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ABSTRACT:	

 Based on the Barnes method of discontinuity filters, I created a new fault-detection 

attribute and compared it with the constrained least squares spectral analysis (CLSSA) 

method in Barnett Shale fault detection. The fault-detection attribute is calculated using 

the Principal Component Analysis (PCA) of different seismic attributes such as 

coherency, most positive curvature, variance, smoothed seismic data, and also 

isofrequency phase discontinuities volume. The most positive curvature has better 

resolution compared with other curvature attributes, while coherency attribute is a very 

good way to map karst-related structures. Phase spectrum is a good way to detect lateral 

acoustic discontinuities, while some small discontinuities can be detected very well in the 

specific frequency phase map. The fault-detection attribute can thus reinforce the similar 

information of these attributes and reduce the dissimilar information as noise. CLSSA is a 

better spectral method than the short-time Fourier transform method because it reduces 

classical spectral smoothing. Spectral analysis can also highlight stratigraphic 

characterization. Based on these features, the application of fault-detection attribute and 

CLSSA show better resolution in Barnett Shale fault detection. As compared to 

coherence and curvature, the resulting PCA fault-attribute better resolves minor tectonic 

and karst-related fractures. 
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1. INTRODUCTION	

1.1 Motivation	

Faults play an important role in gas and oil exploration and production. They can 

assist in the formation of hydrocarbon reservoirs, but they can also destroy reservoirs and 

leak oil and gas. Accurately estimating fault trends could help researchers better 

understand and interpret underground characteristics in the Barnett Shale area in 

northeast Texas. Understanding an underground fault system permits better reservoir 

prediction and estimation. 

Barnett Shale hydrocarbon production is very much affected by faults, karst, and 

fractures because escaping water from the underlying Ellenburger Group could force the 

release of Barnett Shale gas. Consequently, it is normally necessary to find a Viola-

Simpson limestone layer between Barnett and Ellenburger formations because this layer 

act as a buffer from leakage due to fractures, faults, and Karst.  

Fault interpretation is a time-consuming task that requires large amounts of 

human effect before a consistent earth-model is created; it is also affected by an 

interpreter’s subjective factors. Examination of individual seismic attributes cannot 

provide enough useful and detailed information. Comparison of many seismic attributes 

to find differences is inefficient. In addition, traditional seismic attribute methods have 
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limited application in detecting small faults. We propose two unconventional methods to 

detect faults using seismic data sets. 

1.2 Background	

In geology, a fault is a planar fracture or discontinuity in a volume of rock, across 

which there has been significant displacement along the fractures as a result of earth 

movement. Large faults within the earth's crust result from the action of plate tectonic 

forces, such as subduction zones. In geotechnical engineering terms, a fault often forms a 

discontinuity that may have a large influence on the mechanical behavior (strength, 

deformation, etc.) of soil and rock masses in, for example, tunnel, foundation, or slope 

construction. In oil and gas exploration, faults are important structures for reservoir 

development. The conventional way to pick big faults depends on interpreters’ hands-on 

time. This method is time consuming on reservoir interpretation.  

One such reservoir is located within the Barnett Shale formation, located near 

Fort Worth, Texas (Figure 1, Figure 2). The Barnett Shale (Mississippian age) is the 

primary source rock for oil and gas that is produced from numerous conventional clastic 

and carbonate rock petroleum reservoirs of Paleozoic age in the Bend Arch-Fort Worth 

Basin. It is also the source and reservoir for the tight, siliceous shale gas accumulations. 

Based on this information, a Barnett-Paleozoic total petroleum system was identified that 

includes mature Barnett Shale source rock, all known oil and gas accumulation, and an 

area hypothesized to contain undiscovered oil and gas accumulation (Pollastro et al., 

2003). In the Bend Arch-Fort Worth Basin area, the northern, eastern, and southeastern 
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extent of the Barnett is controlled by structural fronts of the Red River Arch, Muenster 

Arch, and Ouachita Thrust Front, respectively. The western margin is an erosional limit 

of facies change along the eastern shelf and Concho Platform. Adjacent to the Muenster 

Arch, the Barnett Shale is more than 305 meter thick and interbedded with thick 

limestone. Westward, the Barnett thins rapidly over the Mississippian-age chapel 

limestone shelf to only a few tens of feet. 

Oil and gas are produced from carbonate and clastic rock reservoirs ranging in 

age from Ordovician to Permian. The Barnett Shale reservoir is made up of dense 

organic-rich shale, in some areas divided into upper and lower members by the 

Forestburg Limestone. The overlying Marble Falls Formation is mainly made up of 

limestone, whereas the underlying Ellenburger Group is comprised of porous dolomite 

and limestone. 



  4   
   

 

Figure 1. Major structures in the Fort Worth Basin: Muenster Arch, Red River Arch to the north, 

and Ouachita Thrust Fronts. The western margin is an erosional limit of facies change along the 

eastern shelf (Modified after Montgomery et al. 2005). 
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Figure 2. System and series stratigraphic of Fort Worth basin (Modified after Montgomery et al. 

2005).  

Barnett Shale is an unconventional gas reservoir and a source rock for oil and gas. 

However, production in this area is strongly affected by fractures and karst-related 

fractures (Bruner and Smosna, 2011). If a fault’s trend and orientation were known, one 

could find and avoid areas that have high rigidity; these could be more fractured in stress 
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effects. Traditional applications used to determine seismic attributes, such as coherency 

or curvature attribute, poorly separating tectonic and karst-related faults in the lower 

Barnett Shale and top Ellenburger Group. In addition, coherency attribute is not sensitive 

to discontinuities with a finite offset, while curvature attribute is not sensitive to folds and 

flexures without discontinuities (Marfurt, 2006). Unfortunately, these situations are all 

found in the lower Barnett Shale and upper Ellenburger Group interface.  
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2. CONVENTIONAL	METHODS	IN	FAULT	DETECTION	

2.1 Processing	Background	

The dataset we used in this project consist of two Harris and Gleason three-

dimensional (3D) surveys undertaken in Hamilton County, Texas (Figure 3). Hamilton 

County is located in the Fort Worth Basin, which is a major petroleum producing 

geological system. This combined dataset represents approximately 228 square 

kilometers of 3D data. The data in the Harris 3D survey were acquired in 2006 and 

consisted of 32453 production shots. The vibroseis source was a non-linear 6-120 Hz 

sweep with locations spaced 33.5 meters apart. Source lines were separated by a distance 

of 268 meters. There were 34897 live receivers laid out over a 33.5 meters group interval 

in the survey. The data of the Gleason 3D survey were acquired in 2005 and consisted of 

3627 production shots. This dataset has already been processed. The processing flow is: 

 Spherical divergence and geometric spreading. 

 Minimum phase conversion. 

 Geometry QC/ refraction statics analysis. 

