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Abstract

With the rapid development of the modern communication networks, the problem we need to

solve is no longer a pure engineering issue. In various heterogeneous network scenarios, there are

service providers in need of performing economic analysis on how to ensure third parties’ coop-

eration or attract end-users. In the other way round, third parties or end-users need to evaluate the

economic benefits of cooperating or using the services from different service providers. Overall, the

current wireless networks are facing a problem in which there is a tight coupling of industry-specific

technologies and non-technology related network externality.

Contract theory, the 2014 Nobel Prize of economic science, has been widely used in indus-

tries, from banking to telecommunications. Particularly, contract theory is an efficient tool in dealing

with asymmetric information between employer/seller(s) and employee/buyer(s) by introducing co-

operation. In wireless networks, the employer/seller(s) and employee/buyer(s) can be of different

roles depending on the scenario under consideration. Thus, there is a great potential to utilize the

ideas, methods, and models of contract theory to design efficient wireless network mechanisms.

Given this background, this dissertation provides a theoretical research between wireless com-

munications, networking, and economics. Especially, different contract theory models have been

applied in various wireless networks scenarios. The main contribution of this dissertation are as

follows.

• An overview of basic concepts, classifications, and models of contract theory is provided.

Furthermore, comparisons with existing economics methods in wireless networks are con-

ducted.

• Applications of contract theory for wireless networks are studied. Specially, three contract

theory problems: adverse selection, moral hazard, and a mixed of the two, are applied into

device-to-device (D2D) communication, mobile crowdsourcing, cognitive radio network, re-

spectively.
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• Numerical results are provided to show that contract theory can be utilized for developing

effective mechanisms for emerging wireless network scenarios such as traffic offloading, mo-

bile crowdsourcing, as well as spectrum trading.

• The potential and challenges of contract theory as a tool for designing mechanisms in future

wireless networks are discussed.

This dissertation provides a theoretical research between wireless communications, network-

ing, and economics, in which different contract theory models have been applied in various wireless

networks scenarios. This work places a fundamental research on network economics, especially

with the framework of contract theory. This research has the potential to contribute to the future

of wireless networks network economics area, and have a long term effect on problems such as

incentive mechanism and pricing schemes design, resource sharing and trading.
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Chapter 1

Introduction

Owing to the wide adoption of smart devices and fast development of the Internet, various

applications and services have been introduced to bring convenience to every aspect of our daily

lives; at the same time, this has brought great changes and new challenges to the design and oper-

ation of wireless networks. First, The introduction of resource demanding mobile services such as

Facebook and YouTube has exponentially raised the desire for wireless access [1]. Moreover, the

embedding of advanced sensors in mobile devices has led to the dramatic growth of a wide range of

location based services.

On one hand, one can deal with the network capacity crunch by utilizing various forms of

cooperation in heterogeneous wireless networking scenarios. Technologies such as device-to-device

(D2D) communications, cognitive radio (CR), and small cells have are being developed to offload

the cellular traffic, and increase the energy and spectrum efficiency. On the other hand, an attractive

solution for location based data crunch is to do mobile crowdsourcing, in which a large group of

users (with sensors embedded smart devices) regularly collect and transmit data required from the

service provider. In both traffic offloading and data uploading processes, it is necessary to ensure

the cooperation from third parties, e.g., D2D devices, small cells, and users.

However, there lies a conflict when participating in such activities, as third parties do consume

their resources, e.g., battery capacity and computing power [2]. Such a conflict results in reluctance

from third parties to participate, which is a major impediment to the development of practically

attractive traffic offloading and mobile crowdsourcing solutions. Therefore, to successfully achieve

the benefits, there is a need to develop effective incentive mechanism designs in wireless networks,

in order to incentivize third party participation and improve overall operation quality.

Contract theory is widely used in real world economics with asymmetric information to de-

sign the contract between employer/seller(s) and employee/buyer(s) by introducing cooperation [3].
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Figure 1.1: General model for cooperation in wireless networks: 1) offloading data traffic through
heterogeneous networks (small cell, cognitive radio, and D2D communication); 2) up-
loading location based data through mobile crowdsourcing.

The information asymmetry usually refers to the fact that the employer/seller(s) does not know

exactly the characteristics of the employee/buyer(s). By using contract theory based models, the

employer/seller(s) can overcome this asymmetric information and efficiently incentivize its em-

ployee/buyer(s) by offering a contract which includes a given performance/item and a corresponding

reward/price.

Due to this property of contract theory, we envision that there is a there is a great potential to

utilize concepts from contract theory to ensure cooperation and assist the design of incentive mecha-

nisms in wireless networks. In wireless networks, the employer/seller(s) and employee/buyer(s) can

be of different roles depending on the scenario under consideration. An employer/seller(s) can be a

base station (BS), service provider (SP), and authorized spectrum owner. An employee/buyer(s) can

be a small cell, smart device, user, or some other third party that is not part of the current traditional

cellular network architecture. The adoption of contract theory for incentive mechanism design in

future wireless networks is illustrated in Fig. 1.1.

In this dissertation, we mainly focus our research on how to provide necessary incentives to

motivate users’ participation in those newly introduced wireless networks, such as heterogeneous

network and mobile crowdsourcing. We are going to use the Nobel Prize winning contract theory to
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formulate the incentive mechanisms in the mobile wireless networks. For each class of the typical

contract models, we provide the basic concepts, classification, and models in Section 1.1, as well as

comparisons with other economic methods. Beyond providing a self-contained survey on classical

contract theory concepts, we will further study in Section 1.2 the design of incentive mechanisms,

especially the reward design in a contract. We them emphasize both analytical techniques and novel

application scenarios in Section 1.3. Finally, we give the main organization of this dissertation in

Section 1.4.

1.1 Contract Theory: Fundamentals and Classification

1.1.1 Basic Contract Concepts

Contract theory has been highly successful and active research area in economics, finance,

management, and corporate law for decades. Contract theory allows studying the interaction be-

tween employer(s) and employee(s). The performance of employees tends to be better when they

work harder, and the probability of a bad performance will be lower if employees place more ded-

ication or focus on the work. By contrast, on the other hand, if an employee’s compensation is

independent of its performance, the employee will be less likely to put efforts into the work [3].

The design of incentive mechanism plays an important role in addressing the problem of employee

incentives.

In contract theory, the solution we need to obtain is a menu of contract for employee, and

the object is maximizing the employer’s payoff or utility. In most cases, the problem is usually

formulated as maximizing an objective function which represents the employer’s payoff, subject

to the incentive compatibility constraint that the employee’s expected payoff is maximized when

signing the contract, and the individual rationality constraint that the employee’s payoff under this

contract is larger than or equal to its reservation payoff when not participating.
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1.1.2 Classification

1.1.2.1 Adverse Selection

The adverse selection problem, the information about some relevant characteristics of the

employees, such as their distaste for certain tasks and their level of competence/productivity, are

hidden from the employer. One of the most common problems in adverse selection is the screening

problem, in which the contract is offered by the uninformed party, i.e., the employer. The unin-

formed party typically responds to adverse selection by the revelation principle which forces the

informed party, i.e, the employee, to select contract that fits its true status. Based on the revelation

principle, the employer can offer multiple employment contracts (t, r) destined to different skill

level employees, where t is the employee’s outcome wanted by the employer, and r is the reward

paid to the employee by the employer if the given target is achieved. The outcome can be duration

of work time, a required performance, or some other outcomes that the employer wants from the

employee.

1.1.2.2 Moral Hazard

The problem of moral hazard, which refers to situations where the employee’s actions that

are hidden from the employer: whether they work or not, how hard they work, how careful they

are. In contrast to adverse selection, the informational asymmetries in moral hazard arise after the

contract has been signed. In moral hazard, the contract is a menu of action-reward bundle (a, r),

where a is the action or effort exerted by the employee after being hired, and r is the reward paid to

the employee by the employer.

1.1.2.3 Mixed

In practice, it is usually hard to decide which of the two problems is more important, i.e.,

to figure out if it is a moral hazard problem or adverse selection problem. Indeed, most incentive

problems are the combinations of moral hazard and adverse selection.
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1.1.3 Models

1.1.3.1 Bi-Lateral or Multi-Lateral

Bi-lateral contracting is the basic one-to-one contracting model, in which there are one em-

ployer and one employee trading with each other for goods or services. However, in the multi-lateral

case, it is usually a one-to-many contracting scenario, in which there is one employer trading with

multiple employees. Despite of the increased number of participants in the multi-lateral contracting

than in the bi-lateral one, the interactions among the employees/buyers, such as competition and

cooperation, making the multi-lateral contracting model more complex and showing the potential

of solving more sophisticated problems.

1.1.3.2 One-Dimension or Multi-Dimension

Only one characteristic or task is considered in the one-dimension contracting model. For

example, the employer evaluates only one capability of the employee in the one-dimension adverse

selection model, and there is only one task assigned by the employer to the employee in the one-

dimension moral hazard model. In contrast, the employer evaluates multidimensional characteris-

tics of the employee, or assigns multiple tasks to the employee in the multi-dimension contracting

scenario. As the extension of one-dimension contracting, multi-dimension contracting model can

also be analyzed by adapting the similar methods for one-dimension ones.

1.1.3.3 Static or Repeated

Static contracting refers to the one-shot trading between the two parties, in which the em-

ployer usually offers a take-it or leave-it contract, and the employee(s) choose to accept or reject

it. Every signing of a contract will be regarded as a new one, i.e., previous trading histories will

not affect the signing of the next one. While the trading histories affect the next contract in the

repeated contracting scenario. Repeated contracting needs to solve the issues that arise with the

design and renegotiation of long-term employment contracts, due to the inability of contracting
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parties to commit to or enforce long-term contractual agreements. The repeated iteration between

contracting parties opens up new incentive issues, and thus increases the complexity than in the

static contracting.

1.1.4 Comparisons

1.1.4.1 Market Equilibrium

In the market equilibrium, participants paly their own strategy in regarding of the other’s

actions in each iteration, and then finally reach the equilibrium. While similar to the repeated long-

term contracting scenario in contract theory, participants dynamically change their strategy as if

they are playing a game. After repeated interactions and renegotiations, both parties can reach an

agreement. Thus, we see that the market equilibrium is the repeated contracting case in contract

theory, and different scenarios can fit either into the problem of adverse selection or moral hazard.

1.1.4.2 Auction Theory

In auction theory, there is one seller with an item to sell and multiple bidders with reservation

prices competing for it. Meanwhile, in the multi-lateral adverse selection, there are one seller and

multiple buyers with their own private information which is the same case as the bidder’s reserva-

tion prices during auction. Thus, we see that auction theory is the multi-lateral adverse selection

contracting problem in contract theory.

1.1.4.3 Pricing Strategy

The problems that pricing strategy and contract theory can solve have some overlaps. They

two are similar to each other in the sense that they can adjust the price/reward to sell a product

or service at the seller/employer’s maximal profitability. However, pricing strategy and contract

theory’s major focuses differ from each other. Since pricing strategy mainly focuses on the relation

between pricing and marketing, which can be used to beat the business competitors. While contract
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Figure 1.2: Designing of reward in a contract.

theory places the emphasis on studying the interactions between employers and employees, which

is helpful in designing incentive mechanisms.

From the three economic models we can see, first, market equilibrium and auction theory,

as the special cases of contract theory, have already been widely studied. Second, pricing strategy

shows a different research direction as contract theory. To design efficient incentive mechanism,

contract theory seems to be an excellent approach and has many unexplored areas to reveal.

1.2 Contract Theory: Reward Design

In contract theory, the objective is to motivate employees by offering a reward, in trading with

a level/quality of service, outcome, performance, or target. Thus, we see that the reward determines

whether the employee can be fully motivated by the incentive mechanism. Given the large number

of models in contract theory, the reward design varies in different contracting scenarios. The design

and classification of reward are illustrated in Fig. 2.3b and will be discussed in details in this section.

1.2.1 Dimension of Rewards

From Section 1.1.3.2, we know that there can be one- or multi-dimension contract theoretic

models, depending on how many aspects of capability do the employer evaluate the employee, or
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how many tasks does the employer assign to the employee. Most existing literature on incentive

mechanism design in wireless networks adopt the one-dimensional reward model. One example is

the reimbursing scheme proposed by [4], which is a usage-based reward design to motivate sub-

scribers to operate as mobile WiFi hotspots to provide Internet connectivity for others.

One-dimensional model becomes inefficient when employees are required to have multiple

capabilities, or supposed to work on several tasks. First, the employee’s action set becomes richer

than what the one-dimensional model has described. Second, there is a risk that one-dimensional

reward will induce employees to overwhelmingly focus on the part that will be rewarded and to

neglect the other components. Given different aspects of capability or multiple tasks to evaluate, by

assigning different weights of rewards in multiple dimensions, the employer can drive employee’s

incentive on perusing certain capabilities or tasks, which can affect the employer’s utility, in return.

One current application of multi-dimension reward is from [5], where Karma is a Internet service

provider based in the United States. Karma provides 100MB to new guest users for free, and reward

users who bring in more users by wirelessly advertising the service.

1.2.2 Rewards on Absolute or Relative Performance

The problem of how can the reward be decided in accordance with the employee’s perfor-

mance also needs attention. Referring the reward designs in job markets, sports, and games, gen-

erally there are two methods one can refer to: evaluate the employee’s absolute performance or the

relative performance.

• Absolute performance related reward: The reward is positively related with the employee’s

absolute performance.

• Relative performance related reward: The reward is given based on the ranks that the employ-

ees achieved by listing the multiple employees’ performance in an ascending or descending

order.
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Absolute performance related reward is a widely accepted incentive mechanism in real eco-

nomics as it captures the fundamental aspect of providing necessary and efficient incentives for

employees. Piece rate, efficiency wages, and stock options are widely used forms of absolute per-

formance reward in the job market. Despite of the usage-based reward in [4] mentioned previously,

the work in [6] also derives the performance and reward dependent function to attract a high amount

of sensing data from participating users in wireless networks. Another example is [7], in which

incentive mechanism has been developed to encourage the cooperation of mobile terminals (MTs)

in wireless cellular networks to reduce the energy consumption the other MTs. The MT who con-

tributes to help will receive a price consistent with its transmitting data rate.

However, there are two disadvantages of the absolute performance related reward. First, in

order to pay less reward, the employer has a strong incentive to cheat by claiming that employees

had poor performances. Second, this mechanism is vulnerable to common shock which is originally

used to denote macro-economic conditions such as economic boost or depression [8]. If there is

a positive/negative mean that affects employees’ performances at the employer’s observation, then

will lead to an abnormal increase/decrease of reward in the end.

While it has been proven that the relative performance related reward design can filter out

this common shock problem [8]. As winners receive the amount of reward based on the rank they

achieved, which is easy to measure and hard to manipulate [3]. In addition, the employer has no

incentive to cheat as it has to offer the fixed amount of rewards no matter who wins. Tournament

is the most widely known form of reward by the relative performance, in which the one with better

performance ranks higher, and rewarded more. Besides, there are two other special forms of ROT:

the Multiple-Winners (MW) and Winner-Take-All (WTA). In the MW tournament, several top win-

ners share the reward equally. While in the WTA tournament, the entire reward is awarded to the

highest-ranked user, which is a special case of MW with only one winner.
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1.2.3 Reward in Bi-Lateral or Multi-Lateral Contracting

Despite the previous aspects, different trading scenarios also affect the design of incentive

mechanism, i.e., the reward. Next, we are going to talk about how to design reward in bi-lateral and

multi-lateral contracting scenarios.

1.2.3.1 Contract with Single-Employee

When the employer signs a contract with a single employee, we can design the reward by

considering only the single employee’s absolute performance instead of the others. Examples in

wireless networks are the previous mentioned three works [4, 6, 7]. However, even though there is

no other employee to compete with the employee, the relative performance related reward can still

be applied. One common form of the relative performance related reward for a single employee is

to set up a specific threshold and a reward of the targeted performance. If the employee’s absolute

performance can achieve the given threshold, a fixed reward will be given to the employee. Other-

wise, the employee cannot receive the reward. In fact, we can regard it as the employee competes

with the threshold.

1.2.3.2 Contract with Multi-Employee

When the employer designs the contract towards multiple employees, the absolute perfor-

mance related reward still works quite well, and is a widely accepted method in real economics.

Furthermore, there are some other forms of absolute performance related rewards. One widely

adopted method is to group employees first, and then reward employees by their aggregated perfor-

mance in each group. There is a shortcoming with this incentive mechanism, i.e., there is a risk of

free riding of some employees on the other employees’ efforts. Usually, the absolute performance

related reward design is more common seen in contracting with multi-employee. The employees

can compete with each other as in a tournament, and have the incentives for higher rewards by

performing better.
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1.3 Applications in Wireless Networks

In this section, we are going to introduce several applications of contract theory models in

wireless networks. To be consistent with the classification of contract theory problems in Section

1.1.2, the following three subsections are wireless network applications of models from adverse

selection, moral hazard, and a mixed of the two, respectively.

1.3.1 Adverse Selection in Wireless Networks

The applications of bi-lateral, one-dimension, and static adverse selection in wireless net-

works are the most widely seen models. This model is first used to solve the problem of spectrum

sharing in cognitive radio network (CRN) by [9]. In this work, a primary user (PU) acts as an em-

ployer who sets the spectrum trading contract as (qualities, prices), and the second users (SUs) act

as an employee to choose which one for purchasing. Another application in CRNs can be found

in [10], in which the authors also model the PU and SUs as the employer and employees, respec-

tively. Then designing the (performance, reward) in contract as (relaying power, spectrum accessing

time).

With the same model, a different application area is by [11] in designing incentive mecha-

nisms for smartphone users’ collaboration on both in data acquisition and distributed computing.

The SP acts as an employer and smartphone users will be employees. Rewards will be paid ac-

cording to the amount of data collected and distributed computing users made. In the OFDM-based

cooperative communication system, [12] uses contract theory to tackle the source node’s relay se-

lection problem. The offers/contracts consist of a menu of desired signal-to-noise-ratios (SNRs)

at the destination and corresponding payments. In Chapter 2, we will apply the adverse selection

model in cellular traffic offloading through D2D communication, by offering rewards to encourage

content owners to participate and cooperate with other devices via D2D. We will model the BS as

employer and D2D user as employee, and solve contract bundle with a required performance and

an absolute performance related reward. The performance is defined as a certain data rate that the
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UE must provide during the D2D communication.

1.3.2 Moral Hazard in Mobile Crowdsourcing

Compared to the wide adoption of the adverse selection problem, the moral hazard problem

has hardly been applied in wireless networks by now. However, having seen a great potential of this

model, we have done some preliminary applications in mobile crowdsourcing. As mentioned in the

beginning of this survey, many users hesitate to participate in mobile crowdsourcing with certain

concerns, which results in serious impediment to the exploitation of location based services.

By adopting the moral hazard, the incentive mechanism can be designed by regarding the

SP “employs” users to upload location based data and reward them by their performance. Thus,

one application falls into the multi-dimension moral hazard model. Since in mobile crowdsourcing,

users are encouraged to take multiple tasks as mentioned in Section 1.2.1. It is intuitive to propose a

multi-dimension reward that considers different aspects of user’s contributions, and assigns different

reward weights on their performance as we will do in Chapter 3. With a large group of users as

employees, the multi-lateral moral hazard model can be applied. In Chapter 4, we will consider

the mobile users competing in the crowdsourcing to win reward as in a tournament, and they are

rewarded by their rank orders, i.e., relative performance.

