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Abstract 

Extensive wetlands expand along the banks of the Congo river and its tributaries. 

Estimating wetlands water storages as well as its sources and sinks is of great importance 

to understand water balances in the fluvial systems and the role of wetlands in nutrient and 

sediment transport. In this dissertation, Synthetic Aperture Radar (SAR), Interferometry 

SAR (InSAR), and radar altimetry are deployed to study the spatio-temporal variations of 

water level changes (!ℎ !#) and water storages, and the influxes and effluxes through the 

wetlands. First, a regression model integrating PALSAR backscattering coefficient (σ$), 

Envisat altimetry, and MODIS VCF is proposed to estimate !ℎ !# in the Malebo Pool 

where non-forested and forested vegetations exist. The accuracy of σ$ method is adequate 

in non-forested regions where InSAR could lose coherence during high water level, 

whereas the accuracy degrades in dense forested wetlands where InSAR could maintain 

coherence to measure relative !ℎ !#. Therefore, a stack of PALSAR interferograms are 

generated to map multi-temporal high spatial resolution !ℎ !# over the forested wetlands 

near city Lisala. The InSAR measurements show that !ℎ !# is subtle and the water flow 

is not well confined during low water seasons while !ℎ !#  shows greatest gradient 

perpendicular to river flow direction in high water seasons. Next, a new method is 

developed to reveal the inter-annual absolute water storages by integrating spatially 

varying !ℎ !# and time series of water depth from Envisat altimetry. The mean annual 

amplitude over the studied 7,777 km2 wetlands from 2002 to 2011 is 3.98±0.59 km3, with 

maximum water volume to be 6.3±0.68 km3 in the wet year of 2002 and minimum volume 

to be 2.2±0.61 km3 in the dry year of 2005. Finally, mass balance analysis results suggest 
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that local water (i.e. upland runoff and rainfall) contributes more than 85% of total inflow 

while regional water (i.e. wetland river exchanges) supplies less than 15% of total inflow. 

Wetland river exchanges contribute 59% to 80% to the total outflow while 

evapotranspiration contributes 20% to 41% of the total outflow. A wetland model was 

applied to derive two site specific hydrological parameters, flow conductance (&') and 

depth exponent ()).  
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Chapter 1 Introduction 

1.1 Statement of Problem 

Wetland is among the most distinctive landscape features on earth (Tockner and 

Stanford, 2002). Its functions such as water buffering, carbon storage, biodiversity 

maintenance, fish production and aquifer recharge (Keddy et al., 2009) are all related to 

human life. Wetlands formation and maintenance are highly connected to their seasonal 

flood dynamics (Hughes, 1997; Ward et al., 1999; Tockner and Stanford, 2002). During 

water residence in the wetland, biogeochemical environment of the floodwater is modified 

due to the influence of sedimentation, sorption and redox reactions and biotic processes 

(Richey et al., 1989; Hamilton, 2002). Different water sources could make a difference in 

the sediment supplies, carbon and nutrient exchange. The hydrology and hydrodynamics 

of wetlands are essential to understand the flux of sedimentation, nutrient and other solutes 

(Richey et al., 1989; Dunne et al., 1998; Hamilton, 2002) through wetlands as well as the 

impacts of flooding and droughts to the wetland ecosystem.  

The Congo River meandering over 4,374 km is the world’s second largest river in 

terms of discharge (41,000 m3/s) and drainage area (3.7 million km2) (Lehner et al., 2008). 

It is not only an important transportation route and lifeline, but also provides food and 

fishery to the Congolese people. The elevation of Congo River decreases only 115 m 

through its middle reach from Kisangani to Kinshasa by traversing the “shallow bowl”, 

cuvette centrale congolasise (Hughes, 1992). Extensive wetlands and swamps, estimated 

to be 190,000 km2, expand along the banks of the river and its tributaries (Hughes, 1992; 

Keddy et al., 2009). The Congo wetlands play an important role in regulating global water 



2 

 

and carbon cycles, climate and environments (Barbier, 1994; Neue et al., 1997; Hayashi 

et al., 1998). Despite its enormous size and significance to global and regional climate and 

environment, Congo Basin is one of the least studied major river basins and little is known 

about its hydrology and hydrodynamics (Keddy et al., 2009). The number of peer-reviewed 

papers related to Congo Basin hydrology are an order of magnitude fewer than that of the 

Amazon River Basin (Alsdorf et al., 2016). This is mainly due to historical political 

instability and conflicts that have plagued this region. There were more than 400 stream 

gauges in the Congo Basin until 1960 while there are only about 10 operating gauges 

nowadays (Alsdorf et al., 2016). In addition because most of the in situ gauges are installed 

in the rivers, not in the wetlands, the two-dimensional flow in the wetlands cannot be 

measured with the gauges (Alsdorf et al., 2007a). Alternatively, remote sensing is now a 

viable tool to measure water over the wetlands. A review of prior studies applying remote 

sensing techniques to measure wetlands water are reviewed below, with a focus on radar 

altimetry, Synthetic Aperture Radar (SAR), and Interferometry SAR (InSAR) is given in 

the next section.  

1.2 Measuring Wetland Water from Space 

1.2.1 Satellite Altimetry in Wetland Water Level Monitoring 

Satellite radar altimetry is an effective remote sensing technique in measuring water 

level over inland water bodies. Initial efforts of applying satellite altimetry for continental 

water bodies started in 1987 (Rapley et al., 1987). Later, several studies applied high-rate 

range measurements contained in Geophysical Data Record (GDR) from TOPEX to study 

inland water level (Birkett, 1995, 1998; Kouraev et al., 2004). Significant amounts of data 
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loss occurred during periods of low water level because the returned waveform is biased 

by the interruptions of surrounding topography. This limitation can be overcome by 

retracking individual return waveforms (Berry et al, 2005; Frappart et al., 2006). Among 

the four retracking algorithms (Ocean, Ice-1, Ice-2, Sea Ice) applied to Envisat RA-2 raw-

data, Ice-1 algorithm provides most suitable measurements for inland water bodies 

(Frappart et al., 2006). Retracked radar altimetry measurements have been successfully 

applied to measure water levels over both open water and water surfaces beneath vegetation 

(e.g., Frappart et al., 2005, 2006a; Kim et al., 2009; Lee et al., 2011, 2015; Yuan et al., 

2015). The unique ability of radar altimetry for measuring both open and vegetated water 

surface has enabled the hydraulic analysis between the channel and adjacent wetlands in 

the Congo (Lee et al., 2011) and Amazon Basins (Da Silva et al., 2012). In addition, 

measurements from radar altimetry have a single fixed datum (Birkett et al., 2002) and it 

is able to measure absolute water level changes (!ℎ !#) in the channel and wetlands (Kim 

et al., 2009; Lee et al., 2014). However, radar altimetry is a profiling tool providing 

measurements only along its ground tracks and the cross-track resolution of satellite 

altimetry is low (e.g. 80 km for Envisat at the equator). Thus, substantial water bodies 

located between its ground tracks cannot be sampled by radar altimetry.  

1.2.2 SAR Observations in Wetland Hydrology 

As an active microwave sensor, Synthetic Aperture Radar (SAR) has all-day and 

all-weather imaging capability. SAR images have been successfully used to map wetlands 

vegetation and inundation extent with high spatial resolution (30 – 100 m). The SAR 

images are composed of both intensity and phase information. SAR intensity data is usually 
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converted to backscattering coefficient (σ$) to map wetlands flood extent and vegetation 

types. The performance of the SAR systems in mapping flooded extents beneath vegetated 

region depends on their polarization modes and wavelengths. Horizontal-Horizontal (HH) 

polarization SAR images are optimal in differentiating flooded and non-flooded areas 

beneath vegetation canopy regardless of wavelengths (Hess et al., 1995). A SAR system 

with longer wavelength has better canopy penetration capability than shorter wavelength. 

C-band sensors with a wavelength of 5.7 cm can penetrate herbaceous vegetation but are 

not able to penetrate closed forest canopy. On the other hand, L-band sensors with a 

wavelength of 24 cm can penetrate both herbaceous vegetation and forest canopy (Hess et 

al., 1995). L-band SAR sensors on board Japan Earth Resources Satellite (JERS-1) and 

Advanced Land Observation Satellite (ALOS-1) have demonstrated their ability to map 

wetland inundation in large river basins with dense vegetation canopy, such as the Congo 

and Amazon Basins (Rosenqvist and Birkett, 2002; Hess et al., 2003; Lee et al., 2014). In 

addition, Trung et al. (2013) studied changes in land cover classes in the Tonle Sap wetland 

using Phase Array L-band Synthetic Aperture Radar (PALSAR) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) data with a land cover model as a function of water 

level. 

There have been efforts to quantify the relation between hydrologic conditions and 

backscattering coefficient (σ$) using theoretical scattering models. For example, Kasischke 

et al� (2003) correlated C-band ERS-2 σ$ with regional hydrologic changes, vegetation 

types, and biomass in the Everglades wetlands of Florida. They found that the ERS-2 σ$ is 

closely related to both soil moisture and water level changes in the Marl Prairie sites. 

Grings et al. (2006, 2008) used C-band Envisat ASAR images with electromagnetic 
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models, and hydrological and vegetation data from fieldwork to examine SAR backscatter 

responses to water level changes over marshes in the Parana River Delta. Kim et al. (2014) 

has investigated the influence of water level changes on PALSAR σ$ and developed a 

regression method to estimate water level changes by differencing PALSAR σ$. 

Apart from using SAR σ$ , SAR Interferometry (InSAR) using the phase 

differences between two SAR images has demonstrated its ability to map two-dimensional 

water level changes with high spatial resolution (~30 m) and high accuracy (centimeter 

level). The capability of InSAR to explore !ℎ !# in wetlands was first demonstrated by 

Alsdorf et al. (2001) using L-band HH-polarized SIR-C data over the Amazon wetland. 

InSAR-derived spatially dense !ℎ !# measurements were then utilized to map the passage 

of a flood wave in the Amazon wetland using L-band JERS-1 data (Alsdorf et al., 2007a). 

Wdowinski et al. (2008) also used the JERS-1 SAR data to map the !ℎ !#  over the 

Everglades wetlands in Florida. Besides the L-band SAR data, Lu and Kwoun (2008) found 

that interferograms generated with C-band Radarsat-1 and ERS SAR data can also maintain 

adequate coherence under medium-low canopy closure over the Louisiana swamp forests. 

The advantage of this InSAR technique is that it provides highly accurate water level changes 

over the vegetated wetlands with high spatial resolution (usually 10 – 30 m). However, there 

exists several shortfalls as well. First, a coherent SAR pair, constrained by temporal and 

spatial baselines and surface scattering characteristics, is required to generate the 

interferogram (Jung and Alsdorf, 2010). Secondly, the interferograms may only be 

generated over the wetlands with stable trunks of vegetation (e.g., swamp forests) (Alsdorf 

et al., 2001; Lu and Kwoun, 2008; Wdowinski et al., 2008) or structures (Kim et al., 2005) 

which enable the reflected radar signal to follow the double-bounce travel path. Finally, 
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the interferograms generated from InSAR can only provide a spatially relative gradient of 

water level changes.  

1.2.3 Integration of SAR and Radar Altimetry in Wetland Hydrology 

SAR and altimetry have distinct advantages and limitations in measuring wetlands 

hydrology. SAR images have good spatial coverage and resolution in mapping inundated 

extents but does not measure water level. InSAR is able to provide high spatial resolution 

relative !ℎ !# but needs vertical reference to obtain absolute !ℎ !#. Radar altimetry is 

able to measure water level in both wetlands and open water surface. But it cannot map 

water extent or spatially detailed water level changes. Complementary characteristics of 

the two techniques imply enhanced ability to monitor wetlands hydrology by combining 

them. Integration of the two measurements has been successful using three strategies.  

The first strategy is integrating inundation extents from L-band SAR H$ and water 

level from radar altimetry to estimate water storage changes in the large river basins 

(Frappart et al., 2005; Lee et al., 2014). This method is useful to quantify wetlands water 

storage changes which is a key, governing parameter in continental scale hydrological 

modelling (Richey et al., 1989; Vörösmarty et al., 1989; Coe, 1998). The second strategy 

is constructing regression models with PALSAR H$ and water level measurements from 

altimetry to map water depth in the flooded forests with high spatial resolution (Lee et al., 

2015). The methods relying on the L-band SAR backscattering coefficients to estimate the 

flooded extents or water depth are only limited by the temporal coverage of the SAR data 

(Prigent et al., 2007; Aires et al., 2013). In other words, since the preferred L-band 

wavelength SAR data for studying forested wetlands is only provided by a few satellites 
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of JERS-1 (1992 – 1997), ALOS (2006 – 2011), and ALOS-2 (2014 – present), there is a 

significant time gap that is not covered by these datasets (e.g. 1998 – 2005). Moreover, the 

long revisiting periods of JERS-1 (44 days) and ALOS (46 days) can result in missing the 

flood peaks. 

The third strategy is to obtain high spatial resolution absolute water level change 

maps by integrating radar altimetry and InSAR measurements. Radar altimetry derived 

absolute water level change can be used as a vertical reference for InSAR measured two 

dimensional relative water level change map (Kim et al., 2009). Spatially detailed water 

level change maps provide opportunity to investigate hydraulics of complex water flow, 

subjected to bathymetry and hydraulic variations (Alsdorf et al., 2007a; Jung et al., 2010). 

These maps are also useful to calibrate wetland hydrodynamic models (Jung et al., 2012). 

The limitation of this method lies in the availability of InSAR measurements, which is 

constrained by its coherence. 

1.3 Motivation and Objectives 

From the last section, there are two ways to measure spatially detailed !ℎ !# in the 

wetlands: 1) correlating SAR σ$  and water level with a regression or electromagnetic 

model; 2) integrating InSAR derived relative !ℎ !# with a vertical reference from radar 

altimetry or in situ gauges. Several studies have focused on mapping inundation extents in 

Congo wetlands using SAR σ$ (Rosenqvist and Birkett, 2002; Rosenqvist, 2008; Lee et al., 

2014). Rosenqvist and Birkett (2002) generated two high spatial resolution (~100 m) 

inundation maps over the whole Congo Basin using L-band JERS-1 mosaics, and suggested 

that at least three SAR acquisitions within one year would be sufficient to describe the 
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complex hydrology in the Congo Basin. Rosenqvist (2008) presented multi-temporal 

inundation maps and mapped flooding duration in the Congo Basin with ALOS ScanSAR 

images. Lee et al. (2014) delineated the inundation extents of the flooded forest, herbaceous 

wetlands, and open water in the Cuvette Centrale with PALSAR ScanSAR. Lee et al. (2015) 

developed a regression model with PALSAR ScanSAR, Envisat altimetry and MODIS 

Vegetation Continuous Fields (VCF) to generate three water depth maps over the forested 

wetlands in the Cuvette Centrale. Since SAR σ$  has only been used to map flooding 

extents or water depth in the forested wetlands, its ability to measure !ℎ !# over different 

vegetation fields has not been explored. The first objective of this dissertation is to examine 

temporal variability of SAR σ$ in the Congo wetlands over different vegetation fields and 

explore its ability to measure !ℎ !# with Envisat altimetry and MODIS VCF. 

In addition, only a couple of studies have used InSAR and satellite altimetry data 

to map spatially detailed !ℎ !# of the Congo’s wetlands. Jung et al. (2010) used two 

interferograms generated with L-band JERS-1 images obtained in 1996 over the 

interfluvial wetlands near the confluence of the mainstem and its major tributaries 

including the Ubangi and Sangha, and reported that the flow patterns are not well defined 

and have diffuse patterns. Lee et al. (2015) generated two PALSAR interferograms over 

similar central regions and revealed dense fringe patterns showing increasing !ℎ !# 

toward the mainstem. Since multi-temporal !ℎ !# and hydraulic processes have not been 

extensively investigated, the second objective is to generate multiple !ℎ !# maps with 

PALSAR images over the middle reach of the Congo near the city of Lisala, and to quantify 

and characterize the flow dynamics in the wetlands.  
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Lee et al. (2011) quantified the water filling and draining the entire Congo wetlands 

to be 111 km3 with multiple remote sensing techniques, including GRACE, JESR-1 SAR 

images, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and 

MODIS. Lee et al. (2014) estimated the water storage changes over the flooded forest, 

herbaceous wetlands, and open water in the Cuvette Centrale using PALSAR ScanSAR 

and Envisat altimetry measurements from 2006 to 2010, and concluded that GRACE-

derived TWS changes are mostly controlled by surface water storage changes. However, 

long-term local scale water storages over the wetlands are not known due to lack of 

temporal coverage of SAR images. Therefore, another key target of this dissertation is to 

estimate water storage variations by developing a model between water depths and storages.  

Water storage changes in wetlands is usually the composite consequences of 

different influxes and outfluxes. Different water sources could make a difference in the 

sediment supplies, carbon and nutrient exchange. Few studies have investigated the sources 

and sinks of the water in the Congo wetlands. Lee et al. (2011) has investigated the source 

and amount of water in the Congo wetland in sub-basin scale and concluded that local 

water is the main source of Congo’s wetlands water. However, quantitative estimations of 

the wetlands sources and sinks have not been reported yet. The last objective of this 

dissertation is to investigate influxes and outfluxes of the Congo wetlands.  

In summary, the objective of this dissertation is to further improve our 

understanding of the Congo wetlands hydrology in finer temporal and spatial scales by 

innovatively integrating data from radar altimetry, InSAR and SAR. The scientific 

questions of this research to address are as follows: What is the spatio-temporal variations 
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of !ℎ !# in the Congo wetlands? What is the inter-annual variations of water storages in 

the Congo wetlands and what contributes to its inter-annual variations? How does the water 

fill and leave the Congo wetlands?  

1.4 Document Structure 

Chapter 2 reviews the data processing of satellite altimetry and InSAR. 

Chapter 3 examines seasonal variations of ALOS PALSAR σ$ in the Malebo Pool 

where non-forested and forested vegetation are found. A regression model integrating 

PALSAR σ$, Envisat altimetry, MODIS VCF was proposed to estimate !ℎ !#.  

Chapter 4 generates fifteen interferograms from ALOS PALSAR to map the multi-

temporal !ℎ !# over the forested wetlands along the middle reach of the Congo main-stem 

using the Small Temporal Baseline Subset (STBAS) strategy.  

Chapter 5 develops a new method to estimate absolute water storages over the 

wetlands by establishing relations between water depths (,) and water volumes (.) using 

2-D water depth maps from the integration of InSAR and altimetry measurements.  

Chapter 6 investigates fluxes across the Congo wetlands using mass balance 

equation. A wetland model integrating water surface slope, water depth from satellite 

altimetry was applied to derive hydrological parameters &' and ) which are specific to the 

Congo wetlands. 

Chapter 7 summarizes the main results and conclusions. Several recommendations 

for future research are outlined.   
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Chapter 2 Theoretical Background  

2.1 Satellite Altimetry 

2.1.1 Satellite Altimetry Measurement Principles 

Satellite altimetry was initially designed to measure sea surface height. It measures 

sea surface elevation by transmitting a nadir-looking electromagnetic pulse travelling at 

the speed of light and measuring its two-way travel time when the return from the 

instantaneous sea surface is received, as shown 

 

Figure 2-1 Concept of satellite altimeter. (Courtesy of ESA) 
Distance between the antenna and the earth surface can be written as 

 R = ct/2, (2-1) 
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where R is measured distance between satellite antenna and sea surface, c is speed of light, 

and t is electromagnetic pulse two-way travel time. 

Corrections including propagation corrections, surface corrections, geophysical 

corrections and instrument corrections (ESA, 2007) need to be added to get the correct 

distance between earth surface and satellite: 

 RM = R + ∆RO2 + ∆RE2 + ∆RPDQD + ∆RRRC + ∆RPQR2S, (2-2) 

where RM  is corrected distance, ∆RO2  is wet tropospheric correction, ∆RE2  is dry 

tropospheric correction, ∆RPQD  is ionosphere correction, ∆RRRC  is sea surface bias 

correction, ∆RPQR2S is instrument correction.  

Sea surface height can be estimated by given altitude of satellite: 

 H = HUVW − RM, (2-3) 

where H is surface height, HR42 is altitude of satellite, RM is corrected distance.  

2.1.2 Satellite Altimetry Retracking Method  

Satellite altimeter measures the ranges by recording the power distribution of 

reflected pulses. The on-board tracker records the radar pulses, also called waveform, in a 

range of gates or bins. Figure 2-2 illustrates a schematic description of a radar altimeter 

pulse returned from sea surface. The altimeter transmits a spherical expanding signal 

towards the sea surface. When the pulse hits the sea surface at nadir at t=t0, the transmitted 

pulse illuminates the sea surface and the returned signal is measured by the altimeter 

antenna. While the leading edge of pulse continues illuminating the sea surface (t0<t<t1), 

the illuminated area on the sea surface expands and returned power increases. At the time 
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of trailing edge immediately arrives the sea surface t=t1, the returned energy reaches its 

maximum. Thereafter (t> t1), with the trailing edge of the pulse arriving the sea surface, 

the illuminated area becomes an annul and the backscattered energy to the altimeter starts 

to decay. Over calm sea surfaces, the waveform has a straight rapid leading edge and a 

slowly decaying trailing edge.  

