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Abstract

Since the ’80s the US has experienced not only a steady increase in income inequality,
but also a contemporaneous increase in residential segregation by income. Using US Census
data, we document a positive correlation between income inequality and residential segre-
gation between 1980 and 2010, both across time and across space, at the MSA level. We
then develop a general equilibrium overlapping generations model where parents choose the
neighborhood where to raise their children and invest in their children’s human capital. In the
model, segregation and inequality amplify each other because of a local spillover that affects
the returns to education. We calibrate the model to 1980 using Census data and the micro
estimates of the local spillover effect derived by Chetty and Hendren (2018b). We then hit
the economy with a skill premium shock and show that 20% of the increase in inequality in
the short run, and 29% in the long run can be attributed to the feedback effect of the local
spillover.
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1 Introduction

It is a well documented fact that over the last 40 years, the US has experienced a steady increase

in income inequality. At the same time there has been a substantial increase in residential segre-

gation by income and education. What is the link between inequality and residential segregation?

In particular, has residential segregation contributed to amplify the increase in income inequal-

ity caused by underlying shocks, such as skill-biased technical change? In this paper, we build

a model of human capital accumulation with local spillovers and residential choice that can be

used to address these questions.

There has been a large theoretical literature in the ’90s focusing on the relation between inequality

and local externalities, starting from the seminal work by Benabou (1996a,b), Durlauf (1996a,b),

Fernandez and Rogerson (1996, 1997, 1998). More recently, administrative data have been used

to propose direct estimates of neighborhood spillover effects. In particular Chetty, Hendren and

Katz (2016), and Chetty and Hendren (2018a,b) have shown that there are substantial income

effects coming from the childhood exposure to better neighborhood. We bridge these two strands

of literature, by proposing a general equilibrium model calibrated using the micro estimates from

Chetty and Hendren (2018b) to understand the contribution of these types of externalities to the

recent rise in inequality.

We first document a strong correlation between income inequality and residential segregation by

income at the MSA level, both across time and across space. We use US Census tract data on fam-

ily income between 1980 and 2010 to construct measures of inequality and residential segregation

at the MSA level. To measure inequality, we use the Gini coefficient. To measure segregation, we

use the dissimilarity index, which is a measure of how uneven is the distribution of two groups

across geographical areas. In particular, we divide the population in two income groups, rich and

poor, using the 80th income percentile, and compute the dissimilarity index across census tracts

belonging to the same MSA. We also check the robustness of our main findings with alternative

measures of income inequality, such as the 90/10 ratio, and of income segregation, such as the

dissimilarity index calculated with different percentiles and the HR index.1 Using these data, we

show that 1) average inequality and residential segregation have increased steadily since 1980;

1The HR index has been proposed by Reardon and Firebaugh (2002) and Reardon and Bischoff (2011), and also
used by Chetty et al. (2014).
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2) inequality and residential segregation in 1980 are correlated across MSA; 3) the change in

inequality and residential segregation between 1980 and 2000 are correlated across MSA.

We also look at intergenerational mobility, by using a restricted-access geocoded version of the

National Longitudinal Survey of Youth (NLSY79). We show that intergenerational mobility is

lower in metro areas that display higher levels of residential segregation. In particular, we split

the metro areas in two groups: above and below the median dissimilarity index in 1980. We then

show the share of people who stay in the lowest quartile of the wage distribution conditional on

their parents being in the same quartile goes from 40.7% in the less segregated metros to 47.3%

in the more segregated ones, testifying a lower degree of intergenerational mobility in the more

segregated metro areas. Similarly, the share of people who stay in the highest quartile of the wage

distribution conditional on their parents being in the same quartile goes from 41.4% to 46.8%.

We then build a general equilibrium overlapping generation model with human capital accumu-

lation and residential choice. The model generates a feedback effect between income inequality

and residential segregation, that amplifies the response of inequality to underlying shocks. Agents

live for two periods: first they are young and go to school and then they are old and become par-

ents. There are two neighborhoods and parents choose both the neighborhood where they raise

their children and the investment in their children’s human capital. The key ingredient of the

model is a local spillover: investment in human capital yields higher returns in neighborhoods

with higher average level of human capital. In turns, this implies that the residential choice it-

self affects human capital accumulation. The local spillover generates sorting in equilibrium:

richer parents with more talented children will pay higher rents to live in the neighborhood with

higher average human capital. The spillover effect in the model is meant to capture a variety

of mechanisms: differences in the quality of public schools, peer effect, social norms, learning

from neighbors’ experience and so forth. For our purposes here, it does not matter which of these

effects are causing the spillover.

Next, we calibrate the steady state of the model to the US economy in 1980. In particular, we

target the average level of income inequality and residential segregation by income, using the

Census data just described. We also target the skill premium, the share of collage graduates, the

ratio of collage graduates in the two neighborhoods, and the rank-rank correlation between chil-

dren’s and parents’ income. A key target of our calibration is the effect of the local spillover. This

is where we use the micro estimates obtained with the quasi-experiment in Chetty and Hendren
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(2018b).

We then perform our main exercise. Assuming that the original shock to inequality comes purely

from skill-biased technical change, we want to understand the role of the local spillover in am-

plifying the increase in inequality over time. In particular, we study the effects of an unexpected,

one-time shock to the skill premium on inequality, segregation, and intergenerational mobility

over time. If the skill premium increases, the relative spillover in the rich neighborhood increases,

generating even more inequality. Despite the parsimony of the model, the exercise generates pat-

terns for inequality and segregation that resemble the data. We then run some counterfactual

exercises to understand the different forces at play. The main exercise is a counterfactual where

we look at the response of the economy to the same shock, keeping the level of the spillover in

the two neighborhoods at the steady state values. The exercise shows that the spillover feedback

effect can contribute to 20% of the increase in inequality in the short run and to 29% in the long

run. Moreover, it contributes to 18% and 15% of the increase in segregation in the short and

long run respectively, and to 12% and 18% of the decrease in intergenerational mobility in the

short and long run. The increase in the relative spillover of the rich neighborhood is in part due

to the general equilibrium increase in the rental price of housing in the rich neighborhood. We

show that the general equilibrium effect accounts for roughly 30% of the increase in the relative

spillover.

Related Literature.

Our model builds on a large class of models with multiple communities, local spillovers, and en-

dogenous residential choice, studying the effects of stratification (residential segregation in our

language) on income distribution, going back to the fundamental work by Becker and Tomes

(1979) and Loury (1981). Among the seminal papers in this literature, Benabou (1993) explores

a steady state model where local complementarities in human capital investment, or peer ef-

fects, generate occupational segregation and studies its efficiency properties.2 Durlauf (1996b)

proposes a related dynamic model with multiple communities, where segregation is driven by

both locally financed public schools and local social spillovers. The paper shows that economic

stratification together with strong neighborhood feedback effects generate persistent inequality.3

2De Bartolome (1990) also studies efficiency properties of a similar type of model where communities stratifi-
cation is driven by peer effects in education. In similar papers, the local social externalities take the form of role
models (Streufert (2000)), or referrals by neighborhoods (see Montgomery (1991a,b)).

3Durlauf (1996a) uses a related model to study how it can generate permanent relative income inequality (opposed
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Benabou (1996a) embeds growth with complementary skills in production in a similar model,

where local spillovers are due both to social externalities (as peer effects) and locally financed

public school. The paper analyzes the trade-off coming from the fact that stratification helps

growth in the short run due to the complementarities in skills, while integration helps growth in

the longer run, as generates less inequality, and hence heterogeneity in skills, over time. It also

studies how alternative systems of education financing affect the economy. Fernandez and Roger-

son (1996) also study the impact of a number of reforms on public education financing using a

related model, with no growth, where residential stratification is purely driven by locally financed

public education.4 Fernandez and Rogerson (1998) calibrate to US data a dynamic version of a

similar model to analyze the static and dynamic effects of public school financing reforms. This

paper is, to the best of our knowledge, the first to calibrate a model in this literature. Benabou

(1996b) also studies the effects of public-school financing reforms in a similar model, but he

allows for non-fiscal channels of local spillovers, like peers, role models, norms, networks, and

so forth and show that disentangling between financial and social local spillover is important for

assessing these types of policies.

Our model builds on the same idea of this class of papers that stratification, due to a local

spillover, generates more inequality over time. We focus on a model that can be calibrated and

brought to the data, while, most of the papers discussed, with the notable exception of Fernandez

and Rogerson (1998), focus on the qualitative implications of the models. In that spirit, most

of them analyze the two extreme scenarios of full stratification and full integration. Given our

quantitative direction, we need to make the model more special under some dimensions in order

to handle a continuous measure of segregation. In order to discipline the model with data on edu-

cation, we also introduce an endogenous educational choice, that is absent in the previous papers.

Moreover, differently from the literature, we model the local spillover as a black box, that can

be interpreted as driven either by a financial or a social channel. While for normative questions

that have been explored in the literature the specification of the spillover is clearly important, for

positive questions like the ones analyzed in our paper, it is less so. This is why we prefer to leave

the framework more flexible to possibly incorporate different types of local spillover effects.

The most related paper to our work is the contemporaneous work of Durlauf and Seshadri (2017).

to absolute low-income or poverty traps) in an economy where everybody’s income is growing.
4In a similar framework, Fernandez and Rogerson (1997) study the effect of community zoning regulation on

allocations and welfare.
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They also build on this class of models to explore the idea that larger income inequality is asso-

ciated to lower intergenerational mobility, the "Gatsby curve". The model in the paper is close

to our model in many dimensions, although the calibration strategy and the main exercise are

different and complement well each other.

More recently, Zheng (2017) also studies a model similar to ours where a local spillover generates

residential sorting and calibrates it to the US data. The main objective of her paper is to study the

effects of different public school allocation mechanisms, while we focus on quantifying the role

of the local spillover in amplifying the changes in inequality over time. To this end, she models

the local spillover explicitly in terms of public school quality and peer effect.

