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The nonlinear response of a bubble layer subject to harmonic and biharmonic excitation at
frequencies smaller than the individual bubble resonance frequency is considered. The nonlinear
resonance properties of the layer and generation of difference-frequency signal are studied
analytically and numerically. It is found that, for bubble volume fractig€10 3 and pump
amplitudes of the order of 10 atm, the power of the low-frequency sign@hcluding waves
radiated in both directionsnay reach 10% of the total power of the incident biharmonic wave. The
efficiency is restricted by the rapid formation of shocks already at relatively low driving amplitudes,
which may not occur in a more complete model accounting for the inertia of the bubble pulsations.
© 1996 Acoustical Society of America.

PACS numbers: 43.25.Lj, 43.25.Gf, 43.25[0hAB ]

INTRODUCTION hence, resonance effects. These resonance properties of the
) o . layer can be used to enhance the process of low-frequency
It is well known that bubbly liquids are characterized by signal generation when both the pumping waves and the
acoustic nonlinearity that may become quite significant eVeliifterence-frequency wavevhich in this case corresponds to
at re}ther .smaII bubble volume fractiohi)ug to the Iar.ge' the low-frequency outpiitare close to normal modes of the
nonlinearity parameter, pressure waves in bubbly liquid§ayer |n these conditions the effect is twofold. First, due to
cause various nonlinear phenomena even at comparativelfe prevalence of resonance conditions, the high-frequency
small wave amplitudes. Many of the effects observed inyeam js able to excite the layer more effectively. Second, due
other systems such as lasers, plasma, and electronic deviggsiye strong nonlinearity, the waves at two frequencies in-

can therefore be expected to occur in such media. teract and produce a difference-frequency wave.
In this paper we consider the effect of low-frequency

sound generation through nonlinear interaction of two high-l_ BASIC EQUATIONS

frequency waves analogous to conventional parametric ar-

rays. The idea of using bubbles for enhancing the radiation ~Let us consider a one-dimensional layer of bubbles of
of parametric arrays was discussed more than ¢see, e.g., equal equilibrium radiuR, and number concentration,
Refs. 2 to 4, but the realization of this effect encounters subject to an acoustic way€ig. 1). In the framework of the
serious difficulties due to the prominent losses in bubblesquasistatic model considered below, a generalization to the
Nevertheless, a preliminary experiment with a bubble fiyercase of different size bubbles may be readily effected be-
has demonstrated this possibility with an observed signatause only the total volume fraction of gas is involved in the
pressure level several times larger than that in pure watetheory.

However, the effect was apparently far from being optimal ~ The equation for the pressure fielR{x,t) in the bubbly
due to the fact that losses grow in proportion to the nonlin-mixture can be written in the forrtsee, e.g., Refs. 1, 5, and
earity of resonant bubbles, which played the key role in thaf)

case. aZP (92P aZB
Here, we address another possibility, namely, the use of cgz S Z PO D

a layer of nonresonant bubblés which the losses are typi-

cally small, but nonlinearity is still sufficiently strongo-  wherec, andp, are the unperturbed sound speed and density
gether with the resonance properties of the layer as a wholef the liquid and the bubble volume fraction is denoted by
Even for a comparatively low volume fraction of bubbles, 3(x,t).

the sound speed inside the layer can be considerably less In general, the Rayleigh equation for bubble oscillations
than in pure watec,. A simple estimateshows that, e.g., at should be used to close the formulation of the problem.
volume fraction of8=10"3, the ratioc,/c of sound speedsin However, in order to avoid the strong losses occurring near
pure and bubbly liquids is close to 5. This causes strondpubble resonance, it is advantageous to consider a situation
reflections of the sound field from the layer boundaries andin which the frequencies of interest are much smaller than
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dx under the approximation of Eql). Indeed, it can be

[
L, © 25 %0%0 ¢ Sy shown that nonlinear terms in the boundary conditions can
=] . . .
° 68°%0°% o° oy be neglected fop3 much less than the characteristic nondi-
[ [ -] . . . .
°0’ oo o;’ °°°o mensional acoustic presszure amplitudg/P, which, to-
-~ ° o 298 °°°°° ° %0 o gether with the conditioA“>1, gives the following limits
o 090 0000 50 for the range of bubble volume fractions to which the present
R o_o© °9 0® _— X
° 076 %0 oo 0d model can be applied:
°©o0 "o o og o% °
=] (o] -
NN 55 e o L -ox PO/PC§<ﬂO<pac/PO-
o 00° o
4 o ° . . . . . .
c 6 oo 090 Since the medium outside the layer is linear and nondis-
® 50 o 000 persive, we can assume
-3 ] o © o o
Pi=Pi(x—1) @
L= . X— y
°o°o°°°%o°°°°°° |- |-
°° ° for the incident wave and
FIG. 1. Bubble layer under external pump. P, =P,(x+1), Pi=Py(x—1), (8

