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ABSTRACT

Cardiac diseases are major causes of global mortality which are a consistent threat to the lives of

people. With the development of left ventricle segmentation, the real-time MRI-based control of

a ferromagnetic application for endovascular navigation with data sensing and feedback in cardiac

was applied in recent years. In this work, we first propose three novel deep learning architectures

called BNU-net, LNU-net, and IBU-net for left ventricle segmentation from short-axis cine MRI

images. BNU-net is the batch normalized (BN) U-net, LNU-net is the layer normalized (LN)

U-net, and IBU-net is the instance-batch normalized (IB) U-net. The architectures of BNU-net,

LNU-net, and IBU-net have an encoding path for feature extraction and a decoding path that

enables precise localization. BNU-net, LNU-net, and IBU-net have left ventricle segmentation

methods: BNU-net employs batch normalization to the results of each convolutional layer, LNU-

net applies layer normalization in each convolutional block, while IBU-net incorporates instance

and batch normalization together in the first convolutional block. Our method incorporates affine

transformations and elastic deformations for image data processing. Our dataset that contains 805

MRI images regarding the left ventricle from 45 patients is used for evaluation. The experimental

results reveal that our approach accomplishes comparable or better performance than other state-

of-the-art approaches in terms of the dice coefficient and the average perpendicular distance.

We then simulate a computational platform for preoperative planning and modeling of MRI-

powered applicators inside blood vessels. This platform was implemented as a two-way data and

command pipeline that links the MRI scanner, the computational core, and the operator. The

platform first processes multi-slice MR data to extract the vascular bed and then fits a virtual

corridor inside the vessel. This corridor serves as a virtual fixture (VF), a forbidden region for the

applicators to avoid vessel perforation or collision. The geometric features of the vessel centerline,

the VF, and MRI safety compliance (dB/dt, max available gradient) are then used to generate

magnetic field gradient waveforms. Different blood flow profiles can be user-selected, and those

parameters are used for modeling the applicator’s maneuvering.
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1 Introduction

Left ventricle (LV) segmentation is critical for clinical quantification and diagnosis of cardiac images.

Motivated by the development of automated cardiac segmentation methods, we decided to derive

the machine learning background for using normalization techniques in deep learning networks.

Cardiac segmentation is important to the facilitation of diagnostic processes. With this in mind,

we used different networks and compared them with ours to see which performs best. Ultimately,

we found that our network solutions were better than those of other networks. The advent of

real-time image guidance provides new opportunities in the field of interventional medicine [9]. We

want to combine such magnetic actuation with a proper imaging modality, allowing for the tracking

of MRbot in the body and opening the possibility for closed-loop servo control along pre-planned

trajectories. So in our work, we used a method which is called magnetic resonance targeting (MRT),

which has been demonstrated in vivo.

In this chapter, we present the previous and current work about segmentation, generative

adversarial networks, and maneuvering ferromagnetic applicators. We also present the motivation

for our work, showing the benefits and challenges of ventricle segmentation from short-axis MRI

and interventional procedures in the human body. Finally, we describe all the proposed techniques

for cardiac segmentation based on deep learning, intravascular interventions based on robot-assisted

technologies, and the structure of this dissertation.

1.1 Previous and Current Work

In this research, we will focus on machine learning techniques in recent advances, especially on

some difficult medical image segmentation tasks, including CNN-based segmentation and cardiac

segmentation.

1.1.1 Cardiac Segmentation

In recent years, deep learning has become the most widely used approach for cardiac image seg-

mentation. Because of the complexity of medical images, the noise of the images, and the high
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variability of images, there has been quite a lot of research focusing on the field of medical images

with numerous solutions published in recent years. It is complicated to segment the medical images,

even for specialists.

Poudel et al. [1] presented a recurrent fully convolutional neural network for MRI cardiac image

segmentation. This network leans image representations from the full stack of 2D slices and can

leverage inter-slice spatial dependences through internal memory units. The network combined

anatomical detection and segmentation into a single architecture. This approach showed how to

reduce computational time, simplify the segmentation pipeline, and potentially enable real-time

applications. They trained the network using two datasets, including the MICCAI 2009 challenge

dataset. The results showed the network produced state-of-the-art results and could significantly

improve the delineation of contours near the apex of the heart.

Tran [2] proposed a deep fully convolutional neural network architecture. His model is the first

application of a fully convolutional neural network architecture for pixel-wise labeling in cardiac

magnetic resonance imaging. The model is trained in a single learning stage from whole-image in-

puts and grounds truth to make an influence at every pixel. Based on multiple evaluation measures,

the experimental results showed that the model is robust to outperform previous fully automated

methods.

Ngo et al. [3] proposed a new semi-automated method that was processed with the combination

of level set methods and deep belief networks. They presented a top-down segmentation method

with the knowledge automatically learned from a manually annotated database. The use of deep

belief networks could learn robust models with few annotated images. This approach showed the

advantages of the network, which used several a priori facts about the object to be segmented (e.g.,

smooth contour, strong edges, etc.).

Queirós et al. [4] proposed a novel automatic 3D+ time left ventricle segmentation framework.

The framework consists of three conceptual blocks to delineate both epicardial and endo contours

through the cardiac cycle : (a) an automatic stack initialization followed by a 3D segmentation

at the end-diastolic phase; (b) an automatic 2D mid-ventricular initialization and segmentation;
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and (c) a tracking procedure. The experimental results showed the robustness, efficiency, and

competitiveness of the proposed method both in terms of accuracy and computational load.

Hu et al. [5] proposed a novel and robust model which could improve the accuracy of automatic

left ventricle segmentation on short-axis cardiac. They presented three techniques when using this

segmentation algorithm: (a) for left ventricular outflow tract, they used a ray scanning approach;

(b) a region-restricted technique was employed for epicardial contour extraction; and (c) in order

to improve the dynamic programming to derive the epicardial boundary, an edge map with non-

maxima gradient suppression approach was used. They used three training datasets obtained from

the Sunnybrook Health Sciences Centre. The segmentation model showed better performance and

improved accuracy than other state-of-the-art models.

Huang et al. [6] proposed a comprehensive approach to automatically segment the left ventricle

from short-axis cine cardiac MR images. The authors stated that accuracy and automation are the

two important criteria in improving cardiac image segmentation. They introduced edge detection,

thresholding, image filtering, and mathematical morphology to do image processing. The authors

stated that cardiac MR images achieved high accuracy after using these image analysis techniques.

A fully automatic left ventricle segmentation from 4D cardiac MR was proposed by Margeta et

al. [7] as a machine learning approach using two layers of spatio-temporal decision forests. They

also presented a method for context-aware MR intensity standardization and image alignment,

supporting the idea of using the 4D cardiac MR to segment the images.

Liu et al. [8] proposed three key techniques to segment the left ventricle in short-axis cardiac

MRI. (a) they presented a topological stable-state thresholding method to refine the endocardial

contour; (b) an edge map with a non-maxima gradient suppression approach; and (c) in order to

derive the epicardial boundary, a region-restricted technique was proposed and improved dynamic

programming. They stated that this novel segmentation approach got better performance and had

great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular

diseases.

Zhao et al. [63] proposed a novel mathematical morphological edge detection algorithm. They

3



stated that it is not good to detect medical image edge-based based on gradient algorithm and

template algorithm, while medical images have noises. This research showed that the algorithm is

more efficient for medical image denoising and edge detection than other algorithms.

Çığla et al. [64] proposed a graph theoretic color image segmentation algorithm. They stated

that the image is represented by a weighted undirected graph, whose nodes correspond to over-

segmented regions, which decreases the complexity of the algorithm. The irregular distribution of

nodes could cause a bias towards combing regions with a high number of links. For each node, this

bias is removed by limiting the links. These novel ideas performed faster than the traditional cut

methods and got better segmentation results.

Xu et al. [65] proposed a threshold-based segmentation method. In their approach, the original

image was pre-processed to enhance the image edge and filter noise. They used the threshold

segmentation method to control the diffusion coefficient of the curve in the threshold set and used

the improved fast marching method (FMM) to segment the image. This research showed that the

threshold-based approach can outperform the traditional segmentation algorithms under certain

conditions.

1.1.2 Image Segmentation

Image segmentation is one of the most fundamental problems in image understanding and has been

used in many areas, such as computer vision, medical imaging, and object detective. In general,

image segmentation is the process of partitioning a digital image into multiple meaningful regions.

Voxels (or pixels) in each segment should have some common signal characteristics. For example,

the intensity of color consistency to show that same object of interest or same category that they

belong to. There are different interpretations of image segmentation when it comes to specific

application areas. For example, machine vision is often considered to be composed of two steps

which are low-level vision and high-level vision [81]. Change detection based on remote sensing

data is a prerequisite step that is used in detecting changes on the earth’s surface and global

environmental change [82]. In medical areas, automatic segmentation of medical images has played
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a vital role in detecting diseases in patients’ early stages. For example, in cardiac MRI analysis, the

goal of image segmentation is to visualize, measure, and analyze the specific anatomical structure

of the cardiac. The boundary between the organs and regions of interest (ROI) is often unclear

[83]. It is easy for doctors to analyze the images accurately after the ROIs are segmented out.

Lankton et al. [84] proposed a model that allows any region-based segmentation energy to be

re-formulated locally. The framework used local image statistics and evolve a contour based on local

information. They applied a local region-based energy function rather than a global region-based

energy function. Because using a standard global method was difficult to capture the objectives

features, the framework localized the contours. It obtain accurate segmentation results based on

choosing a good localization scale for images.

Tan et al. [85] proposed an approach called histogram thresholding fuzzy c-means hybrid

(HTFCM) that could obtain a different application in computer vision and pattern recognition.

This method was applied the histogram thresholding technique to get all possible uniform regions in

the color images. Then the Fuzzy C-means (FCM) algorithm is applied to improve the compactness

of the clusters forming these uniform regions. The experimental studies showed that the HTFCM

approach could achieve better segmentation results and better cluster quality compared with other

segmentation approaches.

Dollar et al. [86] presented a supervised learning algorithm for edge and object boundary

detection. Edge detection is one of the most challenging tasks in computer vision. It is difficult

since the decision for an edge can not be decided by low-level cues. The novel algorithm used

all of the information, which are low, middle, and high, to choose where to put edges. This

research proposed a novel supervised learning algorithm for edge and object boundary detection,

which is called Boosted Edge Learning (BEL). In an image, a decision of an edge point is made

independently at each location. This model can extract the discriminative category features across

different scales. The algorithm was tested on various datasets including the Berkeley dataset and

the results obtained are very good.
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Nguyen et al. [87] proposed an interactive framework based on the developed continuous-

domain convex active contour model. This model showed robustness to user inputs and different

initializations. The algorithm produced an accurate and smooth boundary contour with simple user

inputs and handle topology changes. The experimental results outperformed the state-of-the-art

image segmentation algorithms.

Ju et al. [88] proposed an image segmentation algorithm based on adaptive edge detection and

an improved mean shift. Mean-shift is a nonparametric clustering method based on kernel density

estimation for feature space analysis. An improved fast mean shift algorithm was proposed in this

research. According to the method, detecting an edge was a fundamental step for most computer

vision applications such as MRI feature extraction and an adaptive threshold algorithm was applied

in edge detection. This research used the concept of scaling factor to represent the expansion degree

of the enlarged mean-shift vector. The experimental results got better performance compared with

several state-of-the-art algorithms.