Another recent related paper is Ferreira, Monge-Naranjo and Torres de Mello Pereira (2017),

who use a model close to ours to think about the emergence and persistence of urban slums and

calibrate it to Brazilian data. They propose a model with overlapping generation of individuals

with different skills, where local spillovers take the form of human capital externalities. They

embed growth in the model to think about structural transformation together with urban evolution.

They use the model to ask what are the effects of slums on human capital accumulation, structural

transformation, urban development and mobility.

Besides the vast literature on city segregation, there are also papers that investigate the conse-

quences of high levels of segregation in a cross section of countries. Alesina and Zhuravskaya

(2011), using a measure of segregation similar to ours, show that countries where different lin-

guistic and ethnic groups are more segregated across regions are characterized by significantly

lower government quality.

Our work is also related to the literature investigating the evolution of race-based segregation in

US cities and its consequences on individual outcomes. The seminal paper of Cutler and Glaeser

(1997) shows that blacks living in more segregated metros have significantly worse outcomes

than blacks living in less segregated cities. Given the correlation between income and race, these

findings are relevant for our analysis. Interestingly, however, Cutler, Glaeser and Vigdor (1999)

show that the American ghetto, rapidly expanding between 1890 and 1970 as blacks migrated

to the cities, eventually started declining. Income-based segregation has progressively replaced

race-based segregation in US cities.

The paper is organized as follows. In Section 2, we document the positive correlation between
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inequality and segregation across space and time and between intergenerational mobility and

segregation. Section 3 describes the model. In Section 4 we describe our calibration strategy and

we present our main quantitative results. Section 5 proposes an extended version of the model.

Section 6 concludes.

2 Empirical Evidence

Over the last forty years US cities have experienced a profound transformation in their socio-

economic structure: poor and rich families have become increasingly spatially separated over

time. As noted by Massey, Rothwell and Domina (2009), this is a new phenomenon in US cities,

historically predominantly segregated on the basis of race.5 During the last third of the twentieth

century, the United States moved toward a new regime of residential segregation characterized

by decreasing racial-ethnic segregation and rising income segregation. Such a shift took place

at the same time of a dramatic increase in income inequality. In this section we document the

magnitude of the phenomenon. These measures will be used for our calibration exercise in the

next section.

2.1 Segregation and Inequality over Time

The term segregation refers to the spatial distribution of different groups of the population in a

geographic unit across geographic subunits. The groups can be defined according to different

categories, such as race, education and income, and segregation can be measured at different

geographic levels, such as state, county or metro. We are interested in measuring the residential

segregation by income within US cities. To this end, we divide the populations in two groups,

rich and poor, and we use the metro area as our geographic unit and the census tract (according

to the definition of the Census 2000) as our subunit. We use census tract tabulations of family

income and define rich all families above the p-th percentile of the metro income distribution,

using the 80th percentile as our benchmark definition.

5Massey, Rothwell and Domina (2009) documents that from 1900 to 1970s what changed over time was the level
at which racial segregation occurred, with the locus of racial separation shifting from the macro level (states and
counties) to the micro level (municipalities and neighborhoods).
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In general, segregation is a multidimensional concept, capturing different aspects of the spatial

distribution of the population.6 In this paper we follow Massey, Rothwell and Domina (2009)

and focus on the dimension known as evenness, that is the degree to which two or more groups

are distributed evenly over a set of geographic units. Evenness is most commonly measured

by the index of dissimilarity, which varies from 0 to 1, with the former value indicating perfect

evenness and the latter maximum separation. A group is evenly distributed when each geographic

subunit has the same percentage of group members as the population in the geographic unit. In

our case, the dissimilarity index measures the percentage of rich and poor that would have to

change residence for each census tract to have the same percentage of that group as the whole

metro area.7

The dissimilarity index for metro j is then calculated as follows:

D( j) =
1
2 ∑

i

∣∣∣∣xi( j)
X( j)

− yi( j)
Y ( j)

∣∣∣∣ ,
where X( j) and Y ( j) denote the total number of, respectively, poor and rich families in metro j,

while xi( j) and yi( j) denote the number of, respectively, poor and rich families in census tract i

in metro j.

We calculate the dissimilarity index for a sample of approximately 380 metros over the period

1980-2010. We then aggregate the metro level dissimilarity indexes into a national one using

metro level population weights. We plot the resulting measure of segregation at the national

level in Figure 1. The graph shows that the distribution of income has become progressively

more uneven across census tracts over time. If in 1980, roughly 30% of the population had to

change residence to achieve an even distribution across census tracts in the average US city, in

2010 the population that needed to change residence increased to roughly 36%. The increase was

especially large between 1980 and 1990 and again between 2000 and 2010.

Using the same data on family income at the tract level that we used to calculate the dissimi-

larity index, we also compute the Gini coefficient at the metro level and similarly aggregate the

metro level statistics at the national level using metro population weights. Income data at the

6Massey and Denton (1988) grouped the measures into 5 key dimensions:evenness, exposure, concentration,
centralization, and clustering.

7US Census Bureau, Appendix B: Measures of Residential Segregation”. This is also the measure followed by
Domina (2006). The two measures are equivalent when the two groups span the whole population, which is our case.
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Figure 1: Inequality and Segregation over Time

census tract level are reported in bins and are top coded. Top-coded income data are a signifi-

cant concern when calculating inequality measures. Some papers dealing with individual level

income data, such as Armour, Burkhauser and Larrimore (2016), have addressed this issue by

using to estimate a Pareto distribution for the top income bracket. However, this methodology is

not feasible when dealing with binned, rather than continuous, income data. The methodology

mostly used for binned data has been the one proposed by Nielsen and Alderson (1997), who use

the Pareto coefficient from the last full income bracket to estimate the conditional mean of the

top-coded bracket.8 However, such procedure does not exploit the fact that the Census reports

the precise empirical average income by census tract. This information can be useful to improve

the estimation of the top-coded distribution. We therefore follow a recent methodology proposed

by von Hippel, Hunter and Drown (2017) who estimate the CDF of the income distribution non-

parametrically and then use the empirical mean to fit the top-coded distribution.9 We plot the

resulting estimate of the Gini coefficient in Figure 1 together with the dissimilarity index. Both

measures show a significant increase over time, especially between 1980 and 1990, with the Gini

coefficient rising from roughly .36 to roughly .42 over the entire period. The increase in spatial

8See for instance, Reardon and Bischoff (2011).
9For details see Appendix B.
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segregation by income across neighborhoods happened at the same time of a steady increase in

income inequality.

We now check the robustness of these patterns, using alternative measures of income segregation

and income inequality.

Figure 2: Dissimilarity Index: different cutoffs

Figure 2 plots the dissimilarity index calculated using different percentiles to define the income

groups. The red dashed line shows our benchmark dissimilarity index, while the solid blue line

and the dotted green line show the the dissimilarity index constructed using the 10th and the

50th percentiles respectively. The figure shows that the dissimilarity index shifts up as the cut-

off percentile decreases, suggesting that groups progressively more homogenous according to

income are also characterized by higher levels of segregation. However, regardless of the level,

all measures show an increasing trend over time. From now on, when we refer to the dissimilarity

index, we refer to the average dissimilarity index across metro areas, population-weighted, that

uses the 80th percentile as cut-off to define the rich and the poor.

Figure 3 shows our benchmark dissimilarity index against the HR index, that is another common

measure of income segregation proposed by Reardon and Firebaugh (2002) and Reardon and

Bischoff (2011). To construct the HR index in a given metro, first we define the information
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theory index (or Theil index) H(p) that measures the segregation of rich and poor individual

across census tracts, where as before the rich are the individuals above the p-th percentile of the

family income in the metro area and the poor are the others:

H(p) = 1− 1
E(p)

J

∑
j=1

t j

T
E j(p),

where E(p) = −[p log(p) + (1− p) log(1− p)] is the entropy, which is another measure of

evenness, at the metro level using p as the cutoff percentile, E j(p) is the same entropy index

calculated for the census tract j, and t j/T is the share of the metro population in census tract j.

The corresponding income segregation index is

HR =
1∫ 1

0 E (p)d p

∫ 1

0
E (p)H (p)d p = 2

∫ 1

0
E (p)H (p)d p.

Relative to the dissimilarity, this index has the advantage that does not rely on a single cut-off to

define rich and poor.10 Figure 3 plots the average of the HR indices at the metro level, weighted

by population, and shows that it has also increased over the last four decades.11

Figure 3 also shows another variant of the HR index, the "bias-corrected HR", which has been

calculated following the recent work by Reardon, Bischoff, Owens and Townsend (2018). They

develop a methodology to correct the potential sample bias in the HR index coming from the

small number of observations that tend to overestimate the extent of segregation. 12 The "bias-

corrected HR" is sistematically lower than its uncorrected counterpart and the difference is larger,

as expected, in the last part of the sample when data from ACS are used. Nevertheless, segrega-

tion appears to have increased also after correcting for the potential bias.

10In practice, since income is available only in coarsened form (income data are reported into 16 income categories
in U.S. census and ACS data), we follow Reardon and Bischoff (2011) and estimate H (p) by first computing H at
the set of finite values of that correspond to the percentiles of the thresholds used to coarsen the data; we then fit a
polynomial function through the resulting points; and then using the fitted polynomial as an estimate of H (p).

11The increase in residential income segregation over time is a robust finding. Several sociologists have docu-
mented this fact using different measures of segregation. In particular, Jargowsky (1996) documents an increase in
economic segregation for US metros between 1970 and 1990 using the Neighborhood Sorting Index, Watson (2009)
finds an increase in residential segregation by income between 1970 and 2000 using the Centile Gap Index and,
most recently, Reardon and Bischoff (2011) and Reardon, Bischoff, Owens and Townsend (2018) document this
fact using the information theory index. Similar conclusions have also been reached by Owens (2018) who analyses
segregation within US cities using school districts instead of census tracts as subunits of analysis.

