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Abstract—Given significant air pollution problems, air quality
index (AQI) monitoring has recently received increasing atten-
tion. In this paper, we design a mobile AQI monitoring system
boarded on unmanned-aerial-vehicles (UAVs), called ARMS, to
efficiently build fine-grained AQI maps in realtime. Specifically,
we first propose the Gaussian plume model on basis of the
neural network (GPM-NN), to physically characterize the particle
dispersion in the air. Based on GPM-NN, we propose a battery
efficient and adaptive monitoring algorithm to monitor AQI at
the selected locations and construct an accurate AQI map with
the sensed data. The proposed adaptive monitoring algorithm
is evaluated in two typical scenarios, a two-dimensional open
space like a roadside park, and a three-dimensional space like
a courtyard inside a building. Experimental results demonstrate
that our system can provide higher prediction accuracy of AQI
with GPM-NN than other existing models, while greatly reducing
the power consumption with the adaptive monitoring algorithm.

Index Terms—Mobile sensing, air quality, fine-grained moni-
toring, unmanned aerial vehicle (UAV).

I. INTRODUCTION

N a recent report from the World Health Organiza-

tion (WHO) [1], air pollution has become the world’s
largest environmental health risk, as one in eight of global
deaths are caused by air pollution exposure each year. Air
pollution is caused by gaseous pollutants that are harmful to
humans and ecosystem, especially concentrated in the urban
areas of developing countries. Thus, reducing air pollution
would save millions of lives, and many countries have invested
significant efforts on monitoring and reducing the emission of
air pollutants. Government agencies have defined air quality
index (AQI) to quantify the degree of air pollution. AQI is
calculated based on the concentration of a number of air pol-
lutants (e.g., the concentration of PMs 5, PM; particles and
so on in developing countries). A higher value of AQI indicates
that air quality is “heavily” or “seriously” polluted, resulting in
a greater proportion of the population may experience harmful
health effects [2]. To intuitively reflect AQI value of locations
in either two-dimensional (2D) or three-dimensional (3D) area,
AQI map is defined to offer such convenience [3|.

A. Mobile AQI Monitoring

AQI monitoring can be completed by sensors at govern-
mental static observation stations, generating a AQI map in
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a local area (e.g., a city [4]]). However, these static sensors
can only obtain a limited number of measurement samples
in the observation area and may often induce high costs. For
example, there are only 28 monitoring stations in Beijing. The
distance between two nearby stations is typically several ten-
thousand meters, and the AQI is monitored every 2 hours [J5]].
To provide more flexible and accurate monitoring as well as
reduce the cost, mobile devices, such as cell phones, cars
and balloons are used to carry sensors and process real time
measuring. Crowd-sourced photos contributed by mass of cell
phones can help depict the 2D AQI map in a large geographical
region in Beijing [6]], with a range of 4kmx4km. Mobile
nodes equipped with sensors can provide 100mx 100m 2D on-
ground concentration maps with relatively high resolution [/7]—-
[9]]l. Sensors carried by tethered balloons can build the height
profile of AQI at a fixed observation height within 1000m [[10].
A mobile system with sensors equipped in cars and drones can
help monitor PMs 5 in open 3D space [11], with 200m per
measurement.

B. Motivations for Realtime Fine-Grained Monitoring

Even though current mobile sensing approaches can provide
relatively accurate and real-time AQI monitoring data, they are
spatially coarse-grained, since two measurements are separated
by few hundreds of meters in horizontal or vertical directions
in the 3D space. However, AQI has intrinsic changes from
meters to meters, and it is preferred to perform AQI monitoring
in the 3D space surrounding an office building or throughout
a university campus, rather than city-wide [12f], [13]. The
AQI distribution in meter-sliced areas, called as fine-grained
areas would be desirable for people, particularly those living
in urban areas. The fine-grained AQI map can help design
the ventilation system for buildings, which for example guide
teachers and students to stay away from the pollution sources
on campus [|14].

Due to the high power consumption of mobile devices,
one can only measure a limited number of locations of the
entire space. To avoid an exhaustive measurement, using an
estimation model to approximate the value of unmeasured area
has been wildly adopted. In [15], the prediction model is based
on a few public air quality stations and meteorological data,
taxi trajectories, road networks, and Point of Interests (POIs).
However, because they estimate AQI using a feature set based
on historical data, their model cannot respond in realtime to
the change in pollution concentration at an hourly granularity,
leading to large errors at times. In [11]], the random walk
model is used for prediction by dividing the whole space into



270
260
J 250
<
240
230

Fig. 1. An illustration of AQI measurement using mobile sensing over UAV.

different shapes of cubes. However, the model may not reflect
physical dispersion of particles [16], [17], and all locations
are measured without considering the battery life constraint
when mobile devices are used. Mobile sensor nodes used
in employ the regression model as well as graph theory
to estimate the AQI value at unmeasured locations. However,
they mainly focus on 2D area, and can hardly produce a
3D fine-grained map. Neural networks (NN) are also used
for forecasting on the AQI distribution [I8]]-[21]. However,
its performance in fine-gained area is not satisfied without
considering the physical characteristic of real AQI distribution.

