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Abstract

Hyperspectral imaging is a technique which uses hyperspectral sensors to collect spectral

information across the electromagnetic spectrum for each pixel in the image of a scene, with

the purpose of identifying materials and detecting objects. The recorded hyperspectral data

cover a wide range of wavelengths including visible and invisible light. The rich spectral in-

formation provides much more precise characteristics of materials, compared to natural color

images. With such a wealth of spectral information, hyperspectral images have a variety of

applications in remote sensing, such as target detection and land cover classification. In this

dissertation, new algorithms and methods for semi-supervised learning and deep learning

are proposed for hyperspectral image analysis. Specifically, a new semi-supervised dimen-

sionality reduction algorithm named Semi-supervised Local Fisher Discriminant Analysis

(SLFDA) is proposed to find a lower dimensional subspace for the high dimensional hy-

perspectral data, aiming to perform discriminant analysis on both labeled and unlabeled

samples. Another semi-supervised learning system is also proposed that uses active learn-

ing to detect and identify unknown classes in a scene. We also present a deep learning

method based on convolutional recurrent neural networks (CRNN) for hyperspectral data

classification. Furthermore, a novel semi-supervised deep learning method that combines

deep learning with semi-supervised learning is proposed for hyperspectral image classifica-

tion. With extensive experiments on several real-world hyperspectral image datasets, we

demonstrate that the proposed methods significantly outperform the state-of-the-art.
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Chapter 1

Introduction

1.1 Remote Sensing and Hyperspectral Imagery

Remote Sensing [1–3], in contrast to on-site observation, is the technology of obtaining

information about an object or area without making physical contact with the object. Re-

mote sensing usually uses the satellite-based or aircraft-based sensor technologies to detect

and classify objects on the surface of Earth based on the propagated signals (e.g., electro-

magnetic radiation). Generally, it can be split into active remote sensing (i.e., when a signal

is emitted by a satellite or aircraft and its reflection by the object is detected by the sensor)

and passive remote sensing (i.e., when the reflection of sunlight is detected by the sensor).

Multispectral and hyperspectral imaging are a type of passive remote sensing, which pro-

duces an image where each pixel has spectral information (usually with hundreds of bands)

that covers a wide range of wavelengths of light. Multispectral images are non-contiguous in

their coverage of the spectrum, while hyperspectral images usually have dozens to hundreds

of narrow contiguous bands. Thus hyperspectral images can provides much more precise

characteristics of materials, compared to natural color images which have only three visible

spectral bands (red, green and blue). With such a wealth of spectral information, hyper-

spectral images have a variety of applications in remote sensing, mineralogy, food science

and astronomy, etc. This thesis will focus on suing hyperspectral images for remote sensing

tasks, such as target detection, land cover classification and surveillance.
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1.2 Machine Learning for Hyperspectral Image Analysis

Recently, with more and more high quality hyperspectral data being available, hyper-

spectral images are playing a key role for earth observation. At the same time, there has

been a growing interest in development of machine leaning technologies for hyperspectral

image analysis for remote sensing applications including target detection, anomaly detection

and land cover classification.

The rich spectral information carried by hyperspectral images provides more precise mea-

surement of characteristics of different types of objects, while the complicated distribution

of the high dimensional data also makes it more difficult for effective analysis. For example,

for classification problems, due to the high dimensionality of the data, it’s hard to learn

an accurate classifier, especially when we do not have enough training samples. Even when

we have enough samples, the computation complexity is often high. High dimensionality

not only significantly increases the time and memory requirements of algorithms, but also

can degenerate their performance due to curse of dimensionality. Dimensionality reduction,

projecting the original data to a lower dimensional subspace while preserving most of the

intrinsic and discriminant information, is proven to be effective and efficient to handle high-

dimensionality of the data and serves as a pre-processing step for tasks such as classification,

regression and visualization. In general, there exists three types of dimensionality reduction

methods, supervised, unsupervised, and semi-supervised. Supervised dimensionality reduc-

tion methods such as Fisher discriminant analysis (FDA) [4, 5] and local Fisher discriminant

analysis (LFDA) [6] make use of the available labeled data to find low-dimensional embed-

dings that keep the discriminant information, while unsupervised methods such as principal

component analysis (PCA) [7] and locality preserving projection (LPP)[8] use data without

2



labels to find low-dimensional representations which try to keep the intrinsic structure of

the data. Semi-supervised methods, such as semi-supervised discriminant analysis (SDA)[9]

and semi-supervised local fisher discriminant analysis(SELF) [10], utilize both labeled and

unlabeled data to find the subspace, which can be very useful and effective when we have

limited labeled data and abundant unlabeled data, which is often the case in remote sensing

applications.

Active learning [11] is a special case of semi-supervised machine learning in which a

learning algorithm is able to interactively query label information for unlabeled data from

the user (or some other information source). Active learning can be meaningful in remote

sensing applications where unlabeled data are abundant but labeled data are very limited

and annotation work is difficult, expensive, and time consuming. The goal of active learning

is to achieve high classification performance by querying as few samples as possible from a

large unlabeled data pool. The key aspect of active learning is to create an effective query

strategy which is able to find the most informative samples and query a domain expert to

provide additional information about these samples. A variety of query strategies have been

proposed for active learning including uncertainty sampling, Query-By-Committee (QBC)

and expected model change, etc [11, 12].

Unsupervised learning is a type of machine learning algorithm used to draw inferences

from unlabeled data. The most common unsupervised learning task is cluster analysis, which

is used for exploratory data analysis to find hidden patterns or grouping in data. Common

parametric clustering algorithms include k-Means clustering, hierarchical clustering, and

Gaussian mixture models (GMM), which require the number of clusters known in advance.

On the other hand, non-parametric clustering methods such as the Dirichlet process mix-

ture model (DPMM) make no assumptions about the underlying number of clusters and

3



allows the number of clusters to grow as the the amount of data increases. DPMM [13–15]

introduces a non-parametric prior over the number of clusters and the number of clusters

are inferred automatically from the data. Due to this flexibility, it has been successfully

applied in various clustering applications where the number of clusters is unknown a priori

[16–19].