 

Figure 2-2 Interaction of transmitted pulse from altimeter, illuminated area on the sea 
surface and corresponding recorded returned waveform. PLF stands for pulse-
limited footprint and /0 is antenna beam width (Deng, 2003). 

Although satellite altimetry was initially designed to measure sea surface height, it 

has been successfully used for non-ocean surfaces, including ice-sheets, lakes, rivers and 
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wetlands. Since the non-ocean surfaces have different characteristics, different retracking 

methods have been developed to address these differences, including NASA β-retracker 

(Zwally, 1996), surface/threshold retracker (Davis, 1997), Offset Center of Gravity 

(OCOG), also known as ICE-1 (Wingham et al., 1986; Bamber, 1994), ICE-2 (Legresy and 

Remy, 1997) and SEA ICE retracker (Laxon, 1994). Among all the tracking methods, ICE-

1 algorithms has been demonstrated to provide more accurate water level measurements 

(Frappart et al., 2006). Since ICE-1 retracking measurements from Envisat RA-2 are the 

only retracking measurements used in this dissertation, ICE-1 retracking algorithm is 

introduced as follows. Figure 2-3 illustrates the schematic plot of OCOG algorithm. 

 

Figure 2-3 Schematic plot of OCOG retracker (From (Lee, 2008)). 
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The leading edge position (LEP) is estimated using 

 mn\ = opq −r[,#ℎ/2. (2-7) 

2.2 Interferometric SAR 

InSAR processing consists of two or more SAR images. SAR images can be 

collected in three different modes: dual-antenna standard mode composed of single 

transmitter and dual antenna, dual-antenna “ping-pong” mode composed of two 

transmitters and two antennas, and repeat-pass mode composed of single transmitter and 

single antenna. Repeat-pass mode collects SAR images at different times which is the mode 

used for spaceborne platforms. In this dissertation, repeat-pass mode will be assumed, 

unless otherwise noted. This section will describe the algorithms for InSAR data processing 

from geometric views and demonstrate intermediate results in InSAR processing with an 

interferogram example generated using L-band ALOS PALSAR images. 

2.2.1 Overview of InSAR Processing 

SAR interferometry processing involves two SAR images illuminating the same 

region with the antenna at slightly different positions. The SAR interferometric processing 

flow is shown in Figure 2-4. A pair of ALOS PALSAR images obtained on August 4, 2007 

and December 20, 2007 are used to illustrate this process. GAMMA software packages 

(Werner et al., 2000) are used for the InSAR processing in this dissertation.  
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Figure 2-4 Flow chart of InSAR data processing. 

SAR images are complex data composed of both intensity and phase information, 

named Single Look Complex (SLC) data before multi-looking. Assume s7 is master image 

or reference image and s8 is the slave image. Each SAR image can be written as 

 s7 = B7 exp iu7 , s8 = B8exp	(iu8), (2-8) 

where s7 , s8  are complex values of SAR images, B7  and B8  are SAR images intensity 

values, u7 and u8 are SAR images phase information. Figure 2-5 shows two multi-look 

complex ALOS PALSAR images. It is noted that the phase data in the SAR images are 

modulo of 2π. 
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Figure 2-5 Intensity, phase and zoom-in phase of two complex ALOS PALSAR images 

obtained on Aug 4, 2007 (a, b, c) and Dec 20, 2007 (d, e, f). from ALOS 
PALSAR.  

2.2.2 InSAR Geometry 

Radar interferometry geometry is given in Figure 2-6. The plane of Figure 2-6 is 

the imaging plane and is normal to the satellite flight direction. The direction along the 

flight track, which is perpendicular to the plane of the page or image plane, is called “along 

track direction” or “azimuth direction”. The direction of transmitting microelectronic wave 

is called range direction or line of sight (LOS).  

Assuming two SAR images are acquired by antenna at A1 and A2, imaging a point 

P on the surface with elevation of z. The SAR image obtained by SAR antenna at A1 with 
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height h above reference surface is called the master or reference image. For a given point 

P on the ground with topographic height z, it is imaged by antenna at A1 with range w7 and 

look angle /. The second SAR image is obtained by antenna at A2, which is called the slave 

image. The slave SAR image illuminates point P with range w8. The separation of the 

antenna at A1 and A2 is called baseline	x. The component parallel to the line of sight is 

called parallel baseline B∥ while the one perpendicular to the line of sight direction is called 

perpendicular baseline	x{. 

 
Figure 2-6 Geometry of SAR interferometry in the plane normal to azimuth direction.  

2.2.3 Interferogram Formation  

The generation of interferograms requires SAR images to be coregistered with sub-

pixel accuracy. The coregistragion process is usually done in two steps. The first step is to 

estimate initial azimuth and range offsets from satellite orbital information and a moving 

window approach. The second step is to resample the slave image to the reference of the 

master image. 
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After resampling of the slave image, the interferogram can be generated by cross-

multiplying the master SAR image and the conjugate complex of the co-registered slave 

SAR image, such as 

 φ = s7s8
∗. (2-9) 

By recalling SAR geometry shown in Figure 2-6, the phases u7 and u8 of SAR 

images are functions of distance between the antenna and surface object, which can be 

expressed as 

 u7 =
^~

�
w7, 		u8 =

^~

�
w8. (2-10) 

The interferometry phase is the phase difference between the two SAR images: 

 u = u8 − u7 =
^~

�
w8 − w7 , and (2-11) 

 Åw = w8 − w7. (2-12) 

Figure 2-7 demonstrates an interferogram generated from the two SAR images 

shown in Figure 2-5. The interferogram contains dense fringes, which can be observed in 

Figure 2-7 (b). It should be noted that the interferometric phase is computed by calculating 

the arctangent of the ratio of imaginary part and the real part of the complex interferogram. 

Thus, the value of interferometric phase is wrapped between -π and π. 
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Figure 2-7 (a) The complex interferogram generated from two SAR images in Figure 2-5. 

(b) Zoom-in of the region enclosed in the white box in (a). 
2.2.4 InSAR Flattening 

The interferogram in Figure 2-7 shows dense fringes across the image which makes 

it difficult to extract useful signals, such as topographic height or surface deformation from 

the interferometric phase. The following section will describe algorithms to remove phase 

contributions from reference surface based on the geometry shown in Figure 2-6.  

From the law of cosines for triangular A1A2P in Figure 2-6, we have the following 

relationship for w7, w8 and baseline x: 

 cos 90° − / + á = sin	(á − /) =
âä
ãbåã_âã

ã

8åâä
. (2-13) 

Substituting Equation (2-12) into Equation (2-13), Equation(2-13) can be 

simplified by assuming x ≪ 	w: 

 Åw = x sin á − / +
åã

8âä
, (2-14) 
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where /  is the looking angle of antenna A1, and 	á  is baseline angle with respect to 

reference surface.  

Substituting Equation (2-14) into Equation (2-11), we get  

 φ =
^~

�
x sin á − / +

^~

�

åã

8âä
. (2-15) 

The look angle can be written as 

 θ = θ$ + 	Å/, (2-16) 

where θ$ is the look angle on the reference surface, and Å/ is the change of look angle due 

to presence of topography.  

The phase contribution of the reference surface can be written as  

 φ$ =
^~

�
x sin á − θ$ +

^~

�

åã

8âä
. (2-17) 

The process to remove the contribution of reference surface is referred to flattening. 

After removing the phase contributed from the reference surface, the flattened 

interferometric phase is: 

 φ'942 = u − φ$ ≅
^~

�
x sin á − / −

^~

�
x sin á − θ$ . (2-18) 

Substituting Equation (2-16) into Equation (2-18)  

 φ'942 ≅ −
^~

�
x cos á − θ$ Å/ = 	−

^~

�
x{$Å/, (2-19) 

where x{$ is perpendicular baseline with respect to line of sight to P’ on the reference 

surface.  

Looking angle for P’ on the reference surface can be written as  
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 cos θ$ =
âä

ãb(êëbí)
ã_ êìbî

ã

8âä(êëbí)
, (2-20) 

where ïí is distance of antenna A1 to the earth center, and ïî is distance of point P to the 

earth center. 

Substituting Equation (2-16) into Equation (2-20), we obtain 

 Å/ =
î

7bí/êë êë/êì RPQ ñó
. (2-21) 

Substituting Equation (2-21) into Equation(2-19), the flattened interferometric 

phase can be written as  

 φ'942 ≅ −
^~

�

åòó

(7bí/êë)(êë/êì)âäUôö	(ñó)
õ. (2-22) 

By using this algorithm, the interferometric phase due to the reference surface can 

be removed. Figure 2-8(a) illustrates the interferogram after removing the phase 

contribution of reference surface which is also called flattened interferogram. As shown in 

Figure 2-8(a), most of the dense fringes in Figure 2-7 are removed.  

Height ambiguity is an important quantity to interpret the flattened interferogram. 

It is the amount of topographic variation corresponding to one cycle interferometric phase, 

which can be computed by substituting 2π into Equation (2-22), 

 ℎ4 = −
�

8

(7bí/êë)(êë/êì)âäUôö	(ñó)

åòó
. (2-23) 

The height ambiguity for the interferogram example in this chapter is 105 m with 

wavelength ú of 23.6 cm, altitude of ~700 km, semi-major axis of reference ellipsoid WGS 

84 of 6378137.0 m, looking angle of 34.4º, and perpendicular baseline length of 485 m. In 

other words, 105 m of topographic difference can cause one fringe in the interferogram. 
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Apart from topographic variations, surface deformation, orbital error and atmospheric 

errors will also contribute to the phase variations. 

2.2.5 Differential Interferogram 

To obtain the surface deformation information, the topographic phase in the 

flattened interferogram must be removed using DEM data. SRTM DEM is used to remove 

the topographic phase component in this dissertation. 

With the presence of deformation in the slave SAR image, the range observation 

for point P can be written as  

 w8 = 	w7 + Åw + ∆w, (2-24) 

where ∆w is the deformation component along LOS. 

Substituting Equation (2-24) in to Equation (2-22)  

 φ'942 ≅ −
^~

�

åòó

7b
ë

ùë

ùë
ùì

âä Uôö ñó

õ +
^~

�
∆w. (2-25) 

For two-pass interferometry, the phase contribution from the topographic relief can 

be estimated by the external DEM and baseline 

 uRP3_EF3 = −
^~

�

åò

âäUôö	(ñó)
õ. (2-26) 

After removing the topographic component from the flattened interferogram, a 

differential interferogram is generated. The relation between deformation and observed 

interferometric phase can be expressed as 

 ∆w = −
�

^~
uEF'. (2-27) 
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Figure 2-8(b) illustrates the flattened interferogram after removing the phase 

contribution from topographic relief. The interferogram after removing topographic phase 

is also called a differential interferogram. Equation (2-27) implies that each fringe in the 

differential interferogram represents a half wavelength deformation. In case of ALOS 

PALSAR data, each fringe represents 12.8 cm of deformation in the LOS direction. 

2.2.6 Orbital Error and Atmospheric Error 

The upland area in Figure 2-8(b) shows a gradual trend of phase change from the 

bottom right corner which is likely due to orbital error. The orbital error in the 

interferogram is usually estimated using a first- or second-order polynomial, then removed 

from the differential interferograms. Figure 2-8(c) is the differential interferogram after 

removing the orbital error. Fringes in the interferogram in Figure 2-8(c) are mostly due to 

water level changes. 

Atmospheric component	∆φVWü is characterized by high spatial correlation but low 

temporal correlation (Berardino et al., 2002). This can be removed or mitigated by using a 

high pass filter for the pixels in the time domain or by atmospheric model (Berardino et 

al., 2002; Foster et al., 2006; Li et al., 2006). As can be seen in Figure 2-8(c), the 

atmosphere effect is not significant. Thus, removal of atmospheric effect is not necessary 

in this example. However, it can hamper InSAR observation in some cases. 
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Figure 2-8 Intermediate interferograms generated from ALOS PALSAR images on Aug 

4, 2007 and Dec 20, 2007.  
2.2.7 Phase Unwrapping 

In Figure 2-8(c), the phase in the differential interferogram represents wrapped 

phase which is a modulo of 2π. Unwrapping is necessary to get the continuous phase from 

the wrapped interferogram. Minimum cost flow is used in this dissertation to unwrap the 

wrapped interferogram. Figure 2-9 shows the comparison between wrapped and 

unwrapped phases. The wrapped phase is within the magnitude of -π and π. The process 

of unwrapping adds multiple of 2π to the wrapped phase.  

 
Figure 2-9 (a) Wrapped interferogram, (b) Unwrapped interferogram and (c) Comparison 

of wrapped and unwrapped phases along the red lines in (a) and (b). 
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2.2.8 InSAR Coherence 

Coherence of an interferogram is used to estimate the quality of InSAR 

measurements is defined as below: 

 †2D249 =
°ä°ã

∗

°ä°ä
∗ °ã°ã

∗ . (2-28) 

The magnitude of the coherence ranges from 0 to 1. Higher coherence suggests better 

interferogram quality. For most cases, coherence of the interferogram is usually less than 

1 due to decorrelation between the SAR images. Three major factors that contribute to 

decorrelation are spatial baseline decorrelation, temporal decorrelation and thermal noise 

(Zebker and Villasenor, 1992). 

 †2D249 = †2íFS349†R=42P49†2F3=DS49, (2-29) 

where †2íFS349 is system noise, †R=42P49 is related to the platform positions during the SAR 

acquisition time which can be quantified by the spatial baseline between the satellite 

positions, and temporal decorrelation, †2F3=DS49, is caused by changes of feature surface 

scattering centers between the two SAR acquisitions.  

Figure 2-10 presents the coherence of the interferogram in Figure 2-9. 
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Figure 2-10 InSAR coherence for the interferograms in Figure 2-9. 
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Chapter 3 Towards Estimating Wetland Water Level Changes 

using PALSAR σ*  

3.1 Introduction 

SAR σ$ has been widely used to classify flooded and non-flooded areas with their 

vegetation types based on the fact that hydrological changes over wetlands can result in 

variations in SAR backscattering coefficients (Hess et al., 2003; Martinez and Le Toan, 

2007). Accordingly, there have been efforts to quantify the relationship between hydrologic 

conditions and σ$ using theoretical scattering models (Kasischke et al., 2003; Grings et al., 

2006, 2008). Apart from electromagnetic models, regression models have also been applied 

to correlate SAR σ$  and water level changes. Kim et al. (2014) has investigated 

relationships between L-band PALSAR σ$ and water level changes from in situ gauges 

over the Everglades freshwater marshes. However, the Everglades may be the only wetland 

in the world equipped with a dense network of water gauges installed for restoration 

projects, while most of the wetlands in the world lack cost-prohibitive in situ water gauges. 

Alternatively, satellite radar altimetry has been successfully used to monitor water level 

changes over rivers, lakes, and wetlands (Birkett et al., 2002; Lee et al., 2009). Lee et al. 

(2015) developed a regression method with PALSAR σ$, Envisat altimetry and MODIS 

VCF to generate three water depth maps over the flooded forest in the central Congo Basin. 

Since PALSAR σ$ has only been used to map water depth in the forested wetlands in the 

Congo Basin, its capability of measuring !ℎ !# with radar altimeter measurements over 

different vegetation fields has not been explored. In this study, wetland water level changes 
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obtained from Envisat altimetry were used to investigate seasonal variations of L-band 

PALSAR σ$ over different vegetation fields. In addition, because the radar backscattering 

mechanism depends on vegetation types as well, the VCF (DiMiceli et al., 2011; Hansen 

et al., 2013) product derived from the MODIS was used to investigate the PALSAR 

backscattering sensitivity to different vegetation fields under different hydrologic 

conditions. Finally, wetland water level changes were estimated based on the relationship 

between backscattering sensitivity to water level changes and VCF data, which were 

compared with water level changes obtained from InSAR and Envisat altimetry. 

3.2 Study Area 

The Congo River is the largest river in Africa with a large number of islands. The 

largest number of channels and islands are found in the Malebo Pool, located upstream of 

the Livingstone Fall. The Malebo Pool is surrounded by extensive palms and papyrus 

swamps along the edges, with floating mats of Eichhornia frequently passing through 

(Bailey and Banister, 1986). The annual amplitude of water level change in the Malebo 

Pool is about 3 m, and water flows quickly towards the Livingstone Fall with an average 

flow of 30,000 m3·s−1 and 60,000 m3·s−1 in flooding time (Thieme et al., 2005). The biggest 

island in the Malebo Pool is called the Île Mbamou, which is our study area (Figure 3-1). 

It separates the Congo River into two channels, and most of the water flows through the 

channel south of the Île Mbamou to the Livingstone Fall. 

Figure 3-1(a) shows 3-arcsecond resolution C-band SRTM DEM over our study 

region. Interestingly, SRTM DEM values are distinctly different over the southern and 

northern parts of the Île Mbamou. Since this SRTM DEM is generated with C-band (5.6 
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cm wavelength) SAR data which cannot fully penetrate vegetation canopy (Lu and Kwoun, 

2008; Baugh et al., 2013), the measured scattering phase center is usually above bare 

ground and lower than the tree height (Brown et al., 2010). Consequently, the SRTM 

elevations are biased upward above the ground into the tree canopy, and do not represent 

the bare-earth topography. Therefore, it is likely that the higher SRTM DEM values over 

the southern island partly represent its higher canopy height. This is consistent with the 

land cover map shown in Figure 3-1(b) from the GLCNMO (Global Land Cover by 

National Mapping Organizations) 2008 (Tateishi et al., 2010). The southern part of the Île 

Mbamou is dominated by “broadleaf evergreen forest” while the northern part of the Île 

Mbamou is occupied by “herbaceous vegetation” and “open canopy”. However, old French 

literature found in (Sita, 1968) indicates that the topography between the southern and 

northern parts of the island may indeed be different. 

 
Figure 3-1 (a) Envisat’s pass 143 (black line) over our study area. The central island 

represents the Île Mbamou. Background is the C-band SRTM DEM; (b) Land 
cover map from GLCNMO2008. 
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3.3 Dataset 

3.3.1 Envisat Radar Altimetry 

Envisat RA2 Geophysical Data Record (GDR) of pass 143, from the period of 

October 2002 (cycle 10) to September 2010 (cycle 93) was used. The ascending pass 143 

flies over the Malebo Pool from south to north, sequentially intersecting the southern reach 

of the Congo River, the Île Mbamou, and northern reach of the Congo River (Figure 3-1(a)). 

The Envisat RA2 GDR contains 18-Hz (~350 m along-track sampling) retracked range 

observations using OCEAN, ICE-1, ICE-2, and SEA ICE retrackers. Among these, the 

ICE-1 retracker (Wingham et al., 1986) was chosen. The instrument corrections, media 

corrections (dry and wet troposphere corrections from the European Centre for Medium-

Range Weather Forecasts model, and the ionosphere correction based on Global 

Ionosphere Maps), and geophysical corrections (solid Earth and pole tides) were applied. 

In addition, the 5.6 m level Ultra Stable Oscillator (USO) anomalies for cycles 44–85 were 

corrected using the European Space Agency’s correction table. 

3.3.2 PALSAR Backscattering Coefficients 

Fourteen ALOS PALSAR images were obtained at ascending flight direction with 

a look angle of 34.3°, spanning from June 2007 to February 2011, as listed in Table 3-1. 

Seven of them were obtained with Fine Beam Single (FBS) mode (HH polarization) while 

the other seven were obtained with Fine Beam Dual (FBD) mode (both HH and HV 

polarizations) (Pope et al., 1997; Rosenqvist et al., 2007). HH polarization mode images 

were adopted because it is known to be more sensitive to water level changes beneath 

vegetation (Pope et al., 1997; Grings et al., 2009) and provides better interferometric 
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coherence (Kim et al., 2009). PALSAR raw data was processed to obtain Single Look 

Complex (SLC) images. It is noted that different bandwidths of FBD and FBS data lead to 

different ground range resolutions, i.e., 28 MHz for FBS data and 14 MHz for FBD data 

(Shimada et al., 2009). To obtain consistent resolutions, the FBD images were oversampled 

by a factor 2 in the range direction. The SLC images were then co-registered to a common 

SLC image obtained on December 13, 2008. To reduce the effects of radar speckle noises, 

a 4 × 9 multi-look factor was applied to all SLC images. As a result, the spatial resolution 

of the multi-looked images becomes approximately 30 m × 30 m. The backscattering 

coefficient (σ$) can be computed with absolute calibration factors as 

 σ$ = 10 log7$ §•
8 + o¶	(dB), (3-1) 

where DN is the digital number of the amplitude image, and CF is the radiometric 

calibration factor (−51.9 dB for FBS HH data, and −51.8 dB for FBD HH data) (Werner et 

al., 2000). A median filter with a 3 × 3 window was also applied to further reduce speckle 

noises. Since the topography is quite smooth over the study area, gamma naught g
$
 

(σ$	divided by the cosine of the incidence angle) is not considered in this study. Finally, 

all the σ$  images were geocoded using a 3-arcsecond SRTM DEM oversampled to 1-

arcsecond resolution. However, it is noted that a 1-arcsec SRTM DEM over Africa is now 

freely available (JPL, 2014). 
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Table 3-1 List of PALSAR scenes used this study. 

