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ABSTRACT 

High-performance is a highly desirable trait for applications today. Companies large and 

small are migrating their serial applications to parallel versions to reduce execution time and 

increase efficiency. However, preparing serial applications for parallel processing is not a 

simple process. Pandas, which is a Python library containing rich data structures and tools, is 

used abundantly in Data Science applications. However, the Pandas framework is built for 

single-core processing and is unable to fully utilize multi-core processors or cluster 

technology. Because of this limitation, Pandas users are forced to look for other frameworks 

when working with large quantities of data.  

 

This thesis introduces a Parallel-Pandas library which makes the process of parallelizing serial 

Pandas applications easy and transparent. The Parallel-Pandas library provides Pandas users 

the ability to upgrade existing applications transparently, by using only a library import. This 

thesis contains details about the design decisions and implementation of the Parallel-Pandas 

library. The Parallel-Pandas library is evaluated with unit testing, microbenchmarks, and a 

real-world application with different datasets. Parallel-Pandas has also been compared with 

PySpark, a framework that provides parallelism by following the MapReduce structure. The 

results presented in this paper show that the Parallel-Pandas library has promising potential 

and delivers performance close to manually parallelized and tuned applications.  
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1 INTRODUCTION 

1.1 INTRODUCTION TO THE PROBLEM DOMAIN 

As we have been moving into a technologically advanced world, two areas of scientific 

computing, High-Performance Computing (HPC) and Big Data have emerged out of different 

necessities. The HPC software stack comes from the need of being able to use the large-scale 

compute resources efficiently whereas the Big Data Software stack comes from the need of 

handling large scale data efficiently. HPC programming models such as Message Passing 

Interface (MPI) [14], OpenMP [19] and CUDA [18] are known to require more learning and 

can be considered expert territory whereas Big Data program models such as Hadoop 

MapReduce [7], Spark [27], and Pandas [13] are considered simpler but may have limitations 

when it comes to full utilization of the hardware. Attempts are being made to bring these two 

programming models closer to each other so that maximum applications can benefit from the 

availability of the high-end hardware resources. 

 

From the programming language standpoint, the area of High-Performance Computing has 

been using the more traditional statically typed languages of C/C++ and Fortran which are 

known to make better use of the hardware. Python, which is a dynamically typed language, is 

gaining more and more popularity mainly because of its easy and clear syntax, quick learning 

time, and the availability of the immense libraries and modules, because of which 

development can move rapidly. This language is very popular in the Big Data community as 

well, since it has libraries such as NumPy [17], and Pandas to aid scientific computing. 
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Hence, a new trend of using the HPC technologies such as MPI with Python, which is more 

common in Big Data applications, is gaining traction. This trend attempts to bring the HPC 

technologies within easy reach of the Big Data applications.  

1.2 MOTIVATION 

High-performance is a highly desirable trait for almost all applications nowadays. Companies 

large and small are trying to migrate their serial code to parallel versions to increase 

efficiency. However, it is not always easy to update a serial application to a fast, parallel 

version. One must fully understand the underlying hardware resources that are available and 

the unique requirements of the application before taking on the task of migrating an 

application. Pandas is a library that is heavily used in data science for handling different types 

and sizes of data. It is liked for its ease-of-use, flexibility and the rich data manipulation 

functions that it provides. However, Pandas cannot run efficiently on multi-core hardware, let 

alone clusters. 

 

This project aims at making the task of migrating serial applications to parallel versions 

simpler, for the users of the Pandas framework. In this project, we begin at building the 

framework that will improve performance of Pandas applications and parallelize the 

application. It will provide transparency and can be used  just with a library import, without 

needing any code-changes, and without understanding all the details of what is happening 

under-the-hood.  
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The aim of this project is to combine the technologies of MPI, Pandas and Python. MPI has 

great performance and has the ability to use cluster-computing efficiently, Pandas is widely 

used for big-data analytics but is based on sequential processing, and Python is an easy to use 

language. Hence this project will make parallel and efficient processing more accessible to a 

variety of different users.   

1.3 GOALS OF THESIS 

The goal of this project is to create a parallel version of Pandas (Python Data Analysis 

Library) functions using MPI (Message Passing Interface) technology. The aim is to create an 

interface identical to the serial Pandas  to create a seamless transition, so that upgrading 

existing applications to the parallel version is just a matter of importing the Parallel-Pandas 

library. Currently, such a library does not exist.  

 

As a use case, and for narrowing down the Parallel-Pandas library functions that are 

developed during the thesis, optimization of the speed and performance of detecting duplicate 

documents will be focused upon. 

 

This thesis begins by introducing the application domain and the various technologies of 

Python, NumPy, Pandas, and MPI to familiarize the reader. This is followed by a discussion 

of related work. After that, implementation,  and experimental setup will be discussed in 

detail. The thesis will be concluded with an evaluation of the contribution and ideas for future 

work. 
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2 BACKGROUND 

This section will introduce the reader to the technologies that have been used during this 

research. 

2.1 PYTHON 

Python [22] is a portable, interpreted, object-oriented language which has a very clear syntax. 

It is a high-level general-purpose language, which can be extended with functions 

implemented in C/C++, and it can also be used as an extension language to provide 

programmable interfaces to applications. It is a powerful language with a community of users 

that is constantly increasing.  

2.1.1 Use of Python for High-performance 

Traditionally HPC has been dominated by compiled, low-level languages such as C/C++, 

since it is thought that compiled languages are able to use the hardware more efficiently. 

However, for most of the HPC applications, only a small portion of the code is time critical 

enough to need compiled languages, the rest of the code is input/output, memory 

management, error handling etc. where interpreted high-level languages can swoop in to 

speed up the development and debugging  processes [4]. Hence, Python which is an 

interpreted language has been gaining popularity for being used in high-performance 

applications. The proponents of Python advertise its readability, succinctness, and the ability 

of writing computationally expensive parts of code in compiled languages and accessing them 

through Python modules [25].  
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2.2 MESSAGE PASSING INTERFACE 

Message passing has proved to be very effective in parallel computing and distributed 

systems.  Message Passing Interface (MPI) [14] is a language independent communications 

API (Application Programming Interface). It is the specification produced by the MPI Forum 

to standardize message passing in cluster computing. MPI provides a portable message 

passing system, hides the networking and memory management details to ease development 

and does not sacrifice performance in the process. The standard does not provide an 

implementation but defines syntax and semantics. In addition to point-to-point blocking and 

non-blocking send and receive operations MPI also standardizes collective operations such as 

‘gatherAll’, ‘allReduce’ etc. It has an object-oriented feel and uses communicators to specify 

the communication domain. Most implementations of MPI support communication over 

InfiniBand (using native InfiniBand protocol) and TCP (Transmission Control Protocol) 

which is typically on Ethernet, as well as other network interconnects. 

2.2.1 MPI for Python 

Implementations of the MPI standard have traditionally been developed in scientific 

languages like C, C++ and Fortran, the two major ones are MPICH [9] and OpenMPI [2]. Due 

to the productivity gain that is associated with interpreted languages, attempts have been 

made to enable the use of Python with parallel computing frameworks such as MPI.  

 

Bindings in Python have been developed so that Python applications can also benefit and 

make use of the parallel architectures. Mpi4py [4], which builds on MPI C-bindings, is a 
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notable project among the Python implementations. It is written in Cython, which is a C 

library wrapping language. It integrates with NumPy, uses the array class with minimal 

overhead, and has  a clear and readable syntax. It can work with any of the underlying MPI 

implementation that is based on the MPI specifications. 

 

Mpi4py not only provides implementation for communication by passing Python objects, but 

it also provides communication of memory buffers and means of defining a user defined MPI 

datatype. Using mpi4py in conjunction with memory buffer communication is as good as 

using compiled languages like C/C++, since it avoids the overhead created by the pickling/de-

pickling of the objects that is required in Python object communication [5]. The functions for 

sending and receiving memory buffers are accessed by ‘Send’ and ‘Receive’ whereas the 

Python object functions are called by their lowercase ‘send’ and ‘receive’ counterparts. 

2.3 NUMPY 

NumPy [17] is a Python package created to aid scientific computing. NumPy provides support 

for handling large multi-dimensional arrays and matrices by providing powerful n-

dimensional array structures and functions for dealing with these structures. It also provides 

tools for integrating C/C++ and Fortran code and contains functions for linear algebra, Fourier 

transforms and random numbers. NumPy’s array container can be used in conjunction with 

mpi4py’s buffer communication to get results comparable to the C/C++ implementations [5]. 

This makes Python more appealing to the performance critical applications as well. 
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2.4 PANDAS 

Pandas [13] is a Python library containing rich data structures and tools. It has been created to 

improve the adoption of Python in the scientific programming community by bridging the gap 

and enriching Python for data analytics and data manipulation applications. Specifically, some 

of the features it provides are: label-based data access, advanced pivoting and reshaping, 

grouping and aggregating of data, combining and joining of datasets, hierarchical indexing, 

data alignment, and dealing with missing data etc.  