12This issue is particularly salient for multigroup indexes cutting the distribution in many groups (reducing the
number of observations for each) and when using ACS data which is characterized by a lower sampling rate than the
decennial Census.
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Figure 3: Segregation: different measures

Finally, figure 4 plots three other measures of income inequality that have been widely used in the

literature:13 the 90/10 ratio that measures the ratio of the family income in the top 90th percentile

of the population relative to the income in the bottom 10th percentile, and, similarly, the 50/10

ratio, and the 90/50 ratio.14 The figure shows that the 90/10 ratio that is a measure of overall

inequality has increased steadily since 1980. Moreover, the 90/50 ratio has also been increasing,

while the 50/10 ratio is flat or even slightly decreasing after 1990. This confirms that the rise in

income inequality has been driven by the top of the distribution, as already shown by Autor, Katz

and Kearney (2008) for individual wage inequality.

2.2 Segregation and Inequality Across US Metros

Next, we document that residential segregation and inequality are also correlated across space.

Figure 5 shows the relationship between the Gini coefficient and the dissimilarity index across

metro areas in 1980. The graph shows population-weighted data-points, with bubbles propor-

13The recent increase in US income inequality is also a well established fact. See, for example, Katz and Murphy
(1992); Autor, Katz and Krueger (1998); Goldin and Katz (2001); Card and Lemieux (2001); Acemoglu (2002);
Autor, Katz and Kearney (2008)

14The procedure implemented to calculate these ratios from binned data is described in Appendix B.
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Figure 4: Inequality: different measures

tional to population weights, using 1980’s metro-level population weights.15 The figure shows

that there is a positive correlation between segregation and inequality. We estimate a regression

coefficient of 1.367, with standard error of 0.095.16

Next, we show that there is a positive correlation also between changes in segregation and changes

in inequality across space. Figure 6 plots the change at the metro level in the Gini coefficient

between 1980 and 2000 against the change at the metro level in the dissimilarity index over

the same time period. Again, the size of the bubble is proportional to the population of the

metro area. The figure shows that the metro areas that experienced a larger increase in inequality

between 1980 and 2000 are also those that experienced a larger increase in residential segregation

over the same time period. The regression coefficient is 0.576 with a standard error of 0.087.17

15The weights are based on population counts within each metro in our sample from the U.S. census for that
decade.

16The results of a regression of segregation on inequality across US metros in 1980 are reported in Table 10,
Appendix B.

17The results of a regression of changes in segregation on changes in inequality across US metros between 1980
and 2000 are also reported in Table 10, Appendix B.
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Figure 5: Inequality and Segregation across US Metros

2.3 Intergenerational Mobility and Segregation Across US Metros

Finally, we show that residential segregation across metros is also correlated with intergenera-

tional mobility.18 To this end, we use a restricted-access geocoded version of the National Lon-

gitudinal Survey of Youth (NLSY79). The NLSY is a nationally representative sample of 12,686

young men and women who were 14-22 years old when they were first surveyed in 1979. These

individuals were interviewed annually through 1994 and are currently interviewed on a biennial

basis. We use this survey to construct intergenerational transition matrices for family income,

calculated separately for observations in high-segregation locations and low-segregation areas.19

Using the geocoded version of the NLSY we are able to associate individual-level observations

with their geographical location.20

18This is consistent with the findings in Chetty, Hendren, Kline and Saez (2014).
19In constructing the matrices we follow closely Mazumder (2005) that shows significant differences in the mo-

bility matrices for white and black individuals.
20Summary statistics of the final dataset used to produce the transition matrices are included in Table 11,

AppendixB.
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Figure 6: Change in Inequality and Segregation 1980-2000

Combining the cross-sectional and supplemental samples, we create two variables: initial income

and final income. Initial income is the average of the family income observed in the first 3 survey

years. Final income is the average in the last 5 survey years. Each observation is assigned to a

quartile in the initial income distribution and in the final income distribution separately.

Using the restricted-access geocoded NLSY data, we associate each observation of the NLSY79

subsample we constructed with a metro area where each individual grew up when young (1979-

1981). Next we rank the metros from the main dataset by level of segregation in 1980, using the

dissimilarity index calculated at the 80th percentile, and we create two groups: high-segregation

metros are the one above the 50th percentile and low-segregation metros are the others. We can

then construct two transitional matrices, as described above, one for each group.

Panels (a) and (b) in Figure 7 show the transitional matrices constructed for the low-segregation

metros and for the high-segregation metros, respectively. The figures show that intergenerational

mobility is in general stronger in areas that experience lower levels of residential segregation. In

particular, we can focus on the two quadrants on the bottom left and top right, which tell us some-
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Figure 7: Intergenerational Mobility Matrices

(a) Low Segregation Metros (b) High Segregation Metros

thing about upward and downward mobility, respectively. The bottom left quadrant of the matrix

captures the persistence of poverty: the probability of ending up in the lowest quartile when one’s

parents were in the lowest quartile. This probability is roughly 40% in the low-segregation met-

ros while it is roughly 47% in the high-segregation metros.21 Similar differences characterize the

persistence of wealth: the top right quadrant of the matrix represents the probability of ending

up in the top quartile of the income distribution when one’s parents were in the same quartile.

This probability is roughly 41% in the low-segregation areas, while it is roughly 47% in the

high-segregation areas.

3 Model

We now propose a model of a metro area where families choose the neighborhood where to reside

taking into consideration that there are local spillovers affecting their children’s future income.

21This difference is statistically significant at the 1% level. We present results of our hypothesis testing in Table12,
AppendixB. These results are robust to different combinations of groupings and different cutoffs for the dissimilarity
index.
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3.1 Set up

The economy is populated by overlapping generations of agents who live for two periods. In the

first period, the agent is a child and accumulates human capital. In the second period, the agent

is a parent. A parent at time t earns a wage wt ∈ [w,w] and has one child with ability at ∈ [a,a].

The ability of a child is correlated with the ability of the parent. In particular, log(at) follows the

AR1 process

log(at) = ρlog(at−1)+νt ,

where νt is normally distributed with mean zero and variance σν , and ρ ∈ [0,1] is the auto-

correlation coefficient. The joint distribution of parents’ wages and children’s abilities evolves

endogenously and is denoted by Ft(wt ,at), with F0(w0,a0) given.

There are two neighborhoods, denoted by n ∈ {A,B}. Houses have all the same dimension and

quality and the rent in neighborhood n at time t is denoted by Rn
t . For simplicity we make the

extreme assumption that the housing supply is fixed and equal to H in neighborhood A and fully

elastic in neighborhood B.22 In particular, we assume that the marginal cost of construction in

neighborhood B is equal to 0 so that RB
t = 0 for all t. The rental price in neighborhood A, RA

t , is

an endogenous equilibrium object.

In the baseline model we assume that there are two educational levels, that is, e ∈ {eL,eH}.23

Also, let τ be the cost of investing in high education.

We assume that parents care both about their own consumption and about their children’s future

wage.24 In particular, their preferences are given by u(ct)+ g(wt+1), where u is a concave and

continuously differentiable utility function, and g is increasing and continuously differentiable.

An old agent with wage wt and with a child of ability at chooses 1) how much to consume,

ct(wt ,at) ∈ R+; 2) where to live, nt(wt ,at) ∈ {A,B}; and 3) how much to invest in the child’s

education, et(wt ,at) ∈ {eL,eH}. These choices affect the child’s future wage, as explained below.

22We make this assumption for simplicity, but one could introduce an intermediate level of housing elasticity in
both neighborhoods.

23In Section 5 we explore a version of the model with a continuous choice of education.
24This assumption is common in this class of models. The assumption that agents cannot save (if not by investing

in housing or kids’education) is for simplicity. The assumption that agents cannot borrow is for realism, given that
typically people cannot borrow against children’s future income. An alternative specification could have parents
getting utility directly from their children’s consumption, but with the introduction of a borrowing constraint.
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A key ingredient of the model is the presence of a local spillover that affects the children’s human

capital accumulation, and hence future income. Children’s wages are affected by their ability

shock, by their education, by the neighborhood where they grow up because of the local spillover

effect, and also directly by their parents’ wage.25 Formally, the child of an agent (wt ,at) who

chooses to live in neighborhood n and get education level e is going to earn a wage

wt+1 = Ω(wt ,at ,e,Sn
t ,εt), (1)

where εt is an iid normally distributed noise with cdf Ψ, Sn
t is the local spillover effect in neigh-

borhood n at time t, and Ω is non-decreasing in all its arguments. Children with higher ability,

higher education, who live in neighborhoods with higher spillover, and have richer parents will

accumulate more human capital, and hence earn higher wages. Because the residential and the

educational choice are functions of the parents’ wage and child’s ability (wt ,at), with a slight

abuse of notation, we can write wt+1 = wt+1(wt ,at ,εt). We will show that in equilibrium par-

ents with higher wage, for given ability, will choose higher education and the neighborhood with

higher spillover. This implies that wages will end up being increasing in parents’ wages, also

accounting for the indirect effect.