Cour et al. [89] proposed a multiscale image segmentation algorithm in parallel, without it-

eration, to capture both coarse and fine level details. This algorithm is computationally efficient,

allowing to segment of large images. The segmentation algorithm works across the gross scales

simultaneously and can capture image structure at increasing large neighborhoods.

Wang et al. [90] proposed an image segmentation method that considered the local image

information by describing it as a novel local signed difference (LSD) energy, which possessed both

local separability and global consistency. The LSD energy term is integrated into an objective

energy functional, which is minimized via a level set evolution process. The experiment results

showed that the proposed method improved the accuracy and efficiency compared with the state-

of-the-art approaches.

Comaniciu et al. [91] proposed a mean shift method, which is a nonparametric technique for the

analysis of complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The

core computational module of this method was an old pattern recognition procedure, which is called

the mean shift. Experimental results illustrated the excellent performance in image segmentation.
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Melkemi et al. [92] presented a distributed image segmentation algorithm structure composed of

a set of segmentation agents and a coordinator agent. To get a sub-optional segmented image, every

segmentation agent performed the iterated conditional modes methods. This method increased the

accuracy and efficiency of the segmentation results but has high time complexity.

Arbelaez et al. [93] proposed a novel design for region-based object detectors that integrated

efficiently top-down information from scanning-windows part modules and global appearance cues.

His research focused on challenging articulated categories such as humans and other animals, and

their detectors produce a class-specific score for bottom-up regions. He evaluated the approach on

the PASCAL segmentation challenge and achieved good performance.

Chen et al. [94] proposed a model which was called artificial co-evolving tribes and applied it

to solve the image segmentation problem. During the process, the individuals who made up the

tribes affect communication cooperatively from one agent to the other to increase the homogeneity

of the ensemble of the image regions.

Arbelaez et al. [95] proposed state-of-the-art algorithms to solve contour detection and im-

age segmentation problems. Their segmentation algorithm consists of transforming the output of

any contour detector into a hierarchical region tree. It can help to reduce the problem of image

segmentation to that of contour detection. The experimental studies showed that their contour

detection and segmentation methods outperform other research groups’ algorithms. The automatic

segmentation methods can be refined by user-specific annotations.

Huang et al. [96] proposed a novel segmentation algorithm based on artificial ant colonies (AC).

It showed that the self-organization of ants was similar to neurons in the human cardiac in many

respects. In this model, each ant could memorize a reference object, which would be refreshed when

it found a new target. The behavior of an ant was affected by the neighbors and the cooperation

between ants was performed by exchanging information through pheromone updating. It is similar

to neurons in the human cardiac. They presented an extended model for image segmentation.

In their model, each ant could memorize a reference object, which would be refreshed when it

found a new target. To evaluate the similarity between the reference object and the target, a
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fuzzy connectedness measure was used. The experimental results showed that the new algorithm

is insensitive to noise and can preserve the detail of the object.

Han et al. [97] proposed a fuzzy ant colony algorithm (ACA). The algorithm was inspired by the

food-searching behavior of ants. In this research, image segmentation was used by fuzzy clustering.

There are three features, which are gray value, gradient, and neighborhood of the pixels, that are

extracted for the searching and clustering process. The algorithm has improved on enhancing the

heuristic function to accelerate the searching process.

In the past few years, deep learning models that utilized different types of deep artificial neural

networks have been successfully used in speech recognition, natural language processing, visual

recognition, image segmentation, image recognition, and image classification. They have achieved

great success in the field of semantic segmentation. The models have been produced good results

for solving many difficult segmentation tasks in medical areas. In this research, we will focus on

developing a new deep learning model to solve left ventricle cardiac segmentation problems.

1.1.3 CNN-based Segmentation

A convolutional neural network (CNN) is a deep learning architecture, in which the connectivity

pattern between its neurons is inspired by the organization of the animal’s visual cortex. CNN

has excellent feature extraction and was a particular kind of feedforward neural network. In 1989,

LeCun [103] originally proposed a CNN model which was called LeNet-5. See Figure 1.
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Figure 1: Convolutional neural network for image processing, eg., handwriting recognition [104].

This model was used for the recognition of handwritten digits and improved in [152]. See Figure

2.

Figure 2: Architecture of LeNet-5 : a convolutional neural network, here for digits recognition

[152].

Compared with other networks, LeNet-5 network has a multi-layer artificial neural network and

can be trained with the backpropagation algorithm [105]. LeNet-5 is the first successful application

of CNNs and was the first work to show the practical need for an improvement of conventional neural

networks. LeNet-5 applies convolution operations and replaces matrix multiplications in certain

layers. The network uses convolution operations to extract local features and combines them to get

precise localization. When creating and training a neural network, there are several steps that we

can follow. (a) choose data set (training/validation/testing); (b) specify the objective function to
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use; (c) determine an optimization procedure to train the model. For example, the mages contain

objects of interest to be segmented in the input and the output of the model is the predicted

segmentation probability map. In order to train the model, stochastic gradient descent (SGD) is

used as the optimizer to update the weights of the model. It is common to use cross-entropy as an

objective function that is defined on the ground truth and output results.

The CNN architecture includes several building blocks, such as the input layer, output layer, and

hidden layers. Each hidden layer is made up of a specific operation, such as pooling, convolution,

and activation. The input image is sent to the input layer and the number of neurons in this

layer is the pixel of the input image. Most recently, CNN has been applied to advance the state-

of-the-art successfully on various domains, including segmentation tasks, object detection, image

classification, and image computing.

A convolutional layer is a fundamental component of the CNN architecture, which is composed of

a stack of mathematical operations. It receives the input data and performs feature extraction. The

pooling layer behind the convolutional layer selects the feature maps, simplifying the computational

complexity of the entire network. It provides a down-sampling operation that reduces the in-

plane dimensionality of the maps, precise segmentation for margin detection, and this is especially

important for clinical applications. Its aims to estimate the object of interest in an image. With

the large increase in the proposed network structure, deep learning-based approaches have been

improved to obtain good dice scores and accurate results in medical image segmentation. The

major medical image understanding tasks are object localization, which used CNNs for cardiac

segmentation. CNN shows good performance in image detection and segmentation with feature

extraction and feature capabilities.

Many research groups [24][77][78][100][101] have proposed new methods to overcome the diffi-

culties encountered in the training CNNs since 2006.

Krizhevsky et al. [24] trained a large, deep convolutional neural network to classify the 1.2

million high-resolution images and won the ILSVRC-2012 computer vision competition. In order

to make training fast, the authors used non-saturating neurons and proposed a high-optimized
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GPU implementation of 2D convolution. They used the dropout regularization method to reduce

overfitting in the fully-connected layers. Their results showed that a large, deep convolutional

neural network is capable of achieving good results.

Ciresan et al. [78] proposed a deep and simple neural network that is used on handwritten digit

recognition. They used back-propagation for plain multi-layer perceptrons which got a very low

error rate on the MNIST handwritten digits benchmark.

Ren et al. [100] proposed real-time object detection with region proposal networks (RPN). In

this work, they introduced a region proposal network that shares full-image convolutional features

with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully

convolutional network that is to generate high-quality region proposals. The experimental studies

revealed that their architecture achieved state-of-the-art object detection accuracy.

Andrej et al. [101] proposed a model that generated natural language descriptions of images

and their regions. They combined bidirectional recurrent neural networks over sentences, CNN

over image regions, and a structured objective that aligns the two modalities through a multimodal

embedding. The multimodal recurrent neural network architecture applied the inferred alignments

to learn to generate novel descriptions of image regions. The results showed that the model achieved

state-of-the-art accuracy on three datasets.

Ciresan et al. [106] proposed a special type of deep artificial neural network as a pixel classifier.

Each pixel is classified by using the trained neural network on a patch surrounding the pixel. The

image in the window is segmented in a sliding window fashion.

Brebisson et al. [107] proposed automatically segmentation magnetic resonance (MR) images

of the human cardiac into anatomical regions. This method presented a 2D/3D input image and

applied a multi-scale schema to enforce the spatial consistency of the 3D whole cardiac MRI seg-

mentation.

Training CNN-based segmentation is one of the most difficult problems in deep learning. Many

solutions and strategies are proposed to ease the training of CNN. Several optimization methods

are used for CNN, such as optimization and transfer learning.
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Optimization A feedforward neural network is an artificial neural network, which is to approx-

imate some function so that with a certain kind of input the network could generate the expected

output. Because the function evaluates the information flow through the intermediate computa-

tions and finally to the output, we called it feedforward. There are no feedback connections in

which outputs of the model are fed back into itself. Thus, gradient descent is used to optimize

nearly all deep learning problems through propagating the gradient to update the parameters of

each layer from the output layer to the input layer. They are called back-propagation, an iterative

optimization procedure.

Traditionally, in machine learning networks, large training data sets improve the recognition

ability, but also increase the computational complexity. Different from optimization for traditional

algorithms that use all the training examples simultaneously in a large batch, deep learning models

use a mini-batch optimization strategy. On each iteration, the mini-batch optimization strategy

updates to the parameters based on an expected value of the cost function. They are called mini-

batch stochastic gradient descent (SGD). There are two reasons to use a smaller batch size: (a)

make it easier to fit one batch worth of training data in memory and (b) offer a regularizing

effect and lower generalization error. Gradient descent has been regarded as slow. In a deep

learning network, it is very important to improve the speed of the training process without hurting

convergence for SGD. Generally, it is no guarantee to have a fast and effective convergence when

using plain vanilla SGD. Firstly, the learning rate was set the same for all dimensions without

considering each distribution to the overall cost in different ways. Secondly, it is difficult to choose

an appropriate learning rate. A small learning rate leads to slow convergence, while a large learning

rate will cause the loss function to fluctuate around the minimum. Lastly, how to avoid getting

trapped in a local minimum where the gradient is close to zero in all directions. Several solutions

have been developed. For example, using a second-order derivative of the cost function to guide and

speed up the gradient descent. We can set different learning rates for each dimension of parameters.

Several SGD variants [102] were developed in the last couple of years, such as AdaGrad, SGD with

momentum, PMSProp, Adadelta, and Adam.

12



1.1.4 RNN - Recurrent Neural Network

Recurrent neural network (RNNs) [1] are artificial neural network which are specialized for pro-

cessing sequential data x0, x1, x2,..., xn, such as cine MRI and ultrasound image sequences. See

Figure 3.

Figure 3: Recurrent Neural Network for cardiac image segmentation [113].

It takes an input sequence, connects hidden units, and produces an output sequence. The

yellow block with a curved arrow means an RNN module. An RNN can ‘memorize’ and use the

past knowledge information to make a present decision. An RNN takes the first input image, learns

the information to make a prediction, and ‘memorize’ the information which is used to predict the

next image. Several research groups are using RNN to solve natural language processing problems

[110]-[113]. The two widely used methods in RNN are LSTM [115] and gated recurrent unit [116].