 

Traditionally, Pandas works with data collections in a relatively sequential manner. The 

Pandas ‘read_table’ function now offers chunk size to read huge files in chunks to make the 

processing more memory manageable. When dealing with huge data collections, faster 

processing times can be achieved by parallelizing the process and making use of the many 

processors that are now available in laptops, consequently further performance boosts can be 

attained by using distributed systems and clusters [1].  

2.5 NATURAL LANGUAGE TOOLKIT (NLTK) 

NLTK [3] is a Python library that provides language processing tasks such as stop-word 

removal, stemming, tokenization,  speech tagging, and text parsing etc. The aim of this library 

is to design an intuitive framework for providing natural language processing functionality so 

that the user does not have to worry about the details associated with the processing annotated 

language data. The NLTK package can be used by Python with the following two statements: 

import nltk 

nltk.download()  
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3 RELATED WORK 

Some related work in this area is described in this section. 

3.1 DASK 

Currently, there is a Python framework, Dask [23], which provides a parallel implementation 

of some of the Pandas functions. From a user perspective it requires a setup of the application 

and is not transparent for the user coming from the serial version of the code. From an 

implementation perspective, it does not use MPI for internode communication. [6] 

 

Dask is a framework that uses blocked algorithms and task scheduling to achieve parallel 

execution. It creates an acyclic graph of tasks for computation and represents it as a Dask 

graph, which is a Python dictionary. It has a scheduler and worker pattern and does lazy 

evaluation, which means that it waits to implement a task until it must. Because of this setup 

an extra ‘compute’ function needs to be called to force computation and hence converting 

codes from serial to parallel would require more than just a library import. Dask uses TCP 

(Transmission Control Protocol), which typically uses ethernet, for internode communication. 

It can be setup to use different interconnect, such as InfiniBand, in case of a specialized 

capability of a system. However, since it is TCP-based, it will be using IPoIB (Internet 

protocol over InfiniBand) which does not provide the same throughput and latency as using 

the native InfiniBand protocol. Dask defines an array structure, a bag structure and a 

dataframe structure. The dataframe structure is partitioned row-wise and distributed across the 
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cluster. The array structure uses Dask graphs to create a NumPy like structure but uses all the 

cores available in a system. [26] 

3.2 SPARK – PYSPARK 

Spark [27] is a cluster computing framework, written in Scala. Spark provides a general 

programming interface to be used interactively to process large datasets on clusters. It 

supports other programming languages such as Python, Java and R. PySpark is a 

programming interface enabling access to Spark from Python. The core of Spark is the 

implementation of Resilient Distributed Dataset (RDD) [28], which are a fault-tolerant, 

immutable, distributed memory abstraction. In addition to fault-tolerance and efficiency, 

Spark also addresses the limitations of the Hadoop MapReduce framework [7] in the area of 

iterative and interactive applications.  

 

The users can perform course-grained transformations to create new RDDs and can perform 

actions such as ‘count’, ‘collect’ etc. on the RDDs. The user can also control the distribution 

of the RDDs and can persist them in memory. Fault-tolerance is provided by keeping the 

lineage of each of the RDD for the entire life of that RDD. Lineage is composed of the details 

of all the transformations that took place to create the RDD.  

 

Spark runs in a distributed fashion with the combination of a driver and executor pattern. The 

driver splits the application into tasks and divides them across the worker executors. Some 

work has been done to assess the benefits of using Spark with high-speed interconnects such 

as InfiniBand [12], but this work has not been incorporated into the standard Spark 
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distribution. Hence, similar to Dask, if Spark is used with a system that has InfiniBand, it will 

use IPoIB and will not get all the performance benefits that can be gained by using the native 

InfiniBand protocol. 

3.3 RAY 

Ray [16] is an open-source system for scaling Python applications to clusters. It is a cluster-

computing framework targeted towards AI (artificial intelligence) and ML (machine learning) 

applications. Hence, in addition to the course-grained transformations, Ray provides the 

ability to do fine-grained transformations which are lacking in MapReduce and Spark 

frameworks.  

 

Similar to Dask, Ray implements the application as a graph of dependent tasks that evolves 

during execution. Ray provides two different forms of functions: a task, which is a function to 

be executed on a stateless worker, and an actor, which represents a stateful computation. Ray 

distributes two components that are currently centralized in other systems: the task scheduler 

and the metadata containing the lineage. It is not supposed to be a substitute to general-

purpose frameworks such as Spark, since it lacks the rich functionality provided by such 

frameworks. 

3.4 MODIN 

Modin [20] is an early-stage lightweight open-source multi-process dataframe library 

prototype, which scales Pandas applications. It provides a scalable dataframe and provides 
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integration with current Pandas code only with a library import. Modin rewrites Pandas API 

calls into a sequence of algebraic operators.  

 

It provides distributed processing of dataframes using two execution frameworks: Ray or 

Dask, the user gets to choose the underlying framework they wish to use. Modin provides 

distribution of the dataframes by partitioning across both columns and rows. Modin does not 

use MPI for communication and does not perform lazy evaluation like Spark and Dask. 

According to its documentation [15], the use of Modin in clusters is experimental and still 

under development. 
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4 CONTRIBUTIONS  

The main contribution of Pandas is the dataframe object, which is a two-dimensional data 

structure with integrated indexing, created to make data manipulation fast and easy. The 

Pandas library also provides a series object, which is a one-dimensional labeled array, to 

complement the dataframe. This project begins the work of parallelizing the Pandas library, to 

further improve efficiency, and introduces the Parallel-Pandas Library. This library contains a 

ParallelDataframe object, and a complementing ParallelSeries object. In the following, the 

thesis describes the most relevant architectural features of the Parallel-Pandas library, as well 

as the functionality currently supported by the library. 

4.1 THE PARALLEL-PANDAS LIBRARY 

The following section will discuss the design decisions made while developing this library. 

4.1.1 Data Distribution 

A parallel dataframe or series can either be of type ‘distributed’ or ‘replicated’. ‘Distributed’ 

type means that data is uniformly distributed among the nodes of the cluster and each node 

has a portion of the dataframe or series whereas, ‘replicated’ type is when the same data is 

repeated across all the nodes.  

 

A parallel distributed dataframe can be distributed column-wise or row-wise, represented by 

an ‘orient’ property, amongst the nodes in the cluster. Each node contains a local dataframe 

which represents a portion of the global distributed dataframe. ParallelDataframe contains an 



 

 

13 

 

attribute called ‘global_to_local’, calculated on an as-needed basis, which specifies the 

mapping of the columns or rows to the nodes (depending on the orientation of the 

distribution). The column labels and the index (Pandas name for row) labels in a Pandas 

dataframe are obtained with ‘df.columns’ and ‘df.index’ similarly the global column and 

index labels in the Parallel-Pandas distributed dataframe can be obtained by 

‘df.globalColumns’ and ‘df.globalIndex’ respectively.  

 

For column-wise distribution, requesting a row of the distributed dataframe gives a distributed 

series. Figure 4-1 depicts the Pandas dataframe and the Parallel-Pandas distributed dataframe, 

with column distribution and hence global column labels.  

 

 

Figure 4-1: Depiction of a Pandas dataframe and a Parallel-Pandas distributed dataframe with ‘columns’ 

orientation 

4.1.1.1 Limitations 

Currently, the row-wise distribution is experimental and only supported by a few functions. A 

row-wise distributed dataframe can only be created via the ‘from_dict’ function with ‘index’ 
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as the ‘orient’ argument. However, the setup is done in such a way that extending this 

functionality is an easy next step. 

4.1.2 Functions Implemented 

For the ParallelDataframe subclass, in addition to the constructor, the ‘from_dict’ function, 

the ‘corr’ function, ‘drop’ function, ‘apply’ function and the ‘div’ function have been 

implemented. For the parallel series subclass, in addition to the partial implementation of the 

constructor as discussed earlier, ‘value_counts’ function is implemented. Details on what 

these functions do are below: 

• The constructor of each class is responsible for creating an object of that type. 

• The ‘from_dict’ function creates a parallel dataframe from a dictionary. 

• The ‘corr’ function computes pairwise correlation among the columns of the 

dataframe, excluding null values. It creates and returns a distributed dataframe when 

called by a distributed dataframe. 

• The ‘drop’ function removes a row or column whose label is specified. 

• The ‘apply’ function takes a function and applies it to all the data in the dataframe. It 

returns a parallel series or a parallel dataframe object. 

• The ‘div’ function provides element-wise division. It returns a parallel dataframe 

which is a result of the arithmetic operation. 

• The ‘value_counts’ function counts the unique values in a series excluding null values. 