for the reflected and transmitted waves.
the bubble resonance frequency approximately given by Using the continuity conditions mentioned above, for
w2=3yPy/poR2, whereP, is the undisturbed pressure apd X=0, we have
the polytropic index. For these low frequencies, inertial ef- Pi(—t)+P,(t)=P(0}),
fects associated with the bubble radial motion are small and

o . 9
a quasistatic dependence between the bubble rédiugol- ﬁ_Pi _iy 4 P, N £ ot ©)
ume and the external pressure can be assumed, IX (-t X (H= % (0p).
=po o pon differentiating the first equation with respect to time
B=Bo(P/Pg) ™ (2 Upon differentiating the first equat th tto t
where the equilibrium volume fractiof, is given by and using the relatioaP,/dt=dP,/dx, we can eliminate the
, . reflected wave to find
=3mNoRy. 3
Bo=3mNoRy (€©)) P P oP,
In what follows we shall assume an isothermal behavior 7y~ 7, =25y atx=0. (10

so thaty=1, which is compatible with the assumed relative ) o

slowness of variation of the pressure field. This approximaProceeding similarly, at=1 we have

tion is valid under the conditiom<x/R3, where k is the JP P,

thermal diffusivity of the gas within the bubblsee Ref. 1 P(1t)=Py(1-t) — (LtH)=—=(1-1), (12)
. . . . L . X X

The adiabatic case may be considered in a similar fashion

with results that can be expected to be close to those prérom which

sented here. The thickness of the layas assumed to be

fixed so thatB, is nonzero only for 8<x<I. In writing (2) £+ ﬁ:o at x=1. (12)
we have also neglected surface tension effects. ax  dt

It is convenient to introduce dimensionless variables depnce P has been determined, the reflected and transmitted
fined by waves are readily found from the first ¢8) and of (11),

x'=x/l, t'=cot/l, B'=pIBy, P'=PIP,. (4) respectively. ' .
- . _ _ In the analysis that follows we consider two cases. The
Then, omitting primes, the equation for the pressure field cafirst one corresponds to a weakly nonlinear regime when the

be rewritten as amplitude of the harmonics generated by the nonlinearity is
2P 2P 2p-1t weak and standard perturbation methods can be applied. In
e =A preat (5)  the second case the pressure oscillations are strong enough to

cause the formation of discontinuitiéshocks. To deal with
The parameteA, given by this situation, we represent the field inside the layer as the
superposition of two oppositely propagating sawtooth waves.
A=poBocy/Po, (6)

is of the order of the ratio of the speed of sound in the pure
liquid to that in the bubbly liquid and is therefore generally || \weAKLY NONLINEAR REGIME
large in the applications considered here. For example, with
Po=10° Pa, c,=1500 m/s, p,=1000 kg/mi, and We assume here that the pressure oscillations are small
Bo=1.5x10"3, A2=30. compared to the equilibrium value so that, upon setting

For a plane layer subject to a normally incident plane P=1+p (19
wave, the conditions at the layer boundanes0 andx=| '
correspond to the continuity of pressuPeand particle ve- |p|<1. The equation fop is then readily found fronf5) and
locity v, the latter being equivalent to the continuity &/  is

3571 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 Druzhinin et al.: Low-frequency wave generation in bubble layers 3571



#p  9°p
2y _
(1+A%) Ere e

2

d
AZ -z [p?=p*+0(p%)]. (14

As mentioned before, we shall assume that-1 and there-
fore we shall replace the factor-A? in the first term byAZ

Similarly, the amplitude of the reflected wave follows from
the first of (9):

Pro=—2A-1)[1—exp2iwA)]p . (26)
Equations(21) and (25) show that, for largeA, a marked

We first briefly discuss the linear resonance properties ofesonance occurs when the frequency of the incident wave is

the layer, when the right-hand side @4) can be neglected.

A. Linear resonance properties of the layer

In the linear regime it is sufficient to consider a mono-

chromatic incident wave given by

Pi=3Poi exdiw(x—t)]+c.c., (15

close to one of the eigenfrequencies of the layer given by
wn=N/A, (27

with N a positive integer. Whemw equals any of these reso-
nance frequencies, the reflected wave vanishes, while the
amplitude of the transmitted wave is equal to that of the
incident wave p,=p, . Furthermore, fron{21), in these con-

where c.c. denotes the complex conjugate term. In the steaqyiions
state, the solution of the linear problem can be represented in

the form
p=3p, exdiw(Ax—1)]+3p_ exd —iw(Ax+1)]

+c.c. (16)

The amplitudeg.. readily follow from the boundary condi-

tions (10) and(12):

