
Entropy-based scheduling performance in real-time 
multiprocessor systems

Daniel E. Rivas S.∗, CarlosA. Rincón C.∗
*University of Houston, TX, Houston, USA
Email: derivassanchez@uh.edu, carincon@uh.edu

Entropy-basedscheduling
An entropy-based layer for task scheduling can be used for
reducing the number of task migrations on multiprocessor
systems. The idea is to reduce the complexity of the
problem by selecting the best permutation of job-to-
processor mappings.

Multiple schedulingalgorithms
Since the entropy-based layer is non-intrusive, it can be
easy to integrate into existing algorithms without too much
effort. It works with all algorithms tested so far, including:

Earliest deadline first (EDF)

Least laxity first (LLF)

PFair-basedalgorithm (PD2)

Benchmarkenvironment

Benchmark results

Bench.pycommand-line interface

Result analysis

Conclusions

References

All the benchmarks were done by comparing the original 
implementation of each scheduling algorithm against its
their entropy-enabled implementation. In general, the
original scheduling algorithm remains unchanged, as the
entropy-layer is only executed when mapping pending jobs
to processors. To get accurate results, we executed each
scenario ten times (ten experiments) and assigned the
average of all experiments as the result for that specific
scenario.

The dependent variables in our experiments were the
number of preemptions, job migrations, and task
migrations. Our independent variables were the number
of processors, and utilization percentage.

2, 4, 8
Numberof CPUs

50%, 75%, 100%
Utilizations

EDF vs EDF Entropy
In this scenario, we compared Earliest deadline first against
its entropy-enabled implementation. With the latter
executing the entropy layer each time a new job was to be
scheduled.
The results on the left show that the number of task
migrations % depend mostly on the CPU utilization, with the
former showing improvement the less utilization we have.
Which makes sense since the entropy layer will have more
freedom to schedule the best possible permutation.

LLF vs LLF Entropy
In this scenario, we compared Least laxity first against its
entropy-enabled implementation. In this case, the entropy
layer is executed each time the scheduler is interrupted
(each tick) to compute the laxities.
We see higher improvement in this scenario since the
original LLF does not have any heuristic for selecting the
processor, it just uses whatever is available.

PD2 vs PD2 Entropy
For this scenario we, compared PD2 against its entropy-
enabled implementation. The latter executes the entropy
layer each time the scheduler is interrupted (each tick) to
compute the virtual jobs.

We gain improvements here for the same reason as LLF
since PD2 does not use any heuristic for selecting a
processor. However, the entropy-layer overhead was higher
due to the scheduler being interrupted more often.

Most of the benchmarks presented here show improvement
when comparing the entropy-enabled implementations
against their original counterparts.
However, the entropy-layer currently selects the best
processor to use for a given job by working through the
possible mappings of said job and all processors. Future
work will attempt to reduce the overhead of this greedy
approach, finding a good compromise between
computation time and the selected processor.

All the benchmarks in this presentation were executed with
the help of bench.py [1]. A command-line interface written
in Python that integrates with SimSo [2] for efficient batch
processing and execution of scheduling algorithms.

The tool itself is easy to integrate with your own analytics
tools since its input-output format is based on SQLite. You
can analyze the results using raw SQL queries or using
more specialized tools like Excel.

SimSo

Each of the matrix plots in this section shows the relative amount of task migrations of 
each entropy-enabled implementation against its original counterpart.

How to read the charts
60% means that the entropy-enabled implementation showed only 60% of the task 
migrations observed in the original algorithm (meaning lower is better).

1 https://gitlab.com/uh-spring-2021/cosc-4396-senior-research-project

2 http://projects.laas.fr/simso/

mailto:derivassanchez@uh.edu
mailto:carincon@uh.edu
http://projects.laas.fr/simso/