 Deconvolution 

 Surface consistent gain 

 Noise attenuation 

 Velocity analysis 
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 PSTM velocity analysis 

 Offset binning 

 Kirchhoff ray bending pre-stack time migration 

 Residual velocity analysis 

 Final stack 

 Time variant filter 

 FXY deconvolution 

 

 

Figure 3. Two 3D Vibroseis surveys merged (Harris 3D in 2006, Gleason 3D in 2005). The time 

slice shows the irregular boundary of the merged 3D data. The approximate outline of the smaller 

Gleason 3D survey is shown in dashed red. The total merged survey area is approximately 228 sq. 

kilometers. 
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2.2 Seismic	Filters	

Filters are significant to digital signal processing. In many cases, filters based on a 

spectrum are important and useful. A spectral filter may be applied to a raw signal’s 

spectrum to get its bandwidth. In time domain, this procedure can be displayed as 

convolution.  

 A signal received from a geophone, xሺtሻ, normally contains two parts: one is the 

effective signal, sሺtሻ , which reveals underground properties relevant to oil and gas 

exploration; another one is noise, nሺtሻ, which is irrelevant. Thus, by combining these 

two parts, we can get a real signal: 

xሺtሻ ൌ sሺtሻ ൅ nሺtሻ	                                                           (1). 

One main goal of data processing is to reduce noise and strengthen or maintain the 

effective signal. Depending on real data processing, the noise spectrum 	Nሺtሻ  is very 

different from the effective signal spectrum	Sሺtሻ. In special situations, the effective signal 

spectrum is completely separated from the noise spectrum. In such cases, we can design a 

filter as: 

Hሺ݂ሻ ൌ ൜
	1, ሺ݂ሻܵ	݄݊݁ݓ ് 0	
0, ሺ݂ሻܵ	݄݊݁ݓ ൌ 0	.

                                                 (2).   

Multiple effective signal spectra may be expressed as: 

Yሺ݂ሻ ൌ Xሺ݂ሻHሺ݂ሻ                                                           (3), 
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where Yሺ݂ሻ  is a final result. Because 	Sሺ݂ሻHሺ݂ሻ ൌ ܵሺ݂ሻ , and Nሺ݂ሻHሺ݂ሻ ൌ 0 , 

Yሺ݂ሻ	equals	Sሺ݂ሻ. Therefore, noise may be removed after multiplication. In time domain, 

the relationship between the raw signal and the final result may be expressed as: 

yሺtሻ ൌ ׬ ݄ሺ߬ሻݔሺݐ െ ߬ሻ݀߬
ାஶ
ିஶ                                                  (4), 

where yሺtሻ is the filter result and	݄ሺ߬ሻ is the filter both in time domain. 

In many real signals, however, the noise and effective signal spectra are not 

completely separated. Depending on the different characteristics of effective signal and 

noise in the spectrum, we can design different filters to reduce the noise or strengthen the 

effective signal. 

A band-pass filter is a device that passes frequencies within a certain range and 

rejects frequencies outside that range. The Ormsby filter is one type of band-pass filter, 

comprised of a filter of trapezoidal shape specified by four corner frequencies, f1, f2, f3, 

and f4. The filter rejects below f2 and above f3, is linear from f1 to f2 and from f3 to f4, 

and flat from f2 to f3. A high-pass filter can also be used. The bandwidth of data is 8Hz-

120Hz, so the octave of this data is 3.807dB, as calculated by Equation (5), where f୦୧୥୦is 

high-frequency, f୪୭୵	is low-frequency:  

Octave ൌ ln൫f୦୧୥୦/f୪୭୵൯ /ln	2                                               (5). 

Using a band-pass filter, we can extract the high-frequency part and reduce the 

low-frequency part. High-frequency parts mean short wavelengths, while low-frequency 

parts mean long wavelengths. Because some large faults have large offsets, which are 
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much larger than a wavelength, they are found very easily in a seismic map. If the 

motions of small faults are smaller than a wavelength, however, they are not found easily 

in a seismic map. For example, Figure 4 shows a cross-line 1157 seismic amplitude map. 

There are two big reverse faults and one normal fault oriented in a NE-SW direction. A 

reverse fault is a type of fault, in the Earth's crust across which there has been relative 

movement, in which rocks of lower stratigraphic position are pushed up and over higher 

strata. They are often recognized because they place older rocks above younger ones. 

Reverse faults are the result of compressional forces.  

 

Figure 4. Seismic section amplitude map: cross-line 1157, time range 550-980ms. Two reverse 

faults are shown. 

Using these figures, we can observe high-frequency parts clearly appearing in 

seismic sections as layers. Some big faults can be easily found by an amplitude map, but 

for small and medium faults, this method does not detect faults. The results obtained by 

filtering are one step of the process used to determine seismic attributes. 
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Figure 5. Seismic section: cross-line 558; inline 1126-726; left is whole frequency range (8-

120Hz) amplitude map; right is high-frequency part (10-120Hz) amplitude map. 

 

Figure 6. Seismic section in cross-line 800; inline 234-1224: left is whole frequency range (8-

120Hz) amplitude map; right is high-frequency part (10-120Hz) amplitude map. 

 

2.3 Coherence	Attributes	

Using traditional viewing methods such as seismic amplitude maps, it is often 

difficult to get a clear and unbiased view of faults and stratigraphic features hidden in 3D 
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data. Although faults are often readily seen on individual vertical seismic cross-sections, 

many of these cross-sections must be examined to determine the lateral extent of faulting. 

Stratigraphic changes are difficult to detect on vertical seismic lines because of the 

limited profile that they present in this view. Time slices are more suitable for detecting 

and following faults and stratigraphy laterally and are often used for this purpose. 

Interpretation, however, is often complicated by the fact that time slices can cut through 

different stratigraphic horizons. This problem can be avoided through the use of the 

horizon-slice, which is the set of seismic amplitudes associated with an interpreted 

horizon surface, generally at some consistent stratigraphic level. Other attributes of 

seismic reflections, besides amplitude, may be calculated and displayed in map view as 

well, including frequency, phase, dip-magnitude, and dip-azimuth (Bahorich et al., 1992). 

In spite of the fact that horizon-slices and attribute maps are more useful than amplitude 

time slices for following faults and stratigraphic features, they too have disadvantages. 

The geoscientist must pick a stratigraphic horizon, which can be difficult and time-

consuming (Bahorich  and  Farmer, 1995).  

One of the useful seismic attributes is the coherence attribute, which is effective at 

interpreting structural discontinuities and stratigraphy features in 3D data. There are three 

algorithms to measure coherency: crosscorrelation, semblance, and eigenstructure, each 

based on the continuity of traces in time and depth windows. Input of this attribute 

requires 3D seismic data. Similar traces are mapped with high-coherence coefficients, 

whereas dissimilar traces get low-coherence coefficients. The first coherency algorithm 

based on crosscorrelation was proposed by Bahorich and Farmer in 1995. The second, 
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introduced by Marfurt et al. in 1998, is based on semblance. The third coherency 

algorithm, introduced by Gersztenkorn and Marfurt in 1999, is based on eigenstructure.  