O%(Jriw P=2py x=0, 17

and
d

(&—lw)pzo x=1. (18
From the second one we find

P-=p.& exp2iwA), 19
with ¢ the reflection coefficient:

A-1 2
£=a7=1- Z+O(A’2). (20)

It is readily verified that the substitution @2+1 by A% in
(14) introduces an error of orderA? in this expression. The
other boundary conditiofil7) gives

~ 2(A+1)
P+ = AT 12— (A—1)% exp2i wA) POI-

(21)

The reflected and transmitted waves can be written as

pt:% exdiow(x—t)]+c.c.,, forx>1, (22
and
pr:% exp{—iw(X—i—t)}-i—C.C., for x<O. (23

Upon substitution of the first one into the first @f1) we

have
Pro=[2A/(A+1)]p,, (24)

using which the amplitude,, is found from(21) to be

4A
Po= AT 17— (A- D2 exp2iwA) PO

(29)
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p+=32(1+1/A)pg . (28)

In the vicinity of theNth resonance, i.e., fd—wy\| <oy,
and for largeA, we also find from(25) for the amplitude of
the transmitted wave

|pol ={[(7A201) (0 — wy)]?+ 1} Y20,

where w;=7/A is the layer’s first-mode frequency. Accord-
ing to this expression, the characteristic witthof the reso-
nance curve is proportional to the factey/A or

b,=2/A2.

(29

(30

The physical origin of this damping is the radiation loss from
the layer. Clearlyp,—0 asA—x as expected.

B. Second harmonic generation

If the amplitude of the pressure oscillations is not very
small, one should take into account nonlinear effects,
namely, the generation of higher harmonics and the depen-
dence of the resonance frequencies of the layer on the wave
amplitude. We consider first the case of single-frequency ex-
citation at some frequenay. We limit ourselves to the most
interesting case of near resonance in whicts close towy,
one of the eigenfrequenci€®7) of the layer.

Anticipating the presence of harmonic terms, we repre-
sent the corresponding pressure field in the layer as

p=pi(X)exp —iwt)+pa(X)exy —2iwt)+--- +c.C.,
(31

wherep; andp, are the spatial parts of the first and second
harmonic, respectively.

The solution for the first harmonic can be represented in
the form

P1=2po1 exp( — i wt)[exp(iAwX) +exp —iAwx)]+c.c.,
(32

wherep,, is the amplitude, to be determined from the linear
problem|[cf. (21)]. In contrast to(16), we have assumed
equal amplitudes of the two counterpropagating waves. This
is justified by(19) in the limit of A large andw close to one

of the resonant modes. It may be noted that, in the third order
of nonlinearity, the wave phase speed and wave number
would depend on the amplitude, and therefore the nonlinear
resonance may occur in the layer affecting the first-harmonic
amplitude(see, e.g., Ref.)7 We have neglected this cubic
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effect since in typical situations associated with bubbles thexcited by the pumping. Thus the pressure field inside the
Q factor of the layer is not large enough to provide a con-layer is described by the expression
siderable nonlinear shift of the resonance curve. _ . B _

Upon substitution int@14), one finds that the fielg, of Pa=(Xp. +)exgIQ(AX=U]+[(I=x)p_+b]

the second harmonic is described by the equation xXexd —iQ(Ax+t)]+c.c. (41
d?p, The amplitude®.. of the forced components are, frai®8),
e +4A%0%p,=2A%w?p3)(1+cos AwX), (33 (39, -
with the boundary conditions p.=—1AQDG, pP-=£&p.. (42)
d ) The amplitudesa, b of the layer eigenmode in the present
&iz'w p2=0, (34 case of resonancg)=m/A), to the leading order i\, are
. derived from the boundary conditions in the form
atx=0 andx=1, respectively. In the present case where the L L
pumping frequency is close to one of the linear eigenfre-  @=3zA(P++p-)=3Ap., b=af=a. (43)
quencies(27) of the layer, i.e.Jo—wy|<wy, to the leading  The approximations in the last equality of both equations
order inA the solution forp, is neglect terms of order Al With these results, the solution
Po=Pos EXP( — 2i wt)cog 2AwX) +C.C., (35)  for the difference-frequency component of the pressure field

. ) . inside the layer is given by
with the amplitude given by

A o 0— oy 2 e Po=—ip2 z [ X+ ! A(1+ &) |exp[iQ(Ax—t)}
Poz= 4~ — Pai ( 7A| +1 (36) o 16 4
w3 w1
This relation shows that the second harmonic amplitude is +| E(1=x)+ I_ A(1+£%) | € exp{—iQ(Ax+1)}
affected both by the resonancea} and at 2. Note that 4
the former effect is typically stronger becaus§ contains +c.c. (44)

the square of the resonant denomindtdr (29)]. ) .
Recall that, for largeA, &=1. It is clear from this ex-