Scene ID 
Operation 

Mode 
Date Path Frame 

Polarization 

Mode 

ALPSRP073347100 FBD 2007/06/10 607 7100 HV/HH 

ALPSRP086767100 FBD 2007/09/10 607 7100 HV/HH 

ALPSRP093477100 FBS 2007/10/26 607 7100 HH 

ALPSRP100187100 FBS 2007/12/11 607 7100 HH 

ALPSRP127027100 FBD 2008/06/12 607 7100 HV/HH 

ALPSRP153867100 FBS 2008/12/13 607 7100 HH 

ALPSRP180707100 FBD 2009/06/15 607 7100 HV/HH 

ALPSRP194127100 FBD 2009/09/15 607 7100 HV/HH 

ALPSRP207547100 FBS 2009/12/16 607 7100 HH 

ALPSRP214257100 FBS 2010/01/31 607 7100 HH 

ALPSRP234387100 FBD 2010/06/18 607 7100 HV/HH 

ALPSRP247807100 FBD 2010/09/18 607 7100 HV/HH 

ALPSRP261227100 FBS 2010/12/19 607 7100 HH 

ALPSRP267937100 FBS 2011/02/03 607 7100 HH 

3.3.3 MODIS VCF 

The MODIS 250 m VCF collection 5 product was used in this study to represent 

the spatial heterogeneity of vegetation in the Île Mbamou. The VCF product is derived 

from all seven bands of MODIS data (DiMiceli et al., 2011; Hansen et al., 2013). It 

contains proportional estimates for vegetative cover types, including woody vegetation, 

herbaceous vegetation and bare ground, and thus is useful to show how much of a land 
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cover such as “forest” or “grassland” exists (DiMiceli et al., 2011). The VCF data is 

available from 2000–2010, and a mean VCF value was calculated which is shown in Figure 

3-2. Figure 3-2 shows clear difference in VCF over the northern (10%–20%) and southern 

(50%–70%) parts of the island. It indicates that the northern part is mostly covered with 

non-forest vegetation whereas the southern part is dominated by forest. 

 
Figure 3-2 Map of MODIS VCF averaged using VCF data from 2000–2010 over the Île 

Mbamou. Envisat 18-Hz nominal footprints with their numbers are also 
plotted which are referenced in Section 3.5.2. 

Overall, distinctly different vegetation types over the northern and southern parts 

of the island, along with the intersecting Envisat track make the Île Mbamou an ideal 

domain to test a regression model toward estimating water level changes based on σ$ 

changes and MODIS VCF. Hereinafter, the northern Île Mbamou refers to the non-forested 

areas and the southern Île Mbamou refers to the forested areas. 
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3.4 Envisat Altimetry and Interferometric SAR Data Processing 

3.4.1 Water Level Changes from Envisat Altimetry  

Typically, several high-rate (e.g., 18-Hz in case of Envisat altimetry) measurements 

obtained over intersections of the satellite track and water bodies (river, lake, reservoir, 

wetlands) are spatially averaged to generate time series of water level. Figure 3-3 illustrates 

the surface height profiles along Envisat pass 143 obtained from several Envisat cycles 

over the Malebo Pool. Water levels fluctuations are observed over the southern Congo 

reach, and southern and northern parts of the Île Mbamou (marked with “1”, “2”, and “3”, 

respectively, in Figure 3-3). Water level change time series were the generated by 

combining successive overpasses. Figure 3-4(a) shows the time series of water level change 

over the southern reach of the Congo River (“1” in Figure 3-3) using Envisat altimetry 

measurements (blue line) and daily in situ gauge observations at Brazzaville (red). The 

black dots in Figure 3-4(a) indicate the daily in situ data temporally closest to the Envisat 

altimetry data, which are used to compute the RMSE and correlation coefficient. After 

editing out spurious data, it shows overall good agreement between Envisat altimetry and 

in situ gauge data with a root-mean-square error (RMSE) of 34.9 cm and correlation 

coefficient of 0.95. Part of the RMSE would be due to the fact that Brazzaville is located 

where the northern and southern Congo River meet, which resulted in a higher amplitude 

for the in situ time series. Similarly, we generated water level time series by spatially 

averaging several 18-Hz Envisat altimetry measurements over the southern and northern 

parts of the Île Mbamou (“2” and “3” in Figure 3-3, respectively), which both revealed 2–

3 m of distinct seasonal variations (Figure 3-4(b)). Error bars in Figure 3-4(b) represent 
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95% confidence intervals. Interestingly, from Figure 3-4(b), it suggests that the water over 

the forested area stays for a longer period of time than the water over the non-forested area 

(roughly 3 or 4 months), which may indicate that the forested land has a longer residence 

time. 

 
Figure 3-3 Water level fluctuations referenced to EGM08 geoid over the Île Mbamou 

along Envisat pass 143. The “1”, “2”, and “3” correspond to regions with 
yellow, red, and white colors along the Envisat pass in Figure 3-1.  

 
Figure 3-4 (a) Time series of water level changes from Envisat altimetry over region “1” 

and from the in situ gauge at Brazzaville (red). (b) Time series of water level 
changes from Envisat altimetry over region “2” and region “3”.  

3.4.2 Comparison of Water Level Changes from Envisat Altimetry over the 

Everglades and in Situ Data 

In order to demonstrate Envisat altimeter’s capability for measuring water level 

changes over these vegetated wetlands in the Île Mbamou where no in situ record exists, 
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an indirect verification was performed by comparing the Envisat altimetry derived water 

level changes and in situ records over the Everglades wetlands in Florida, USA. Figure 3-5 

shows Envisat ground tracks over the Everglades with its VCF as background. We 

generated six water level change time series using the 18-Hz ICE-1 retracked 

measurements from passes 194 and 465, and compared them with nearby gauge data. As 

summarized in Table 3-2, VCF values extracted over the Envisat stations indicate that 

stations EnvP194_1, EnvP194_2, EnvP194_3, EnvP194_4, and EnvP465 are covered with 

non-forested vegetation and station EnvP194_5 is covered with forested vegetation. In 

Figure 3-6, the blue lines represent time series of water level changes from Envisat 

altimetry and red dots represent nearby in situ gauges. The black dots in Figure 3-6 indicate 

the in situ data temporally closest to the Envisat altimetry data, which are used to compute 

RMSE and correlation coefficient. Figure 3-6 and Table 3-2 show that all the Envisat 

altimetry time series agree very well with in situ data regardless of the canopy density. The 

unstable performance of Envisat altimetry over EnvP194_3 in 2007 and 2009 is suspected 

to be due to the dry conditions of the surface that persisted for about three months as can 

be seen from in situ data. After all, although the forest types in the Everglades and the 

southern Île Mbamou may be different, this comparison study over the Everglades shows 

that Envisat altimetry can measure water level changes beneath both non-forested and 

forested land cover accurately. 
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Figure 3-5 VCF Map of the Everglades with Envisat ground tracks. The Envisat stations 

and adjacent in situ gauges are indicated with red and white triangles, 
respectively. 
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Figure 3-6 Time series of water level changes from Envisat altimetry (blue) and nearby 

in situ gauges (red). The black dots indicate the in situ data temporally closest 
to the Envisat altimetry data. 

Table 3-2 Comparison between water level changes obtained from Envisat altimetry and 
in situ data over the Everglades wetlands 

Altimetry 
Time Series 

In Situ 
Gauges 

Distances 
between the 
Altimetry 

Station and 
Gauge (km) 

RMSE 
(cm) 

Correlation 
Coefficient VCF (%) 

EnvP194-1 P34 10.7 12.2 0.83 25 

EnvP194-2 S344-T 3.2 8.6 0.92 19 

EnvP194-3 3A10 5.1 17.1 0.87 27 

EnvP194-4 TMC 2.3 8.0 0.97 29 

EnvP194-5 NR 4.4 9.8 0.75 48 

EnvP465 EDEN12 2.1 8.6 0.96 21 

3.4.3 Water Level Changes over Each Envisat’s High-rate Nominal Footprint 

Next, we generated water level change time series over each of Envisat’s 18-Hz 

nominal ground track location using the high-rate stackfile method (for details, refer to (Lee 

et al., 2008, 2009)). Each Envisat high-rate (18-Hz) stackfile bin serves as the 18-Hz 

nominal ground track to which the 18-Hz water level change time series are referred. For 

each GDR record from a given Envisat cycle and pass, the corresponding row is predicted 
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based on an equator crossing table which is computed by interpolating the precision orbit 

ephemeris (POE) of Envisat. In other words, for example, for an ascending pass, the row 

can be computed such as (Kruizinga, 1997): 

 <ß®4R© =
™̀ ´¨_™≠ÆØ´¨

∞™
, (3-2) 

where ±4R© is the time tag on the ascending pass of a surface height measurement, ±F≤0R© 

is the time tag when the ascending pass crosses the equator and Δ± is the time spacing of 

the surface height measurements. The equator crossing tables are the basis of mapping 

transformation between time tags in GDR record and row-column addresses of the low-

rate (1-Hz) stackfile bins (for details, refer to Chapter 2 of (Kruizinga, 1997)). If the 

predicted 1-Hz stackfile row-column address is equivalent to the given bin address of the 

empty stackfile array, then for each 1-Hz stackfile bin, 18-Hz stackfile bins (or 18-Hz 

nominal ground tracks), in which the water levels are “stacked”, are created. The latitudes 

and longitudes of the 18-Hz bins (or ground tracks) are calculated by linearly interpolating 

two adjacent 1-Hz nominal ground track latitudes and longitudes, which are stored in the 

1-Hz stackfile bin header. The 18-Hz nominal ground tracks over the Île Mbamou are 

plotted in Figure 3-1(a). 

3.4.4 Water Level Changes from InSAR 

To be compared with the water level changes from altimetry, two differential 

interferograms using PALSAR pairs obtained on October 26 2007–November 11 2007 

(water increasing period) and December 16 2009–January 31 2010 (water decreasing 

period) were generated, and their spatial gradient of the water level changes between the 

acquisition dates (results in Section 3.5.3) were obtained. Perpendicular and temporal 



41 

 

baselines of the interferograms are summarized in Table 3-3. After flat-earth phase removal, 

the interferometric phase mainly contains contributions from the topographic relief and 

surface deformation in the radar range direction. The differential interferogram, which 

presumably contains phase changes only due to wetland water level changes (Alsdorf et al., 

2001; Lu and Kwoun, 2008; Kim et al., 2009), were generated after removing the 

topographic phases using the SRTM DEM. Because inaccurate orbit vector information 

provided in the PALSAR metadata often leaves residual fringes in the interferograms, the 

baseline error was modeled using the best-fitting polynomial to remove the artifacts due to 

the orbital error. The differential interferograms were then smoothed using adaptive 

filtering to enhance the fringe visibility, and finally geocoded to yield the displacement 

maps using the look-up table generated from existing geocoded SRTM DEM and SAR 

image orbital information (Wegmuller, 1999). Considering the radar wavelength and 

incidence angle of the PALSAR images, 1.0 radian of interferometric phase is equivalent 

to 2.4 cm of vertical water level change (Jung et al., 2010). 

Table 3-3 Description of InSAR pairs used to generate interferograms. 

Attribute Water Increasing Season Water Decreasing Season 

Perpendicular Baseline 116 m 79 m 

Ambiguity Height 439 m 645 m 

Date 
October 26 2007 December 16 2009 

December 11 2007 January 31 2010 

3.5 Estimating Wetland Water Level Changes Based on σ* Changes 

3.5.1 Temporal Variation of σ* 
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Figure 3-7 shows the geocoded PALSAR σ$ images over the study region. It is 

clear to see the temporal variations in the backscattered intensity, but with distinctly 

different patterns over the northern and southern parts of the Île Mbamou. For example, in 

June (June 10, 2007 or June 12, 2008) which corresponds to the low-water season, the 

entire island reveals similar intensity while in December (December 11, 2007, December 

13, 2008, or December 16,�2009), the high-water season, the southern part appears much 

brighter than the northern part. This can be explained if the northern part of the island has 

mainly non-forested low canopy vegetation whereas the vegetation on the southern part is 

mainly highly dense forest as indicated by the VCF map in Figure 3-2. During the high-

water season, the northern Île Mbamou (non-forested) would be mostly submerged and 

little radar energy would be backscattered to the satellite due to specular scattering. On the 

other hand, over the southern Île Mbamou (forested), increasing water level would lead to 

stronger double-bounce backscattering. 

As shown in Figure 3-8, the σ$	over the northen and southern Île Mbamou (over 

the black boxes in the averaged σ$ map in Figure 3-7) show seasonal variations which are 

expected to be related to the water level changes. Mostly, the peaks and troughs of the non-

forested land σ$  variation correspond to the troughs of peaks of the forested land σ$ 

variation, respectively. In the case of the forested land, increasing water level leads to 

stronger radar return due to enhanced double-bounce backscattering. On the contrary, the 

radar backscattering over the non-forested land is governed by the specular scattering 

during high-water season, leading to weaker radar return. However, stronger radar return 

is observed during the low-water season due to the double-bounce backscattering (Lu and 

Kwoun, 2008; Kim et al., 2014) or multipath backscattering (Kasischke et al., 2003) in non-
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forested vegetation. From Figure 3-8, it also shows that σ$ over the non-forested northern 

Île Mbamou reveals stronger temporal variations than those over the forested southern Île 

Mbamou. 

 
Figure 3-7 Images of PALSAR σ$  used in this study. PALSAR σ$  values over the 

northern part of the island, and the southern part of the island marked with 
black boxes in the “Average” image are used for Figure 3-8. 
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Figure 3-8 Variations of PALSAR σ$ over the northern and southern parts of the island, 

averaged over the 31 × 31 black boxes shown in Figure 3-7. Error bars 
represent 95% confidence intervals. 

It is noted that another important driver of temporal variation in L-band σ$ over 

non-forested vegetation is variation in soil moisture (Kasischke et al., 2003). It is expected 

that σ$ would increase if the surface soil condition transits from dry to wet. Although the 

northern Île Mbamou may experience a seasonal dry condition, it is expected that the σ$ 

variation observed in Figure 3-7 and Figure 3-8 is not likely due to the soil moisture 

variation based on Figure 3-9 which compares the time series of Envisat water level 

changes and PASLAR σ$ changes over the northern Île Mbamou. As shown in Figure 3-9, 

PALSAR σ$  increases when the water level decreases. In other words, the increase in 

PALSAR σ$ does not occur during the dry or early wet period, but during the decreasing 

water period due to the enhanced double-bounce (or multipath) backscattering. Therefore, 

the PALSAR σ$ data used in this study (listed in Table 3-1) do not show variation due to 

soil moisture increase, at least over the Envisat altimetry footprint locations. 
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Figure 3-9 Time series of water levels from Envisat altimetry (blue, left-axis) and 

backscattering coefficient from PALSAR (green, right-axis) over the non-
forested northern Île Mbamou. 

3.5.2 Effects of Water Level Changes on PALSAR σ* 

3.5.2.1 Relationship between Envisat Water Level Changes and PALSAR σ$ Changes 

Here, linear regression analysis between water level changes from Envisat altimetry 

and PALSAR σ$ changes over each Envisat’s 18-Hz nominal ground track (or footprint) 

location was performed. The σ$ changes over the ground track locations were obtained by 

performing a bilinear spatial interpolation. The water level changes generated over each of 

the 18-Hz stackfile bins are linearly interpolated to each PALSAR acquisition dates using 

two consecutive Envisat altimetry measurements obtained before and after the PALSAR 

acquisition dates, and compared with the corresponding PALSAR σ$ changes. For each 

Envisat’s 18-Hz nominal footprint, the lowest water level was used as a reference and 

regression analysis between the changes of water levels and σ$ was performed as shown 

in Figure 3-10 and Figure 3-11.  

Figure 3-10 shows selected time series of water level changes from Envisat 

altimetry (blue in the upper panels) and σ$ (green in the upper panels) over the forested 
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land. Results of linear regressions between them are illustrated in the bottom panels (Figure 

3-10). The amplitude difference of the water level changes between adjacent 18-Hz 

nominal footprint is partially due to altimeter measurement error. Figure 3-10 shows 

positive correlation between the changes of water levels and σ$ , which indicates that 

increasing water levels lead to stronger σ$ over the forested lands. The stronger σ$ can be 

explained by the enhanced double-bounce backscattering due to the increasing water levels.  

Figure 3-11 shows selected time series of water level changes from Envisat 

altimetry (blue in the upper panels) and σ$ (green in the upper panels) over the non-forested 

land. Results of linear regressions between them are illustrated in the bottom panels (Figure 

3-11). The blue and black lines represent the fitted line for “water increase I”, and “water 

increase II”, respectively (Figure 3-11 bottom panels). Figure 3-11 also shows the positive 

correlation between the changes of water levels and σ$ over the non-forested lands until 

the water surface reaches a certain level. This can also be explained by the stronger double-

bounce backscattering. If the water level continues to increase, then the negative 

correlation between the changes of water levels and σ$ is observed over the non-forested 

lands, which can be explained by the enhanced specular backscattering. A schematic plot 

illustrating these different backscattering mechanisms is shown in Figure 3-12 (modified 

from Figure 3 in (Kim et al., 2014)). The VCF threshold used to distinguish between the 

forested and non-forested lands will be discussed in the following section. 
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Figure 3-10 Selected time series of water level changes from Envisat altimetry and σ$  over 

the forested land. Results of linear regressions between them are illustrated in 
the bottom panels. Refer to Figure 3-2 for the location of the footprints. 
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Figure 3-11 Selected time series of water level changes from Envisat altimetry and σ$ over 

the non-forested land. Refer to Figure 3-2 for the location of the footprints. 
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Figure 3-12 Different backscattering mechanisms over the (a) forested and (b) non-

forested lands with different levels of water. 

3.5.2.2 Distinguishing Forested and Non-Forested Lands 

In Figure 3-10 and Figure 3-11, the mean VCF was used as a representative 

vegetation density value at each of Envisat’s 18-Hz nominal footprint location, so the 

relation between the linear regression slopes and VCF can be investigated (see Section 

3.5.2.3). It is noted that the spatial resolution of VCF (250 m) is finer than the altimeter 

along-track footprint interval (~350 m). First of all, a threshold should be determined to 

classify the forested and non-forested lands using VCF which is the percentage tree cover 

for every pixel. Various studies have used different VCF tree cover thresholds to determine 

forest land areas. For example, Nelson et al. (2004) used a threshold of 25% and produced 

estimates of forested land area similar to inventory estimates for the entire United States 

(US) and for the conterminous US. Schmitt et al. (2009) used 10% tree cover threshold and 

estimated global forest cover to be 39 million km2. Over the entire Congo Basin, Hansen 

et al. (2008) used VCF Landsat training data and four years of MODIS inputs to classify 
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“non-treed” cover with a threshold of <10%. In this study, the threshold to distinguish 

between the forested and non-forested lands was based on the regression relationships 

between σ$ and water level changes over each of the Envisat 18-Hz nominal footprints. 

Figure 3-10 shows the time series of PALSAR σ$  and interpolated Envisat 

altimetry water level changes over, for example, some of the footprint locations (footprints 

2, 3, 5, 6, 7, 8, 9 and 10) which have VCF > 20%. There exists positive correlation between 

σ$ and Envisat altimetry water level changes over these locations. In other words, higher 

water level leads to higher σ$. This indicates that higher water level can lead to enhanced 

double-bounce backscattering over wetlands with VCF > 20%. The results of linear 

regressions are summarized in Table 3-4. Except for footprint 4, all of the locations with 

VCF > 20% have positive regression slopes. On the other hand, Figure 3-11, for example, 

shows the time series of σ$ and interpolated Envisat altimetry water level changes over 

some of the footprint locations (footprints 13,14, 16, 17, 19, 20, 21 and 25) which have 

VCF < 20%. Interestingly, both positive and negative correlations were found to exist 

between σ$ and water level changes. As water level increases up to ~1 m, σ$ also increases 

as in the case of wetlands with VCF > 20%. However, when the water level increases more 

than ~1 m, σ$  then starts to decrease. This can be explained if the double-bounce 

backscattering is enhanced with increasing water level only until a certain stage, and then 

specular backscattering becomes dominant with higher water levels over non-forested land. 