Deep learning, with the advances of computing power of computers and availability of

large scale datasets, has become an important research topic within machine learning com-

munity. Deep neural networks can often be trained with a single end-to-end model and do

not require traditional, task-specific feature extraction, which leads to their great success

in a variety of applications such as computer vision [20–24], speech recognition [25–28],

and natural language processing [29–31], etc. With the development of more advanced hy-

perspectral sensors, collecting large datasets has been easier than before and thus training

deep neural networks on hyperspectral data has become possible. Recently, deep learning

techniques, especially convolutional neural networks (CNN), have been introduced in the re-

mote sensing community especially for hyperspectral data classification [32–37] and achieved

state-of-the-art performance. Training a deep neural network for classification requires a

large amount of labeled samples to learn a large number of parameters. However, for hy-

perspectral image classification in remote sensing applications, we are usually provided a

large hyperspectral image with only a small amount of labeled samples available for training

– collecting labeled data is expensive and time-consuming. On the other hand, we always

have access to a large quantity of unlabeled data from a typical hyperspectral images. For

such datasets, semi-supervised learning [38] techniques, which make use of both labeled and

unlabeled data, hold promise.
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1.3 Dissertation Contributions

The remainder of this dissertation is organized as follows. In Chapter 2, 3, 4, 5, we

will go through the proposed algorithms and methods on semi-supervised learning and deep

learning for hyperspectral image analysis with extensive experiments on real-world datasets.

This dissertation focuses on semi-supervised learning and deep learning techniques for hy-

perspectral image analysis in remote sensing applications. The proposed semi-supervised

learning techniques discussed in Chapter 2 and 3 solve the classification problems when

we are given very limited labeled data but have access to abundant unlabeled data. The

deep learning approaches discussed in Chapter 4 solves classification problems by training

complex deep neural networks using large labeled datasets. Chapter ?? applies the deep

learning methods discussed in Chapter 4 for hyperspectral and LiDAR sensor fusion. The

semi-supervised deep learning method discussed in Chapter 5 solves classification problems

by training complex deep neural networks using small amount of labeled data and large

amount of unlabeled data. The main contributions of this dissertation are summarized as

follows.

• In Chapter 2, a semi-supervised dimensionality reduction algorithm called Semi-Supervised

Local Fisher Discriminant Analysis (SSLFDA) is proposed, aiming to perform discrim-

inant analysis on both labeled and unlabeled samples. SPLFDA performs discrimina-

tive analysis on unlabeled data by utilizing the pseudo labels generated by the Dirichlet

process mixture model (DPMM).

• In Chapter 3, an active learning system is developed. A new query strategy – local
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information density (LID) is proposed, which provides robust classification perfor-

mance with minimum manual labeling effort while simultaneously discovering un-

known classes. The unknown classes are discovered as new clusters when we apply

DPMM-based cluster analysis on the whole dataset including both labeled and unla-

beled samples.

• In Chapter 4, several deep neural networks are analyzed and a deep convolutional recur-

rent neural network (CRNN) is designed for hyperspectral data classification which

outperforms state-of-the-art. We also demonstrate how deep learning can be used for

multi-sensor image classification within the remote sensing context.

• In Chapter 5, a new semi-supervised deep learning framework using pseudo labels is pro-

posed, which involves pre-training a deep neural network using labeled and unlabeled

data with pseudo labels followed by fine-tuning using labeled data with true labels.

This semi-supervised deep learning framework provides significant improvement on

classification performance compared to state-of-the-art methods.
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Chapter 2

Semi-supervised Dimensionality Re-

duction

2.1 Introduction

The dimensionality of data is often very high in many modern applications such as

pattern recognition, machine learning and computer vision. High-dimensional data not

only significantly increase the time and memory requirements of algorithms, but also can

degenerate their performance due to curse of dimensionality and redundant dimensions. For

example, hyperspectral image provides spectral information of objects over a wide range of

the electromagnetic spectrum, usually with hundreds of bands, which makes analysis of

hyperspectral data a challenging problem. Dimensionality reduction, projecting the original

data to a lower dimensional subspace while preserving most of the intrinsic and discriminant

information, is proven to be effective and efficient to handle high-dimensional data and serves

as a pre-processing step for tasks such as classification, regression and visualization.

In general, there exists two types of dimensionality reduction methods, supervised and

unsupervised. Supervised dimensionality reduction methods such as Fisher discriminant

analysis (FDA) [4, 5] make use of the available labeled data to find low-dimensional embed-

dings that keep the discriminant information, while unsupervised methods such as principal
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component analysis (PCA) [7] use data without labels to find low-dimensional representa-

tions which try to keep the intrinsic structure of the data.

FDA is a popular supervised dimensionality reduction method, which seeks an embed-

ding transformation such that the between-class scatter is maximized and the within-class

scatter is minimized. FDA is known to work well if samples in each class follow Gaussian

distributions with a shared covariance structure. However, FDA tends to perform poorly if

samples in some class follow a multimodal distribution, which means that some class can

form several separate clusters. Within-class multimodality is often observed in a lot of prac-

tical machine learning applications. For example, in optical remote sensing, the distribution

of vegetation classes could be multimodal due to different illumination conditions. To ad-

dress this problem, local Fisher discriminant analysis (LFDA) [6] was proposed to preserve

local structure of the data by localizing the evaluation of the within-class and between-class

scatter. Furthermore, LFDA overcomes a critical limitation of FDA that the dimension of

the FDA embedding space must be less than the number of total classes. While LFDA

doesn’t have such limitations in general.

In many practical applications, the number of labeled samples are very limited while the

unlabeled samples are usually abundant, which is often the case in remote sensed hyperspec-

tral image analysis where it’s very expensive and time-consuming to acquire labeled pixels.

When only a small number of labeled samples are available, all supervised dimensionality

reduction methods (including FDA, LFDA, etc.) tend to have poor performance. The main

reason lies in that supervised dimensionality reduction algorithms tend to find embedding

spaces that are overfitted to the limited labeled samples. In such cases, it is helpful to make

use of the unlabeled samples which are usually abundant and easy to acquire. Thus, by uti-

lizing the labeled and unlabeled samples at the same time, semi-supervised dimensionality
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reduction methods can usually work better such as algorithms proposed in [9, 10, 39–42].