The original crosscorrelation-based coherency algorithm, ܿଵ, provided interpreters 

with a new way of visualizing faults and stratigraphic features in 3D seismic data 

volumes. By using relatively simple mathematics to calculate localized waveform 

similarity in both the in-line and cross-line directions, estimates of 3D seismic coherence 

may be obtained (Bahorich and Farmer, 1995). In the algorithm, they first crosscorrelate 

with an in-line trace over a suit of temporal lags, then repeat this process to the target 

trace with a cross-line trace, and finally calculate the geometric mean of two 

crosscorrelation values to get the coherence (Figure 7). This process can be expressed as: 

cଵሺݔ, ሻݕ ൌ ሾ
஼భమ

ሺ஼భభ஼మమሻభ/మ
஼భయ

ሺ஼భభ஼యయሻ	భ/మ
ሿଵ/ଶ                                          (6),       

where cଵ is the three-trace algorithm and C is the trace. 
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Figure 7.  3D coherence may be measured by calculating seismic trace similarity in the inline and 

crossline directions; a three-trace operator is depicted. Coherence may be measured from trace A 

to trace C and from trace A to trace B. A combination of these two-dimensional measurements 

provides a measure of 3D coherence (Bahorich and Farmer, 1995). 

     Marfurt et al. (1998) and Gersztenkorn and Marfurt (1999) provided coherence 

attributes based on semblance and eigenstructure, respectively. The cଶ (Marfurt et al., 

1998) method estimates coherency using a semblance analysis over an arbitrary number 

of traces. It was generated by calculating the semblance along various dip/azimuth pairs 

from the covariance matrix. In both the semblance and eigenstructure algorithms, they 

first estimated dip and azimuth, then calculated either the semblance or a covariance 

matrix between the target traces. The steps of calculating coherence by the semblance 

algorithm are: calculating the total input energy, calculating average wavelets within a 

moving window, estimating coherence traces by their average, and, finally, calculating 

the energy of average traces. Semblance is defined as the coherency power of traces 
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divided by the total power of traces. Also, the total power is equal to the coherency power 

plus incoherency power. This may be expressed as: 

cଶ

 

 

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                                            (7), 

where the numerator is the energy of average traces, and the denominator is the energy of 

all traces. 

Subsequently, the cଷ  (Gersztenkorn and Marfurt, 1999) eigenstructure method 

was generated by calculating the eigenvalues of the covariance matrix. The difference 

between the eigenstructure and semblance methods is that eigenstructure calculates the 

wavelet that best fits the data, whereas semblance calculates the average wavelet of the 

data. Marfurt et al. (1999) had improved some other coherency algorithms, such as cଷ.ହ 

and	cଷ.଺ , but they are all based on either the semblance method or the eigenvalue method. 

Both	the	cଶand	cଷ algorithms are more sensitive to structural dip. Correlation responds to 

changes in waveshape only, but semblance responds to both changes in waveshape and 

amplitude (Marfurt et al., 2000). The eigenstructure of estimate coherence is only 

sensitive to changes in waveform. In our study, we used the algorithm based on the 

crosscorrelation method; because Barnett Shale is typical VTI, most layers are horizontal. 

The results obtained will be discussed and compared in a later chapter. In addition, the 

coherency estimate has a limitation that several types of geological structures yield 

similar results. Sometimes, stratigraphic features may be difficult to track, requiring a 
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tradeoff between analysis windows: if the window increases, better vertical resolution of 

faults emerges; however, it also smears stratigraphic features. For example: 

cଷሺݔ, ሻݕ ൌ
ఒభ

∑ ఒೕ
ೕ
ೕసభ

                                                            (8), 

where ߣ௝ is the ݆ the eigenvalue of the covariance matrix	ܥ.  

 

2.4 Curvatures	

Curvatures are also useful attributes that can be applied in structural and 

stratigraphic detection. Curvature is a two-dimensional (2D) property of a curve and 

describes how bent a curve is at a particular point on the curve; that is, how much the 

curve deviates from a straight line at this point. For a particular point on a curve, its 

curvature is defined as the rate of change of direction of a curve in mathematics (Roberts, 

2001). We can define a 2D line as a parabolic curve of the form: 

zሺxሻ ൌ a ൅ bx ൅ kݔଶ                                                    (9). 

In this equation, k is the curvature coefficient, which is defined as being inversely 

proportional to the radius of curvature. If we want to define curvature in three dimensions 

mathematically, we use the least-squares fitting, or some other approximation method, to 

fit a quadratic surface,	zሺx, yሻ,	from a grid of measurements: 

zሺx, yሻ ൌ ଶݔܽ ൅ ݕݔܿ ൅ ଶݕܾ ൅ ݔ݀ ൅ ݕ݁ ൅ ݂                                (10), 
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when the coefficient c in the equation is nonzero, the quadratic surface z is said to be 

rotated with respect to what mathematicians call the principal axes. 

 As one kind of seismic attributes, it is sorted into surface second derivative 

attributes. There are many kinds of curvatures, including most-positive curvature, most-

negative curvature, mean curvature, Gaussian curvature. In these curvatures, the most-

positive and most-negative curvatures are most useful in structural detection. Figure 8 

shows curvature defined in two dimensions as the radius of a circle tangent to a curve.  

 

 

Figure 8. An illustrated definition of 2D curvature; synclinal features have negative curvature, 

anticlinal features have positive curvature, and planar features have zero curvature (Roberts 2001).  

 

 The most-positive curvature and most-negative curvature, ݇௣௢௦ and ݇௡௘௚ are 

expressed as: 
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݇௣௢௦ ൌ ሺa ൅ bሻ ൅ ሾሺa െ bሻଶ ൅ ܿଶሿ
భ
మ	                                             (11); 

݇௡௘௚ ൌ ሺa ൅ bሻ െ ሾሺa െ bሻଶ ൅ ܿଶሿ
భ
మ	                                              (12). 

Note that the most-positive curvature can be a negative number and the most-

negative curvature can be a positive number. Thus, it depends on the shape’s features, as 

shown Figure 9. The definitions of 3D quadratic shapes are expressed as a function of the 

most-positive curvature  k୮୭ୱ  and the most-negative curvature 	k୬ୣ୥ . By definition, 

k୬ୣ୥	is	less	than	or	equal	to	݇௣௢௦. Thus, if both	k୮୭ୱ	and k୬ୣ୥ are less than zero, we have 

a bowl; if both are greater than zero, we have a dome; and, if both are equal to zero, we 

have a plane (Marfurt, 2006). 

 

Figure 9. The definition of 3D quadratic shapes, expressed as a function of the most-positive 

curvature and most-negative curvature (Bergbauer et al., 2003). 
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Roberts (2001) also goes on to define the mean curvature, k୫ୣୟ୬	 , Gaussian 

curvature, kୋୟ୳ୱୱ୧ୟ୬ , and principal curvatures, kଵ and kଶ: 

k୫ୣୟ୬ ൌ
௔൫ଵା௘మ൯ା௕൫ଵାௗమ൯ି௖ௗ௘

ሺଵା௘మାௗమሻయ/మ
                                               (13); 

kୋୟ୳ୱୱ୧ୟ୬ ൌ
ସ௔௕ି௖మ

ሺଵାௗమା௘మሻమ
                                                          (14); 

kଵ ൌ k୫ୣୟ୬ ൅ ሺk୫ୣୟ୬
ଶ െ kୋୟ୳ୱୱ୧ୟ୬ሻଵ/ଶ                               (15); 

kଶ ൌ k୫ୣୟ୬ െ ሺk୫ୣୟ୬
ଶ െ kୋୟ୳ୱୱ୧ୟ୬ሻଵ/ଶ                               (16). 