1.1.5 Segmentation Based on Combination of CNN and RNN

In the previous two sections, we introduced that both CNN and RNN can be used in image segmen-

tation. There are several steps for a 3D CNN-based segmentation model: (a) treat 3D image volume

as a stack of 2D slices; (b) apply 2D segmentation models on the 2D slices, and (c) combine the

2D segmentation results. There are two drawbacks when using CNN to do 3D image segmentation:

(a) lose the spatial information along the third direction and (b) more samples and parameters are
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needed in 3D convolutional kernels. Because RNN can reserve the temporal-spatial information,

we combine CNN and RNN on 3D medical image segmentation. Several research groups used this

method to combine RNN and CNN together [138][139][140].

1.1.6 GAN - Generative Adversarial Networks

Goodfellow et al. [98] proposed a generative adversarial network (GAN), which is for image syn-

thesis from noise. A GAN is a deep generative model which learns to model the data distribution

of real data. See Figure 4(A). GAN is a class of machine learning framework that consists of a

generator and a discriminator. The generative model is pitted against a discriminator. The two

neural works contest with each other during the training process. The generator takes random

noise and produces fake images, while the discriminator aims to figure out the real images from

the fake images. This procedure is called adversarial training. This network can be used to image

segmentation areas. From Figure 4(B) we can see that the generator is replaced by a segmentation

model, the discriminator tries to distinguish the ground truth from the generated images.
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Figure 4: (A) A generative adversarial network structure. (B) Adversarial training for image

segmentation [113].

1.1.7 Robot-assisted Technologies

Minimally invasive surgery (MIS) encompasses a specialized type of surgical method that allows

surgeons to dramatically reduce patient discomfort and recovery time. Many researchers make

efforts in micro-and nanorobotics, which have evolved to encompass platforms and technologies

aimed at improving interventional procedures in the human body through the use of navigable or

actuated magnetic spheres.

Magnetism is a prioritized choice for moving such micro-scale robots. The ferromagnetic core
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embedded in the micro-device will provide the driving force from an MRI system. It is difficult

to offer minimally invasive surgery, because of continuous cardiac motion. It is based on magnetic

actuation and is known as Magnetic Resonance Navigation (MRN). MRN has drug-loaded micro-

carriers embedded in a magnetic sphere, which moves through the vessel network from the injection

point to the targeted region. The targeting of therapeutics to tumors has a great advantage in

increasing the efficiency of treatments while reducing their secondary toxicity effects [13].

1.2 Motivation

In the United States, cardiovascular disease is the primary cause of death for both males and

females [14]. One of the parameters that cardiologists examine in the diagnosis of heart disease is

the amount of blood ejected by the left ventricle [15]. Physicians use Magnetic Resonance Imaging

(MRI) scans to obtain relevant images of the cardiac areas to assess the structural and functional

features for cardiovascular diagnosis and disease management in a non-invasive manner [15]. The

main indicators of cardiovascular disease are the left ventricle (LV) end-systolic volume (ESV),

the end-diastolic volume (EDV), and the ejection fraction (EF) [16]. The segmented contour of

the left ventricle has been crucial in determining ESV and EDV. Therefore, coherent and precise

segmentation of the LV from MRI images is critical to the precision of identification of ESV, EDV,

and EF, which is crucial to determine cardiac disease in a non-invasive manner.

Using the magnetic field gradients of the MR scanner to propel a ferromagnetic sphere in small

vessels such as capillaries for delivery of therapeutics is rapidly evolving due to cost-effectiveness and

patient management. Therefore, our goal is to simulate MRI-guided and powered ferric applicators

for tetherless delivery of therapeutic interventions. Our studies have shown that it is feasible to

design an MRbot with propulsion forces considering the characteristics of the human cardiovascular

system. This tracking technique is integrated into propulsion and a PID controller successfully,

which allows real-time automatic navigational control of an MRbot in the blood vessels.
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1.2.1 Challenges

Some challenges in the automatic left ventricle segmentation must be solved before it can be ac-

cepted in a clinical setting. Firstly, for cardiovascular disease, it takes physicians several minutes

to diagnose a patient’s condition and the obtained results are not easily reproducible [17]. So, this

work is a tedious and long task, with intra- and inter-observer variability, and poor reproducibility.

Secondly, it is not easy to segment the left ventricle because of weak edge information. Thirdly, the

sharpest boundary between the blood pool and myocardium is not necessarily the endocardium.

Fourthly, during the cardiac cycle between systolic and diastolic phases, the shape of the left ven-

tricle varies significantly. Lastly, there is the overlap of the surrounding background regions and

the intensity distributions of cardiac structures. In recent years, the development of automated

cardiac segmentation methods based on magnetic resonance imaging datasets is a crucial step to

facilitate this cumbersome diagnosis process [18]. Using an improved automatic process to de-

termine heart parameters and function can lead to a quicker, coherent diagnosis and generate a

repeatable diagnostic process. While research over the past decade has addressed some of the above-

mentioned technical difficulties in achieving tangible progress on automatically generated ventricle

segmentation from short-axis MRI, the corresponding automated segmentation contours still have

to be significantly improved for clinical use [17]. In addition, assessment of prior studies on small

benchmark datasets, which may not reflect real-world variability in image resolution and heart

physiological and functional features across locations, institutions, and populations, are restricted

in scope [19]. We demonstrated an enhanced technique for automatic left ventricle segmentation

in MRI pictures.

MRI images of cardiac diseases are an important reference for the diagnosis of heart diseases.

Manual segmentation of MRI images requires plenty of time and the additional expenses of em-

ploying experts, which could be a valuable resource for more patients. In addition, this form of

segmentation’s accuracy cannot be fully guaranteed. With the development of computational units,

neural network scans can be applied in almost every aspect of our daily life. Medical care is also

an important application, especially for image classification, image segmentation, and objective
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detection. It is believed that image processing is more efficient and accurate with the help of neural

networks.

For the ferric sphere, one of the key elements to consider when analyzing the use of intra-

operative guidance is to fit a virtual corridor inside the vessel. We use the vessel centerline data

extracted from the 3D vascular model produced by 3D angiography images. In the present work,

we use MRI to generate a safe zone, which is called a safe corridor, in real-time inside the cardiac.

1.3 Contributions

For the left ventricle cardiac segmentation, we think a more accurate segmentation will be helpful

for the diagnosis of heart disease, and this will save more lives in the future. Because accurate

segmentation is the very first step in the evaluation of cardiac function, there have been some im-

portant studies on image segmentation for the left ventricle cardiac area in the past several decades

[20]. In this research, we focus on pixel classification methods with U-net [21], which is a neural

network widely used for medical applications. The U-net will be improved with different normaliza-

tion methods, and we will compare their effects on results. In the left ventricle segmentation study,

normalization is applied for deep learning for more accurate and efficient training. We would like to

compare the effects of several approximation normalization methods with U-net in the application

of left ventricle cardiac image segmentation. We first present the method to augment the original

images and ground truth deformation. We then present three novel CNN architectures:

• The BNU-net (“Batch-Normalization-U-net”) that leverages the power of a fully convolutional

neural network. It is designed to process 2D MRI images as inputs and produce a labeled slice

as output. This work modified and improved the U-net architecture [21] to make it work with

fewer training images and improve performance. The results of the performance comparison

show that BNU-net gets a better dice score when compared with the original U-net.

• The LNU-net (“Layer-Normalization-U-net”), a network that applies layer normalization in
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each convolutional block and is based on an exponential linear unit (ELU). It shows a mini-

mal improvement of the proposed network in terms of the dice mean, average perpendicular

distance, with similar performance in terms of sensitivity score.

• A new network called IBU-net which is based on instance normalization and batch normal-

ization is effective for improving dice score in image segmentation tasks. To increase the dice

mean of the medical segmentation problem, the ELU as an activation function was selected

instead of ReLU in the original U-net.

For robot-assisted interventions technologies, we describe a computational approach that uses

different blood flow to model the MRbot access corridor. The MRbot can be safely maneuvered

for visual servoing on the Qt framework.

1.4 Organization

The remainder of this work is organized as follows:

Chapter 2 reviews the background and related work for the studied problem.

Chapter 3 describes the cardiac segmentation background and the proposed solutions based on

short-axis MRI images.

Chapter 4 presents the minimally invasive surgery and solutions based on improving interven-

tional procedures in the human body through the use of actuated magnetic spheres.

Finally, we present the conclusions of this work in Chapter 5.
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2 Background

In this chapter, we introduce the general concepts, notations, terminologies, and the related work

used in this dissertation.

In cardiac segmentation, we present the foundation of the U-net proposed by Ronneberger et

al. [21] and the key ideas for cardiac segmentation based on short-axis MRI images.

In robot-assisted technologies, many researchers [10]-[12][141-151] chose micro-scale robots for

minimally invasive surgery. Dahmen et al. [141] proposed path planning algorithms that worked on

MRI data. The tracking algorithm would deliver position feedback for the ferromagnetic objects.

By integrating path-planning methods and real-time tracking, the MRI system would provide this

new functionality for controlled interventional targeted therapeutic applications. Li et al. [142]

developed robotic software platforms that used MRI for feeding back information to a controller,

which is used for navigating and controlling a wireless application in the pre-defined path of the

blood vessels.

Belharet et al. [144] proposed a real-time MRI-based control of ferromagnetic application for

endovascular navigation. They developed software that allowed to navigate the application along a

2D path in pulsative flow. The results showed the software was effective in the closed-loop control

system.

2.1 Theoretical Background

2.1.1 Cardiac Segmentation

Deep learning, as a branch of machine learning, consists of a hierarchical representation, which can

be applied to a large array of problems. It uses a deep neural network to extract features from

a large-scale dataset and simulates the learning process of the human cardiac. In deep learning

networks, each neuron can be regarded as a small information-processing unit. The entire neural

network is composed of many neurons. Today, cardiac segmentation of two-dimensional medical

images is vital for medical image analysis. During the last decade, machine learning and deep
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learning have been applied to understand images and segmentation, and have proven versatile and

simplify the development of medical segmentation tasks compared to traditional methods. Among

these works, a large number of these methods are used for left ventricle segmentation. The objective

of ventricle segmentation is to delineate the endo- and epicardium of the LV and RV. Clinical indices

need to get a segmentation map. Additionally, research groups stated that segmentation maps are

essential for 3D+ time-motion analysis [135], 3D shape analysis [136], and survival prediction [137].

Its practical implementation in the clinical realm has been limited since well-labeled medical

data is harder to obtain. However, the recent development of deep learning models has shown

methods that could perform well with fewer quantities of data. It is an essential step to clinical

cardiac contractile function quantification when doing left ventricle segmentation in short-axis

sequences [17]. According to the statistics, manual segmentation by radiologists is time-consuming

and inefficient work which takes about 20 minutes for the MR sequence of one subject [17]. The

region based on segmentation methods include clustering [71], split and merge [72], thresholding

[73], probabilistic atlas [74], and Gaussian-mixture model [75].

One of the breakthroughs that enabled the exploration of deep learning architectures is called

convolutional NN (CNN).
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Figure 5: (A) Generic architecture of convolutional neural networks (CNN). (B) Patch-based seg-

mentation method based on a CNN classifier [113].

CNNs are types of deep learning architectures, have been widely used for image classification

tasks. A standard CNN consists of a convolutional layer, a pooling layer, and a rectified linear unit

(ReLU). See Figure 5(A).