It returns a replicated series containing the counts of the unique elements throughout 

the parallel series. 
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4.1.3 Other Features Developed 

Some other features that have been developed for the ParallelDataframe class in form of 

properties are: ‘global_to_local’, ‘globalShape’, ‘globalColumns’, ‘globalIndex’, and ‘loc’. 

For the ParallelSeries class, ‘global_to_local’, ‘globalIndex’,  and ‘collect’ have been 

developed for helping in testing. 

4.2 IMPLEMENTATION DETAILS 

Sub-classing of the Pandas data structures has been chosen as the method for extending the 

Pandas library and developing the Parallel-Pandas library. This enables the Parallel-Pandas 

data structures to use the underlying base functionality provided by Pandas classes, and 

functions can be overloaded on an as-needed basis in the incremental development.  

 

As part of the Parallel-Pandas library, a sub-class for the dataframe object has been developed 

that represents a parallel dataframe. A ParallelDataframe can either be distributed, where data 

is uniformly distributed amongst the cluster or replicated, where the data is repeated across all 

the nodes in the cluster. 

 

A subclass of the series object has also been developed, to complement the ParallelDataframe 

object. This subclass represents a parallel series which can be either distributed or replicated. 

However, the constructor of the series is implemented partially, and it expects distributed data 

for creating a distributed series, this would be the case when a series is created from the 

distributed dataframe.  
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This following section will elaborate on the implementation of the Parallel-Pandas library and 

the functions that have been developed. The function signatures have been kept same as the  

original Pandas so that it is easier for the users familiar with the Pandas API. Where needed, 

the additional arguments have been given default values but can be passed to the functions by 

advanced users who want to optimize their code further. 

4.2.1 Constructor of the Parallel Dataframe Subclass  

The constructor is responsible for creating a parallel dataframe object. Uniform distribution of 

data is achieved by sorting the data by size and then distributing it in a round-robin fashion, 

alternating the order of nodes in an increasing and decreasing order until all the data is 

distributed. For example, the first process gets the largest piece of data in the first round 

whereas, the last process gets the largest remaining piece of data in the next round and so on 

and so forth. This process and code have been adapted from a paper discussing comparison of 

MPI and Spark [24]. 

4.2.1.1 Function Signature 

The function signature is given in Figure 4-2: 

 

Figure 4-2: Function signature of the parallel dataframe constructor 

The ‘dist’, ‘dist_data’, ‘orient’ and ‘comm’ arguments have been added and have been given 

default values to cater for the parallel dataframe. All the other arguments are the same as 

given to the Pandas functions.  
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• ‘dist’ represents whether the dataframe is to be ‘distributed’ or ‘replicated’,  

• ‘dist_data’ is a boolean and is only applicable when the parallel dataframe is of 

distributed type, it is true if the data being passed is distributed 

• ‘orient’ represents whether the distribution is to be oriented by ‘columns’ or ‘index’ 

(Pandas name for rows) 

• ‘comm’ is the communicator used for MPI communication 

4.2.1.2 Functionality Supported 

The constructor of the parallel dataframe can create the following: 

• a distributed or replicated empty dataframe,  

• a replicated dataframe from any type of serial input that Pandas is compatible with 

(dictionary, lists, series, NumPy array, dataframe) 

• a column-wise distributed dataframe from a serial dataframe,  

• a column-wise distributed dataframe from a serial dictionary 

• a distributed dataframe from already distributed data 

Creation of a row-wise distributed dataframe from undistributed data and creation of a 

distributed dataframe form a serial 2D numpy array are not supported yet. 

4.2.2 ‘from_dict’ Function  

‘from_dict’ is a class method which constructs dataframe from a dictionary. It can create a 

distributed dataframe from the dictionary by column or by index depending on the ‘orient’ 
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argument. ‘columns’ orientation means that the keys of the dictionary will be the column 

labels and ‘index’ means that the keys of the dictionary are the row labels.  

 

In the Parallel-Pandas library’s distributed dataframe the ‘orient’ property translates to a 

column-distribution and row-distribution. The distribution of the data is done in a similar 

fashion as explained in the constructor, where data is first sorted by size and then distributed 

in an alternate round-robin fashion across all the nodes in the cluster.  

 

The data is first distributed by an internal function as described above, once each node knows 

its local data, the base ‘from_dict’ function from the Pandas library is called upon to create 

local dataframes for each of the nodes. 

4.2.2.1 Function Signature 

The function signature is seen in Figure 4-3:  

 

Figure 4-3: Function signature of the 'from_dict' method 

The signature of this function is same as the Pandas function, the only addition is the 

argument of ‘comm’ which is needed for MPI communication and the ‘dist’ which specifies if 

the parallel dataframe is distributed or replicated. The additional arguments have been given 

default values and the users are not required to specify these additional arguments. 
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4.2.2.2 Functionality Supported 

Currently, all the functionality supported by Pandas function of ‘from_dict’ is supported by 

Parallel_Pandas as well. A parallel dataframe of ‘replicated’ or ‘distributed’ type can be 

created. For distributed dataframe, when ‘orient’ attribute is ‘columns’, the data will be 

distributed column-wise, and when the ‘orient’ attribute is ‘index’ the data will be distributed 

row-wise throughout the nodes of the cluster. 

4.2.3 ‘corr’ Function 

The ‘corr’ function finds the correlation between the columns of the dataframe. As a result, a 

distributed correlation dataframe is returned. 

 

The implementation of the correlation function uses a combination of non-blocking sends and 

blocking receives. Every processor sends its columns to all the other processors one-by-one, 

and each processor receives and processes the data in every iteration. Sending of the data is 

done in form of contiguous NumPy arrays. Processing of the data includes using the 

underlying Pandas ‘corr’ function, Pandas ‘groupby’ and ‘drop’ functions are used to get rid 

of the duplicate rows and duplicate entries that exist on other processors. After all the 

iterations are done, the resulting local matrix is transposed with a Pandas ‘transpose’ 

operation to get it in a column-wise distributed format. The resulting matrix further undergoes 

a ‘sort_index’ operation so that the row labels in all the nodes are organized in the same way. 
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4.2.3.1 Function Signature 

As can be seen in Figure 4-4, the function signature of the ‘corr’ function is the same as the 

corresponding Pandas function. 

 

Figure 4-4: Function signature of the 'corr' method 

4.2.3.2 Functionality Supported 

• The ‘corr’ function fully supports column-distributed dataframes and replicated 

dataframes. 

• Correlation functionality on the row-distributed dataframes has not been implemented 

and tested yet. 

4.2.4 ‘drop’ Function 

The ‘drop’ function removes a column or a row with a given label. It returns a dataframe if 

‘inplace’ is False otherwise it returns nothing and modifies the existing dataframe. 

4.2.4.1 Function Signature 

As can be seen in Figure 4-5, the function signature of the ‘drop’ function is the same as the 

corresponding Pandas function. 

 

Figure 4-5: Function signature of the 'drop' function 
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4.2.4.2 Functionality Supported 

The 0.21.0 version (and onwards) of Pandas allows users to specify single or list-like labels in 

the index or columns parameters instead of the combination of axis and labels. For example, 

specifying axis = 0 and labels can be done by just passing index = labels to obtain the same 

result. This introduces a new feature where columns and index can both be dropped in a single 

function call. Before the introduction of this feature, a call to the ‘drop’ would be specific to a 

single axis (row or column).  

 

‘drop’ function has been tested for the following features that are supported by the Parallel-

Pandas library: 

• Dropping a column or a row in a replicated dataframe 

• Dropping a column or a row in a distributed dataframe whether it is column-

distributed or row-distributed  

• Modifying the current dataframe and returning a new dataframe are both supported, 

this is specified by the boolean ‘inplace’ in the function argument 

• Supports dropping of  a single or multiple columns or rows specified 

• Dropping of columns and rows in the same call for a replicated dataframe 

Parallel-Pandas does not support dropping of columns and rows in the same call for a 

distributed dataframe. Currently, such a functionality can be accomplished with two separate 

function calls. 
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4.2.5 ‘apply’ Function 

The ‘apply’ function is responsible for applying a given function along an axis of the 

dataframe. It returns a parallel series or a parallel dataframe object.  

 

This function is implemented by wrapping the inherited ‘apply’ function provided by Pandas 

library. The wrapper makes sure to return a parallel series or dataframe as required, the 

underlying work of applying the functions is executed by the Pandas ‘apply’ function. 

4.2.5.1 Function Signature 

 

Figure 4-6: Function signature of the ‘apply’ function 

Figure 4-6 shows the function signature of the ‘apply’ function. The function signature of the 

‘apply’ function is the same as its Pandas counterpart since the additional arguments needed 

by the Parallel-Pandas library are included in the parallel dataframe object. 

4.2.5.2 Functionality Supported 

• For replicated dataframe, all the features of the Pandas ‘apply’ function are supported 

by the Parallel-Pandas ‘apply’ function. 