In [9], the authors proposed the semi-supervised discriminant analysis (SDA) which extends

the FDA. SDA used labeled data to maximize the between-class scatter and unlabeled data

to estimate the intrinsic geometric structure of the data by adding a regularizer term to the

within-class scatter. SDA suffers from the same limitation as FDA when dealing with mul-

timodally distributed data and it also ignores the relation between classes when using the

unlabeled data. Similar to [9], [39] proposed a semi-supervised linear discriminant analysis

(SSLDA) with an additional Tikhonov regularizer to the within-class scatter, which has the

same limitations as [9]. Both [40] and [41] first calculated the labels of the unlabeled data

via label propagation and then use the propagated labels to optimize the objective function

of standard supervised dimensionality reduction algorithms. In [42], the authors proposed

the semi-supervised discriminant analysis (SLDA) method which iterated the following two

steps until convergence: (1) computes projection to optimize the criterion of LDA given the

label matrix; (2) calculate the label matrix using the projected data. All methods involving

calculating the labels of unlabeled samples may suffer from the inaccurate calculation of

labels because of very small number of available labeled data. Thus the calculated labels

may be quite different from the true labels and the resulting mapping will not be optimal

for classification. [10] used LFDA to separate labeled samples and PCA to preserve the

global structure of the unlabeled samples, which may not be optimal for classification since

performing PCA on unlabeled samples may lose discriminate information.

In this paper, we propose a new semi-supervised dimensionality reduction method which

we refer to as semi-supervised local Fisher discriminant analysis (SLFDA). Similar to [10],

SLFDA separates (a small number of) labeled samples according to their labels by mini-

mizing the local within-class scatter and maximizing the local between-class scatter. The
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difference lies in that [10] used PCA in order to preserve the global structure of the unla-

beled data, but SLFDA tries to preserve the local cluster structure of the unlabeled samples

based on the pseudo (cluster) labels by minimizing the local within-cluster scatter and max-

imizing the local between-cluster scatter, which can be regarded as an unsupervised LFDA

(ULFDA) on the unlabeled data. In other words, we combine the supervised LFDA per-

formed on labeled data and the unsupervised LFDA performed on unlabeled data to obtain

our SLFDA.

The pseudo labels can be acquired through any clustering algorithm such as k-means,

spectral clustering and Gaussian mixture models (GMM), Dirichlet process mixture models

(DPMM), etc [43]. For parametric clustering methods like k-means, GMM and spectral

clustering, the number of clusters needs to be specified as a parameter, which is often not

an easy task. Thus in this work we choose to use DPMM for clustering due to its ability

to infer the number of clusters from the data. DPMM [13–15] introduces a non-parametric

prior over the number of clusters and allows the number of clusters to grow as the amount

of data increases. It has been successfully applied in various clustering applications where

the number of clusters is unknown a priori [16–19]. Markov chain Monte Carlo (MCMC)

sampling methods [44, 45] are usually used for DPMMs to infer the posterior distributions

of the desired latent variables. However, MCMC methods can be slow to converge and their

convergence can be difficult to diagnose. One class of alternatives is provided by variational

inference (VI) methods, which convert inference problems into optimization problems [46–

48], i.e., VI methods construct a variational distribution to approximate the latent variables’

posterior distribution by minimizing the Kullback-Leibler (KL) divergence between them.

Hence, a variational inference approach is employed for the DPMM based clustering in our

work.
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There are a few recent work in utilizing pseudo labels for unsupervised feature selection:

[49] used spectral clustering algorithms to learn the cluster labels of the unlabeled data

which were then used for feature selection. [50] learned pseudo cluster labels via local

learning regularized robust nonnegative matrix factorization. [51] incorporated learning

discriminative features with generating pseudo labels. All of these existing methods utilized

the concept of pseudo labels for unsupervised learning. However, to generate pseudo labels,

they all required to specify the number of clusters a priori and used standard clustering

algorithms such as k-means for the initialization of pseudo labels. Our proposed method

circumvents the need to know the number of clusters by making use of the DPMM which

infers the number of clusters from the data and allows more clusters to be found as data

size increases.

SLFDA is a linear method which may have bad performance when the data manifold

is highly nonlinear. Thus we also develop a kernel version of the proposed method for

nonlinear dimensionality reduction, which is called KSLFDA.

The remainder of this chapter is organized as follows. Section 2.2 provides a brief intro-

duction to the recently developed semi-supervised local Fisher discriminant analysis (SELF)

[10] for dimensionality reduction. Section 2.3 provides a brief review of the DPMM and the

variational inference algorithm. In section 2.4, we describe the proposed semi-supervised

dimensionality reduction method SLFDA in detail. Section 2.5 presents a non-linear ver-

sion of the proposed method based on the kernel trick. A description of three practical

hyperspectral benchmarking datasets, and the experimental setup and results validating

the proposed approach are detailed in 2.6. Finally, we summarize the key ideas and provide

concluding remarks in Section 2.7.
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2.2 Related Work

2.2.1 Notations

Let xi ∈ Rd be the ith sample vector (e.g., pixel) with the corresponding class label

yi ∈ {1, ..., c} and X = {x1,x2, ...,xN} ∈ Rd×N be the data matrix. Among all the samples

in X = [Xl,Xu], only a few samples Xl = {x1,x2, ...,xn′}(1 ≤ n′ ≤ N) are labeled and

the rest Xu are unlabeled. Let zi ∈ Rr(1 ≤ r ≤ d) be the low dimensional representation

of xi via a transformation matrix T ∈ Rd×r, which is calculated as

zi = T>xi. (2.1)

2.2.2 LFDA and RLFDA

LFDA can be formulated as an optimization problem [6, 10] expressed as

TLFDA = arg max
T∈Rd×r

[
tr

(
T>S(lb)T

T>S(lw)T

)]
, (2.2)

where S(lb),S(lw) ∈ Rd×d are the local between-class scatter matrix and the local within-

class scatter matrix. To construct S(lb) and S(lw), an affinity matrix A ∈ Rn×n is used to

quantify the affinity between samples, with Aij defined as

Aij = exp

(
−||xi − xj ||

2

σiσj

)
, (2.3)

where σi represents the local scaling around xi defined by σi = ||xi − xi(k)|| where x
(k)
i is

the kth nearest neighbor of xi in the original feature space.

Then S(lb) and S(lw) are defined as

S(lb) =

n′∑
i,j=1

W
(lb)
ij

2
(xi − xj)(xi − xj)> and (2.4)

S(lw) =

n′∑
i,j=1

W
(lw)
ij

2
(xi − xj)(xi − xj)>, (2.5)
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where n′ is the number of labeled samples and W (lb),W (lw) are n′ × n′ weight matrices

whose elements are defined as

W
(lb)
ij =


Aij(1/n

′ − 1/n′yi), if yi = yj

1/n′, if yi 6= yj

and (2.6)

W
(lw)
ij =


Aij/n

′
yi , if yi = yj

0, if yi 6= yj

, (2.7)

where n′yi denotes the number of samples in class yi.