Let us now turn to the spillover. We assume that the spillover in neighborhood n at time t is equal

to the average human capital of children growing up in that neighborhood, that is, equal to the

children’ average wage:

Sn
t =

∫ ∫ ∫
nt(wt ,at)=n wt+1(wt ,at ,εt)Ft(wt ,at)Ψt(εt)dwtdatdεt∫ ∫

nt(wt ,at)=n Ft(wt ,at)dwtdat
. (2)

Given that wages are increasing in ability and in parents’ wage, neighborhoods with higher aver-

age human capital tend to be neighborhoods with higher ability children and richer parents. The

idea is that children growing up in these neighborhoods will accumulate more human capital,

for the same level of education and ability, because of pecuniary and social local externalities.26

This formalization of the spillover can capture different sources of local externalities: neighbor-

hoods with richer families have better public schools that are locally financed, children who grow

25Parents’ wage affect children’s wage also indirectly through the educational and residential choices.
26Alternative specifications could have the spillover equal to the average wage of the parents or to the average level

of education of the children in the neighborhood. However, the first would miss the role of the innate ability and the
second the role of parents’ income. Also, in the baseline model, the second specification would not be particularly
appealing because of the binary nature of the education level.
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up there have better peers, parents who live there may invest more in education because they

learn more successful stories, social norms are more conducive to educational investment, and so

forth. The presence of the spillover effect implies that the rental rate in neighborhood A, RA
t , also

depends on the strength of the externality SA
t , which is endogenous.

To simplify the analysis, we make two assumptions. First, we assume that the ability and the

spillover affects a child’s future wage only if he gets the high level of education.

Assumption 1 The function Ω(w,a,e,S,ε) is constant in S and a if e = eL, and is increasing in

S and a if e = eH .

In the quantitative exercise, we will interpret the children with high education as college graduate

and the ones with low education as less than college graduates. The assumption that the wage of

children with low education level does not depend on the ability stands for the fact that abilities

that are relevant in high-skill jobs may be different and more heterogenous than abilities that are

relevant for low-skill jobs. The assumption that the spillover does not affect the wage of children

with low education is extreme, but can be interpreted with the idea that the quality of schooling

k-12th turns out to be important in determining future wages of college graduates more than no-

college graduates. This second assumption simplifies the analysis because all parents living in

the rich neighborhood also pay for their children’s college, given that there would be no other

reason to pay a higher rent in the first place. We will relax it in the general model.

Second, we assume that there are complementarities between the spillover and the children’s

ability, between education and ability, between parents’ wage and spillover, and between parents’

wage and education. In particular, we make the following assumption.

Assumption 2 The composite function g(Ω(w,a,e,S,ε)) has increasing differences in a and S,

in a and e, in w and S, and in w and e.

To sum up, a parent with wage wt who has a child with ability at at time t solves the following

problem

U(wt ,at) = max
ct ,et ,nt

u(ct)+E[g(wt+1)] (P1)

s.t. ct +Rn
t + τet ≤ wt

wt+1 = Ω(wt ,at ,et ,Sn
t ,εt),
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taking as given spillovers and rental rates in the two neighborhoods, Sn
t and Rn

t for n = A,B.

3.2 Equilibrium

We are now ready to define an equilibrium.

Definition 1 For a given initial wage distribution F0(w0,a0), an equilibrium is characterized by

a sequence of educational and residential choices, {et(wt ,at)}t and {nt(wt ,at)}t , a sequence of

rents in neighborhood A, {RA
t }t , a sequence of spillovers in neighborhoods A and B, {SA

t }t and

{SB
t }t , and a sequence of distributions {Ft(wt ,at)}t that satisfy:

1. agents optimization: for each t, the policy functions et and nt solve problem (P1), for given

Rn
t and Sn

t for n = A,B;

2. spillovers’ consistency: for each t, equation (2) is satisfied for both n = A,B;

3. market clearing: for each t, the housing market clears in neighborhood A

H =
∫ ∫

nt(wt ,at)=A
Ft(wt ,at)dwtdat ; (3)

4. wage dynamics: for each t condition (1) is satisfied.

From now on, we focus on equilibria where the housing market in neighborhood A clears with

positive rents, that is, RA
t > 0 for all t, which requires also SA

t > SB
t for all t.27

Assumptions 1 and 2 allow us to characterize the equilibrium in a fairly simple way, as shown in

the following proposition.

Proposition 1 Under assumptions 1 and 2, for each time t there are two non-increasing cut-off

functions ŵt(at) and ˆ̂wt(at), with ŵt(at) ≤ ˆ̂wt(at) such that

et(wt ,at) =

{
eL if wt < ŵt(at)
eH if wt ≥ ŵt(at)

, (4)

and

nt(wt ,at) =

{
B if wt < ˆ̂wt(at)
A if wt ≥ ˆ̂wt(at)

. (5)

27If SA
t ≤ SB

t , nobody would like to live in A and the rental rate in A would be zero.
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This proposition shows that in equilibrium the residential and the educational choices can be

simply characterized by two monotonic cut-off functions.28

Figure 8: Equilibrium Characterization
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Figure 8 shows a graphical characterization of the equilibrium, for given spillovers and rental

rates, with RA
t > 0. On the x-axis there is the children’s ability level at and on the y-axis the

parents’ wage wt . For any given level of children’s ability at , there are two thresholds for the

parents’ wage ŵt(at) and ˆ̂wt(at), with ŵt(at) ≤ ˆ̂wt(at), such that parents with wage wt < ŵt(at)

choose to live in B and not to pay for a high level of education for their children, parents with

wage ŵt(at) ≤ wt < ˆ̂wt(at) choose to live in B and pay for their children’s high level education,

and parents with wage wt ≥ ŵt(at) choose to live in A and pay for their children’s high level

education. The figure shows that children with richer parents and higher ability tend to be more

educated and to live in neighborhood A. On the one hand, for given children’s ability, richer

parents are more willing to pay the cost of high-level education (e.g. college tuition) and the cost

of a higher local externality (higher rental rate). On the other hand, for given wage, the higher

the ability of a child, the more willing the parent is to pay for high-level education and for higher

local externality because of the complementarities between ability and education and between

ability and local spillover, respectively. For a given ability, a random child who grows up in B

rather than A has lower probability of getting high-level education, both because parents living

28Assumptions 1 and 2 are needed to obtain the monotonicity result.
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in B are poorer on average and because the local spillover is weaker, hence making the incentive

to pay for education even smaller.

The classic papers in this literature, building on Benabou (1996b) and Durlauf (1996b), typically

focus on two extreme cases of segregation by income: either the two neighborhoods are equal to

each other and have a representative distribution of income, or they are perfectly segregated, with

all the richest agents residing in one and all the poorest in the other. Our model is richer in this

dimension, as it allows us to obtain an intensive measure of segregation which we can match to

the data. This is due to the presence of heterogeneity in ability: if all agents had the same ability

level, the cut-off function ˆ̂wt(at) in figure 8 would be horizontal and the two neighborhoods

would feature full segregation by income. However, thanks to the heterogeneity in ability, the

two cut-off functions are monotonically non-increasing in ability and some poorer parents with

high ability children choose to live in A to exploit the complementarity with the higher spillover.

Our model also allows us to think about segregation by education. In our baseline model, given

the binary choice of education, neighborhood A will always be fully segregated, in the sense that

all children will get high-level education. However, neighborhood B will generically feature a

mix of high- and low-level educated children. In particular, the degree of segregation by edu-

cation is driven by the distance between the two cut-off functions ŵt(at) and ˆ̂wt(at). For some

parameter configurations, these two functions can coincide, in which case there is perfect segre-

gation by education, as all children living in A will get high-level education and all children in B

will not.

3.3 Functional Forms

To study the model numerically, we now make some functional form assumptions. In particular,

assume that eL = 0, eH = 1, u(c) = g(c) = log(c), and that the law of motion for the wages takes

the form

Ω(w,a,e,Sn,ε) = (b+ ae(β0 +β1Sn))wα
ε . (6)

On the one hand, this implies that the wage of children with low-level education (et = 0) is simply

equal to bwαεt , and does not depend on either the children’s ability or the neighborhood spillover,

satisfying assumption 1. On the other hand, the wage of children with high-level education

21



(et = 1) is a function of their ability as well as of the spillover. In particular, β1 is the key

parameter that determines the strength of the spillover. The specific functional form in (6) also

satisfies assumption 2. In particular, ability is complementary both to education and to the local

spillover.

With these functional forms, the household’s problem reduces to

U(wt ,at) = max
e,n

log(wt−Rn
t − τe)+ log((b+ ate(β0 +β1Sn

t ))w
α
t εt), (P2)

where RB
t = 0, RA

t is determined implicitly by H =
∫
[1−Ft( ˆ̂wt)]dG(a), and the spillover effects

are given by

SA
t =

∫
ε

ε

∫ a
a
∫ w

ˆ̂wt(a)
wt+1dF(wt ,at)dΨ(εt)∫ a

a
∫ w

ˆ̂wt(a)
dF(wt ,at)

, and SB
t =

∫
ε

ε

∫ a
a
∫ ˆ̂wt(a)

w wt+1dF(wt ,at)dΨ(εt)∫ a
a
∫ ˆ̂wt(a)

w dF(wt ,at)
. (7)

With the simple functional forms assumed, the cut-off functions that characterize the optimal

education and residential choices can be characterized in closed form as we describe below.

For every ability level a, two cases are possible. In the first case, for a given ability, there is a

positive measure of children who get high education in neighborhood B, and the two cut-offs are:

ŵt(at) = τ

[
1+

b
at(β0 +β1SB

t )

]
, (8)

and

ˆ̂wt(at) = τ +RA
t

[
1− b+ at(β0 +β1SB

t )

b+ at(β0 +β1SA
t )

]−1

. (9)

This case arises when the RHS of equation (8) is smaller than the RHS of equation (9). Equation

(8) shows that the education cut-off ŵt is decreasing in the spillover in neighborhood B, that is,

the higher is the spillover in B, the higher is the human capital accumulated by children getting

high-level education, the higher is the willingness of parents living in B to pay for their children’s

education. Moreover, it shows that, for a given ability, the willingness of parents leaving in B to

pay for education is higher when the parameters affecting the strength of the return to education

and to spillover, β0 and β1, are higher, and when the cost of education τ and/or the constant

component of the income of low-educated children b are lower. Equation (9) shows that the

location decision depends on the trade-off between the spillover advantage relative to the cost of

leaving in neighborhood A.
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In the second case, for a given ability, there is perfect segregation by education, that is, all children

in B get the low education level. In this case, the cutoff functions coincide and are equal to

ŵt(at) = ˆ̂wt(at) = (τ +RA
t )

[
1+

b
at(β0 +β1SA

t )

]
.