1.3.3 Mixed Problem in Cognitive Radio Networks

Given the applications of the two basic problems: adverse selection and moral hazard, we

can proceed to the mixed problem in wireless networks when both of the two present. The mix

problem can also be found in spectrum trading between the PU and SU in CRNs, or infrastructure

provider (InP) and SP in virtualized wireless networks. The problem of adverse selection arises

since the PU/InP may not be fully aware of the SU/SP’s capability in utilizing the spectrum to

generate revenue, i.e., what is the SU/SP’s probability of successfully making profit from the service

it provides. Moreover, there is a problem of moral hazard as the PU/InP neither knows how much

effort the SU/SP will put into running its “business”. Thus, the spectrum trading that involves both
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adverse selection and moral hazard can be solved by designing a financing contract, as when we

buy a car or a house. The main problem that needs to solve is how to design the down payment and

installment payment in the financing contract, and the detail work can be found in Chapter 5.

1.4 Dissertation Organization

The rest of the dissertation is organized as follow. In Chapter 2, we formulate the incen-

tive mechanism with adverse selection problem in D2D networks. The incentive mechanism with

moral hazard problem in mobile crowdsourcing will be described in Chapter 3 and 4. Finally, some

possible future works and a timeline to finish the works are mentioned in Chapter 6.
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Chapter 2

Incentive Mechanisms for Device-to-Device
Communications in Cellular Networks with Adverse
Selection

2.1 Introduction

To deal with this wireless capacity crunch, D2D communication underlaid over cellular net-

work, has recently been proposed as a means to boost the overall wireless network capacity [13].

D2D communication benefits from the fact that two user equipments (UEs) in proximity of one

another can establish a direct communication link over the licensed band while bypassing the cel-

lular infrastructure such as the base stations (BSs). One common form of D2D communication

is the network-controlled one in which the BS manages the switching between direct and cellular

links [14]. Due to the proximity of the involved users, if well designed, D2D communication can

dramatically improve the wireless network capacity while reducing energy consumption [15]. It can

also assist in offloading the cellular traffic from the BSs while extending their coverage [16].

If UEs’ resource blocks (RBs) can be shared, local users will be able to exchange data [17].

For example, the BS can send a frequently requested content to a number of devices who, in turn,

can utilize D2D communication to spread the content to other interested users [18]. By doing so,

within a certain geographical area, instead of servicing a request multiple times, the BS would

only transmit contents which are not locally available. In this case, the BS’s traffic is significantly

reduced, and thus, the cellular network capacity is increased. One brief illustration can be found in

Fig. 2.1, where the BS send the original content to cellular users. If any users are requesting the

contents that have already been downloaded, and the content holder is within the D2D transmission

distance, the users will be served by D2D communication.

To successfully offload cellular traffic through D2D communication, one main design chal-

lenge is to incentivize content owners to participate and cooperate with other devices via D2D. If
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Figure 2.1: An illustration of offloading traffic through D2D communication.

most users are unwilling to provide their contents via D2D communication, then, the BS will still

need to serve the users via the conventional cellular network. Consequently, it is unable to increase

the network capacity. Clearly, the willingness of users to participate and share data is of great im-

portance to reap the benefits of D2D over cellular in terms of improved capacity and traffic offload.

In order to offload cellular traffic through D2D communication, it is necessary to introduce

effective incentive mechanisms that can encourage users to participate in content sharing. To pro-

vide incentives, the BS can offer rewards to users’ UEs for the usage of their resources (storage,

power, time, etc.) as well as for potential privacy risks arising from D2D, since UEs’ RBs are open

to the BS. For example, if the user is willing to share its content and assists the BS to transmit the

data, the BS will offer a reward to compensate for this user’s participation. The reward can be in the

form of monetary remuneration or free data among others [19].

Intuitively, a well-designed incentive mechanism should reward UEs based on their contri-

butions: devices that contribute more must get higher rewards than devices with less contributions.

Users with high preference toward participation will more likely to contribute. However, each user

will attempt to harness as much reward as possible by claiming that it is a high preference user,

which brings difficulty to the BS in reward design. This problem is exacerbated by information

asymmetry – the BSs may not be aware of the actual preference, which is naturally known by the

users. To this end, our main goal is to propose an incentive mechanism by overcoming this infor-
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Figure 2.2: The reward assignment problem faced by the BS.

mation asymmetry in a D2D network as shown in Fig. 2.2.

In this respect, there is a need to design a mechanism in which UEs will be rewarded in accor-

dance with their preference. Contract theory, a powerful framework from microeconomics, provides

a useful set of tools for modeling incentive mechanisms under information asymmetry [20]. Using

contract theory, one can analyze the interactions between an employer who is trying to offer proper

contracts to employees whose skills are not known a priori [21]. A contract is essentially a certain

reward that will be given to the employee in return for its services. In a D2D context, this con-

tractual situation can be used to study the interactions between BSs, acting as employers and, UEs,

acting as devices whose preferences are unknown to the BSs. Here, the contract will represent the

rewards provided by the BS to a certain D2D-capable UE who, will provide the required resources

and quality-of-service via D2D participation. The main advantages of adopting contract theory in

a D2D scenario include: 1) ability to incorporate semi-distributed network control in which the BS

can control the D2D communication links; 2) notions such as self-revealing contracts suitable to

handle information asymmetry, and 3) ability to devise optimal reward and incentive mechanisms
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that can induce cooperation between UEs.

The main contribution of this chapter is to leverage the use of contract theory for introducing

D2D incentive mechanisms under information asymmetry. In particular, we view the D2D sharing

problem, as a contract-theoretic model in which the BS hires the UEs as employees to fulfill the

content transmission task. The BS, as an employer, offers contracts to the UEs that specify different

performance-reward combinations for different UE preferences. The UEs, as employees, select

contracts that are the best fit to their own preferences. Under this scenario, the BS can efficiently

reward the users according to their performance, and thus, motivate users to participate in D2D

communication.

For the studied D2D contract model, we provide the necessary and sufficient conditions for

contract feasibility. Here, contract feasibility implies that when users join in, they receives the

reward that covers their cost and in accordance with their true preference. In addition, we study

and analyze the problem under two key scenarios: the discrete (finite) type and continuum (infinite)

type. To implement the proposed contract-theoretic D2D model, we propose a novel algorithm that

can allow the BS and UEs to interact and then optimize the network capacity while guaranteeing

a desired network quality-of-service (QoS). Simulation results show that the proposed contract-

theoretic model can guarantee UEs receive positive payoffs and compatible incentives. We also

study the system performance when the contract-theoretic model is implemented in a D2D underlaid

cellular network. The optimal contract gives the highest BS utility and social welfare as shown in

the simulations. By varying the cellular network size, maximum D2D communication distance, and

UE type numbers, we see the physical layer parameters’ impacts on the system performance

The rest of this chapter is organized as follows. Section 2.2 provides a detailed literature

survey. The system model is provided in Section 2.3. The optimal contract solution of discrete

type case is presented in Section 2.4, followed by the optimal contract solution in continuum type

scenario. The simulation results are shown in Section 2.5. Finally, conclusions are drawn in Section

2.6.
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2.2 Related Work

D2D communication has been subject to many recent research works such as in [22] and [23].

Due to the shared resources between direct D2D communication and traditional infrastructure-based

communication, new resource allocation techniques are needed for D2D deployment [24]. One

major challenge in D2D is interference management [17]. The common mechanism is to limit

maximum transmit power of D2D transmitter so as not to generate harmful interference from D2D

systems to cellular networks [25].

Some interference management strategies are also proposed to enhance the overall capacity of

cellular networks and D2D system. For example, the work in [26] introduce the idea of cooperative

interference cancellation (CIC) between close-by UEs using D2D communications for improving

the throughput of cellular networks in the downlink (DL) period. Another work in [27] formulates

the interference between different D2D and cellular communication links as an interference-aware

graph, and proposes an interference-aware graph based resource sharing algorithm. Several works

study the use of D2D communication as a means to optimize resource usage and maintain an effi-

cient co-existence between the D2D services and main cellular network [28].

Despite the large body of work on interference management and resource allocation in D2D

communication, to our knowledge, few existing works have addressed to the problem of providing

incentives for users to participate in cellular D2D. Moreover, using contract theory for network-

controlled D2D has not been studied in existing works.

Here, we note that contract theory has been used in areas such as mobile cloud computing

and cognitive radio. For instance, in [29], the authors study the use of contract theory as a means to

optimize the economic revenues of a cloud server in a mobile cloud computing environment. Exist-

ing works such as [30, 31], and [10] focus on the efficiency of the resource allocation in cognitive

radio networks. The work in [32] introduces the concept of insurance into the model, in which if the

primary owner (PO) cannot provide the channel purchased by a secondary user (SU), PO needs to

pay a certain amount of indemnity to the SU. In [33], the authors develop a contract-theoretic mech-
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anism to model the possibility of secondary users relaying data for primary users to improve data

rates. The work in [34] develops the incentive compatible contracts to encourage users to participate

in data acquisition and distributed computing programs.

However, potential interference caused by resource sharing makes it difficult to implement

existing contract-theoretic models directly into the D2D underlaid cellular network. In summary,

while resource allocation and interference management in D2D communication have been widely

studied, no literature has investigated the problem of providing incentives for users to engage in

D2D underlaid cellular networks using contract theory as proposed here.

2.3 System Model

Consider a cellular network with one BS, several cellular UEs and D2D UE pairs. In each UE

pair, there is one content requester (receiver) and one candidate content provider (transmitter). The

UE receivers can receive data from the BS, or from their corresponding UE transmitters through

D2D communications. In order to offload traffic from the network’s infrastructure, the BS will offer

contract that can effectively motivate the content provider to use, when possible, D2D communica-

tion to deliver the content.

The UEs are heterogeneous with different preference towards joining D2D communication, in

terms of personal favor, battery level, storage capacity. Naturally, there is an information asymmetry

between the BS and the UE. The UE is aware of its own preference while the BS may not have that

information. Thus, to overcome the information asymmetry, the BS will specify a performance-

reward bundle contract (T (R), R), where T is the reward to the UE, R is the D2D performance

required from the UE, and T (R) is a strictly increasing function ofR. Intuitively, better performance

should be rewarded more and vice versa, which is called incentive compatible.
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2.3.1 Transmission Data Rate

The performance R is measured by the UE’s transmission data rate. We consider the uplink

(UL) scenario since UL resource sharing in D2D communications only affects the BS, and the

incurred interference can be mitigated by BS coordination [35].

The transmission data rate is related to the signal to interference plus noise ratio (SINR).

In a cellular network with D2D underlaid, the receiver suffers interference from cellular and D2D

communications due to resource sharing. When D2D communication is in the UL band, the source

UE transmits data to the destination UEs using the uplink band of the cellular band. The interference

comes from the other UEs (both cellular UE and D2D UE) [36]. Thus, the transmision data rate of

a D2D UE i in the UL band with co-channel interference is given by

Ri = W log2

(
1 +

Pi|hir|2

Pc|hcr|2 +
∑

i′ Pi′ |hi′r|2 +N0

)
, (2.1)

where i′ is the UE with i′ 6= i, Pc, Pi and Pi′ are the transmit powers of the cellular transmitter

UE c and D2D transmitters UE i and i′, respectively, hcr, hir and hi′r are the channel gain between

D2D receiver and cellular transmitter c and D2D transmitters i and i′, respectively,N0 is the additive

white Gaussian noise (AWGN),W is the channel bandwidth. Hereinafter, without loss of generality,

we assume that W = 1.
∑

i′ Pi′h
2
i′r represents the interference from the other D2D pairs that share

spectrum resources with link UE pair i.

2.3.2 User Equipment Type

We define the UE type to be a representation of each UE’s preference towards joining D2D

communication. Given a fixed reward, a high type UE will be more eager to contribute in the

transmission and provide high data rate. Naturally, high type UEs are more preferred by the BS,

and will receive more reward. Here, we consider that the number of UE types belong to discrete,

finite space. In Section IV.B, we will extend the results to the continuum case.

Definition 2.1. There are N D2D UE pairs in a D2D underlaid cellular network. The UEs’ prefer-

ences are sorted in an ascending order and classified into N types: type-1, . . ., type-i, . . ., type-N.
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The type of UE includes properties such as the privacy concern, battery remain, and the willingness

to share data. θi denotes the type of UE and follows

θ1 < · · · < θi < · · · < θN , i ∈ {1, · · · , N}. (2.2)

A higher θ implies more willingness to participate and contribute to the D2D communication.

Here, we write the contract designed for type-i UE as (Ti, Ri). The BS does not know the type of

UE, however, it has knowledge of the probability that a UE belongs to type-i, which is represented

by λi, with
∑N

i=i λi = 1.

Instead of offering the same contract to all UEs, the BS will offer different contract bundles

according UE’s type θ. The UEs are free to accept or decline any type of contracts. If the UE

declines to receive any contract, we assume that the UE signs a contract of (T (0), 0), where T (0) =

0. In the following subsections, we will give the utility function of the BS and UEs based on the

signed contract.

2.3.3 Base Station Model

For a BS that employs a type-i UE as a D2D content provider, a proper utility function can be

defined as the increased data rate by establishing a D2D communication

UBS(i) = Ri − cTi, (2.3)

where c > 0 is the BS’s unit cost, Ri is the required transmission rate UE must provide, and Ti is

the reward the BS needs to pay in the contract bundle (Ti, Ri). Here, we assume that the reward to

the UE is a certain amount of free data. The utility of the BS is the transmission data rate gained

from D2D communication, minus the reward to UEs. For D2D communication to be beneficial for

the BS, it is clear from (2.3) that we must have Ri − cTi ≥ 0. Otherwise, the BS will choose not to

underlay D2D communication.

As there are N types of UE pairs, each with a probability λi, the expected utility of the BS
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can be represented by

UBS =
N∑
i=1

λi (Ri − cTi) . (2.4)

2.3.4 User Equipment Model

The utility function of a type-i UE employed based on a contract (Ti, Ri) during D2D com-

munication is

UUE(i) = θiv(Ti)− c′Ri, (2.5)

where v(Ti) is the evaluation function regarding the rewards, which is a strictly increasing concave

function of T , where v(0) = 0, v′(T ) > 0, and v′′(T ) < 0 for all T , and c′ is the UE’s unit energy

cost on providing the required transmission rate. For simplicity, we assume c′ = 1. The utility of a

UE is the received rewards minus the cost in terms of power consumption. Given the utility function

in (2.5), the UE chooses the bundle that maximizes its own payoff.

2.3.5 Social Welfare

The network social welfare is the summation of the BS and UEs’ utilities. As the number of

D2D UE transmitters and number of UE types are all equal to N , the number of UE belongs to each

type is 1. Assume that the distribution of the UE type is uniform, then summing up (2.3) and (2.5)

from 1 to N , we have

Π =

N∑
i=1

[UBS(i) + UUE(i)] =

N∑
i=1

[θiv(Ti)− cTi]. (2.6)

The transmission data rate is the internal transfer between the BS and UE and is canceled out.

2.4 Proposed Solution

In this section, we solve the BS’s network capacity maximization problem. First, we will

derive necessary constraints that support the feasibility of the contract. Then, we will formulate the
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optimization problem, and extend to the continuum type case. Finally, we propose an algorithm for

practical implementation.

2.4.1 Conditions for Contract Feasibility

To ensure that the UE has an incentive to offload BS traffic via D2D communication, the

contract that a UE selects needs to satisfy the following constraint.

Definition 2.2. Individual Rationality (IR): The contract that a UE selects should guarantee that

UUE(i) is nonnegative,

UUE(i) = θiv(Ti)−Ri ≥ 0, i ∈ {1, · · · , N}. (2.7)

To motivate a UE’s participation, the received reward must compensate its power consump-

tion during D2D communication. If UUE(i) < 0, the UE will choose not to establish the D2D

communication. This case can be formally captured by the case in which the UE signs the contract

of (T (0), 0).

If a type-i UE selects the contract (Tj , Rj) intended for type-j UE, the utility that the type-i

UE receives is

U ′UE(i) = θiv(Tj)−Rj , i, j ∈ {1, · · · , N}, i 6= j. (2.8)

As we previously discussed, we want to design a contract such that type-i UE would prefer

the (Ti, Ri) contract over all the other options. In other words, a type-i UE receives the maximum

utility when selecting contract (Ti, Ri). The contract is thus known to be as a self-revealing contract

if and only if the following constraint is satisfied.

Definition 2.3. Incentive Compatible (IC): UEs must prefer the contract designed specifically for

their own types, i.e.,

θiv(Ti)−Ri ≥ θiv(Tj)−Rj , i, j ∈ {1, · · · , N}, i 6= j. (2.9)

The IR and IC constraints are the basic conditions needed to ensure the incentive compatibility

of a contract. Beyond the IR and IC constraints, there are several more conditions that must be

satisfied.
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Lemma 2.4. For any feasible contract (T,R), Ti > Tj if and only if θi > θj , and Ti = Tj if and

only if θi = θj .

Proof. We prove this lemma by using the IC constraint in (2.9). First, we prove the sufficiency: If

θi > θj , then Ti > Tj .

According to the IC constraint, we have

θiv(Ti)−Ri ≥ θiv(Tj)−Rj and (2.10)

θjv(Tj)−Rj ≥ θjv(Ti)−Ri, (2.11)

with i, j ∈ {1, · · · , N}, i 6= j. We add the two inequalities together to get
θiv(Ti) + θjv(Tj) ≥ θiv(Tj) + θjv(Ti), (2.12)

θiv(Ti)− θjv(Ti) ≥ θiv(Tj)− θjv(Tj),

v(Ti)(θi − θj) ≥ v(Tj)(θi − θj).

As θi > θj , we must have θi − θj > 0. Divide both sides of the inequality, we have v(Ti) > v(Tj).

From the definition of v(T ), we know that v is a strictly increasing function of T . As v(Ti) > v(Tj)

holds, we must have Ti > Tj .

Next, we prove the necessity: if Ti > Tj , then θi > θj . Similar to the first case, we start with

the IC constraint in (2.10) - (2.12). Using a similar process we can obtain

θi[v(Ti)− v(Tj)] ≥ θj [v(Ti)− v(Tj)]. (2.13)

As Ti > Tj > 0 and v(T ) is strictly increasing with T , we must have v(Ti) > v(Tj) and v(Ti) −

v(Tj) > 0. Thus, by dividing both sides of the inequality, we get θi > θj . As a result, we have

proved that θi > θj if and only if Ti > Tj .

Using the same process we can easily prove that Ti = Tj if and only if θi = θj .

From Lemma 2.4, we know that if θj < θi, then Tj < Ti must hold. Thus, a UE of high

type should receive more reward than a UE of low type. If two UEs receive the same reward,

they must belong to the same type and vice versa. Given our assumption in Definition 2.1 that

θ1 < · · · < θi < · · · < θN , we have T1 < · · · < Ti < · · · < TN . Indeed, we can give a definition

of this property.
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Definition 2.5. Monotonicity: For any feasible contract (T,R), the reward T follows

0 ≤ T1 < · · · < Ti < · · · < TN . (2.14)

Monotonicity implies that the UEs of higher type, i.e. with higher preference towards partic-

ipation. With the property in monotonicity, we can have the following proposition.

Proposition 2.6. As a strictly increasing function of T , the contribution R satisfies the following

condition intuitively

0 ≤ R1 < · · · < Ri < · · · < RN . (2.15)

Proposition 2.6 shows that an incentive compatible contract requires a high performance of

UE if it receives a high reward and vice versa.