C. Contributions

To this end, in this paper we design a mobile sensing system
based on unmanned-aerial-vehicles (UAVs), called ARMS,
that can effectively catch AQI variance at meter-level and
profile the corresponding fine-grained distribution. ARMS is
a realtime monitoring system that can generate current AQI
map within a few minutes, compared to the previous methods
with an interval of a few hours. With ARMS, the fine-grained
AQI map construction can be decomposed into two parts.
First, we propose a novel AQI distribution model, named
Gaussian Plume model embedding Neural Networks (GPM-
NN), that combines physical dispersion and non-linear NN
structure, to do predictions of unmeasured area. Second, we
detail the adaptive monitoring algorithm as well as addressing
its applications in a few typical scenarios. By measuring only
selected locations in different scenarios, GPM-NN is used
to estimate AQI value at unmeasured locations and generate
realtime AQI maps, which can save the battery life of mobile
devices while maintaining high accuracy in AQI estimation.

The contributions of our work are summarized as follows:

e The GPM-NN is highly adaptive in different fine-grained
measurement scenarios, and it can provide higher accu-
racy in creating AQI maps than other existing models.

e The adaptive monitoring algorithm can guide UAV to
choose optimized trajectory in different scenarios based
on GPM-NN. It can greatly reduce the battery consump-
tion of ARMS, while achieving high accuracy when
constructing realtime AQI maps.
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e The ARMS is the first UAV sensing system for fine-

grained AQI monitoring.

The rest of this paper is organized as follows. In Section
II, we briefly introduce our UAV sensing system. In Section
III, we present our fine-grained AQI distribution model. The
adaptive monitoring algorithm is addressed in Section IV. In
Section V and Section VI, we present two typical application
scenarios and performance analysis of ARMS, respectively.
Finally, conclusions are drawn in Section VII.

II. PRELIMINARIES OF UAV SENSING SYSTEM

In this section, first we provide a brief introduction of
ARMS, and then we show how to construct a dataset using
ARMS. To confirm the reliability of the collected dataset,
we compare the collected data and the official AQI measured
by the nearest Beijing government’s monitoring station, i.e.,
the Haidian station [22]]. To determine the parameters of our
model, we test possible factors that may influence AQI, such as
wind, locations, etc., and remove those factors that have small
correlations with AQI in the fine-grained scenarios from our
model.

A. System Overview

The architecture of ARMS includes an UAV and an air
quality sensor boarded on the UAV, as shown in Fig. 2] The
sensor is fixed in a plastic box with vent holes, bundled on
the bottom of UAV. The sensor uses a laser-based AQI detec-
tor [23]], which can provide the concentration within < £3%
monitor error for common pollutants in AQI calculation, such
as PMs 5, PMyg, CO, NO, SO5 and O3. The values of these
pollutants are realtime recorded, with which we calculate the
corresponding AQI value at measuring locations.

For the UAV, we select DJI Phantom 3 Quadcopter as
the mobile sensing device. The UAV can keep hosting for at
most 15 minutes due to the battery constraint, which restricts
the longest continuous duration within one measurement. The
GPS sensor on the UAV can provide the real-time 3D position.
During one measurement, the UAV is programmed with a
trajectory, including all locations that need to be measured.
Following this trajectory, UAV hovers for 10 seconds to collect



Fig. 2. The ARMS system, and the front and the back of the sensor board.

sufficient data to derive the AQI value at each stop, before
moving to the next one.

During one monitoring process, ARMS measures all target
locations and records the corresponding AQI values. After
the measuring process is completed, the data is then sent to
the offline PC and put into the GPM-NN model to construct
the realtime AQI map. Thus, the map construction process is
offline.

B. Dataset Description

Data collected by ARMS are then arranged as a dataset EI
As shown in Fig. [T} we have conducted a measurement study
in both typical 2D and 3D scenarios (i.e., a roadside park
and the courtyard of an office building in Peking University),
respectively, from Feb. 11 to Jul. 1, 2017, for more than 100
days to collect sufficient data.

In the dataset, each .txt file includes one complete mea-
surement over a day in one typical scenario. In each .txt file,
each sample has four parameters, 3D coordinates (x,y, z) and
an AQI value. Each value represents the measured AQI, while
its coordinates in the matrix reflect the position in different
scenarios. In the 2D scenario, we assume z = (0, while
measuring at an interval of Sm in x and y directions. In the
3D scenario, every row presents fixed position in xy plane,
while every column represents the height at an interval of Sm
in z direction.

C. Data Reliability

To verify that there is no measurement error, we show the
results of the relationship between our collected data and the
official data (i.e., Haidian station IIZ;Z]]), in Fig. E[ Note that the
official data is limited and only for the 2D space, while our
system is mobile and suitable for the 3D space profiling. We
select 14 consecutive days for about 60 instances of monitoring
from Mar. 14 to Mar. 27, 2017, to verify the reliability of
our measurement. We use the two-tailed hypothesis test [25]]:
Ho @ p1 = po vs. Hi @ g1 # pe, where pq denotes our
average measured data for all days and po is the average for
the official ones. The test result, P = 0.9999 > 0.05, indicates
that there is no significant difference between the two values,
which confirms the reliability of our measurements.