Each of the individual curvature attributes gives a slightly different insight into 

the mapped surface. For example, maximum curvature offers a number of additional 

benefits over the first derivative-based methods (dip, edge and azimuth), which are 

commonly used in fault delineation. Curvature contains the added dimension of shape, 

allowing faults, fault orientations, and faults from other linear surface features to emerge. 

Comparisons between the dip angle and most negative curvature indicate that curvature 

can delineate many more surface features, without suffering from the problem of dip 

saturation. Curvature avoids this problem because it is surface-orientation independent 

(Roberts, 2001). 

Volumetric curvature is a well-established interpretational tool that allows us to 

image subtle faults, folds, incised channels, differential compaction, and a wide range of 

other stratigraphic features. The maximum and minimum curvatures define the 



  21   
   

eigenvalues of a quadratic surface. By definition, and based on eigenstructure analysis, 

the maximum curvature is defined as the principal curvature that has the largest absolute.  

The wide availability of 3D seismic data permits interpreters to easily find 

interests and targets. Curvature attribute analysis of surfaces helps interpreters remove the 

effects of regional dip and emphasizes small-scale features that might be associated with 

primary depositional features or small-scale faults. The structural geology relationship 

between curvature and fracture is well established (Lisle, 1994), although the exact 

relationship between open fractures, paleostructure, and present-day stress is not yet 

clearly understood. Roberts (2001), Hart et al. (2002), Sigismondi et al. (2003), 

Masaferro et al. (2003), and others have used seismic measures of reflector curvature to 

map subtle features and predict fractures. In this study, we primarily use and discuss 

most-positive curvature and most-negative curvature, which are the most unambiguous of 

the curvature images for highlighting faults and Karst in the Barnett Shale. 

Curvature is a second derivative-based method and is consequently sensitive to 

any noise contamination which may be present within the surface. This often necessitates 

the surface to be pre-processed using some form of spatial filter, which can be iterated. 

The scale of investigation is another important consideration in the computation of 

curvature. The scale is controlled by the aperture and sampling interval sizes. 

2.5 Discussion	

Curvature attribute and coherency attribute have different characteristics in 

structure detection, although their results are similar. These effects are shown in maps 
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contained in Figure 10. In Figure 10, a) is a fault structure with minimal offset, and 

stratigraphy is continuous. This fault can be seen on a curvature attribute, because there is 

dipping change, but it cannot be seen on a coherency attribute because there is no 

discontinuity in the same event; b) shows a fault with finite offset, which means it has 

movement in the event, but no dipping change; it can be seen on a coherency attribute, 

but not on a curvature attribute; c) is an idealized fault which can be seen on both 

coherency and curvature attributes. If there are folds and flexures, as in d), the attribute 

indicates sensitivity of folds and flexures; this “fault” will be seen on curvature attribute 

volumes, but not on coherence attribute volumes. Finally, e) shows attribute sensitivity to 

infill/collapse features. The deeper part of the fault will be seen on coherence attribute 

volumes, whereas the shallower part of the fault and the overlying infill will be seen on 

curvature attribute volumes. Thus, we can say that curvature attribute is more sensitive to 

dipping change, but coherency attribute is more sensitive to discontinuity.  
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Figure 10. Comparison of characteristics of curvature attribute and coherency attribute: a) 

idealized fault having an offset much less than one-quarter of the size of the seismic wavelet; b) 

idealized fault with finite offset and no reflector rotation; c) idealized growth fault, which will be 

seen on both curvature and on coherency attributes; d) attribute sensitivity to folds and flexures; 

and, e) attribute sensitivity of infill/collapse features (Marfurt, 2006).  

In Barnett Shale fault detection, most large faults can be detected easily in seismic 

amplitude maps, while small faults cannot be directly found. To illustrate the better 

features of seismic attributes like coherency attributes and curvature attributes than 
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normal seismic amplitude map in structure detection. To illustrate the advanced features 

of seismic attributes over conventional seismic amplitude map, such as coherency 

attributes and curvature attributes, I will apply these in Barnett Shale 3D data and 

compare with original data. Figure 11 shows a time slice of the Ellenburger Group at 

750ms in Barnett Shale 3D data. The Ellenburger Group is located below the Barnett 

Shale, which is a water-bearing formation. It consists of clastic fractured limestone and 

porous dolomite. In Figure 11, a) indicates original seismic amplitude and b) shows the 

coherency attribute based on the crosscorrelation algorithm. From these two images, fault 

trends can be easily detected by coherency attribute results indicated by the red and blue 

arrows; the yellow arrows show sinkholes. Note that the sinkholes can be seen on map b), 

but not on map a). In addition, the coherency attribute displays better resolution for 

erosion, shown in the yellow square, whether indicating linear, or other, discontinuities. 
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Figure 11. Fault trends: a) original seismic amplitude map; b) coherency attributes map based on 

the cross correlation method. Red arrows and blue arrows highlight faults, while yellow arrows 

show sinkholes.  

 

 Generally, in our shale reservoir case study, coherency attributes for fault 

detection, based on either a semblance algorithm or cross-correlation, do not show much 

discrepancy. The difference between semblance and crosscorrelation is discussed 

previously: semblance shows better resolution in dipping layers. In Figure 12, map a) is 

the original seismic amplitude map, while b) and c) are coherency attributes based on 

crosscorrelation; however, b) is filtered by a high-pass filter (above 10 Hz). On map a), a 
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big structure, looking like a fault, crosses from north to south. Arrow 1 and arrow 3 point 

the same fault in map b) and map c), respectively. However, the structure pointed by 

arrow 2 is smoothed, if compared with the arrow 4 structure. In addition, the arrow 4 

anomaly is more correlative than arrow 3, so it could not be a continuous structure 

connected with the arrow 3 anomaly. We cannot ensure the identification of this anomaly 

using only coherency attributes; however, we could create more attributes to detect the 

anomalies. 

 

Figure 12. Fault detection: a) original seismic amplitude map; b) filtered by a high-pass filter 

(greater than 10 Hz); and, c) coherency attributes based on crosscorrelation. 

As discussed above, curvature is more affected by noise (Roberts, 2001): because 

it is closely related to the second derivative of the surface, its quality is very susceptible 
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to the level of noise contamination. There are often many sources for this noise on a 

mapped surface, including geological, processing, acquisition, and the horizon 

autotracking process sources. We applied a high-pass filter (greater than 10 Hz) before 

calculating curvature attributes, as discussed in chapter 2.1. Figure 13 shows different 

curvature attribute results in time slice 750 ms: they are most positive curvature, most 

negative curvature, Gaussian curvature, and mean curvature, respectively.  