Lemma 2.7. For any feasible contract (T,R), the utility of each type of users must satisfy

0 ≤ UUE(1) < · · · < UUE(i) < · · · < UUE(N). (2.16)

Proof. From Definition 2.5 and Proposition 2.6 we know that UEs who ask for more rewards must

be able to provide larger transmitting rates, i.e., the two constraints Ti > Tj and Ri > Rj are

imposed together. If θi > θj , we have

UUE(i) = θiv(Ti)−Ri ≥ θiv(Tj)−Rj (IC) (2.17)

> θjv(Tj)−Rj = UUE(j).

Now we have UUE(i) > UUE(j) when θi > θj . As θ1 < · · · < θi < · · · < θN , then 0 ≤ UUE(1) <

· · · < UUE(i) < · · · < UUE(N).

Thus, higher type UEs receive more utility than the UEs whose types are lower. From the

IC constraint and the two lemmas that we proved, we can easily deduce the following. If a high

type UE selects the contract designed for a low type UE, even though a smaller transmission data

rate is required from the BS, the less reward received will deteriorate UE’s utility. Moreover, if a

lower type UE selects a contract intended for a high type UE, the gain in terms of rewards cannot
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compensate the cost in power consumption for the high transmission data rate, and thus the cost

surpasses the gain. The UE can receive the maximum utility if and only if it selects the contract that

best fit into its preference. Thus, we can guarantee that the contract is self reveal.

2.4.2 Optimal Contract

Given the contract feasibility constraints, we will formulate the system optimization problem

in both discrete type case and continuum type case in this subsection .

2.4.2.1 Case of Discrete Type

Under the information asymmetry, the only information available at the BS is the probability

λi with which a certain UE might belong to type θi. Our main focus is to maximize the utility of

the BS, which represents the increased data rate when D2D communication is underlaid. Therefore,

the problem can be posed as the following maximization

max
(T,R)

N∑
i=1

λi (Ri − cTi) , (2.18)

s.t.

(a) θiv(Ti)−Ri ≥ 0,

(b) θiv(Ti)−Ri ≥ θiv(Tj)−Rj ,

(c) 0 ≤ T1 < · · · < Ti < · · · < TN ,

i, j ∈ {1, · · · , N}, i 6= j.

(a) and (b) represent the IR and IC constraints, respectively, and (c), represents the monotonic-

ity condition. This problem is not a convex optimization problem, however, we can perform the

following steps to find a solution:

Step 1: Reduce IR constraints. From (2.18), we can see that in total there areN IR constraints

be satisfied. However, from Definition 2.1 we know that θ1 < · · · < θi < · · · < θN . By using IC
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constraints, we have,

θiv(Ti)−Ri ≥ θiv(T1)−R1 ≥ θ1v(T1)−R1 ≥ 0. (2.19)

Thus, if the IR constraint of type-1 user is satisfied, the other IR constraints will automatically hold.

Therefore, we only need to keep the first IR constraints and reduce the others.

Step 2: Reduce IC constraints. The IC constraints between type-i and type-j, j ∈ {1, · · · , i−

1} are called downward incentive constraints (DICs). Especially, the IC constraint between type-i

and type-(i-1) is called local downward incentive constraints (LDICs). Similarly, the IC constraints

between type-i and type-j, j ∈ {i+ 1, · · · , N} are called upward incentive constraints (UICs), and

the IC constraint between type-i and type-(i+1) is called local upward incentive constraints (LUICs).

First, we prove that DICs can be reduced.

Proof. As the number of users isN in our model, there existN(N−1) IC constraints in total. Here,

we consider three types of users which follows θi−1 < θi < θi+1. Then, we have the following two

LDICs

θi+1v(Ti+1)−Ri+1 ≥ θi+1v(Ti)−Ri and (2.20)

θiv(Ti)−Ri ≥ θiv(Ti−1)−Ri−1. (2.21)

In Lemma 2.4 we have shown that Ti ≥ Tj whenever θi ≥ θj > 0, the second inequality becomes

θi+1[v(Ti)− v(Ti−1)] ≥ θi[v(Ti)− v(Ti−1)] ≥ Ri −Ri−1 and (2.22)

θi+1v(Ti+1)−Ri+1 ≥ θi+1v(Ti)−Ri ≥ θi+1v(Ti−1)−Ri−1. (2.23)

Thus, we have

θi+1v(Ti+1)−Ri+1 ≥ θi+1v(Ti−1)−Ri−1. (2.24)

Therefore, if for type-i UE the LDIC holds, the incentive constraint with respect to type-(i-1) UE

holds. This process can be extended downward from type i − 1 to 1 UEs prove that all the DICs
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hold,

θi+1v(Ti+1)−Ri+1 ≥ θi+1v(Ti−1)−Ri−1 (2.25)

≥ · · ·

≥ θi+1v(T1)−R1,

N > i ≥ 1.

Thus, we have complete the proof that with the LDIC constraint, all the DICs hold, that is

θiv(Ti)−Ri ≥ θiv(Tj)−Rj , N ≥ i > j ≥ 1. (2.26)

Second, we prove all the UICs can be reduced.

Proof. From the IC constraint we have the following two LUICs

θi−1v(Ti−1)−Ri−1 ≥ θi−1v(Ti)−Ri and (2.27)

θiv(Ti)−Ri ≥ θiv(Ti+1)−Ri+1. (2.28)

In Lemma 2.4 we have shown that Ti ≥ Tj whenever θi ≥ θj > 0, the second inequality can be

derived as

Ri+1 −Ri ≥ θi(v(Ti+1)− v(Ti)) ≥ θi−1(v(Ti+1)− v(Ti)) and (2.29)

θi−1v(Ti−1)−Ri−1 ≥ θi−1v(Ti)−Ri ≥ θi−1v(Ti+1)−Ri+1. (2.30)

Thus, we have

θi−1v(Ti−1)−Ri−1 ≥ θi−1v(Ti+1)−Ri+1. (2.31)

Therefore, if for type− (i− 1) UE, the incentive constraint with respect to type− i UE holds, then

all UICs are also satisfied. This process can be extended upward from type i + 1 to N UEs prove

that all the UICs hold,

θi−1v(Ti−1)−Ri−1 ≥ θi−1v(Ti+1)−Ri+1 (2.32)

≥ · · ·

≥ θi−1v(TN )−RN ,

N ≥ i > 1.
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Thus, we have complete the proof that with the LUIC constraint, all the UICs hold, that is

θiv(Ti)−Ri ≥ θiv(Tj)−Rj , 1 ≤ i < j ≤ N. (2.33)

Indeed, with the monotonicity condition Ti−1 < Ti, the LDIC:

θiv(Ti)−Ri ≥ θiv(Ti−1)−Ri−1, (2.34)

can easily imply that the LUIC

θi−1v(Ti)−Ri ≤ θi−1v(Ti−1)−Ri−1, (2.35)

can be satisfied, and thus, can be reduced. Thus, we have proved that, with the LDIC, all the UICs

are reduced.

Step 3: Solve the optimization problem with reduced constraints. Thus, we can reduce the set

of UICs and DICs, and only the set of LDICs and monotonicity condition are binding. Therefore,

the optimization problem reduces to

max
(T,R)

N∑
i=1

λi (Ri − cTi) , (2.36)

s.t.

(a) θ1v(T1)−R1 = 0,

(b) θiv(Ti)−Ri = θiv(Ti−1)−Ri−1,

(c) 0 ≤ T1 < · · · < Ti < · · · < TN ,

i ∈ {1, · · · , N}.

To solve this problem, we can first formulate and solve the relaxed problem without the mono-

tonicity condition and then consider the standard procedure of the Lagrangian multiplier. Then we

check whether the solution to this relaxed problem satisfies the monotonicity condition or not [21].

The optimal contract solved by this optimization problem will give zros utility for the lowest

type of UEs. If N = 2, there are only two types of UEs, the high type and the low type. By solving

this optimization problem, the low type UEs will obtain a zero utility contract, and the high type
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UEs can receive a positive utility. In the general cases when N > 2, a similar conclusion is also

provided in [21], [30], and [33], all type of UEs will get a positive utility except the lowest type UE

who will get a zero utility.

2.4.2.2 Case of Continuum Type

In the previous case, there are N type of UEs from θ1 to θN . In practice, the number of UEs

types can be infinite. In this subsection, we will give an analysis about the continuum type case with

type θ which has the probability density function (PDF) f(θ) (with cumulative distribution function

(CDF) F (θ) on the interval [θ, θ]. The contract that a BS offers to the UE is written as [T (θ), R(θ)].

T is monotonically increasing in R as in the discrete case. If no trading happens between the BS

and the UE, the contract is set as T (θ) = 0 and R(θ) = 0. Similar to the discrete type case, we can

write the BS’s optimization problem as follows.

max
{T (θ),R(θ)}

ˆ θ

θ
[R(θ)− cT (θ)] f(θ)dθ, (2.37)

s.t.

(a) θv[T (θ)]−R(θ) ≥ 0,

(b) θv[T (θ)]−R(θ) ≥ θv[T (θ̂)]−R(θ̂),

θ, θ̂ ∈ [θ, θ].

Condition (a) is the IR constraints and (b) represents the IC constrains. To solve this continuum

type case problem, we follow a similar process as the discrete type case and begin by reducing the

IR and IC constraints.

Step 1: Reduce IR Constraints. We first reduce the number of IR constraints as done in the

discrete case. Since the IC constraints hold, we have

θv[T (θ)]−R(θ) ≥ θv[T (θ)]−R(θ) (2.38)

≥ θv[T (θ)]−R(θ).

Thus, if the IR constraint of θ is satisfied, the IR constraints for all the other values of θ will
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automatically hold. Therefore, replace the IR constraints by

θv[T (θ)]−R(θ) ≥ 0. (2.39)

Step 2: Reduce IC constraints. To reduce the IC constrains, we give Lemma 2.8 that using

two other constrains to replace all IC constrains [21].

Lemma 2.8. The IC constrain is equivalent to the following two conditions:

1. Monotonicity

dT (θ)

dθ
≥ 0. (2.40)

2. Local incentive compatibility

θv′[T (θ)]
dT (θ)

dθ
= R′(θ), θ ∈ [θ, θ]. (2.41)

Proof. The monotonicity can be easily derived following the steps in Lemma 2.4 and Definition 2.5.

The local incentive compatibility can be proved by contradiction. Suppose we have the monotonicity

and local incentive compatibility, and the IC constraint cannot be hold. Then, with at least one θ̂

violates the IC constraint

0 ≤ θv[T (θ)]−R(θ) < θv[T (θ̂)]−R(θ̂). (2.42)

Integrating it from θ to θ̂ we get

ˆ θ̂

θ

[
θv′[T (x)]

dT (x)

dx
−R′(x)

]
dx > 0. (2.43)

From the local incentive compatibility, we know
´ θ̂
θ

[
xv′[T (x)]dT (x)

dx −R
′(x)

]
dx = 0. If θ < x <

θ̂, from the monotonicity we have θ dv(T (x))
dx ≤ xdv(T (x))

dx . Therefore,

ˆ θ̂

θ

[
θv′[T (x)]

dT (x)

dx
−R′(x)

]
dx < 0. (2.44)
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Thus, we see a contradiction. Similarly, if θ > θ̂, we can also get a contradiction. Thus, the

two conditions: monotonicity and local incentive compatibility can guarantee the UE’s incentive

compatible constrains.

Step 3: Optimization problem with reduced constraints. Finally, the BS’s optimization prob-

lem can be written as

max
(T (θ),R(θ))

ˆ θ

θ
[R(θ)− cT (θ)] f(θ)dθ, (2.45)

s.t.

(a) θv[T (θ)]−R(θ) ≥ 0,

(b) θv′[T (θ)]
dT (θ)

dθ
= R′(θ),

(c)
dT (θ)

dθ
≥ 0,

θ ∈ [θ, θ].

Similar to the discrete type case problem, constraints (a) and (b) represent the IR and IC

constraints, and constraint (c) is the monotonicity condition. The procedure for solving this problem

is also similar to the discrete type case problem. First ignore the monotonicity condition and solve

the relaxed problem with constraints (a) and (b). Then, check whether the solution to this relaxed

problem satisfies the monotonicity condition or not.

2.4.3 Practical Implementation

By solving the proposed problem, we could provide UEs with the optimal contract that can

incentivize them to participate in D2D communication. To implement the proposed approach in a

practical D2D network, we can follow the next steps. From the system model, we have the initial

information such as the cellular network radius S, the cellular users’ transmit power Pc, the number

of UE types N , and the probability λi that UE belongs to θi. With those initial values, the BS

can obtain the optimal contract (T,R). Once there are UEs requesting contents, the BS acts in the
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following stages.

In the first stage, when the BS receives UEs’ requests for contents, the BS will detect if the

contents are locally accessible in other UEs within the maximum D2D communication distance L.

If the content is locally available, then, the BS will broadcast the optimal contracts to the candidate

content providers. By evaluating the contracts, UEs will send feedback signals to indicate whether

they are willing to participate in according the estimated utility. After getting the feedback from

UEs, the BS will sign the contract with the UE that accepts it. If all UEs reject the contract, the BS

will serve the content requester directly, which is the same procedure as if the content is not locally

accessible.

After signing the contract, the employed UE will set up the D2D communication and forward

the content to the content requester. The BS will stand by to watch the communication by sending

control signals, and also receiving feedback signals from UEs. If the transmission is successful,

the BS reward the involved UEs based on their contract. Otherwise, if the transmission failed,

the BS serve the user directly and the “employed” UE will not receive the reward. The proposed

D2D communication algorithm is summarized in Algorithm 1. This algorithm gives the practical

implementation steps of the theoretical model.

2.5 Simulation Results and Analysis

In this part, we will first evaluate the feasibility of the proposed contract, then analyze the

system performance when D2D communication is underlaid in the cellular network.

First of all, we donate the optimal contract solved in the previous section by information

asymmetry. For comparison purposes, we introduce another two incentive mechanisms. The first

one is the optimal contract under no information asymmetry (i.e., the BS is aware of the types of

UEs), which is the optimal outcome that we can achieve and serves as the upper bound. The second

contract is the linear pricing which is also under the information asymmetry that the BS has no

acknowledgement of the UE type. In this linear pricing mechanism, the BS will only specify a unit
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Table 2.1: Physical Layer Parameters

Parameter Value
Cellular Area Radius 500 m
Maximum D2D Distance 30 m
number of UE Types 20
Noise Spectral Density -174 dBm/Hz
Noise Figure 9 dB at device
Antenna Gains BS: 14 dBi; Device: 0 dBi
Transmit Power BS: 46 dBm; Device: 23 dBm
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Figure 2.3: Contract monotonicity and incentive compatibility.

price P for data rate, and the UEs will request the amount of reward T which corresponding to a

certain amount of data rate, to maximize their own utilities.

We assumeN = 20 and give the simulation with 20 types of UEs. For simplicity, we consider

a uniform distribution of UE type, i.e., λi = 1/N . We set the unit payment cost of the BS c = 0.01.

The main parameters of the D2D underlaid cellular network are shown in Table 2.1.

2.5.1 Contract Feasibility

2.5.1.1 Monotonicity

In Fig. 2.3a and 2.3b, we compare required transmission data rate and reward of different

type UEs to show the monotonicity of the contract.

In Fig. 2.3a, we see that required transmission data rate increases with the UE type, which is

consistent with our system model. The difference among the three mechanisms is that the required
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data rate under no information asymmetry and linear pricing are linear function of type, and is

a concave function of type under information asymmetry. Among the three mechanisms, the no

information asymmetry contract requires the highest data rate from the UE, followed by the optimal

contract under information asymmetry. The lowest data rate is required under the linear pricing

contract. Similarly, the reward shown in Fig. 2.3b also proves our assumption that reward T is a

strictly increasing function of UE type.

2.5.1.2 Incentive Compatibility

In Fig. 2.3c, we evaluate the incentive compatibility of our proposed contract, the optimal

scheme. We show the utilities of type-5, type-10, and type-15 UEs when selecting all the contracts

offered by the BS. The utility of each user is a concave function. Each UE can achieve their max-

imum utility if and only if it selects the type of contract that is intended its own type, as shown

clearly in Fig. 2.3c. Thus, by designing a contract in this form, the type of an UE will be automat-

ically revealed to the BS after its selection. In other words, the optimal contract under information

asymmetry enables the BS break the information asymmetry and retrieve the information related to

UE type.

Moreover, Fig. 2.3c shows that when the three types of users select the same contracts, their

utilities follows the inequality u5 < u10 < u15. This corroborates the result shown by the (2.16)

in Lemma 2.7: the higher the type of the UE, the larger the utility it can receive when selecting the

same contract.

2.5.2 System Performance

To evaluate the performance of the D2D underlaid cellular network, we try to see the impacts

of different parameters on the utility of BS, UE, and social welfare.
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Figure 2.4: System performance of different type UEs.

2.5.2.1 The UE Type

First we take a close look at the three values of different type UEs in Fig. 2.4. The three

figures show the monotonicity of the contract that the higher the UE type, the larger utility it will

bring to the BS and UE, as well as the social welfare.

Fig. 2.4a shows that the BS achieves the highest utility when there is no information asym-

metry, since the BS has full knowledge of UE types. Nonetheless, we can see that the proposed

solution with information asymmetry yields an utility for the BS that outperforms the linear pricing

case. Here, we note that, even though the optimal contract under information asymmetry can force

the UEs to reveal their types, the exact value of the UE type is still unavailable to the BS. Thus,

the BS can only achieve a near optimal utility under information asymmetry, which is always upper

bounded by the no information asymmetry case. The linear pricing mechanism does not place any

restriction on the UEs choice of contract and less information is retrieved, which prevents the BS

from obtaining more utility.

In Fig. 2.4b, we compare 20 types UEs’ utilities. This results proved the monotonicity of the

contract that the higher the type of UE, the larger the utility it can receive under information asym-

metry. All the type of UEs enjoy a positive utility except the lowest type (i.e., type-1) UE, which

consistents with our conclusion in Section IV.B. However, the UE’s utility remains 0 disregarding

the type of UE under no information asymmetry. This is due to fact that when the BS is available of

the UE’s type, it will adjust the contract to maximize its own utility while leave the UE a 0 utility.

Overall, we see that linear pricing gives the UEs the highest utility, followed by the optimal con-
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Figure 2.5: The system performance when the size of cellular network varies.

tract under information asymmetry, then the ideal case with no information asymmetry. However,

for some of the high type UEs can obtain higher utility from the optimal contract under information

asymmetry than the linear pricing.

In Fig. 2.4c we see that the social welfare shows similar performance with that of the BS.

One interesting point is that, the social welfare of the highest type UE has the same value under

no information asymmetry and information asymmetry. This is in accordance with the conclusion

we made in Section IV.B that the highest type UE will result in an efficient trading as if there is no

information asymmetry. For other high type UEs under no information asymmetry, they also have

close optimal efficient trading with the BS. The linear pricing mechanism gives the lowest social

welfare (i.e., trading efficiency) since no in formation retrieving strategy has been apply.

2.5.2.2 The Cellular Network Size

In a small-sized network, cellular communication will generate severe interference on D2D

communication, which will decrease the transmission data rate of UEs. The interference will de-

crease as the size of network increases. In Fig. 2.5, we show the impact of network size on the

system’s performance.

In Fig. 2.5a and Fig. 2.5b, we show the utility of the BS and UEs when the cellular network

size varies, when the transmission power and antenna gain of the BS are fixed. As the size of cellular

decreases, D2D UE pairs and cellular UEs are located in a more dense area, and suffering from a

larger interference from other cellular and D2D UEs. Thus, the transmission data rate decreases, as
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Figure 2.6: The system performance when the maximum D2D communication distance varies.

well as the rewards. As a result, the utilities of the BS and UE also decrease.