Dataset can be found at |https:/github.com/YyzHarry/AQI_Dataset,
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Fig. 3. AQI value comparison between official data and data we collected,
for 14 days in March, 2017.

D. Selection of Model Parameters

According to the previous AQI monitoring results for
coarse-grained scenarios [17], AQI is related to wind (in-
cluding speed and direction), temperature, humidity, altitude
and spatial locations. But for fine-grained scenarios, corre-
lations between AQI and these spatial parameters need to
be reconsidered, due to the heterogenous diffusion in both
vertical and horizontal directions in a small-scale area. In
this test, all these potential parameters are measured by our
ARMS with different sensors. To evaluate the real correlation
between these parameters, we adopt the spatial regression
according to [26]], and test the coefficient for each parameter.
Mathematically, the spatio-temporal model is given below:

Clsi) = z(s:)B" +e(s:), (1

where C'(s;) is the particle concentration at position s;,
z(s;) = (21(84), .-, 2n(8;)) denotes the vector of n param-
eters at s;, and B8 = (f1,...,8n) is the coefficient vector.
g(si) ~ N(0,0?) is the Gaussian white-noise process.

Based on our data, we use the least square regression and
implement a hypothesis test for each coefficient 3;, as Hy :
fBj = 0. The results in Table [[ indicate that wind and location
are highly related to AQI distribution, whereas temperature
and humidity are not.
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TABLE I
RESULT OF THE HYPOTHESIS TEST

Tested Parameter P_value

Wind 7.5693 x 107° (< 0.05)
Location 2.0981 x 10~° (< 0.05)
Temperature 0.9070 (> 0.05)
Humidity 0.6996 (> 0.05)

III. FINE-GRAINED AQI DISTRIBUTION MODEL

In this section, we provide a prediction model considering
both physical particle dispersion and NN structure. We first
introduce the physical dispersion model for the fine-grained
scenario. Then, we provide a brief introduction of NN we
adopt in modeling, which can adapt to complicated cases, such
as the non-linearity introduced by extreme weather. Finally, we
embed the dispersion model in NN to design our distribution
model.

A. Physical Particle Dispersion Model

We first address the physical particle dispersion model for
fine-grained scenarios. Specifically, we ignore the influence
of temperature and humidity according to discussions in
Section 2.D, and select the Gaussian Plume Model (GPM) in
the particle movement theory [27], to describe the particle’s
dispersion. GPM is widely used to describe particles’ physical
motion [16], [28]], and its robustness has been proved in a small
scale system [29].

GPM is expressed as
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where @ is the point source strength, u is the average wind
speed, and H denotes the height of source.
To adopt GPM into the fine-grained scenario, the GPM is
revised as below
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where C(Z,u) is the AQI value at location Z, u is the real
wind speed at different locations in the entire space, H denotes
a variable that reflects the influence of wind direction, which
presents severely polluted areas along z-axis. Pollution mainly
derives as a line source aligned the y-axis, and L denotes
the length of polluted source, A denotes the particle density
at the source. o, and o, are diffusion parameters in y and
z directions, and are both empirically given. The dispersion
model in (3)) can reflect physical characteristics, but can hardly
deal with unpredictable complicated changes, such as the non-
linearity introduced by extreme weather.

Linear part

Fig. 4. The model structure of GPM-NN.

B. Neural Network Model

The neural network model, especially multilayer percep-
tron (MLP), has been wildly adopted to do estimation for air
quality [18[]-[21]. They usually train models by using a huge
amount of data to achieve decent performance. All possible
influential factors are involved as the neural network input
variables for network training. Other types of NN [30], [31]]
are proposed for better classification with more complex struc-
tures. As it has been proved that a three-layer neural network
can compute any arbitrary function [32]-[34], NN is able
to present the complicated changes in fine-grained scenario.
However, without considering the physical characteristics of
AQI, the NN model may overfit and perform worse on the
test data than on the training data [|18].

C. GPM-NN Model

In order to utilize the advantages of both GPM and NN,
we embed the revised GPM in NN, and put forward GPM
embedding NN (GPM-NN) model.

1) Model Description: As shown in Fig. [ the model
structure contains a linear part (the physical dispersion model)
and a non-linear part (the NN structure) for fine-grained AQI
distribution, respectively. Let N be the total number of data
collected by ARMS, which is represented by a pair (X, ;),
where X; = [v1 22 ... x,]T is the j'* sample with a
dimensionality of m variables and t; is the measured AQI
value.

(a) In the non-linear NN part, let K denote the total number
of neurons in the hidden layer. The weights for these
neurons are denoted by W = [W; W, ... Wk],
where W; = [wi1 wio ... Winy] is the m-dimensional
weight vector containing the weights between the com-
ponents of input vectors and the i*” neuron in the hidden
layer. b = [b1 bo bi| is the bias term of the
it" neuron. The non-linear part with K neurons in the
hidden layer will have 8 = [81 B2 ... Pk]| as weights
for output layer and g(-) is the activation function.

(b) In the linear part, we use C(Z, u), a constant value and
a Gaussian process as inputs, to reflect the influence



of the physical model. The regression weights are
correspondingly determined as Sk 1, Bx+2 and 1.