A CNN takes a cardiac MR image as input, learning features through convolutional layers, and

pooling layers. The feature maps are flattened and reduced into a vector (image classification or

object localization or patch-based segmentation) through fully connected layers. CNN has been

applied to advance the state-of-the-art on objective detection, image classification, and segmenta-

tion tasks. From the proposal of the CNN to the current wide application, it is a classic model
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produced by the combination of image processing and deep learning technology. Ciresan et al. [106]

proposed that CNNs for image classification can also be employed for image segmentation without

major adaptations to the network architecture. See Figure 5(B).

This method needs each image divided into patches, uses the network to train the image, and

predicts the class label of the center pixel for every patch (yellow cross). The network is used for

classification with patches in different patch locations and getting a pixel-wise segmentation map

for the whole image. There is one disadvantage to using this approach, which is the network has

to be deployed for each patch, and will be a lot of redundancy due to overlapping patches in the

image.

To solve the computational cost problem for segmentation, Avendi et al. [114] used objective

localization to estimate the bounding box of the object of interest in an image. The bounding

box was then used to crop the image. CNNs are supervised training models which are trained to

learn hierarchies of features automatically and perform classification robustly. Using deep learning

models are proved to solve different image segmentation problems in recent years. New architectures

of CNNs such as GoogLeNet [22], VGG-Net [23], Image-Net [24], and Res-Net [25], have made the

CNN standard for classification in many applications [2].

Szegedy et al. [22] proposed a deep convolutional neural network called “GooLeNet”. One

of the major approaches to increase the performance of neural networks is to increase their size.

While the bigger size of the neural network corresponds to a larger number of parameters, networks

will be more prone to overfitting. If the size of the network increases, the computational resources

will also increase. The authors designed the network which allowed for increasing the depth and

width of the network while keeping the computational budget constant. This approach showed the

improved utilization of the computing resources inside the network.

Simonyan et al. [23] proposed a very deep convolutional neural network (VGG) of increasing

depth using an architecture with small (3x3) convolution filters. The results showed the network

performed better than other state-of-the-art results.

He et al. [25] proposed a residual learning framework and trained the network easily. They
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designed the framework that is substantially deeper than those used previously. They proposed a

different approach from the traditional CNN network, reformulating the layers as learning residual

functions about the layer inputs. This approach showed how residual net could be used to recognize

images and presented a solution based on increasing depth that can be modified in the network.

Zhuang et al. [117] proposed a comparison of a group of methods [118][119][120][121][122][123]

for the heart segmentation that has been experimented with and evaluated. Xu et al. [125] demon-

strated 3D FCN to detect ROI for segmentation, focused on the anatomically relevant regions, and

showed the effectiveness for heart segmentation.

Zreik et al. [123] gave a two-step LV segmentation process. A bounding box that was described

in [124] was used for LV segmentation. The bounding box used a patch-based CNN followed by a

voxel classification.

It is challenging to make a voxel-wise tissue classification if there is the image quality is low.

In the last couple of years, research groups [126][127][128][129][130] used a deformable model to

segment the LV in 2D images. [128][130] used pipeline which localized the ROI through the trans-

formation of a bounding box and segmented the target structure. It has increased the robustness

of the model and greatly reduced the search region when doing segmentation.

Although these previous studies have achieved good performance, they still lack accuracy, which

can prevent them from effectively utilizing the left ventricle in clinical areas [18]. Ronneberger

et al. [21] introduced a deep learning method called U-net, which is used for biomedical image

segmentation, building upon the field of image classification and training strategy. See Figure 6.
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Figure 6: U-net architecture. White boxes represent copied feature maps. Each blue box corre-

sponds to a multi-channel feature map. The number of channels is denoted on top of the box. The

arrows denote the different operations [21].

The network relies on the use of data augmentation and expands the training dataset which

makes samples more efficient. The architecture of this network is similar to a U-shape and consists

of a contracting path to feature contraction and a symmetric expanding path that enables precise

localization of biomedical objects [2].

Ronneberger’s work shows that little training data available can still get segmentation after

applying elastic deformations to the available training images. Data augmentation plays an essential

role in biomedical segmentation since elastic deformation used to be the most common variation in

tissue and realistic deformations can be simulated efficiently [21].

After collecting and labeling large-scale datasets, CNN is one of the most effective models to
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segment the images. Two research groups [131][132] have shown that it is capable to segment

the images accurately without post-processing. Smistad et al. [131] proposed an efficient CNN

method by performing real-time classification and segmentation. Leclerc et al. [132] performed to

investigate the importance of the data size for segmentation of LV in 2D images using U-net. They

demonstrated U-net benefits from a large number of datasets and got high accuracy.

2.1.2 Robot-assisted Technologies

For robot-assisted technologies, the magnetic field gradients of the MRI scanner are used to power

and maneuver ferromagnetic applicators for accessing sites in the patient’s body via the vascular

network. Navkar et al. [9] describe a new method in the field of interventional medicine which

provides real-time guidance for robot-assisted interventions. Magnetic resonance targeting (MRT)

is to provide the driving force, which moves tiny tetherless therapeutic entities to the targeted

region. It is based on using the magnetic field gradients of an MRI scanner, used for signal spatial

encoding and image generation, to navigate micro-device through the cardiovascular system.

The above-mentioned clinical paradigms have an important role in robotic technology. The

challenge is that with MRbots the gradients are also used for propulsion and there is a priority

conflict: the selected vascular path can be safely maneuvered, which in turn requires continuous

MRbot tracking and path imaging [56].
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3 Automated Segmentation of Left Ventricle

3.1 BNU-net: a Novel Deep Learning Approach for LV MRI Analysis in Short-

Axis MRI

3.1.1 Fully Convolutional Neural Networks

Although CNN as patch-wise classifiers for image segmentation task achieves good segmentation

result, CNN has problems when spatial information would be abandoned during convolutional

and pooling layers operation which will impact the segmentation accuracy. In order to solve this

problem, the idea of a fully convolutional neural network (FCN) was first introduced by Long et al.

[79] for image segmentation. FCNs are a special type of CNNs that do not have any fully connected

layers. FCN is designed to have an encoder and decoder structure, which can take input of the

arbitrary size and produce the same output image size.

Given an input image, the encoder first transforms the input into a high-level feature repre-

sentation for feature extraction. The encoder is to reduce resolution and increase the depth of

the network. The decoder interprets the feature map to a higher resolution for pixel classifica-

tion. See Figure 7(A). The FCN first takes the whole images as input, learns deep image features

through the encoder, recovers the spatial dimension by transposed convolution layers, and predicts

a pixel-wise image segmentation for the left ventricle (blue region). The first issue in training a

fully convolutional network (FCN) for medical segmentation is that they are computationally ex-

pensive because of the number of FLOPs required to process an image; this is why an encoder

architecture is preferred [7]. The second issue of FCN is internal covariate shift where the training

kernel is encumbered by the distribution of change of input features [79] and also results in unsat-

isfactory learning speed. In addition, a regular FCN does not provide a well-defined segmentation,

which means there is no defined boundary between the pictures, and this causes ESV and EDV

measurements to be inaccurate [7].
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Figure 7: (A) Generic architecture of fully convolutional neural networks (FCN) for segmentation

(B) A schematic drawing of U-net [113].

Several variants of FCNs have been proposed to propagate features from the encoder to decoder

and to improve the segmentation accuracy. The most well-known and most popular variant of FCNs

for biomedical image segmentation is the U-net [21]. See Figure 7(B).

U-net uses skip connections (the gray arrow) to carry information from the encoder to the

decoder to recover spatial context loss in the down-sampling path. This approach will generate

more precise segmentation.

In recent years, a large number of methods were presented using U-net to improve the perfor-

mance of image segmentation. Automatic and efficient implementations have been a research focus
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on the medical image computing community. Milletari et al. [66] proposed a V-shaped deformation

structure called V-Net for medical image segmentation. They developed a new objective function

based on the dice coefficient, enabling the network to handle situations in which there is a strong

imbalance between the number of voxels in the foreground and background. Cicek et al. [67]

introduced a 3D U-net model. See Figure 8.

Figure 8: The 3D U-net architecture. Blue boxes represent feature maps. The number of channels

is denoted above each feature map [67].

Segmenting cardiac structures in 3D is even more challenging than in 2D. The 3D U-net model

is similar to the U-net that has an encoder path and decoder path. In the encoder path, each layer

contains two 3×3×3 convolutions, each followed by a ReLU, and then a 2×2×2 max pooling with

strides of two in each dimension. In the decoder path, each layer consists of an up-convolution of

2×2×2 by strides of two in each dimension, followed by two 3×3×3 convolutions each followed by

a ReLU. There are skip connections between the encoder path and decoder path. In the last layer,

a 1×1×1 convolution reduces the number of output channels to the number of labels which is 3.
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The model applies batch normalization before each ReLU activation function.

Wang et al. [68] proposed the non-local U-nets, which are equipped with flexible global ag-

gregation blocks. The network contains an encoder-decoder path with stacked local operators to

aggregate information. The experiments were performed on the 3D multimodality isointense infant

cardiac MR image segmentation task. The results showed that the model achieved top performance

with fewer parameters and fast computation.

Ibtehaz et al. [70] presented MultiResUNet based on probable scopes for improvement U-net

model architecture. The results showed that they obtained a relative improvement compared with

the original U-net.

Oktay et al. [133] proposed an anatomically constrained network, which was motivated by

the shape and location constraint in medical images. They demonstrated a training strategy that

incorporates anatomical prior knowledge into CNNs through a new regularization model. The

results showed that the proposed approach improved the prediction accuracy of the state-of-the-

art models. Dong et al. [134] demonstrated that 3D echocardiography can provide full volume

information of the heart and proposed a novel real-time framework for 3D LV segmentation on 3D

echocardiography.

3.1.2 The Structure of Network

Segmentation of medical images plays a crucial role in enabling technology for various medical

applications such as diagnostics, planning, and guidance. A traditional learning process [27] faces

numerous issues that limit the efficacy of the automatic diagnosis of the images.

In this research, we present the feasibility of deep learning approaches for a convolutional neural

network architecture which we call BNU-net. This yields a U-shape architecture shown in Figure

9.
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Figure 9: Architecture of the BNU-net convolutional network. (a) The contraction path is respon-

sible for feature extraction. (b) Batch normalization is performed after each convolution in the

convolutional layer.

We can see the BNU-net as being divided into two separate paths, an encoder path, and a

decoder path. The encoder path reduces the spatial dimensions of each layer but increases the

number of feature maps. On the other hand, the decoder increases the spatial dimensions for

31



each feature map while reducing the number of feature maps in each layer. We compare this

approach with a parallel approach named U-net. Both BNU-net and U-net are cardiac segmentation

approaches: while BNU-net employs batch normalization to the results of each convolutional layer

and applies an exponential linear unit (ELU) approach that operates as activation function, U-net

does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented

work (i) facilitates various image preprocessing techniques, which includes affine transformations

and elastic deformations, and (ii) segments the preprocessed images using the new deep learning

architecture.