From Fig. 2.5a we see that, the utility of BS achieves the maximum utility under no infor-

mation asymmetry. Followed by the optimal contract under information asymmetry. The linear

pricing gives the worst utility to the BS compares to the other two. The utility of the UE has one

similar property as Fig. 2.4b, that the UE utility under no information asymmetry remains 0. The

UE achieves the maximum utility by the linear pricing, followed by the optimal contract under in-

formation asymmetry. The UEs benefit from the information asymmetry, while the BS can increase

its utility by removing the information asymmetry.

From Fig. 2.5c, we can also see the differences in the social welfare under the three dif-

ferent contracts. Social welfare under no information asymmetry achieves the highest among the

other two. As the BS is informed of the UE type, the transaction achieves the highest efficiency.

Then, followed by the optimal contract achieved under information asymmetry. The linear pricing

presents the worst efficiency. The optimal contract achieved under information asymmetry achieves

a near optimal social welfare, as it breaks the information asymmetry when the UEs select contracts,

their types are revealed to the BS automatically. The linear pricing does not account for any type of

information and, thus, has the lowest social welfare.

2.5.2.3 The Maximum D2D Communication Distance

When the size of cellular network and the BS transmission power are fixed, the interference

from cellular communication will be in a certain range. Under this condition, we change the maxi-
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Figure 2.7: The system performance when the number of UE types varies.

mum transmission distance of D2D pairs, to see the effects on system performance, in Fig. 2.6.

For the utility of the BS and UEs, they still exhibit similar properties as in Fig. 2.5a and

Fig. 2.5b. The utility that the BS receives is maximized under no information asymmetry, followed

by information asymmetry and linear pricing. The UE achieves the maximum utility under linear

pricing, and followed by information asymmetry and no information asymmetry which equals to 0

all the time. The highest social welfare is achieved under no information asymmetry, information

asymmetry is the second, linear pricing results in the worst social welfare.

2.5.2.4 The Number of UE Types

In Fig. 2.7, we study the system performance when the number of UE types increases, while

the other parameters are fixed. An increase in the number of types will automatically yield an

increase in the total number of UEs pairs. Thus, the utilities of the BS and UE, and the social

welfare will also increase.

Similar to the conclusions drawn from the Fig. 2.5 and 2.6, the BS has the highest utility

under no information asymmetry. The optimal contract under information asymmetry gives the

second highest BS utility. The linear pricing still gives the worst utility to the BS. The linear

pricing gives the highest UE utility, the optimal contract under information asymmetry gives the

second highest one, and the no information asymmetry remains 0. The case under no information

asymmetry achieves the highest social welfare among all schemes. The optimal contract under

information asymmetry yields the second highest social welfare. The linear pricing still achieves
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the lowest efficiency in social welfare.

2.6 Conclusions

In this chapter, we have proposed a contract-theoretic model for addressing the problem of

incentivizing UEs to participate in D2D communication underlaid over a cellular system. Under

the case with information asymmetry in which the UEs’ preferences are not available at the BS,

we have proposed a self-revealing mechanism based on the framework of contract theory. We have

considered the type of UEs under two different scenarios, the discrete type case and continuum

type case. Simulation results have shown that our proposed approach can potentially incentivize

UEs to participating in D2D communication. Further more, the optimal contract under information

asymmetry has been proved to obtain the performance close to the ideal case with no information

asymmetry, and higher than the linear pricing when not trying to retrieve any information at all.
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Chapter 3

Multi-Dimensional Incentive Mechanism in Mobile
Crowdsourcing with Moral Hazard

3.1 Introduction

Nowadays, people are used to accessing various sophisticated location based services (e.g.,

Yelp and Google Map) by their smartphones via/through wireless access networks [37]. Most loca-

tion based services are essentially based on crowdsourcing which is a technology that requires user

to regularly transmit data to the for the service provider which is denoted as principal here after. The

data is obtained by the embedded sensor such as GPS, accelerometer, digital compass, gyoscope,

and camera, or users themselves [2]. Once the data is aggregated and processed by the principal,

the location-based service is provided to the users for free or with purchase. The brief illustration of

crowdsourcing is shown in Fig. 4.1. One well-known application is the live auto traffic map offered

by Google. Smartphone users transmit the traffic information which includes the time, location, and

velocity to Google. Google collects and processes the data to provide free live traffic map to mobile

users [38].

With the drastic growth in the global location based service market, and the rapid development

of big data technology, more data as well as user participation are required to support more sophis-

ticated services [39]. Although the users receive the satisfaction from enjoying the location based

service, there are many concerns that stop users from providing location based data for the princi-

pal. When participating in a crowdsourcing activity, users contribute their effort, time, knowledge

and/or experience, and consume the battery power and computing capacity of their smartphones.

In addition, the users expose their locations with potential privacy threats [6]. Hence, many users

hesitate to participate in with those concerns, which becomes one of the serious impediments to the

development of location based services [40]. Thus, necessary incentive mechanisms that motivate

the users to participate in crowdsourcing are needed to address those critical demands.
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Figure 3.1: An illustration of crowdsourcing.

Many researches have already noticed that there is an urgent need to alleviate these challenges

by providing incentive mechanisms to the users. The design proposed in [5] is to give users a

one-time reward after users have accomplished a certain task. A problem with this mechanism

is its inability to provide continuous incentives to users to stay active after receiving the opening

reward [4]. Inspired by the effort-based reward from the labor market, several works studied this

problem by providing users with the amount of reward that is consistent with their performances.

The work in [6] and [11] have derived the performance and reward dependent function for users

that induces the maximum profit for the principal. In one of our previous works [41], we have also

proposed a contract that includes user’s current performance related reward and user’s satisfaction

from enjoying the free service in the reward package.

The works above capture the fundamental aspect of providing necessary incentive for user

to participate in the crowdsourcing activity. However, beyond these insights, the simplified one-

dimensional models are too abstract to capture the main features of the user’s contributions, since

users are supposed to work on several different tasks [42]. For example, a user’s contribution to

Yelp involves many dimensions and cannot adequately be reduced to a simple problem of effort

choices. Users do not only make location based check-ins, upload photos, and write reviews for

the restaurants and bars. But, they are also encouraged to invite new friends to sign up, and to give

feedbacks and suggestions to Yelp for the website to determine the future overall strategy. Generally

speaking, in the real world crowdsourcing, the user’s action set is considerably richer than in the
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previous literatures have described, and the variables in the contract can be conditioned on are much

more difficult to specify or to observe precisely.

The complexity of real world scenarios makes one dimensional incentive mechanisms hard

to adapt; in addition, other considerations also arise if we only reward users based on one aspect of

the performance [43]. Still taking Yelp for example, suppose we introduce a mechanism that links

user’s reward to the number of his/her reviews, the advantage of this mechanism is that it provides an

independent measure of the user’s performance. But there is also an disadvantage that it measures

only a part of what users are encouraged to contribute to the website. To put it in another way,

if the crowdsourcing is a single-task problem, in which the only thing user needs to do is writing

reviews, the quality of a review such as length, correctness, and objectiveness is not considered.

If the crowdsourcing is a multi-task problem such as Yelp, the other tasks such as checking-ins,

uploading photos, and inviting friends will be ignored. In a nutshell, there is a definite risk that this

policy will induce users to overwhelmingly focus on the part that will be rewarded and to neglect

the other components that can enrich the content of the crowdsourcing activity [44].

Thus, a qualified mechanism can both reward user’s effort in a comprehensive way, and drive

user’s incentive to undertake actions that affect the principal’s utility, in return. To capture the

incentive problem in crowdsourcing, the one-dimension incentive mechanism needs to be modified

into a number of dimensions. At the very least the user’s action set must include the range of

different tasks it is responsible for. Furthermore, performance measures must be multi-dimension

rather than one-dimension for all, so that the principal can drive user’s incentives by assigning

different reward weights on different tasks [45].

Based on this motivation, we aim at offering a contract that considers different aspects of

user’s contributions, and assigns different reward weights on their performance in order to incen-

tivize them to provide high quality information to the principal. Fortunately, the moral hazard

problem from contract theory provides us a useful tool to design such a mechanism that can solve

the employees’ multi-dimension action problems when performing multiple tasks [3]. Indeed, the

moral hazard model can be adopted to solve the crowdsourcing incentive problem. From the prin-
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cipal’s perspective, it “employs” the users to upload location based data and reward them by multi-

dimension measures. The principal makes profit by extracting useful information from the collected

data, which also incurs a cost such as the reward given back to users. Thus, to maximize its own

payoff, the principal needs to find an optimal mechanism that can properly reward user’s efforts and

drive user’s incentives [20].

The main contributions of this paper are summarized as follows. First, we are first to propose a

performance and reward consistent contract to maximize the principal’s utility as well as to provide

users with a continuous incentive to participate in crowdsourcing activities. Second, we extend

the incentive mechanism from one-dimension to multi-dimension, which characterizes the general

situation in real world and provides comprehensive reward package to the users. Third, we present

detail analysis of the multi-dimension case which accounts for the scenarios such as zeros incentive,

missing incentive clauses, and grouping of tasks. Last, through simulations, we reveal different

parameter’s impacts on the optimal reward package, and compare the principal utility under six

different incentive mechanisms. Our results show that by using the proposed incentive mechanism,

the principal successfully maximizes the utilities and the users obtain the continuous incentives to

participate in the crowdsourcing activity.

The remainder of this paper is organized as follows. First, we will introduce the network

model in Section 3.2. Then, the problem formulation is described in Section 3.3, and we give

the extended analysis of the multi-dimensional case. The performance evaluation is conducted in

Section 3.4. Finally, Section 3.5 draws the conclusion.

3.2 System Model

In this section, we will first introduce the principal-user model by constructing the reward

package offered by the principal. Then, we will give the utility functions of both the user and prin-

cipal before proceeding to the solution of the optimal contract. We assume that the crowdsourcing

is a multi-task problem, in which there are n tasks that the user can work on and will be rewarded
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based on its performances on the different tasks.

3.2.1 Operation Cost

When crowdsourcing for the principal, the user encounters an operation cost which includes

the consumption of power due to signal processing, execution, and data uploading activities, in

addition to power consumption due to data transmission. But the operation cost does not only

restrict to the power consumption, but also the user’s effort, time, knowledge and/or experience.

Consider a user who participates in a crowdsourcing activity who makes a one-time choice of a

vector of efforts a = (a1, . . . , an), n ≥ 1, for those tasks. When exerting efforts, the operation cost

incurred is defined in a quadratic form [46],

ψ(a) =
1

2
aTCa, (3.1)

where C is a symmetric n× n matrix with the form of

C =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 . (3.2)

The diagonal element cii of C reflects the user’s task-specific operation cost coefficient, and the

off-diagonal elements cij represent the relationship between two tasks i and j.

The sign of cij indicates technologically substitute, complementary, independent between

two tasks i and j, if cij > 0, < 0, = 0, respectively. If two tasks are technologically substitute,

raising the effort on one task raises the marginal operation cost of the effort on the other task. The

example of technologically substitute is dynamic route planning and traffic jam detection. When

the roads are detected as highly congested, the navigation app will start to recalculate the route so

that the driver can avoid them. Thus, more power is consumed. In contrast, raising the effort on one

task decreases the marginal operation cost of the effort on the other task if they are technologically

complementary. There are two examples for technologically complementary: 1) mapping GPS

traces to road segments and route/travel time estimation, 2) traffic jam detection and visualization.
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In both examples, good achievements in one task ease the work in the other task, and thus save

the power. For technologically independent tasks, their operation cost is not dependent on how

much efforts are exerted on other tasks. There are many technologically independent examples in

crowdsourcing, such as reporting of location, time, and speed in the dynamic traffic map.

Therefore, under different scenarios, the exact form of the operation cost function ψ(a) varies.

In return, the optimal reward varies with the shape of the operation cost functions. In particular, the

user decision on the effort level for one task affects the marginal operation cost of undertaking other

tasks, will be discussed in the next section. In this paper, we do not consider the technologically

complementary case, since it does not provide further insights of this model, but increases the

mathematical complexity. Thus, the operation cost coefficient matrix is a positive semi-definite

matrix with every element in C is non-negative.

3.2.2 Performance Measurement

The location based data received by the principal may differs from the user’s actual situation.

The error may come from the measurement system. For example, there are usually GPS position

errors due to the device and signal diversity, especially in “urban canyons” near tall buildings or

tunnels [47]. Another example is the urban noise mapping system, in which the sound level meter

(SLM) has a precision of ±2.7 dB [48]. The phone position and context can induce errors and

enlarge the variance of errors.

We assume that the effort a the user exerts is hidden from the principal, but the user’s contri-

bution can be observed as a vector of information q = (q1, . . . , qn), n ≥ 1, which can be regarded as

the user’s performance. Due to the previous mentioned reasons such as the different measurability

on tasks, the received information q varies [49]. Therefore, the performance of the user is a noisy

signal of its effort

q = a+ ε, (3.3)

where the random component ε = (ε1, . . . , εn), n ≥ 1, is assumed to be normally distributed
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with mean zero and covariance matrix Σ. Thus, the user’s performance follows the distribution of

q ∼ N(a,Σ).

The variance Σ is a symmetric n× n covariance matrix with the form of

Σ =

 σ
2
1 · · · σ1n
...

. . .
...

σn1 · · · σ2
n

 , (3.4)

where σ2
i denotes the variance of εi, and σij is the covariance of εi and εj [50]. The variance

denotes the difficulty to guarantee the correctness of measuring effort [51], and also reflects the

relationship between the effort exerted by the user and the performance observed by the principal. If

the variance is large, the measurability of the performance is difficult, and there is a high probability

that the performance is poorly measured and far away from the true effort user exerted. An example

is the use of a smartphone microphone as a SLM, which incurs large errors when the phone is put

in a pocket or when making a phone call [52]. In contrast, if the performance is easy to measure,

the variance will be small or even zero. For example, the report of time is an independent measure

with variance 0. The covariance of two measurements exists because the measurement on one

task may affect the measurement of the others; for example the detection of a pothole and a bump

have a strong connection. Due to this measurement error, both the principal and user will face the

measurement cost when integrating multiple tasks.

3.2.3 Reward Package

Inspired by the manager’s reward package in industry, which comprises a fixed salary, a bonus

related to the firm’s profits, and stock options related reward based on the firm’s share price [53], we

define the user’s reward package w in crowdsourcing as a linear combination of a fixed salary and

several performance related rewards [54]. By restricting the reward package offered by the principal

in the linear form, the reward package w user receives by participating in the crowdsourcing activity

can be written as

w = t+ sT q, (3.5)
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Figure 3.2: The multi-task reward contract.

where t denotes the fixed reward salary, which is a constant and is independent of performance,

and s = (s1, . . . , sn), n ≥ 1, is the reward related to the user’s performance q. As q is a random

variable which follows q ∼ N(a,Σ), the reward package w is also a random variable with a mean

of t + sTa. From the scaling property of covariance, we know that V ar(sT q) = sTΣs. Thus, the

reward package follows the distribution w ∼ N(t+ sTa, sTΣs).

At this point, we can propose the contract that is offered by the principal as (a, t, s), where a

and s are n × 1 vectors, and t is a constant value. Under this contract, the principal offers the user

a reward package which includes a fixed salary t, and n performance related rewards (s1, . . . , sn).

Fig. 3.2 illustrates how this contract works. The user exerts effort ai for task i, which is observed

as a performance qi by the principal. The principal offers a reward related to qi, with the reward

assigned to the task as si.

3.2.4 Utility of User

In this model, we assume that the user has constant absolute risk averse (CARA) risk prefer-

ences, which means the user has a constant attitude towards risk as its income increases. Thus, user

utility is represented by a negative exponential utility form [55]

u(a, t, s) = −e−η[w−ψ(a)], (3.6)
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where η > 0 is the agent’s degree of absolute risk aversion

η = −u
′′

u′
, (3.7)

where u is the user’s utility function. A larger value of η means more incentive for the user to

implement an effort. The utility and operation cost of the user are measured in such monetary units

that they are consistent with the reward from the principal.

From (3.6), we see that the user’s utility is a strictly increasing and concave function. For

lower computation complexity, we can make use of the exponential form of the utility function, and

use certainty equivalent as a monotonic transformation of the user’s expected exponential utility

function [56].

Proposition 3.1. The user’s utility can be equally represented by certainty equivalent

CEu = t+ sTa− 1

2
aTCa− 1

2
ηsTΣs. (3.8)

The certainty equivalent consists of the expected reward minus the operation cost and mea-

surement cost.

3.2.5 Utility of Principal

In this model, we regard the principal as a “buy and hold” investor, who cares only about the

direct performance of the user [57]. That is, the principal is not concerned about its profit from the

location based service in the secondary market (e.g., advertisement selling). Therefore, the effort a

leads to an expected gross benefit of V (a), which accrues directly to the principal. Thus, we define

the utility of the principal as the expected gross benefits of V (a) minus the reward package w to the

user. Thus, the principal’s expected utility is written as

U(a, t, s) = V (a)− w, (3.9)

where V (·) is the evaluation function which follows V (0) = 0 and V ′(·) > 0. Different from

the user who has CARA risk preferences, the principal here is assumed to be risk neutral, i.e.,
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V ′′(·) = 0. Thus, the expected profit of the principal can be simplified to

U(a, t, s) = βTa− w, (3.10)

where β = (β1, . . . , βn), n ≥ 1, characterizes the marginal effect of the user’s effort a on the

principal’s utility V (a). Similar to the definition of user’s certainty equivalent, we can derive the

principal’s certainty equivalent as

CEp = E[βTa− w] = βTa− sTa− t. (3.11)

3.2.6 Social Welfare

With the definitions of both user’s and principal’s utility functions and certainty equivalent

payoffs, we can have the social welfare defined as their joint surplus, i.e., the summation of user’s

and principal’s equivalent certainty

R = CEu + CEp = βTa− 1

2
aTCa− 1

2
ηsTΣs. (3.12)

The social welfare is the effort exerted by the user, minus the operation cost and the cost incurred

by inaccurate measurement. Notice that this expression is independent of the fixed salary t, which

serves as an intercept term in the contract. Thus, the fixed salary t can only be used to allocate the

total certainty equivalent between the two parties [58]. Later we will see that, under the optimal

contract, the social welfare has the same value as the utility of the principal, as the user receives

zero utility in crowdsourcing by receiving the optimal reward package.

3.3 Problem Formulation

With the system model, we can formulate the principal’s utility maximization problem while

providing the user necessary incentives to participate. The principal’s problem can be written as

max
a,t,s

U(a∗, t, s), (3.13)

s.t. (a) a∗ ∈ arg max
a

u(a, t, s),

(b) u(a∗, t, s) ≥ u(w),
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where u(w) is the reservation utility of the user when not taking any effort (a = 0) in the crowd-

sourcing. The principal maximize its own utility under the incentive compatible (IC) constraint (a)

that the user selects the optimal effort a∗ maximizing its own utility, and the individual rationality

(IR) constraint (b) that the utility user received is no less than its reservation utility.

In the following subsections, we will first solve this problem in the one-dimension case. Then,

we will extend this problem to multiple dimensions, which is the general case in reality. Then, we

will exam three specific scenarios to have deeper understanding of the multi-dimension incentive

problem.