The higher is the cost of education τ or the lower is the return from education, which, for a given

ability, depends on parameters β0 and β1, and on the local spillover in A, the higher is the cutoff

and the more the parents who decide to live in B. Moreover, more parents decide to live in B, the

higher is the rental rate to live in A, RA
t , and the higher is the constant component of the income

of low-educated children.

4 Numerical Analysis

In this section we perform the main exercise of the paper. First, we calibrate the steady state of

the model to the US economy in 1980. Then, we look at the effects of an unexpected, one-time,

permanent shock to the skill premium on inequality, segregation, and intergenerational mobility

over time and we quantify the contribution of the local spillover feedback to these dynamics.

4.1 Calibration

We now discuss how we choose the parameters so that the steady state equilibrium of the model

matches salient features of the US economy in 1980. For the calibration we use the specific func-

tional forms for the utility and the wage dynamics function that we have described in subsection

3.3, that is, eL = 0, eH = 1, u(c) = g(c) = log(c), and Ω satisfying equation (6). Table 1 shows

the targets of our baseline calibration, which we are now going to discuss.

A crucial target for our calibration is what we call the “return to the spillover”, that is, the effect

of the local spillover in the neighborhood where a child grows up on his future income. This

effect is difficult to measure in the data. Fortunately, there has been a wave of recent research that

uses micro data to estimate it. In particular, we use the results of Chetty and Hendren (2018b).

Using tax returns data for all children born between 1980 and 1986, they estimate the causal

effect of local spillovers on children’s future income, by looking at movers across US counties.

Their baseline estimation implies that growing up in a 1 standard deviation better county from
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Table 1: Calibration Targets
Description Value Source

Return to spillover 0.100 Chetty and Hendren (2018b)
Return to college 0.391 Goldin and Katz (2009), Census 1980
Gini coefficient 0.365 Census 1980, family income
Dissimilarity index 0.306 Census 1980, family income
Rank-rank correlation 0.340 Chetty, Hendren, Kline and Saez (2014)
Share of college grads 0.178 Census 1980
B/A ratio of college shares 0.400 Census 1980

birth would increase a child’s household income in adulthood by approximately 10%. This is

the number that we target in our calibration. Let us explain how we do that. Given that nobody

literally moves in our model, we map the “movers” in Chetty and Hendren (2018b) to the parents

who decide to live in a neighborhood different from the one where they grew up, that is, the

one chosen by their own parents. Then, we calculate the difference between the expected future

income of the children of “movers” if they grew up in the rich neighborhood (A) and the expected

future income of the same children if they grew up in the poor neighborhood (B). Finally, we

divide this by the standard deviation of the spillover Sn across the two neighborhoods.29

Another important target is the US skill premium in 1980s that is calculated using Census data,

following Goldin and Katz (2009). In the model, we map the skill premium to the difference

between the average log wage of educated agents and the average log wage of non educated

agents in steady state.

As baseline measures of inequality and income segregation at the metro level, we use the gini

coefficient and the dissimilarity index, where we define rich the households in the top 20th per-

centile of the metro income distribution, and poor the others. In particular, we target the average

Gini coefficient and the average dissimilarity index for all metro areas in 1980. As described in

Section 2, we use Census data to calculate both the Gini coefficient and the dissimilarity index

at the metro level and then we aggregate them, weighting by population. As we discussed in

Section 2, there are many alternative measures of income segregation that are used in the liter-

ature. Another measure that has been widely used in the more recent literature is the HR index

proposed by Reardon and Firebaugh (2002) and Reardon and Bischoff (2011), and also used by

29This is simply equal to
√

H(1−H)(SA−SB), where H is the housing supply in the rich neighborhood and SA

and SB the steady state level of the spillovers in the two neighborhoods.
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Chetty et al. (2014). We are going to check how well our model is able to match this measure as

a validation of our calibration in the next section.

Another feature of the US data we want to target is the level of intergenerational mobility. To

this end, we target the rank-rank correlation between log wages of parents and children estimated

using administrative records by Chetty, Hendren, Kline and Saez (2014).30 We chose this statistic

instead than the log-log correlation because Chetty, Hendren, Kline and Saez (2014) argue that it

provides a more robust summary of intergenerational mobility.31

Finally, given that the educational choice is binary, we interpret high-education level as college

completion. We then target the share of college graduates in 1980 and the ratio of the share of

college graduates in the poor relative to the rich neighborhoods that we obtain using Census data.

In particular, we look at the number of people above 25 year old who completed college at the

census tract level. To calculate the second statistic, we need to divide the census tracts in each

metro area in two groups that correspond to neighborhood A and B in the model. In order to

do so, first we rank the census tracts by median income. Then, we look at their population and

define neighborhood A the richest census tracts with population above the 10th percentile (given

that this is the percentile closest to the the calibrated value of H).

Table 2: Calibration Results
Target Data Model

Return to spillover 0.100 0.096
Return to college 0.391 0.393
Gini coefficient 0.365 0.365
Dissimilarity index 0.306 0.309
Rank-rank correlation 0.340 0.239
Share of college grads 0.178 0.179
B/A ratio of college shares 0.400 0.115

30The rank-rank correlation is the relationship between the rank based on income of children relative to others in
their birth cohort and the rank of parents based on income relative to others in the same birth cohort.

31We also use the NLSY data to calculate the rank-rank correlation and we obtain a value of .41, which is not
too far from the number in Chetty, Hendren, Kline and Saez (2014). We prefer to use their number as main target,
because of the coverage of their data. In alterative calibrations, we have also looked at the probability that a child
ends up in the lowest quartile of the distribution when his parents are in the lowest quartile of the distribution and
at the probability that a child ends up in the highest quartile of the distribution when his parents are in the same
quartile. However, these statistics rely more heavily on the shape of the wage distribution which we do not target,
given the stylized nature of the model.
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Table 2 shows the results of our calibration, in terms of how well we match our targets for the

steady state equilibrium of the model. The table shows that we are able to match well the return

to spillover, the return to college, the Gini coefficient, the dissimilarity index, and the share of

college graduates. We do less well on matching the rank-rank correlation and the relative share

of college graduates in the two neighborhoods. Clearly the fact that we cannot match well all the

moments comes from the stylized nature of our model. In particular, we overestimate intergen-

erational mobility (underestimate the rank-rank correlation) and we underestimate the relative

share of college educated agents in the poor neighborhood. We believe that the more problematic

assumption is the binary choice of education. The model imposes that the rich parents can at best

pay for their children’s college, but they cannot invest more than that in education.32 This means

that in order to match better intergenerational wage persistence, the model would require the poor

to underinvest in college education, explaining that it is hard for our baseline model to match both

these moments. In Section 5 we are going to explore an extended version of the model where we

allow for a continuous educational choice.

Table 3: Parameters
Parameter Value Description

H 0.07 Size of neighborhood A
α 0.19 Wage function parameter
β0 1.10 Wage function parameter
β1 0.29 Wage function parameter
τ 0.31 Cost of education
b 1.12 Wage fixed component for no-college
ρ 0.70 Autocorrelation of ability
σ 0.50 Standard dev. of log innate ability
µa -2.80 Average of log innate ability
µε 0.42 Average of log wage noise shock
σε 0.65 Standard dev. of log wage noise shock

Table 3 shows the parameters that we are using to calibrate the model, their calibrated value,

and their description. Notice that the number of parameters is higher than the number of targets

because the model is highly non-linear.

32This also implies that all kids in the rich neighborhood go to college.
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4.2 Skill Premium Shock

As the data show, the US experienced a steady increase in labor income inequality starting in

1980. While, there are different potential driving forces behind this increase, here we focus on

skill-biased technical change, which is widely recognized to be a crucial source of inequality

(see, for example, Katz and Murphy, 1992; Autor, Katz and Krueger, 1998; Goldin and Katz,

2001; Card and Lemieux, 2001; Acemoglu, 2002; Autor, Katz and Kearney, 2008).

In this spirit, our main exercise is to explore the response of the economy to an unexpected, one-

time, permanent shock to the skill premium. In particular, we change β0 and β1 proportionally

so as to match the increase in the skill premium in the data. According to Census data, the skill

premium in the US increased from .39 in 1980 to .54 in 1990 and up to .57 in 2000. In the model,

individuals live for two periods: in the first period, they are young and go to school, and in the

second period, they are old and work. As noted by Fernandez and Rogerson (1998), in this class

of models, individuals spend the same time in period 1 and 2, so we could target the length of

a period to the working period or to the schooling period. Given our focus on human capital

accumulation, we choose to interpret one period as 10 years.33 We interpret period t = 0 as 1980,

when the economy is in steady state. Then, we assume that at that time an unexpected, permanent

shock hits proportionally β0 and β1 so that the skill premium goes from 0.39 in 1980 (t = 0) to

0.54 in 1990 (t = 1).

Table 4: Response to a Skill Premium Shock

t = 0 t = 1 t= 2 t= 3

Return to college 0.393 0.538 0.557 0.562
Gini coefficient 0.365 0.393 0.399 0.400
Dissimilarity index 0.309 0.343 0.355 0.357
Rank-rank correlation 0.239 0.321 0.354 0.360
Rent in neighborhood A 0.100 0.376 0.628 0.715
A/B spillovers ratio 1.584 1.998 2.184 2.225

Table 4 shows the response of the economy to such a shock, one, two, and three periods ahead.