Thus, the mathematical expression of the proposed model
can be written as

K
t(#u) =Y Big(WiX; +bi) + Br 10, u)+

1=1
B2 + &(X),

4
j=1,2,...,N,

where ¢(Z, u) is the estimated value of ¢; and it represents the
model’s output. C'(Z,u) is the output of the dispersion model
in and f3; are regression coefficients. &(Z) ~ N(0,02)
is the measurement error defined by a Gaussian white-noise
process. Since there is a risk that the NN part will overfit and
perform worse on the test data than training data, the estimated
AQI value is expressed as

Of (f7 U) = Cstatic + t(fa U), (5)

where Cgq4ic 18 the average value of our measured AQI in
a day, which is an invariant to quantify basic distribution
characteristics.

2) Parameter Estimation: As shown in (@), GPM-NN has
(K+3) parameters, H, 51, B2, ..., Bk +2, which need to be
estimated based on data collected by ARMS. 50 days’ data
are used for training the non-linear part of GPM-NN. We use
the least square regression to estimate the parameters. Let S
denote the residual error as

2

N K
S = ||Cs(@,w) = Bya — B 1 C(&Fu) = > Byg;
i=1 j=1
(6)
where i denotes the measuring sample of the i*" observation

point, and g; = g(W,; X, + b;).

Proposition 1. Equation (6) has a unique minimum point for
estimated parameters 31, Ba, ..., Bi+2 and H, when o2 >
max{222 2HZ}.

Proof: See Appendix A. ]
To find the minimum point of the residual error function
S(H, By, .., BKr+2), we use the Newton method [33] to solve

the following equations whose analytical solution does not
exist, as
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When the estimation value of H (denoted as H™) is deter-
mined, C(Z,u) is correspondingly determined. Denote

gW1X1+b1) - g(WkXi1+bk) C(Z1,u1) 1
g(W1Xa+b1) - g(WkXao+br) C(Z2,u2) 1
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as the model output matrix, and similarly
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is the vector that needs to be estimated. Hence, the estimated
value of N samples can be written as

T=Jp. ®)

Note that J is both row-column full rank matrix, which has
a corresponding generalized inverse matrix [36]. As we have
proved (6) has a unique minimum point, we then have

B=JT N 1Jrtig
=J' N JtT )
=JiT,

where J' = (JTJ)~1J7T is known as the Moore-Penrose
pseudo inverse of J. This equation is the least squares solution
for an over-determined linear system and is proved to have the
unique minimum solution [37]. Thus, this equation is equal to
the multivariate equation in (7), by which we can find the
minimum value point of S.

3) Performance Evaluation: To determine the initial value
of the weights W and biases b for the hidden layer, we use
the training data to do preprocessing and acquire the optimal
values. Hence, the model can be completely determined for
describing the AQI distribution in fine-grained scenarios.

For evaluating the performance of GPM-NN, we use av-
erage estimation accuracy (AEA) as the merit, expressed as

-y (1 - 'C-f(iglj(iff(i)|> a0

i=1

where 7 denotes the total locations in the scenario, C' (i)
denotes the estimation AQI value in the i*" location and C/y (i)
denotes the real measured value. In Section V and Section
VI, we compare the accuracy of AQI map constructed by our
GPM-NN and other existing models.

IV. ADAPTIVE AQI MONITORING ALGORITHM

In this section, we provide the adaptive monitoring algo-
rithm of ARMS. Intuitively, a larger number of measure-
ment locations introduce a higher accuracy of the AQI map.
However, based on the physical characteristic of particle
dispersion in GPM-NN, we can build a sufficiently accurate
AQI map by regularly measuring only a few locations. This
process can effectively save the energy, and thus improve
the efficiency of the system. Specifically, an AQI monitor-
ing is decomposed into two steps—complete monitoring
and selective monitoring—for efficiency and accuracy. We



Algorithm 1: Operation of monitoring algorithm

/* Complete Monitoring: triggered between days */
for i = 1 to sum(Cube) do
measure the AQI value of C'ube; and record;
move to the next cube;
end
generate baseline 3D AQI map B;

/* Selective Monitoring: triggered between hours */
for i =1 to sum(Cube) do
calculate PDT.,pe;;
if PDT ype; > PDT || PDT.ype; < 9 then
‘ add Cube; to M;
end
end
generate min trajectory D of M;
forall p; € D do
measure the AQI value of C'ube; and record;
end
update the realtime AQI map M based on previous B and
D;
if M deviates B by a large o then
‘ enter the complete monitoring period;
end

first trigger complete monitoring everyday for one time,
to establish a baseline distribution. Then ARMS periodi-
cally (e.g., every one hour) measures only a small set of
observation points, which are acquired by analysing the char-
acteristic of the established AQI map. This process, named as
selective monitoring, is based on GPM-NN to update the re-
altime AQI map. By accumulating current measurements with
the previous map, a new AQI map is generated timely. Every
time when selective monitoring is done, ARMS compares the
newly-measured results and the most recent measurement. If
there is a large discrepancy between them, which indicates
that the AQI experiences severe environmental changes, we
would again trigger the complete monitoring to rebuild the
baseline distribution. Thus, ARMS can effectively reduce the
measurement effort as well as cope with the unpredictable
spatio-temporal variations in the AQI values.