3.3.1 One-Dimension Moral Hazard

When this incentive problem is one-dimension, i.e., n = 1, the user makes a single effort

choice a, and the distribution of the effort measurement error ε reduced to N(0, σ2
1). Therefore, the

user’s performance distribution is q ∼ N(a, σ2
1). As a result, the reward package now is written as

w = t+ sq, (3.14)

where s is also a constant value. The user’s operation cost is reduced to

ψ(a) =
1

2
c11a

2. (3.15)

Typically, the user’s utility and its certainty equivalent can be written, respectively, as

u(a, t, s) = −e−η(t+sq− 1
2
c11a2) and (3.16)

CEu = t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1. (3.17)

Similarly, the principal’s utility and its certainty equivalent form can be written as, respectively,

U(a, t, s) = βa− w and (3.18)

CEp = βa− sa− t. (3.19)

As we have stated previously that the certainty equivalent is a monotonic transformation of the

expected utility function. Thus, maximizing the principal’s and user’s expected utilities is equivalent
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to maximizing their equivalent certainty payoffs. Thus, we can rewrite the optimization problem in

terms of their certainty equivalent wealth, and thus obtain the following simple reformulation of the

principal’s problem

max
a,t,s

(β − s)a− t, (3.20)

s.t. (a) a∗ ∈ arg max
a

[t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1],

(b) t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1 ≥ w,

where w denotes the reservation reward of the user when not participating in the crowdsourcing

activity.

This one dimensional problem is easy to solve by using the first-order approach. In the first

step, we reduce the IC constraint in (a) by taking the first derivative of the user’s certainty equivalent

regarding a, and setting u′(a, t, s) = 0. Then, we obtain the effort a = s/c11. Accordingly, we

substitute the IR constraint in (b) with the optimal effort a∗ and simplify the principal’s problem to

maxa,t,s (β − s) s
c11
− t, (3.21)

s.t. (a) s s
c11

+ t− 1
2c11

(
s
c11

)2
− 1

2ηs
2σ2

1 = w.

Substituting for the value of t in the IR constraint and maximizing with respect to s, we then have

the fraction of reward s∗ related to performance in the optimal linear reward package as

s∗ =
β

1 + ηc11σ2
1

. (3.22)

With s∗, we have the optimal effort

a∗ =
β

c11 + ηc2
11σ

2
1

. (3.23)

Representing t by w, s∗ and a∗, we obtain the fixed salary t in the optimal linear reward package as

t∗ = w +
1

2

(
ησ2

1 −
1

c11

)
s2 (3.24)

= w +
1

2

(
ησ2

1 −
1

c11

)[
β

1 + ηc11σ2
1

]2

.
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The user’s reward package expressions vary as a function of the stochastic structure of the

performance or the quality of received data to the user’s effort [3]. Under the single task problem,

we see that the user’s reward package and optimal effort are all decreasing with the operation cost

coefficient and the variance of measurement. In other words, the higher the operation cost, or

the more difficulty to measure a performance, the user will be less likely to exert effort in the

crowdsourcing.

3.3.2 Multi-Dimension Moral Hazard

When this problem has multiple dimensions, i.e., n ≥ 2, the problem becomes more com-

plicated to solve. In this subsection, we will first solve the general case where we assume that the

measurement error is stochastic dependent and the user’s effort is technologically dependent. After

this general solution, we will move on to the bench mark case with both stochastic and technological

independence.

Under the assumption of stochastic dependent, the error terms are stochastically interacted,

i.e., σij 6= 0. For technologically dependent, we mean that the activities are technologically corre-

lated with each other, i.e., cij > 0 and C is a positive definite matrix.

Similar to the previous section, we still solve this multi-dimensional problem by using cer-

tainty equivalent model with the following simple reformulation of the principal’s problem

max
a,t,s

βTa− sTa− t, (3.25)

s.t. (a) a∗ ∈ arg max
a

[t+ sTa− 1

2
aTCa− 1

2
ηsTΣs],

(b) t+ sTa− 1

2
aTCa− 1

2
ηsTΣs ≥ w,

where w also denotes the reservation reward of the user when not participating in the crowdsourcing

activity. The IC constraint represents the rationality of the user’s effort choice. The IR constraint in

(b) ensures that the principal cannot force the user into accepting the contract.

Similar to the one-dimension case, we first solve the optimal effort by reducing the IC con-
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straint first. The user’s certainty equivalent is concave, since its second-order derivative with respect

to a is a negative definite matrix−C. Thus, the optimal effort can be determined by taking the first-

order derivative of the user’s certainty equivalent regarding a, and set u′(a, t, s) = 0. In the matrix

differentiation, if we define α = aTCa, as C is a symmetric matrix, we have ∂α/∂a = 2aTC [49].

Since C is symmetric positive definite, its inverse is existent. Thus, through numerical derivations,

we can finally have a = C−1s in this multi-dimension case. Accordingly, we substitute the IR

constraint in (b) with the optimal effort a∗ and simplify the principal’s problem to

max
a,t,s

βTC−1s− sTC−1s− t, (3.26)

s.t. (a) t+ sTC−1s− 1

2
(C−1s)TC(C−1s)− 1

2
ηsTΣs = w.

Substituting the value of t in the IR constraint to the objective and differentiating the objective func-

tion with respect to s, we have the performance related reward s∗ in the optimal multi-dimension

reward package as

s∗ = (C−1 + ηΣ)−1C−1β = (I + ηCΣ)−1β. (3.27)

With s∗, we have the optimal effort in the multi task case as

a∗ = C−1(I + ηCΣ)−1β. (3.28)

Representing t by w, s∗ and a∗, we obtains the fixed salary t in the optimal linear reward package

as

t∗ = w +
1

2
sT (ηΣ− C−1)s (3.29)

= w +
1

2

[
(I + ηCΣ)−1β

]T
(ηΣ− C−1)

[
(I + ηCΣ)−1β

]
.

Comparing this equation with the first order results, we see that the first order reward package is

one special case of this general case and can be derived from this general case directly by setting

the matrixes as one dimension (n = 1).

Using the formulas (3.27) for s∗ we can indeed determine how the optimal linear incentive

reward varies with the accuracy of output measures for each task and the operation cost coefficient

of each task. Assume, for example, when two tasks are technologically substitution cij > 0, if the
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measurability of task i worsens, that is, σ2
i increases, then, as is intuitive, s∗j goes up, but s∗i goes

down. Thus, there is a measurement complementarity between the s∗i and s∗j in the presence of

technologically substitutes problems [3].

A higher incentive reward can induce the user to implement a higher effort, but it will also

expose the user to a higher risk. It, therefore, requires a premium to compensate the risk averse user

for the risk he/she bears. The optimal power of incentive is therefore determined by the tradeoff

between incentive and insurance.

3.3.2.1 Stochastic Independent and Technologically Independent

In this benchmark case, the error terms are stochastically independent (i.e., σij = 0, Σ is

a diagonal matrix), and the tasks are technologically independent (i.e., cij = 0, C is a diagonal

matrix). Thus, the optimal incentive contract for each task is similar to the single-task problem, and

the solution in (3.27) simplifies to

s∗i =
βi

1 + ηciiσ2
i

, ∀i ∈ {1, . . . , n}. (3.30)

The user’s optimal choice of effort becomes

a∗i =
sii
cii

=
βi

(1 + ηciiσ2
i )cii

, ∀i ∈ {1, . . . , n}. (3.31)

Representing t by w, s∗ and a∗, we obtain the fixed salary t in the optimal linear reward package as

t∗i = w +
1

2

(
ησ2

i −
1

cii

)[
βi

1 + ηciiσ2
i

]2

. (3.32)

In this case, efforts are set independently of each other since the operation cost of inducing the user

to perform any given task is independent of the other tasks. As expected, s is decreasing in risk

aversion degree η, operation cost coefficient cii and measurement error variance σ2
i . We can also

prove the relationship between reward si and effort ai from a = C−1s. As in this technologically

independent case, C is a diagonal matrix with elements cii on the diagonal. Thus, we can take the

partial derivatives as

∂si
∂ai

= cii and
∂ai
∂si

= c−1
ii . (3.33)
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Thus, we see that the reward si for effort ai is decreasing in cii, and the higher of si, the more effort

the user is like to exert.

3.3.3 Extending Analysis

3.3.3.1 Zero Incentive

In this part, we analyze one special case, in which the principal does not provide any incentive

for some tasks. In other words, the reward si for Task i is less than or equal to zero. In the general

multi-dimension case, the optimal effort a is affected by those cross-partial ofC due to technological

substitutes. To illustrate how the operation cost coefficients affect the principal to assign a zero

reward, we consider the two-dimension case with stochastic independent, i.e., σ12 = σ21 = 0. We

assume that Task 2 is easy to measure, i.e., σ2
2 is finite and small, while Task 1 is impossible to

measure, i.e., σ2
1 →∞. From (3.27), we have the optimal reward for Task 2 under this case as

s2 =
β2 − β1

c12
c11

1 + ησ2
1(c22 −

c212
c11

)
. (3.34)

However, as effort a1 is impossible to measure, the reward s1 cannot be determined, neither. Under

the assumption that Tasks 1 and 2 are technologically substitutes, i.e., c12 > 0. If we increase c12,

the reward s2 will decrease correspondingly. If we assign a high value of s2, the user will substitute

effort from Task 1 to Task 2. The extreme case is that, user only works for Task 2 but no effort

exerts for Task 1, as in the one-dimension case.

Proposition 3.2. When efforts are technologically substitutes, providing incentives for a given task

can be implemented either by increasing the reward for that task or by reducing the rewards for the

other tasks.

In this case, effort a1 cannot be measured, nor can we assign specific reward s1 to Task 1.

Thus, the only way to provide incentives for Task 1 is to reduce the reward s2 for Task 2. If Task 1

is a critical work that the principal cares extremely about, it may be optimal to punish effort on Task
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2 (s2 < 0) or give no reward at all for Task 2 (s2 = 0). In this case, zero incentive happens for Task

2.

The second case when zero incentive may happen is, when c12 =
√
c11c22, the effort for the

two tasks are “perfect substitutes,” i.e., a = a1 +a2. Thus, we have s1 = s2 as the user must equate

the marginal return to effort in various tasks. In the case of σ2
1 →∞, we thus have s1 = s2 = 0.

The third case when zero incentive happens is that the user has a deep love for Task 1. Then it

will be willing to exert all its effort even in the absence of any financial reward. This zero incentive

case can be found in many online applications, in which the user receives incentives through the

other user’s praise and self-esteem, instead of the principal’s reward. In this case, the effort choice

of the user will also equate the marginal nonfinancial benefit with the marginal cost [3].

3.3.3.2 Missing Incentive

In some cases, the incentive mechanism cannot provide specific incentives for some aspects

of user’s contribution. Missing incentive differs from zero incentive in the sense that, in zero in-

centive, the principal measures the user’s performance on the task, but rewards zero. However, the

principal neither takes into consideration of user’s contribution on the task, nor give any reward

in the Missing incentive. One example in crowdsourcing is the NoiseTube which is designed to

measure and map urban noise pollution using smartphones sensors such as microphone and GPS.

Those data can be used directly to construct the dynamic noise map. Furthermore, they can be used

to support decision and policy making in different domains such as public health, urban planning,

environmental protection and mobility, which will bring far more great benefit in the future [52].

Even though those contributions are important, the principal is unable to account for such explicit

incentive provisions in actual contracts.

Again, we use the two-dimension model in the previous case with stochastic independent and

perfect effort substitutes to illustrate why that contribution should not be considered. The perfor-

mance for Task 1 is still hard to measure, such as attention to detail, or helpful advice. But Task 2
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is measurable, such as the quantity achieved in a task. We additionally assume that Task 1 is “very

important” and that both tasks are valuable.

Proposition 3.3. For such a case described in the last paragraph, the optimal reward package

should only include a fixed wage t, but contain no performance related reward, i.e., s = 0.

Proof. When the principal does not provide any performance related reward, i.e., s = 0, the user

will choose the total effort ā that maximize its certainty equivalent in (3.8). Since the efforts are

perfect substitutes, we can choose a1 ∈ [0, ā] to maximize the utility V (ā) = β1a1 + β2(ā − a1),

since a = a1 + a2. In this case, the principal’s utility will be V (ā)− ψ(ā).

However, if the principal decides to provide performance related reward, i.e., s > 0, then user

will choose to set a1 as zero since Task 1 is hard to measure, and thus s1 = 0. In contrast, the user

will work on Task 2 with effort a2 = ā. Then, we have the following inequality for the principal’s

utility

0− ψ(a2)− 1

2
ηs2

2σ
2
2 ≤ −ψ(ā) < V (ā)− ψ(ā). (3.35)

Thus, we see that if the principal provides incentives for the user, the utility will decrease compared

to the case when no incentive is provided.

If the principal punish user’s effort, i.e., s < 0, the user will not work on Task 2, and thus

s2 = 0. We must have a1 < ā since ψ′(a1) < 0 = ψ′(ā). Hence, the principal’s utility follows the

inequality as

V (a1)− ψ(a1)− 1

2
ηs2

1σ
2
1 < β1ā− ψ(ā) < V (ā)− ψ(ā). (3.36)

If the principal imposes fine (negative incentive) on user’s effort, the utility will decrease compare

to the case when no incentive is provided.

By now, we have proved that, only when s = 0, the principal’s utility can be maximized.

Thus, it is optimal to pay a fixed wage t, and contains no performance related reward, i.e., s = 0 to

the user.
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3.3.3.3 Groupings of Tasks

In the single-user multi-task problem, the performance related rewards (s1, . . . , sn) serve

three purposes: allocating risk, motivating work, and directing the user’s efforts among the various

tasks [58]. However, a trade-off arises when these objectives are in conflict with each other. For

example, risk-sharing may be inconsistent with motivating work, and motivating hard work may

distort the user’s effort allocation across tasks. If we have multiple users, the principal can group

the tasks, which enables lowering the cost of incentive by using more sensitive measure of actual

performance.

To alleviate those conflicts, we consider grouping tasks into different jobs that can assign

to different users. One application can be used in Nericell [59], in which varied road and traffic

condition need to be detected. The part of common traffic detection tasks such as traces, traffic

flow speed, and driving patterns can be grouped and assigned to users with basic sensing functions,

such as GPS and accelerometer. The other parts of the newly introduced tasks such as the detection

of crashes, potholes and bumps, can be grouped and assigned to users equipped with a special-

purposed device with 3-axis accelerometers.

To illustrate how this grouping of tasks brings works, first assume that there is a continuum

of tasks indexed by i ∈ [0, 1], and the measurement errors of each task are stochastic independent.

We consider two identical users indexed by k = 1, 2, and use ak(i) to denote the effort that User k

exerts on Task i. Again we assume that the two users can share a task and their efforts are perfectly

substitutes, i.e., the total effort input for Task i from both users follows a(i) = a1(i) + a2(i).

Likewise, the measurement error variance for Task i is σ2(i). The total effort User k induced on all

task is given by

āk =

ˆ 1

0
ak(i)di. (3.37)

Proposition 3.4. Under this symmetric system model, it is optimal to allocate the two users to be

solely responsible for Task i, i.e., sk(i) > 0, and sk′(i) = 0, k 6= k′, instead of jointly responsible

for any Task i, i.e., sk(i)sk′(i) > 0.
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Figure 3.3: The optimal effort and reward package as the measurement error covariance Σ matrix
varies.

Proof. Let I be a set of tasks that both users are jointly responsible, i.e., s1(i)s2(i) > 0, i ∈ I .

From (3.37), we see that the total effort that User k induced on the task set I is ak(I) =
´
I ak(i)di.

Within set I , we can always find another subset I ′ ⊂ I such that we can have
´
I′ a(i)di = a1(I),

where a(i) = a1(i) +a2(i). Similarly, we can also have
´
I′′ a(i)di = a2(I), where I ′∪ I ′′ = I and

I ′ ∪ I ′′ = ∅.

By now, we can define a new set of effort and reward package {âk(i), ŝk(i)} for i ∈ I .

1) If i ∈ I ′, for Task 1 we set â1(i) = a(i), ŝ1(i) = s1(i). For Task 2 we set â2(i) = ŝ2(i) =

0.

2) If i ∈ I ′′, for Task 1 we set â1(i) = ŝ1(i) = 0, â2(i) = a(i). For Task 2 we set

ŝ2(i) = s2(i),

By this setup, the total effort devoted to each task and the total effort exerted by each user are

unaltered. This scheme minimizes the payment cost for the principal, as some of the rewards are

lowered to zero for a set of tasks of nonzero measure.

60



Providing incentives for an user in any task incurs a fixed cost such as the measurement error.

Thus, in the two-dimension case, assigning joint responsibility for any task would incur two fixed

costs, which is unnecessary. If some tasks are jointly responsible, it is optimal to split them among

the users without affecting either the total effort required from each user or the total effort allocated

to any task. This grouping of tasks is possible to eliminate some of the user’s risk, so increasing the

utilities of both the principal and users [45].

The issue of how the tasks should be grouped can be found in [58]. For the two-dimension

case, tasks should be grouped such that all the hardest-to-monitor tasks are assigned to user 1 and

all the easiest-to-monitor tasks are assigned to user 2. Separating tasks according to their measura-

bility characteristics allows the principal to give strong incentives for tasks that are easy to measure

without fearing that the user will substitute efforts away from other harder-to-measure tasks.

3.4 Simulation Results and Analysis

In this section, we will first give a detailed analysis of reward package in the multi-dimensional

case. We will look at how different reward items in the reward package change by varying the pa-

rameters such as the operation cost coefficients and measurement error covariance. Then, we will

conduct a comparison of the principal’s utility among different incentive mechanisms.

In the simulation set up, we assume that, the reservation reward of the user w = 0 when

not participating in the crowdsourcing (a = 0). The reason we do not consider the user’s utility is

that, from the optimal reward package we have derived, no matter how those parameters change, the

user’s utility will remain the same. The optimal reward package will bring user the utility the same

as the reservation utility −e−ηw, which in our case is −1 as we set w = 0.
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3.4.1 Optimal Reward Package Analysis

3.4.1.1 Measurement Error

To look into the detail of how the variance and covariance of measurement error affect the

optimal effort and reward package, we set up the multi-dimensional space as n = 2. Since the

measurement error covariance matrix is symmetric, there are three variables that we can vary: the

variances of measurement error for Task 1 and Task 2: σ2
1 and σ2

2 , and the covariance σ12/σ21. We

fix the operation cost matrix C, and risk averse degree η, and show the results in Fig. 3.3, where the

first row gives the optimal efforts, and the second row gives the reward packages.

In Figs. 3.3(a, b, d, e), we are going to see how the variances of the measurement error on the

performances affect the user’s selection of efforts for the two tasks and the rewards offered by the

principal. When we vary one variance, the other one keeps fixed.

Fig. 3.3a show the measurement error variance σ2
1 for Task 1 increases, the optimal effort a1

for Task 1 decreases, while the effort a2 for Task 2 shows opposite properties. From Fig. 3.3d, we

see that as measurement error variance σ2
1 for Task 1 increases, reward package w, the fixed salary

t and reward s1 are decreasing, while the reward for Task 2 is increasing. This result is because the

measurement error becomes more volatile (σ2
1 increases), the user’s benefit from Task 1 decreases

(s1 becomes smaller), but the share from Task 2 increases so that the use’s utility can be maintained

at the reservation utility.

Figs. 3.3(b, e) show similar properties as Figs. 3.3(a, d). At this time we fixed σ2
1 but increase

σ2
2 , thus Figs. 3.3(b, e) show the opposite behavior compare to the previous case. As σ2

2 increases,

i.e., the measurement error for Task 2 becomes more volatile, user prefers to exert more effort for

Task 1 instead of Task 2. As we can see from Fig. 3.3b that, the effort for Task 1 is increasing while

effort for Task 2 is decreasing. Similarly, from Fig. 3.3e we see that the user’s reward from the Task

2 and the fixed salary t are decreasing at the same time, but the reward from the Task 1 goes up.