 

Figure 13. Time slice at 750ms: a) most positive curvature attribute; b) most negative curvature 

attribute; c) Gaussian curvature attribute; and, d) mean curvature attribute. 
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Comparing the different curvature attributes shown in Figure 13, there is no 

significant difference among them, excepting the Gaussian curvature. First of all, we 

should notice that the color bars are most different, although they have same color. The 

zero value has a different color in each map. Figure 12 and Figure 13 each display the 

same 750 ms time slice. The most positive curvature, most negative curvature, and mean 

curvature attributes successfully delineate the anomaly indicated by the arrow in Figure 

13; however, the Gaussian curvature and coherency attributes cannot delineate this 

anomaly. If looking only at the map of Gaussian curvature, we could not find any 

meaningful result. The reason provided by Roberts (2001) was that Gaussian curvature is 

the multiplication of maximum curvature and minimum curvature. If a surface is folded 

in some way, provided the surface is not broken, stretched or squeezed, then the Gaussian 

curvature remains constant because these shapes have a zero curvature result in the 

minimum curvature direction. Therefore, these shapes cannot be differentiated by 

Gaussian curvature, but require the addition of the mean curvature information. Thus, we 

can conclude from these time slices that the anomaly in Figure 12, at the surface between 

the Ellenburger Group and the Barnett Shale, is not a broken structure like a fault, but is 

caused by surface folding and stretching. In addition, this also indicates why the anomaly 

disappears from Figure 13: the coherency attribute is not sensitive to folds and flexure 

(Marfurt, 2006). 

For karst structures, coherency attributes have better resolution than curvature 

attributes (Figure 14). Karst is a geological formation caused by dissolution and 

fracturing of carbonate rocks, such as limestone or dolomite. The Ellenburger Group 
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mainly consists of limestone and dolomite: karsting is a complex, large-scale diagenetic 

event that strongly affected the Ellenburger Group.  

 

Figure 14. Karst structures: a) most positive curvature attribute; b) coherency attribute based on 

the cross correlation method. Both slices are at 688 ms. 
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3. UNCONVENTIONAL	ATTRIBUTES		

3.1 Fault	Attributes	Analysis	in	Structure	Detection	

As discussed, seismic attributes are sensitive to stratigraphic and structural 

detection. Coherency attribute and curvature attribute techniques can sometimes highlight 

their features. However, these methods have some limitations: curvature attributes are 

more sensitive to folds and flexures, but not sensitive to discontinuities that have a finite 

offset and no reflector rotation, such as strike-slip faults; coherency attributes are more 

sensitive to discontinuities, either a finite offset or reflector rotation, but not sensitive to 

continuous folds and flexures. Thus, we would hope to find an effective way to increase 

the effects of advantages and reduce the influences of disadvantages. In this chapter, we 

will make a short introduction and show the better results of this fault attribute. 

Tingdahl and Hemstra (2003) have introduced a way to accurately estimate fault 

orientation from seismic attributes through the use of Principal Component Analysis 

(PCA). PCA is a standard tool in modern data analysis. It can compress data size and 

reduce no useful data, and also highlight data similarities and differences. The essence of 

PCA is that it computes N vectors from a number of observations, where N is the number 

of variables. The principal components correspond to principal values. PC1 is the 

principal that has the highest principal value, and the PC2 has the second highest and so 

forth (Figure 15). The PCs are orthogonal to each other. The first PC is the vector of 
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maximum variance in the data, and the following PCs are oriented with decreasing 

variance (Tingdahl and Hemstra , 2003).  

 

Figure 15. A number of 2D samples form a cigar-shaped point-cloud. PC1 is in the direction of 

maximum sample variance and PC2 is in the direction of minimum variance. If PCA is computed 

on a 3D point-cloud, PC1 and PC2 will lie in a plane that fits well to the point-cloud, while PC3 

will be the normal to that plane. The plane’s dip and azimuth can be computed from that normal 

(Tingdahl and Hemstra, 2003). 

 The procedures of in calculating the fault-detection attribute are: 1) spectral 

decomposition is applied to each trace and trace-to-trace phase discontinuities are 

determined at a variety of frequencies; 2) a frequency-dependent radial mixing operation 

(Gulunay and Benjamin, 2008) is applied to improve the signal-to-noise ratio; 3) the 

filtered frequency bands are wavelet shaped and recombined to produce higher frequency 
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and higher S/N data; 4) a variety of conventional fault-detection attributes are applied to 

the recombined data; 5) PCA is applied to all of these attributes to identify lineation; and, 

6) the method of Barnes (2006) is used to suppress any remaining events outside of a 

predetermined range of orientations.  

Using spectral decomposition, we can obtain phase information at isofrequency. 

Partyka et al. (1999) pointed out that phase at specific frequencies resulted in particularly 

clear fault images on time slices. Because phase is sensitive to subtle perturbations in the 

seismic character, it is ideal for detecting lateral acoustic discontinuities. Spectral 

decomposition methods may not only be used to compensate for fault-detection attributes 

in this study; other functions will be discussed in a subsequent chapter. I have talked 

about subcube data, and create seismic attributes.  

The PCA may be calculated by the Singular Value Decomposition (SVD) method 

and application of a fan-filter, dash-line filter, and fault-shape filter. Use of the SVD 

method as one way to generate PCA was introduced by Shlens (2009). It reveals single 

underlying structures in complex data sets using analytical solutions from linear algebra. 

The primary motivation is to decorrelate the different seismic attributes and remove 

second order dependencies. In mathematics, PCA can be summarized as: organize data as 

an m*n matrix, where m is the number of measurement types and n is the number of 

samples; subtract off the mean for each measurement type; and, calculate the SVD or the 

eigenvectors of the covariance (Shlens, 2009). 
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The fan-filtering method has been used for many decades. Treitel et al. (1967) 

first showed the utility of both the fan-pass filter algorithm and fan-reject filter algorithm. 

They found a 2D time-space domain operator that passes events recorded from a given 

in-line seismic array, whose apparent velocities fall within a range, by specifying the 

required transfer function in the (f , k) plane, where f and k are the temporal and spatial 

frequencies, respectively. In addition, Barnes (2006) showed a discontinuity filter that 

only passes discontinuities to highlight faults for seismic data interpretation. The 

discontinuity filter, based on a fan-filter, improves and highlights seismic discontinuity 

attributes for fault detection. They created discontinuity attributes and applied the 

discontinuity filter to get fault attributes. In this study, we apply Barnes’s method and 

improve its procedures to create new fault attributes by SVD and filters.  

This new procedure of determining fault attributes shows better resolution in 

revealing faults, karst, and other structures. Faults and karst are very important factors to 

the study of Barnett Shale gas reservoirs and Ellenburger Group source rocks and oil 

reservoirs. This is primarily because oil and gas can transfer between faults and fractures, 

while water can transfer from Ellenburger water formations. Bruner and Smosna (2011) 

suggested that production wells that encounter faults and karst tend to be less productive 

in Barnett Shale because faults and karst serve as transferal mechanisms that take water 

from the Ellenburger Group to the Barnett Shale, releasing trapped gas. Figure 16 shows 

the subcube data set of Harris and Gleason 3D surveys from Hamilton County, Texas. 

The parameters are time from 400 ms to 1200 ms, cross-line from 600 to 900, and inline 
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from 750 to 1150. The figure shows a time slice at 750 ms, which is the interface 

between the Ellenburger Group and the Barnett Shale.  

 

Figure 16. The time section at 750 ms: subcube data showing a main fault cross this area; the 

inset at left reveals that it is not shown very well. 