A. Complete Monitoring

The complete monitoring is designed to obtain a baseline
characteristic of the AQI distribution in a fine-grained area and
is triggered at a day interval.

The entire space can be divided into a set of 5mx5bmx5m
cubes. In the complete monitoring process, ARMS measures
all cubes continuously and builds a baseline AQI map using
GPM-NN. The process is of high dissipation, and thus is
triggered over a long observation period.

B. Selective Monitoring

To reflect changes of the AQI distribution in a small-scale
space over time (e.g., between each hour in a day) [11f], ARMS
uses the selective monitoring to capture such dynamics.

The selective monitoring makes use of previous AQI map,
by analyzing the physical characteristics of it, to reduce the
monitoring overhead in the next survey and maintain the
realtime AQI map accordingly.

In the selective monitoring process, ARMS measures AQI
value of only a small set of selected cubes and generates AQI
map over the entire fine-grained area. To deal with the inherent
tradeoff between measurement consumption and accuracy, we
put forward an important index called the partial derivative
threshold (PDT), to guide system selecting specific cubes.
PDT is defined as

acy | |acy
Oz 9 min
PDT, = , (11)
’ aCy _ ‘ aCy
ox; oz, .
max mn

where x; denotes the " variable in GPM-NN (; =
1,2,...,m), and C; = Cy(&,u) denotes the entire distribu-
tion in a small-scale area. |0Ct/0%;|min and |0Cy/0%;|max
denote the minimum and the maximum value of the partial
derivative for parameter x;, respectively. Note that 0C/0x;
describes the upper bound of dynamic change degrees we can
tolerate, expressed as

oCy aC; oC aC
= PDT; - - ,
a‘r’i ( axi max ‘ ami min - axi min
0 < PDT; < 1. (12)

For each parameter, there is one corresponding PDT. In
general, PDT reflects the threshold for dynamic change de-
grees in a fine-grained area. Area that has large change rate of
model’s parameters would have a larger PDT value, indicating
more drastic changes. When given a specific PDT, any cube
whose 0C'y /Ox; is above threshold of will be moved into
a set M. Moreover, when PDT; is too small (less than a small
const 9), the corresponding i*" cube will also be added into
M. Mathematically, set M is given as

M={i| PDT; > PDT}U{i | PDT; < ¢}. (13)
Remark 1. Elements in M can be the severe changing areas
in a small-scale space (e.g., a tuyere or abnormal building
architecture), or typically the lowest or the highest value that
can reflect basic features of the distribution. These elements
are sufficient to depict the entire AQI map, and hence are
needed to be measured between two measurements. Thus, by
only measuring cubes in M, ARMS can generate a realtime
AQI map implemented by GPM-NN, while greatly reducing
the measurement overhead.

In general, PDT is adjusted manually for different scenarios.
When PDT is low, the threshold for abnormal cubes declines,
indicating the measuring cubes will increase and the estima-
tion accuracy is relatively high. However, it can cause great
battery consumption. On the other hand, as PDT is high, the
measuring cubes will decrease. This can cause a decline in
accuracy, but can highly reduce consumption. In summary, the
tradeoff between accuracy and consumption should be studied
to acquire a better performance of whole system.
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Fig. 5. An example of the adaptive monitoring algorithm, i.e, complete and selective monitoring.

C. Trajectory Optimization

When target cubes in set M are determined, the total
network can be modelled as a 3D graph G = (V, E) with
a number of |V| target cubes. Hence, finding the minimum
trajectory over these cubes is equal to find the shortest hamil-
tonian cycle in a 3D graph. This problem is known as the
traveling salesman problem (TSP), which is NP-hard [38].

To solve TSP in this case, we propose a greedy algo-
rithm to find the sub-optimal trajectory. In the fine-grained
scenario, ARMS has power consumption and can monitor
no more than n cubes over one measurement. To find the
corresponding trajectory, we focus on how to determine the
next measuring cube based on current location of ARMS. Let
Z = {0y, 01, ...,Opy|-1} be the set of coverage cubes, with
O; denotes every observation cube. The aim is to acquire
as many target cubes as possible over the trajectory for
higher AQI estimation accuracy. Considering the significant
physical characteristic of PDT above, our greedy solution can
be formulated as: maximize the next cube’s PDT, as well as
minimize the traveling cost from current location to next cube.
Hence, finding the optimal trajectory in this case is equal to
an iteration of solving the following optimization problem,
expressed as

. PDT;

b =argmax cost(7)

st. O, e M, (14
0; N[ J{00,01,...,0i1} =2,

where cost(i) is the consumption for the UAV to traverse from
the (i — 1)*" cube to the i** cube, and PDT; is acquired by
analysing the characteristic of latest AQI map.

For every current location ¢, the selection of next target
cube follows (T4). Note that there are limited target cubes in
M, which are also determined by @), hence the objective
function aims to generate trajectory point-by-point. Thus,
using the solution of (T4), the greedy algorithm can effectively

select key cubes and generate the suboptimal trajectory for
ARMS in different scenarios, respectively.