In particular, we show the behavior of the return to college, the Gini coefficient, the dissimilarity

33The schooling age could be interpreted as 10 or 15 years depending on which level of education one targets. We
ended up choosing 10 years also considering that Census data are available every 10 years.
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index, the rank-to-rank correlation, the rent in the rich neighborhood, and the ratio of the spillover

in neighborhood A over the one in neighborhood B.

In response to the skill premium shock, both inequality and segregation increase. Although the

model is stylized in many dimensions, these responses are not too far from what happened in

the data. In particular, the Gini coefficient increased from 0.365 in 1980 to 0.393 in 1990 and

to .4 in 2010.34 This increase in inequality is somehow smaller than in the data, as the Gini

coefficient reached 0.397 in 1990 and .426 in 2010. The smaller response is not surprising, as we

only focused on one shock behind the increase in inequality. The dissimilarity index increased

from 0.309 in 1980, to 0.343 and 0.360 in 1990 and 2010 respectively. In the data the same index

achieved 0.338 and 0.360 in the same years, which is roughly what happened in our simulation.

To visualize these results, panels (a) and (b) in Figure 9 show the behavior of the Gini coefficient

and of the dissimilarity index, respectively, in response to the skill premium shock we analyze,

together with their patterns in the data.

As mentioned before, another measure that has been widely used to measure income segrega-

tion is the HR index, introduced by Reardon and Firebaugh (2002) and Reardon and Bischoff

(2011). Our steady state calibration implies an HR index of 0.094 in 1980, which is pretty close

to the 0.099 in the data, and to the 0.095 of the “bias-corrected” version, calculated in Reardon,

Bischoff, Owens and Townsend (2018).35 Figure 10 shows the response of the HR index to the

skill premium shock in the model, compared to its pattern in the data.

In response to the skill premium shock, intergenerational mobility decreases, as highlighted by

the rank-rank correlation going from 0.239 in 1980, to roughly 0.321 in 1990, up to 0.36 in 2010.

Unfortunately, given the limited availability of data, it is hard to calculate a reliable time-series

for the rank-rank correlation. However, Aaronson and Mazumder (2008) show some indirect

evidence of a positive relationship between the skill premium and the IGE (intergenerational

elasticity) that is consistent with our findings. Moreover, it is interesting to notice that although

our calibration is not able to achieve a rank-rank correlation of 0.34 in 1980, it actually reaches

a similar number in 2010. Chetty, Hendren, Kline and Saez (2014) focus on US citizens in the

34We calculate the Gini coefficient of time t using the income distribution of the people who are born at time t.
Looking at the parents’ income distribution at the same time would not be interesting as the shock happens after
their human capital has been determined.

35To calculate the HR index in the model, we average the two-group Theil index defined for the 100 percentiles of
the distribution, weighting for the entropy defined for each decile.
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Figure 9: Responses to a skill premium shock
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1980-1982 birth cohorts and they measure their income as mean total family income in 2011 and

2012, and their parents’ income as mean family income between 1996 and 2000. This implies

that a rank-to-rank correlation of 0.34 would actually probably be a better target for 2010, in line

with the results of our exercise.

4.3 Main Counterfactual Exercise

We can now use the model to perform a number of counterfactual exercises. The first one ad-

dresses the main question that motivates the paper: how important are local spillovers in am-

plifying the effects of a shock to income inequality? Table 5 shows the response of our model

economy to the skill premium shock, keeping the spillovers SA and SB at their initial steady state
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Figure 10: HR Index
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levels. We then compare this response to the full equilibrium response of the economy in Table 4,

and interpret the differential response as the amplification effect due to the local externality. For

comparison, the two responses of inequality and segregation to the shock are plotted in Figure

11.

Table 5: Counterfactual with no Spillover Feedback

t = 0 t = 1 t= 2 t= 3

Return to college 0.393 0.512 0.523 0.523
Gini coefficient 0.365 0.388 0.390 0.390
Dissimilarity index 0.309 0.337 0.348 0.349
Rank-rank correlation 0.239 0.311 0.336 0.338
Rent in neighborhood A 0.100 0.202 0.270 0.288
A/B spillovers ratio 1.584 1.584 1.584 1.584

Comparing Tables 4 and 5, one can notice that in the first period the Gini coefficient increases by

0.028 in the equilibrium simulation and only by 0.022 in the counterfactual simulation with fixed

spillovers. This means that the local externality accounts for 20% of the increase in inequality in

the short run. If we look at long run responses, three periods after the shock, the increases are

0.035 in the equilibrium simulation and 0.025 in the counterfactual, implying a contribution of

the spillover of 29%. We can do a similar decomposition for the responses of the dissimilarity
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Figure 11: Counterfactual with no spillover feedback

0.35

0.36

0.37

0.38

0.39

0.4

0.41

1980 1990 2000 2010

Panel a: Inequality

model counterfactual

0.3

0.31

0.32

0.33

0.34

0.35

0.36

1980 1990 2000 2010

Panel b: Segregation

model counterfactual

index and obtain that the local externality accounts for 18% of the increase in segregation in the

short run and for 15% in the long run. For intergenerational mobility—measured by the rank-rank

correlation between parents and kids—the local externality contributes to 12% of the decrease in

the short run and 18% in the long run.

The key mechanism behind the different responses in Tables 4 and 5 is due to the equilibrium

responses of the local spillover in the two neighborhoods. The skill premium shock increases the

spillover in both neighborhoods, but it increases it more in the rich neighborhood as shown in the

last line of Table 4, which reports the ratio SA
t /SB

t . The same line in Table 5 shows that this ratio

is constant in the counterfactual, as assumed by construction.

Two effects explain the response of SA
t /SB

t to the skill-premium shock in the equilibrium sim-
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Figure 12: Decomposing the spillover feedback
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ulation. First, there is a direct effect: children in the rich neighborhood benefit more from the

increase in the skill premium because they all receive the high-level education and are exposed

to the higher spillover level in neighborhood A. This mechanically increases the level of their

human capital, and hence of the spillover in neighborhood A more than in neighborhood B in

response to a skill-premium shock. Second, as the rental rate in the rich neighborhood increases,

the degree of sorting by income increases. Although the more talented children will benefit more

from the increase in skill premium, only richer families will be able to pay the higher cost of

living in the rich neighborhood, irrespective of their children’s ability. This further raises the gap

between the spillovers in the two neighborhoods.

The relative contribution of the two effects just described is illustrated in Figure 12. The black

solid line shows the simulated path of the spillover ratio SA
t /SB

T in equilibrium, while the blue

dashed line shows the direct effect of the skill-premium shock on the ratio. The direct effect is

calculated by looking at the response of the spillover ratio, keeping fixed the educational and

the residential choice of each household at their steady state values. The figure shows that the

endogenous reallocation of households across neighborhoods plays a crucial role in producing a

large increase in the spillover ratio.
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4.4 Understanding the mechanism

Next, to better understand the different forces at play in our model, Table 6 shows two more

counterfactual exercises that, together with the previous one, help us understanding the different

effects of the skill premium shock on the economy.

Table 6: More Counterfactual Exercises

Counterfactual I: direct effect t = 0 t = 1 t= 2 t= 3

Return to college 0.393 0.658 0.674 0.676
Gini coefficient 0.365 0.389 0.393 0.395
Dissimilarity index 0.309 0.309 0.363 0.376
Rank-rank correlation 0.239 0.293 0.319 0.326
Rent in neighborhood A 0.100 0.100 0.100 0.100
A/B spillovers ratio 1.584 1.584 1.584 1.584

Counterfactual II: partial equilibrium

Return to college 0.393 0.535 0.553 0.555
Gini coefficient 0.365 0.390 0.394 0.394
Dissimilarity index 0.309 0.501 0.732 0.801
Rank-rank correlation 0.239 0.321 0.352 0.356
Rent in neighborhood A 0.100 0.100 0.100 0.100
A/B spillovers ratio 1.584 1.584 1.584 1.584

First, there is a standard direct effect of the increase in the skill premium. Keeping the spillovers,

the house rental price, and the educational and residential choices as given, inequality mechan-

ically increases because of two reasons. First, the income gap between college and non-college

educated workers mechanically increases. Second, the return to the local spillover, which is com-

plementary to education, is also higher, implying that children living in the rich neighborhood, all

college educated, have an even higher income because of the higher spillover. The first counter-

factual exercise in Table 6 shows the results of this direct effect, by displaying what would happen

in response to the same skill premium shock we considered in subsection 4.2, if the spillovers,

the rental prices and the equilibrium cut-off functions are kept unchanged. The table shows that

inequality would increase substantially just because of this direct effect. However, segregation

would not move much on impact if the residential choice was given and there was no general

equilibrium effect.

The second effect comes from the change in the educational and residential choices. Panel (a)
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Figure 13: Cut-off Response to Skill Premium Shock
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(b) General Equilibrium

in Figure 13 shows qualitatively the response of the educational and residential cut-off functions,

respectively ŵt(a) and ˆ̂wt(a), to the skill premium shock. The figure shows that both cut-off

functions shift to the left, so that more children of any ability would get higher education and

would live in neighborhood A, if spillovers and rental rates were unchanged. The change in the

educational choice is intuitive: the higher the skill premium, the higher the demand for college,

conditional on any level of ability. Moreover, given that the local spillover is complementary

to education, the higher the skill premium, the higher is the return to the spillover, and hence

the higher is the demand to live in neighborhood A, conditional on any level of ability. These

changes could potentially increase or decrease inequality depending on the original distribution.

The second counterfactual exercise in Table 6 shows the partial equilibrium response to the same

skill premium shock of subsection 4.2, that embeds the direct effect and the change in the cut-

off functions, but keep the spillovers and the rental price in A as given. It turns out that, in our

numerical exercise, the change in the cut-off functions increase inequality further.