Note that when Aij = 1 for all i, j (i.e., no locality), LFDA is reduced to FDA. Thus

LFDA is regarded as a localized variant of FDA [6].

The solution to Eq. (2.2) is given by a generalized eigenvalue problem expressed as

S(lb)ϕ = λS(lw)ϕ. (2.8)

We assume that the generalized eigenvalues are sorted in decreasing order as

λ1 ≥ λ2 ≥ ... ≥ λd. (2.9)

And {ϕi}di=1 are the corresponding generalized eigenvectors. Then the solution T (LFDA) is

analytically given as

TLFDA = (ϕ1,ϕ2, · · ·,ϕr). (2.10)

When we don’t have enough labeled samples for training, the local within-class scatter

matrix S(lw) may be singular and overfitting tends to happen. A typical way to prevent the

overfitting problem is to impose a regularizer to S(lw), which results in a regularized local

Fisher discriminant analysis (RLFDA) dimensionality reduction method. One of the most

popular regularizers is the Tikhonov regularizer [52] and the corresponding optimization
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problem can be written as

TRLFDA = arg max
T∈Rd×r

[
tr

(
T>S(lb)T

T>
(
S(lw) + αI

)
T

)]
, (2.11)

where the coefficient α controls the importance of the regularizer term and it usually takes

a very small positive value.

2.2.3 SELF

SELF combines LFDA and PCA for semi-supervised dimensionality reduction in the way

that the labeled data contributes to the projection via LFDA and PCA is used to preserve

the global structure of the unlabeled data.

More specifically, the solution to SELF is given by the eigenvalue problem expressed as

S(rlb)ϕ = λS(rlw)ϕ, (2.12)

where S(rlb) and S(rlw) are the regularized local between-class scatter matrix and the regu-

larized within-class scatter matrix defined as

S(rlb) = (1− β)S(lb) + βS(t) and (2.13)

S(rlw) = (1− β)S(lw) + βId, (2.14)

where β ∈ [0, 1] is a trade-off parameter which controls the importance of LFDA and PCA

in SELF and S(t) is the total scatter matrix defined as

S(t) =

N∑
i=1

(xi − µ)(xi − µ)>, (2.15)

where µ is the mean of all samples defined by

µ =
1

N

N∑
i=1

xi.

Unlike LFDA, S(rlw) in SELF will not be singular (as long as β > 0) since it already

has a regularier like term introduced by PCA.
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2.3 DPMM and Variational Inference

DPMM is a type of Bayesian non-parametric models, in which the number of mixture

components is not fixed in advance, but is determined by the model and data. The param-

eters of each component are generated by a Dirichlet Process (DP) [13], which can be seen

as a distribution over the parameters of some other distributions. Each sample xi is drew

independently in turn from the chosen component given the parameters as follows:

G ∼ DP (α,G0),

θzi ∼ G, and

xi|θzi ∼ p(xi|θzi).

The DP is parameterized by a base measure G0 and a concentration parameter α. Both the

base measure G0 and the sample G from the DP can be seen as probability distributions over

the component parameters θ. The concentration parameter α > 0 determines the variance

of the DP, i.e., it encodes how concentrated the samples from a DP will be around the base

measure G0. Intuitively, we can think of G as a randomly drawn distribution with mean

G0, and G will be more similar to G0 with a larger α. zi denotes the label of the mixture

component with which the observation xi is associated.

A popular representation of the DPMMs is the stick-breaking construction [53] where a

draw G from a DP is represented as

G =

∞∑
k=1

πkδθk , (2.16)

where θk are parameters of the kth component, and δθk is an indicator function centered at

θk (zero elsewhere except for δθk(θk) = 1). πk ∈ [0, 1] is the mixing proportions (weights)

15



of the kth component, which are produced as

vk ∼ B(1, α); πk = vk

k−1∏
l=1

(1− vl), k = 1, 2, ...,∞, (2.17)

where B is the Beta distribution and it can be verified that
∞∑
k=1

πk = 1. Intuitively, the

mixing proportions πk are obtained by successively breaking a “stick” of unit length into an

infinite number of pieces. The size of each successive piece is proportional to the length of

the rest of the stick and the proportion is given by an independent draw from a Beta(1, α)

distribution. To generate a sample xi, the component assignment variable zi is chosen

from a multinomial distribution parameterized by πk. In this work, we use a DPMM with

Gaussian mixtures which has the following likelihood functions as

p (x|{πk,µk,Rk}) =

∞∑
k=1

πkN
(
x|µk,R−1k

)
, (2.18)

where µk and Rk are the mean vector and precision matrix of the kth mixture component

and we write θk = {µk,Rk} for simplicity. Correspondingly, the base distribution G0 for

the DP is chosen to be a conjugate prior for the likelihood, which is the Normal-Wishart

(NW) distribution defined as

p(θk|G0) = p(µk,Rk|G0) = NW(µk,Rk|m0, r0,B0, ν0)

= N (µk|m0, (r0Rk)
−1)W(Rk|B0, ν0), (2.19)

where m0 is the mean vector and r0 is the relative precision for the Gaussian prior on µk,

B0 is the scale matrix and ν0 is the degrees of freedom for the Wishart prior on Rk, which

is defined as

p(Rk|B0, ν0) =
1

2
ν0d
2 |B|

ν0
2 Γd(

ν0
2 )
|Rk|

ν0−d−1
2 e−

1
2
tr(B−1Rk), (2.20)
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Figure 2.1: A graphical model representation of the DPMM, where the shaded and unshaded
nodes indicate observed and latent variables respectively, and plates indicate
repetition.

where Γd(·) is the d-dimensional gamma function. This Normal-Wishart distribution is a

conjugate prior on θk, which means that the posterior will have the same form given that

the likelihood is Gaussian.

In summary, DPMM generates observations according to the following generative pro-

cess:

1. For k = 1, 2, ...,∞:

(a) Draw vk ∼ B(1, α),

(b) Compute πk = vk
k−1∏
l=1

(1− vl).

2. For each component k = 1, 2, ...,∞:

(a) Draw precision Rk ∼ W(B0, ν0),

(b) Draw mean µk ∼ N (µ0, (r0Rk)
−1).

3. For each observation i = 1, 2, ..., N :

(a) Draw latent assignment zi ∼Mult(π),

(b) Draw xi ∼ N (µzi ,Rzi).

The Mult(π) represents a multinomial distribution with parameter π = {πk}∞k=1. The

graphical representation for this generative model is depicted in Fig. 2.1.