 This dataset was high-quality processed by Geokinetics in 2006, using 

deconvolution and noise attenuation techniques. Using the spectral decomposition 

method to get a phase map, we first applied a band-pass filter (3Hz - 10Hz) to establish 

the low-frequency portion. We then performed trace mixing to smooth the low-frequency 

portion and then multiple with high-frequency part; using high-frequency part to make 

coherency attribute, curvature attribute and variance attribute (Figure 17).  
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Figure 17. Section views from 400ms to 1200ms: a) seismic data high-frequency portion, 10Hz to 

120Hz; b) positive curvature attribute; c) variance attribute; and, d) coherency attribute. 

 

 These attributes were processed with little noise effect. Anomalies are caused by 

different structures, layers, folds, and flexures. All these attributes are sensitive to faults. 

It is possible to obtain PCA using the SVD method to highlight these anomalies and 

reduce undesired results. In Figure 18, map a) is the section view of PCA results and b) 

plots the application of fault-filter (fan-filter, dash-line filter, fault-shape filter) in our 

PCA results. Figure 19 and Figure 20 show another attribute comparison in fault chimney 

detection. These fault chimneys in found in the low Barnett Shale and top Ellenburger 

Group are actually caused by karst-related fractures; these appear as cylindrical shapes in 
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a time slice (Figure 21). Our fault attribute can display fault separation, unlike other 

attributes. 

 

 

Figure 18. PCA results: a) section view; and, b) the application of fault-filter to PCA results. 

 

Figure 19. Fault chimney detection; Positive curvature attribute and coherency attribute. 



  37   
   

 

Figure 20. Fault chimney detection: a) fault attribute; b) fault attribute merged into original data. 

 

Figure 21. Time slice views in 718 ms: a) original seismic data; b) positive curvature attribute; 

and, c) coherency attribute. 
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 Figure 21 and Figure 22 display a comparison of the fault attribute and other 

attributes in a time slice view. The fault attribute can show fault trends (the red line in 

figure) and Karst (red arrows in Figure 22) like the coherency attribute, which cannot be 

shown clearly in the curvature attribute; in addition, the fault attribute can delineate 

interface folds and flexures (blue arrows in figure 22) like the curvature attributes, which 

cannot be delineated in the coherency attribute. 

 

Figure 22.  Attribute comparison: a) time slice of the PCA fault attribute at 750ms; b) positive 

curvature attribute; and, c) coherency attribute based on cross correlation method. In the fault 

attribute map, red arrows point the Karst and red dashed line shows a fault trend; the black arrows 

and black square point to minor faults not seen on the coherency attribute.  Note that the PCA 
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attribute is less noisy than the curvature attribute, but shows more features than the coherency 

attribute. 

 Therefore, seismic attributes, particularly fault attribute, provide a good 

understanding of faults and karst structures. To increase prospecting efficiency and 

production, water formations and paleo-reservoirs are avoided. In Figure 23, the yellow 

line indicates the horizon of interface between the Barnett Shale and Ellenburger Group. 

The blue arrows show a fault crossing from north to south. The red arrows indicate 

surface folds and flexures. The color bar indicates high-value highly curved lines in karst 

structures; these curved lines are quite vertical.  

 

Figure 23. Fault attribute merged into the horizon of interface between the Barnett Shale and 

Ellenburger Group. 
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These results compare well to coherency attributes. Some low-value results are 

similar to curvature attributes, which delineate folds and flexures. It is, therefore, possible 

to separate different curvatures of surfaces and similarities using the fault attribute 

method, which cannot be found using coherency attribute or curvature attribute 

approaches. 

3.2 Spectral	Methods	in	Structure	and	Lithology	Detection	

Spectral decomposition is a good way to show how lithologies change with 

different frequencies. By transforming a seismic dataset from a time domain into a 

frequency domain using spectral decomposition, structural and stratigraphic delineation, 

such as channel sands and structural settings involving complex fault systems, can be 

better indicated. The amplitude spectra show temporal bed thickness variability, while the 

phase spectra delineate lateral geologic discontinuities. Spectral decomposition of a 

reflection seismogram was introduced as a seismic interpretation technique by Partyka et 

al. (1999). They noted that phase at specific frequencies resulted in particularly clear 

fault images on time slices. They also recognized that seismic frequency spectra using 

short windows were greatly affected by local reflectivity spectra, and, thus, carried 

information about layer characteristics. They further showed that simple layers of certain 

thicknesses exhibit notched spectra and that the pattern of frequencies at which these 

notches occur sometimes can be used to infer layer thickness. They finally observed that, 

for this reason, seismic images at different frequencies preferentially illuminate, or 
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respond to, geological variations differently. Spectral time-frequency analysis has since 

become an important practical seismic interpretation tool that has widespread use. 

Chakraborty and Okaya (1995) introduced the short-time Fourier transform (STFT) in 

earlier spectral decomposition work. This method is equivalent to the crosscorrelation of 

a seismic trace with a sinusoidal basis over a moving time window. They also developed 

the continuous wavelet transform (CWT) approach, which is the crosscorrelation of the 

seismic trace against a wavelet dictionary. Finally, they developed the matching pursuit 

decomposition (MPD) technique, which is the decomposition of the seismic trace into 

basis atoms. In addition, Puryear et al. (2012) demonstrated the application of 

constrained least squares spectral decomposition, which is an inversion-based algorithm 

for computing the time frequency analysis, formulated and applied to modeled seismic 

waveforms and real seismic data. In our study, we mainly compare Discrete Fourier 

Transform (DFT), CWT, and CLSSA in structure lithology detection.  

DFT is the mathematical basis of the Fourier transform used in spectral 

decomposition. This method, however, has limited vertical resolution because the 

seismogram must be windowed. The spectral energy is distributed in time over the length 

of the window, thereby limiting resolution (Castagna et al., 2003). The Fourier transform 

projects infinite sinusoidal bases on the signal and is thus the LMSE solution for the 

Fourier series coefficients: 

ሺ݂ሻܩ																																										 ൌ න ݃ሺݐሻ݁ି௜ఠ௧݀ݐ

ାஶ

ିஶ

																																																ሺ17ሻ, 
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where ݐ is time, f is frequency, ߱ is 2݂ߨ, ݃ሺݐሻ is the continuous time signal, and ܩሺ݂ሻ is 

the continuous complex spectrum. The DFT is a modification of the Fourier transform for 

application to discrete signals. In computing the DFT, the sinusoidal basis functions are 

only orthogonal when their periods are integer fractions of the period of the lowest non-

zero frequency. The DFT is defined as follows: 

ሺ݇∆݂ሻܩ																												 ൌ ∑ ݃ሺ݊∆ݐሻ݁ି
మഏ೔
ಿ
௞∆௙௡∆௧ேିଵ

௡ୀ଴ 			 , ݇ ൌ 0,… ,ܰ െ 1,											ሺ18ሻ, 

where N is the number of samples, n is the time sample index, ∆ݐ is the time increment, k 

is the frequency sample index, ∆݂ is the frequency increment, ݃ሺ݊∆ݐሻ is the discretely-

sampled time signal, and ܩሺ݇∆݂ሻ is the discretely-sampled complex spectrum. The STFT 

is the DFT applied as a function of time using a sliding time window, which is usually 

tapered to have a desired transfer function. This amounts to cross-correlation of the 

orthogonal sinusoidal basis functions with a windowed segment of the signal. The time-

time panel݃ఠ is first derived from the windowed signal and expressed as a function of 

window center and window sample: 