BNU-net has 11 convolution layers, 4 layers on the contraction path, and 7 layers on the

expansion path. In the contractive path, each convolutional block corresponds to 2 convolutional

layers followed by 2×2 max-pooling layers. One of the key features of this architecture is the use

of concatenation path connections between down-sampling and up-sampling layers to fuse local

and global information. The expanding path is followed by a series of convolutional filters and

concatenations of feature maps from the contracting path at each stage for more precise localization

as shown by the gray arrows in the figure. As in the U-net architecture, the network consists of

two paths: the contracting path and the expansive path. There are two main advantages of

the U-net compared with other networks. Firstly, U-net needs a few training sample datasets in

comparison to other existing deep learning-based methods. Secondly, different from FCN, U-net

learns segmentation in an end-to-end setting which means input image is given in one end and the

output segmentation is produced in the other end [76]. In the U-net model, it has a contracting

and a symmetric expanding path: for each layer in the encoder network, there is a corresponding

decoder layer. To recover the spatial information lost in the downsampling path and reconstruct the

original size of activations, upsampling paths are employed in the decoder network. The contracting

path is used to capture feature context and the expanding path is used to increase the low-resolution

feature maps from the contracting path. In the U-net model, a large number of feature channels

are applied in the expanding path to allow the network to propagate context information to higher

resolution layers. There are six repeated applications of 3 × 3 convolutions, each followed by
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a rectified linear (ReLU) activation function in the contracting path. The above architecture is

different from the U-net-based approach that contains four layers with batch normalization [26]

and exponential linear in the contracting path.

3.1.3 Using Batch Normalization in BNU-net

Machine learning models need to train well on new unknown inputs, which is known as the ability

of the learned model. Several regularization strategies are used in machine learning models. Two

regularizations are widely used in machine learning models.

Dropout One of the biggest problems for deep learning is over-fitting. Because few training

samples are available compared with the number of learnable parameters, many techniques have

been developed to solve this problem. The term “dropout” refers to randomly drop units (along

with their connections) from the neural network during training in Figure 10.

Figure 10: Dropout neural net model. Left: A standard neural net with 2 hidden layers. Right:

Applying dropout to the network on the left that generates a thinned net [109].

33



Deep neural networks with a large number of parameters are very powerful machine learning

systems [109]. It is a specific technique to deal with the overfitting problem of neural networks and

to select neurons randomly that are ignored. The key idea is, during training, different thinned

networks are sampled from the original model by removing a random fraction of nodes. This

prevents units from co-adapting too much. Essentially, when using the dropout technique, several

different classifiers with different numbers of parameters are trained separately, and then the final

prediction generated by averaging all response of these classifiers are used in the test stage. At

test time, it is efficient to approximate the ‘thinned’ network with smaller weights. This approach

reduced overfitting and improved the performance of neural networks with state-of-the-art results.

Batch Normalization Batch normalization is a technique to normalize the input training data.

It gives a way of accelerating training and helping to solve the internal covariate shift problem.

Because the training process is affected by the parameters of each input layer, small changes of

network parameters will affect the network greatly. Therefore, we use batch normalization [26]

throughout the BNU-net, which helps bypass sharp local minima and correct activations to be zero

mean and of unit standard deviation. The batch normalization is a mechanism that aims to make

the training of neural networks more stable to a given network layer. We applied batch normal-

ization after each convolutional layer and before the activation function. One of the motivations

for the development of batch normalization was to allow each layer of the network to train more

efficiently. It reduced problems when the input values changed and reduced internal covariate shift.

We saw that when the inputs of the network were transformed such that the first two moments

(mean and variance) were respectively set to zero and unit values, the network converges faster and

makes the optimization landscape smoother.

3.1.4 Applying Activation Function

In machine learning models, the activation function decides whether a neuron should be activated

or not, which serves as a gate controlling whether or not to pass the signal to the next layer.

34



Each neuron receives input signals and produces output signals. The gate applies a nonlinear

transformation on the input signal, then feeds it to the next layer of neurons as input. Because of

the non-linear transformation, the activation function is thus capable of performing more complex

questions. Theoretically, the overall network can learn and show any arbitrary complex functions

by imposing the non-linear transformation. Additionally, differentiability is another prerequisite

for the activation function used in deep learning models, to optimize the models via the gradient

descent method. Figure 11 shows several non-linear activation functions that were widely used in

recent years.

Figure 11: Activation function [108].

Sigmoid Sigmoid activation function, also known as logistic function, is one of the most widely

used activation functions. The sigmoid function is often used in the output layer for models that

predict a class probability whose range is located between 0 and 1. The main problem when using

the sigmoid function is that it is affected by the vanishing gradient problem, and therefore are

rarely used in the middle hidden layers. The vanishing/exploding gradient means if the network

parameters are too small or too large, the gradient of the activation function would have very small

values, which makes the gradients to be zero (“vanish”), and the parameters of the layers would
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never be updated. The gradient of the activation function would be a large number if the input to

the activation function is around zero, which will result in a big update on the learned parameters

of the model.

Tanh Tanh is also known as hyperbolic tangent function, which is an S-shape activation func-

tion, and it performs slightly better than the sigmoid activation function. We can use tanh when

performing a classification between two classes problems. The tanh will map the negative input to

negative strongly and map the zero input to nearly zero.

ReLU ReLU is the most widely used activation function, especially in CNNs, which is defined

as : f(x) = max(0,x). This means the output of the ReLU f(x) will be zero when the input signal

x is smaller than or equal to zero. It will reduce the learning ability of the network data, since the

output of the activation is always zero when x is negative, and these neurons become “dead”.

ELU ELU is also known as the exponential linear unit function, which is similar to the ReLU.

ELU does not have the vanishing gradient or dying neurons problems. It has proved to be better

than ReLU, take a lower training time, and have higher accuracy.

Different from the original U-net which used ReLU [17], we integrated exponential linear units

to make the mean activations closer to zero, which helps improve the efficiency of the data com-

piling and calculations process [18]. we applied ReLU and ELU separately in BNU-net and the

segmentation evaluation metrics as shown in Table 1. The improved method also incorporates

cropping 2D, which is a cropping layer used to crop feature maps and concatenate multiple feature

maps from the contraction path. Cropping is essential as each convolution will blur the pixels of

the border of the MRI image, impacting the accuracy of the estimation.
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Table 1: Comparison between our proposed BNU-net model with ELU and BNU-net with ReLU

BNU-net with ELU BNU-net with ReLU

Dice mean 0.92 0.90

Dice std 0.04 0.06

Sensitivity 0.96 0.95

Pooling Pooling operations is to summarize statistics of subareas of previous feature maps. It

reduces the spatial size of feature maps significantly and aims to achieve the feature maps’ repre-

sentation more robust to small transitions and distortions. The max-pooling is considered to be the

main operation of any CNN. It is usually placing pooling layers between two convolutional layers

and slicing a window across the input. Pooling feeds the content of the window to calculate the

local statistics, i.e. maximum or mean.

3.1.5 Dataset

Cardiac CINE magnetic resonance imaging is the gold-standard for the assessment of cardiac func-

tion [153]. We evaluated our approach using the dataset from the MICCAI 2009 challenge on

automated left ventricle segmentation; it was downloaded from the Imaging Research Centre for

Cardiovascular Interventions at Sunnybrook Health Sciences Centre [11]. The Sunnybrook dataset

comprises cine MRI from 45 patients (a total of 805 images) suffering from different cardiac condi-

tions: heart failure with infarction (12 cases), heart failure without infarction (12 cases), hypertro-

phy (12 cases), and healthy patients (9 cases). Each time series consists of 6 to 12 2D cine stacks

with 8 mm slice thickness and 1.3 mm to 1.4 mm in-plane resolution [2]. For the purpose of the

research, the MRI image files were originally split into training, validation, and testing sets in the

ratio of 15 : 15 : 15. Each patient has 12 to 28 images. The database also provides MRI ground

truth medical images manually segmented by an expert.
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3.1.6 Experimental Studies

The normal unsupervised learning process [29] requires millions of parameters. Thereby, to ensure

good performance, a large amount of the training data is necessary to yield a satisfactory classifica-

tion. However, this is impractical given the limited amount of data available, especially in medical

image computing. We present a neural network and training approach which depends heavily on

information increase for more efficient use of the dataset noted. Thus, in the neural network field,

one of the most widely used methods to solve this problem of limited diversity and limited quantity

data is the artificial increase of training data.

Data augmentation To ensure good performance as well as generalization of our mode, a large

training dataset that is diverse enough to represent the overall data distribution is necessary.

However, in medical image computing, especially in cardiac medical segmentation, few datasets

are available for researchers. Thus, one of the most widely used methods to overcome the problem

of limited quantity and limited diversity of data is to generate a new training dataset by augmenting

the original training dataset. There are two ways to generate more images. One way is to change

original images with geometry transformation, such as flip, rotation, and translation. The other

way is to use generative models, especially Generative Adversarial Networks (GANs) [98]. GANs

can create synthetic images and add them to the training set. There are some applications to prove

that adding these synthesized images into training can help the training procedure [99].

Specifically, the improved methods of processing use elastic deformations and random affine

transformations to do data augmentation. Elastic transform was first proposed by Simard et al.

[30] in 2003. It was first applied in the MNIST handwritten digit recognition data set. The

implementation performs on-the-fly elastic transformations for efficient data augmentation during

training. We also perform an affine transformation (rotation, scaling, translation) to augment the

training set, mitigate overfitting, and improve generalization. Figure 12 shows examples of using

elastic transform and random affine transformation.
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Figure 12: The contour comparison based on MRI input. (a) Sunnybrook Image and corresponding

label. (b) Perform affine transformations. (c) Perform elastic transformation to augment the

training set.

We applied elastic deformations to the available training images in our data set. The elastic

deformation enables the neural network to grasp invariance to this kind of deformation without

seeing these changes throughout the annotated corpus of the picture. Such a process is especially

essential in biomedical segmentation as deformation is one of the most prevalent tissue variations,

which allows effective simulation of realistic deformations.
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3.1.7 Evaluation Metrics

To measure the performance of the BNU-net, we provide an overview of the main metrics reported

in the literature for comparative purposes.

Let A and G be the automatically segmented and ground truth (manual) region/contours,

respectively.

1) The dice metric: a measure of contour overlap between automatically and manually segmen-

tation, and is defined as:

Dice =
2(A ∩G)

A+G
(1)

where A ∪ G denotes the intersection between A and G, and A ∩ G means the union between

A and G. The dice index varies from zero to one. Zero indicates a total mismatch with the ground

truth and one indicates there is a perfect match.

2) Average perpendicular distance (APD) measures the distance in mm between contours and

averaged over all contour points. A low value implies that the two contours match closely. APD is

computed in millimeters with spatial resolution obtained from the Pixel Spacing DICOM field [2].

3) In addition to the two similarity measures above, two additional metrics used to evaluate

the performance of the segmentation are sensitivity and specificity. They are computed using the

formulas:

Sensitivity =
T0

B0
(2)

Specificity =
T1

B1
(3)

where T0 and T1 are the total numbers of correctly predicted object and background pixels,

respectively. The total number of object and background pixels are denoted by B0 and B1, respec-

tively.
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3.1.8 Segmentation Results and Comparison

This section provides examples of segmentation results with good accuracy produced by the pro-

posed BNU-net architecture on the test set. Table 2 summarizes the results of BNU-net with and

without data augmentation and compares them to U-net results.