The third effect is the general equilibrium effect, coming from the response of the rental rate

in neighborhood A to clear the housing market, taking the spillovers as given. Panel (b) in

Figure 13 shows that the residential cut-off function shifts somehow back to the right. As we

explained above, taking as given the rental rate and the spillover effects, the demand to live

in neighborhood A will increase because of the differential spillover and the complementarity

between spillover and education, shifting the residential cut-off to the left. Given that the housing
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supply in neighborhood A is fixed, this pushes up rental rates in that neighborhood, shifting the

housing demand back to the right. In particular, the figure shows that the shift back is more

pronounced for the poorer parents, who won’t be able to afford the higher cost of living in the rich

neighborhood, irrespective of their children’s ability.36 On net, this will generate the tilting that

we see in panel (b) in Figure 13 that corresponds to more income segregation. The counterfactual

exercise in Table 5 shows the general equilibrium effect of the skill premium shock, keeping the

spillovers as given. The comparison with the partial equilibrium exercise shows that the rental

rate in neighborhood A increases substantially. This is because of the increase in attractiveness

of the high spillover that benefits children growing up in the rich neighborhood. The comparison

also shows that in our numerical exercise the general equilibrium effect dampens the increase in

inequality relative to the partial equilibrium effect.

4.5 House Prices

As we emphasized above, a key feature of our exercise is that the spillover in the rich neighbor-

hood increases more relative to the poor neighborhood in response to the skill premium shock.

This has the general equilibrium effect of increasing the rental rate in the rich neighborhood rela-

tive to the poor one. As a validating exercise, using Census data, we have looked at the behavior

of house prices in rich and poor neighborhoods between 1980 and 2010. To define the rich and

poor neighborhoods, we proceed as follows. We rank the census tracts by median income, we

take the the richest tracts that contain 10% of the MSA population and we set the price in the rich

neighborhood as the average price in these tracts.37

Figure 14 shows the difference between house prices in the rich and the poor neighborhoods, nor-

malized by median income. The figure shows that houses have become relatively more expensive

over time in the rich neighborhoods, consistent with our model.

36Given the complementarity between education and ability, the partial equilibrium shift to the left would be more
pronounced for more able children. However, given our functional forms, the other effect dominates.

37This is the same strategy that we used to calculate the share of college educated in the rich and poor neighbor-
hoods that we used as one of the calibration targets. We choose 10% because is the closest percentile to the calibrated
value for the size of the rich neighborhood, H.
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Figure 14: House Price Difference between Rich and Poor Neighborhoods

5 Extended Model

In this section, we extend the model in two main dimensions: first, we introduce a residential

preference shock and, second, we make the educational choice continuous. The introduction of

the preference shock is important to obtain a more realistic setting where not all parents who

live in the more expensive neighborhood choose high levels of education for their children. In

our baseline model, the only reason to pay a higher rent to live in neighborhood A is to exploit

the higher externality that affects the returns to education. In reality, residential choices are not

purely driven by educational considerations. Families may prefer more expensive neighborhoods

for a number of different reasons, such as better amenities, or higher status. By missing this

feature of reality, the baseline model might generate a distribution of children growing up in

neighborhood A biased towards too high innate ability. We then introduce a preference shock

θ ∈ {0, θ̄} where θ̄ ≥ 0 and π = Prob(θ = θ̄ ), so that families with θ = θ̄ will enjoy their con-

sumption more if they live in neighborhood A, that is, utility from current consumption becomes

log((1+θ In=A)c).
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The introduction of a continuous educational choice seems potentially important for our quanti-

tative exercise. The binary educational choice has the disadvantage that constraints rich parents

on how much they can invest in their children’ education, given that the best they can do is to pay

for their college. As we mentioned in the previous section, this means that the baseline model

generates too much intergenerational mobility, given that the only way parents have to invest in

their children’s education is to pay for college, but the data discipline the skill premium and hence

bound how much rich parents can pay to increase their children expected income. This means

that the binary choice also naturally bounds the possible increase in the spillover in response to

an increase in inequality. Finally, this is consistent with the fact that there has been an increasing

polarization between educational investment in rich and poor families.38 We then assume that the

educational choice is continuous, with e ∈ [0,1] and that the cost of education is linear τe.

With these two modifications, the problem of a household (w,a) becomes

U(w,a) = max
e,n

log((1+θ In=A)(w−Rn
t − τe))+ log(b+ ae(β0 +β1Sn

t ))ε . (P3)

In order to understand better the role of the educational choice, let us, for a moment, shut down

the preference shock, that is, set θ̂ = 0. In this case, the first order condition for the educational

choice gives

e(w,a|n) = w−Rn
t

2τ
− b

2a(β0 +β1Sn
t )

,

where e(w,a|n) is the educational choice of a parent with wage w and a child with innate ability

a conditional on living in neighborhood n and on e(w,a|n) being positive. The expression shows

that, as expected, education is increasing in income w, innate ability a, and in the spillover of

the neighborhood Sn
t . It is also increasing in β0 and β1, which determine the return to education.

Moreover, it is decreasing in the cost of education τ and in b, which is the average wage of

non-college educated workers.

The equilibrium definition is a natural extension of Definition 1 in Section 3.2, except that the

agents’ policy functions now also depend on the preference shock and the educational choice is

now a continuous choice.

We now calibrate the model according to the same strategy described in Section 4. The only

difference is that, given that now education level is a continuous variable, we define a cut-off ê

38See Duncan and Murnane (2016)
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such that individuals with an education level above ê are college educated, and the ones with

education below are not. We choose ê so that, in 1980, 17.8% of the population is college

educated, as in the data. When we look at the evolution of the ratio of college graduates in

the two neighborhoods, we keep ê fixed to that level to define college and no-college graduates

in the model.

Table 7: Calibration Results
Target Data Model

Return to spillover 0.100 0.097
Return to college 0.391 0.388
Gini coefficient 0.365 0.363
Dissimilarity index 0.306 0.304
Rank-rank correlation 0.340 0.338
Poor/rich college share 0.4 0.343

Table 7 shows how we match the targets with our calibration. Relative to the baseline model,

we can now match the rank-rank correlation and, at the same time, getting closer to the ratio of

college share in the two neighborhoods.

We then perform the same exercise that we have conducted in section 4 and hit the steady state

economy with an unexpected and permanent shock that proportionally increases β0 and β1 in

order to increase the skill premium from 0.39 in 1980 to 0.54 in 1990.

Table 8 shows the responses of the economy to such a shock. The results are qualitatively and

quantitatively similar to the baseline model: in response to an increase in the skill premium,

inequality and residential segregation increase, while intergenerational mobility decreases. How-

ever, we we perform the main counterfactual exercise, keeping the spillover levels in the two

neighborhoods at their 1980 values, we obtain significantly larger effects of the spillover mecha-

nism. In particular, the table shows that 42% of the increase in inequality in the short run and 58%

in the long run can be attributed to the spillover effect. Moreover, the spillover effect accounts

for 68% and 65% of the increase in residential segregation in the short and long run respectively.

Figure 15 compares the response of inequality and segregation to the skill premium shock in the

model with the analogous responses in the counterfactual exercise.
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Table 8: Response to a Skill Premium Shock
t = 0 t = 1 t= 2 t= 3

Return to college 0.388 0.537 0.574 0.581
Gini coefficient 0.363 0.384 0.394 0.397
Dissimilarity index 0.304 0.337 0.348 0.350
Rank-rank correlation 0.338 0.375 0.399 0.407
Rent in neighborhood A 0.844 1.140 1.542 1.736
A/B spillovers ratio 1.573 2.097 2.438 2.579

Counterfactual with no spillover feedback

Return to college 0.388 0.528 0.535 0.535
Gini coefficient 0.363 0.375 0.377 0.378
Dissimilarity index 0.304 0.315 0.320 0.320
Rank-rank correlation 0.338 0.363 0.377 0.378
Rent in neighborhood A 0.844 0.893 1.002 1.034
A/B spillovers ratio 1.573 1.573 1.573 1.573

6 Concluding Remarks

We proposed a model where segregation and inequality amplify each other because of a local

spillover that affects returns to education. We calibrated the model using US data in 1980, and

using the micro estimates of neighborhood externalities that Chetty and Hendren (2018b) pro-

posed using administrative data. We then hit the economy with an unexpected permanent shock

to the skill premium and looked at the responses over time of inequality, residential segregation,

and intergenerational mobility. We used the model to show that local spillovers contributed to

roughly 20% of the increase in inequality in response to a skill-biased technical change shock in

the short run, and to roughly 29% in the long run. We also show that in a more general version

of the model, this contribution increases to 42% and 58% in the short and long run, respectively.

There are many directions to extend the model in future work. It would be interesting to have a

larger number of neighborhoods to use the full richness of the data to discipline the model. An-

other interesting extension would be to endogenize the cost of education, that has also increased

over time, and think about possible feedback effects. Also, it would be interesting to explore the

normative implications of our results.

Another interesting direction that we are planning to explore in the future is to use the model to

think about the correlation of inequality, segregation, and intergenerational mobility across metro
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Figure 15: Responses to a skill premium shock
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areas, also to understand their differential responses to a common skill premium shock.
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Appendix

A Proof of Proposition 1

Given that we focus on equilibria with RA > RB = 0, we require SA > SB. Also, this together with

assumption 1 implies that agents who chooses low education strictly prefer neighborhood B to

neighborhood A, so nobody chooses e = eL and n = A. Hence, agents choose among three op-

tions: 1) high education and neighborhood A, for short HA; 2) high education and neighborhood

B, HB; 3) low education and neighborhood B, LB.

Let us consider a given time t and drop the time subscript to simplify notation. Also, to simplify

the notation, let us drop ε , given that it is iid, so does not play any role for the cut-off functions.