• For column-distributed dataframe, the ‘apply’ function supports the default 

functionality when axis = 0, the value of ‘raw’ can be True (row is passed as a ndarray 

object) or False (row is passed as a Series object).  
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• Applying a function with axis=1 for a column-distributed dataframe is not yet 

supported, consequently having a ‘result_type’ other than ‘None’, which is only 

relevant when axis = 1, has not been implemented and tested. 

• The ‘apply’ function with a row-distributed dataframe has not been tested. 

4.2.6 ‘div’ Function 

The ‘div’ function is responsible for performing division between a dataframe and an entity 

and provides support for substituting a fill_value for missing data. This function returns a 

dataframe. 

 

This function is implemented by wrapping the inherited ‘div’ function, provided by Pandas 

library, to return a parallel dataframe. The underlying work of div is executed by the Pandas 

‘div’ function. 

4.2.6.1 Function Signature 

 

Figure 4-7: Function signature of the 'div' function 

Figure 4-7 shows the function signature of the ‘div’ function. The function signature of the 

‘div’ function is the same as its Pandas counterpart since the additional arguments needed by 

the Parallel-Pandas library are included in the parallel dataframe object. 
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4.2.6.2 Functionality Supported 

Following describes a list of supported operations and mentions the limitations of this 

function: 

• Division by constants is supported for a parallel dataframe whether it is distributed or 

replicated 

• Division of two replicated dataframes is supported with all the functionality of axis, 

level and fill_value 

• Division of two distributed dataframes or a distributed dataframe with a replicated 

dataframe is not supported yet. 

4.2.7 Constructor of the Parallel Series Subclass 

The ParallelSeries subclass has been developed to complement the ParallelDataframe and 

hence only the bare-minimum features have been developed for this class. The constructor of 

this class expects distributed data when creating a distributed series and can only create 

replicated series with non-distributed data. 

4.2.7.1 Function Signature 

The function signature can be seen in Figure 4-8: 

 

Figure 4-8: Function signature for the constructor of the parallel series 
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In Figure 4-8, the arguments in the top line are the same as in Pandas, the additional 

arguments needed for Parallel-Pandas are in the bottom-line. These additional arguments have 

been given default values so that the novice users do not have to worry about them, but at the 

same time the ability of changing the default values has been provided for the advanced users. 

The additional argument of ‘comm’ specifies the MPI communicator, ‘dist’ specifies the type 

of distribution and can have the values of ‘distributed’ or ‘replicated’, ‘dist_data’ is a boolean 

which specifies whether the incoming data is already distributed or needs to be distributed.  

4.2.7.2 Functionality Supported 

The constructor of the ParallelSeries subclass can create the following: 

• a distributed or replicated empty series 

• a replicated series from any type of serial input that is compatible with Pandas, 

namely: a python dictionary, NumPy array, and a scalar value. ‘dist = replicated’ must 

be passed while creating this object. 

• A distributed series from already distributed data, for example getting a row of a 

parallel distributed dataframe 

Creating a distributed series with non-distributed data is not supported yet. 

4.2.8 ‘value_counts’ Function 

The function of ‘value_counts’ can be called by a parallel series, which is of replicated or 

distributed type, the result would be a replicated series with counts of the unique values in the 

given parallel series. 
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As a first step, a distributed dictionary containing unique values as keys and counts as values 

is created. This dictionary is distributed amongst the processors via a hash function depending 

on the first two characters of the keys. The hashing function provides a total of 716 different 

hashing keys (26 x 26 number of combinations possible for the first two characters, plus 26 

keys for single character words, and 10 keys for words starting with numeric characters). 

Every processor gets a subset of keys assigned to it by the hashing function and is hence 

responsible for summing the count of those subset of keys. Each processor prepares tuples, of 

key and count, to be sent to other processors based on the same hashing function. At the end 

of this step every processor has a count dictionary with its assigned keys and this dictionary is 

representative of the unique-counts of the entire original series. This process and code have 

been adapted from a paper discussing comparison of MPI and Spark [24]. 

 

A structure of key and count pair has been created as an MPI datatype and as a NumPy dtype 

to be able to efficiently transfer the word-count tuples. After the initial step of getting the 

distributed dictionary is completed, the word-count tuples are collected on every processor by 

an MPI ‘Gatherall’ operation and a replicated series is created which is then returned by the 

function of ‘value_counts’.  

4.2.8.1 Function Signature 

The signature of the function is seen in Figure 4-9: 

 

Figure 4-9: Function signature for the 'value_counts' function 
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As can be seen from the figure above, the signature of the function is the same as its Pandas 

counterpart. The reason is that, the additional features needed by the Parallel-Pandas version 

are included in the parallel series object and do not need to be passed as arguments to the 

function. 

4.2.8.2 Functionality Supported 

Currently the ‘value_counts’ feature is fully supported; it can find the counts of unique values 

for a replicated series or a distributed series and these unique values can be decimal numbers, 

integers or strings. 

4.2.9 ‘collect’ Function 

The ‘collect’ function for the ParallelSeries class has been developed to help in testing. This 

function has not been fully optimized for efficiency since it is not expected to be used for 

purposes other than testing. The ‘collect’ function is responsible for converting a distributed 

series into a replicated one. The functionality is achieved by performing two ‘all_gather’ 

operations once for indices and once for values and creating and returning a replicated series 

with that data. 

4.2.10  ‘loc’ Property 

‘loc’ is a property of the Pandas dataframe that can access a group of row and columns by 

labels or a boolean array. Allowed inputs to the Pandas version are a single label, a list or 
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array of labels ([‘a’, ‘b’, ‘c’]), a slice object with labels (‘a’: ‘f’), a boolean array of the same 

length as axis is being sliced, or a callable function with one argument. 

 

For the Parallel-Pandas library, the ‘loc’ property has the same functionality and is developed 

to work with the parallel data structures. The ‘loc’ property is implemented by wrapping the 

‘_getitem_axis’ function of the ‘_LocIndexer’ class  from the Pandas library. This is 

accomplished by defining the function in ‘_CustomLocIndexer’ which is defined as a sub-

class of ‘_LocIndexer’. The wrapper makes sure that a parallel series or parallel dataframe 

(replicated or distributed as needed) is returned by this property.   

4.2.10.1 Functionality Supported 

Following is a list of functions supported by the Parallel-Pandas ‘loc’ property, it also points 

out the limitations. 

• Getting of single or multiple rows from a column-distributed dataframe is supported 

• Getting of single or multiple rows from a replicated datafame is also supported 

• Getting a cell value by specifying row and column label is supported for replicated 

dataframes 

• The inputs of single label, list or array of labels, slice object with labels, and boolean 

array have been tested and are supported 

• The input of callable function has not been tested and is not fully supported at this 

time. 

• Getting a row or rows in index distributed dataframe is not supported 
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• Getting a cell value by specifying row and column label for distributed dataframe is 

not supported yet 

4.2.11 Global Properties 

Some global attributes have been developed for the ParallelDataframe and ParallelSeries 

objects  to support the knowledge about the global object’s shape, columns, rows etc. The 

implementation details of these global attributes are discussed below. 

4.2.11.1 ‘global_to_local’ and ‘globalShape’ 

The property ‘global_to_local’ is applicable to both the ParallelDataFrame and the 

ParallelSeries objects and is calculated once, on an as-needed basis. This attribute specifies 

the mapping of the columns or rows to the nodes depending on the orientation of the 

distribution in case of a distributed dataframe and specifies the mapping to nodes of the 

distributed series elements in case of a distributed series.  

 

‘global_to_local’ is a dictionary whose keys are the distributed entity (either rows or columns) 

and the values are the processor ranks that contain the corresponding entity. A combination of 

an ‘all_gather’ and ‘all_reduce’ MPI operations are used to find this mapping. An 

optimization is implemented that the ‘global_to_local’ dictionary is only calculated once 

when needed and after that it is stored and is available for re-use. 
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‘globalShape’ function has only been developed for the ParallelDataframe object. The global 

shape of the dataframe is obtained from the ‘global_to_local’ dictionary and stored for later 

re-use. 

4.2.11.2  ‘globalIndex’ and ‘globalColumns’ 

The column labels and the index (Pandas name for row) labels in Pandas are obtained with 

‘obj.columns’ and ‘obj.index’ similarly the global column and index labels in the Parallel-

Pandas can be obtained by ‘obj.globalColumns’ and ‘obj.globalIndex’ respectively.  

 

‘globalIndex’ is applicable for ParallelDataFrame and ParallelSeries, if the index is 

distributed amongst the nodes, calling the ‘globalIndex’ returns the keys of the 

‘global_to_local’ dictionary. 