C. Low-frequency signal generation pression that, in this resonant case, the largest contribution
(of order A) to the low-frequency output comes from the
layer eigenmodes excited by the pumping. Fri), (44),

the following expression is derived for the amplitude of the
low-frequency signal in the transmitted wave:

Let us now turn to a pump wave consisting of two com-
ponents at neighboring frequencieg ,wy ., corresponding
to theNth and(N+1)st linear layer eigenmodes

Pi = Poil cOSs wp(AX—1) +CcoSs w4 1 (AX—1)]. (37)

r aw
We wish to study the generation of a low-frequency figld |pg|= 35 (1+ £)(1+ HAps= 3 Apg;. (45)
at the difference frequencf)=wy, 1 — wy under such con-
ditions. In (37) we have taken the two components of thelt follows from this eXpreSSion that the relative power of the
incident wave to have equal amplitude. One may expect thW-frequency signal, which may be defined as the ratio
amplitude|p,| to be small, as is usually the case for suchlPh|?/p5i increases as the square of the incident wave ampli-
problemst Then, the equation for the low-frequency pressuretude and is proportional ta? i.e., it is the larger the smaller

field inside the layer is obtained from E(L.4) in the form the losses caused by the radiation from the boundaries.
72 Therefore, one can expect that the effect should be more

52 52 . .
( 2 - W) po=A2 - (0, (38) pronounced for higher bubble concentrations.
where(p?),, is the component of the forcing at the frequency

Q and, from(28), is given by . SAWTOOTH WAVE THEORY

2
exp(—iQt)[exp(i QAX) If the amplitude of the incident wave is large enough,

one can expect the nonlinear distortions of the wave to lead
+ &2 exp(— i1 QAX) ]+ c.c., (39) to the fo.rmatlon qf shocks. Clear!y, the resultg d!scussed in
_ _ - _ the previous section are only valid when the incident wave
with the reflection coefficient given by (20). At the layer  amplitudepy; is smaller than the threshold amplitupl for

boundariex=0, x=1 the low-frequency component satisfies shock formation. To estimate this quantity we proceed as

1-|—1
A

1
(p2)9=§ P

homogeneous boundary conditions: follows.
0 9 Near the threshold, shock formation will occur only after
(EI& pa=0. (400  multiple reflections from the layer boundaries. The situation

is therefore similar to that of an initially sinusoidal plane
The solution of the problertB8), (40) can be represented as wave propagating in an unbounded medium, a situation de-
the sum of left- and right-propagating waves, each consistingcribed by the well-known Bessel-Fubini solution. In this
of forced oscillations, and the lowest eigenmode of the layecase the ratio of the second to the first harmonic just before
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shock formation is given by,(2)/21; (1). If we equate this . P o1 i 7N
ratio to poJ/p.. given by(36) and(21), for resonance condi- P o(A+1l)— ——=— (A-1)+ —
. ) 1+7Np° o 1)
tions w=wy, we find
P2 01 2
43,(2) 1 X[ (P~ | ——— ) }:2p i (53
th: 2 = +01 1+ N S Qi
Poi= 3,7 AN (46 P01
and, atx=1=1,
This estimate shows that the threshold value decreases when
A or the layer mode numbe¥ are increased. For example,  P3o1 (A—1)exp(2i wlA) - pS o (A+1)
_ 2__ H P — - w i
for N=9 andA“=30, we obtain 1+ 7NpS o, 01
th : S 2
pg=0.02. (47) TN, P o1 , _
(P20 15 7NpSy, exp2iwlA) [=0.

In the numerical experiments to be described presently, we
find this estimate to be quite accurate. Consider then the case (54)
in which the incident wave amplitude considerably exceeds

. ) For |p3o4/<<1, the last terms in the left-hand sides of
this threshold value, so that sawtooth waves are formed INhese equationghat arise from the derivativesp® /dx) can
side the layer. In this limit, the pressure field can be de- -

ibed in £ sawtooth h In th ¢ be omitted as they are of the second order in the amplitudes
SCribed in terms ot sawtooth wave theoty. in the case o 13101. Then, from(54), one finds the following relation be-
sufficiently large bubble concentration we can use an a

. s ) Piween the first-harmonic amplitudes of the left- and right-
proach developed for nonlinear oscillations in resonators. ropagating waves:
Suppose that the pressure field inside the layer can be aB— '

proximated by a linear superposition of two sawtooth waves P o1

. . . . . . s _ ;
traveling in opposite directions: P01= 77N o & exp2iwlA), (55
p=pi+p, (48)  where &~1 for large A. The expression for the amplitude
h P50z in the vicinity of theNth linear resonance of the layer
where

is then obtained fron63) and can be conveniently written in

pS = (pS./ M) w(=AX—1)F 27K], (ag ~ theform

[(l_pOiWN)2+ pom'N(A-i-l)]l/Z s
[(1—poimN)%+ poirN(A+ 1)+ (A/ 8)2w?]*? [Sha

with the value of the integek chosen so as to reduce the pS o=
quantity in brackets to a number comprised betweenand

