objectives of thisdgt since the error in 4, was already
determined without the need to calculate the emoK*. Nevertheless the methods to

calculate uncertainty in K* are discussed herectonpleteness.
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Method 1:
The bulk modulus of porous rock frame (K*) is esgged by equation 6.22. This
equation contains the two dependent variables, lyapmosity and k,. Therefore, simple

partial differential method cannot be used diresthce it would require the two variables to
. . . dKx* dK* .
be independent. In order to determine solutiorhtoterms such as — andd—®, the first

method would be to express porosity in terms gfusing the following set of equations.
Density is expressed in terms of porosity as densiR.65-1.65% for constant matrix and
fluid densities by using the standard porosity ¢igunaThe relationship between porosity and

Ksaican be derived as shown below.
Ko = Density * (V7 - 44V2)
By expressing the density term ofkgives the porosity as

KSat
16501(V3 - 45V¢)

Porosity = 1606-

By substituting the porosity term in the equatio?26gives the following expression.

K

_ Sat
EETR Y - 43V5) N "
KSat 3 +1-1606- 2531 2y | KO
< 1650V - 45V2)
N (6.24)
6= KSat Ko
16500V - %VSZ ) K -1-1606- e
< K, 1650V - 4,V2)

By expressing porosity in terms ok allows us to differentiate K* with respect to

Ksad.€. the termd‘:(ﬁ. In the equation 6.24, the velocities Vp and Vis ba considered to be
Sat
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constants because they have been measured by gpeiknt instrument and this allows
their uncertainties to remain independent. The abeyuation appears tedious to solve but
has been made much easier by directly expressingsipp in terms of kK, and allows

solving for dependent variables. We can use thelairmethodology as used above to
determine solution to the ter%g by expressing Ky in terms of density,  and . and then

further expressing density in terms of porosityisTdllowed me to replacedyterms in the

equation 6.22 with the alternate form as shownveelo
4
Ksqt = (2.65 — 1.65 * Porosity) (sz - EVSZ)
The expression for K* when s is expressed in terms of porosity is shown below.

(265-1650) * (V7 - %vs?)[ff’ +1- 40} Ko

K =
K, , (265-165)* (V2 - %vg) e
Kfl K0

(6.25)

@

Again the velocity terms are considered to be @nistand the above equation allows us to
determine’% for the dependent variablesdandg. The co-variance between porosity and

Ksat in the equation 6.23 can be determined using Hta tbr the entire log interval. The
derivative of K* with respect to remaining two vatles namely bulk moduli of the pore fluid
(Kq) and the mineral matrix (is relatively simple to compute since the undati@s in the

two variables are completely independent. The haxpressions for derivative terms are

shown below for completeness.
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[R5 -1-¢J*(-%?J}-{[K{i?+1-¢J-Kol*(-¢&if°J}

dK,

Method 2:
The second suggested method to determine relbtpbgtween K, ande involves

using the Gassmann equation of the form shown below

K K’ K
Sat — + f
Ko=Ka  Ko=K*  @AKg-Ky)

For a specific value of K*, a relationship betwe€g, and porosity can be determined by

rearranging the above equation to the form
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K*_ andc2 = —£

whereC1 = Ko—K-+ Q)(T_Kf)

K*= Bulk modulus of porous rock frame.
K= Bulk modulus of pore fluid
Ko=Bulk modulus of the mineral matrix

An empirical relationship betweensande can be determined for specific range of
K* values that are observed in the well in ordedatermine the relationship betweeg,K
and porosity by using a suitable data fitting fimet This method would generate several sets
of empirical relationships betweensiand porosity, each for a specific value of K*. \fghi
the relationship betweensglg and porosity can be derived for different valuésks, in
reality, a specific well may only have few valuda.
Method 3:

In another method as suggested by Mavko et aB9)l allows determining

relationship between 4 and porosity using the equations below.

KoKy
KO_Kf

whereK, =K, +
K¢= pore fluid bulk modulus

K p=dry pore space stiffness

Ko=Bulk modulus of the mineral matrix
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The method described above would require avaitgloli core data in order to determine the
pore space stiffness parameter. This data was iglaleaand hence the method could not be
directly applied for this study. Another method atédsed by, Murphy et al. (1993) uses the
contact theory to predict that the frame modulidfid G that are simple functions of porosity
and state that the theory predicts that the modualtis K*/G is constant between 0.667 and
1.667. The authors base this on contact theoryhwbiiedicts that as grain contacts grow in
size the porosity decreases. The relationship etwe& and porosity can be determined if

the contact area between individual grains is kndlinis method presents a unique problem
since elastic properties of both matrix and cenaahg with an estimate of contact area
would need to be known priori in order to determiakationship between K* and porosity.