 

‘globalColumns’ is applicable for ParallelDataFrame only. If the dataframe is distributed 

column-wise, calling the ‘globalColumns’ returns the keys of the ‘global_to_local’ dictionary. 
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5 EVALUATION  

The Parallel-Pandas library has been evaluated for functionality through unit-testing and 

micro-benchmarking; these tests are available in the code-base in ‘tests’ folder. The Parallel-

Pandas library has also been evaluated by the use-case of duplicate detection. An application 

of document duplicate detection has been developed using the Parallel-Pandas library and 

performance is compared with a serial Pandas implementation, a parallel Pandas 

implementation and a PySpark implementation. 

5.1 PERFORMANCE ANALYSIS METRICS 

The performance analysis metrics of speed-up and efficiency with respect to the serial 

application have been used for evaluation of the Parallel-Pandas library. Speed-up, which is 

used for assessing performance of parallel applications, was calculated by dividing the 

execution time of the serial application by the parallel application. Specifically the speed-up 

formula is given by:  𝑆(𝑝) =
𝑇𝑡𝑜𝑡𝑎𝑙(𝑠𝑒𝑟𝑖𝑎𝑙)

𝑇𝑡𝑜𝑡𝑎𝑙(𝑝)
, where ‘p’ is the number of processors and ‘T’ is the 

total execution time. Efficiency, which is the speed-up normalized by number of processors, 

was calculated with the formula: 𝐸(𝑝) =
𝑆(𝑝)

𝑝
, where p is the number of processors. 

 

To further analyze performance of Parallel-Pandas library, it has also been compared to 

PySpark, which provides parallelism via a MapReduce framework. This comparison was done 

via an application of duplicate detection.  
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5.2 HARDWARE AND SOFTWARE CONFIGURATION 

The tests were executed on the Crill cluster at the University of Houston. Sixteen nodes on the 

Crill cluster were used, each node has four 12-core AMD Opteron 6174 processors and 64 GB 

of main memory. The cluster has a QDR InfiniBand and a Gigabit Ethernet network 

interconnect. A single node was used for the unit-testing and for micro-benchmarking. 

 

For the MPI implementation, the code was based on Python 3.4, mpi4py 3.0.0, Open MPI 

3.0.1, and Pandas 0.16.2. For the PySpark implementation, the code was based on Python 2.7 

and Spark 2.3.4. Two datasets of different sizes were used for micro-benchmarking. Two 

datasets were used for the duplicate detection application, one was stored in and read from 

BeeGFS (a parallel file system, optimized for HPC) and the other from the network file 

system. The Parallel-Pandas library was also tested on a local system with Pandas 0.25.0.  

5.3 MICROBENCHMARKS 

Microbenchmarks have been used in this study to measure performance of few of the parallel 

functions developed and to understand how they scale with increasing processors. The 

functions of ‘from_dict’, ‘apply’, ‘value_counts’, and ‘corr’ were chosen for this analysis 

since they are the most important and commonly used functions amongst the functions that 

have been developed. Microbenchmark testing was carried out with distributed dataframes 

and not replicated dataframes. A total of three measurements were taken per function per 

number of processors and the minimum time was chosen to be analyzed, since that 

represented the best performance of that function. The serial functions were also timed with 
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the same size data for comparison purposes. Two data sizes were used to perform this 

analysis.  

 

For the microbenchmark of ‘apply’ function, two file sizes of 80 KB and 163 KB were used. 

The pseudo-code of the micro-benchmark is below: 

serial_df = read_csv(‘name_of_file’) 

dist_df = ParallelDataFrame(serial_df, dist_data = False) 

comm.Barrier() 

T0 = time.time() 

new_dist_df = dist_data.apply(convert to lowercase) 

comm.Barrier() 

T1 = time.time() 

print_to_file(function name and (T1-T0) in seconds) 

 

A distributed dataframe was created from the serial dataframe and the ‘apply’ function was 

called to convert all the string data in the dataframe to lowercase. The timing of this ‘apply’ 

operation was recorded with changing processors from 1 to 10. The serial function’s 

minimum execution time observed was 7.74 seconds with 80 KB data and 14.2 seconds with 

163 KB data. Figure 5-1 below shows that the execution time reduced with increasing 

processors. For the 80 KB dataset, execution time reduced from 5.9 seconds for a single 

processor to 2 seconds with 6 processors, the speed-up seems to taper-off after 6 processors. 

For the 163 KB data, execution time reduced from 12.9 seconds with a single processor to 4.1 

seconds with 8 processors, the speed-up seems to taper-off after 8 processors. 
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Figure 5-1: Microbenchmark results for 'apply' function 

 

For the microbenchmark of the ‘from_dict’ function, a dictionary created from two file sizes 

of 80 KB and 163 KB was used. A distributed dataframe was then created from the dictionary 

with the ‘from_dict’ function. The timing of this ‘from_dict’ operation was recorded with 

changing processors from 1 to 10. The minimum runtime of the serial function was observed 

to be 367.7 seconds with the 80 KB data and 743 seconds with the 163 KB data. Figure 5-2 

below shows the execution time with changing processors. For the 80 KB dataset, the 

execution time reduced from 359.3 seconds for a single processor to 157.3 with 8 processors. 

For the 163 KB dataset, the execution time reduced from 747.3 seconds for a single processor 

to 318.5 with 8 processors. In both cases, the speed-up seems to taper-off after 8 processors. 
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Figure 5-2: Microbenchmark results for 'from_dict' function 

 

For the microbenchmark of the ‘value_counts’ function, two file sizes of 40 KB and 80 KB 

were used. The pseudo-code for the microbenchmark is below: 

serial_df = read_csv(‘name_of_file’) 

dist_df = ParallelDataFrame(serial_df, dist_data = False) 

dist_series = dist_df.loc[‘education’] 

comm.Barrier() 

T0 = time.time() 

dist_series.value_counts() 

comm.Barrier() 

T1 = time.time() 

print_to_file(function name and (T1-T0) in seconds) 
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A distributed dataframe was created from a serial dataframe, a distributed series was then 

obtained by using the ParallelDataframe’s ‘loc’ property. The ‘value_counts’ function was 

then called on the distributed series. The timing of this ‘value_counts’ operation was recorded 

with changing processors from 1 to 10. The function’s minimum serial time with the data size 

of 40 KB was observed to be 0.58 seconds and with 80 KB data it was 1.3 seconds. Figure 5-3 

below shows that the execution time reduced with increasing processors. For 40 KB data, the 

execution time reduced from 0.62 for single processor to about 0.1 with 8 processors. For 80 

KB data, the execution time reduced from 1.6 seconds with one processor to 0.3 seconds with 

8 processors. For both cases, the speed-up seems to taper-off after 8 processors.  

 

Figure 5-3: Microbenchmark results for 'value_counts' function 
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For the microbenchmark of the correlation function (‘corr’), two files sizes of 82 KB and 164 

KB were used. The pseudo-code for the microbenchmark is below: 

serial_df = read_csv(‘name_of_file’) 

dist_df = ParallelDataFrame(serial_df, dist_data = False) 

comm.Barrier() 

T0 = time.time() 

dist_data.corr() 

comm.Barrier() 

T1 = time.time() 

print_to_file(function name and (T1-T0) in seconds) 

 

A distributed dataframe was created from a serial dataframe. The ‘corr’ function was then 

called on the distributed dataframe, and the execution time of the function was recorded. The 

minimum runtime of the serial function was observed to be 2.9 seconds with the 82 KB data 

and 4.6 seconds with the 164 KB data. Figure 5-4 shows that ‘corr’ function’s execution time 

worsened with increasing processors, which means that there is room for optimization for this 

function. For the 82 KB data, the execution time increased from 2.3 seconds for single 

processor to 34.7 seconds for 8 processors. For the 164 KB data, the execution time increased 

from 6 seconds with a single processor to 68 seconds with 8 processors. This degrading 

behavior in case of correlation (‘corr’) function is expected. The data is distributed column-

wise and the ‘corr’ function finds the correlation amongst all the columns of the distributed 

dataframe to create a distributed correlation matrix. As discussed in the implementation 

section, in the process of creation of the distributed correlation matrix, every processor shares 
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its columns with all the other processor in iterations. On top of this communication overhead, 

the local matrices created need to be transposed and sorted by index so that the resultant local 

matrices (per processor) have consistent indices. This ‘corr’ function needs to be optimized 

for better performance. 

 

Figure 5-4: Microbenchmark results for 'corr' function 
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the results. On a wider scale, finding similar items also finds applications in the field of e-

commerce and media services. It is used in collaborative filtering, specifically suggesting 

items based on user’s similarity to another user [11]. 

5.4.1 Datasets 

Two datasets were used for performance evaluation of the document duplicate detection 

application. One dataset contained 519 books from the Gutenberg project [21], stored on a 

network file system in a single directory as one file per book. This dataset was approximately 

541 MB in size. A small set of duplicate documents, about 130 books, was manually 

generated to test out the application. 