56
7. Here pg.. denote the amplitudes of the sawtooth waves. 6
The sum(48) can be represented as a Fourier series as ~ where
1 i _ WTwy
P= 57 2 {Pim(¥)exHion(AX—1)]+p% 1(1-X) A=—g [Ael=t, 57
X ex] —i wm(AX+1)]}+c.C. (s0) and p't* is the value of the amplitude at exact resonance
given by
where w,=mw~mwy. The dependence of the harmonic res._ 1 5 12
amplitudes on the spatial coordinatés given by the known p= (mNA) " H{[(1 = poi mN)“+ poi mN(A+1)]
formula for the peak pressure of the sawtooth waee, e.g., —(1—-pgimN)}, (58)
Ref. 1)
with
P om A N—1
s — = 7mN—
P=m(X) 1+2Nxps,’ ®3 6 l=—n 1+2—poI ) (59
- 2 A
where the amplitudgs of the harmonics are related to thggie that, for larged and 7N py; of the order unity, we have
sawtooth wave amplitudes by 5~2/mA, so that(58) reduces to
PS om=(2/7m)pg. . (52 P~ \/po / TNA. (60)

In the steady state, the energy dissipated by the shocks Expressions for the first harmonic of the reflected and
and radiated from the boundaries is replenished by that of thesansmitted waves are directly obtained from the boundary
pump wave via the first harmonic at the incident wave fre-conditions(9) and Eqs.(55), (56). Thus, in the vicinity of
guencyw. The amplitudes of the higher harmonics will be resonance, the following expressions are derived
given in terms ofp%.,,, the amplitude of the first harmonic,
by (52). To calculatep3; we use the boundary condition IV =(1+ &) Pron 2p-01 (61)

(10) to find, atx=0, ' 1+7Npyor 1+7Np. g’

3574 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 Druzhinin et al.: Low-frequency wave generation in bubble layers 3574



(1+&7Np o1 Tre=A. (67)

1
Pledl=5 Prof(A-1) 7

NP0 Note thatry, is much less than the relaxation time calculated
NP, o1 from the losses due to radiation from the boundaries, which,
=pPioA 15 27Np oy (62)  for A>1, is given by[cf. Eq. (30)]
When the incident amplitude is relatively small, and the b L1

attenuation of the shocks over the length of the layer is also Trel™ b, 2
small (i.e., 7Np,;<1), from (61) it follows that |p{")|

~ 2P, o1, SO that for largeA we recover the result obtained Then, since the modulation time scale

earlier for shock waves in an acoustic resonitor: Tmod~ 4 Q1 =4A (69)
Pt~ VPoi- (63 exceedrs, one may consider the modulation slow enough

In the other extreme case of large amplitudes, for whicHhat the solutions found above for the amplityzleof steady
mAP,o>1 (but still with p,,, small compared to unily sawtc_)oth waves can be used in a quaS|§teady approximation
shock attenuation is large. Then, frdBi), (62) the follow-  allowing the parametepy; to depend on time.

ing asymptotic expressions for the transmitted and reflected  1he process of generation of the difference-frequency

waves are obtained: field is similar to that occurring in the weakly nonlinear case,

but contributions to the low-frequency field now come from

pi[=2/mN, (64)  all the harmonics of the modulated sawtooth wave. Taking
|p51)|:%Ap+ol- 65) into account the relatiof52) between the harmonic ampli-

tudes and the fact that the damping affects all harmonics
Equation(64) shows that in this case the system saturates irqually, we can add all the contributions. Thus, if the differ-
the sense that the amplitude of the transmitted wave does nehce frequency fielpt) due to the first harmonic of the
depend upon that of the incident wave. This implies thatsawtooth wave is known, the total value of the low-
shocks undergo strong losses with reflections at the righrequency field is simply given by

boundaryx=1 nearly independent from those at the left

* 2
boundaryx=0. T
> Po=py’ > m2=—p{ . (69
m=1 6
IV. GENERATION OF LOW-FREQUENCY SIGNAL BY In order to estimatg? we consider a problem analo-
SAWTOOTH WAVES gous to Egs(38), (40) for the weakly nonlinear case, but

Let us consider now the case of a biharmonic pump withVith & different low frequency forcing termp) . This term
frequencies equal to the resonances of the linear problem 4% NOW obtained after averaging over the fast oscillations at
in (37). In this case the pressure field inside the layer ishe frquenc;%(wNJr @+ 1) and selecting the components of
described by an expression analogougd6) with a slow the forcing that are in resonance with the first layer mode,
modulation of the sawtooth wave. This modulation is causedVhich is the one that provides the basic contribution to the

by the modulation of the effective incident wave amplitudelow-frequency field generation. _
(37) that can be written as Thus the expression for the driving fiel@%)$, is repre-

sented by the sum of two waves at the difference frequency

Py =2pgi cos(Q/2)(Ax—t), 66
with Q=wy, 1~ wy as before.