For analyzing the complexity of our algorithm, there are
V' target cubes in total that need to be added from M.
When current location of ARMS is at the it" cube, it needs
to compare another |V — i| edges in G to determine the
next measuring cube. Note that every target cube contains m
parameters (m = 4 in our model), and O(V) = O(n). Thus,
the total operation time is O (m Zz/z_ll |V — z|) = 0(n?).

Algorithm 1 describes the whole process of the monitoring
algorithm. Complete monitoring is triggered between days
and selective monitoring is triggered between hours. When
the monitoring area experiences severe environmental changes
such as the gale, ARMS compares the result of map built by
selective monitoring and the map built last time. If there is a
large deviation o between them, ARMS would again trigger
the complete monitoring to rebuild the baseline distribution.

V. APPLICATION SCENARIO I: PERFORMANCE ANALYSIS
IN HORIZONTAL OPEN SPACE

In this section, we implement the adaptive monitoring
algorithm in a typical 2D scenario, namely the horizontal
open space. We present performance analysis of GPM-NN
and adaptive monitoring algorithm in this typical scenario,
respectively.

A. Scenario Description

When the 3D space has a limited range in height, ARMS
needs to cover target cubes nearly in the same horizontal
plane. Two distant cubes at the same height may have a low
correlation, as the wind may create different concentration
of pollutants in a horizontal plane. This scenario is com-
monly considered as a typical 2D scenario and often with
a horizontal-open space (e.g., a roadside park), as shown in

Fig. [6]



Fig. 6. The typical application scenarios of ARMS in 2D space (a roadside
park).

B. Performance Analysis

In this section, we first compare the accuracy of GPM-NN
with other existing models by the experimental result in Fig.[7}
Then, Fig. [§] illustrates the influence by different numbers of
neurons in the hidden layer. To study GPM-NN’s performance
when AQI varies, in Fig.[0] we show the relationship between
different AQI values and corresponding estimation accuracy.
In Fig. [I0] we present the performance of our monitoring
algorithm versus other selection algorithms. Finally, Fig. [T
shows the tradeoff between system battery consumptions and
estimation accuracy via different PDTs.

1) Model Accuracy: In Fig. we compare three pre-
diction models, our regression model GPM-NN, linear in-
terpolation (LI) and classical multi-variable linear re-
gression (MLR) [26]], respectively, versus different values of
PDT. LI uses interpolation to estimate the AQI value of
undetected cubes by other measured cubes, while MLR uses
multiple parameters (e.g., wind, humidity, temperature, etc.)
of measured cubes to do regression and estimation.

In the horizontal open space scenario, we can find that
GPM-NN achieves the highest accuracy. In each curve, we
can see that the average estimation accuracy decreases as the
PDT value increases. As discussed in Section IV-B, when PDT
has a higher threshold, target cubes in set M decline, i.e.,
the total cubes measured by ARMS become fewer. Thus, the
estimation accuracy correspondingly drops. When PDT = 0.1,
GPM-NN performs the best among three models, which proves
the robust and precision of our model. Moreover, as PDT
increases (e.g., PDT = 0.75), GPM-NN still maintains a
high accuracy (almost 80%), while others experience a rapid
decrease. This implies that our model is suitable for adaptive
energy saving monitoring in a fine-grained area.

2) Effects of Neuron Numbers: As we adopt the NN struc-
ture to introduce the non-linear part for our GPM-NN model,
the number of neurons in the hidden layer can have great
impacts on estimation results. In Fig.[8] we plot the estimation
accuracy of different number of neurons in GPM-NN via PDT,
to study their influence.

From Fig. [8] when PDT < 0.1, the monitoring contains all
cubes. When the number of neurons is 0, our model is equal to
the physical model in (3) with regression, which only contains
the linear part. By comparing this curve with others, we can
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Fig. 7. The comparison of estimation accuracy between GPM-NN, MLR and
LI, in 2D scenario.
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Fig. 8. The impact of the number of neurons in the non-linear part, in 2D
scenario.

find out that the number of neurons = 0 is worse than the
number of neurons # 0. By adding the non-linear part (NN
structure), GPM-NN performs better with higher accuracy.
Moreover, the curve with fewer number of neurons (e.g., the
number of neurons = 10) performs worse than with more
neurons (e.g., the number of neurons = 500). In this scenario,
we can find that the number of neurons = 1000 can achieve
the highest estimation accuracy. We ignore the situation where
the number of neurons > 1000, as too many neurons in the
hidden layer can cause overfitting.

3) Effects of Various AQI: In Fig.[9] we plot the estimation
accuracy of GPM-NN with different AQI values (i.e., AQI
< 50, 50 < AQI < 200 and AQI > 200 [22])), via different
PDTs. From the curves, we can find that in 2D scenario, GPM-
NN performs the best when AQI > 200. As 50 < AQI <
200, GPM-NN also maintains high accuracy, while relatively
worse when AQI is low. This indicates that our model is better
predicting in moderately and highly polluted days, which has
great instructing significance in forecasting severe pollution as
well as prevention. This characteristic is also suitable for the
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adaptive monitoring algorithm when AQI is high. Note that
even GPM-NN performs not so good when AQI is low, it still
outperforms other models.