																												݃ఠሺ݊∆ݐ∆݉,ݐሻ ൌ ሻ݃൫ሺ݊ݐ∆ሺ݉ݓ ൅݉ሻ∆ݐ൯																																	ሺ19ሻ, 

݊ ൌ 0,… , ܰ െ 1	ܽ݊݀	݉ ൌ െ
ܯ െ 1
2

,… , ሺܯ െ 1ሻ/2 

where n is analysis time sample (center of the window), m is the window sample index, 

M is the number of samples in the window, ݓሺ݉∆ݐሻ is the window function (usually 

tapered towards zero at the endpoints in order to minimize the Gibbs Effect), and 
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݃ఠሺ݊∆ݐ∆݉,ݐሻ is the windowed time-time panel as a function of window position and 

window sample. Second, the forward STFT is defined as the DFT of a time-time panel 

over the dimension of the window sample model. This results in a time-frequency panel: 

,ݐ∆ሺ݊ܩ															 ݇∆݂ሻ ൌ ∑ ݃ఠሺ݊∆ݐ∆݉,ݐሻ݁
ି
మഏ೔
ಾ
௞∆௙௠∆௧ሺெିଵሻ/ଶ

௠ୀିሺெିଵሻ/ଶ 																				ሺ20ሻ. 

 The CWT technique applies a narrow-band filter to the signal in the time domain 

using a stretched version of a mother wavelet; it decomposes the seismic data into octave 

or sub-octave scales of the original data. For seismic applications, the semi-orthogonal 

Morlet wavelet is commonly preferred. The forward CWT for a real wavelet dictionary is 

as follows: 

																																ܹሺܽ, ܾሻ ൌ
ଵ

√௔
߰׬ ቀ

௧ି௕

௔
ቁ  ,ሺ21ሻ																																																			ݐሻ݀ݐሺݏ

where ܽ		a scaling parameter; b is a translation parameter, ߰ is the mother wavelet, ݏሺݐሻ 

is the signal, and ܹሺܽ, ܾሻ is the CWT scale decomposition. 

Puryear et al. (2012) introduced this new method of spectral decomposition. They 

inverted the normal equations by applying an iteratively re-weighted least squares 

regularization algorithm to the complex spectral decomposition inverse problem using a 

minimum support functional, as defined by Last and Kubik (1983) and Portniaguine and 

Zhdanov (1998). The detailed algorithm was described by Puryear et al. (2012).  They 

introduced diagonal matrices ௠ܹ and	 ௗܹ, which are model and data weights. The initial 

model weighting matrix on the first iteration is: 
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                                                    ௠ܹ ൌ  .(22)                                                       												ܫ

ௗܹ		remains constant throughout the iterations. For a Hann taper, we use: 

           ௗܹ ൌ ݃ܽ݅ܦ ቀ0.5 ൅ cos ቀ
ଶగ௡∆௧

௟
ቁቁ  .              (23)																									ሺ݀଴ሻݏܾܽ

The weighted quantities are: 

                                           			݉௪ ൌ ௠ܹ		ିଵ݉																																                            (24). 

In order to solve this equation, they applied Tilhonov regularization (Tikhonov and 

Arsenin, 1977) and replaced it with a well-posed minimization problem (Portniaguine 

and Zhdanov, 1998). The model parameters are reconstructed using the following 

formula: 

                                             ݉ ൌ ௠ܹ݉௪																																							                         (25). 

If more compact spectra are desired, as would be the case for known sparse spectra, or 

simply to sharpen frequency peaks for attribute analysis, additional iterations can be 

performed. The model weights are updated by applying the following: 

              ௠ܹ ൌ  .ሺ26ሻ																																																									ሺ݉ሻ൯ݏ൫ܾܽ݃ܽ݅ܦ

 Puryear et al. (2012) proposed that the CLSSA approach has better temporal and 

frequency resolution than either the CWT or DFT methods. They applied CLSSA to a 

seismic data set containing a turbidite channel system. We applied these methods to the 

Barnett Shale data set and compared the use of CLSSA, CWT, and DFT to detect faults.  
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  The Barnett Shale 3D data set covers approximately 228 square kilometers. The 

vibroseis source is a non-linear 6-120 Hz sweep. The dominant frequency of the 3D data 

set is about 45 Hz (Figure 24).  The trace in the figure is located at xline 738, inline 565; 

the frequency range is about 10-100 Hz.  

After applying this trace to spectral decomposition methods, we can display the results in 

time-frequency panels. Figure 25 shows a time-frequency panel with DFT, CWT, and 

CLSSA methods. The Hann-windowed CLSSA result used a 40 ms window. In map a), 

the time-frequency panel is correlated with the trace; the y-label is time, which is same as 

the trace; x-label is frequency range. In map b), the first panel is the DFT result, and the 

second is the CWT result; the red color means high-spectral amplitude. Comparing map a) 

and b), we observe that the CLSSA amplitude in the frequency range is much narrower 

than the DFT amplitude. We propose that this result was obtained because DFT is based 

on the Fourier theory, which is more affected by windows. CLSSA, however, is an 

inverse-based method; it has reduced the influence of windows. We will show more cases 

about windows effects and side-lobe effects in the late work. Using Figure 25, we 

conclude that spectral amplitude, which is caused by different reflection coefficients, can 

be highlighted in different frequency domains, indicated by the yellow dashed line and 

green arrows in map a). Spectral decomposition can be used to detect different interfaces 

caused by lithology changes in different frequency results. 
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Figure 24. The trace at xline 738, inline 565, and its spectrum. 

 We then applied these methods to all 3D data set images that suggested the 

presence of many faults. In the original data map view, some large faults can be directly 

observed, but the data must be well-processed before interpretation. In Figure 26, three 

faults can be found in a seismic section view; the time range of depth is about 550 ms to 

980 ms. In the map at left, a chimney caused by faults appears; however, it is not possible 

to distinguish these faults using the original seismic data. Figure 27 shows the amplitude 

and phase spectrum of the CLSSA results. Map a) shows the 40 Hz amplitude (upper) 

and phase spectrum (lower) of the CLSSA result, using a 20 ms Hann-window; map b) 

shows the 25 Hz amplitude (upper) and phase spectrum (lower) of the CLSSA result, 

using a 20 ms Hann-window. The red color in the amplitude figure indicates the highest 

spectral amplitude that correlates with the high-reflection coefficient interface between 

the Marble Falls Limestone and Barnett Shale. In reviewing both 40 Hz and 25 Hz results, 

two more faults, indicated by white arrows, appear using the amplitude and phase 
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spectrum. These did not appear on the original seismic data. These improvements can be 

also seen using the DFT results, obtained using a 20 ms Hann-window. Map a) shows the 

25 Hz amplitude (upper) and phase spectrum (lower) of the DFT result; map b) shows the 

40 Hz amplitude (upper) and phase spectrum (lower) of the DFT result.  

 

Figure 25. Time frequency panels: a) CLSSA result, calculated by a 20 ms Hann-window; b) 

DFT and CWT results; the DFT result was calculated by a 20 ms Hann-window. 
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Figure 26. Section view of original data showing three faults trends. 