Table 2: Output of the model and efficiency metrics results

U-net with data

augmentation

U-net without data

augmentation

BNU-net with

data augmentation

BNU-net without

data augmentation

Dice mean 0.88 0.87 0.93 0.92

Dice std 0.09 0.11 0.03 0.04

Sensitivity 0.96 0.95 0.97 0.96

From the graph, we can see that with and/or without data augmentation, the BNU-net achieved

the best dice score and sensitivity score. We found that the left ventricle recognition is improved

when using data augmentation.

This fast training time with limited resources, including the amount of the images and the

processing power, has made it possible to apply this methodology to more settings. Among the

methods in the Sunnybrook dataset, four groups report their performances on the 45 patient cases

that have the same data and split. The performances on these cases of BNU-net and these methods

are shown in Table 3.
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Table 3: Segmentation results on the Sunnybrook dataset, compared to the performance from the

state-of-the-art methods

Dice Mean Dice Std APD (mm)

BNU-net with data augmentation 0.93 0.03 1.94

BNU-net without data augmentation 0.91 0.04 2.06

Huang et al. [6] 0.89 0.04 2.16

Ngo and Carneiro [3] 0.90 0.03 2.08

Hu et al. [5] 0.89 0.03 2.24

Liu et al. [8] 0.88 0.03 2.36

We find that BNU-net with data augmentation achieves the best dice mean, dice std, and APD

performance compared with other groups’ results.

Figure 13 shows two examples of the output segmentation. We have demonstrated the efficacy

and utility of the BNU-net architecture for semantic segmentation in cardiac MRI.
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Figure 13: Segmentation predictions on raw inputs from the Sunnybrook dataset.

The quantitative evaluation of the BNU-net is based on the dice coefficient and the average

perpendicular distance.

3.1.9 Discussion

Medical image segmentation is one of the most important preliminary steps in the identification

of the tissues in image scans. Deep learning has become one of the most important powerful

tools in solving computer vision tasks including segmentation. U-net was originally proposed for

general biomedical image segmentation [21] and was widely accepted among researchers for image

segmentation tasks. In this research, we proposed a novel method called the BNU-net model for the

segmentation of the left ventricle. Compared with the original U-net model, the proposed BNU-

net model is able to re-establish contextual information and lead to more accurate segmentation
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results. The BNU-net model consists of two main paths which are the encoding path and the

decoding (up-sampling) path. In the encoding path, successive layers consist of the convolutional

filters followed by an activation function (ELU) which is used to learn a representation of the input

image. To solve the internal covariate shift and help the network train faster and achieve higher

accuracy, one important modification in the model is that we applied batch normalization after

the convolutional filters. We use batch normalization throughout the BNU-net, which helps bypass

sharp local minima and correct activations to be zero-mean and of unit standard deviation. It

allows us to prevent small changes in layer parameters from amplifying through the deep network

[21]. In addition, we are less careful about initialization. A series of 2×2 max-pooling layers were

used to down-sample the output and capture the features crossing different layers. The decode

path consists of the up-sampling of the channels followed by convolutional blocks and ELU. One

of the important steps in up-sampling is the concatenated connection from the encode path, which

is used to propagate context information to detect the fine, higher resolution features.

We applied data augmentation when training our model by applying affine transformations and

elastic deformations to the Sunnybrook biomedical segmentation dataset. It achieves outstanding

performance lines in fast-growing GPU computability, only needs a few annotated images, and

achieves high training speed on each epoch (11 seconds) with a batch size of 16 on an NVIDIA

GeForce Titan X Pascal GPU. At test time, our model segments the whole series of images in less

than 12 seconds. We also used the smaller images size of 176×176 pixels, which yielded slightly

better performance results on the testing set and faster training time. With 1 GPU and 200 epochs,

256×256 images took 36 minutes to complete training, while 176×176 images took 30 minutes.

3.2 Two Deep Learning Approaches for Automated Segmentation of Left Ven-

tricle in Cine Cardiac MRI

3.2.1 Methodology

U-net is a convolutional neural network (CNN) specially designed for biomedical image segmenta-

tion [21]. U-net network is composed of U-shape and skip-connection, which is efficient in using
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GPU memory. Because GPU memory is a bottleneck compared to its computation power, saving

GPU memory is quite a significant advantage for CNN. U-net also outperformed related work be-

cause it required fewer annotated training samples. As we know, it is quite expensive to acquire

annotated samples, so U-net is excellent in getting high accuracy with less training data. There

were some variants based on U-net, including UNet++ [80], Attention UNet [69] and BNU-net [31].

Zhou et al. [80] proposed UNet++, which is a new and more powerful architecture for medical

image segmentation. Their network is composed of encoder and decoder networks, where encoder

and decoder are connected through skip pathways. In U-net, the skip connections structure links

the high-resolution encoder with decoder output, which results in the concatenation of semantically

dissimilar feature maps. They re-designed the skip connection aimed at reducing the semantic

gap between the feature maps of the encoder and decoder networks. The experimental results

demonstrated that UNet++ can capture fine-grained details of 2D images.

Oktay et al. [69] proposed a novel attention gate (AG) model for automatic medical image

segmentation. It learned to focus on target structures of varying sizes and shapes. AGs could learn

to highlight the useful features for images while ignoring the irrelevant areas. Experimental results

showed that AGs improved the prediction performance of U-net across different datasets.

We use three normalization methods in this study, which are batch normalization [26], layer

normalization [32], and instance normalization [33]. They can generally be viewed as a technique

for data preprocessing. For the improvement of accuracy, it is especially effective when features are

widely distributed because all of the features are forced into a similar range. It also helps to reduce

the internal covariate shift, which means it weakens the changes in network parameters during

training. The larger the difference in feature range, the more effectively the data normalization

method will restrict the weights into a certain range and prevent them from exploding. Therefore,

the optimization process will become faster.

Batch normalization [26] is the first method we test. It normalizes the output of previous

activations across the batch in a network. You can view it as doing data pre-processing at each

layer of the neural network. When we use batch normalization, we insert a batch norm layer into
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the U-net. See Figure 9.

Batch normalization has a reputation for speeding up the training as well as the generalization

of convolution neural networks(CNN) [26]. However, for recurrent architectures, this technique fails

greatly since its application is only limited to stacks of RNN, where the application of normalization

is vertical to avoid the problem of repeated rescaling.

Batch normalization harbors a few weaknesses that limit its ability to be considered the most

influential technique to reduce the internal covariant shift (ICS) in deep neural network models

[26]. During the normalization of outputs from previous models, the batch is divided by the

empirical standard deviation and the result is subtracted from the subsequent empirical mean.

Batch normalization is typically poor in the pipelining of online learning, thereby contributing

to poor generalization of the training data that is contributed by the change in batch size. This

resulting shift in the input data eventually affects its performance. To solve this problem, other

normalization methods were proposed.

Layer normalization [32] normalizes the input across features, which is completely different

from normalizing across batches in batch normalization. The calculation for mean and standard

deviation is similar to that in batch normalization. The mean across the features and variance

across the features are calculated for each element of the input. We applied layer normalization in

each convolutional block and based it on an exponential linear unit (ELU). See Figure 14.
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Figure 14: The LNU-net architecture of the proposed fully convolutional network. Layer normal-

ization is performed after each convolution in the convolutional layer.

In batch normalization, the statistics are the same for each batch, while in layer normaliza-

tion, the statistics are computed across each feature and are independent of other examples. The

independence between examples makes it simple when applied to recurrent neural networks. The
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authors of “Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmen-

tation” [1] found it outperformed other normalization methods in the application or RNNs.

Batch instance normalization [34] is an interpolation of batch normalization and instance nor-

malization. With instance normalization, the mean and standard deviation are computed across

each channel for each input group. Instance normalization shows some similarity with layer nor-

malization, but there is one obvious difference: layer normalization calculates the statistics across

each feature in the training sample, while instance normalization calculates across each channel.

In recent years, instance normalization was also found to be effective for Generative Adversarial

Networks (GANs). However, there are also problems with instance normalization: it is suitable

for style transfer cases but incapable of contrast matters. This problem makes it unsuitable for

image segmentation tasks. To solve this problem, we use instance and batch normalization together

in the first convolutional block, apply an ELU and pass its result to the next layer. See Figure

15. It balances the batch normalization and instance normalization, and the model could learn

to use different combination percentages with gradient descent. According to the previous work

[34], batch instance normalization outperforms batch normalization on CIFAR-10/100, ImageNet,

adaptation, style transfer, and image classification tasks.
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Figure 15: Architecture of the IBU-net convolutional network. Instance normalization is applied

in the first convolutional layer. Batch normalization is performed after each convolution in the

convolutional layer.
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3.2.2 Dataset

The Sunnybrook dataset [35] was used for the experiments. It was received from Imaging Research

Centre for Cardiovascular Intervention in Sunnybrook Health Sciences Centre and made for au-

tomatic left ventricle segmentation for MICCAI 2009. The ground truth masks were provided by

experts that were manually segmented. The experiment was conducted with an NVIDIA GeForce

Titan X Pascal GPU. When we compare the computational speed for each epoch, the performance

of computational resources should also be considered.

3.2.3 Model

In this study, the model we used for image segmentation was a modified U-net based on a fully

convolutional network. We added Exponential Linear Units (ELU) as an activation function instead

of ReLU in the original version. In addition, we also added a normalization layer into the model,

which was not considered in the original U-net. Refer to Figure 9, Figure 14, and Figure 15, for

the architecture of models.

- Conv2*2 is a convolution layer with a 2*2 kernel.

- ELU is applied instead of ReLU to speed up the training process. It also avoids the vanishing

gradient problem, because the value is no longer 0 with a negative x.

- Normalization: Normalized feature map to solve internal covariate shift.

- DownSampling layer is used to extract and interpret the contextual information on the input

image.

- Cropping2D is a cropping layer designed for cropping feature maps. It is also used to reduce

concatenating to avoid overfitting.

- Concatenating is two connecting different feature maps from downsampling.

- UpSampling layer is used to perform on the decoding path and increase the size of the feature

which has the same size as the input data.

As we see, the new U-net for automated left ventricle segmentation is based on the basic

structure of a fully convolutional neural (FCN) network architecture [79]. The first improvement
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we made was an encoder architecture. It is a computationally expensive process to train an FCN for

medical image segmentation, because of the large number of multiply-and-adds required for image

processing. An encoder architecture would help to ease the computational burden and quicken the

training process, especially when the computational power of Titan X was limited.

The second issue is the improvement of normalization. As we mentioned, three normalization

methods are attempted for model improvement, which are batch normalization, layer normaliza-

tion, and batch instance normalization. We found that for medical image segmentation, internal

covariate shift is a problem during training with an FCN. This was encumbered by the distribution

of input feature change [79]. It also leads to a slow down in training. Because training was a

process independent of initial data distribution, we thought it was a good attempt to involve data

normalization in our study.

The third issue is to skip connections in FCN. We found it lacked well-defined edges with FCN

segmentation. The boundaries between the images were not clearly defined with the original version

of FCN. The skip of connection was supposed to be a helpful in accuracy.

3.2.4 Experimental Studies

In order to achieve great learning performance, we need a large number of the labeled dataset.

However, in current medical areas, there are limited training samples. Therefore, the data augmen-

tation methods are applied in medical image datasets. Patrice et al. [30] first proposed the elastic

deformation in 2003. We use elastic deformation to the available training images that increase the

size of the training dataset and improve the adaptability of the models. In this work, we use the

following data augmentation strategies: affine transformation, elastic deformation, and rotation.