4) Performance of Adaptive Monitoring Algorithm: In this
part, we compare the results of the proposed monitoring
algorithm for trajectory planning, versus other algorithms such
as greedy algorithm and sequential selection, by plotting their
battery consumptions over one measurement in Fig. [0} The
greedy algorithm aims to select the nearest target cube in M to
generate the trajectory [9]], while sequential selection is done
by selecting cubes from the bottom (or left) to the top (or
right) in order [[11].

In the typical horizontal open space, we plot the normalized
battery consumption achieved by three algorithms in Fig. [T0]
via different PDTs. The normalized consumption is the cost
percentage achieved by each monitoring method of one total
battery charge (i.e., 15 minutes). As PDT increases, the con-
sumption would correspondingly decrease, as the target cubes
in M would be fewer. By comparing three curves, we can
see that sequential selection is the most consuming method.
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Fig. 11. The tradeoff between system battery consumption and estimation
accuracy, in 2D scenario.

Our monitoring algorithm performs the best and is better than
the normal greedy algorithm, while 0.1 < PDT < 0.4.
After PDT reaches 0.4, the consumption of three methods
becomes equal, since the target cubes in M now is so few
that there is no difference in using these algorithm. Hence,
the adaptive monitoring algorithm can relatively reduce the
power consumption for monitoring AQI in the 2D scenario.
5) Tradeoff between Consumption and Accuracy: In
Fig. [T1] we illustrate the tradeoff between the battery con-
sumption and estimation accuracy. To better illustrate the
tradeoff, we use average error as a merit, expressed as

Frh— L (Gl - Cf<z'))2
EFRR = — —_ 15

s ( oo )W
where n, C(i) and C;(i) are the same in . We plot the
curves of system’s power consumption and average estimation
error versus PDT.

Fig. [T1]illustrates the relationship between the accuracy and
the battery consumption. Intuitively, a larger PDT introduces
less power consumption, which proves that with a higher
PDT, consumption declines as the number of measured cubes
decreases. Moreover, when PDT > 0.4, the total consumption
of the whole system can be reduced by 90%. The rapid decline
of consumption is also related to the high redundancy of
data in the typical 2D space as the roadside park. On the
other hand, the average error of ARMS increases as PDT
becomes larger, which confirms the existence of the tradeoff
between power consumption and estimation accuracy. Under
this circumstance, choose PDT = (.41 can achieve a relatively
high predicting accuracy (over 80%) while greatly reduce the
battery consumption of the system.

VI. APPLICATION SCENARIO II: PERFORMANCE
ANALYSIS IN VERTICAL ENCLOSED SPACE

In this section, we implement the adaptive monitoring
algorithm in a typical 3D scenario, vertical enclosed space.



Fig. 12. The typical application scenarios of ARMS in 3D space (courtyard
inside a high-rise building).

We then present performance analysis of the GPM-NN and
the adaptive monitoring algorithm in this typical scenario,
respectively.

A. Scenario Description

In the typical 3D scenario, the 3D space has target cubes
in various heights. In this type of scenario, the planar area
is relatively limited (e.g., the courtyard inside a high-rise
building). As shown in Fig. [[2] in such a vertical enclosed
space, there is no significant difference on AQI values between
two horizontally neighboring cubes, but the wind may create
a discrepancy of the pollutant concentration on two cubes at
different heights. Hence, the benefit of selecting more cubes
vertically outweigh the cost of traversing between distant
cubes at the same heights.

B. Performance Analysis

In this section, we present performance analysis of ARMS
in different aspects, as in Section V.B, for typical 3D scenario.

1) Model Accuracy: In Fig. we compare three predic-
tion models. In the vertical enclosed space scenario, GPM-
NN still maintains the highest accuracy among three models
via different PDTs. Compared to 2D scenario, LI decreases
rapidly as PDT increases, which indicates the heterogenous
in 3D AQI distribution. Moreover, when PDT = 0.8, GPM-
NN would experience a violent decline. This phenomenon is
caused by the inherent characteristic of PDT. When PDT is
high, the corresponding number of target cubes in M becomes
so few that the predicting accuracy can significantly drop, even
if only one point unmeasured (e.g., 10 cubes with PDT = 0.75
and 9 cubes with PDT = 0.8). This result can provide the basis
for choosing the suitable PDT value.

In conclusion, GPM-NN performs better in both 2D and 3D
fine-grained scenarios, with high estimation accuracy even if
measuring cubes are few.

2) Effects of Neuron Numbers: In Fig. [[4 we study the
effects of the number of neurons in a typical 3D scenario.
When PDT < 0.1, the result is the same as in the 2D scenario,
that each curve performs the best. As PDT increases, the curve
with the number of neurons = 0 declines most rapidly like that
in Fig. [8] Also, the curve with fewer number of neurons (e.g.,

100

90

LT
“-_._;.k
80 ) e

. ! \—~—\"'“"““"""' *'
50 - “_..‘ \m“;‘

Average Estimation Accuracy (%)

*,

401" [ comm GPM-NN - 7

e MLR s
301 = —

wmwl] 3

-

20 . 4
‘_
10 - ~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PDT

Fig. 13. The comparison of estimation accuracy between GPM-NN, MLR
and LI, in 3D scenario.
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scenario.