From Figs. 3.3(d, e), we have learned that, as the user’s utility remains the same (i.e., −1) in

all situations, the reward package offered to the user will mostly rely on the part that is more stable,
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Figure 3.4: The optimal effort and reward package as the operation cost coefficient C matrix varies.

such as the reward with fixed measurement error variance: Reward 2 when σ2
1 increases and Reward

1 when σ2
2 increases. In summary, the reward design lowers the proportion of bonus from the less

predictable part. By this mechanism, the risk of losing user’s incentive in all kinds of situations can

be canceled.

In Figs. 3.3(c, f), we investigate the impacts of covariance σ12/σ21 on the optimal effort

and reward package, while fixing σ2
1 and σ2

2 the same. The simulation results show that, as the

covariance σ12/σ21 increases, the optimal effort a and reward package w are all decreasing. Since

we assign the same operation cost for Task 1 and Task 2, the optimal effort of them overlaps in Fig.

3.3c. Meanwhile, from Fig. 3.3f we see that, within the reward package, Reward 1 and Reward 2

are decreasing except the fixed salary t. When the relationship between the performance observed

by the principal and the effort exerted by the user becomes more volatile, it is harder to predict them

to identify an effort. Thus, the user becomes more reluctant to exert effort, and the principal receives

less utility and rewards the user less.
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3.4.1.2 Operation Cost

To see how the operation cost coefficients affect the optimal effort and reward package, we

also set up the multi-dimensional space as n = 2. The operation cost coefficient is also a symmetric

matrix, and we can vary three of the elements: task-specific operation cost coefficient for Task

1 and Task 2: c11 and c22, and the technologically substitution coefficient c12/c21. We fix the

measurement error covariance matrix Σ, and risk averse degree η, and show the results in Fig. 5.4,

where the first row gives the optimal efforts, and the second row gives the reward packages as what

we have done in Fig. 3.3.

Figs. 5.4(a, b, d, e) show how the task-specific operation cost affects the user’s effort choice

for the two tasks and the reward items in reward package. We keep one operation cost coefficient

fixed when vary the other operation cost coefficient.

In Fig. 3.4a, we see that as the operation cost coefficient c11 for Task 1 increases, the optimal

effort a1 for Task 1 decreases, but effort a2 for Task 2 increases. In Fig. 3.4d, reward package w

and reward s1 are decreasing, while the reward for Task 2 and fixed salary t are increasing. This

result is intuitive, since if exerting effort for task 1 encounters more operation cost, (c11 increases),

the user will be more likely to switch effort to Task 2, which consumes less operation.

Figs. 5.4(b, e) show similar properties as Figs. 5.4(a, d). At this time we fixed c11 but

increase c22, thus Figs. 5.4(b, e) shows the opposite behavior compared to the previous case. As

c22 increases, i.e., the operation cost for Task 2 increases, user prefers to exert more effort for Task

1 instead of Task 2. We can see from Fig. 3.4b that the effort for Task 1 is increasing while effort

for Task 2 is decreasing. Similarly, from Fig. 3.4e we see that the user’s reward from the Task 2 is

decreasing. While the reward from the Task 1 and the fixed salary t go up at the same time.

From both Fig. 3.4d and Fig. 3.4e, we observe that, the user is more likely to exert effort

on the task that incurs less operation cost, and thus the reward package will reward more on the

task with a smaller operation cost coefficient. Thus, we see that the principal Reward 2 when c11

increases and Reward 1 when c22 increases.
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In Figs. 5.4(c, f), we investigate the impacts of technologically substitution c12/c21 on the

optimal effort and reward package, while fixing the task specific operation cost coefficients c11 and

c22 the same and unchanged. As the technologically substitution c12/c21 increases, the optimal

effort a and reward package w are all decreasing. Since we assign the same task-specific cost

coefficients for both tasks, the optimal effort of them two overlap in Fig. 3.4c. Meanwhile, from

Fig. 3.4f we see that, reward s1 and s2 are both decreasing except the fixed salary t. This is due to

less efforts are exerted from the user, less performance related rewards will be offered. However,

in order to keep user incentivized, the principal has to increase the fixed salary t, so that the user’s

utility is guaranteed.

3.4.2 Incentive Mechanism Comparison

In the previous section, we have solved the optimal reward package when the measurement

error is stochastic dependent and effort is technologically dependent. As this multi-dimensional

case is the most general case in reality, we name this mechanism by General. In addition, we also

obtained the optimal reward package when the measurement error and effort are independent, and

thus we name it by Independent. We also have a third one called Single Bonus that is the reward

package obtained in the one dimensional case. In this one-dimensional case, we can regard the

principal rewards user on only one task. In this subsection, we will propose another three incentive

mechanisms as the comparisons with the previous two. Those three mechanisms are generally based

on our current model, while they are different from each other in the construction of their reward

packages.

The first two are special cases of the General: one is stochastic independent but technolog-

ically dependent, the other one is technologically independent but stochastic dependent, and are

named by Stochastic Independent and Technologically Independent, respectively. The last one is

called Opening Reward, that is the reward package only contains a fixed salary t. We can regard

this mechanism as a company which will offer each user an opening reward as the Karma which

is mentioned in Section I. But this Opening Reward mechanism does not care about user’s future
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performance.

3.4.2.1 Stochastic Independent

When tasks are stochastic independent, the co-variances of the error measurement are zero,

and we have σij = 0 and Σ becomes a diagonal matrix. The optimal performance related rewards

for each task in (3.25) is simplified to

s∗ = (I + ηCDiag(Σ))−1β, (3.38)

where Diag(Σ) is the a n × n diagonal matrix with element σ2
i , ∀i ∈ {1, . . . , n} on the diagonal.

Based on a = C−1s and (3.29), we can easily obtain the user’s optimal choice of effort and the

fixed salary t in this stochastic independent but technologically dependent package.

3.4.2.2 Technologically Independent

When tasks are technologically independent, the cross-partials of the cost function are zero,

i.e., cij = 0 and C becomes a diagonal matrix. The optimal incentive contract for each task in

(3.25) simplifies to

s∗ = (I + ηDiag(C)Σ)−1β, (3.39)

where Diag(C) is the a n × n diagonal matrix with element cii, ∀i ∈ {1, . . . , n} on the diagonal.

Based on a = C−1s and (3.29), we can easily obtain the user’s optimal choice of effort and the

fixed salary t in this technologically independent but stochastic dependent package.

3.4.2.3 Opening Reward

When no performance related reward is offered, the problem is formulated as

max
a,t

βTa− t, (3.40)

s.t. (a) a = arg max
a

[t− 1

2
aTCa−−1

2
ηsTΣs],

(b) t− 1

2
aTCa−−1

2
ηsTΣs = w.
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Figure 3.5: The principal’s utility as the operation cost coefficient cii varies.

The optimal effort a∗ and opening reward t∗, respectively, have the form of

a∗ = C−1β and (3.41)

t∗ = w +
1

2
aTCa = w +

1

2
(C−1)TβTβ. (3.42)

3.4.2.4 Comparisons

In Fig. 3.5, we compare the principal’s utility from the six incentive mechanisms as we vary

the task-specific operation cost coefficient cii. From the simulation results we see that, as the cost

coefficient cii increases, the principal’s utility is decreasing as well. The reason for this phenomenon

is that larger cost coefficient cii means more operation cost when implying an effort. Therefore, the

user is less likely to exert effort in the crowdsourcing activity. With less data are collected from

the users, the principal’s utility will certainly decrease. In addition, from Fig. 3.5, we see that

the principal obtains the largest utility in the Independent case. Followed by the Opening Reward,

Stochastic Independent, and Technologically Independent, the General case proposed by us brings

the fifth highest utility to the principal, while the Single Bonus gives the least utility.

In Fig. 3.6, we analyze the impact of user’s risk averse degree η on the principal’s utility.

As the principal’s utility V = a − t in the Opening Reward is independent of the risk averse

degree η, we cannot see any change in the principal’s utility. For the other five mechanisms, we
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Figure 3.6: The principal’s utility as risk averse degree η varies.

see that the principal’s utility is decreasing as the user’s risk averse degree η increases. This result

is intuitive as a larger η means the user becomes more conservative and sensitive to risk, thus

less likely to participate in. With less effort obtained from the user, the principal’s utility will

certainly decrease. From Fig. 3.6 we also obtains the similar ranking of the principal’s utility as

in the previous figure: the Independent case brings higher utility than the Stochastic Independent,

Technologically Independent, and General one, and the Single Bonus one brings the smallest utility

for the principal.

In Fig. 3.7, we increase the variance σ2
i to see how the principal’s utility varies. Similar

to the previous case, the principal’s utility V = a − t in the Opening Reward is independent of

the covariance matrix. Thus, we cannot see any change of the principal’s utility. For the other

mechanisms, the principal’s utility is decreasing with the variance, which is in accordance with our

conclusion in the previous section. The variance σ2
i of measurement error denotes the relationship

between effort levels exerted by the user and the performance observed by the principal. As σ2
i

increases, it indicates a weaker relationship between effort levels and the expected reward achieved.

As a result, the users are likely to exert lower levels of effort with increases in uncertainty, and

thus a lower cost of participation. With the decrease of optimal effort, less data is obtained from

the user, the principal’s utility will certainly decrease. From Fig. 3.7 we also obtain the similar

ranking of the principal’s utility as in the previous figure: the Independent case brings higher utility
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Figure 3.7: The principal’s utility as measurement error variance σ2
i varies.

than Stochastic Independent, followed by Technologically Independent and General one, the Single

Bonus one brings the lowest utility for the principal.

The reason for the performance ranking of the six mechanisms in Fig. 3.5, Fig. 3.6, and Fig.

3.7 is as follows. The Independent mechanism is the ideal case of the General multi-dimension

case. As less measurement cost is occurred when predicting the outcome and less operation cost

is encountered due to effort substitution, a higher utility is obtained than the other mechanisms.

The Stochastic Independent and Technologically Independent are partial independent cases of the

General multi-dimension one, thus, the principal’s utility lies between the Independent and General

mechanisms. But as we have assigned larger values for the covariance matrix of the the measure-

ment error than the operation cost coefficient matrix, more effort will be exerted in the Stochastic

Independent than in the Technologically Independent mechanism. Therefore, the principal’s util-

ity is higher in the Stochastic Independent than in the Technologically Independent case, while the

Single Bonus only reward user with only one dimension evaluation. As a result, the users have

less incentive to exert more effort in other tasks. In return, less utility is obtained by the principal.

For the result of the Opening Reward case, it seems unreasonable at the first sight, as it brings the

principal the highest utility than the other three mechanisms. While we notice that Opening Reward

is a “once-for-all” deal which does not provide continuous incentives for the users, i.e., after the

users have fulfilled their duty and receive the reward, they are more likely to stop participating in
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crowdsourcing.

3.5 Conclusions

In this paper, we have investigated the problem of providing incentives for users to participate

in the crowdsourcing by rewarding user from multi-dimension evaluations. We solve the principal’s

utility maximization problem in both one-dimension and multi-dimension cases. Furthermore, we

give analysis of special scenario of the multi-dimension model. Finally, we use the numerical results

to analyze the optimal reward package by varying different parameters. In addition, we compare

the principals’ utility under the six different incentive mechanisms, and show that the principal’s

utility deteriorates with large operation cost coefficient, higher risk aversion of users, and large

measurement error variance.
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Chapter 4

Tournament Based Incentive Mechanism Designs for
Mobile Crowdsourcing

4.1 Introduction

Nowadays, people can access various sophisticated location based services (e.g., Google

Maps with traffic information) using their smartphones through wireless access networks. With

the drastic growth in the location based service market, as well as the rapid development of big data

technologies, more data as well as user participation are required to support more sophisticated ser-

vices. There are mobile applications available that can detect WiFi hotpots within a certain distance

of the user’s current location. Smartphone users help collect the WiFi hotpot information which

includes the location, router name, password, etc. for the service provider which is denoted as prin-

cipal here after. However, when participating in such crowdsourcing, users consume their resources

such as battery and computing capacity [2]. Therefore, many users hesitate to participate which is a

major impediment to the growth of mobile crowdsourcing [38]. Thus, incentive mechanism designs

are in critical need to motivate the users to participate.

In the literature, it has already been noticed that there is an urgent need to alleviate the conflict

by introducing incentive mechanism for users. Inspired by the effort based reward from the labor

market, several works have been proposed to address this problem by providing users with the

reward that is consistent with their performance. Examples are the works in [6] and [11], as well

as one of our previous work [41]. The previous mentioned works capture the fundamental aspect

of providing necessary incentive for user to participate in crowdsourcing. Yet, they mainly assume

that the principal employs only one user and rewards it on the basis of the absolute performance.

However, when rewarding users based on absolute performance, the principal has a strong

incentive to cheat by claiming that users had poor performances that deserve low rewards, so that the

principal can pay less [3]. This will result in a decrease of all users’ utilities. Another example is that
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Figure 4.1: Crowdsourcing incentive mechanism by tournament.

when there is a positive mean measurement error at user’s performance, every user’s performance

will result in an increase at the principal’s observation. Thus, users are rewarded more than they

should, but the principal encounters a loss of utility since it has to pay more. We name this case that

affects both sides as common shock, which can be either positive or negative to user performance

and reward. If both users and principal are aware of this common shock, we can regard the trading

between them as trading with full information. However, in the general case, this common shock

is unobservable to either or both sides. While incentive mechanism based on absolute performance

can be easily affected, the tournament design can filter out this common shock problem.

One obvious advantage of rank order tournament over absolute performance rewards is that

ordinal ranking is easy to measure and hard to manipulate [3]. In a tournament, the principal has to

offer the fixed amount of rewards no matter who wins. In this paper, we will propose a a multi-user

design that rewards users’ performance in crowdsourcing by a tournament reward structure based

on the rank order. A brief illustration of crowdsourcing tournament rewarding mechanism is shown

by Fig. 4.1. After obtaining the data from the users, the principal will generate an ascending list

regarding user’s performance. Here, User 1 achieves the highest performance and will be rewarded

the highest amount Reward 4, while User 2 performs worst with the smallest amount of Reward 1.

The main contributions of this paper are first we consider a tournament structure incentive
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mechanism that rewards users by their rank orders which can tackle the common shock problem.

Second, we propose the solution for the tournament by approximating the absolute performance

based optimal contract with full information by step functions. Third, in the simulation part, we

introduce another well known tournament mechanism for comparison purposes in order to demon-

strate the effectiveness of tournament mechanisms to improve the principal’s utility. The proposed

mechanisms allow the principal to successfully maximize the utilities and the users to obtain con-

tinuous incentives to participate in mobile crowdsourcing.

The remainder of this paper is organized as follows. First, we will introduce the network

model in Section 4.2. Then, the design of tournament is described in Section 4.3, in which we

also give the analysis of the optimal contract with full information. The performance evaluation is

conducted in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.2 System Model

We refer to the model in [60] and consider a crowdsourcing network in which one risk neu-

tral principal employs a fixed group of identical risk averse users, i = 1, . . . , n, to collect data.

The principal rewards users based on their relative performances which can be referred to the qual-

ity of the received data (e.g., quantity, correctness, and importance). In a n-user tournament, the

users’ performances are sorted in an ascending order, and the fixed prizes (W1,W2, . . . ,Wn) are

rewarded. We use the numbering conventional in the study of order statistics: “first place” is the

lowest performance and W1 is the prize received by the user with the lowest performance.

4.2.1 Common Shock Problem

When users help to collect data for the principal, the user exerts an effort a. Note that the

user’s effort a is a hidden information, since the principal can only observe the performance level q

of the users, i.e., the quality of the received data. Therefore, the performance of user i, qi, depends
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stochastically on the user’s effort level, ai. In particular,

qi = zi + ε, (4.1)

where ε is a random variable representing the common shock that affects all of the users and zi

is a random variable whose distribution depends on ai. Due to the common shock, such as the

measurement error at the principal as mentioned previously, the quality of received data qi cannot

reflect the user’s actual performance or effort exactly. Therefore, the performance of the user is a

noisy signal of its effort.

Let G denote the distribution function for the common shock (µ, σ), where σ is the variance.

We assume that ε has zero mean when no common shock presents

ˆ
εdG(µ, σ) = 0. (4.2)

By this assumption, regardless of its assessment of ε, every user believes that its performance and

that of every other user have the same mean if they take the same effort.

4.2.2 Rank Order Statistic

Let F (zi; ai) denote the cumulative distribution function (CDF) for zi, given ai. F (zi; ai)

has a continuous probability distribution function (PDF) f(zi; ai) which is positive everywhere and

continuously differentiable in ai. Since the users are identical ex-ante, F does not depend on i. The

value of zi is not known to the user until its choice of ai is made. We assume that zi and (ε, σ)

independent, since the term zi is independently and identically distributed for every common value

of ai and qi.

Assume that the principal observes only the performance levels of the users, q = (q1, q2, . . . , qn),

but cannot directly observe the users’ effort levels. Under the tournament, user i’s reward depends

only on the rank order of qi in q, instead of the performance level qi. Since each user’s performance

is given by qi = zi + ε, we can easily obtain zi ≥ zj from qi ≥ qj . That is, the rank order of the

performances depends only on zi and not on ε. Therefore, the realization of (µ, σ) does not affect
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the game played by the users, and the equilibrium effort level will be independent of σ. Hence, we

can analyze the game in terms of just zi. In a n-user tournament, user i wins prize Wj if and only if

zi, is the jth-order statistic of (z1, . . . , zn). The density function φjn(z; a) for the jth-order statistic

in a sample of size n drawn from the distribution F (z; a) is [8]

(n− 1)!

(n− j)!(j − 1)!
f(z; a)F j−1(z; a)[1− F (z; a)]n−j . (4.3)

This density function denotes that the user i’s performance outperforms j − 1 number of users, and

falls behind n− j number of users.

4.2.3 Utility of the Users

The realized performance of each user then is a stochastic function of its effort and the value

of the common shock. Here, we consider the user’s reward from the principal’s prize in terms of

utility. It is also convenient to think of the cost of exerting effort in terms of utility. The preferences

of each user i over the prize, Wi, and the exerted effort, ai, are represented by the utility function

Ut(Wi, ai) = u(Wi)− γ(ai), Wi ≥ 0, ai ≥ 0, i = 1, . . . , n, (4.4)

where u is a strictly increasing and strictly concave function of Wi, and γ is strictly increasing and

strictly convex with ai. The user’s utility is obtained from the prize minus the exerting effort.

For convenience, the principal can construct the user’s reward function in terms of utility

w = (w1, w2, . . . , wn) by defining wi = u(Wi), ∀i. We have the user’s expected utility is the

expected value of rewards minus the cost,

Ut(w, a) =

n∑
j=1

wjP (rank = j)− γ(a), (4.5)

where P (rank = j) is the probability that the user is in the jth place among all n users at the

measured performance level q = z+ ε. Given the density function φjn(z; a), the probability can be

obtained by an integration of the density function φjn(z; a). Thus, the user’s utility function can be

written as

Ut(w, a) =
n∑
j=1

wj

ˆ
φjn(z; a)dz − γ(a). (4.6)
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In the symmetric equilibrium all users spend the same amount of effort ā and expect an equal

probability 1/n of reaching any of the n ranks. Given the effort choice of ā, we can derive the users’

expected utility from (4.6) as

Ut(w, ā) =
1

n

n∑
j=1

wj − γ(ā). (4.7)

4.2.4 Utility of the Principal

The principal’s problem is to design a reward structure for the n users. We assume that the

principal is constrained to offer a fixed minimum level of expected utility to each user, so that we can

judge the relative performance of tournaments by examining the expected utility of the principal.