This finding is different from previous studies of (Kasischke et al., 2003; Kim et al., 2014) 

which employed only one regression model with a negative slope. Accordingly, two linear 

regression models were fitted: one with a positive slope and the other with a negative slope 

as shown in the bottom panels of Figure 3-11. The water level change which leads to the 
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highest σ$ is used to split the water level change and σ$ variables, so the two regression 

models can be applied separately. The regression results for all the footprint locations with 

VCF < 20% are summarized in Table 3-5. Based on these observed different sensitivities 

of σ$, the VCF threshold of 20% will be used in the following sections to distinguish the 

forested and non-forested land covers 

Table 3-4 Linear regression results over the southern forested Île Mbamou. Locations of 
Envisat 18-Hz nominal footprints are illustrated in Figure 3-2. 

Envisat 

Footprint 

Latitude 

(Degree) 

Longitude 

(Degree) 
VCF (%) Slope Intercept R2 

1 15.4425 −4.2434 48.9 1.33 −9.29 0.15 

2 15.4419 −4.2404 49.4 1.75 −11.2 0.56 

3 15.4412 −4.2375 49.3 1.33 −8.86 0.32 

4 15.4406 −4.2346 51.2 −0.23 −7.83 0.01 

5 15.44 −4.2317 57.6 1.12 −10.17 0.41 

6 15.4393 −4.2288 59.4 1.25 −9.49 0.41 

7 15.4387 −4.2259 59.9 1.32 −7.6 0.31 

8 15.438 −4.223 54.9 0.8 −8.62 0.27 

9 15.4374 −4.2201 34.0 2.72 −15.69 0.4 

10 15.4368 −4.2172 21.3 2.03 −15.73 0.46 
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Table 3-5 Linear regression results over the northern non-forested Île Mbamou. Locations of Envisat 18-Hz nominal footprints are 
illustrated in Figure 3-2. 

 

Envisat 
Footprint 

Latitude 
(Degree) 

Longitude 
(Degree) 

VCF 
(%) Slope 1 Intercept 1 R2 Slope 2 Intercept 2 R2 

11 15.4361 −4.2143 19.0 2.97 −16.71 0.74 −10.48 6.25 0.95 

12 15.4355 −4.2114 15.4 8.58 −23.68 0.66 −9.83 2.36 0.82 

13 15.4348 −4.2085 16.7 3.51 −10.49 0.64 −4.90 −1.35 0.96 

14 15.4342 −4.2056 15.7 2.87 −8.041 0.48 −2.93 −2.07 0.84 

15 15.4335 −4.2027 13.7 0.50 −8.48 0.02 −7.84 0.73 0.95 

16 15.4329 −4.1998 10.1 3.35 −8.67 0.22 −6.27 −5.56 0.84 

17 15.4323 −4.1968 11.4 4.21 −13.15 0.37 −8.08 −1.64 0.94 

18 15.4316 −4.1939 12.6 1.25 −8.95 0.44 −3.95 −6.69 0.66 

19 15.431 −4.191 12.5 0.49 −7.60 0.10 −7.26 6.84 0.96 

20 15.4303 −4.1881 14.7 3.36 −12.73 0.61 −5.29 −2.85 0.78 

21 15.4297 −4.1852 17.2 19.14 −11.36 0.95 −1.72 −8.02 0.85 

22 15.4291 −4.1823 15.6 2.33 −12.20 0.23 −6.34 −0.04 0.73 

23 15.4284 −4.1794 17.4 2.79 −10.91 0.81 −3.41 −4.20 0.50 

24 15.4278 −4.1765 15.8 −2.13 −7.28 0.22 −17.06 29.91 0.99 

25 15.4271 −4.1736 14.3 2.04 −9.94 0.16 −6.74 −1.27 0.86 

26 15.4265 −4.1707 16.1 1.98 −9.70 0.34 −5.22 −4.63 0.60 
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3.5.2.3  Relationship between the σ! Sensitivity and VCF 

Different regression slopes (dB/m) summarized in Table 3-4 and Table 3-5 over 

each of the footprints indicate varying sensitivities of σ! to water level changes over the 

forested and non-forested lands. For example, a steeper regression slope indicates higher 

σ! sensitivity to water level changes. Here, the relationship of the σ! sensitivity and VCF 

over the forested and non-forested lands was examined separately. Figure 3-13 shows the 

relationship between the regression slopes and VCF values over each of the footprints in 

forest (VCF > 20%). It shows that the regression slope (or σ!  sensitivity) generally 

decreases with higher VCF (between 20% and 60%) (Figure 3-13). This can be explained 

if denser canopy leads to higher volume scattering from the canopy and less double-bounce 

backscattering with less radar energy that penetrates through denser canopy. In other words, 

although the same amount of water level increase occurs, a smaller amount of σ! increase 

is obtained if the area is covered with denser canopy. 

 
Figure 3-13 Regression analysis between the regression slope (dB/m) from Table 3-4 and 

VCF over the forested land. Black dot is treated as an outlier and excluded 
from the regression analysis. 
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On the other hand, in the non-forested land, as mentioned above, σ! first increases, 

then decreases as the water level increases. Here, the σ! response to water level changes 

was separated with respect to the water level increase which yields the highest σ!. The 

saturation point of σ!, which is described in (Le Toan et al., 1997; Costa et al., 2002) is 

generally determined by above-water biomass and above-water canopy height. Figure 3-14 

shows the relationship between the water increase yielding the highest σ! (or “saturation 

height”) and the corresponding VCF value in the non-forested land (between 10% and 

20%). Generally, it shows that higher VCF results in a higher saturation height (Figure 

3-14). In fact, this positive correlation is consistent with the conclusion drawn from (Le 

Toan et al., 1997; Costa et al., 2002) which used above-water biomass and above-water 

canopy height. The positive correlation indicates that higher VCF areas would need higher 

water levels to reach the saturation biomass and hence higher saturation height.  

Next, to examine the σ! sensitivity in the non-forested land, the total span of water 

level increases was divided into two parts: “water increase I” (0 < h < saturation height) and 

“water increase II” (saturation height < h < hmax), and then a linear regression was 

performed between the σ! sensitivity and VCF as done in the forest (Figure 3-13). Figure 

3-15(a) shows regression analysis between the regression slope1 (dB/m) from Table 3-5 

and VCF over the non-forested land for “water increase I”. No obvious relationship can be 

observed in Figure 3-15(a). This indicates that the density of the non-forested vegetation 

does not influence on σ!	 sensitivity (or the double-bounce backscattering for “water 

increase I”). Figure 3-15(b) shows regression analysis between the regression slope2 (dB/m) 

from Table 3-5 and VCF over the non-forested land for “water increase II”. Black dots in 

Figure 3-15 are treated as outliers and excluded from the regression analysis. A positive 
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correlation between σ!  sensitivity and VCF can be found, indicating that lower non-

forested vegetation density leads to steeper regression (negative) slope. In other words, the 

specular scattering which leads to a diminished radar return to the satellite is enhanced with 

less dense non-forested canopy. It should be noted that the regression slopes are all negative 

for “water increase II” when water level increase exceeds the saturation height because 

specular scattering becomes dominant as the canopy becomes submerged, and there is little 

chance for the radar signal to interact between canopy stems and the water surface (Kwoun 

and Lu, 2009). 

 
Figure 3-14 Relation between saturation height and VCF in the non-forested land. The 

black dots are treated as outliers and excluded from the regression analysis. 

 
Figure 3-15 (a) Regression between the slope1 (dB/m) in Table 3-5 and VCF over the non-

forested land for “water increase I”; (b) Regression between the slope2 (dB/m) 
in Table 3-5 and VCF over the non-forested land for “water increase II”.  
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It is noted that the outliers excluded from the regression analyses in Figure 3-13-

Figure 3-15 may be caused by altimeter measurement errors or by the coarse spatial 

resolution of the VCF product. 

3.5.3 Water Level Changes Estimated from σ# Changes and VCF 

In this section, based on the σ! sensitivities characterized over the Île Mbamou, 

water level changes are estimated between two pairs of SAR acquisition dates: one for the 

water increasing period (October 26 2007–December 11 2007) and the other for the water 

decreasing period (December 16 2009–January 31 2010), which are the same SAR pairs 

used to generate the two differential interferograms described in Section 3.4.4. First, 14 

Envisat footprint locations were  arbitrarily selected among the 26 footprint locations: five 

over the forested, and nine over the non-forested lands (green circles in Figure 3-18) for 

the purpose of performing the regression analysis as shown in Figure 3-16 on the σ! 

sensitivity (or the regression slope of dB/m) and VCF over forested and non-forested lands, 

separately, similar to the analysis done in Figure 3-13 and Figure 3-15, respectively. The 

rest of the footprints will be used to perform comparison with the Envisat altimetry water 

level changes for validation purpose. Next, using the regression result (dB/m versus VCF) 

from Figure 3-16, water level changes were computed over the 18-Hz Envisat footprints 

which were not used for the regression analysis (purple diamonds in Figure 3-18) such as: 

 ∆ℎ = ∆'(
(*+,-+../01	2304+)∙789

	(:), (3-3) 

where ∆σ! (dB) is the σ! changes between the two dates, and the regression slope has a 

unit of dB/m/VCF(%) determined from Figure 3-16. 
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Figure 3-16 Regression analysis between the regression slopes (dB/m) and VCF using five 

Envisat footprints over the forested land and nine Envisat footprints over the 
non-forested land. 

Before comparing the estimated Δℎ from Equation (3-3) with ∆ℎ obtained from 

Envisat altimetry water levels, ∆ℎ from InSAR which has a centrimetric accuracy (Alsdorf 

et al., 2007b) and ∆ℎ from Envisat altimetry was first compared in order to further validate 

the altimetry results. Figure 3-17 shows the two wrapped differential interferograms 

generated over the forested area. Due to low coherences, the fringes over the non-forested 

area have been masked out, and validation of altimetry measurements can be performed 

over the forested southern Île Mbamou only. The interferogram shown in Figure 3-17(a) 

reveals a spatial variation in water level change between October 26 2007 and December 

11 2007 whereas the interferogram in Figure 3-17(b) shows negligible spatial variation in 

water level change between December 16 2009 and January 31 2010. The differential 

interferometric phases along the Envisat 18-Hz footprints (black lines in Figure 17) have 

been extracted, unwrapped, and converted to vertical displacements. Since InSAR can 

measure only spatially relative water level changes, arbitrary constants (+0.766 m and 

−0.441 m for Figure 17(a), (b), respectively) have been added (red “+” in Figure 3-18) for 

better comparison with Envisat altimetry results in Figure 3-18. The InSAR and Envisat 

altimetry water level changes agree quite well with Root-Mean-Square-Error (RMSE) of 
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18.3 cm and 9.7 cm for the interferograms in Figure 3-17(a), (b), respectively. This further 

validates altimetry’s capability for measuring water level changes beneath dense forest 

canopy. 

 
Figure 3-17 Wrapped differential interferograms over the Île Mbamou representing water 

level changes over the southern forested land between (a) October 26 2007–
December 11 2007; and (b) December 16 2009–January 31 2010.  

Next, water level changes obtained from Envisat altimetry (blue dots), InSAR (red 

pluses) and model predicted ∆ℎ using Equation (3-3) (magenta diamonds) were compared 

in Figure 3-18. Green dots in Figure 3-18 represent the footprint locations where Envisat 

altimetry water level changes and σ! are used to construct the regression model in Figure 

3-16. The differences between model predicted Δℎ  and altimetry derived water level 

changes are listed in Table 3-6. A mean RMSEs of 48.95 cm was obtained for the period 

of October 26 2007–December 11 2007 and 64.69 cm for the period of December 16 2009–

January 31 2010 over the forested area. The large difference between Δℎ from Equation 

(3-3) and altimetry shown in red box in Figure 3-18, which indicates the boundary between 

the forested and non-forested areas, could be caused by errors in the VCF product in 

distinguishing different vegetation densities with its coarser spatial resolution (~250 m) 

than PALSAR (~30 m). If those footprints (footprints 11 and 12) are excluded, RMSEs 
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will be 37.86 cm for the period of October 26, 2007–December 11, 2007, and 58.80 cm for 

the period of December 16, 2009–January 31, 2010 in the non-forested area which is 

comparable with the result in (Grings et al., 2008) that achieved 22 cm RMSE for the 

estimated water levels over marshes in the Parana Basin using Envisat ASAR σ!  and 

electromagnetic models that address the vegetation structure and interaction mechanism. It 

is noted that our approach does not rely on any electromagnetic models requiring detailed 

vegetation properties (Grings et al., 2006, 2008) or in situ measurements (Kim et al., 2014) 

that may be rarely available over the remote river basins. 

 

 
Figure 3-18 Comparison of water level changes obtained from Envisat altimetry, InSAR  

and regression model. The red boxes show the measurements at the boundary 
of forested and non-forested regions.  
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Table 3-6 Differences of ∆ℎ from Equation (3-3) and Envisat altimetry (purple in Figure 
3-18). Values in parentheses are footprints located at the boundary of the 
forested and non-forested lands that were excluded in the RMSE computation. 

 
Differences for the Period of  

26 October 2007–11 December 
2007 (cm) 

Differences for the Period of  
16 December 2009–31 January 

2010 (cm) 

Forested 
Land 

25.35 49.44 
−19.75 −86.56 
82.80 −39.20 
15.94 53.77 
61.97 −80.99 

RMSE 48.95 64.69 

Non-Forested 
Land 

(452.42) (−315.31) 
(−136.88) (54.33) 

55.48 −20.67 
57.98 −30.43 
23.87 −7.70 
10.06 40.32 
7.56 119.36 

RMSE 37.86 58.80 

3.6 Conclusions 

This study describes the seasonal variations of PALSAR σ! over the wetlands in 

the island of Île Mbamou where two distinctly different vegetation types are found, and its 

relationships with water level changes obtained from Envisat altimetry have been 

investigated. Positive correlation exists between σ!  and water level changes over the 

forested land whereas both positive and negative correlations are observed over the non-

forested land depending on the amount of water level increase. It was shown that the 

PALSAR backscatter response is enhanced during early water increasing season and then 

diminished with more increase in water level over the non-forested land. This study also 

performed the analysis of σ! sensitivity, and found that denser vegetation canopy leads to 

less sensitive σ!  variation with respect to the water level changes regardless of the 

vegetation type (forested or non-forested). Furthermore, based on the σ!  sensitivity 
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analysis, water level changes were obtained which were then compared with the Envisat 

altimetry measurements. Mean RMSEs of 57 cm and 48 cm were obtained over the forested 

and the non-forested lands by excluding the boundary footprints. Possible error sources 

include Envisat altimetry interpolation error, speckle noise in σ! , resolution mismatch 

between σ! and VCF, and uncertainties in linear regressions. However, if considering most 

of the contemporary wetland hydrodynamic modeling has a scale of several hundred meters 

(Wilson et al., 2007; Jung et al., 2012), the overall mean RMSE of 53 cm at 30-m scale 

(SAR resolution), which can be interpreted as 5.3 cm RMSE at 300-m scale if the pixel-to-

pixel noise is uncorrelated, shows that the method can be useful for calibration and 

validation of a hydrodynamic model. 

In order to demonstrate that this method can be applied to other wetlands, a similar 

sensitivity analysis over the Everglades wetlands was performed. The regression slopes 

obtained using in situ water level changes and PALSAR σ!  changes over six gauge 

locations (six red dots in Figure 3-19) in the non-forested, sawgrass-dominated Water 

Conservation Areas (WCAs) from Figure 4 of (Kim et al., 2014) (using Path 149 results) 

were utilized. VCF values were extracted over those six gauge locations and a similar 

sensitivity analysis as in Figure 3-15 was performed. As it shows in Figure 3-19, a similar 

positive correlation is observed between the VCF and the regression slopes (dB/m) as in 

Figure 3-15(b). Therefore, although it is not possible to perform similar analysis over other 

forested areas due to the lack of in situ data, it is expected that water level changes can be 

estimated over wetlands based on different L-band σ! responses to water level changes in 

different vegetation fields. 
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Figure 3-19 Regression analysis between the regression slopes (dB/m) and VCF over the 

six gauges located over the sawgrass-dominated Everglades wetlands. 
For a future study, two-dimensional maps of water level changes obtained can be generated 

using Equation (3-3). To do so, it is noted that a more detailed VCF-like map, which has a 

high spatial resolution similar to that of the SAR image, is needed to estimate the water 

level change at each of SAR pixel. Although the map will not have the centimetric accuracy 

as the repeat-pass InSAR provides, it would still be useful over wetlands with low canopy 

such as the non-forested areas, where InSAR loses its coherence and thus interferograms 

cannot be generated. On the other hand, this method can also provide a useful independent 

dataset for the planned Surface Water Ocean Topography (SWOT) satellite mission which 

is a single-pass Ka-band radar interferometer that will provide simultaneous measurements 

of water levels and inundated area for inland water bodies. Currently, InSAR is the only 

tool that can provide a comparable dataset for SWOT observations over the wetlands. 

However, again, as can be seen in Figure 3-17, interferometric coherence cannot be 

maintained over the non-forested land, and InSAR requires a stable corner-reflector such 

as tree trunks to maintain interferometric coherence over the wetlands (Lu and Kwoun, 

2008).   
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Chapter 4 Congo Wetland Hydraulics using PALSAR InSAR 

and Envisat Altimetry Data 

4.1 Introduction 

Water flow through the wetlands, which governs biogeochemical process, sediment 

delivery and nutrient exchange, is probably the most important controlling factor (Mitsch 

and Gosselink, 2007). However, the complexity of floodwater flows has not been well 

captured because floodwater moves laterally across wetlands and its movement is not 

bounded like that of typical channel flow. Water flow across wetlands is more complex 

than implied by one-dimensional, point-based measurements. 

As an active microwave sensor, SAR has all-day and all-weather imaging capability. 

InSAR technique has been successfully used to map relative =ℎ => in the wetlands with 

high spatial resolution (~30 m) and centimetric accuracy (Alsdorf et al., 2001; Lu and 

Kwoun, 2008; Wdowinski et al., 2008). However, the interferograms can only provide a 

spatially relative gradient of water level changes. Therefore, a vertical reference is needed 

to convert the relative changes into absolute changes (Kim et al., 2009). Since most 

wetlands are not monitored by in situ gauges, satellite altimetry-derived water level change 

has been used as the vertical reference instead (Kim et al., 2009). Therefore, by integrating 

satellite radar altimetry and InSAR data, mapping spatially detailed absolute =ℎ => in the 

wetlands becomes possible.  

Only a couple of studies have used InSAR and satellite altimetry data to explore 

the hydraulics of the Congo’s wetlands. Jung et al. (2010) used two interferograms 

generated with L-band JERS-1 images obtained in 1996 over the interfluvial wetlands near 
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the confluence of the mainstem and its major tributaries including the Ubangi and Sangha, 

and reported that the flow patterns are not well defined and have diffuse patterns. Lee et al. 

(2015) generated two PALSAR interferograms over the similar central regions and 

revealed dense fringe patterns showing increasing =ℎ =>  toward the mainstem. Since 

multi-temporal water level changes and hydraulic processes have not been extensively 

investigated, this study aims to generate multiple temporal absolute =ℎ => maps over the 

middle reach of the Congo near the city of Lisala using PALSAR images, and quantifying 

and characterize the flow dynamics in the wetlands.  

4.2 Study Area 

The study area is located along the middle reach of the Congo mainstem, as shown 

in Figure 4-1, near the city of Lisala, the capital of the Mongala District in the Democratic 

Republic of the Congo. Large islands can be seen in the river, which is typical in the Congo 

River. The wetlands next to the mainstem and the islands are covered with seasonally 

flooded forest (Hansen et al., 2008). The river surface slope is relatively high (6~8 cm/km) 

compared to other reaches of the Congo River (O’Loughlin et al., 2013). 
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Figure 4-1 Study area with Envisat pass 300 (white line), coverage of ALOS PALSAR 

(black box), and intersections of Envisat pass with the southern (red dots) and 
northern (black dots) wetlands. Background is from C-band SRTM DEM.  

4.3 Dataset 

4.3.1 Envisat Altimetry 

Envisat RA2 GDR of pass 300 from Oct 2002 to Sep 2010 has been used in this 

study. As explained in Section 3.3.1, ICE-1 retracked measurements contained in Envisat 

RA2 GDR were used. 

4.3.2 ALOS PALSAR 

Sixteen fine-beam mode ALOS PALSAR images were used in this study, as 

summarized in Table 4-1. Seven of them were obtained with FBS mode (HH polarization) 

while the other eleven were obtained with FBD mode (both HH and HV polarizations). As 

explained in Section 3.3.2, HH polarization mode SAR images were adopted in this study. 
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FBD HH data shown in Table 4-1 were oversampled by a factor of 2 to obtain consistent 

resolution as FBS HH data (see Section 3.3.2 for detail). 

Table 4-1 List of PALSAR scenes used in this study. 