 

The other dataset was based on a real-world scenario [10] and the documents were news 

articles, one article per document. These articles were taken from four different news outlets: 

New York Times (US), The Wall Street Journal (US), The Guardian (UK) and The Times 

(UK). The total dataset included 18,698 news articles, with the overall size of 106 MB. Even 

though the size of the dataset is not as much in this case, but the number of articles creates a 

scalability problem that is solved with parallel processing. 

5.4.2 Algorithm 

The algorithm used for finding similar documents has been taken from a paper which 

describes similarity detection in a MapReduce framework [8]. The crux of the algorithm is 

given here: 
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• Pre-process the data by lower case conversion, removal of special symbols,  stop word 

removal, and stemming. 

• Find the top 1000 words in the entire corpus. 

• Clean the data by removing non-top 1000 words and create an inverted index where 

each term is associated with a weight per document. Weight is calculated by number 

of term occurrences divided by total number of words in that document. Hence, for 

each document di and term t there will be a corresponding weight wdi

t which represents 

the importance of the word in the document: 

wdi

t =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑡 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠)𝑑𝑖

(𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠)𝑑𝑖

 

• The inverted index of each file is used to calculate a similarity matrix for pairwise 

comparison of the files. The similarity of two documents di and  dj is created by 

calculating the sum of the products of all the weights in the documents as below: 

similarity (𝑑𝑖, 𝑑𝑗) = ∑ 𝑤𝑑𝑖

𝑡  .  𝑤𝑑𝑗  
𝑡

(𝑎𝑙𝑙 1000 𝑡𝑒𝑟𝑚𝑠)  

• The pairs with the maximum similarity score are chosen to finalize the most similar 

documents in the dataset. 

5.4.2.1 Optimization for Parallel Processing 

In order to make the above algorithm more efficient by using cluster computing, areas need to 

be identified for parallel execution.  

• Once the dataset is distributed among the nodes in the cluster, pre-processing step can 

be done in parallel by each node.  
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• Finding of the top 1000 words in the entire corpus needs internode communication, 

since every node has a part of the dataset.  

• Once each processor knows the top 1000 words, cleaning and finding of the inverted 

index can be done in parallel by each node on its subset of the data. As a result, the 

inverted index for the entire dataset will be distributed among all the nodes of the 

cluster. 

• Creation of the similarity matrix needs internode communication, where MPI with 

combination of NumPy is used to speed up the process. As a result of this step, a 

distributed similarity matrix is created. The local similarity matrix contains the 

comparison of its subset of documents with the rest of the dataset. 

• Selection of the similar pairs based on a threshold can then be done in parallel by each 

node. 

The steps of the algorithm are depicted in Figure 5-5. The operations in the blue-boxes (or the 

dashed-outline) are done locally on each processor in parallel, whereas the operations in the 

green-boxes (or solid outline) need inter-node communication for which MPI is used as the 

underlying technology. 

 

Figure 5-5: Steps of the duplicate detection algorithm, the steps that are contained in boxes with dotted outlines 

can be done in parallel 

Pre-process  
data

Find most 
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words
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documents
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5.4.2.2 Optimization by Using Dataframes 

The algorithm can be further optimized for the similarity matrix calculation since dataframes 

are being used. If we visualize how the dataframe for an inverted index looks like, it contains 

filenames as columns labels, words as row labels, and word weights as the cell contents. 

Similarity of two documents can be calculated by evaluating the similarity of the columns, 

and the correlation function from the Pandas (serial dataframe) or the Parallel-Pandas (parallel 

dataframe) library fits this need exactly. Hence, the similarity matrix calculation step in the 

algorithm is updated to use the correlation function with the ‘Pearson’ method. Pearson 

correlation gives the linear correlation between two variable X and Y, gives a value between 1 

and -1 where 1 is positively correlated and negative valued numbers correspond to a negative 

correlation. The Pearson coefficient is defined as:  

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 𝜎𝑌
  

Where 𝜌 represents the Pearson correlation, cov(X,Y) stands for the covariance between X 

and Y and 𝜎 stands for standard deviation. 

5.4.3 Application I/O (Input/Output) 

The inputs to the application are: the location of the dataset, similarity threshold and names of 

the two output files, one for the results and one for the performance statistics, an optional file 

for debugging can also be given with the ‘-debug-file’ flag. Similarity threshold needs to be a 

number between -1 and 1 and defines when the documents are considered similar. After a 

successful run, the application will create or append results and performance data to the given 
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files. When formulating the results, every pair deemed similar based on the given threshold is 

printed to the output file twice since it picks each file as a duplicate of the other. 

5.4.4 Different Applications Developed and Compared 

Four different types of implementations of the document duplicate detection application will 

be discussed in the section below. These include a Parallel-Pandas implementation where the 

focus is on using Parallel-Pandas library, MPI-Pandas implementation where the code has 

been optimized for performance using Pandas and MPI, Serial-Pandas application which uses 

Pandas, and PySpark implementation which focuses on using PySpark for implementing 

duplicate detection. Three of these applications namely the Parallel-Pandas, Serial-Pandas and 

MPI-Pandas have been developed, whereas the details and results for PySpark have been 

taken from a paper comparing MPI and Spark [24]. 

 

The Serial-Pandas application is used to calculate the speed-up and efficiency of the Parallel-

Pandas application. The MPI-Pandas and PySpark applications are used as a further 

comparison to evaluate the performance of the Parallel-Pandas duplicate detection 

application. 

5.4.4.1 Parallel-Pandas Application 

A document duplicate detection application has been developed using the Parallel-Pandas 

library discussed in section 4, the implementation is based on the algorithm and optimization, 

discussed in section 5.4. This application has been developed by using the ParallelDataframe 

functions of ‘from_dict’,  ‘apply’, ‘corr’, ‘drop’, ‘div’, the ParallelDataframe property of 
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‘loc’, the ParallelSeries function of ‘value_counts’ and the ‘concat’ function of the Pandas 

library. 

5.4.4.1.1 Data Distribution 

The Parallel-Pandas application has uniform column-wise distribution throughout the 

application since that is the functionality currently supported by the Parallel-Pandas library. 

Initially the ‘from_dict’ function is used with the orientation set to ‘columns’ to get a 

dataframe as shown in the figure below. Figure 5-6 shows a dataframe created with a small 

test data when the application is run on 5 nodes, as can be seen the data is divided column-

wise where every node has a single row labeled ‘text’ and different columns corresponding to 

different files.  

 

Figure 5-6: Initial column-wise data distribution of the dataset in the Parallel-Pandas application 

 

After the data is pre-processed and cleaned, inverted index is created by using a combination 

of ‘div’ and ‘concat’ functionality in a parallel fashion since communication is not needed for 

this step. Figure 5-7 shows a snippet of the inverted index matrix on two nodes, it needs to be 
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emphasized that this is a column-wise distributed dataframe, hence the row-labels are the 

same on every node and the columns are distributed. 

 

Figure 5-7: A subset of the distributed inverted index in the Parallel-Pandas application 

 

The ‘corr’ function from the Parallel-Pandas library is used to find the similarity matrix from 

the inverted index. Figure 5-8 shows a snippet of the final similarity matrix on two nodes, 
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again it is to be noted that it is a column-wise distributed dataframe hence the row-labels are 

the same and the columns are different since they are distributed. 

 

Figure 5-8: A subset of the distributed similarity matrix in the Parallel-Pandas application 

5.4.4.1.2 Use of Parallel-Pandas Dataframe 

Use of the Parallel-Pandas dataframe makes it easier to perform various pre-processing and 

data cleaning activities by using the ‘apply’ function.  The ‘loc’ property of a distributed 

dataframe gives a distributed series upon which the ‘value_counts’ function is used to find the 

top 1000 words in the entire dataset. ‘drop’ function is used to get rid of the unwanted 

columns such as counts of the words once the top 1000 words have been found. 
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5.4.4.2 MPI-Pandas Application 

A document duplicate detection application has been developed using Pandas and MPI. The 

algorithm with all the optimizations as discussed in section 5.4 has been implemented using 

Pandas dataframes and MPI communication using NumPy buffers. As stated earlier, the 

similarity matrix is calculated by using the correlation function. 

5.4.4.2.1 Use of Pandas Dataframe 

The data structure of the dataframe is very helpful for the various transformations that are 

needed by the algorithm. These transformations include pre-processing of the data, cleaning 

the data to include only the top 1000 words, and transforming the dataframe to have words as 

row labels, filenames as column labels, and word counts as the data elements in order to 

prepare for the similarity matrix calculation.  