The impact of the number of neurons in the non-linear part, in 3D

the number of neurons = 10) performs worse than with more
neurons (e.g., the number of neurons = 100/1000) as well. In
this scenario, we can find that the number of neurons = 500
can achieve the highest estimation accuracy, which is different
from the result in the 2D scenario.

In conclusion, our GPM-NN model (with combination of
linear and non-linear part) is robust and better than that with
only linear part. Moreover, the number of neurons in the hid-
den layer can effectively influence the model’s performance,
and the optimal value is different in various scenarios.

3) Effects of Various AQI: In Fig. we again plot the
estimation accuracy of GPM-NN with different AQI values in
the 3D sceanrio. From the curves, we can find that GPM-NN
also performs the best when moderately and highly polluted,
while relatively worse when AQI is low.

In conclusion, GPM-NN can maintain better estimation
accuracy when the AQI value is moderate and high, which
is suitable for the operation of our ARMS.

4) Performance of Adaptive Monitoring Algorithm: In the
3D scenario as vertical enclosed space, Fig. [I6] shows the
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consumption of three algorithms, our monitoring algorithm,
greedy algorithm and sequential selection, via different PDTs.
From the figure, we can see when PDT is low, sequential
selection consumes much more than those of our method and
greedy algorithm. This indicates that when scenario becomes
3D, the cube selection can be more complicated and a suitable
selection method can highly reduce the battery consumption.
Moreover, adaptive monitoring algorithm also performs the
best among three methods, and it is better than the greedy
algorithm when PDT < 0.8. As PDT becomes high, the
normalized consumption of three algorithms is closer, and be-
comes equal when PDT > 0.8. Thus, the adaptive monitoring
algorithm can effectively save the battery life for monitoring
AQI in 3D scenario.

5) Tradeoff between Consumption and Accuracy: In
Fig. [I7} we plot the tradeoff in the 3D scenario as horizontal
enclosed space. This typical 3D scenario is more common in
real measurement, and hence the result is more instructive.
As PDT becomes higher, the average error grows rapidly
as consumption can drop fairly. Given the average error, for
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Fig. 17. The tradeoff between system battery consumption and estimation
accuracy, in 3D scenario.

example, when ERR = 0.04 (average estimation accuracy
is about 80%), the corresponding PDT = 0.51, and thus the
power consumption can be reduced to as little as 37%. Hence,
by choosing suitable PDT value for monitoring, the measuring
efforts can greatly scale down.

VII. CONCLUSION

In this paper, we have designed a UAV sensing system,
ARMS, to construct fine-grained AQI maps. A novel fine-
grained AQI distribution model GPM-NN has been proposed
based on NN and physical model, to help generate a re-
altime AQI map with data collected by ARMS. To reduce
the battery consumptions of ARMS, we have proposed the
adaptive monitoring algorithm to efficiently update realtime
AQI maps. For the 2D and 3D scenarios, we have applied
the adaptive monitoring algorithm, respectively. By using
the proposed index PDT, the system can well balance the
intrinsic tradeoff between the estimation accuracy and power
consumption. Experimental results have showed that GPM-
NN can achieve a higher accuracy in AQI map construction
than other existing models, and the number of neurons in
the hidden layer of GPM-NN should also be adjusted in
various scenarios to acquire better performance. Moreover, the
adaptive monitoring algorithm can generate trajectory while
greatly saving the battery life of the UAV, and ARMS can
well balance the tradeoff between accuracy of AQI map and
battery consumptions.

APPENDIX A
PROOF OF PROPOSITION 1

For f3; where j € [1, K+2], we have

250, g2 >0, 1<j<K,
928
— =14 22N (@) >0, =K+, (16)
0 i

2y N 1=2N >0, j=K+2.

Hence, 0S/00; are all convex functions, with j € [1, K+2].



As for variable H, the second order partial derivative can
be calculated as
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is equivalent to a quadratic function Q;(t;) = a;t? + b;t;.
Note that ¢; € (0,1], and t; = 0 is one zero point of Q;(t;).
To satisfy the proposition that 9°S/OH? always has positive
value, the problem becomes

), each item of the summation

_ 25’2(2,1_ _ H)2 B ﬁ/2

i uof uot <0,
Y, Vi e [1,N],
i — H)?
b — C B Bz ) -0,
;o3 ;03
which can be simplified as:
0?2 > max 2(z — H)?,
! (17)

o? > max (z; — H)2.

We define H € [0, Hy], where Hj is the upper bound for
a fine-grained measurement. Hence, by choosing appropriate
diffusion parameter o, as 02 > max{2z2,2H3}, we have

928 N N ,
S = D Qilti) =2 (ait] +bit;)
i=1 i=1
N 2 b 2
=2 ‘ P+ — ; 1
; yiom ;| (tl—i— o ) >0, Vt; € (0,1]

Therefore, 0S/0H 1is also a convex function, which indi-
cates that equation (6) has a minimum as well as a unique
value, correspondingly.
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