 

Figure 27. CLSSA result using 20 ms Hann-window: a) 40 Hz amplitude (upper) and phase 

spectrum (lower); b) 25 Hz amplitude (upper) and phase spectrum (lower). 

We observe that spectral decomposition can highlight more discontinuities than 

the original seismic data. From both the CLSSA and DFT results, we can also observe 

that the top Marble Falls Group is more continuous than the top Ellenburger Group, 

which is also not evident in the original data. These discontinuities are caused by 

diagenesis in the Ellenburger Group, and produce an unconformity: extensive cave 

systems formed at a composite unconformity, which was associated with karsting 
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dissolution that lasted several million years to several tens of million years (Loucks et al., 

2007).  

 

 

Figure 28. DFT result using 20 ms Hann-window: a) 25 Hz amplitude (upper) and phase 

spectrum (lower); b) 40 Hz amplitude (upper) and phase spectrum (lower).  

 Comparing the section views of CLSSA and DFT in the same window, CLSSA 

results show better resolution for fault detection, as indicated by the white arrows in 

Figure 27 and Figure 28. Events are much narrower in the CLSSA results because the 

CLSSA method reduces the effects of window side-lobes. Using this advantage, spectral 

decomposition methods can also divide different layers that cannot be separated in the 

original seismic data (Figure 29). In a time slice view, the CLSSA technique is effective 

at detecting discontinuity features like fault attributes and other seismic attributes.  
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Figure 29. Comparing original data, DFT, and CLSSA results: a) original seismic amplitude data; 

b) DFT amplitude spectrum using 40ms Hann-window; and, c) CLSSA amplitude spectrum using 

40ms Hann-window. 

As compared to DFT and CWT techniques, CLSSA shows better resolution of 

discontinuities in a time slice view (Figure 30). In addition, as compared to other seismic 

attributes, the isofrequency results of spectral analysis reveal lithology changes, which  

correspond to the reflection coefficient contrast in the seismic data (Figure 31). As 

Castagna et al. (2003) suggested, spectral decomposition results should follow criteria: 

distinct seismic events should appear as distinct events under time-frequency analysis. In 

other words, the vertical resolution of the time frequency analysis should be comparable 

to a seismogram. The time duration of an event on the time-frequency analysis should not 

differ from the time duration on the seismogram.  
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Figure 30. Time slices at 750ms: a) original seismic data; b) DFT result at 21 Hz using 40ms 

Hann-window; c) CWT at 21 Hz using Morlet-wavelet; and, d) CLSSA at 21 Hz using 40ms 

Hann-window. 

 

Figure 31. Lithology changes: a) coherency attribute based on cross correlation method; b) fault 

attribute; c) 20Hz frequency CLSSA result using 20ms Hann-window; and, d) 40Hz frequency 

CLSSA result using 40ms Hann-window. 
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4. DISCUSSION	

By knowing fault trends and orientation, researchers can find and avoid areas that 

have high rigidity; they may be more fractured in stress effects. The upper Ellenburger 

Group is a water-bearing and highly-fractured formation. It is part of a Lower Ordovician 

carbonate platform sequence that covers a larger area of the United States. Pore networks 

in the Ellenburger Group are complex because of the amount of brecciation and 

fracturing associated with karsting. The karsting and fracturing areas greatly affect 

production from the Barnett Shale because the water could release trapped gas. In Barnett 

Shale production, it is normally necessary to find a Viola-Simpson limestone layer 

between Barnett and Ellenburger Formations so that this layer can prevent water from 

invading from Ellenburger layers into Barnett layers via fractures, faults, and karst. 

Viola-Simpson limestone does not always provide this buffer because the Barnett Shale 

extends over an area of 72500 square kilometers in northeast Texas, located within the 

borders of 17 counties. The CLSSA method is a good spectral analysis technique to 

detect discontinuities in layers. The fault-detection attribute is calculated using the PCA 

of different seismic attributes, such as coherency attribute, most positive curvature 

attribute, variance attribute, smoothed seismic data and isofrequency phase 

discontinuities volume. Most positive curvature attribute has better resolution compared 

with other curvature attributes, while coherency attribute is a very good way to map 

karst-related structures. Phase spectrum is a very good way to detect acoustic impedance 

changes in lateral way has been used, and some small discontinuities can be detected very 

well using specific frequency phase maps. The fault-detection attribute can thus reinforce 
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similar information provided by these attributes and reduce dissimilar information. The 

use of traditional seismic attributes like coherency attribute and curvature attribute are not 

good at separating tectonic faults and karsting faults in the low Barnett Shale and top 

Ellenburger Group. In addition, coherency attribute is not sensitive to faults with a finite 

offset and curvature attribute is not sensitive to folds and flexures without a discontinuity 

(Marfurt, 2006). The use of fault attribute as a discontinuity attribute is based on the 

Barnes (2006) discontinuity-filter method. Its PCA is calculated using different seismic 

attributes like coherency attribute, positive curvature attribute variance attribute and 

specific frequency phase map, so that the fault attribute can increase all similar 

information and reduce dissimilar information. The spectral decomposition method is 

also effectively applied to geological interpretation and reservoir characterization 

(Partyka et al., 1999). CLSSA is a better spectral method than the STFT approach 

because it reduces classical spectral smoothing. Spectral analysis can also highlight 

stratigraphic characterization.  
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5. CONCLUSION	

  In our study, we introduced two unconventional methods for fault detection. Fault 

attribute used as a dissimilar attribute or discontinuous attribute can easily show small 

discontinuities or small faults (both karsting-related and tectonic-related) in the Barnett 

Shale area. Principal Component Analysis (PCA) has been found to be an effective way 

of combining a variety of fault-detection attributes exhibiting discontinuities that line up 

along particular 3D orientations. A discontinuity-filter method can be used to further 

enhance these results. Fault detection is improved using phase discontinuities obtained 

using a Constrained Least Squares Spectral Analysis (CLSSA) technique, which yields a 

higher resolution spectral analysis than the short-time Fourier transform (STFT) approach.  

As CLSSA has reduced spectral smoothing relative to the STFT, it can potentially 

produce a higher-resolution discontinuity attribute. Based on this feature, CLSSA may be 

applied in the Barnett Shale to detect faults. Spectral decomposition is a good method for 

detecting faults that are not evident in seismic amplitude data; this method also shows 

discontinuities which have a finite offset that are not detected in normal amplitude maps. 

We compared seismic attributes like coherency attribute, most positive curvature, 

variance attribute and isofrequency phase maps with the fault-detection attribute. We 

found that the fault-detection attribute has the best resolution and highest signal to noise 

ratio. We observe that the fault-detection attribute is a useful attribute in detecting small 

faults or discontinuities. As compared to coherence and curvature attributes, our PCA 

fault-attribute also better resolves minor tectonic and karsting-related faults.  
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