The risk neutral principal’s objective is to maximize the summation of all the users’ performances

minus the total prizes to the users

Vt(Wi, ai) = E

[
n∑
i=1

(qi −Wi)

]
. (4.8)

Given that the performance q follows a conditional distribution f(q − ε, a) and under a com-

mon shock, the principal’s expected utility can be written as

Vt(w, a) =

ˆ ˆ
qf(q − ε, a)dG(µ, σ)dq −

n∑
j=1

Wj (4.9)

=

ˆ
zf(z, a)dz −

n∑
j=1

Wj ,

where (9) is result from our previous conclusion that z is independent from the common shock

(µ, σ), and thus we can simply replace q with z.

4.3 Problem Formulation

4.3.1 Optimization Problem

Given the number of users n that participate in this crowdsourcing, the principal’s problem is

to design (w, ā) to maximize (4.9) subject to the two constraints that ā is an optimal decision rule
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for the user given w and that the expected utility of the user is at least ū, i.e.,

max
(w,ā)

ˆ
zf(z, a)dz −

n∑
j=1

Wj , (4.10)

s.t.

(a) ā = arg max
a

n∑
j=1

wj

ˆ
φjn(z; a)dz − γ(a),

(b)
1

n

n∑
j=1

wj − γ(ā) ≥ ū.

(a) is the incentive compatible (IC) constraint; it represents that given any reward structure, the

problem facing each user is to choose a level of effort that maximizes own utility. We can solve the

optimal effort by taking the first derivative of the IC constraint, which is given by

n∑
j=1

wj
∂P (rank = j)

∂a
− γ′(a) = 0. (4.11)

(b) is the individual rationality (IR) constraint; it provides the necessary incentive for users to par-

ticipate. We must have the utility no less than the reservation utility when a user is not taking any

effort (a = 0). Here, we define St(n) as the set of feasible n-user tournaments that satisfy the IC

and IR constraints. The set of feasible tournaments is always nonempty, since it always contains the

“no incentive” tournament, [(ū, ū, . . . , ū), 0] ∈ St(n), for all n. The utility per user to the principal

under this tournament is V̄ .

From the problem formulation we see that the optimal tournament depends on the number

of users n, the distribution function F , but not on the distribution function G. In other words,

tournament approach is robust against lack of information or lack of agreement about G.

4.3.2 Tournament Design

To obtain the tournament, we can derive from the optimal contract which reward user based

on the absolute performance with full information. First, we will formulate the optimal contract
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problem with full information. Then, we will show that we can design the tournament by step-

functions to approximate the optimal contract.

4.3.2.1 Optimal Contract under Full Information

In the optimal contract, the principal rewards users based on the absolute performance. We

define the reward R(q) as a linear and increasing function of q. Thus, the utility user obtained from

the reward is u(R(q)), and denoted as v(q) for simplicity. The contract the principal offered to user

is (v,A), where A is the effort. In this full information case, G is given by ε = 0 with probability

1, i.e., the principal knows ε.

Thus, the user i’s utility under contract is represented by

Uc(v, a) = v(qi)− γ(ai), qi ≥ 0, ai ≥ 0, i = 1, . . . , n, (4.12)

where v is also a strictly increasing and concave function as u. As we can see, v(qi) is a piecewise

continuous utility function which related to the quantity of qi instead of its rank. As noted above,

F (z; a) denotes the conditional distribution function for z given a, and f(z; a) is the continuous

density function of F (z; a). As ε = 0 with probability 1, we can rewrite the user’s expected utility

function as

Uc(v, a) =

ˆ
v(z)f(z; a)dz − γ(a), (4.13)

which is positive everywhere and continuously differentiable in a.

Followed by user’s expected utility function in contract, the principal’s expected utility can

be written as

Vc(v, a) = E

[
n∑
i=1

(qi −R(qi))

]
, (4.14)

where γ[v(qi)] is the cost utility function which is also a strictly increasing and strictly convex

function of the utility provided to user, as in the tournament. Similarly, the expected utility of the

principal from the contract (v, a) is

Vc(v, a) =

ˆ
{z −R(z)}f(z; a)dz. (4.15)
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With the user and principal’s utility functions, we can formulate the contract which rewards

user by their absolute performance as

max
(v,A)

ˆ
{z −R(z)}f(z; a)dz, (4.16)

s.t.

(a) A = arg max
a

ˆ
v(z)f(z; a)dz − γ(a),

(b)

ˆ
v(z)f(z;A)dz − γ(A) ≥ ū.

Similar to the tournament, (a) is the IC constraint and (b) is the IR constraint. The principal’s

problem is to choose (v,A) to maximize its expected utility subject to the two constraints that A is

the optimal decision rule for the user given v, and that the expected utility of the user is at least ū.

Here, we define Sc as the set of feasible contracts that satisfy the IC and IR constraints. From [8], the

piecewise continuous utility function and the user’s optimal effort can be approximated arbitrarily

closely by a step function, if there are enough steps. The sequence represented by the step functions

is the unique solution of this optimal contract with full information, and the principal’s utility is

maximized. In addition, each of these step function represented contracts can be approximated

arbitrarily close by a tournament if there are sufficient number of users.

4.3.2.2 Tournament by Approximation

Next, we will show that given a feasible contract (v,A) ∈ Sc, we can approximate the optimal

contract by constructing a sequence of contracts (wni, ān), wherewni is a step function with n steps,

ān is a constant function.

The first thing we need to do is approximate the continuous utility function v(z) by a step

function. We notice that, the probability that a user achieves a specific rank is equal to the proba-

bility that the user’s performance level falls into a corresponding interval of the CDF. Thus, given

a specific rank, we can find the effort value qni by the inverse CDF of F (qni;A) = i/(n + 1) [8].
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Then, we can define ŵni, by

ŵni = v(qni), i = 1, . . . , n. (4.17)

Thus, we can replace the wj in (4.10) with this approximation ŵni. The optimal effort under tour-

nament can be solved by

ān = arg max
a

n∑
i=1

ŵni

ˆ
φin(z;A)dz − γ(A). (4.18)

Again, we calculate the error term ēn in this tournament design, and have

ēn = ū+ γ(ān)− 1

n

n∑
i=1

ŵni. (4.19)

Finally, the utility in tournament is obtained by adding up the approximated ŵni and error ēn

wni = ŵni + ēn, i = 1, . . . , n. (4.20)

By now, we have the tournament (wni, ān) that is close to the optimal contract with full information.

Each of these step-function contracts can be approximated arbitrarily close by a tournament

with a sufficiently large number of users. Hence, the principal’s expected utility is approximately

unchanged. Moreover, the tournament’s efficiency is unaffected by changes in G (the distribution

of ε and the user’s information about ε), so that the same tournament’s utility remains arbitrarily

close to the full information utility for any G as well as if the users can observe ε directly.

4.4 Simulation Results and Analysis

In this section, we will give numerical simulations to illustrate our results. First, we will give

the specific form of the utility and cost functions we have defined in the system model. Then, we

will show the tournament we obtained by the step function. Finally, we will analyze the system per-

formance by varying different parameters, and do a comparison with other incentive mechanisms.
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4.4.1 Simulation Setup

We assume that the conditional distribution follows the logistic distribution as [61]. The

logistic distribution is a symmetric and bell shaped distribution, like the frequently used normal

distribution. The PDF of a logistical distribution is

f(z; a) =
exp(− z−a

β )

β[1 + exp(− z−a
β )]2

, (4.21)

and the CDF is

F (z; a) =
1

1 + exp(− z−a
β )

, (4.22)

where β is the coefficient related to the variance of logistic distribution, which is π2β2/3. As β is

positively correlated with the variance, we will use β to denote the variance in the sequel. With the

PDF and CDF of logistic distribution, we can derive the partial derivative of the probability for the

jth-order statistic with respect to effort a, as

∂P (rank = j)

∂a
=

2j − n− 1

β[n(n+ 1)]
. (4.23)

According to (4.11), we must have 2j−n−1 > 0. Thus, the maximum number of reward recipients

will not be more than half of the participate users. The reward recipients should be the users whose

rank is higher than (n+1)/2. While the users whose rank is lower than (n+1)/2, will only receive

a zero reward.

In the system model, we have defined the evaluation function u as a concave function. Here,

we set up the evaluation function u in a form of power function as

u(W ) =
W ρ

ρ
, (4.24)

where ρ is the power coefficient and 0 < ρ < 1. Here we further define the user’s risk averse degree

as

η = −u
′′

u′
=

W

1− ρ
. (4.25)
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Figure 4.2: Approximation of optimal contract by tournament.

Under the same amount of reward, the larger of ρ and η, the more conservative and sensitive is

user towards risk, and vice versa. When ρ = 1, the user is risk neutral. As ρ and η are positively

correlated with each other, we will use ρ to denote the risk averse degree in the following part. For

simplicity, we define the reward function as R(q) = q. Thus, the utility function in the optimal

contract case becomes

v(q) = u[R(q)] = u(q) =
qρ

ρ
. (4.26)

Furthermore, we have defined the cost function in the system model as a convex function.

Thus, we set up the cost function γ in a quadratic form as

γ(a) =
1

2
a2. (4.27)

We assume that the reservation utility, when the user does not participate in the crowdsourcing, is

ū = 0.

4.4.2 Reward by Tournament

In Fig. 4.2, we follow the steps in Section 4.3 to approximate the optimal contract by tour-

nament with 19 users participate in, with x axis representing the rank of the users in an ascending

order. As we can see, the reward obtained by the tournament is close to the reward from the optimal

contract with full information. If we increase the number of user to infinity, the tournament can

82



2 4 6 8 10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of user

U
til

ity
 o

f U
se

r

 

 

Optimal Contract
Rank Order Tournament
Multiple Winner

(a) Number of users.

0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Variance

U
til

ity
 o

f U
se

r

 

 

Optimal Contract
Rank Order Tournament
Multiple Winner

(b) Variance.
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Figure 4.3: The utility per user as parameters vary.
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Figure 4.4: The utility of the principal as parameters vary.

approximate the optimal contract arbitrarily close. In addition, we see that, only users rank is larger

or equal to 14 received a positive reward, which is consistent with our conclusion previously that no

more than half of the users should be rewarded. be rewarded. Another observation from Fig. 4.2 is

that, the higher the user rank, the larger the spread is, that is Wj −Wj−1 < Wj+1−Wj . This result

is due to the power function form of the evaluation function u. If we change the evaluation function

u to a log function, the spread will be the same for all ranks. While if the evaluation function u

follows the exponential form, the spread will become smaller for higher ranks.

4.4.3 Comparison

In this part, we are going to analyze user and principal’s utilities by varying different pa-

rameters in the tournament. In the tournament we have proposed, there are many winners and the

amount of reward is based on the relative rank achieved, with larger amounts rewarded to higher

ranks. We refer to this as the Rank-Order Tournament (ROT). We will compare the results from the

ROT with that from the optimal contract with full information, and another special cases of ROT:
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the Multiple-Winners (MW) in which several top winners share the reward equally, and the optimal

number of winners can be determined from (4.11).

In Fig. 4.3 we show the utility per user when varying different parameters, and in Fig. 4.4

we show the utility of the principal. The figures show that the factors impacting the design of the

contest include the number of users for whom the contest is conducted, the degree of performance

uncertainty in the environment (i.e., the strength of the relationship between effort and performance

realized), and the user’s risk averse degree towards the crowdsourcing activity.

4.4.3.1 Number of Users

When the number of users n increases, the marginal change in probability of achieving any

rank decreases. Consequently, with increases in the pool of players, the user will be less likely to

induce higher effort levels and less incentive to participate. Thus, we see the user’s utility in Fig.

4.3a decreases with the increase of n. However, with more users participating in the crowdsourcing,

even though the effort exerted from each user decreases, the summation of the data collected with

more number of users increases. As a result, the principal’s utility increases as we see from Fig.

4.4a.

4.4.3.2 Variance

The variance β denotes the relationship between effort levels exerted by the user and the

performance observed by the principal. As β increases, it indicates a weaker relationship between

effort levels and the expected rank achieved. As a result, the users are likely to exert lower levels

of effort with the increase in uncertainty, and thus a lower cost of participation. While the optimal

contract and tournament designs are independent of the uncertainty, greater uncertainty makes the

users more likely to get enough incentives to participate. As we see from Fig. 4.3b that the user’s

utility is increasing as the variance increases. With the decrease of optimal effort, less data is

obtained from the user, the principal’s utility will certainly decrease. Therefore, from Fig. 4.4b

indicates that the principal’s utility is decreasing as the variance increases.
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4.4.3.3 Risk Averse Degree

From the definition of risk averse degree we see that when ρ increases, users become more

conservative and sensitive to risk, thus less likely to participate in. With less effort obtained from

the user, the principal’s utility will certainly decrease. Thus, we see from Fig. 4.3c and Fig. 4.4c

that the user and principal’s utilities decrease with the risk averse degree ρ.

Overall, we see that the optimal contract serves as the upper bound of the principal’s utility,

and the lower bound of the user’s utility for the other two tournament mechanisms in most of the

cases. This is intuitive since the optimal contract solves the optimal contract based on the absolute

performance. While in tournament, we only have a limited number of users in the simulation. Thus,

tournaments lose accuracy during the approximation. The optimal contract provides the principal

with maximum utility while extracting as much utility from the users as possible.

From Fig. 4.3 and Fig. 4.4, we also see that the MW outperforms ROT in many cases. In

addition, MW outperforms both the optimal contract and ROT when users are risk neutral in Fig.

4.3c and Fig. 4.4c. The reasons for both results can be inspired from the conclusions drawn in [61].

First, when the number of participating users is small, MW is a better mechanism rather than ROT,

and is easier to implement. Second, when users are risk neutral, it is optimal to give the entire

reward to the highest rank user, which is a special case of MW, rather than offering contract with

positive spread in ROT and optimal contract.

4.5 Conclusions

In this paper, we have investigated the problem of providing incentives for users to participate

in mobile crowdsourcing by applying the rank order tournament as the incentive mechanism. We

have solved the rank order tournament by approximating the absolute performance based optimal

contract with full information using step functions. Finally, we use the numerical results to show

the tournament design, and compare the user’s and principal’s utilities under optimal contract and

different tournament mechanisms. We have shown that by using the tournament, the principal suc-
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cessfully maximizes the utilities regardless of common shock. The principal’s utility benefits from

large number of users, but deteriorates with weaker relationship between exerted and observed effort

levels, and higher risk aversion of users.
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Chapter 5

Financing Contract with Adverse Selection and Moral
Hazard for Spectrum Trading in Cognitive Radio
Networks

5.1 Introduction

The recent popularity of hand-held mobile devices, such as smartphones, enables the inter-

connectivity among mobile users without the support of Internet infrastructure. With the wide usage

of such applications, the data outburst leads to a booming growth of various wireless networks

and a dramatic increase in the demand for radio spectrum [62]. However, we are currently in the

exhaustion of available spectrum. Thus, cognitive radio (CR) has emerged as a new design paradigm

as its opportunistic access to the vacant licensed frequency bands, which releases the spectrum from

shackles of authorized licenses, and at the same time improves the spectrum utilization efficiency

[63].

Cognitive radio networks (CRNs) are designed based on the concept of dynamic spectrum

sharing where CR users can opportunistically access the licensed spectrum. In a CRN, the primary

users (PUs) are the licensed users to utilize the frequency band, while the secondary users (SUs) can

only utilize those spectrum resources when the PUs are vacant. Whenever the PUs are back, the SUs

must vacate the frequency band immediately to guarantee the PUs’ quality of service (QoS) [64].

In other words, in a CRN, the PUs have higher priority to use the frequency bands than the SUs.

The SU can be regarded as a radio which is capable of changing its transmitter parameters and

transmitting/operating frequency based on its interaction with the environment [65].

In CRNs, the problems of spectrum sensing and resource allocation have been extensively

studied in previous works such as [66]. In this work, we will focus on the economic aspect of

spectrum trading between the PU and SU, which achieves SU’s dynamic spectrum accessing/sharing

and creates more economically benefits for the PU. The idea of the market-driven structure has
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Figure 5.1: The problems of adverse selection and moral hazard in financing contract design.

initiated the spectrum trading model in CRNs, and promoted a lot of interesting researches on the

design of trading mechanisms. Through spectrum trading, PUs can sell/lease their vacant spectrum

for monetary gains, and SUs can purchase/rent the available licensed spectrum if they are in need

of radio resources to support their traffic demands [9].

However, most mechanisms such as [67] are designed for the one-shot trading problem. Dif-

ferent from the previous studies, we consider offering a contract based mechanism that allows the

SU to do a financing, as we do for a house or a car [68]. That is, the SU only needs to pay part of the

total amount at the point of signing the contract, known as the down payment. Then the spectrum

can be released to the SU by the PU. Successively, the SU can utilize the spectrum to transmit pack-

age and generate revenue. Afterwards, the SU pays the rest of the loan, known as the installment

payment.

However, the PU may not have the full knowledge of the SU’s financial status, i.e., how much

cash the SU has in hand for the down payment, in which case the problem of adverse selection

arises. Moreover, the PU neither knows the SU’s capability in utilizing the spectrum, i.e., what is the

SU’s probability of successful generating revenue, where the problem of moral hazard arises [69].

Thus, we model the spectrum trading by a contract theoretical model which involves both adverse

selection and moral hazard problems as shown in Fig. 5.1.

The main contributions of this paper are first we propose the spectrum trading mechanism as

a financing contract, instead of a one-shot trading. Second, we propose the innovative model that

involves both adverse selection and moral hazard problems, which is rooted in economics research.

Third, we give detailed analysis of this model by considering three different scenarios, i.e., two

extreme cases where only adverse selection or only moral hazard is present, and the general case
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where both of the two problems are present. Finally, through simulations, we analyze and compare

the optimal contracts under the three scenarios, and provide a thorough study of the key parameters’

influences on the PU’s and SU’s payoffs.

The remainder of this paper is organized as follows. First, we will introduce the system

model in Section 5.2. Then, the problem formulation is described in Section 5.3, and we propose

the solution of the three scenarios. The performance evaluation is conducted in Section 5.4. Finally,

Section 5.5 draws the conclusion.

5.2 System Model

Based on the earliest model in [68], we consider the spectrum trading between one PU and

one SU in one CRN. The contract can be extended to other SUs in the same CRN. Both the PU

and SU are risk natural which means they have no preference between saving and consuming. The

PU’s spectrum is vacant, and the PU cannot generate any revenue from the vacant spectrum unless

selling/leasing to the SU.

The PU offers a financing plan (ti, ri) to the SU to pay for utilizing the spectrum, where ti is a

down payment, and ri is an installment payment to be paid from the future revenues generated. The

problem that the PU needs to solve is to find the optimal contract that can maximize its expected

return from the spectrum trading by deciding how much down payment, and how much installment

payment the SU needs to pay.

The SU makes use of the spectrum to run its own “business”, which can only result in a

success (receive a revenue of R ≥ ri ≥ 0) or failure (receive a revenue of 0), i.e., the revenue

realizations: X ∈ {0, R}. The SU may be more or less able at utilizing this vacant spectrum, whose

capability may belong to two different types θ ∈ {θL, θH} with θL < θH , which donate lower or

higher capability to generate revenue, respectively. The PU may not be able to observe the SU’s

capability type, but with a priori that the SU has a high capability θH with probability β ∈ [0, 1] and

a low capability θL with probability (1− β).
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The SU’s capability θ can be translated into the probability of getting the high revenue R.

Besides the capability, the SU can also increase its efforts e (e.g., transmission power) to raise

probability of getting R. Thus, we define the SU’s probability of generating high revenues R as

θe ∈ (0, 1). In addition, we assume that the SU’s operation cost ψ on the spectrum is a convex

function of effort e, which is

ψ(e) ≡ c

2
e2, (5.1)

where c is the cost coefficient. To ensure that the probability 0 < θe < 1, we take c to be large

enough that the SU would never want to choose a level of effort e such that θe ≥ 1.