Scene ID 
Operation 

Mode 
Date Path Frame 

Polarization 

Mode 

ALPSRP074660020 FBD 2007/6/19 640 20 HH/HV 

ALPSRP121630020 FBS 2007/8/4 640 20 HH 

ALPSRP269250020 FBD 2007/9/19 640 20 HH/HV 

ALPSRP262540020 FBS 2007/12/20 640 20 HH 

ALPSRP101500020 FBS 2008/3/21 640 20 HH 

ALPSRP222280020 FBD 2008/5/6 640 20 HH/HV 

ALPSRP155180020 FBD 2008/6/21 640 20 HH/HV 

ALPSRP114920020 FBS 2008/12/22 640 20 HH 

ALPSRP081370020 FBD 2009/6/24 640 20 HH/HV 

ALPSRP215570020 FBD 2009/9/24 640 20 HH/HV 

ALPSRP249120020 FBS 2010/2/9 640 20 HH 

ALPSRP182020020 FBD 2010/5/12 640 20 HH/HV 

ALPSRP128340020 FBD 2010/6/27 640 20 HH/HV 

ALPSRP088080020 FBD 2010/9/27 640 20 HH/HV 

ALPSRP228990020 FBS 2010/12/28 640 20 HH 

ALPSRP235700020 FBS 2011/2/12 640 20 HH 
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4.4 Results and Discussions 

4.4.1 Inundated Areas from PALSAR Backscattering Coefficients 

The energy backscattered to the SAR antenna is sensitive to surface roughness, 

dielectric constant and terrain slope (Bayer et al., 1991; Mattia et al., 1997; Freeman and 

Durden, 1998). Accordingly, SAR intensity images have been utilized to map inundated 

areas based on different radar backscattering mechanisms depending on different 

vegetation types. Over open water surface, the radar pulse follows a specular travel path, 

which results in little energy backscattered to the SAR antenna. In cases of dry vegetation, 

the backscattering is dominated by volume backscattering from the vegetation canopy. On 

the other hand, over inundated but not submerged vegetation, the water surface and 

vegetation trunk allow the radar pulse to follow a double bounce travel path to the antenna. 

This double-bounce backscattering from the inundated vegetation results in brighter SAR 

intensity, compared to non-flooded vegetation. This phenomena has been reported by a 

number of studies, such as (Hess et al., 1995; Pope et al., 1997; Lu and Kwoun, 2008). 

Based on the fact that variation of hydrologic condition influences the signal amplitude 

backscattered to the SAR antenna, SAR images have been used to delineate flooded and 

non-flooded areas in the wetlands (Hess et al., 1995, 2003; Rosenqvist and Birkett, 2002; 

Lee et al., 2014). 

To identify inundated areas, ?!  from PALSAR images were used in this study. 

After generating SLC images from SAR raw data, all of the SLC images were first co-

registered to a common SLC image obtained on September 19 2007. Secondly, all of the 

SAR images were multi-looked by a factor of 4 × 9 to reduce the speckle noise. Next, the 

multi-looked SAR intensity images were geocoded using the 1-arcsec SRTM DEM. Finally, 
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the backscattering coefficients were calculated using Equation (4-1) with the geocoded 

SAR images, following the method in (Yuan et al., 2015). A median filter of 5 × 5 was 

applied to further reduce the speckle noise. 

 ?! = 10CDEF! GHI + KL	(MN), (4-1) 

where GH is the digital number of the geocoded SAR amplitude image, and KL is the 

radiometric calibration factor. The value of KL is -51.8 for FBD HH data and -51.9 for 

FBS HH data (Werner et al., 2000). 

Figure 4-2 shows the spatial and temporal variations of the calculated ?! . The 

Congo mainstem shows constantly low ?!  in all of the ?!  images because of specular 

backscattering from open water surfaces. Significant temporal variations of ?!  can be 

observed in the wetlands located along the mainstem. For example, the SAR image 

obtained on December 20 2007 shows the highest ?! while the SAR image obtained on 

February 11 2011 shows the lowest ?! . Threshold classifier is a simple yet effective 

method to delineate inundation extents and vegetation types, and has been implemented in 

a number of studies, e.g. (Hess et al., 2003; Rosenqvist, 2008; Lee et al., 2014). Here, a 

threshold of −6 dB is used to classify inundated and non-inundated forest areas (Lee et al., 

2014). The threshold of −6 dB has been determined based on the feasibility of generating 

water level change time series using Envisat altimetry, and used in the central Congo 

wetland delineating the flooded and non-flooded forests with PALSAR ScanSAR images 

(Lee et al., 2014). Then, the SAR pixels with ?! lower than −14 dB were classified as non-

vegetated flooded areas (open water surface) as in (Hess et al., 2003). The estimated 

inundation maps are shown in Figure 4-3.The temporal variation of total inundated areas 
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are shown in Figure 4-4. The maps of inundated areas will be used later to determine if the 

interferometric phases were dominated by water level change or atmospheric artifacts.  

 

Figure 4-2 Maps of PALSAR backscattering coefficients showing seasonal variations 
over the wetlands. 
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Figure 4-3 Classification maps of flooded non-vegetated (blue), flooded forests (cyan) 

and non-flooded areas (brown). 
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Figure 4-4 Temporal variation of total inundated areas. 
4.4.2 InSAR Processing and Coherence Analysis 

Two-pass repeat interferometry method has been applied to generate the 

interferograms. The interferometric processing uses two SAR images, obtained from 

different times with slightly different imaging positions. The two SAR images were firstly 

co-registered based on the correlation between the SAR intensity images. An interferogram 

was then generated by multiplying the first SAR image (master image) with the complex 

conjugate of the second co-registered SAR image (slave image). Flat earth phase was 

removed with the baseline and its variation throughout the interferogram using the satellite 

orbit information. The topographic phase in the interferogram was simulated using 1 arc-

sec resolution SRTM DEM data, and then was subtracted from the interferogram. After 

removing the topographic component from the interferogram, a differential interferogram 

was generated which represents the relative =ℎ => in the wetlands. The residual phase 

trend throughout the differential interferogram caused by inaccurate orbit information was 
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estimated using a second-order polynomial, and then removed from the differential 

interferogram.  

Overall, fifteen wrapped differential interferograms were generated as shown in 

Figure 4-5. The interferograms were generated using the Small Temporal Baseline Subset 

(STBAS) strategy (Hong et al., 2010). The STBAS method generates interferograms with 

small temporal baseline criterion in order to obtain better coherence in wetland 

environments (Kim et al., 2013). Following the STBAS method, interferograms were 

generated using every consecutive SAR image pairs except one interferogram shown in 

Figure 5 (d) generated using SAR images obtained on December 20 2007 and June 21 2008. 

The SAR image obtained on June 21 2008 was used as the slave image instead of the SAR 

images obtained on March 21 2008 or May 6 2008 which would have led to the 

interferogram with shorter temporal baseline. Because the SAR images obtained on March 

21 2008 or May 6 2008 represent the dry season with the least inundated extents (see Figure 

3), the interferograms generated with those SAR images as the slave images lost coherence. 

Thus, the interferogram was generated with the SAR image obtained on June 21 2008 as 

the slave image instead. The temporal and perpendicular baselines of the interferograms 

and the coherences over the wetlands are summarized in Table 4-2 (the letter in the first 

column is used to refer each interferogram hereafter). The coherence values were 

calculated only over the wetlands, located in the south and north of the mainstem. The 

extents of the southern and northern wetlands were delineated using the SAR image 

obtained on December 20 2007, which has the highest ?!. The coherences listed in Table 

4-2 are overall higher than 0.2 (except for the interferograms (d) and (s)), indicating that 

the interferometric phases are overall well maintained using STBAS. 
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Table 4-2 List of ALOS PALSAR interferometric pairs. 

Pair Master 
Date 

Slave 
Date 

Temporal 
Baseline 
(days) 

Perpendicular 
Baseline (m) 

Mean 
Coherence 

in 
southern 
wetland 

Mean 
Coherence 

in 
northern 
wetland 

(a) 20070619 20070804 46 273.20 0.34 0.33 

(b) 20070804 20070919 46 -449.90 0.29 0.25 

(c) 20070919 20071220 92 -36.37 0.29 0.29 

(d) 20071220 20080621 92 -248.69 0.20 0.19 

(e) 20080321 20080506 46 579.67 0.23 0.28 

(f) 20080506 20080621 46 456.64 0.26 0.31 

(g) 20080621 20081222 184 -828.84 0.22 0.23 

(h) 20081222 20090624 184 397.32 0.19 0.20 

(i) 20090624 20090924 92 -270.75 0.28 0.38 

(j) 20090924 20100209 138 275.42 0.23 0.23 

(k) 20100209 20100512 92 283.69 0.20 0.20 

(l) 20100512 20100627 46 114.33 0.28 0.32 

(m) 20100627 20100927 92 388.08 0.25 0.30 

(n) 20100927 20101228 92 -544.35 0.24 0.24 

(o) 20101228 20110212 46 364.13 0.25 0.26 

The fringe patterns of the interferograms in the wetlands can be characterized by 

spatial patterns of water level changes and atmospheric artifacts. The interferometric 

phases due to water level changes and atmospheric artifacts have similar wavelength (Hong 

et al., 2010). Thus, the approach used in Mora et al. (2002) to remove the atmosphere 

artifacts by applying a high-pass filter in time domain cannot be used in the wetlands 
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environment. However, the ?!  images can be used to determine if the fringes in the 

interferogram are likely to be caused by water level change or atmospheric delay (Lu and 

Kwoun, 2008). In addition, it is expected that the fringes due to water level change should 

exhibit seasonal dynamics which are different from atmospheric artifacts, characterized by 

high spatial correlation but low temporal correlation (Berardino et al., 2002). Based on 

these two criteria, three fringe patterns caused by water level changes were identified. 

The first pattern is the fringes parallel to the Congo mainstem flow direction 

observed in the southern wetland, as shown in Figure 4-5 (c, d, g, h, j, k, l), and in the 

northern wetland, as shown in Figure 4-5 (c, d, j, k). These fringes are likely due to water 

level changes, not atmosphere delays. First of all, the atmosphere artifacts cannot result in 

such repeated patterns along the river. In addition, the locations of the fringes correspond 

to locations with significant ?! variations, implying variations in hydrologic conditions. 

Furthermore, these parallel fringe patterns are commonly observed in a number of 

interferograms along the mainstem, which further indicates that it is not due to the 

atmosphere effect. The second fringe pattern that could be due to water level change is the 

broad flooding pattern perpendicular to the Congo mainstem in the northern wetland which 

is observed in interferograms shown in Figure 4-5 (a, b, l). Similar to the first fringe pattern 

mentioned above, the atmosphere effect cannot result in this repeated fringe pattern. The 

third phase that could be due to water level change is the fringes observed along the 

boundary between the northern wetland and the upland, as can be seen from Figure 4-5 (f, 

m). The broad radial phase patterns in the southwestern edge of Figure 4-5 (i), and 

southeastern edge of Figure 4-5 (k), and the broad red phase pattern in Figure 4-5 (l), are 
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likely caused by atmospheric delay, not water level changes because of negligible variation 

in ?! as shown in Figure 4-2.  

 
Figure 4-5 Wrapped PALSAR differential interferograms.  
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4.4.3 InSAR-derived OP/OR 

Measurements of =ℎ => from InSAR were obtained by unwrapping the differential 

interferograms in Figure 4-5. Six interferograms (a, c, d, f, l, m) were selected for 

unwrapping as examples for each fringe pattern identified in Section 4.4.2 above. The 

interferograms (c) and (d) were selected for the first phase pattern (dense fringes parallel 

to the mainstem), (a) and (l) for the second phase pattern (broad fringes perpendicular to 

the mainstem), and (f) and (m) for the third fringes pattern observed along the boundary of 

northern wetland. 

Because InSAR-derived =ℎ =>  only represents spatially relative water level 

changes in the wetlands (Alsdorf et al., 2007a; Kim et al., 2009; Lu et al., 2009), a vertical 

reference (or offset) is necessary to convert the relative water level changes from InSAR 

to absolute water level changes. Since there is no in situ gauge in the study area, the offset 

estimation has been performed using two different methods. The first method is to use the 

water level change observed from Envisat altimetry as the offset for the interferograms in 

Figure 4-5(c, d). Profile comparisons of Envisat altimetry and InSAR measurements are 

shown in Figure 4-6 in order to examine the feasibility of using altimetry-derived water 

level changes as the offsets. Figure 4-6(a,b) show the profiles of Envisat altimetry-derived 

and InSAR-derived water level changes extracted along the Envisat altimetry ground track 

from interferograms shown in Figure 4-5(c,d). Figure 4-6(b,e) show the statistical 

comparsion between them over the southern wetland and Figure 4-6(c,f) illustrates the 

comparsion over the northern wetland. The location of the measurements within the 

southern floosplain and northern wetland is marked as red dots and black dots in Figure 

4-1. 
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In Figure 4-6, the Envisat altimetry measurements have been interpolated to the 

SAR acquisition times. However, it should be noted that satellite altimetry measurements 

in the dry season can be erroneous such as the black dots in Figure 4-6(d), which have been 

excluded from the offset estimation. The comparison shows a good agreement between 

altimetry and interferograms (c, d) for the high water level season. The R-squared values 

are high varying from 0.8 to 0.93 and the root-mean-square differences are low varying 

from 7 cm to 11 cm. After unwrapping these interferograms and applying the offsets 

estimated from Figure 4-6, absolute =ℎ => maps were generated as shown in Figure 4-7 

(a, b). The absolute water level change maps in Figure 4-7 (a, b) suggest that the proximal 

(channel marginal) wetland close to the mainstem has the largest water level change during 

high water season. The absolute =ℎ => range up to 1.2 m to 1.4 m over both the southern 

and northern wetlands.  

For the interferograms (a, f, l, m), because they were not obtained in high water 

season, the Envisat altimetry measurements become too noisy to be used to estimate the 

offsets. However, by visually examining the two SAR images (obtained on June 19 2007 

and August 4 2007) used to generate the interferogram (a), the SAR image obtained on 

August 4 2007 has higher ?! than the SAR image obtained on June 19 2007. The higher 

?! is expected to be due to higher water level. Thus, the absolute =ℎ => is also expected 

to show positive (or increasing) water level change. With this positive water level change 

direction, the absolute =ℎ => map was generated in Figure 4-7 (c) by assigning zero to the 

pixel which has the lowest =ℎ =>. In this case, as it cannot be assumed that the wetlands 

have been completely drained on June 19 2007 based on its ?! image, this map is only used 

to examine whether =ℎ => has increased or decreased, and the directions of water flow. 
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Similarly, zero was assigned to the pixel with the lowest =ℎ => for the interferograms (f, 

m), to obtain the absolute =ℎ => maps shown in Figure 4-7 (e) and (f). For interferogram 

(l), the SAR image obtained on May 12 2010 has higher ?! than the SAR image obtained 

on June 27 2010. With decreasing ?!, interferogram (l) is expected to show water level 

decreasing. Accordingly, zero was assigned to the pixel with the highest =ℎ =>  for 

interferogram (l) to obtain the absolute =ℎ => map shown in Figure 4-7 (d). Although 

Figure 4-7 (c)-(f) are not the true absolute =ℎ => maps, they still reflect the relative =ℎ => 

within the wetland. By visually observing the values in Figure 4-7 (c)-(f), the relative 

=ℎ => in the wetland are at decimeter level. 

 
Figure 4-6 Offset estimation using Envisat altimetry-derived and InSAR-derived water 

level changes extracted along the Envisat altimetry ground track from 
interferograms shown in Figure 4-5 (c,d). 

4.4.4 Hydraulic Processes from Absolute OP/OR  

Based on the six absolute =ℎ =>  maps shown in Figure 4-7, the water flow 

hydraulics in the Congo wetland can be investigated based on mass continuity as in 

(Alsdorf et al., 2007a) and (Jung et al., 2010). This is based on the fact that the location 
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with greater =ℎ => receives more water than the locations with smaller =ℎ =>. Thus, the 

water should flow from smaller =ℎ => to greater =ℎ =>.  

During high water season as shown in Figure 4-7 (a) and (b), both in the northern 

and southern wetlands, there is an overall increasing =ℎ =>  trend from upland to the 

mainstem. In other words, the proximal wetland closer to the mainstem has greater =ℎ => 

than the distal (valley marginal) wetland closer to the upland. Black flow arrows in Figure 

4-7 (a) and (b) are based on continuity with directions pointing toward areas of greater 

water accumulation during water increasing times in Figure 4-7 (a) and pointing toward 

evacuation during water decreasing times in Figure 4-7 (b).  

During low water season, =ℎ => shows a broad and diffuse pattern as discussed in 

Section 4.4.3. Hence, no obvious hydraulic processes based on subtle =ℎ =>  can be 

observed. Figure 4-7 (c) and (d) show broad water level change pattern parallel to the 

Congo mainstem in the northern wetland. Figure 4-7 (e) and (f) show water level change 

at the boundary in the northern wetland, with water flow from upland towards the wetland.  

As in Figure 4-8, the relationship between our =ℎ => measurements and the 1 arc-

sec resolution SRTM topography was examined for the broad and diffuse =ℎ => patterns 

observed in Figure 4-7 (c) and (d). The =ℎ => map, shown in Figure 4-7 (c), during the 

water filling period shows a flow convergence toward the red circular region. The =ℎ => 

and SRTM profile comparison in Figure 4-8 (a) shows that the greater =ℎ => values are 

within a topographic depression. On the contrary, the =ℎ => map in Figure 4-7 (d), during 

the water draining period shows a flow divergence from the identical depression area based 

on Figure 4-8 (b). 
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Figure 4-7 Absolute water level change map over the interfluvial wetlands from 

integration of Envisat altimetry and PALSAR InSAR. Black arrows show the 
water flow direction based on mass continuity. 
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Figure 4-8 C-band SRTM DEM over the inundated wetlands (a). (b) and (c) show 

comparisons between absolute =ℎ => and SRTM topography extracted along 
the profiles shown as white lines in Figure 4-7 (c, d). 

4.5 Conclusions 

A stack of PALSAR interferograms was generated over the Congo wetland near 

the city of Lisala. Two absolute water level change maps were generated by integrating 

InSAR-derived relative =ℎ => and Envisat-derived absolute =ℎ =>. The proximal wetland 

close to the mainstem has greater absolute =ℎ =>  than the distal wetland close to the 

upland. Water level change differences within the wetlands can reach up to 1.2 m to 1.4 m 

while the difference is at decimeter level in low water season. The absolute =ℎ => maps 

have also been used to investigate the water flow hydraulics in the Congo wetland based 

on mass continuity. The absolute =ℎ => maps in low water season suggest that the water 

flow is not well confined and has a broad and diffuse pattern. On the other hand, the 

absolute =ℎ => maps in high water season show rapid spatial variation indicating water 

flow from the wetland toward the mainstem. The relationship between the absolute =ℎ => 

in low water season and SRTM elevation shows the low topography depression has greater 

water level changes during both the water filling and draining periods.  
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Chapter 5 Water Storages from Integration of Altimetry and 

InSAR 

5.1 Introduction 

The water storage over the wetlands represents a significant part of the water 

balance and water resource management in fluvial systems (Richey et al., 1989; Alsdorf et 

al., 2001). During water residence in the wetland, the biogeochemical environment of the 

floodwater is modified due to the influence of sedimentation, sorption and redox reactions 

and biotic processes (Richey et al., 1989; Hamilton, 2002). The flux of sedimentation, 

nutrient and other solutes cannot be well estimated without knowing water storage 

variations in the wetland (Richey et al., 1989; Dunne et al., 1998; Hamilton, 2002). 

Satellite remote sensing became a viable tool to investigate wetland water storage 

variations in large river basins. The Gravity Recovery and Climate Experiment (GRACE) 

has been applied to estimate total water storage (TWS) change in large river basins on a 

monthly basis (Tapley et al., 2004; Alsdorf et al., 2010; Chen et al., 2010; Lee et al., 2011). 

However, GRACE is limited by its coarse spatial resolution (~ 450 km by 450 km) 

(Scanlon et al., 2012). Furthermore, GRACE does not measure surface water storage 

change directly, but captures all temporally varying components including not only surface 

water, but also snow, soil moisture and groundwater.  

Alternatively, the water storage over the wetland can also be estimated by 

combining multiple remote sensing techniques. The L-band Synthetic Aperture Radar 

(SAR) instrument with a wavelength of 23.6 cm onboard JERS-1 and ALOS-1, have been 

successfully used to map the inundation extents of the forested wetlands in large river 
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basins (Hess et al., 2003; Rosenqvist and Birkett, 2002; Lee et al., 2014). By integrating 

the flooded extents derived from SAR images and water levels from satellite radar altimetry 

measurements, water storage changes in the forested wetlands were obtained (Frappart et 

al., 2005; Lee et al., 2014). In addition, SAR backscattering coefficients have been used to 

map water level changes in herbaceous wetlands (Grings et al., 2006, 2008, 2009; Kim et 

al., 2014; Yuan et al., 2015) or in flooded forests (Lee et al., 2015). However, the method 

relying on the SAR backscattering coefficients to estimate the flooded extents or water 

level changes is limited by the temporal coverage of the SAR data (Prigent et al., 2007; 

Aires et al., 2013). In other words, since the L-band SAR data is only provided by satellites 

JERS-1 (1992 – 1997), ALOS (2006 – 2011), and ALOS-2(2014 – present), there is a 

significant time span that is not covered by these datasets (e.g., 1998 – 2005). The lack of 

continuous long-term observations limits our understanding of the spatio-temporal changes 

of wetland storage. Moreover, the long revisiting periods of JERS-1 (44 days) and ALOS 

(46 days) can result in missing flooding periods if the water residence time is not long 

enough. 