The original version of U-net is a typical method for left ventricle cardiac image, so we first

test its performance with an NVIDIA GeForceTitan X Pascal GPU. We found that the dice mean

was only 0.87 with U-net. It took 11s per epoch on training if we set the batch size as 16. In this

study, a novel segmentation schema that contains batch normalization and instance normalization

was proposed to improve the segmentation performance. We want to improve the dice mean and
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to accelerate the training process.

3.2.5 Segmentation Evaluation

We use U-net with batch normalization, U-net with layer normalization, and U-net with batch-

instance normalization to deal with image segmentation tasks. The dice mean is listed in Table

4.

Table 4: Dice mean with different normalization

Dice Mean With ELU With ReLU

Instance-Batch Normalization 0.94 0.93

Batch Nomalization 0.91 0.90

Layer Normalization 0.89 0.88

ELU was likely to introduce more calculations compared to ReLU. But when we had a negative

x, ELU would avoid the gradient vanishing led by ReLU. In addition, ELU almost shared all

benefits with ReLU. Table 5 displays the dice mean for six experiments: batch normalization with

ELU and ReLU, layer normalization with ELU and ReLU, as well as batch instance normalization

with ELU and ReLU. We would like to test the influence of different activation functions on image

segmentation, on both dice mean and training speed. In the meanwhile, we also wanted to know

whether normalization methods would lead to better performance, and which normalization was

optimal in this case.
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Table 5: Output of the models and efficiency metrics results

Dice Mean Dice Std Sensitivity APD (mm)

IBU-net with data augmentation 0.96 0.02 0.98 1.91

IBU-net without data augmentation 0.94 0.03 0.96 2.02

LNU-net with data augmentation 0.90 0.11 0.96 2.29

LNU-net without data augmentation 0.89 0.14 0.95 2.46

BNU-net [31] with data augmentation 0.93 0.03 0.97 1.94

BNU-net [31] without data augmentation 0.91 0.04 0.96 2.06

U-net with data augmentation 0.88 0.09 0.96 2.48

U-net without data augmentation 0.87 0.11 0.95 2.51

The performance of LNU-net (Figure 14) and IBU-net (Figure 15) is shown in Table 5. This

table illustrates how LNU-net and IBU-net vary with and without data augmentation. When

comparing three normalization methods in Table 5, we found that batch instance normalization

is the best choice for image segmentation. Batch instance normalization combined the benefits of

batch normalization and instance normalization, getting better performance in image segmentation

tasks.

Compared to the original version of U-net, the combination of ELU and batch instance nor-

malization improved the dice mean by 8% from 0.87 to 0.96, which is a significant and reliable

improvement. The improvement in training speed was not displayed in the table above. Each

epoch was trained with 11 seconds in the original U-net. While with the combination of encoder

architecture, batch instance normalization, and drop-connection, it only took 8 seconds to train an

epoch. The training speed was improved by 27%, which meant almost one-third more images could

be processed within the same period of time. The acceleration was due to the encoder architecture

and drop-connection. These could reduce the calculation during training and they could also avoid

overfitting.

To evaluate the performance of our proposed structures, we use the same Sunnybrook dataset
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and same data split, compare the performance of our methods with other groups report their

performances on the 45 patient cases. The amount of improvement in performance varies across

different normalization methods. In Table 6, the observation is that using IBU-net with data

augmentation achieves the best dice mean, dice std, and average perpendicular distance when

compared with other groups’ proposed structures.

Table 6: Dice score and average perpendicular distance (APD) of segmenting the Sunnybrook

dataset, compared to the performance from the state of the art methods

Dice Mean Dice Std APD (mm)

IBU-net 0.96 0.02 1.91

X Zhou [28] 0.92 - -

Zhou [36] 0.93 0.06 -

Ngo and Carneiro [3] 0.90 0.03 2.08

Hu et al. [5] 0.89 0.03 2.24

Huang et al. [6] 0.89 0.04 2.16

Liu et al. [8] 0.88 0.03 2.36

Figure 16 and Figure 17 show three examples of the output segmentation suffering from different

cardiac conditions: heart failure with infarction, hypertrophy, and healthy patients.
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Figure 16: Examples of segmentation results on raw inputs from three conditions in the Sunnybrook

dataset. The first row contains heart failure with infarction, the second row represents hypertrophy,

the third row shows healthy patients.
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Figure 17: Some segmentation outputs by our methods. The solid lines represent the segmentation

examples of the Sunnybrook dataset. We compare four different network methods, which are U-net,

BNU-net, LNU-net, and IBU-net respectively.

The experimental results for the algorithm above indicate that our proposed methodology has

improved efficiency and effectiveness, and outperforms convolutional deep networks contributed by

the increase in the resultant dice score.

3.2.6 Discussion

In this study, we proposed two novel convolutional neural networks based image segmentation

models. We improved the left ventricle cardiac image segmentation tasks with a renewal U-net.

We have categorically explored some state-of-the-art segmentation models and a comparison among

the performance of those models on the same dataset. Data preprocessing was conducted with batch
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normalization, layer normalization, and batch-instance normalization. ELU took the place of ReLU

as the new activation function. Encoder architecture and drop-connection were also conducted to

accelerate training and reduce over-fitting.
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4 Simulations of MRI Guided and Powered Ferric Applicators for

Tetherless Delivery of Therapeutic Interventions

In this chapter, we demonstrate the effectiveness of our proposed models by simulating MRI-guided

MRbots for wireless delivery of therapeutic interventions. In the following sections, we will first

briefly introduce the MRI-driven device along with previous work done in the area. We then

demonstrate virtual fixtures (VF) we use to track the path, including both trajectory path and

MRbot movement. In addition, we illustrate the theoretical model and MRI gradients in order to

fully explore the therapeutic interventions from different modalities. An experimental platform is

provided, which is the QT platform. In the end, we present the simulation results.

4.1 Methods

4.1.1 MRI-driven Devices

The goal of the present research is to simulate the movement of a sphere through 3D models of vessel

corridors. Because the human blood circulatory system is made of arteries, veins, and capillaries,

the respective diameters of the pathways through which a biomedical robot must pass range from

tens of micrometers to several centimeters. It becomes obvious that being able to reduce the size of

such an MRbot would allow a larger percentage of locations in the human body to be reached. In

many cases, an untethered implementation is suitable in order to propel MRbots into the human

blood circulatory system, and it is obvious that propelling such wireless MRbots in the human

cardiovascular system with existing technologies is a great technical challenge [37]. A large number

of methods were presented using robotic manipulators [57]-[59]. The use of an external magnet

(electromagnetic fields) of the MRI can be used to directly apply forces on a tetherless object

through gradient manipulation [60], by inducing a current inside the micro-coils maintaining the

robots to swim to their designated target [61], or even steering a catheter to its destination [62].
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4.1.2 Overview the VF Approach

In order to maneuver safely, we introduce virtual fixtures (VF) which are virtual software-based

constraints. There are two main parts with which we are concerned: one is continuous tracking

and path imaging, the other one is maneuvering safely. Several means of propulsion are proposed

to be embedded into such an MRbot [44][45].

We propose a trajectory plan, which aims to follow a planning path to ensure safety and to

control the MRbots. We use VF to generate virtual guidance cues for directing MRbot inside the

vessels. When we use the guidance cues, the MRbot should reach the destination point accurately

and not hurt the vessels. In the proposed approach, we simulate MRI-guided and powered ferric

MRbots for tetherless delivery of therapeutic interventions. The size of the ferromagnetic body must

be selected according to the diameters of the blood vessels, which is then used for the predefined

path to the final target location. In order to propel such MRbots into the body fluids, especially

in the human blood circulatory system, it must be considered part of the normal blood flow. The

smaller these MRbots are, the wider the operating range becomes through access to the blood

vessels such as capillaries. The system is shown here and on which we will focus is used in the

case of a cardiac tumor treatment through localized drug delivery. To ensure safety and accuracy,

such procedures require continuous on-the-fly imaging (to both tracks the MRbots and image the

pathway) and propulsion.

Our goal is to control and propel the micro-robot by magnetic field gradients inside the blood

vessels. We use a proportional integral derivative (PID) controller to correct and stabilize the

trajectory when the sphere moves in more tortuous segments of the vessel. The physical parameters

of the blood flow and the diameters of the blood vessels that are targeted determine the drag force

and the constraints experienced by the MRbots. The quantity of the ferromagnetic particles is

performed and determined by the medical application.
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4.2 Theoretical Model

According to the present invention, a homogeneous spherical MRbot is considered in this research.

Since the gradients are generated uniformly throughout the border of the scanner, forces can be

produced everywhere inside the body and can be precisely controlled with respect to time thus

making it the ideal solution. In small blood vessels, the buoyancy of the MRbots and their weight

can be neglected because such parameters are smaller than the drag force by orders of magnitude.

The blood flow in the arterial system is pulsatile and much faster at the exit of the heart. The

blood velocity decreases away from the heart to a cm/s then mm/s [38].

4.2.1 Interpolation

Interpolation is an important reference for medical imaging applications. In the volumetric imaging

of this research, we use an interpolation method called Piecewise Cubic Hermite Polynomials (pchip)

to compensate for nonhomogeneous data sampling. Given an interval [a, b], a function d : [a,b] →

ℜ with derivative d’ : [a,b] → ℜ, we use a cubic Hermite spline s that approximates d over [a,b].

Our method will use the nearest method to split the interval [a,b] into N subintervals of nodes −→x

= (x0,x1,x2,...,xN ) with a = x0<x1<x2<...<xN = b. In order to calculate 3D interpolation, we

introduce a new parameter T as a tuple (pathDistance, x), where pathDistance equals the distance

from the start point to the current point.

4.2.2 Calculating the Tortuosity

Tortuosity is defined as the minimal geometrical path in a media which may require the computa-

tion of the minimal geodesic trajectories. At this point, we indicate that tortuosity is a directional

parameter. It is a parametrically-defined space curve in three dimensions given in Cartesian coor-

dinates by K = (x(t), y(t), z(t)), corresponding to the three Cartesian axes (X, Y , and Z).

K =

√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)
3
2

(4)
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where x′, y′, z′ are the first derivative of the desired path, x′′, y′′, z′′ are the second derivative

of the desired path.

4.2.3 Blood Velocity

Pulsation arises from the pumping action of the heart, which forces a pulsating blood flow into the

arteries, thereby creating a time-varying pressure that acts on the vessel wall [39]. The models are

zero-dimensional (0D) models of the circulation, to one-dimensional (1D) models of blood pressure

and flow propagation [40], to three-dimensional (3D) fluid-structure interaction techniques. Each

approach has its own merits and limitations. We use 3D methods to represent complex flows, wave

propagation, and blood flow–vessel wall interactions. The drag force produced by the blood acting

on a sphere in an infinite extent of fluid can be calculated as:

Fdrag =
1

2
· Cd · p ·Re · |Vblood − Vs| (5)

where Cd is the drag coefficient, p is the blood density (1.025 kg/m3), Re is the reference area.

4.2.4 Different Type of Blood Flow

In the present work, we studied the blood flow in the three types of pulsative: constant, normal,

and high heart rate flow [41]. The gradients are updated every 100 ms but the position of the

sphere can be found every Tp millisecond. We use different Tp values in the different flows to test

and show the results in the Qt platform.