The generative model for DPMM described above generates observations given model

parameters. For inference, given data X, our goal is to infer the model parameters, i.e.,
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the cluster assignments Z = {z1, ..., zN} and Θ = {θ1, ...,θK}. Markov chain Monte Carlo

(MCMC) sampling approaches such as Gibbs sampling [16, 17, 19, 44] can be used to infer the

latent variables by obtaining samples from their posterior distribution p(Θ,Z|X). However,

MCMC methods can be slow to converge and their convergence can be difficult to diagnose.

To address this problem, variational inference (VI) methods [46, 48], which convert inference

problems into optimization problems, were developed for inference of DPMMs in [47].

VI aims to approximate the desired posterior p(V ,Θ,Z|X) by some variational distri-

bution q(V ,Θ,Z) by minimizing the Kullback-Leibler (KL) divergence between them. The

most common type of the variational distribution is the mean-field variational family, where

latent variables and parameters are mutually independent and each governed by a distinct

factor, which can be written as

q(V ,Θ,Z) = q(V )q(Θ)q(Z)

=

[∏
t

q(vt)

][∏
k

q(θk)

][
N∏
i=1

q(zi)

]
. (2.21)

In [47], a truncation level T is enforced for the variational distribution by setting q(vT =

1) = 1, which leads to πt = 0 for t > T and p(zn > T ) = 0. In other words, the upper bound

for the number of components is enforced to be T . Then we can rewrite the variational

distribution in Eq. 2.21 as

q(V ,Θ,Z) =

[
T∏
t=1

q(vt)

][
T∏
k=1

q(θk)

][
N∏
i=1

q(zi)

]
. (2.22)

The objective function, i.e., the KL divergence between the desired posterior and the

18



variational distribution, can be expressed as

DKL [q(V ,Θ,Z)||p(V ,Θ,Z|X)]

=
∑
Z

∫
Θ

∫
V
q(V ,Θ,Z)log

q(V ,Θ,Z)

p(V ,Θ,Z|X)
dV dΘ

= −
∑
Z

∫
Θ

∫
V
q(V ,Θ,Z)log

p(V ,Θ,Z)/p(X)

q(V ,Θ,Z)
dV dΘ

= −
∑
Z

∫
Θ

∫
V
q(V ,Θ,Z)log

p(V ,Θ,Z)

q(V ,Θ,Z)
dV dΘ + logP (X)

= F + logP (X), (2.23)

where the first term F is called the free energy and the second term is constant given X.

Thus minimizing the KL divergence can be done by minimizing the free energy, which can

be further simplified as

F = −
∑
Z

∫
Θ

∫
V
q(V ,Θ,Z)log

p(V ,Θ,Z)

q(V ,Θ,Z)
dV dΘ

= E
[
log

q(V ,Θ,Z)

p(V ,Θ,Z)

]
q(Z,V ,Θ)

=
T∑
k=1

E
[
log

q(θk)

p(θk)

]
q(θk)

+
T∑
k=1

E
[
log

q(vk)

p(vk)

]
q(vk)

+
N∑
i=1

E
[
log

q(zi)

p(xi|zi,Θ)p(zi|V )

]
q(zi,V ,Θ)

.

(2.24)

The minimization of the free energy with respect to the variational distribution can be

solved using the coordinate ascent variational inference (CAVI) algorithm [47, 54], which

iteratively optimize each factor in Eq. (2.21) while holding others fixed until the free energy

converges. For more detail about this parameter inference process, readers can refer to

[47, 54, 55]. Using the properties of conjugate priors, the update rules for each factor can

be easily calculated which is given as follows:

(a) For t = 1, ..., T :

q(vt) = B(at1, at2), (2.25)
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which is a Beta distribution with parameters at1 and at2 defined as

at1 = 1 +

N∑
i=1

q(zi = t), and (2.26)

at2 = α+
N∑
i=1

T∑
j=t+1

q(zi = j). (2.27)

(b) For k = 1, ..., T :

q(θk) = NW(rk,mk, νc,Bc), (2.28)

where

rk = r0 +Nk, (2.29)

mk =
Nkxk + r0m0

rk
, (2.30)

νk = ν0 +Nk, and (2.31)

Bk = B0 +NkSk +
Nkr0
rk

(xk −m0)(xk −m0)
>, (2.32)

and where we define

Nk =
N∑
i=1

q(zi = k),

xk =
1

Nk

N∑
i=1

q(zi = k)xi,

Sk =
1

Nk

N∑
i=1

q(zi = k)(xi − xk)(xi − xk)>,

(c) For i = 1, ..., N :

q(zi = k) =
exp(Sn,k)∑T

k′=1 exp(Sn,k′)
, (2.33)

where

Sn,k = E [log p(xi|θk)]q(θk) + E [log p(zi = k|V )]q(V ) . (2.34)

By iterating these updates, CAVI finds a local minimum of the free energy and the clustering

label zi for each sample xi is given by zi = argmaxkq(zi = k).
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2.4 The Proposed Dimensionality Reduction Method

Similar to SELF, the labeled samples Xl are separated based on the LFDA criterion in

SLFDA. Since we only have very limited number of labeled samples, we need to make use

of the unlabeled samples Xu to prevent overfitting. The way that SLFDA use unlabeled

samples is to obtain the pseudo labels of them, generated by a clustering algorithm, and

then use the pseudo labels in LFDA to preserve the local structure of clusters.

2.4.1 Pseudo Labels Generation from DPMM Based Clustering

Pseudo labels can be very informative in dimensionality reduction when we don’t have

real class labels. We assume that each cluster is mainly dominated by a major class and a

class can occupy more than one cluster. By separating different clusters in the embedding

space, different classes can also be well separated. Thus the quality of clustering result

is very important in our framework. Without prior knowledge of number of clusters, the

ability to discover the potential number of clusters is important. Some clustering algorithms

like k-means and GMMs may set the number of clusters to be the number of classes in the

labeled data set. However, this is not correct for many practical data where some classes

may have multimdal distribution which result in multiple clusters. For example, in optical

remote sensed hyperspectral images, the distribution of some class can be very complicated

and multimodal due to spatial variation and various illumination conditions. In such cases,

simply setting the number of clusters to be the number of classes is not the preferred way.