The characteristic time for attaining steady conditions in
the layer can be defined as the damping time for free-mode
oscillations due to shock losses. For sufficiently high ampli-with amplitudesp,. given by
tudes of the incident wave, this damping far exceeds the 1 1 . 2 (%)
losses caused by radlatl(_)n from the boundaries. Indeed, frorIng:_ f dxf dt P (X, 5 ex —i Q(Ax—1)],
Egs.(51) and(52), for a given mode numbeX, we have the 4T Jo " Jo  (1+7Npyix)
following estimate of the wave amplitude reduction after one (71)
passage through the layer:

(PH)=Pa+exdiQ(Ax—t)]+pq_exdiQ(Ax+t)]+c.c.,
(70)

1 ld Td pz_l(X,t)
P _ 1 _ Po-=37 fo Xfo t[1+7TNp71(1_X)]2
Poi  1+2pgN

X iQ(AX+1)]. 72
Then, e.g., for the tenth modi,=10 (considered in the nu- SXHIQ(AXH)] (72

merical experiment we find that the wave loses half or more The functionp,, corresponds to the resonance field in the
of its initial amplitude due to shocks for incident wave am-layer and is given by58) in which now the incident wave
plitudes py; >0.05 (typically used in the numerical calcula- amplitudepy; is taken to be variable as given in the right-
tions). Therefore, for waves of sufficiently large amplitude, hand side of(66). The other amplitude_, is given by an
the time of relaxation is of the order of the time for one expression similar t¢58) [see Eq.(77) below]. Written out
passage through the layer and can be estimated as in detail, the pertinent expressions are
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1
Pra(x, )= i[(1- 7N Poi (X,£)%+AmNpg 12— 1+ N pg (x,0)}, (73

[(1=vpgi(X,1))?+Ampg 12— 1+ mNpgi(x,t)

P10 = R T A {[(1= #Npg (x.0)2+ AN pe 12— 1+ mNpg (.0} 749
|
where lengthl in (4)]. Initially the pressure field inside the layer has
Q the equilibrium value. After a time interval of the ord&f2
P (X,1)=2py; cos; (AxIt)‘. (75) a steady-state regime in the layer is usually readloédes-
timate (67)].
For largeA these expressions simplify to In the simulations care was taken to select the time step
— h, so as to capture the pressure variations in the shocks.
P+ 1(X,t)=\Pgi(X,t)/ TNA, (76 Furthermore, the spatial step always satisfied the stability
and conditionh,<Ah,.

B 1o _ The resonance curve for pumping at the first-mode fre-
_ [Pai(x,)/mNAI™= pgi(X,t) (77 duency w,=7lA=0.056 is well described by the linear
C 1+[#Np(x,t)/AT¥2 T N aNA - theory result(25) for an incident wave amplitudpy; =0.05

(Fig. 2). Note that, according to the estimd##6) applied to

As in the weakly nonlinear case, the pressure inside the Iay%e first mode, shocks should form for amplituggs=0.18
can be represented as a superposition of forced oscillations ™ amplitL,Jdes b exceeding the threshold for 'a f.re-
1

and the le;.yE;; gige_nmo%es excited by the pumping. Thus th&uencym=9w1, discontinuities of the pressure field form.
pressure field 1S given by The transient process, during which a steady-state sawtooth

p—l(xrt)

po=[p.x+alexdiQ(Ax—t)]+[p_(1—x)+b] structure of the pressure field inside the layer is reached,
] consists of the formation of shocks and their summation after
Xexg —iQ(Ax+t)]+c.c., (78 reflections from the layer boundaries. An example of such a
where the coefficientp.. are defined by transient process and the resulting steady-state pressure field

) inside the layer are shown in Fig(e8, (b), and(c).
p+=—(1/2AQPq=, (79) In the comparison of numerical and analytical results a
and the coefficients andb to the leading order irA are  difficulty arises because the explicit numerical scheme used
obtained from the boundary conditions in the form introduces numerical dispersion due to the discretization, so
that high-frequency wave trains fortoausing the shocks to

a=b=—i(7A8)(pa++Pa-). (80) oscillate which were not taken into account in the analysis
Thus, for the transmitted wave amplitude, we have [in Fig. 3(b) these are related to the harmonics with