Consider an agent with wealth w and ability a who chooses HA. It must be that he prefers that to

choosing HB or LB, that is,

u(w−RA− τ)+ g(Ω(w,a,eH ,SA))≥ u(w− τ)+ g(Ω(w,a,eH ,SB)) (10)

and

u(w−RA− τ)+ g(Ω(w,a,eH ,SA))≥ u(w)+ g(Ω(w,a,eL,SB)). (11)

Take any w′ > w. By concavity of u and RA > 0, we have

u(w′−RA− τ)−u(w′− τ) ≥ u(w−RA− τ)−u(w− τ)

and

u(w′−RA− τ)−u(w′) ≥ u(w−RA− τ)−u(w).

Combining these conditions with the assumption that the compositive function g(Ω) has increas-

ing differences in w and S and in w and e (from assumption 2), we obtain

u(w′−RA− τ)+ g(Ω(w′,a,eH ,SA))≥ u(w′−RB− τ)+ g(Ω(w′,a,eH ,SB))

and

u(w′−RA− τ)+ g(Ω(w′,a,eH ,SA))≥ u(w′−RB)+ g(Ω(w′,a,eL,SB))
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for all w′ > w and given a. Let us call w1(a) and w2(a) the values of w that make respectively

conditions (10) and (11) hold with equality for given a. We can then define the cutoff function

ŵ(a) = max{w1(a),w2(a)}.

This proves that all agents with w≥ ŵ(a) choose the option HA for given a. Using assumption 1

and 2 and the implicit function theorem, it is straightforward to show that both w1(a) and w2(a)

are decreasing functions, and hence that ŵ(a) is a decreasing function as well.

Next, consider an agent with wealth w and ability a who chooses LB. It must be that he prefers

that to choosing HA or HB, that is,

u(w−RB)+ g(Ω(w,a,eL,SB))≥ u(w−RA− τ)+ g(Ω(w,a,eH ,SA)) (12)

and

u(w−RB)+ g(Ω(w,a,eL,SB))≥ u(w−RB− τ)+ g(Ω(w,a,eH ,SB)). (13)

Following analogous steps to before, we can show that, for given a, all agents with w′ < w will

prefer LB to both HA and HB. Notice that the value w that makes equation (12) hold with equality

is the cut-off value w2(a) defined above. Moreover, let us call w3(a) the value of w that makes

condition (13) hold with equality for given a. We can then define the cutoff function

ˆ̂w(a) = min{w2(a),w3(a)}.

This proves that all agents with w ≤ ˆ̂w(a) choose the option LB for given a. Using assumption

2 and the implicit function theorem, it is straightforward to show that w3(a) is also a decreasing

function, and hence that ˆ̂w(a) is a decreasing function as well. Given that both ŵ(a) and ˆ̂w(a)

are decreasing functions, it must be that ŵ(a) ≥ ˆ̂w(a) for all a. If there was an a’ such that

ŵ(a) < ˆ̂w(a), then all agents with w ∈ (ŵ(a), ˆ̂w(a)) would find strictly optimal both HA and

LB, which is a contradiction. This proves that an equilibrium is characterized by two decreasing

function ŵ(a) and ˆ̂w(a) with ŵ(a) ≥ ˆ̂w(a) for all a, such that all agents with (w,a) such that

w > ŵ(a) will choose e = eH and n = A and all agents with (w,a) such that w < ˆ̂w(a) will

choose e = eL and n = B.
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B Data Methodology

B.1 Segregation and Inequality over Time

Data sources and sample selection We use tract level income data from Decennial Censuses

(1980 to 2010) and from the American Community Surveys (ACS) for the 5 year period spanning

2008-2012. Our sample includes metropolitan areas using the 2003 OMB definition. Table 9

reports our summary statistics at the metro and census tract level. The number of census tracts

has increased over time reflecting the increase in the population.

Table 9: Summary Statistics
year no_metros no_CTs ave_no_CTs
1980 379 42406 111.9
1990 380 48412 127.4
2000 380 53033 139.6
2010 380 59842 157.5

Segregation and Inequality Across US Metros In Table 10 we report the results of a regres-

sion of segregation on inequality at the metro level, first in levels and then in first differences. The

results show a strong correlation between the two variables: metros with higher level of inequal-

ity in 1080 are also those that display higher level of segregation in the same year. This finding is

robust to different definitions of the two variables and it holds for all decades in our sample. The

relationship between the change in inequality and the change in segregation between 1980 and

2000 is not as strong but still statistically significant, meaning that the metros where inequality

has grown the most are also those where segregation has increased the most.

B.2 Computing the Gini

The Gini coefficients in this paper were calculated following the method of von Hippel et. al.

(2017). First, a non-parametric estimation of the income CDF was calculated for each metropoli-

tan area. The non-parameteric CDF was calculated using the function binsmooth, provided by

von Hippel et. al. in R. This function linearly interpolates between the upper bounds of each
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Table 10: Regression Analysis
(1) (2)

Dissimilarity 1980 Change Dissimilarity: 1980 to 2000
Gini 1980 1.367∗∗∗

(0.095)
Change Gini: 1980 to 2000 0.576∗∗∗

(0.087)
_cons -0.194∗∗∗ 0.010∗

(0.035) (0.005)
N 378 378
r2 .3543 .1047
F 206.3 43.97
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

income bracket to calculate the CDF, preserving the empirical cumulative distribution for each

bin. It then uses the empirical mean income to calculate the implied upper-bound for the support

of the PDF, choosing the upper-bound and scale parameter so that the mean of the estimated CDF

matches the empirical mean. Three methods are proposed to characterize the distribution of the

top bracket: linear, Pareto, and exponential. The default method is linear and is what is used here.

The binsmooth function returns a non-parameteric CDF function which can be used to calculate

the Gini coefficient (and the conditional mean income of the top-coded bracket). Define:

µ =
∫

x f (x)dx

Then the Gini coefficient is calculated as:

G = 1− 1
µ

∫ E

0
(1−F(x))2dx

These integrals must be calculated numerically, however because the CDF is piecewise linear,

there is little approximation error. Importantly, the µ from the non-parametric CDF matches the

empirical mean. After a Gini coefficient is calculated for each MSA, the weighted average of

these coefficients is taken, using the count of family units in the MSA as weights.
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B.3 Computing the Income Ratios

To calculate the various income ratios, the income brackets at the tract level were collapsed to

the MSA level. The income brackets were then sorted by income level (by year and MSA) and

the cumulative distribution of persons within each income bracket was calculated. Next, we

find the income bracket associated with the bottom 10% of the population and the top 10% of

the population and calculate the ratio of these two incomes. Because the income distribution is

discrete, the exact cut-offs cannot be calculated. To deal with this, the cut-offs were defined to be

the income level which had the minimum distance to the relevant threshold.

B.4 Intergenerational Mobility and Segregation Across US Metros

Computing initial and final income Data are from the restricted geocoded version of the

NLSY. We keep only observations with observed family income for any of the 3 years 1978,

1979, 1980 and also for any of the 5 years 1997, 1999, 2001, 2003, 2005. Income recorded in

year y refers to income in year y− 1, so these are for survey years 1979-1981 and 1998-2006

respectively. We deflate all income observations to 1978 dollars using the CPI series for all

consumers (U.S. city average) downloaded from the BLS.

Summary Statistics NLSY sample In Table 11 we report the number of observations as well

as the number of metros in each segregation quartile.

Table 11: Geographic Units and Population per Segregation Quartile
quartile countmetro_quartile1980 countpop_quartile1980
1 40 768
2 40 966
3 40 1256
4 39 2347

Hypothesis Testing The transition matrices in Figure 7 compare intergenerational mobility

across metros grouped by the dissimilarity index where the cutoffs is the top 20 percent of the
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income distribution. Mobility is consistently lower in highly segregated metros compared to low

segregated ones.

Table 12: Hypothesis Testing
Cutoff Low High F statistic Reject H0 at 5% Level

p80 Below 50th p Above 50th p 0.03 Yes
p80 Below 50th p Above 75th p 0.033 Yes

p50 Below 50th p Above 50th p 0.014 Yes
p50 Below 50th p Above 75th p 0.016 Yes

Table 12 reports the significance levels for a Wald test, adjusted for survey weights.39 Each row

of the table reports the significance level of the test for the null hypothesis that the low segregation

group has the same persistence of the first quartile of family income as the high segregation group.

We define the low segregation group of metros as those in the bottom 50 percent according to the

dissimilarity index. The first row shows results for the case in which we compare this group with

the high segregation group defined as the top 50 percent and the second row shows results for

the case in which we compare the same low segregation group with the high segregation group

defined as the top 25 percent. Since the measured levels of persistence for the first quartile are

always higher in the high segregation metro group, rejecting the null hypothesis means accepting

the alternative hypothesis that the high segregation metros have a higher persistence of the first

quartile of family income. We run the test for these two different definitions of "high" segregation

metros and for two different cutoffs of the dissimilarity index. In all these instances we can reject

the hypothesis that mobility is the same in the two group of metros at the 5 percent level.

Other Mobility Statistics We calculate three statistics by regressing child outcomes on parent

outcomes, depending on the measure used to capture outcomes. For the levels regression, they

are both in levels of earnings (corrected for inflation). For the IGE regression, they are both log

levels of earnings, corrected for inflation. And for the rank-rank regression, parents and children

39The null hypothesis H0 is that the persistence of the first quartile of income is the same for high and low
segregation metro groups.
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Table 13: Mobility Statistics
Group Levels IGE Rank-rank
All 3.315 0.493 0.413
High Seg (top 50 p) 3.38 0.52 0.44
Low Seg (bottom 50 p) 3.18 0.43 0.35

are both sorted by earnings within their cohort, assigned a ranking, and then the ranking of the

children is regressed on the ranking of the parent.

51