Given the short-term high spatial resolution SAR images to infer long-term inter-

annual water storage variations, a new method is developed to estimate long-term local-

scale (tens of kilometer) absolute water storage over the wetlands by establishing a water 

depth (M) versus volume (S) relationship using 2-D water depth maps from integration of 

InSAR and satellite altimetry measurements. This M − S relationship is then combined 

with the water level measurements from Envisat altimetry to estimate absolute water 

storage over the wetland whenever the altimetry measurements are available. In this study, 

the M − S relationship is established using PALSAR InSAR and Envisat altimetry over the 
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wetlands along the middle reach of the Congo River. A power function was used as in 

Hayashi and Van Der Kamp (2000) to model the M − S relation and characterize the shape 

of the wetland bathymetry. Then this M − S  relation will be combined with Envisat 

altimetry measurements to generate long-term water storages time series for the period of 

2002 – 2011 over the wetlands. The absolute water storages are then compared with the 

absolute water storages obtained from the water depth maps in (Lee et al., 2015), TWS 

anomalies from GRACE, and precipitation anomalies from Tropical Rainfall Measuring 

Mission (TRMM).  

5.2 Study Region and Dataset 

5.2.1 Study Region 

The study area covers the wetlands along the middle reach of the Congo River in 

the Cuvette Centrale, spanning from the cities of Lisala to Mbandaka (Figure 5-1). The 

vegetation over the riverine wetland is multi-layered (Campbell, 2005). The upper stratum 

is composed of evergreen forest with canopy heights of 35-45m (Mayaux et al., 2000). 

These swamp forests are either permanently flooded or periodically flooded (Hansen et al., 

2008; Bwangoy et al., 2010). 

The average rainfall varies from 1,700 to 1,800 mm/year, and the 

evapotranspiration varies little across the whole basin, with estimated values from 1,100 to 

1,200 mm/year (Alsdorf et al., 2016). It is well known that the migration of rainfall across 

the basin results in a bi-modal hydrograph in the Central Cuvette, with a major peak around 

November to December and a minor peak around March to May (Becker et al., 2014; 

Alsdorf et al., 2016). The water level in the Congo mainstem fluctuates less than 3 m 
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(Roberts and Stewart, 1976). Marlier (1973) suggested that the little variation of the water 

level in the river could be due to the flat topography and attenuation of the flood waves by 

lakes and swamps. 

 
Figure 5-1 Map of study area with Envisat altimeter passes (black lines) and ALOS 

PALSAR coverage (red boxes). Background is topography from C-band 
SRTM DEM with a resolution of 30m.  

5.2.2 Dataset 

5.2.2.1 Envisat radar altimetry 

In this study, Envisat RA2 GDR of passes 429, 930, 343, 386, 257, 300, and 715 

was used with revisit period of 35 days from 2002 to 2010. ICE-1 retracked measurements 

were adopted in this study as explained in Section 3.3.1. 

5.2.2.2 ALOS PALSAR data and its interferometric processing 

ALOS PALSAR fine-beam images from 7 adjacent paths and 11 frames with total 

number of 151 were obtained, as summarized in Table 5-1. These PALSAR images were 
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acquired at L-band frequency with a nominal look angle of 34.3°. FBD HH SLC images 

were generated by oversampling with a factor of 2 in the range direction in order to obtain 

consistent resolution as FBS HH SLC images (see Section 3.3.2 for detail).  

Differential interferograms were generated using the SLC images with multilook 

factor of 4 by 9 to reduce the speckle noise. The topographic effects in the interferograms 

were removed by subtracting the topographic phase simulated using 30-meter resolution 

C-band SRTM DEM. Fringe patterns over the upland area were used to estimate a best 

fitting plane to remove the phase caused by orbital error. Adaptive filtering is also applied 

to further reduce the noise and enhance fringe visibility (Goldstein and Werner, 1998). 

Minimum cost flow method was used to unwrap the interferograms (Costantini, 1998).  

Table 5-1 List of PALSAR scenes obtained in this study.  

Path Frames Orbit Number of Scenes Time Span 

600 7180, 7190 Ascending 26 2006 – 2011 

646 0000 Ascending 12 2006 – 2011 

645 0000 Ascending 12 2007 – 2011 

644 0000, 0010 Ascending 26 2007 – 2011 

643 0010, 0020 Ascending 36 2007 – 2011 

642 0020 Ascending 14 2006 – 2010 

641 0020 Ascending 8 2007 – 2011 

640 0020 Ascending 17 2007 – 2011 

5.2.2.3 GRACE data 

High-resolution GRACE Release 05 (RL05) mascon solution (Save et al., 2016) 

provided by Center for Space Research (CSR) to obtain TWS changes was used in this 
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study. The CSR RL05 mascon solutions are generated on a 0.5-degree longitude-latitude 

grid with 1-degree resolution using GRACE Level-1 observations based on the same 

standards as CSR RL05 Spherical Harmonics (SH) solutions. It is well known that the SH 

solutions need filtering and de-striping to reduce random spatial noise and correlated 

north/south strips in the spatial domain (Swenson and Wahr, 2006). These filtering 

processes will introduce leakage errors that need to be addressed to get a correct signal 

(Guo et al., 2010; Landerer and Swenson, 2012). On the other hand, Save et al. (2016) 

showed that, compared to RL05 SH solutions and other global mascon solutions, the CSR 

RL05 mascon solutions can provide more accurate mass change estimates without applying 

any additional filtering or de-striping. These data were downloaded from: 

http://www.csr.utexas.edu/grace. 

5.2.2.4 TRMM data 

Precipitation data from TRMM is used in this study in order to explain the inter-

annual variations in the wetland storages. TRMM provides monthly precipitation with 

spatial resolution of 0.25°×	0.25°. Beighley et al. (2011) compared different precipitation 

datasets with the Hillslope River Routing (HRR) model in the Congo Basin, and showed 

that TRMM provided the best spatial and temporal distributions of the rainfall in the Congo 

Basin.  

5.3 Method 

The method used in this study consists of five steps: (1) generating interferograms 

and selecting interferograms showing most extensive fringes; (2) generating 2-D water 

depth maps for high-water season over the wetlands by calibrating InSAR-derived =ℎ/=> 
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measurements with Envisat altimetry-derived ℎ  measurements; (3) constructing M − S 

relationship using the water depth maps from Step 2; (4) generating time series of ℎ in the 

wetlands using Envisat altimetry, and converting it to time series of maximum water depth 

(MVWXY ) in the wetlands, (5) combining the time series of MVWXY  from Step 4 and M − S 

relation from Step 3 to estimate time series of absolute water storages over the wetland. 

The rest of this section will explain how each step is accomplished in detail. 

5.3.1 Interferogram Generation and Selection 

Interferograms were generated using all available PALSAR images listed in Table 

5-1. Figure 5-2 illustrates three mosaics of differential wrapped interferograms generated 

using SAR images from low and high, low and mid-high, mid-high and high water seasons, 

respectively (Table 5-2). Each fringe in the interferograms represents a half-wavelength 

(11.8 cm) deformation along radar’s line-of-sight (LOS) direction or about 15.4 cm in the 

vertical direction. These fringes in our interferograms mostly represent =ℎ/=> between two 

SAR acquisition dates. Overall, it can be seen that =ℎ/=> has the greatest spatial gradients 

from the distal wetland (region farther from the channel) towards the proximal wetland 

(region close to the channel). Close-ups of interferogram mosaics in Figure 5-3 support 

that the fringe direction in the wetland is perpendicular to the flow direction (invisible in 

the figure; north to south in Figure 5-3 (a-c) and east to west in Figure 5-3 (d-f)) on the 

mainstem. It shows few fringes in the distal wetland, and dense fringes in the proximal 

wetland from Figure 5-2(a). It indicates that the gradient of =ℎ/=> between low and high 

water seasons is low in the distal wetland but high in the proximal wetland. On the other 

hand, we observe only dense fringes in the proximal wetland from Figure 5-2(b), which 

indicates high gradient of =ℎ/=> in the proximal wetland between low and mid-high water 
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seasons. On the contrary, only few fringes in the distal wetland can be observed from 

Figure 5-2(c), which indicates low spatial gradient of =ℎ/=> in the distal wetland and little 

spatial gradient of =ℎ/=>  in the proximal wetland between mid-high and high water 

seasons. 

Table 5-2 List of ALOS PALSAR interferometric pairs used to generated InSAR 
mosaics in Figure 5-2. 

Path Figure 2(a) Figure 2(b) Figure 2(c) 

600 
12/27/2006 – 09/29/2007 

(high – low) 

09/29/2007 – 12/30/2007 

(low – mid) 

12/27/2006 – 12/30/2007 

(high – mid) 

646 
12/27/2006 – 09/29/2007 

(high – low) 

09/29/2007 – 12/30/2007 

(low-mid) 

12/27/2006 – 12/30/2007 

(high – mid) 

645 
06/12/2007 – 12/13/2007 

(low – high) 

10/30/2008 – 12/15/2008 

(low – mid) 

12/15/2008 – 12/13/2007 

(mid – high) 

644 
01/08/2007 – 07/11/2007 

(high – low) 

01/16/2010 – 07/19/2010 

(mid-low) 

01/16/2010 – 04/18/2010 

(high – -mid) 

643 
06/24/2007 – 12/25/2007 

(low – high) 

06/24/2007 – 12/27/2008 

(low – mid) 

12/25/2007 – 12/27/2008 

(high – mid) 

642 
12/05/2006 – 06/07/2007 

(high – low) 

06/07/2007 – 12/08/2007 

(low – mid) 

12/05/2006 – 12/08/2007 

(high – mid) 

641 
07/06/2007 – 01/06/2008 

(low – high) 

05/29/2010 – 08/29/2010 

(mid – low) 

05/29/2010 – 01/06/2008 

(mid – high) 

640 
09/19/2007 – 12/20/2007 

(low – high) 

09/19/2007 – 05/12/2010 

(low – mid) 

05/12/2010 – 12/20/2007 

(mid – high) 

Next, the interferogram mosaic in Figure 5-2(a) was selected which shows the most 

extensive and dense fringes for further process because it shows =ℎ/=> gradient over both 

proximal and distal wetlands. Specifically, eight regions that have dense fringes across the 

wetland, and marked them with (A −�H) were identified as target wetlands. Fringe visible 
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areas were delineated with the geocoded wrapped interferograms using ArcGIS software, 

and the wetland lengths along the Congo mainstem and areas were measured for each target 

wetland (Table 5-3).  

Table 5-3 Details for each target wetland identified in Figure 5-2(a). 

Wetland Area (km2) Length along Congo 
mainstem (km) 

PALSAR 
Tracks Envisat Passes 

A 208.74 39.2 646, 600 429, 930 

B 3418.2 132 646, 600 429, 930 

C 1706.8 81.14 644 343, 386 

D 419.01 39.05 643 343, 386 

E 132.72 27.18 641 257, 300 

F 687.39 73.4 641 257, 300 

G 474.96 75.85 640 300, 715 

H 725.26 77.22 640 300, 715 
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Figure 5-2 Mosaic of PALSAR interferograms from low and high (a), low and mid-high 

(b), mid-high and high (c) water seasons. Regions marked as (A – H), are our 
study areas. Red “×”s represent “virtual station”.  
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Figure 5-3 Close-ups of interferograms in Figure 5-2. (a)-(c) are plots of boxes R1 and 
(d)-(f) are plots of boxes R2. 

5.3.2 Water Depth Maps from Calibration of InSAR-derived OP/OR 

The interferograms shown in Figure 5-2(a) were unwrapped using the minimum 

cost flow method (Costantini, 1998). However, since the interferograms can provide only 

a spatially relative gradient of =ℎ/=> (Alsdorf et al., 2007a; Kim et al., 2009; Lu et al., 

2009), an offset (i.e., a vertical reference) is needed to convert it to absolute water level 
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changes. This offset is calculated by comparing InSAR-derived =ℎ/=>  gradient with 

Envisat altimetry-derived =ℎ/=>, following the method in (Kim et al., 2009), which is 

explained next.  

Since the water level from altimetry ℎW3Y  has a fixed reference (i.e., reference 

ellipsoid or geoid), water level change from altimetry =ℎW3Y/=>  can be considered as the 

absolute water level change. The difference between =ℎW3Y/=>  and the InSAR-derived 

=ℎZ12[*/=> is the offset to be estimated, such as 

 =ℎW3Y/=> = =ℎZ12[*/=> + D\\]^>. (5-1) 

To perform the calibration (i.e., conversion to absolute water level change) of 

=ℎZ12[*/=>  measurements, the Envisat altimetry measurements were first temporally 

interpolated with respect to the SAR acquisition dates (Figure 5-4 left panels) except the 

low water profiles from Envisat pass 386 (Figure 5-4 b1 and c1). This is because low water 

level profiles from Envisat track 386 in 2007 were all noisy. Another less noisy (or smooth) 

low water level profile obtained on 03/07/2005 (cycle 35) was used as the low water level 

profile for Envisat pass 386 instead. This replacement should have little impact because 

the water level in the Congo wetland has distinctive seasonal variations and the water level 

varies little during low water seasons. 
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Figure 5-4 Left panels represent interpolated Envisat altimetry profiles. Right panels 

represent comparison between altimetry-derived and InSAR-derived =ℎ/=>. 
Locations of each region are referred to Figure 5-2. 
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The =ℎ/=> from InSAR and Envisat altimetry are compared, as shown in Figure 

5-4 (right panels). Both =ℎW3Y/=> and =ℎZ12[*/=> show very similar spatial variations of 

water level changes in the wetlands. The R2 values between them vary from 0.41 to 0.92 

and the root-mean-squared (RMS) differences vary from 0.1 m to 0.22 m. The R2 values 

between =ℎZ12[*/=> and =ℎW3Y/=> are lower in regions E and F, with values of 0.56 and 

0.41, respectively. This is because the interferograms over regions E and F have fewer 

fringes that result in a smaller number of valid measurements for comparison.  

By adding the estimated offsets shown in Figure 5-4 to =ℎZ12[*/=>, absolute water 

level change maps are then obtained. Among the interferograms from 7 adjacent paths 

shown in Figure 5-2(a), this vertical reference was not estimated or interferograms from 

PALSAR paths 645 and 642. This is because Envisat altimetry track 887 intersecting with 

PALSAR path 645 did not perform well in the southern wetland. Therefore, the calibration 

could not be performed. The interferograms from path 642 were also excluded because 

there are few fringes which indicates little water level change in the wetland. Overall, the 

interferograms from paths 645 and 642 shown in Figure 5-2(a) were not used for further 

analysis.  

Since the interferograms were generated using two SAR images obtained on low 

and high water seasons, the absolute water level change maps should be close to water 

depth maps for the high water season based on the assumption that little water is on the 

wetland during low water season. A similar assumption has been made in Lee et al. (2015). 

InSAR-derived =ℎ/=> maps represent water level change from acquisition dates of master 

images to slave images (Table 5-2). The interferograms generated from high water to low 

water seasons (PALSAR paths 600, 646 and 644) (Table 5-2), which represent decreasing 
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water levels in time, were converted into water depth maps by multiplying �1. Finally, 

eight water depth maps were obtained over eight target wetlands as shown in Figure 

5-5(left panels).  

5.3.3 Wetland Geomorphology and _ − ` Relation using Water Depth Maps 

Figure 5-6 schematically illustrates the wetland geomorphology and the impact of 

water level change to water storage changes. The wetland was modeled as a floodway 

elongated along the river with slope from the view of cross-section. The length of the 

wetland is denoted using ab.The cross-sectional slope of the wetland is described using the 

relative elevation of c with respect to the elevation of the wetland floor (ℎdWYefV+Y-f). c is 

supposed to increase with an increase of distance g from the river. It is assumed that water 

level is almost flat in the wetland cross-section (assumption 1) and water surface slope in 

the wetland along the river flow direction has little temporal variation (assumption 2). 

Assumption 1 is valid for the Congo River wetland and confirmed by looking at the high 

water level profiles from Envisat altimetry in Figure 5-4 left panels except Figure 5-4(a1). 

This is because Envisat pass 429 in Figure 5-4(a1) does not fly over the wetland cross-

sectional direction but captures upstream-downstream water surface slope. Assumption 2 

is also almost valid because water surface slope in the Congo River varies little in time 

(O’Loughlin et al., 2016). In addition, there are  very few fringes in the proximal wetland 

from InSAR mosaic in Figure 5-2(c) which indicates =ℎ/=> has little spatial variations in 

the proximal wetland between mid-high and high water seasons.  

The M − S relationships for each wetland are constructed using each of the eight water 

depth maps from Section 5.3.2. First of all, histograms of water depths can be generated 
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by counting the number of pixels within each water depth bin (Figure 5-5 middle panels). 

Then, the volume of water in the wetland at time >F (i.e., the high water dates in Table 5-2) 

can be estimated from the histogram as: 

 S(MVWX
Yh ) = MYh ∗ jYh(MYh)klhmknop

lh

klhm! , (5-2) 

where S(MVWX
Yh ) is the total water volume of that target wetland with maximum water depth 

MVWX
Yh  at time >F; M>1 is the water depth varying from 0 to MVWX

Yh ; j>1(M>1) is the inundated 

area that varies with the water depth M>1, and it can be computed by multiplying the number 

of pixels with depth M>1  from the histogram in Figure 5-5 (middle panels) with the 

resolution of the interferogram or the water depth map (~ 30 m). 

Considering water level is decreased by ∆ℎ at >I, following the schematic plot in 

Figure 5-6(b), the maximum water depth will be 

 MVWX
Yq = MVWX

Yh − ∆ℎ, (5-3) 

and the water depths over all the wetland pixels M>2 can be written as  

 MYq = MYh − ∆ℎ,																	tℎ^g^	MYh ≥ ∆ℎ
MYq = 0,																															tℎ^g^	MYh < ∆ℎ. (5-4) 

This relationship can be expanded for the inundated area j>2(M>2) such as: 

 
jYq MYq = jYh MYh ,															tℎ^g^	MYh ≥ ∆ℎ
jYq(MYq) = 0,																												tℎ^g^	MYh < ∆ℎ. (5-5) 

Using Equation (5-5), the total volume of water with maximum water depth MVWX
Yq  

can be estimated by 
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 S MVWX
Yq = MYq ∗ jYq(MYq)klqmknop

lq

klqm! = MYh − ∆ℎ ∗ jYh(MYh)klhmknop
lh

klhm∆x . (5-6) 

Therefore, with ∆ℎ varying from 0 to MVWX
Yh , the volume of water can be estimated for cases 

with different maximum water depths from MVWX
Yh  to 0 using Equation (5-6). In other words, 

if a water depth map of MYh with the maximum water depth MVWX
Yh  is obtained, the water 

volumes for cases with different maximum water depths smaller than MVWX
Yh  can also be 

obtained. An increment of 1 cm for ∆ℎ  is arbitrarily chosen in this study. The M − S 

relation is then finally constructed, as shown in the right panels of Figure 5-5. It should be 

noted that this M − S relations for each region are established with respect to different 

maximum water depths that are smaller than the maximum water depths obtained from the 

left panels of Figure 5-5 MVWXY < 	MVWXYF .  
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Figure 5-5 (Left) Water depth maps from InSAR and altimetry. (Middle) Distribution of 

water depths from water depth maps on the left panels. (Right) Relationship 
between maximum water depth (MYVWX) and absolute water volume (S). 
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Figure 5-6 Schematic plot of wetland geomorphology and water surface at >F (a) and >I 
(b) with maximum water depth location (yellow triangles) and virtual station 
(red crosses). Magenta region in (b) represents region without water at >I. 

5.3.4 Time Series of Maximum Water Depths 

In this section, the derivation for the time series of the maximum water depths 

(MVWXY ) is described which will be used with the M − S relationship derived in Section 

5.3.3 in order to generate the time series of absolute water volumes. 

From the left panels of Figure 5-5, each identified wetlands A – H has two 

overflying Envisat tracks. Over the intersections of the wetlands and Envisat tracks, so-

called “virtual stations” (red “×”s in Figure 5-2) are defined. As a result, 12 virtual stations 

(Figure 5-2) were establised. The name of each virtual station is defined using the wetland 

region and its altimetry pass number. For example, virtual station A_429 represents the 

virtual station at wetland A with Envisat pass 429. It should be noted that some of the 

wetlands share common virtual stations. This is because some Envisat ground tracks are 

located at the intersection of two adjacent PALSAR images. For example, Envisat tracks 

343 and 386 are located at the intersection of wetland Regions C and D, from which virtual 
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stations C(D)_386 and C(D)_343 are obtained. Similarly, Envisat track 300 is located at 

the intersection of PALSAR paths 641 and 640, from which virtual stations E(G)_300 and 

F(H)_300 are obtained. Consequently, there are 12 virtual stations from 16 intersections 

between the Envisat tracks and the target wetlands. 