We assume that there is no installment payment if the SU cannot generate revenue from

utilizing the spectrum, i.e., ri = 0 if X = 0. The installment payment ri is made only when

X = R. Thus, the expected payoff of SU with capability θi under contract (ti, ri) then takes the

form of

USUi = θiei(R− ri)− ti −
c

2
e2
i , i ∈ {L,H}. (5.2)

The revenue R minus installment payment ri is the SU’s income. The SU’s expected payoff is the

expected income minus the down payment and cost of operation.

Similarly, we define the expected payoff of the PU as

UPU =
∑
i

βi(ti + θieiri), i ∈ {L,H} (5.3)

= β[tH + θHeHrH ] + (1− β)[tL + θLeLrL].

The PU’s expected payoff is the summation of the down payment and expected installment payment.

Then, the PU’s problem is

max
(ti,ri)

β[tH + θHeHrH ] + (1− β)[tL + θLeLrL], (5.4)

s.t.

(IC) θiei(R− ri)− ti −
c

2
e2
i ≥ θie′i(R− rj)− tj −

c

2
e′2i ,

(IR) θiei(R− ri)− ti −
c

2
e2
i ≥ 0,

∀j 6= i, i, j ∈ {L,H},
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where e′i is the effort of θi SU when selecting contract (tj , rj). The IC constraint stands for in-

centive compatibility, which means the SU can only maximize its expected payoff by selecting the

financing contract that fits its own capability. The IR constraint stands for individual rationality,

which provides the SU necessary incentives to sign the contract.

Taking the first derivative of SU’s expected payoff with respect to effort e, we have the SU’s

optimal choice of effort e∗ under the contract (t, r) as

e∗i =
1

c
θi(R− ri), i ∈ {L,H}. (5.5)

Similarly, we have e′i∗ = 1
cθi(R − rj). As we can see from this equation, the SU’s optimal choice

of effort e∗i is independent of ti but is decreasing in ri. In other words, the SU will have fewer

incentives to put more effort in utilizing the spectrum, if it must share more of the generated revenue,

regardless of the amount of the down payment ti. The decrease of effort e directly affects the

probability of successfully generating revenueR. Thus, it is critical to balance the trade off between

providing necessary incentives for the SU and request more installment payment from the SU.

Replacing SU’s choice of effort ei and e′i in (5.4), we have the PU’s problem in the following

form.

max
(ti,ri)

β[tH +
1

c
θ2
H(R− rH)rH ] + (1− β)[tL +

1

c
θ2
L(R− rL)rL], (5.6)

s.t. (IC)
1

2c
[θi(R− ri)]2 − ti ≥

1

2c
[θi(R− rj)]2 − tj ,

(IR)
1

2c
[θi(R− ri)]2 − ti ≥ 0,

∀j 6= i, i, j ∈ {L,H}.

In this problem, it is not possible to decide a priority which of the two incentive problems

is the more important, i.e., to disentangle the moral hazard from the adverse selection dimension.

In the following section, we will detail the respective roles of moral hazard and adverse selection

and the implications of their simultaneous presence. As we shall see, the design of the optimal

financing contract for this problem depends on whether only the adverse selection or the moral

hazard (or both) are explicitly taken into account.
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5.3 Problem Formulation

In this section, we will solve the PU’s problem by giving detailed analysis of the proposed

model by considering three different scenarios, i.e., two extreme cases where only adverse selection

or moral hazard is present, and the general case where both are present.

5.3.1 Optimal Contract with Moral Hazard Only

Suppose that the PU is able to observe the SU’s financial status. So that the adverse selection

problem is removed, and the only remaining incentive problem is moral hazard. Then the PU’s

problem can be treated separately for different capability SU and reduces to

max
(ti,ri)

ti +
1

c
θ2
i (R− ri)ri, (5.7)

s.t. (IR)
1

2c
[θi(R− ri)]2 − ti ≥ 0,

i ∈ {L,H}.

Since the IR constraint is binding, the problem becomes

max
ri

1

2c
[θi(R− ri)]2 +

1

c
θ2
i (R− ri)ri. (5.8)

After simplification, the problem is equivalent to

max
ri

1

2c
θ2
i (R

2 − r2
i ). (5.9)

The solution for this maximization problem is rH = rL = 0 and ti = 1
2cθ

2
iR

2. As there is no

adverse selection present, the PU only need to minimize the negative effect of moral hazard. To

avoid the moral hazard problem, it is optimal for the PU to sell the spectrum for cash only, and not

keep any financing participation in. The only reason why the PU might want to keep some financing

participation in this pure moral hazard case is that the SU may be financially constrained and may

not have all the cash available for the down payment.
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Figure 5.2: The financing contract for θH SU as parameters vary.

5.3.2 Optimal Contract with Adverse Selection Only

Suppose now that the SU’s effort level is fixed at some level ê, but the PU cannot observe the

SU’s financial status. The PU’s problem then reduced to

max
(ti,ri)

β[tH + θH êrH ] + (1− β)[tL + θLêrL], (5.10)

s.t. (IC) θiê(R− ri)− ti ≥ θiê(R− rj)− tj ,

(IR) θiê(R− ri)− ti −
c

2
ê2 ≥ 0,

∀j 6= i, i, j ∈ {L,H}.

This problem also has a simple solution: rH = rL = R and ti = −1
2cê

2 < 0. Intuitively, the

down payment should be larger than or equal to 0. However, in this optimal contract, the SU has

a negative down payment, i.e., the PU has to pay 1
2cê

2 to the SU instead. This result is due to the

fact that the PU asks for 100% of the future return from the SU. In order to hold the IR constraint,

a down payment from the PU to the SU is necessary.

5.3.3 Optimal Contract with Adverse Selection and Moral Hazard

The simplicity of the preceding solutions is of course driven by the extreme nature of the

setup. However, neither extreme formulation is an adequate representation of the basic problem in

practice, and that it is necessary to allow for both types of incentive problems to have a plausible de-

scription of the spectrum trading in practice. Not surprisingly, the optimal menu of contracts where

both types of incentive problems are present is some combination of the two extreme solutions that
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we have highlighted.

Solving the problem of the PU can be done by relying on the pure adverse selection method-

ology detailed in [21]. Specifically, the analysis shows that only the IR constraint of the θL SU and

the IC constraint of the θH SU will be binding. Indeed, first, when the θL SU earns nonnegative

rents, so will the θH SU, who can always mimic the θL SU. Second in the symmetric information

scenario, that is, pure moral hazard optimum, the PU manages to leave the θH SU with no rents,

but this outcome is what would induce the SU to mimic the θL SU. Therefore, the PU has to solve

max
(ti,ri)

{β[tH +
1

c
θ2
H(R− rH)rH ] + (1− β)[tL +

1

c
θ2
L(R− rL)rL]}, (5.11)

s.t.

(IC)
1

2c
[θH(R− rH)]2 − tH =

1

2c
[θH(R− rL)]2 − tL,

(IR)
1

2c
[θL(R− rL)]2 − tL = 0.

Using the two binding constraints to eliminate tH and tL from the objective function, we

obtain the usual efficiency-at-the-top condition rH = 0 (as in the pure moral hazard case).

The first-order condition with respect to rL involves the usual trade-off between surplus ex-

traction from the θL SU and informational rent concession to the θH SU, and leads to

rL =
β(θ2

H − θ2
L)R

β(θ2
H − θ2

L) + (1− β)θ2
L

, (5.12)

which is bigger than 0.

By taking rL and rH into the constraints IC and IR in (11), we obtain the down payments in

this general case, which are:

tL =
1

2c
[θL(R− rL)]2 and (5.13)

tH = tL +
1

2c
θ2
H [(R− rH)2 − (R− rL)2]. (5.14)

The optimal menu of contracts is thus such that there is no effort-supply distortion for the

high capability SU because it is a 100% residual claimant. But there is a downward effort distortion
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Figure 5.3: The financing contract for θL SU as parameters vary.

for the low capability SU that serves the purpose of reducing the informational rent of the high

capability SU. The extent of the distortion, measured by the size of rL, depends on the size of the

ability differential (θ2
H − θ2

L) and on the PU’s prior β: The more confident the PU is that it faces a

high SU type, the larger is its stake rL and the larger is the down payment tH .

5.4 Simulation Results and Analysis

In this section, we will first give an analysis about the financing contract when both adverse

selection and moral hazard are present by varying the parameters such as the cost coefficient, rev-

enue, and the SU’s probability of being θH . For the two extreme cases where only adverse selection

or moral hazard is present, the results can be predicted from the general case. Then, we will conduct

comparisons among the PU’s and SU’s payoffs, and social welfare among the three scenarios we

have proposed. In the simulation set up, we assume that θH = 2 and θL = 1. We set c = 10 as a

high value so that we can guarantee θHe < 1 always holds.

5.4.1 Financing Contract Analysis

In Fig. 5.2, we show the financing contract for θH SU when both adverse selection and moral

hazard are present. We see that, with the varying of the three parameters, the installment payment

rH remains 0, as we have stated in the previous section. When the PU knows it is facing a SU with

enough cash in hand, it will ask the SU to pay the total amount money when signing the contract,

but no installment payment afterwards.
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Figure 5.4: The system performance as the cost coefficient c varies.

From Fig. 5.2a we see that, as the cost coefficient c increases, the down payment (i.e., the

price of the spectrum) decreases. This result is intuitive in the sense that, when the SU’s cost of

generating revenue by utilizing the spectrum increases, the SU will be less likely to participate.

Thus, the PU must lower its price to attract SU’s participation. Otherwise, the vacant spectrum is

wasted and 0 payoff is obtained by the PU.

In Fig. 5.2b we see that, as the SU’s revenue R by “running” on the PU’s spectrum increases,

the cash payment required from the PU increases. This result is also easy to see as if the spectrum

can bring more revenue for the SU, the spectrum’s value is higher. Thus, the PU would definitely

assigned a higher price for the spectrum.

Fig. 5.2c shows when the PU’s probability of trading with a θH SU increases, it will also rise

the spectrum’s price. As we have defined in the system model, the SU’s successful probability of

obtaining a revenue is θe. Therefore, under the same effort e, the high capable SU will bring larger

expected revenue than low capable SU, as θH > θL. Thus, similar to Fig. 5.2b, the PU will rise the

price as the value of spectrum increases.

Fig. 5.3 is similar to Fig. 5.2, as we are showing the financing contract for the θL SU. While

different from Fig. 5.2 is that, the PU ask for both cash and installment payment from the low

capable SU, instead of only down payment when the SU is high capable. This result is intuitive in

the sense that, the low capable SU has limited cash at hand at the trading. Thus, the PU will only

ask for a small amount of down payment first, while most of the money is paid after the SU has

generated revenue from using the spectrum as we have stated in the previous section.
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Figure 5.5: The system performance as the revenue R varies.

From Fig. 5.3a we see that, as the cost coefficient c increases, both the down and installment

payments decrease. The reason for this result is the same as that in Fig. 5.2a that the PU must lower

its price to attract SU’s participation.

In Fig. 5.3b we see that, as the SU’s revenue R by running on the PU’s spectrum increases,

both the down and installment payment asked from the PU increase. The reason for this result is the

same as that in Fig. 5.2b that as the spectrum’s value grows higher, the PU would definitely ask for

a higher price.

Fig. 5.3c shows the optimal contract when the PU’s probability of trading with a θL SU

increases. As the PU becomes more certain that it is trading with a low capable SU with less cash

in hand, it will lower the cash payment first, but ask for more installment payment instead, which is

the SU’s price of paying less cash at first.

5.4.2 System Performance

From Fig. 5.4 to Fig. 5.6, we compare the system performance under the three scenarios

we have proposed: moral hazard only, adverse selection only, and when both are present. In the

following part, we will give a detailed analysis of the cost coefficient c, revenue R, and distribution

β’s effects on the system performance.
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Figure 5.6: The system performance as the θH SU probability β varies.

5.4.2.1 Cost Coefficient

In Fig. 5.4, we vary the value of the cost coefficient c to see the effects on the PU’s and

SU’s payoffs, and the social welfare in the three scenarios. As we can see, PU’s and SU’s payoffs

and social welfare decrease as the cost coefficient increases, except the SU’s payoff under moral

hazard only and adverse selection only scenarios. Under those two extreme cases, the PU has the

full acknowledgment of either the SU’s cash in hand or the effort put into using the spectrum. Thus,

the PU can extract as much revenue as possible from the SU, which leaves the SU with 0 payoff.

The reason for the decreasing of payoffs and social welfare is similar to the analysis we gave for

Fig. 5.2a and 5.3a that as the cost increasing, the price for the spectrum will decrease to attract SU.

As a result, the payoffs of the PU and SU, together with social welfare, will decrease.

5.4.2.2 Revenue

In Fig. 5.5, we try to see the PU and SU’s payoffs, and the social welfare when the revenue

R can be generated from using the spectrum increases. We see that the payoffs and social welfare

increase with the revenue except the SU’s payoff under moral hazard only and adverse selection

only scenarios. The increase of payoffs and social welfare with the revenue R is easy to understand

as we have explained in the previous paragraph that the PU will extract all the information rent from

the SU.
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5.4.2.3 Distribution

In Fig. 5.6, we see that PU’s payoff and the social welfare increase as β gets larger. The

reason for this result is the same as we have explained for Fig. 5.2c and 5.3c, as the PU will ask

for more money if it believes that it is facing a high capable SU. However, the increase of β has a

negative effect on the SU’s payoff as the PU is trying to extract revenue from the SU.

Overall, from Fig. 5.4-5.6,we see that, the two extreme cases serve as the upper and lower

bounds, respectively. The PU’s payoff in the general case where both moral hazard and adverse

selection present lies between the two extreme cases.

5.5 Conclusions

In this paper, we have proposed a financing contract to address the problem of spectrum

trading in a cognitive radio network. We have modeled the problem by considering both the adverse

selection and moral hazard of the SU. In addition, we have analysed three different scenarios,

i.e., two extreme cases where only adverse selection or moral hazard is present, and the general

case where both are present. Through extensive simulations, we have given the analysis about the

financing contract for all considered scenarios. We have also shown different parameters’ effects on

the system performance and that the two extreme cases serve as the upper and lower bound of the

general case where both problems are present.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion Remarks

In this dissertation, we have provided the contract theory framework for wireless networking,

which was nominated Nobel Prize in economics for 2014. Contract theory is highly evaluated due

to its effectiveness in market power and regulation — specifically how to regulate oligopolies in

situations with asymmetric information, i.e., when regulators do not know everything about how

firms are operating. Meanwhile, contract theory itself is an efficient tool in dealing with asymmetric

information between employer/seller(s) and employee/buyer(s) by introducing cooperation. Such a

framework for designing regulations and has been applied to a number of industries, from banking to

telecommunications. Given the properties of wireless networks, which encounters many situations

of asymmetric information and the need of cooperation, contract theory is an excellent tool by

modeling the employer/seller(s) and employee/buyer(s) as different roles depending on the scenario

under consideration.

This dissertation provides a theoretical research between wireless communications, network-

ing, and economics, in which different contract theory models have been applied in various wireless

networks scenarios. We start with the fundamental concepts of contract theory, and introduced the

potential applications for each class of the typical contract problems: adverse selection, moral haz-

ard and the mixed of them two. Specially, we have investigated the design of reward, which is the

most critical element in an incentive mechanism design. We have also provided a detailed descrip-

tion on the potential of using such contract-theoretic tools in several wireless applications, such as

spectrum trading cognitive radio network, relay selection, distributed computing, D2D communica-

tion, and mobile crowdsourcing.

In the first application, the problem of pure adverse selection is studied to solved the incen-

tive problem of encouraging cellular UEs to participate in D2D communication underlaid cellular
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network. Given the information asymmetry that the UEs’ preferences are unobservable to the BS,

we have proposed a self-revealing mechanism that forces UEs to select the contracts that are in

consistent with their preferences. Simulation results have shown that the proposed approach out

performs the linear pricing which does not try to retrieve any information at all, but lower than the

optimal contract with no information asymmetry.

Next, the problem of pure moral hazard is studied to investigated the issue of providing incen-

tives for smart device users to participate in the mobile crowdsourcing. Especially, we have solved

the problem in two different situations: multi-dimension and multi-user. In the multi-dimension

case, the principal offers multiple tasks for the user to complete, and rewards user from multi-

dimension evaluations. The optimal contract is solved as a bundle of reward and effort (w, a). In

the multi-user case, the principal rewards users based on the rank of their performance as in a tour-

nament. The optimal contract is solved as a fixed list of prizes. In both applications, the numerical

results showed the comparisons between the utilities in the optimal contracts and other different

incentive mechanisms, and analyzed that the principal’s utility varies with different parameters such

as operation cost coefficient, risk aversion degree, and measurement error variance.

Finally, the mixed problem of both the adverse selection and moral hazard problems are stud-

ied to address the problem of spectrum trading in a cognitive radio network. The unobservable of

SU’s capability in generating revenue from utilizing the spectrum of modeled as adverse selection

and the unobservable of SU’s effort putting into utilizing the spectrum is modeled as moral hazard.

The three different problems, i.e., two extreme cases where only adverse selection or moral hazard

is present, and the general case where both are present are solved and analyzed. Through exten-

sive simulations, we have also shown different parameters’ effects on the system performance and

showed that the two extreme cases serve as the upper and lower bound of the general case where

both problems are present.

From those works, we have seen contract theory as a useful framework to design incentive

mechanisms to motivate the third party’s cooperation in emerging wireless networks, such as het-

erogeneous networks, D2D communication, mobile crowdsouring and cognitive radio networks. In
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a nutshell, this dissertation is expected to provide an accessible and holistic survey on the use of

new techniques from contract theory to address the future of wireless networks network economics

area, and have a long term effect on problems such as incentive mechanism and pricing schemes

design, resource sharing and trading.

6.2 Future Work

Under the background of rapid development wireless networks and the proliferation of highly

capable mobile devices, cooperations in wireless networks are and will be in highly demand in

various areas. Incentive mechanism design to ensure cooperation falls into the emerging world-class

high-impact theoretical research between wireless communications, networking, and economics.

Thus, we see there is a great potential to do further research in incentive mechanism design and

use contract theory to solve cooperation problems in wireless networks. The following are research

directions that can be further explored in this area of research.

• Exploring emerging wireless network applications: There are many areas in wireless net-

works where the cooperation among different parties is extremely needed. Some interesting

areas where cooperation is expected to play a key role include wireless network virtualization,

cloud radio access networks, physical layer security, multimedia distribution in ultra-dense

networks, and load management in wireless networks with machine-to-machine communica-

tions.

• Exploring new contract theory models: First, current applications in wireless networks do all

belong to the static basic and extended models in multi-dimension and multi-lateral adverse

selection and moral hazard models. In the future works, we can extend the static models

into repeated contracting ones, which show great potential in modeling more sophisticated

interplay between different parties. Second, contract theory can be used to address wireless

networking problems other than cooperation incentives. There are other models in contract

theory that provide potential techniques, e.g., using insurance design and audition in mobile
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cloud computing or using system hierarchy efficiency in infrastructure deployment.

• Exploring the connection between wireless physical meanings and economic factors: By ap-

plying this micro economic model into wireless networks, it is important to well model and

define the economic parameters with appropriate wireless communication network physical

meanings. Since the ultimate goal of using contract theory here is to address the technical

problems in wireless networks. Without properly characterizing the wireless network system,

the solution will be less meaningful and infeasible to apply.
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