Thus we choose to use DPMM for clustering due to its robust performance and ability to

automatically infer the number of clusters, as described in section 2.3. DPMMs are expected

to discover more number of clusters than the number of classes, which turns out to be true

in our experiments.
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2.4.2 ULFDA Based on Pseudo Labels

The cluster labels Z = {z1, z2, ..., zN} for each data point, generated by the DPMM,

can be used as pseudo labels for supervised dimensionality reduction. We propose an un-

supervised LFDA (ULFDA) which uses LFDA on the unlabeled data with pseudo labels.

We define an unsupervised local between-cluster scatter matrix S(ulb) and an unsupervised

local within-cluster scatter matrix S(ulw) as

S(ulb) =
N∑

i,j=1

W
(ulb)
ij

2
(xi − xj)(xi − xj)> and (2.35)

S(ulw) =
N∑

i,j=1

W
(ulw)
ij

2
(xi − xj)(xi − xj)>, (2.36)

where W (ulb),W (ulw) are N ×N weight matrices with

W
(ulb)
ij =


Aij(1/N − 1/Nzi), if zi = zj

1/N, if zi 6= zj

and (2.37)

W
(ulw)
ij =


Aij/Nzi , if zi = zj

0, if zi 6= zj

, (2.38)

where Nzi denotes the number of samples in cluster zi and the affinity matrix A is defined

the same way as in LFDA.

The optimization problem for ULFDA can be formulated as

TULFDA = arg max
T∈Rd×r

[
tr

(
T>S(ulb)T

T>S(ulw)T

)]
. (2.39)

And the solution to ULFDA is given by an eigenvalue problem expressed as

S(ulb)ϕ = λS(ulw)ϕ. (2.40)

Since we have a lot of unlabeled data to use in ULFDA, S(ulw) will not have the sin-

gularity problem. By preserving the local cluster structure encoded in the pseudo labels,
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ULFDA can preserve more discriminative information than other unsupervised dimension-

ality reduction methods such as PCA.

2.4.3 SLFDA

Given a small number of labeled samples and abundant unlabeled samples, SLFDA seeks

to separate the labeled samples based on their labels and preserve the local cluster structure

of the unlabeled samples based on their pseudo labels. Similar to SELF, we define a semi-

supervised between-class scatter matrix and a semi-supervised within-class scatter matrix

as

S(slb) = (1− β)S(lb) + βS(ulb) and (2.41)

S(slw) = (1− β)S(lw) + βS(ulw), (2.42)

where S(lb) and S(lw) are defined in Eq. (2.4) and (2.5), and S(ulb) and S(ulw) are defined

in Eq. (2.35) and (2.36). β ∈ [0, 1] is a trade-off parameter which controls the importance

of labeled and unlabeled samples. In our implementation, a constant β = 0.5 is used to

balance the effects of labeled ans unlabeled samples.

The optimization problem for SLFDA is expressed as

TSLFDA = arg max
T∈Rd×r

[
tr

(
T>S(slb)T

T>S(slw)T

)]
. (2.43)

In other words, SLFDA seeks a transformation matrix T such that the semi-supervised local

between-class scatter in the embedding space is maximized and the semi-supervised local

within-class scatter in the embedding space is minimized. In addition, the semi-supervised

local within-class matrix will not be singular since we have abundant unlabeled data. Finally,

the solution to SLFDA is given by the eigenvalue problem expressed as

S(slb)ϕ = λS(slw)ϕ. (2.44)

An outline of the SLFDA algorithm is shown in Algorithm 1.

23



Algorithm 1 SLFDA

Input: Labeled samples Xl = {(xi, yi)}n
′
i=1, unlabeled samples Xu = {xi}Ni=n′+1, dimen-

sionality of the subspace r, hyperparameters of DPMM {α,m0, r0,B0, ν0}.
Output: Transformation matrix TSLFDA.
1. Cluster the whole data X = {xi}Ni=1 to generate pseudo class labels Z = {zi}Ni=1.
2. Calculate S(lb) and S(lw) using Xl according to Eq. (2.4) and (2.5).
3. Calculate S(ulb) and S(ulw) using X and Z according to Eq. (2.35) and (2.36).
4. Calculate S(slb) and S(slw) according to Eq. (2.41) and (2.42).
5. Solve the generalized eigenvalue problem in Eq. (2.44) and select r eigenvectors
associated with the r largest eigenvalues to form TSLFDA.

2.5 Kernelization for Nonlinear Dimensionality Reduction

So far, we have focused on linear dimensionality reduction methods, which may fail

to discover the intrinsic geometry when the data manifold is highly nonlinear. Using the

standard kernel trick [56, 57], we can obtain nonlinear variants of many linear dimensionality

reduction methods, such as Kernel PCA (KPCA), kernel LFDA (KLFDA) [6], and kernel

SELF (KSELF) [10]. The derivation of kernel ULFDA (KULFDA) is the same as the

KLFDA except that we use pseudo labels instead of true labels. In this section, we will

show how to perform the proposed SLFDA in the reproducing kernel Hilbert space (RKHS),

which gives us kernel SLFDA (KSLFDA).

For LFDA[6], which only uses the labeled data, let’s first define two graph Laplacian

matrices as

L(lb) = D(lb) −W (lb) and (2.45)

L(lw) = D(lw) −W (lw), (2.46)

where D(lb) and D(lw) are diagonal matrices with the i-th elements defined by: D
(lb)
ii =∑N

j=1W
(lb)
ij and D

(lw)
ii =

∑N
j=1W

(lw)
ij , and W

(lb)
ij and W

(lw)
ij are defined in Eq. (2.37) and

(2.38). Then the local between-class scatter matrix and the local within-class scatter matrix
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in LFDA can be rewritten using the graph Laplacian matrices defined as

S(lb) = XlL
(lb)X>l and (2.47)

S(lw) = XlL
(lw)X>l . (2.48)

Similarly, for ULFDA, the unsupervised local between-class scatter matrix and the un-

supervised local within-class scatter matrix can be expresses as

S(ulb) = XL(ulb)X> and (2.49)

S(ulw) = XL(ulw)X>, (2.50)

where the N ×N graph Laplacian matrices are defined by

L(ulb) = D(ulb) −W (ulb) and (2.51)

L(ulw) = D(ulw) −W (ulw). (2.52)

For later use, we make the graph Laplacian matrices of LFDA have the same size as

that in ULFDA (i.e., N ×N) by zero-padding as

L
(lb)

=

 L(lb) 0Nl×(N−Nl)

0(N−Nl)×Nl 0(N−Nl)×(N−Nl)

 and (2.53)

L
(lw)

=

 L(lw) 0Nl×(N−Nl)