Ipi=4al. (81)

Taking into account contributions from all the harmonics in 11 / ]

the sawtooth waves we find the following expression for the 4 ¢ 4 Po/ Poi -

difference-frequency signal: /’33\
0.9 - £ \

Ipo|=(7*112Alpg .+ +po-|, (82 VAN

0.8 ; |
where the amplitudep,.. are given by(71), (72). The val- R
ues of po. and the amplitudg81) of the low-frequency 0.7 / \o\
wave must be obtained numerically frafl), (72). 0.6 - ?‘ "\

In an earlier papel® the problem of the generation of a ’ / %
difference-frequency field under the influence of shocks was 0.5 - / \E\,,\
considered for the case of a traveling biharmonic wave with ?,f" N o
the help of some empirical solutions for the pressure. In the i ™ “\:-1_\&_,_
present case, however, the applicability of those result is not g 5 |
quite clear.

0.2
V. NUMERICAL RESULTS 0.1 - w/ wor
0.0

Numerical integration of Eq(5) with boundary condi-
tions (10), (12) was performed by using an explicit scheme
2_ .
for A"=30 so t.hat th.e ratio of .the sound speeglc, equals FIG. 2. Resonance curve of the first harmonic of the transmitted wave for
A=5.5. The d|mer_13|0n|ess width of the |ayer. was set to D&,y = w1, Poi=0.05; numerical data are marked by circles. The dotted curves
equal tol=10 [this corresponds to a redefinition of the correspond to the linear resonan@s).

T T T T T T T T T
05 06 0.7 08 09 1.0 1.7 12 1.3 1.4 15
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FIG. 3. (a) Pressure oscillations in the transmitted wave figr=0.05,
®=9%»;. (b) Relative power spectrum of the transmitted wdie., power
spectrum normalized by factq?;) for pg;=0.05, wy; =9, 600<t<<1000.

(c) Pressure field inside the layertat500 for pg; =0.05, wy; =9, .

0.5 - N
0.8 - N
0.7 4 \ R
0.6 \ PN . -
0.5 1 ~ rd ~
/

0.4 ’ e ~
0349 /
0.2 - -

0.1 9 Poi

0.0 T
0.00 0.05

Pu/ Poi

1.0 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.1 w/wm
b)

0.0 T T T T T T T T
85 86 87 88 89 9.0 9.1 92 93 94 95

FIG. 4. (a) First harmonic amplitudes of the transmitted and reflected waves
normalized bypg;. Numerical results for transmitted and reflected waves are
marked by stars and crosses, respectively. Long- and short-dashed curves
correspond to solutio61) and(62) for the transmitted and reflected wave
amplitudes(b) Resonance curves of first harmonics of the transmitted wave.
Circles and squares correspond to the numerical results obtained for
Poi=0.05 andpy;=0.1, respectively. The dotted curve corresponds to the
linear resonance curve9), the solid line represents the sawtooth wave
resonance62) for py;=0.05.

vided by the sawtooth wave theofkig. 4a)] shows some
differences that may be related to the effect mentioned
above. However, in the case of comparatively small ampli-
tudes of the incident wave, the analytical results given by
Eqgs.(58) and(61), (62) [obtained for the case of weak shock
losses, dashed and short-dashed curves in Fay, #espec-
tively] quite accurately describe the numerical data for trans-
mitted and reflected waves.

Figure 4b) shows the resonance curves obtained for the

w,/w,>27]. On the other hand, a similar dispersion can betransmitted wave first harmonie/w;=9. Note that losses
caused by bubbles, if a correction to the quasistatic model irelated to shocks significantly affect the resonance so that,
taken into accountbelow we discuss this point in more de- for an amplitudepy; =0.1 [marked by the empty squares in
tail). In this case the effect of shocks is not quite equivalenfFig. 4(b)], the resonance structure of the layer in correspon-
to that of viscous losses, which are usually implied for saw-dence of the higher modes is blurred by the losses.

tooth wavegsee, e.g., Ref.)1 Comparison of the numerical

In order to study the low-frequency signal output, we

results for transmitted and reflected waves with those proeonsider pumping at two neighboring frequencig¢s? cor-
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FIG. 5. (a) Pressure field inside the layer tat1000 for biharmonic pumping at frequencie®'=9.1w;, »'®=10.1w, with amplitudespyi; = pgi»=0.1. (b)
Pressure oscillations in the transmitted wave of Fig).4c) Power spectrum of the transmitted wave derived from time series represeribgd(d) Pressure
oscillations in the transmitted wave obtained after filterisglid line). The dashed line shows the low-frequency signal.