5.4.4.2.2 Optimizing the Task of Finding Top 1000 Words 

The task of finding top 1000 words has been optimized for performance. First, similar to the 

implementation in the Parallel-Pandas library, a distributed dictionary containing words as 

keys and counts as values is created. This dictionary is distributed amongst the processors via 

a hash function depending on the first two letters of the words.  Every processor gets a subset 

of words assigned to it by the hashing function and is hence responsible for summing the 

count of those subset of words. Each processor prepares tuples, of word and count, to be sent 

to other processors based on the same hashing function. At the end of this step every 
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processor has a word count dictionary with its assigned words and this dictionary is 

representative of the word-counts of the entire original series.  

 

After the first step is accomplished, every processor only sends the top 1000 counts to all 

others via an ‘Allgather’ operation. Based on these counts a cutoff is determined and every 

processor gets rid of any words that have counts below that cutoff. Only the remaining words 

(having word count greater than cutoff) are then gathered by an ‘Allgather’ operation and the 

final top words are then determined. 

5.4.4.2.3 Data Distribution 

The MPI-Pandas application is optimized for performance and has row-wise distribution of 

data for the pre-processing and the cleaning step, then it moves to column-wise distribution of 

data for the inverted index and similarity matrix calculations.  

 

Figure 5-9 below shows the initial dataframe that is created when using a small test dataset 

with 5 processors. As can be seen the data is distributed row-wise amongst the processors, the 

indices are the filenames, the dataframe contains a single column called ‘text’ containing the 

entire text of the file. This format is very useful for the beginning steps of pre-processing, 

finding top words, and cleaning by removing all non-top words, since we are only concerned 

with the ‘text’ column. All the pre-processing of stop-word removal etc. can be done by 

applying the function along the column axis of the dataframe. For getting top words, the 

column of the dataframe can be easily obtained as a series and then a ‘split’ function can be 
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applied to get all the words. By the same token, once the top words are found the dataframe 

can be cleaned by applying a function along the column axis to get rid of the unwanted words. 

 

Figure 5-9: Initial dataframe distribution (row-wise) in the MPI-Pandas application 

 

After these initial steps are completed the dataframe is prepared for the inverted index and the 

similarity matrix calculation. Here, the algorithm benefits from having a column-wise 

distribution. Every node converts its portion of the dataframe with a combination of ‘str’, 

‘split’ and ‘transpose’ operation to prepare the dataframe for inverted index. Figure 5-10 

below shows a snapshot of the dataframe of 2 processors in a column-wise distributed format. 
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Figure 5-10: Column-wise data distribution in the MPI-Pandas application 

5.4.4.3 Serial-Pandas Application 

A document duplicate detection application has been developed using the standard Pandas 

functions. All the benefits of the dataframes that have been discussed in the section 5.4.4.2.1 

apply to this application as well. The difference from the MPI applications is that the data is 

not distributed and is present in a standard serial dataframe. The formatting of the dataframe 
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has been kept similar to the Parallel-Pandas application dataframe where the initial dataframe 

is created with the default ‘column’ orientation selection in the ‘from_dict’ method.  

5.4.4.4 PySpark Application 

The document duplicate detection application in PySpark uses the same initial algorithm 

discussed in section 5.4.1. To make the comparison fair between the MPI and the PySpark 

version, the overall processing of the text files such as stop-word removal etc. has been kept 

same. The timing of the PySpark application excludes the time required for getting the 

allocation for the job through the scheduler. 

 

The implementation of the PySpark application is achieved by using ‘reduceByKey’ followed 

by a ‘sort’ operation for the computation of the top 1000 words and the cleaning of the data. 

Inverted index is created with a ‘join’ operation of the top 1000 words. The similarity matrix 

calculation is then found with a combination of ‘join’ and ‘reduceByKey’ operations. [24] 

5.4.5 Results and Discussion 

The following section includes the performance analysis of the Parallel-Pandas library via the 

application of document duplicate detection. 

 

Comparing the performance of PySpark (MapReduce) and MPI platforms is not a trivial task, 

since they have different nomenclatures. During this study, to get both the MPI and PySpark 

applications on equal footing, the hardware resources used by both versions of the application 

were kept the same. The resources used by MPI is a straight-forward matter, since each MPI 



 

 

52 

 

process uses a single core. However, for a Spark job there are multiple ways of assigning 

resources by varying the number of executors and the number of cores per executor. During 

this study, the optimal setting of four cores and 18GB memory per executor was used. [24] 

Hence, 256 nodes in an MPI job is comparable to 64 executors with 4 cores each for a 

PySpark job. 

5.4.5.1 Results for the Books Dataset 

The following tables show the execution time in seconds for each of the four implementations 

of Parallel-Pandas, MPI-Pandas, Serial-Pandas and PySpark for the Gutenberg dataset of 519 

books. As explained in section 5.4.1, the dataset was read from network file system.  

 

Execution time of the Parallel-Pandas and MPI-Pandas applications was captured, using 32, 

64, 128, and 256 nodes. Execution time of the PySpark application was captured, using 8, 16, 

32, and 64 executors with 4 cores per executor. For all the applications, five measurements 

were taken per datapoint. 

 

The execution times recorded for the Serial-Pandas application can be seen in Table 5-1 

below. On average the runtime of a serial application of duplicate detection, with the 

Gutenberg dataset, using Pandas was seen to be 3.6 hours. 

Table 5-1: Execution time in seconds for the Serial-Pandas application using the book dataset 

Serial-Pandas       

Processors Run1 Run2 Run3 Run4 Run5 Avg Min 

1 12724.91 12714.61 12864.77 12927.33 12791.68 12804.66 12714.61 
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The execution times recorded (in seconds) for the Parallel-Pandas application as well as the 

speed-up and efficiency statistics can be seen in Table 5-2 below. As can be seen, the 

performance improved by using more resources. The execution time kept decreasing when the 

processors were increased, and the speed-up increased with increasing resources. 

Table 5-2: Performance statistics for the Parallel-Pandas application using the book dataset 

Parallel-Pandas         
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32 644.31 632.71 661.46 618.52 629.45 637.29 618.52 20.09 0.628 

64 409.85 390.28 399.8 385.41 390.91 395.25 385.41 32.40 0.51 

128 275.38 293.53 274.79 261.54 292.82 279.61 261.54 45.79 0.358 

256 208.66 213.18 202.32 213.6 220.43 211.64 202.32 60.50 0.24 

 

Evaluating the speed-up and taking a closer look at it in Figure 5-11 below, we see that it has 

a logarithmic trendline. The highest speed-up achieved was 60.5 with 256 processors, the 

highest efficiency of 0.6 was achieved with 32 processors. The speed-up achieved does not 

have the ideal linear trendline, this is as expected. As was discussed in section 5.4.1, only 

sections of the algorithm are embarrassingly parallel where no communication is needed. The 

most expensive part of the algorithm is the determination of the top 1000 words and the 

creation of the similarity matrix which cannot be done without communication between nodes 

which is a relatively costly operation. 
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Figure 5-11: Speed-up of the Parallel-Pandas duplicate detection application while using the Gutenberg dataset 

 

The execution times recorded for the MPI-Pandas application can be seen in Table 5-3 below. 

As can be seen, the performance improved with increasing resources.  

Table 5-3: Execution time in seconds for the MPI-Pandas application using the book dataset 

 

 

 

 

The execution times recorded for the PySpark application can be seen in Table 5-4 below. As 

can be seen, the performance improved with increasing resources. The performance did not 
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MPI-Pandas       

Processors Run1 Run2 Run3 Run4 Run5 Average Minimum 

32 353.4065 355.8138 348.8816 349.5711 353.1079 352.1562 348.8816 

64 228.693 253.4226 234.0162 205.0649 225.2543 229.2902 205.0649 

128 170.3947 174.2834 153.1049 187.781 186.2541 174.3636 153.1049 

256 149.1602 133.0076 154.4498 154.3188 153.8913 148.9655 133.0076 
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fluctuate much which is emphasized by the small difference between the average and 

minimum columns. 

Table 5-4: Execution time in seconds for the PySpark application using the book dataset 

PySpark       

Executors         Run1 Run2 Run3 Run4 Run5 Average Minimum 

8 1907.681 1922.124 1891.85 1891.915 1891.338 1900.981 1891.338 

16 1037.353 1016.552 1028.279 1029.141 1014.788 1025.223 1014.788 

32 592.43 582.9129 601.829 583.7176 576.7964 587.5372 576.7964 

64 391.9454 389.353 381.3266 386.4814 379.8057 385.7824 379.8057 

 

Comparing the performance of the Parallel-Pandas, PySpark and MPI-Pandas applications 

while using the Gutenberg dataset, it is seen in Figure 5-12 that the MPI implementations out-

perform the PySpark implementation for all core counts. Specifically, the Parallel-Pandas 

application performs about 45% better than PySpark implementation with 256 processors. 