Once the relationship between K* and porosity igwn it is possible to determine the

relationship between 4 and porosity.

Although there is no need to calculate the emdf for determining the error in the
fluid substituted velocity, the three methods stateere can assist in determining the
relationship between & and porosity if it is desired to use the subsbtutmethod as

suggested by Smith et al. (2003).

6.3.6 Computing error in shear modulus (G)

Calculation of uncertainty in the shear moduluslatively simple. As described in

section 5.6, the shear modulus is calculated ukie@quation.

G=p,*VI.

where

G = Shear modulus in GPa.
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Pb = Bulk density of the rock (g/cc)
Vs = Shear velocity (Km/sec)

By applying the error propagation equation we get

O :\/VSZ* O +4*VZ* pi* ol
where
oc= RMS error in shear modulus in GPa
ovs= RMS error in shear velocity in Km/sec
Throughout the process of fluid substitution tladue of shear modulus of the rock
(G) is kept constant. However if the value of G@snputed from the logging data then an
uncertainty associated with the, Yheasurement will be propagated to the shear msdulu

derived from the logging data.

6.3.7 Computing error in fluid substituted bulk density

The paper by Smith et al. (2003) states that e bulk density can be computed
using the standard porosity equation givep,as- p,(1 — @) + ps . | replaced the termy,
with apparent grain density as described in sediBt7 to account for variation in the bulk
density due to the presence of clay. The apparent density calculation is shown below.

(DenMat * (L- Porosity —Vsh) + DenShale* Vsh
1- Porosity '

AGD =

where
AGD = Apparent grain density (g/cc) @ (n the standard porosity

equation)
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DenMat = Matrix grain density (constant - 2.65a)/c
Vsh = Volume of shale in fraction
DenShale = Density of dry shale (constant - 2/60)g

The uncertainty in the apparent grain densitynis of the contributors to the error in
bulk density. The calculation of the uncertaintytle fluid substituted bulk density would
first require determination of uncertainty in paeders such as the apparent grain density and
the density of the substituted fluid. For cleankeo@ow shale fraction) a single value can be
assigned for the matrix density and a reasonalglengion for uncertainty in the value of
density of matrix and the density of fluid can bade. For example, an error in matrix
density and density of fluid for clean sandstonas be +0.01 or +0.02 g/cc respectively
unless an alternate uncertainty value is otheraissglable. However when the fraction of
shale in the rock matrix increases, it becomescditf to estimate the error in the apparent
grain density, since the error parameters suchshs DenShale etc would have to be known
priori. Calculating uncertainty in these parameteosild then require several assumptions of
its uncertainty values and would therefore makectieulation unreliable. | therefore used a
constant uncertainty value of £0.025 g/cc whiclhis same as the uncertainty in the input

density parameter used in this study.
6.3.8 Computing error in fluid substituted velocity

This is the final step in the calculation of uriaety in the fluid substituted velocity.

The P and S velocities have been calculated usmgdquations stated below.

4
Vp=1 “s:*3% andvs= /E
Po Po
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All variables in the above equations are considexede statistically independent and
therefore do not require the use of covariance tertme error propagation equation. This
parameter independence with respect to data uihtgria for the purposes of this study.

Therefore the error propagation equation can besdas per equations below.

where
-05
4\ K +ﬂ-G
dVp, =05* Ksa'2+§G « 1 dVe, =05* ™ 3 x4
dKez Prz Py UG Poz 30
-05
4 4
av. KSatZ +-G KSa12+7G
P2 = _05* 3 * 5 3
do,; Loz P>
and
-05 -05
dVSZ =05* [Gj * i dV52 =—05* [G] * Gz
dG Ph2 P2 , dpy, P2 Po2

The termsoksar, 66, @ando,,, represent the uncertainty in the saturated bulkdufus with

substituted fluid, uncertainty in the shear modand the uncertainty in the bulk density with

substituted fluid respectively.

END OF THESIS
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