responding to the 9th and 10th modes of the layer. wave amplitude is shown in Fig.(®. In the case of suffi-
The pressure field inside the layer calculated for an ameiently small amplitudegpy;<0.09, both the weakly non-
plitude py;=0.1 is presented in Fig.(8). Pressure oscilla- linear theory given by Eq45) and the sawtooth theory re-
tions at the right boundary of the layer and the correspondingults provided by Eq(81) with harmonic amplitudes given
power spectrum are are shown in Figbpand(c). We used in Eqgs. (73), (74) [corresponding to the dotted and dashed
filtering to eliminate the high-frequency oscillations relatedcurves in Fig. 6a), respectively agree well with the numeri-
to shocks(for frequenciesv>30w,). The result presented in cal data(empty circles. However, for larger amplitudes, the
Fig. 5d) corresponds to the superposition of sawtooth wavesiumerical results differ from those predicted by the sawtooth
(full curve). The dashed curve corresponds to the differencetheory. This difference can be explained by the effect of the
frequency harmonic. high-frequency oscillations on shocks discussed above. Cor-
We also calculated the maximum of the relative powerrespondingly, the contribution of the harmonics to the low-
of the low-frequency signal in the transmitted wave. Thisfrequency signal output is larger than that predicted by the
value is defined as the maximum of the square of the ratio ofawtooth theory.
difference-frequency harmonics to the the incident power The dependence of the low-frequency output on the fre-
(ph/poi)?. To find this maximum we calculated the low- quencyw of one pumping wavéthe frequency of the other
frequency output within a range 8:5)<1>/w1<9.5 of incident wave being the sum ab and the first mode resonance fre-
harmonics frequencies, changing the frequency of botlguencyw,;=) is presented in Fig. (6). Note that, as the
waves and keeping the difference frequency fixed and equgdarametem,, is increased, the resonance properties of the
to the layer first mode frequencﬁsz)—w(l):wl. The layer become less pronounced with respect to high modes,
dependence of the low-frequency output on the incidentvhile the resonance for the first mode is still intact.
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the efficiency of the low-frequency signal generation can be-

0.15
2 S
(pg/po;) , come as large as 10% of the incident power for bubble con-
i centrations of the ordeB=10"3 (see Fig. 6. Such an effi-
0.12 ciency can be considered large in comparison with the
typical ones of parametric arrays for which, due to the high
i “q losses, the low-frequency output usually does not exceed
s -3
0.09 e \ 10~ o
57 Y The results presented in this paper are affected by shock
] / formation inherent to our quasistatinondispersivemodel.
0.06 ; Numerical dispersion, which becomes significant when non-
/‘ linear distortion of the wave front takes place, introduces
T . some dispersion analogous to the one that would be caused
0.03 //’ by bubbles. Upon accounting for the correction to the quasi-
' a) /» ____________ static solution due to the inertia of the oscillating bubbles,
1 -z Poi the expression2) for the bubble volume fraction is given
/"5} byl
o.ooooor‘. P T P
e . . . ) ) - P, 1 P
: 2 =Pop " 2p |
(Pw/pm) P wp Po
wherewy, is the bubble resonance frequency. This correction
0.12 results in an additional term in the equati@ for the pres-
] sure
*p
0.09 A A2D —,
P N at
< f/ A,
Y N where
0.06 - N 2
b) %7 /q:;—-l:l\R b _ A2p0C0 &
p d \ 3yPy I’
\
0.03 e N whereR, andl are the bubble radius and layer width, respec-
g N — tively
G —6 — & — S -8 _ o 7 ) . . . . .. .
e oo 3 Numerical dispersion results in a similar correction but
0.00 B T T T T T o o o with a factor D,,,,7=h?/12, whereh, is the dimensionless

time step. Thus foA?=30, h,~10"2, and the parameters,
po typical of pure water at atmospheric pressige-10° Pa,
we obtain for the ratio of the “equivalent” bubble radius to

Q)/6001

FIG. 6. (a) Dependence of the maximum of the relative power of the low-

frequency output on the incident wave amplityzlg for biharmonic pump- the layer width the following estimate
ing at frequencieso™,w®=wY+w, in the range 8.6,<wY<9.50,. The

104
circles are the numerical results. The dotted and dashed curves show the Req“ 10°%. (83)
weakly nonlinear and sawtooth theory rests) and(81), respectively(b) - Therefore, the numerical dispersion affecting the present cal-
Dependence of the relative low-frequency outputadft (with frequency . . . . . .
©?=0®+ay) for amplitudespy =0.05 (circles, 0.1 (squarel and 0.15 culations is equivalent to the dispersion that would be intro-
(triangles. duced by bubbles with a radius of this order of magnitude.
For instance, forl=0.2 m, the equivalent bubble radius

VI. DISCUSSION would be of the order of 2@m.
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