4.2.5 Velocity of Sphere

The trajectory generates the desired velocity V (r) along with the track, counting its vector for each

one of the points of the path [42][43].

V (r) =
V0

1 +K/K0
+

Rs −RGC

R0
(6)
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where Rs is the radius of the MRbot, V0, K0, and R0 are constants allowing for adjustment of

the velocity profile.

4.3 Overview of MRI Gradients

4.3.1 Control Module

It is important to know the trajectory, the position of the MRbot, and gradients. Three set points

need to be generated. A setpoint that contains the coordinate of points on the path centerline

needs to be generated [46]. The velocity of the setpoint for the sphere is taken as the reference

value. The trajectory controller is composed of a PID regulator and a feedforward component that

directly outputs the optimal control. Errors on the velocity can be calculated with:

Errorv = Vc − Vs +Kr ∗ (Pc − Ps) (7)

where Vc is current velocity, Vs is velocity setpoint, and Kr= 0.7 which defines how much error

in position is corrected compared to the error in the velocity. The last two variables are Pc, which

is the current position, and Ps, which is the position setpoint.

The PID regulator:

PF = −kp ∗ Errorv (8)

PI = PI − (Errorv ∗ δ ∗ ki) (9)

PD = −kd ∗ Errordt (10)

Errordt = (Errorv − Errorp)/δ (11)

The parameters used for the PID controller are kp = 2, ki = 1, kd = 0.01, δ = base velocity, and
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Errorp is errors on the previous position.

Moments = M ∗ V ol (12)

V ol =
4

3
× π × r3 (13)

where Moments is the moment sphere, M (1.9496× 106 A/m) is the magnetization sphere, V ol is

the volume sphere, and r (0.3 mm) is the sphere radius.

FF is the optimal control that corresponds to the gradients of compensation for the drag force.

It is produced by the blood:

FF =
1

2
· Cd · p ·Re · V (14)

where Cd = 0.47 is the drag coefficient, p is blood density, Re is the frontal area of the sphere,

and V is the blood velocity.

4.3.2 Gradients Control

Gradients (G) can be calculated with:

G = (1/Moments) ∗ (PF + PI + PD + FF ) (15)

where Moments is the moment sphere, PF , PI, PD are PID controllers, and FF is the optimal

control. See Figures 18, 19, 20. From the figures, we can see that there are some spikes in the

gradients. There is one reason that may result in spikes. Because PID is a feedback system, PI

always needs an initialization value to calculate the first PI, even if we avoid the case, which leads

to the appearance of spikes.
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Figure 18: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in the constant

blood flow. (a) is a plot of the curvature of the path. (b) shows the constant blood flow. (c), (d),

and (e) present the gradients generated by the MRI scanner for each axis.
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Figure 19: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in the normal

blood flow. (a) is a plot of the curvature of the path. (b) shows the normal blood flow. (c), (d),

and (e) present the gradients generated by the MRI scanner for each axis.
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Figure 20: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in fast heart

rate of blood flow. (a) is a plot of the curvature of the path. (b) shows the fast heart rate blood

flow. (c), (d), and (e) present the gradients generated by the MRI scanner for each axis.

4.3.3 Magnetic Force

In order to get a strong magnetic force, the parameters to be maximized are the magnetization

of the MRbot. Knowing that a ferromagnetic propulsion core is easy to fabricate and miniaturize

as the viscosity of the blood is lower than cardiac tissues, the force is directly proportional to the

ferromagnetic volume. Although the diameter of the blood vessels may vary due to cycles of heart

contraction and the blood vessels, which affect drag force, our model considered the blood vessels

as rigid cylindrical tubes.

F = M ·G · Vo (16)
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Magnetic Resonance Propulsion (MRP) consists of applying magnetic gradients to exert a dis-

placement force on MRbot. In (16), F is the magnetic force produced by magnetic gradients (T

m−1), M is the magnetization of the material (A/m), Vo is the volume of the ferromagnetic body

(m3), G is the gradient or spatial variation of the magnetic induction. It can be seen from the

equation that as the volume or the overall dimension of a ferromagnetic core in an MRbots or the

volume of the ferromagnetic MRbots itself decreases, the force induced by the MRI system will de-

crease as well [47][48]. In order to produce sufficient magnetic force, using a ferromagnetic material

with a stronger saturation magnetization is required. Friction between the sphere and tube walls

is not considered in this study as gradients which are provided by MRI systems are strong enough

to levitate MRbots.

4.4 Simulation and Results

The built-in magnetic field strengths currently give tens of mT/m of gradients in any direction for

imaging purposes. Such gradients produce a strong magnetic force in many directions. In order

to correctly propel the ferromagnetic core on the pre-planned path and to provide a feel for this

experiment, we measure the influence of magnetic field gradients from an MRI system on a ferro-

magnetic sphere. This ferromagnetic field is suitable because permendur has strong magnetization

with a saturation value that is higher than other magnetic materials. In the computational core,

each position has three gradients [X(i), Y(i), Z(i)] (i refers to the digitized form) on the 3D vascular

path. The navigation of the ferromagnetic sphere relies mainly on two aspects: drag force and the

propulsion magnetic force. During the experiments, robust software architecture must be present

to seamlessly and precisely compute and apply the necessary gradients information. We ran the

experiment 1,000 times and record the results. The execute time is within 7.2 ms to 8.1 ms and the

average running time is 7.7 ms. We also calculated the spatial gradient to obtain more information.

For example, in the X-axis: 0.93 mT/m, 1.68 mT/m, 3.35 mT/m, and 3.038 mT/m, in the Y-axis:

3.33 mT/m, 1.13 mT/m, 3.84 mT/m, and 3.53 mT/m, in the Z-axis: 2.65437 mT/m, 3.7658 mT/m,

3.61 mT/m, and 2.84 mT/m. Such gradients can be used to produce a magnetic force vector in

67



upward and downward directions. We assume blood density is constant which means that we can

neither increase nor decrease the amount of blood in the vessel. The volume of blood that goes in

must equal the volume that comes out.

4.4.1 Time-varying Magnetic Fields

The gradient coils are used for imaging produce time-varying magnetic fields slew rate in dB/dt

[49]. During the rise time of the magnetic field, an electric current may be induced in a conductor.

The human body is a conductor which can produce peripheral nerve stimulation. This stimulation

may result in a slight tingling sensation or a brief muscle twitch but is not recognized as a significant

health risk [50]. In order to avoid these potential hazards, the FDA has the rule to guide gradient

field switch if dB/dt is sufficient to produce propulsion in vessels. The slew-rate dB/dt is limited

by the FDA and is generally below 200 T/m/s. Slew rates can be calculated with [49]:

S = Gp/Tr ∗ r (17)

where S is slew rates (dB/dt), Gp is the difference between two consecutive gradients, Tr is

rise time, and r is the distance of 50 cm from the isocenter during the scan. dB/dt is measured

in units of Tesla per meter per second (T/m/s). The slew rates and gradient strengths above are

x-gradient, y-gradient, and z-gradient. Our results are safe, within the FDA threshold. See Figures

21, 22, 23.
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Figure 21: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in the constant

blood flow. (a), (b), and (c) show dB/dt for each axis. The blood flow is 1 ml/s.
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Figure 22: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in the normal

blood flow. (a), (b), and (c) show dB/dt for each axis.
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Figure 23: Results of Tp = 100 ms (blue) and Tp = 200 ms (red) of the simulation in the fast

heart rate of blood flow. (a), (b), and (c) show dB/dt for each axis.

4.4.2 Visualization Toolkit

Our approach is to augment an existing visualization system. The VTK is a freely available C++

class library for 3D graphics and visualization [51]-[53]. When we get each coordinate of points,

we want to create a sharply focused object library that could easily embed in our sphere pathway.

The sphere pathway can be built from small pieces. The key to toolkits is that pieces must be well

defined, with simple interfaces.

4.4.3 Simulation

The ability to handle a large dataset is a critical requirement. From past studies, we see that

ParaView is an open-source application with multi-platform visualization and scales well [54]. This
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tool provides a graphical user interface for the interactive exploration of large data sets. Our frame-

work is built on top of ParaView, an analysis optimized C++ designed and modern visualization

tool in post-processing, for advanced modeling and simulation codes.

Qt is one of the most important cross-platform application frameworks that is used for the

development of GUI programs. We developed web-enabled applications for deploying them across

personal computer desktops, mobile devices, and embedded operating systems without rewriting the

source code. See Figure 24. Red and white lines represent actual sphere maps and desired paths.

The red path has 8380 experimental data points when the sphere moved along a selected path.

Currently, the step size taken is 0.0001 and this small step size can be increased and determined to

a value where we do not lose much accuracy. The MRbot closely follows the vascular trajectory.
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Figure 24: Structure of Qt user interface
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5 Conclusion

In this research, we provided a comprehensive overview of three deep learning approaches for de-

tecting and segmenting left ventricles with a fast training speed. Firstly, we presented the BNU-net

architecture for constructing, training, and testing with batch-normalized. Experimental results

show that our methodology produces the best results in each one of the measures used in the

database of the MICCAI grand challenge (dice metric, sensitivity, and perpendicular distance)

compared with other groups’ results. Secondly, we proposed two deep learning architectures called

LNU-net and IBU-net for left ventricle segmentation. By combining multiple models trained with

the Sunnybrook dataset, our proposed models performed better performance of segmentation ac-

curacy. In addition, we identified the IBU-net network with instance-batch normalization that the

inputs stabled and shifted to maintain the network. This further verifies a real-time implementation

of the proposed method is sufficiently fast to be used for intraoperative registration of preoperative

cardiac anatomy [55].

The major contributions by modifying U-net in this study are listed as follows. First of all, the

normalization method was effective for improving dice scores in image segmentation tasks. Among

the widely-used normalization methods, we found that batch instance normalization was better

to perform segmentation. Secondly, ELU showed a better performance than ReLU, which led to

a slight but convincing improvement. With the combination of batch instance normalization and

ELU, we got a state-of-the-art segmentation dice mean of 0.96. Last but not least, the training

speed was accelerated with our current methods. The training time per epoch was reduced from

12s to 9s. Compared to the original version of U-net, our version displayed a higher dice score

and faster speed, which means we got better results with fewer computational resources. We hope

our work could be helpful for the practical image segmentation work in medical applications. We

intend for this work to relieve both experienced doctors and recovering patients in their fight against

cardiac diseases.

In this research, we also simulated a ferromagnetic core inside a vessel by exploiting the real-time

74



features. The core is implemented in C/C++ for streaming development, testing, and processing

the output. In the work, appropriate libraries (e.g., VTK) and two realistic blood flow waveforms

are incorporated in this simulation. We manipulated the MRbot with predefined paths which

achieve high accuracy propulsion and transport. Because of the experimental studies that require

a real-time operation, the platform was implemented on the Qt framework with software modules

performing specific tasks running on dedicated threads: PID controller, generation of VF, and

generation of MR gradient waveforms.

Deep learning-based methods for the fully automated left ventricle segmentation from short-axis

cine MR images can achieve good accuracy. However, with low quality of images, these methods

can still fail on medical image segmentation. Future studies can be included: improving the quality

of images, developing image processing algorithms, and developing algorithms that can give instant

feedback to correct and optimize the image acquisition process.
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