Over each virtual station, time series of water level (ℎW3YY ) were generated using 

Envisat altimetry measurements (Figure 5-7 left panels). Then, a smooth low water level 

profile is used as the vertical reference for each virtual station, following the same method 

as (Lee et al., 2015). The elevations obtained from these low water level profiles are 

considered as the bathymetry elevations (ℎdWYefV+Y-f) of each virtual station (horizontal 

lines in left panels of Figure 5-7). Table 5-4 summarizes the selected low water level 

altimetry profiles and calculated ℎdWYefV+Y-f for each virtual station. Next, time series of 

water depths (M72Y ) were generated at each virtual station by subtracting ℎdWYefV+Y-f from 

ℎW3YY : 

 M72Y = ℎW3YY − ℎdWYefV+Y-f. (5-7) 

It should be again noted that the M − S relationship obtained in Section 5.3.3 is with respect 

to the maximum water depths in each wetland. However, an Envisat altimetry track does 

not always fly over the region with the maximum water depth. In order to obtain the time 

series of maximum water depths (MVWXY ), a correction term ∆My01z+-./01 was computed 

which is the difference between MVWXYF  and the water depth interpolated at the virtual station 

location using Figure 5-5 (left panels). The calculated ∆My01z+-./01 for each virtual station 

is summarized in Table 5-4. Finally, after adding ∆My01z+-./01  to M72Y  for each virtual 
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station, time series of MVWXY  were obtained using measurements from two virtual stations 

for each wetland region (Figure 5 right panels) such as 

 MVWXY = M72Y + ∆My01z+-./01. (5-8) 

The ∆My01z+-./01 term addresses the spatial heterogeneity of water depth and linked the 

water depth at virtual stations and maximum water depth. One of the benefit of using two 

virtual stations to obtain time series of MVWXY  is higher temporal sampling of MVWXY  for each 

region. The good agreement of MVWXY  from two virtual stations indicates the effect of spatial 

homogeneity of =ℎ/=> at the two virtual stations as suggested by Equation (5-5) and Figure 

5-6.  
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Table 5-4 List of virtual stations over each target wetland identified in Figure 5-2(a).  

Region Virtual 
Stations 

Location 
(longitude, latitude) 

ℎ"#$%&'($)& 
(m) 

Envisat cycles for 
ℎ"#$%&'($)& 

*'#+$,  
(m) 

*-.$,  
(m) 

∆*01))(0$213 
(m) 

A 
A_429 (18.132, -0.144) 303.09 47 

1.68 
1.38 0.30 

A_930 (18.069, -0.235) 302.40 90 1.53 0.15 

B 
B_429 (18.101, -0.018) 304.5 30 

1.95 
0.82 1.13 

B_930 (18.249, 0.600) 309.66 34 0.95 1.00 

C 
C_386 (19.184, 1.557) 320.25 58 

1.52 
0.90 0.62 

C_343 (19.19, 1.55) 320.18 21 0.92 0.6 

D 
D_386 (19.184, 1.557) 320.25 58 

1.41 
0.67 0.74 

D_343 (19.19, 1.55) 320.18 21 0.65 0.76 

E 
E_300 (20.705 1.974) 332.83 37 

0.71 
0.46 0.25 

E_257 (20.554 1.934) 330.97 69 0.43 0.28 

F 
F_300 (20.732 2.055) 333.20 77 

1.06 
0.72 0.34 

F_257 (20.53 2.04) 331.62 49 0.80 0.26 

G 
G_300 (20.705, 1.974) 332.83 37 

1.49 
1.07 0.42 

G_715 (21.257 1.967) 338.10 31 0.84 0.65 

H 
H_300 (20.732 2.055) 333.20 77 

1.8 
0.82 0.98 

H_715 (21.224 2.1058) 338.14 83 1.15 0.65 
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Figure 5-7 (Left) Time series of water levels (ℎ"#$) derived from Envisat altimetry data 

over the 12 virtual stations. Locations of virtual stations are referred to Figure 
5-2(a). (Right) Time series of %$&"' over each wetland. 

5.3.5 Time Series of Absolute Water Volumes 

Using the % − ) relationship from Section 5.3.3 and the time series of %&"'$  from 

Section 5.3.4, time series of absolute water volumes were generated for each wetland 

region (Figure 5-8). The x-axis limit of % − ) shown in Figure 4 (right panels) represents 

the maximum water depths obtained from the water depth maps, i.e., %&"'
$* . If %&"'$  from 

Equation (5-8) is smaller than %&"'
$* , the water storage is directly obtained from the % − ) 

curve. Otherwise, the water storage is computed by linearly extrapolating the % − ) curve. 
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Figure 5-8 Time series of absolute water volumes over the eight wetlands. 

5.4 Results  

5.4.1 Modelling of the + − , Relationship  

The % − ) relationship in the wetland reveals how the wetlands store water, which 

is usually characterized by wetland bathymetry. Modeling of the % − )  relationship 
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contributes to the understanding of the shape of the bathymetry and thus the characteristics 

of water storage in the wetland.  

Here, the wetland is modelled as in Figure 5-6 whose cross-sectional slope can be 

characterized with a power function proposed in Hayashi and Van Der Kamp (2002): 

 - -. = (1 1.)3, (5-9) 

where - is the relative elevation of the wetland floor with respect to the cross-sectional 

lowest wetland bathymetry at a distance 1 from the river; -. is the unit elevation; 1. is the 

distance to the river corresponding to -. ; 4  is the shape coefficient. Shapes of slope 

profiles with different 4 values are shown in Figure 5-9. 

 

Figure 5-9 Slope profiles of wetland with - -. = (1 1.)3 ; 4 > 1 indicates a concave 
slope; 4 > 1 indicates a convex slope;	4 = 1 indicates a flat slope. 

Since the algorithm in Hayashi and Van Der Kamp (2002) has been derived for 

“pothole” wetlands which have different geometric shape from the wetlands in this study, 

Equation (5-10) was derived for wetland using the principle proposed in Hayashi and Van 

Der Kamp (2002). The derivation of Equation (5-10) is given in Appendix I. 
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 ) %&"'$ = 89 ∙
;<

(=>*?)
∙ (@ABC

D )*E*/?

@<
*/? , (5-10) 

where ) %&"'$  is water volume with maximum water depth %&"'$ , 89  is the wetland 

length along the river (Table 5-3), and 1. is a scaling constant which is equal to the width 

of inundated wetland when %&"'$ = %.. 

Equation (5-9) was then used to determine the best-fit values of 4 and 1.  for each 

wetland using the least-squares method (Figure 5-10). From Figure 5-10, Equation (5-10) 

can be used to adequately represent the % − )  relationship obtained in Section 5.3.3. 

Meanwhile, all the 4 values are smaller than 1, which suggests that the shape of the wetland 

bathymetry is mostly convex. This shape coefficient derived over the wetlands in Congo 

is different from that for the potholes or lakes, which have 4  values higher than 1, 

representing a concave shape (Hayashi and Van Der Kamp, 2000).  
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Figure 5-10 4 and 1. values for each wetland. 
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5.4.2 Quantitative Validations of Wetland Water Storages 

The estimated absolute water volumes from Section 5.3.5 were compared with 

results from Lee et al. (2015) who estimated absolute water storages from the water depth 

maps generated using backscattering coefficients from PALSAR ScanSAR, water level 

changes from Envisat altimetry, and VCF from MODIS. The absolute water storages were 

calculated using the water depth maps from Lee et al. (2015) (by summing the water depths 

multiplied by the ScanSAR resolution) over the three common wetlands (A, B, and C). It 

is noted that Lee et al. (2015) were able to generate the water depth maps only for the dates 

of ScanSAR acquisitions on 12/5/2006, 12/8/2007 and 12/10/2008 (for more details, 

readers are referred to Lee et al. (2015)). For region A, the estimates of the absolute water 

volumes on 12/16/2006, 12/01/2007, and 12/02/2008 (Envisat altimetry dates which are 

closest to the ScanSAR acquisition dates of Lee et al. (2015)) are 0.17 ± 0.01 km3, 0.13 ± 

0.03 km3, and 0.12 ± 0.01 km3, respectively, which agree with the estimates from Lee et 

al. (2015) with differences smaller than 0.02 km3 (Table 5-5). The uncertainties of water 

storages ( GH ) are calculated by an error propagation of %&"'$  through the % − ) 

relationship. The uncertainties of %&"'$  (G@ABC
D ) is assumed to be equivalent to the 

uncertainties of ℎ"#$ (GIBJD) which is calculated from the high-rate Envisat measurements 

as illustrated with error bars in Figure 5-7. It should be noted that the error propagation of 

G@ABC
D  through the nonlinear % − ) relationship results in different lower and upper lengths 

of the error bars which have been used in the time series of absolute water volumes in 

Figure 5-8. The upper error bar lengths are slightly larger and described as the uncertainties 

of water storages, hereinafter. Consequently, for region B, it is estimated to be 1.51 ± 0.23 

km3, 0.72 ± 0.22 km3 and 0.95 ± 0.37 km3 for altimetry dates of 12/16/2006, 12/01/2007, 
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and 12/02/2008, respectively, with differences of 0.44 km3, 0.53 km3 and 0.28 km3 from 

the estimates from Lee et al. (2015). The difference for region B in December of 2007 up 

to 0.53 km3 could be due to timing differences between our estimates and estimates from 

Lee et al. (2015). For region C, absolute water storages are estimated to be 0.62 ± 0.07 km3, 

0.70 ± 0.08 km3 and 0.8 ± 0.07 km3 for altimetry dates of 11/27/2006, 12/15/2007, and 

12/01/2008, respectively, with differences of 0.18 km3, 0.23 km3 and 0.05 km3 from the 

estimates from Lee et al. (2015). Overall, estimation of absolute water volumes over 

regions A, B, and C in this study agree well with the estimates from Lee et al. (2015), with 

most of the nine values in Table 5-5 falling within the overlapping estimated uncertainty 

of the two methods.  

Table 5-5 Comparisons of water storages from % − )  relation and from water depth 
maps in Lee et al. (2015). 

 From % − ) relation From Lee et al. (2015) 

Region Date Volume 
(km3) Date Volume (km3) 

A 

12/16/2006 (VS A_930) 0.17 ± 0.01 12/5/2006 0.17 ± 0.03 

12/01/2007 (VS A_930) 0.13 ± 0.03 12/8/2007 0.15 ± 0.30 

12/02/2008 (VS A_429) 0.12 ± 0.01 12/10/2008 0.14 ± 0.02 

B 

12/16/2006 (VS B_930) 1.51 ± 0.23 12/5/2006 1.07 ± 0.27 

12/01/2007 (VS B_930) 0.72 ± 0.22 12/8/2007 1.35 ± 0.28 

12/02/2008 (VS B_429) 0.95 ± 0.37 12/10/2008 1.23 ± 0.23 

C 

11/27/2006 (VS C_386) 0.62 ± 0.07 12/5/2006 0.86 ± 0.18 

12/15/2007 (VS C_343) 0.70 ± 0.08 12/8/2007 0.93 ± 0.17 

12/01/2008 (VS C_386) 0.80 ± 0.07 12/10/2008 0.85 ± 0.14 
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5.4.3 Evaluation of Wetland Water Storages with GRACE and TRMM 

In this section, a qualitative comparison between absolute wetland water storages with 

TWS anomalies from GRACE data and precipitation anomalies from TRMM data was 

performed. Because of differences between the spatial resolutions of GRACE and TRMM 

and the size of our target wetlands, three aggregations were created by combining the water 

storages from adjacent wetlands together. The three aggregations are (i) A and B, (ii) C 

and D, and (iii) E, F, G, and H, respectively. Then, the CSR mascon grids which cover each 

of the three aggregated regions were used to calculate average TWS anomalies for each 

aggregated region. Similarly, the precipitation anomalies from TRMM data over each 

aggregated region were also selected and averaged. The wetland water storages, TWS 

anomalies from GRACE, and precipitation anomalies from TRMM for the period of 2002 

– 2011 are illustrated in Figure 5-11(left panels). Our wetland water storages and the 

GRACE TWS anomalies show distinctive seasonal variations, and their timing agrees 

reasonably well. The amplitude difference between the TWS anomalies and wetland water 

storages can be explained by the fact that the GRACE TWS has contributions from water 

storages in the river channel, soil moisture, and groundwater as well as the wetland. In 

addition,  inter annual variations in both of them are observed– relatively wet years in 2002 

and 2007 while relatively dry years from 2003 to 2006. By summing up the water storages 

during peak seasons over all the studied wetlands, the mean annual amplitude over the 

entire studied wetlands (~7,777 km2) is 3.98±0.59 km3. The maximum wetland water 

storage is observed in year 2002 with a volume of 6.3±0.68 km3 and minimum volume of 

2.2±0.61 km3 in the dry year of 2005. In addition, the decreases in water storages are well 

correlated with the decreases in precipitation during the same period over all of the regions 
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(i) – (iii). In particular, region (i) (or regions A and B) suffered from the most significant 

water storage decreases compared to other regions. This can be explained by its more rapid 

decrease in precipitation (0.4 m to 0 m in peaks from 2003 to 2006) than the precipitation 

decrease over other regions (ii) and (iii) (0.2 m to 0.1 m in peaks from 2003 to 2006).  

The monthly mean values of wetland water storage, TWS anomalies, and precipitation 

anomalies were also generated and compared. The maximum water storage in the wetland 

is observed in December which is one month lag behind the annual peaks (November) of 

TWS anomalies and precipitation anomalies. This is expected where the wetlands receive 

majority of its water from upland runoff, and confirms the finding of Lee et al. (2011). 

 
Figure 5-11 (Left) Comparison of wetland water storage with TWS anomalies from 

GRACE and precipitation anomalies from TRMM. (Right) Monthly mean 
anomalies of wetland water storage, GRACE TWS and precipitation. 
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5.5 Discussions and Conclusions  

In this study, a new method was developed to estimate absolute water storage in 

the Congo wetlands for the period of 2002 – 2011 by constructing the % − ) relationship 

using two-dimensional water depth maps from integration of InSAR and altimetry 

measurements. This method of constructing the % − ) relationship is different from the 

method in previous studies (Hayashi and Van Der Kamp, 2000; Lane and D’Amico, 2010; 

Minke et al., 2010) which used dense in-situ bathymetry networks in the wetlands. Those 

in-situ measurements allowed estimation of water depths, inundated area, and hence the 

water volumes in the wetlands. Our approach takes advantage of InSAR and altimetry 

measurements towards estimating absolute water storages and can be useful for relatively 

large wetlands where in-situ bathymetry data is limited. The established % − )  can 

contribute to understanding the role of wetlands in storing water and its contribution to 

river runoff. However, it should be noted that our method is established based on Equation 

(5-5) which assumes that water depth decreases by the same amount of ∆ℎ for all pixels 

with water depth larger than ∆ℎ. This assumption is generally valid for relatively small 

lakes or wetlands with little temporal variation in their water surface slopes. Extra caution 

is needed if the method is applied to the wetlands which may have significant temporal 

variation of water surface slopes. 

It is not straightforward to directly assess the uncertainty of the estimated absolute 

water storages because it is estimated from multiple data sources and assumptions. 

Furthermore, there is no in-situ water level change or water depth data in the Congo 

wetlands that we have access to. Perhaps the Everglades wetlands in Florida, USA are the 

only wetlands equipped with a dense in-situ network. Wdowinski et al. (2008) evaluated 
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the accuracy of InSAR using JERS-1 L-band images to be 5 – 10 cm in measuring water 

level change by comparing it with that from in-situ gauges in the Everglades wetlands. 

Hong et al. (2010) suggested uncertainty of InSAR-derived water level changes to be 3 – 

4 cm using Radarsat-1 C-band images over a water conservation area in the Everglades 

wetlands. On the other hand, the comparison between InSAR and altimetry-derived water 

level changes in Figure 5-4 reveals that the RMSDs between them vary from 5 – 22 cm. 

Thus, the accuracy of altimetry-derived water level changes over the wetlands in this study 

ranges from 7.1 cm to 24.2 cm (from sum of the variances). Given that this value is similar 

to the accuracy of %&"'$  which we used in the % − ) relationship, the relative accuracy of 

the water storage can be estimated using MN
H
= 1 + 1/4 ∗ (%&"'$ )Q= ∙ G@ABC

D . Hence, the 

relative accuracy of our method can improve with an increase of 4 value and %&"'$ . If %&"'$  

equals to 2 m and 4 equals to 0.4 like the case in the Congo wetlands, the relative accuracy 

of our method varies from 12.4% to 42%.  

Overall, absolute wetland water storage estimates was compared with those from 

Lee et al. (2015). The agreement between our results and estimates from Lee et al. (2015) 

suggest our method can predict reasonable water storages over the wetland. A comparison 

between our wetland water storages anomalies with GRACE TWS anomalies, and TRMM 

precipitation anomalies was presented. Our wetland water storages overall agree with the 

seasonal variations of TWS and precipitation anomalies. The mean amplitude of wetland 

water storage is about 3.98±0.59 km3 with peaks at December which lags behind TWS 

changes and precipitation changes by one month. The results also exhibit inter-annual 

variability, with maximum water volume of 6.3±0.68km3 in wet year of 2002 and 
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minimum volume of 2.2±0.61 km3 in dry year of 2005. The inter-annual variation of 

wetland water storages can be explained by the changes of precipitation from TRMM. 
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Chapter 6 Wetland Hydrology in the Central Cuvette 

6.1 Introduction 

A wetland’s formation and maintenance is highly connected to its seasonal flood 

dynamics (Hughes, 1997; Ward et al., 1999; Tockner and Stanford, 2002). During water 

residence in the floodplain, the biogeochemical environment of the floodwater is modified 

due to the influence of sedimentation, sorption and redox reactions, and biotic processes 

(Richey et al., 1989; Hamilton, 2002). Inundation of the wetlands is the usually the 

composite consequences of different influxes. The influxes can be classified by its 

origination, such as regional water of over-bank flow from the river, and local water 

including ground water, hyporheic water, local tributary water and direct precipitation 

(Mertes, 1997). Different water sources could make a difference in the sediment supplies, 

carbon and nutrient exchange. Few studies have investigated the sources and sinks of the 

water in the Congo wetlands. Lee et al. (2011) has investigated the source and amount of 

water in the Congo wetland in sub-basin scale and concluded that local water is the main 

source of Congo’s wetlands water. However, there has been no attempt to quantify local-

scale hydrologic fluxes in the Congo wetlands.  

In this study, we quantify the fluxes including precipitation R , upland runoff 

ST3#"U@ , evapotranspiration ET and wetland-river exchanges S;VWX;&Y  supplying and 

draining the wetlands using mass balance analysis. With S;VWX;&Y , water depth and water 

surface slope from altimetry measurements, two hydrological parameters (Z9 and [) were 

derived specific to Congo wetlands using a 1-D diffusion model (Kadlec, 1990). 
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6.2 Method 

6.2.1 Rate of Water Storage Changes 

Rate of water storage changes ∆\  is calculated using water storages () ) from 

Chapter 5 with Equation (6-1), 

 ∆\ = ∆)/∆], (6-1) 

where ∆) is computed using every two temporally adjacent water storage estimates, and 

∆] is the time span between the acquisition time of water storages. It should be noted that 

) from Chapter 5 are computed using two Envisat passes intersecting with each wetland 

which results in different temporal sampling rates of ) for each wetland Table 6-1. The 

differences in temporal sampling rate is due to the revisiting time of the two intersecting 

Envisat passes. Regions C, D, E and F have 33 or 2 days sampling rates. The dramatic 

difference in temporal sampling could results in large errors in estimating ∆\. Thus, ) from 

only one Envisat pass was used to estimate ∆\ for regions C, D, E and F. ) from Pass 386 

is used for regions C and D while ) from Pass 300 is used for regions E and F. Also, ) 

from noisy altimetry measurements are interpolated with zeros based on the fact that dry 

land results in noisy altimetry measurements.  
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Table 6-1 Summary of temporal sampling rate over each floodplain. 

Wetland Length along Congo 
mainstem (km) Envisat Passes 

Temporal Sampling 

Rate (day) 

A 39.2 429, 930 17, 18 

B 132 429, 930 17, 18 

C 81.14 343, 386 33, 2 

D 39.05 343, 386 33, 2 

E 27.18 257, 300 33, 2 

F 73.4 257, 300 33, 2 

G 75.85 300, 715 14, 21 

H 77.22 300, 715 14, 21 

6.2.2 Hydrological Flux Balance 

The mass balance analysis will be conducted to estimate wetland river water 

exchange rate S;VWX;&Y ]  using Equation (6-2). 

 ∆\ = S;VWX;
&Y ] − ^ − ST3#"U@ ] , ^ = R − _`, (6-2) 

where ∆S  is rate of water storage change from Equation (6-1), q is difference of 

precipitation and evapotranspiration, P is precipitation from TRMM data, ET is 

evapotranspiration from MODIS data, ST3#"U@ ]  is upland runoff estimated from 

Hillslope River Routing (HRR) Model, and S;VWX;&Y ]  is the wetlands river exchange rate 

to be estimated. 