Worth discussing is the comparison of the Parallel-Pandas and MPI-Pandas applications. The 

MPI-Pandas application performs about 29% better than Parallel-Pandas application for 256 

cores, for two main reasons. One reason is the difference in the data distribution which has 

been discussed in detail in section 5.4.4 (under the ‘Data Distribution’ sections of the 

application implementation), MPI-Pandas application changes data distribution as is optimal 

to that part of the problem, whereas Parallel-Pandas application currently only supports using 

one-type of data-distribution throughout the application. Another reason is that the step of 

determining top 1000 words has been optimized by MPI-Pandas application as discussed in 

section 5.4.4.2.2, whereas the Parallel-Pandas implementation uses the ‘value_counts’ 

function (discussed in section 4.2.8) which makes the counts and words for all the words 
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available on all the processors and hence requires more communication, consequently takes 

more time. 

 

Figure 5-12: Performance comparison of duplicate detection application for the dataset containing 519 

Gutenberg books 

5.4.5.2 Results for the News Articles Dataset 

The following tables show the execution time in seconds for each of the four implementations 

of Serial-Pandas, Parallel-Pandas, MPI-Pandas and PySpark for the news articles dataset 

containing 18,698 articles. As explained in section 5.4.1, the dataset was read from BeeGFS.  

 

Execution time of the Parallel-Pandas and MPI-Pandas applications was captured, using 32, 

64, 128, and 256 nodes, five measurements were taken per data point. Execution time of the 
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PySpark application was captured, using 8, 16, 32, and 64 executors with 4 cores per 

executor. Since the PySpark implementation took a very long time to execute, only a single 

measurement of the PySpark application was taken. 

 

The execution times recorded for the Serial-Pandas application can be seen in Table 5-5 

below. On average the runtime of a serial application of duplicate detection using Pandas was 

seen to be 1.8 hours. 

Table 5-5:  Execution time in seconds for the Serial-Pandas application using the news articles dataset 

Serial-Pandas       

Processors Run1 Run2 Run3 Run4 Run5 Average Minimum 

1 6715.743 6675.39 6417.451 6483.01 6363.99 6531.1163 6363.9901 

 

The performance statistics based on the execution times recorded for the Parallel-Pandas 

application can be seen in Table 5-6 below. The performance improved with increasing 

resources up till 128 processors. The efficiency achieved is lowest for 256 processors, which 

means that the problem is not big enough for the resources provided. 

Table 5-6: Performance statistics for the Parallel-Pandas application using the news articles dataset 
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32 2540.06 2495.3 2456.84 2485.63 2466.85 2488.93 2456.84 2.62 0.082 

64 1240.65 1223.2 1225.34 1234.7 1231.73 1231.12 1223.2 5.31 0.083 

128 811.71 810.39 803.956 807.76 814.908 809.744 803.956 8.07 0.063 

256 933.795 988.91 1008.36 1090.3 1055.73 1015.42 933.795 6.43 0.025 
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The optimum speed-up of 8 is achieved at 128 processors with this specific problem size. 

However, 8 seems to be a low number for the speed-up. It seems that for this problem where 

there are many small articles/files, the speed-up numbers achieved are not as high as with the 

book dataset where there were fewer bigger files. Figure 5-13 below, visualizes the speed-up 

for the Parallel-Pandas duplicate application. 

 

 

Figure 5-13: Speed-up of the Parallel-Pandas application, while using the news articles dataset 

 

The execution times recorded for the MPI-Pandas application can be seen in Table 5-7 below. 

The performance improved with increasing resources. It is interesting to note, that the same 
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was not seen to occur for this application. This suggests that there is room for improvement in 

the Parallel-Pandas library and it can be further optimized. 

Table 5-7: Execution time in seconds for the MPI-Pandas application using the news articles dataset 

MPI-Pandas       

Processors Run1 Run2 Run3 Run4 Run5 Average Minimum 

32 2341.401 2365.125 2346.501 2381.007 2471.338 2381.075 2341.401 

64 1064.787 1078.738 1083.692 1091.392 1069.326 1077.587 1064.787 

128 521.2563 520.9353 520.7503 519.0724 519.3866 520.2802 519.0724 

256 485.5719 477.0978 431.3914 347.2313 427.3927 433.737 347.2313 

 

The execution times recorded for the PySpark application can be seen in Table 5-8 below. 

The performance improved with increasing resources, but the improvement was not as drastic 

as the MPI applications. It is interesting to note that the Serial-Pandas application (1.8 hours) 

using a single core out-did the PySpark application, even when PySpark was using 256 cores 

(12.5 hours). As explained before, in the interest of time only a single measurement was taken 

for the PySpark application with the news article dataset.  

Table 5-8: Execution time in seconds for the PySpark application using the news articles dataset 

PySpark 

Executors Run1 

8 53298.28 

16 48671.58 

32 47387.16 

64 45058.07 

 

From a performance comparison perspective of the MPI and the PySpark applications, it is 

clear that MPI applications of Parallel-Pandas and MPI-Pandas outperformed the PySpark 
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application. The Pyspark application reduced its time from 14.8 hours with 32 processors to 

12.5 hours with 256 processors. The MPI-Pandas application reduced its time from 39.6 

minutes with 32 processors to 7.2 minutes with 256 processors and the Parallel-Pandas 

application reduced its time from 41.5 minutes with 32 processors to 13.5 with 128 

processors. Figure 5-14 below, visualizes this comparison. Parallel-Pandas achieves about 

98% improved execution time, with 128 processors, as compared to the PySpark application. 

 

Figure 5-14: Performance comparison of duplicate detection application for the dataset containing 18,698 news 

articles 

 

There is a difference in the performance of the MPI-Pandas and Parallel-Pandas. Specifically, 
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processors. The reasons of this difference have been discussed previously. This difference is 

visible in Figure 5-15 below. This shows that the Parallel-Pandas library can be optimized 

further to gain even more speed-up. 

 
 

Figure 5-15: Closer look - Performance comparison of duplicate detection application  for the dataset 

containing 18,698  news articles 
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6 CONCLUSIONS 

This thesis introduced the Parallel-Pandas library, which is a library that aims to make 

existing Pandas applications more efficient by transparently providing parallel 

implementations of the Pandas functionality. The objective of this library is to make Pandas 

applications faster, only with a library import, without requiring any code changes. This thesis 

report detailed the design decisions and the implementation of this library. 

 

The Parallel-Pandas library was evaluated and tested via unit-testing, micro-benchmarking as 

well as via a real-world document duplicate detection application. This duplicate detection 

application was evaluated for speed-up and efficiency with respect to the serial version. It was 

also compared to a PySpark implementation. The duplicate detection application was tested 

with two types of datasets. 

 

The speed-up results seen for the Gutenberg dataset were much better than the speed-up 

results seen for the news articles dataset. For the Gutenberg dataset, the highest speedup was 

60.5 with 256 processors whereas the highest speed-up for the news articles dataset was 8 

with 128 processors.  

 

Parallel-Pandas application always out-performed the PySpark application, 45% better for the 

Gutenberg dataset with 256 processors and 98% better for the news articles dataset with 128 

processors. The optimized MPI-Pandas application always performed a little better than the 

Parallel-Pandas application, 29% better for the Gutenberg dataset with 256 processors and 
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35% better for the news articles dataset with 128 processors. The execution time for the 

PySpark application with 256 cores was worse than the performance of a serial Pandas 

application with a single core. 

 

Based on these results, the following conclusions can be formulated: 

• The Parallel-Pandas library has promising potential, greatly outperforms PySpark for 

the duplicate detection application. 

• The Parallel-Pandas library can be optimized further to gain more speed-up, shown by 

improved performance of the optimized MPI-Pandas implementation. 
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7 FUTURE WORK 

Currently in the Parallel-Pandas library, from a data distribution standpoint, the data is 

distributed column-wise or row-wise in the nodes of the cluster. The creation of a row-

distributed dataframe is only supported by the ‘from_dict’ function, and a limited number of 

functions support this distribution. Naturally, a next step would be the full support of the row-

distribution by the Parallel-Pandas library. This feature will make the library more versatile, 

flexible, optimizable and able to handle more problems.  

 

Currently, at the beginning of the application the user must choose a distribution (or is given a 

column-distribution by default), and then the same distribution is used for the entire 

application. In order to provide more flexibility and optimization, an important feature to 

provide would be a conversion from row-distribution to column-distribution and vice-versa.  

 

During this project the focus was to develop the prototype of a Parallel-Pandas library and 

implement an example application using this library. The focus while developing the Parallel-

Pandas library was on transparency and ease-of-use by a Pandas user. The functions have 

been written for efficient performance however, there might be room for further optimization 

since that was not the main focus during this study. One of the next steps could be to study the 

developed functions in-depth and customize and optimize them further.  
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This project is a first effort of developing a Parallel-Pandas library and provides features and 

functions as discussed in this thesis. The next step would be to fully implement all the 

functionality of the Pandas library to be able to support more applications.  
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