0(N−Nl)×Nl 0(N−Nl)×(N−Nl)

 , (2.54)

where 0 is a matrix with all elements equal to 0. Then Eq. (2.47) and (2.48) can be

reformulated as

S(lb) = XL
(lb)
X> and (2.55)

S(lw) = XL
(lw)
X>. (2.56)
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For SLFDA, from Eq. (2.41) and (2.42), we can define the graph Laplacian matrices are

defined by

L(slb) = βL
(lb)

+ (1− β)L(ulb) and (2.57)

L(slw) = βL
(lw)

+ (1− β)L(ulw). (2.58)

Then the semi-supervised local between-class scatter matrix and semi-supervised local within-

class scatter matrix can be formulated as

S(slb) = XL(slb)X> and (2.59)

S(slw) = XL(slw)X>. (2.60)

Based on this, the generalized eigenvalue problem of SLFDA in Eq. (2.44) can be expressed

as

XL(slb)X>ϕ = λXL(slw)X>ϕ. (2.61)

When d ≤ N , any vector ϕ ∈ Rd can be expresses using some vector α ∈ RN as ϕ = Xα.

Then multiplying Eq. (2.61) by X> from the left-hand side yields

X>XL(slb)X>Xα = λX>XL(slw)X>Xα. (2.62)

Let’s define a N × N matrix K with the (i, j)-th element being Kij = x>i xj . Then Eq.

(2.62) becomes

KL(slb)Kα = λKL(slw)Kα. (2.63)

Now consider a nonlinear mapping φ(x) from the original space Rd to a reproducing

kernel Hilbert space H. Let k(x,x′) be the kernel function of H. A typical choice would be

the Gaussian kernel defined as

k(x,x′) = exp(−||x− x′||2/2σ2). (2.64)
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For other choices please refer to [57]. Based on the reproducing property, K is now a kernel

matrix in H with the (i, j)-th element defined as

Kij = 〈φ(x), φ(x′)〉 = k(x,x′), (2.65)

where 〈·, ·〉 denotes the inner product in H.

Let {αi}Ni=1 be the generalized eigenvectors associated with the generalized eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN of the generalized eigenvalue problem in Eq. 2.63. Then the N × r

transformation matrix is analytically given as

TKSLFDA = (α1,α2, · · ·,αr). (2.66)

Finally, a data point x can be embedded into the r dimensional subspace by

x→ z = T>KSLFDAK(:,x), (2.67)

where K(:,x) = [k(x1,x), ·, ·, ·, k(xN ,x)]>. An outline of the KSLFDA algorithm is shown

in Algorithm 2.

Algorithm 2 KSLFDA

Input: Labeled samples Xl = {(xi, yi)}n
′
i=1, unlabeled samples Xu = {xi}Ni=n′+1, di-

mensionality of the subspace r, hyperparameters of DPMM {α,m0, r0,B0, ν0}, Gaussian
kernel width σ.
Output: Transformation matrix TKSLFDA.
1. Cluster the whole data X = {xi}Ni=1 to generate pseudo class labels Z = {zi}Ni=1.
2. Calculate L(lb) and L(lw) using Xl according to Eq. (2.45) and (2.46).
3. Calculate L(ulb) and L(ulw) using X and Z according to Eq. (2.51) and (2.52).
4. Calculate L(slb) and L(slw) according to Eq. (2.57) and (2.58).
5. Solve the generalized eigenvalue problem in Eq. (2.63) and select r eigenvectors
associated with the r largest eigenvalues to form TKSLFDA.

2.6 Experiments

2.6.1 Datasets

We validate the proposed approaches with three hyperspectral imagery data sets: Uni-

versity of Pavia, University of Houston, and Galveston Wetland. The first two are standard
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benchmarking data sets collected over urban areas. The third hyperspectral imagery data

was collected by our lab to study wetland species composition, which is included to show

that the proposed methods also work for very different applications.

The first hyperspectral image dataset, the University of Pavia (UP), was collected using

the Reflective Optics System Imaging Spectrometer (ROSIS-3) sensor [58]. This dataset

has 103 spectral bands collected within the 430 nm− 860 nm wavelength range. The image

has a spatial size of 610× 340 pixels at a spatial resolution of 1.3 m per pixel. There are 9

land cover classes of interests considered in this dataset. A true color image and the ground

truth map are shown in Fig. 2.2.

(a) (b)

Unlabelled 

Area
Asphalt Meadows Gravel Trees

Metal Sheets Soil Bitumen Bricks Shadows

Figure 2.2: (a) True color image and (b) ground truth of the University of Pavia hyperspec-
tral imagery data.

The University of Houston (UH) hyperspectral image was acquired by the NSF-funded

National Center for Airborne Laser Mapping (NCALM) over the University of Houston
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campus and the neighboring urban area using the ITRES-CASI (Compact Airborne Spec-

trographic Imager) 1500 hyperspectral imager. The hyperspectral image has 15 classes and

contains 144 spectral bands over the 364nm−1046nm wavelength range. It has a dimension

of 1905× 349 pixels with a spatial resolution of 2.5m. Fig. 2.3 shows the true color image

of this data set with ground truth for 15 classes of interest.
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Parking 
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Tennis 
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Running 

Track

Figure 2.3: True color image of UH hyperspectral data with ground truth for 15 classes.

The third hyperspectral dataset, Galveston Wetland dataset, used in this work was

acquired by us in Galveston, Texas in October, 2014. It was acquired at ground-level (side-

looking views) over the wetlands using a Headwall Photonics hyperspectral imager which

provides measurements in 163 spectral bands with a spatial dimension of × pixels. The

image uniformly spanned the visible and near-infrared spectrum from 400nm − 1000nm.

The objects of interests are primarily vegetation species common in such wetlands.

Figure 2.4: True color image of the Galveston wetland data set with ground truth for 6
classes.
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2.6.2 Experimental Setup and Results

The efficacy of the proposed algorithms (ULFDA, SLFDA and their kernel variants)

and the state-of-the-art methods are evaluated by the classification performance on their

low dimensional embeddings using the three hyperspectral data sets described previously.