6.2.3 1-D Wetlands Flow 

A 1-D model wetland model will be applied to simulate the wetland river water 

exchange rate. Equation (6-3) was adopt to simulate wetland and river water exchanges: 
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 U = Z9 ∗ ℎc ∗ \9
d, 	S;VWX;&e@X# = U ∗ ℎ ∗ 89, (6-3) 

where U is speed of flow, Kg is the flow conductivity coefficient (m/day/	mi), ℎ is surface 

water depth from satellite altimetry which is the maximum water depth in Figure 5-7, β is 

the depth exponent, \9 is the friction slope (or hydraulic gradient) (m/m),	λ depends on the 

flow regime, with λ = 1 for laminar flow and λ = 0.5 for turbulent flow and 89  is the 

length of the floodplain along the Congo main-stem which is listed in Table 5-3. The value 

of Kg represents the total flow conductance. β depends on the microtopography and stem 

density distribution. The friction slope \9  is estimated as oℎ op , where ℎ  is surface 

elevation and p is distance. \9 will be derived from altimetry measured water surface level. 

The water flow in this study is treated as laminar flow. Calibration of λ, Kg, and β will be 

illustrated in Section 6.3.3. 

6.3 Results 

6.3.1 Temporal Dynamics of Fluxes  

Each flux in Equation (6-2) is shown in Figure 6-1. Positive values indicate water 

filling the wetland while the negative values indicate water draining from the wetland. For 

most of the time of each year, R  and ST3#"U@  are the dominant sources in filling the 

wetlands. S;VWX; is the dominant inflow sources only in high water seasons. Instead, for 

most of each year, S;VWX; drains the wetlands which is demonstrated by the negative red 

columns in Figure 6-1. Overall, ET drains less water than S;VWX;. 

Table 6-2 summarizes all the cumulative fluxes through the wetlands 2003 to 2010. 

S;VWX;  contributes less than 15% of the total inflows into the wetlands. Precipitation 

contributes 26% to 49% while upland runoff contributes 42% to 64% of the total inputs. 
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S;VWX; drains 59% to 80% of the total outputs while ET is responsible for 20% to 41% of 

the total outputs. The mass balance analysis suggests that the Congo wetlands don’t receive 

much water from the river but supply water to the river.  
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Figure 6-1 Flux rates over each wetland. The location of each region is referred to Figure 5-2. 
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Table 6-2 Annual cumulative fluxes over each region. Shaded data represents the percentage of each flux in filling and draining 
the wetlands.  

 
Source terms (m) Sink terms (m) Source terms (m) Sink terms (m) 

Region A Region B 
Year Qriver P Runoff Qriver ET Qriver P Runoff Qriver ET 
2003 0.17 1.42 1.12 1.85 1.25 0.25 1.43 1.79 2.81 1.25 
2004 0.21 1.63 1.45 2.12 1.37 0.04 1.88 2.52 3.28 1.30 
2005 0.09 1.46 1.17 1.56 1.37 0.36 1.56 1.93 2.55 1.31 
2006 0.49 1.78 1.68 1.59 1.42 0.66 1.73 2.51 2.52 1.33 
2007 0.45 1.73 1.59 2.72 1.28 0.54 2.01 3.03 4.93 1.23 
2008 0.37 1.45 1.17 2.18 1.36 0.17 1.75 2.35 3.27 1.34 
2009 0.13 1.58 1.33 1.49 1.40 0.27 1.78 2.51 3.28 1.36 

Average 0.27 1.58 1.36 1.93 1.35 0.33 1.73 2.38 3.23 1.30 
Percent in sources 

and sinks 0.08 0.49 0.42 0.59 0.41 0.07 0.39 0.54 0.71 0.29 

 Region C Region D 
2003 0.09 1.54 1.34 1.99 1.37 0.06 1.51 3.40 4.13 1.32 
2004 0.47 1.73 1.68 2.62 1.19 0.94 1.71 4.36 5.76 1.16 
2005 0.26 1.64 1.45 2.28 1.34 0.58 1.53 3.58 4.73 1.31 
2006 0.34 1.71 1.69 1.92 1.28 0.21 1.73 4.44 4.42 1.25 
2007 0.17 2.01 2.08 3.29 1.18 0.56 2.02 5.56 7.24 1.15 
2008 0.41 1.52 1.37 2.16 1.39 0.82 1.42 3.41 4.58 1.39 
2009 0.56 1.55 1.42 2.08 1.34 0.94 1.47 3.42 4.37 1.33 

Average 0.33 1.67 1.58 2.33 1.30 0.59 1.63 4.02 5.03 1.28 
Percent in sources 

and sinks 0.09 0.47 0.44 0.64 0.36 0.09 0.26 0.64 0.80 0.20 

 Region E Region F 
2003 0.92 1.52 3.11 5.42 1.28 0.29 1.60 2.41 3.90 1.24 
2004 0.65 1.51 3.15 3.43 1.11 0.42 1.47 2.15 2.60 1.13 
2005 0.10 1.58 3.03 3.88 1.22 0.24 1.48 2.02 2.81 1.20 



 126 

Table 6-2 continued 

2006 1.15 1.59 3.21 3.95 1.35 0.69 1.36 1.91 1.97 1.31 
2007 1.27 2.07 4.37 7.21 1.29 0.76 1.82 2.65 4.73 1.28 
2008 0.90 1.37 2.79 4.01 1.31 0.95 1.18 1.66 2.45 1.33 
2009 0.79 1.43 2.81 3.00 1.36 0.25 1.32 1.78 1.64 1.37 

Average 0.83 1.58 3.21 4.41 1.27 0.51 1.46 2.08 2.87 1.27 
Percent in sources 

and sinks 0.15 0.28 0.57 0.78 0.22 0.13 0.36 0.51 0.69 0.31 

 Region G Region H 
2003 0.28 1.44 3.04 4.34 1.24 0.17 1.48 3.04 4.31 1.16 
2004 0.32 1.59 3.43 4.07 1.16 0.50 1.43 2.82 3.80 1.14 
2005 0.06 1.48 3.09 3.70 1.21 0.05 1.49 2.86 3.27 1.15 
2006 0.84 1.54 3.34 3.51 1.32 0.99 1.38 2.74 2.61 1.24 
2007 0.07 2.02 4.36 5.60 1.24 0.69 1.69 3.30 5.51 1.19 
2008 0.65 1.53 3.28 4.51 1.40 1.38 1.31 2.55 4.04 1.36 
2009 0.09 1.38 2.96 2.63 1.41 0.17 1.33 2.55 2.60 1.35 

Average 0.33 1.57 3.36 4.05 1.28 0.56 1.45 2.84 3.73 1.23 
Percent in sources 

and sinks 0.06 0.30 0.64 0.76 0.24 0.12 0.30 0.59 0.75 0.25 
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6.3.2 Water Surface Slope from Envisat Altimetry 

Almost no sizeable channels are observed in the central Congo wetlands as shown 

in Figure 5-2. The river water flows into the adjacent wetlands as diffusive, non-

channelized overbank flow. Overbank flow occurs only during high water level seasons as 

shown in Figure 6-1.  

Variations of water surface slope are observed from Envisat altimetry 

measurements (Figure 6-2). Shaded areas in Figure 6-2 represent the intersection of 

wetlands and river. In low water seasons, elevation of the wetland is higher than the river 

while in high water season, elevation in the river is slightly higher than in the wetland. 

During low water season, it is higher in the wetlands than in the river, which means water 

can only flow from wetlands into the river. While during high water season, it is slightly 

higher in the river than in the wetlands, which means water can flow from river into the 

wetlands. The variations of water surface are consistent with the mass balance analysis in 

Section 6.3.1. A first order polynomial was applied to fit the measurements in the shaded 

areas in Figure 6-2 to represent water surface slope between the river and the wetlands.  

Envisat passes 257, 300, 343, and 715 are almost perpendicular to the flow direction 

of the Congo mainstem. These measurements contain little contribution from river 

upstream-downstream slope. While the rest of the Envisat passes 429, 930 and 386 contain 

the contribution from river upstream downstream slope. In order to obtain water surface 

slope between the river and the wetlands, river upstream-downstream slope contributions 

are estimated and removed using the angle between Envisat ground pass and river slope in 

O’Loughlin et al. (2016). 
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Figure 6-2 Selected profiles of Envisat altimetry measurements showing variations of the 
water surface. Location of each Envisat pass is referred to Figure 5-2.   
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6.3.3 Model Calibration 

Three parameters (λ, "# , $) in Equation (6-3) are unknown. λ is calibrated by 

calculating Reynold Number. The Reynold Number is calculated using 

 Re=dρU/µ, (6-4) 

where Re is Reynold number, d is water depth, U is velocity of water flow, µ is the dynamic 

viscosity. If Re is lower than 2000, the flow is laminar and λ will be 1. If Re is higher than 

4000 the flow is turbulent and λ will be 0.5. The Re value is computed to be 2083 by using 

d=1.5 m, )=1000 kg/m+, ,=0.14 cm/s, - = 101+(N s/m2). Thus, λ = 1 is used in this 

study. 

High water level profiles from the seven passes in Figure 6-2 are selected to 

calibrate the parameters  "# and $. This is because radar altimetry measurements work 

well in high water seasons and wetlands-river exchanges are active during high water 

seasons. Since each studied wetland (see Figure 5-2 for location the wetlands) has different 

sizes,  the fluxes in Figure 6-1 were firstly converted into flow rate by dividing floodplain 

length (3#) and water depth (45677 ) for each wetland using  

 ,58 = 9:;<=:
>?

@>AB
B ∗DE

, (6-5) 

where ,58 the is velocity of water exchange rates estimated using FGHIJG58  from Equation 

(6-2), 45677  is maximum water depth with the same values as Figure 5-7. 

The calibration processes determined the values of "# and $ using a search space 

based on minimum values of Root Mean Squared Error (RMSE) between ,5K@JL and ,58, 

following the same method in (Choi and Harvey, 2013). The RMSE values with different 
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"# and $ are shown in Figure 6-3. The minimum RMSE value is 1.45 m/hr with optimized 

values of "# = 65220	(R/4/RS)	 and $ = 3.1. By inserting "# = 65220	(R/4/RS)	 

and $ = 3.1 into Equation (6-3), a model derived ,5K@JL  is obtained. The comparison 

between ,58 and ,5K@JL is shown in Figure 6-4. As we can see in Figure 6-4, the 1-D 

wetlands model adequately represents the wetlands river exchanges.  

 
Figure 6-3 RMSE between ,58	 and ,5K@JL with different "# and $ values. 

 
Figure 6-4 Comparison between ,58 and ,5K@JL. 
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6.4 Discussions and Conclusions 

The mass balance analysis over the Congo wetlands has been conducted in this 

chapter. It shows that the Congo wetlands receives a majority of its water from local water, 

not from regional water. This indicates that the wetlands receive little carbon and 

sedimentation from the river. Instead, the wetland river exchanges drain most of the water 

in the wetlands, which suggests the wetlands is a supplier of carbon to the Congo River.  

The water surface slope dynamics observed from Envisat altimetry between 

wetlands and the Congo main-stem also support the results from this mass balance analysis. 

A one-dimensional wetlands model is applied to simulate wetlands river exchanges. Two 

parameters "# and $  specific to Congo wetlands are derived using space-borne 

measurements.  
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Chapter 7 Conclusions and Future Work 

7.1 Contributions and Conclusions 

Tropical wetlands are one of the most important sources of global carbon and 

methane emissions, and play a significant role in regulating water balance and maintaining 

biodiversity (Barbier, 1994; Neue et al., 1997; Hayashi et al., 1998). The water flow 

through the wetlands, which governs biogeochemical process, sediment delivery and 

nutrient exchange, is probably the most important controlling factor (Mitsch and Gosselink, 

2007). The Congo River Basin is one of the least studied major river basins and little is 

known about its hydrology and hydrodynamics. In order to better understand the spatio-

temporal variations of wetlands water as well as the its sources and sinks, this study focused 

on the opportunities provided by the integration of radar altimetry, SAR, and InSAR 

because it permits mapping Wℎ WY within the wetlands with high spatial resolution. 

This dissertation starts from investigating the relationship between L-band 

PALSAR σZ and seasonal water level changes obtained from Envisat altimetry over the 

island of Île Mbamou in the Congo Basin where two distinctly different vegetation types 

(forested and non-forested) are found. PALSAR σZ	exhibits positive correlation with water 

level changes over the forested southern Île Mbamou whereas both positive and negative 

correlations are observed over the non-forested northern Île Mbamou depending on the 

amount of water level increase. Based on the analysis of σZ	sensitivity, denser vegetation 

canopy leads to less sensitive σZ  variation with respect to the water level changes 

regardless of forested or non-forested canopy. Furthermore, a method was developed by 

integrating PALSAR σZ , Envisat altimetry and MODIS VCF to estimate water level 
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changes which were then compared with the Envisat altimetry and InSAR results. This σZ 

method suggests adequate accuracy in regions with medium-low vegetation canopy where 

InSAR could lose coherence. On the other hand, the accuracy of the σZ method is hampered 

in regions with dense forested canopy where InSAR can maintain coherence for measuring 

Wℎ WY. 

Multi-temporal Wℎ WY  maps were then generated with ALOS PALSAR 

interferograms and Envisat altimetry data in the Congo forested wetland near Lisala in 

Democratic Republic of the Congo. Three fringe patterns from PALSAR interferograms 

were identified due to spatio-temporal water level changes in the wetland: (1) dense fringes 

parallel to the Congo mainstem in high water season; (2) broad fringes across the wetland; 

(3) fringes around the wetland boundary in low water season. The absolute water level 

change maps generated by integrating InSAR and Envisat altimetry data suggest that 

Wℎ WY can reach up to 1.2 m in the proximal wetland in high water level season. During 

low water season, Wℎ WY can be several decimeters. Based on the maps of absolute Wℎ WY 

and the principle of mass continuity, the analysis of temporal hydraulic variations was also 

presented. The hydraulic analysis suggests that Wℎ WY is subtle and the water flow in the 

wetland is not well confined during low water season. On the other hand, the proximal 

wetland has greater Wℎ WY  than the distal wetland during high water season, which 

suggests that water mostly flows from the wetland to river.  

To better understand the inter-annual variations of water storages in the Congo 

wetlands, a new method was developed to estimate absolute water storages over the 

wetlands by establishing relationships between water depths (4) and water volumes ([) 

using 2-D water depth maps from the integration of InSAR and altimetry measurements. 
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This 4 − [  relation method and Envisat altimetry measurements were combined to 

construct time series of wetland’s absolute water storages from 2002 to 2011. The 4 − [ 

relation was modelled using a power function, which revealed the cross-sectional geometry 

of the wetlands as a convex curve. The mean annual amplitude from 2002 to 2011 over the 

wetlands (~7,777 km2) is 3.98±0.59 km3 with peaks in December, which lags behind total 

water storage (TWS) changes from the Gravity Recovery and Climate Experiment 

(GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) 

by about one month. The absolute water storages also exhibit inter-annual variability, with 

maximum water volume of 6.3±0.68 km3 in the wet year of 2002 and minimum volume 

of 2.2±0.61 km3 in the dry year of 2005. The inter-annual variation of water storages can 

be explained by the changes of precipitation from TRMM. 

The absolute water storages were then used to investigate sources and sinks in the 

wetlands along the middle reach of the Congo mainstem using a mass balance equation. 

Mass balance analysis suggests water in the river can only flow into the wetlands during 

high water season, which is also supported by the water surface slope variations from 

Envisat altimetry measurements. The averaged influxes values from 2003 to 2011 suggest 

that local water contributes more than 85% of total water inflow while regional supplies 

less than 15% of total water inflow to the wetlands. The averaged outfluxes suggest that 

wetland river exchanges drain 59% to 80 % of the outflow and evapotranspiration drain 

20% to 41% of the out flow. A wetland model integrated with water surface slope and 

water depth from satellite altimetry was applied to derive hydrological parameters "# of 

65220	(R/4/RS)	 and $ of 3.1 which are specific to the Congo wetlands.  
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7.2 Future Work 

7.2.1 Correcting InSAR-derived ^_/^` with SAR σa 

Satellite altimetry has been used to convert InSAR-derived relative Wℎ/WY  into 

absolute Wℎ/WY . However, some regions do not have altimetry tracks or altimetry 

measurements does not perform well over rough terrain. One of the solutions to overcome 

the absence of altimetry measurements is to use the SAR backscattering coefficient which 

can be also used to estimate water level changes but less accurate than InSAR. The method 

in Chapter 3 has the potential to calibrate InSAR derived Wℎ/WY over regions without 

altimetry tracks. 

7.2.2 Mapping Two-dimensional Wetland Bathymetry  

The water level changes in the Congo wetlands appear to be mostly controlled by 

wetlands bathymetry and water level. Chapter 5 characterized the wetlands bathymetry to 

be a convex shape by establishing the 	4 − [  relationships. The method in Chapter 5 

increased the temporal sampling of water storage but lost spatial resolution in mapping 

Wℎ/WY. One method to improve this limitation is to map the two-dimensional wetland 

bathymetry. The implementation is composed of two steps: 1) first interpolate the water 

level in the high water season to each InSAR pixel and obtain ℎ(b, d); 2) then subtract the 

absolute water level changes from ℎ(b, d) to obtain ℎ867ef5J7Gf(b, d), such as  

 ℎ867ef5J7Gf b, d = ℎ b, d − Wℎ/WY(b, d), (7-1) 

where b, d represent the location of each SAR pixel position. It is expected that this wetlands 

bathymetry can be used to obtain two dimensional Wℎ/WY with altimeter measurements. 
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This ℎ867ef5J7Gf can also be used in a hydrodynamic model to simulate two dimensional 

water flow in the wetlands.  

7.2.3 Quantifying Interannual Water Storage Variations over the Whole Congo 

Basin 

Water storage estimations in Chapter 5 show interannual variations of water 

storages over the identified wetlands with driest year in 2005. However, there are no studies 

quantifying the interannual surface water storages over the whole Congo Basin yet. GIEMS 

datasets and GRACE measurements can be used to quantify this interannual variations. 

The results can be used to evaluate the impacts of El Niño over the Congo Basin by 

comparing interannual water storages over the Amazon Basin, which also experienced 

exceptional dry year in 2005. 

7.2.4 Modelling of Wetland Hydrodynamics 

Mass balance analysis in Chapter 6 suggests that during low water seasons, 

wetlands are not flooded by water from the river but supply water to the river. On the other 

hand, during high water seasons, water in wetlands is partially supplied by the river. 

Detailed flooding process within the wetlands and the interactions of different water 

sources are unknown. For example, it is unknown to what extents the wetlands is only 

flooded by local water and to what extents the wetlands is flooded by mixed water. 

Different flooding patterns are likely to have different effects on the ecosystem (Tockner 

et al., 2000). Numerical models permit the study of interactions among different water 

sources. One of the input for the hydrodynamic models – wetlands bathymetry can be 

obtained using the method proposed in 7.2.2.   
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Appendix I 

Based on Figure 5-6(a), the water storage in the floodplain can be expressed as: 

 [ 456g7 = 3# ∙ ijGKkk1kJj7HKl(456g7 ), (S 1) 

where [ 456g7  is water volume with maximum water depth 456g7 , 3#  is the floodplain 

length along the river, ijGKkk1kJj7HKl 456g7  is the averaged area of floodplain cross 

section when maximum water depth is 456g7 . 

We followed power function proposed in Hayashi and Van Der Kamp (2002) to 

characterize the floodplain cross-section slope. Following Hayashi and Van Der Kamp 

(2002), the cross-section slope profiles are: 

 m mZ = (n nZ)o, (S 2) 

where m is the relative elevation of floodplain floor with respect to cross-sectional lowest 

floodplain floor at a distance n from the river; mZ is the unit elevation; nZ is the distance to 

the river corresponding to mZ, thus representing the floodplain width when mZ is equal to 1 

m; p is the shape coefficient.  

Then, when maximum water depth equals to 456g7 , the averaged floodplain cross-

sectional area represented in Figure 5-6(a) can be estimated using: 

 ijGKkk1kJj7HKl 456g7 = n(m)4m@>Aq
B

Z . (S 3) 

Rewriting Equation(S 2), 

 n = ( f
fr
)
s
tnZ. (S 4) 

Substituting Equation (S 4) into Equation (S 3), we can get 
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 ijGKkk1kJj7HKl 456g7 = ( f
fr
)
s
tnZ4m =

Gr
(uvst)

∙ (@>Aq
B )sws/t

fr
s/t

@>Aq
B

Z . (S 5) 

Substituting Equation (S 5) into Equation (S 1), water storage can be written as: 

 [ 456g7 = 3# ∙
Gr

(uvst)
∙ (@>Aq

B )sws/t

fr
s/t . (S 6) 

 