In each experiment, the training data set includes 5, 10 or 20 labeled samples per class

(which is a small number for hyperspectral image classification) and 200 unlabeled samples

per class, and the test set includes 100 samples per class. For supervised dimensionality

reduction methods, LFDA and RLFDA and their kernel variants, only labeled samples

are used to compute the transformation matrix. For unsupervised methods, PCA and

ULFDA and their kernel variants, all data (both labeled and unlabeled samples) are used

to find the transformation matrix, but the labels of the labeled samples are not used. The

transformation matrix for each algorithm is used to calculate the projections of the training

and test data. The projected features of the labeled samples are used to train a nearest-

neighbor classifier, which is then used to classify the test samples. For semi-supervised

algorithms, SELF and SLFDA and their variants, both labeled and unlabeled samples are

used to find the transformation. The dimension of the subspace for each algorithm is chosen

by cross validation using the training data. For kernel based methods, the optimal value

for the parameter of the Gaussian kernel function is also set by cross validation. Each

experiment is repeated 10 times with randomly subsampled training and test sets, and the

average accuracy is reported.

The parameter values used for each dataset are summarized next. For the University

of Pavia dataset, the values for various parameters for each methods are set as follows:

The regularization parameter α used in RLFDA and KRLFDA is 10−5. For all semi-

supervised methods, and their kernel versions, the trade-off parameter β is set to 0.5 to
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balance the importance of labeled and unlabeled samples. The dimension of the subspace

for all dimensionality reduction methods is set to 10. For the variational inference in ULFDA

and SLFDA, and their kernel versions, the truncation level T is set to be a number which

is at least two times the number of classes in the dataset. In our experiments, we use

T = 20 for this dataset. The value of the kernel parameter σ for different methods is set as:

0.5(KPCA), 0.5(KLFDA), 0.5(KRLFDA), 0.1(KULFDA), 5(KSELF), 0.6(KSLFDA).

For the University of Houston dataset, the values for various parameters for each methods

are set as follows: The regularization parameter α used in RLFDA and KRLFDA is 10−5.

For all semi-supervised methods, and their kernel versions, the trade-off parameter β is set

to 0.5 to balance the importance of labeled and unlabeled samples. The dimension of the

subspace for all dimensionality reduction methods is set to 15. The truncation level T is set

to 40 for this dataset. The value of the kernel parameter σ for different methods is set as:

0.5(KPCA), 0.5(KLFDA), 3(KRLFDA), 5(KULFDA), 1(KSELF), 8(KSLFDA).

For the Galveston Wetland dataset, the values for various parameters for each methods

are set as follows: The regularization parameter α used in RLFDA and KRLFDA is 10−5.

For all semi-supervised methods, and their kernel versions, the trade-off parameter β is set

to 0.5 to balance the importance of labeled and unlabeled samples. The dimension of the

subspace for all dimensionality reduction methods is set to 10. The truncation level T is set

to 20 for this dataset. The value of the kernel parameter σ for different methods is set as:

1(KPCA), 0.5(KLFDA), 0.5(KRLFDA), 0.8(KULFDA), 5(KSELF), 0.4(KSLFDA).

We show the classification performances for linear and kernel methods separately in

Table 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, from which we have the following observations:

1. SLFDA has a better performance than any of other linear dimensionality methods

and the performance of KSLFDA also surpasses other kernel methods on two benchmark
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hyperspectral data sets and one new data set.

2. LFDA has the worst performance in all cases due to the small amount of labeled

samples, which makes the local within-class scatter matrix S(lw) singular or ill-conditioned,

and overfitting may happen. With a Tikhonov regularizer added to S(lw), RULFDA becomes

less overfitted and achieves a significant improvement in performance compared to LFDA.

3. The benefits of pseudo labels are huge and significant, which is demonstrated by com-

paring the performances of PCA and ULFDA. PCA produces a subspace where the global

structure of the data is preserved, which may not be optimal for classification. With pseudo

labels, ULFDA can preserve more discriminative information between difference classes be-

cause each cluster generated by DPMM can be very pure. In other words, each cluster is

mainly dominated by only one class, so different classes are separated by separating different

clusters. Thus the subspace produced by ULFDA can be very beneficial to classification.

4. For semi-supervised algorithms, the proposed SLFDA/KSLFDA have much better

performances than SELF/KSELF, which again shows the benefits of pseudo labels because

the difference between SLFDA and SELF lie in the way of handling unlabeled data: the

former makes use of pseudo labels to preserve local cluster structure and the latter use

PCA to preserve global structure. We can also notice that, for most cases, the accuracy

of ULFDA/KULFDA is even higher that that of SELF/KSELF, which means that even

without labeled data, ULFDA can still generate very discriminative features provided by

the pseudo labels.

In ULFDA, SLFDA and their kernel versions, DPMM is employed for clustering and

the resulting number of clusters is usually larger than the number of classes in the dataset

because of multimodality of some classes. In our experiments, for the University of Pavia
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Table 2.1: Classification performances of linear methods on University of Pavia dataset:
mean accuracy (%) with standard deviation (%).

University of Pavia 5 labeled/class 10 labeled/class 20 labeled/class

PCA 71.6(1.9) 74.2(0.9) 77.2(1.1)
LFDA 43.5(3.3) 33.8(5.3) 72.6(2.5)

RLFDA 69.4(3.6) 73.7(2.1) 81.0(1.5)
SELF 73.7(1.7) 76.8(1.1) 79.5(1.6)

ULFDA(proposed) 77.1(1.1) 80.1(1.0) 84.0(1.1)
SLFDA(proposed) 78.9(1.4) 81.5(1.0) 85.4(1.1)

Table 2.2: Classification performances of kernel methods on University of Pavia data: mean
accuracy (%) with standard deviation (%).

University of Pavia 5 labeled/class 10 labeled/class 20 labeled/class

KPCA 69.0(1.5) 70.3(1.1) 71.3(1.0)
KLFDA 61.8(5.2) 71.7(4.6) 73.1(3.6)

KRLFDA 69.5(4.0) 76.9(2.4) 81.6(1.4)
KSELF 73.2(1.8) 76.3(1.1) 78.5(1.3)

KULFDA(proposed) 83.9(4.6) 84.6(2.8) 88.1(2.7)
KSLFDA(proposed) 84.9(1.8) 85.1(1.6) 88.2(1.8)

Table 2.3: Classification performances of linear methods on University of Houston data:
mean accuracy (%) with standard deviation (%).

University of Houston 5 labeled/class 10 labeled/class 20 labeled/class

PCA 65.4(1.6) 72.1(1.2) 78.3(1.1)
LFDA 36.3(10.2) 22.4(3.8) 73.8(1.2)

RLFDA 64.7(2.7) 63.3(2.8) 74.5(1.3)
SELF 68.6(1.7) 75.8(1.1) 83.1(1.1)

ULFDA(proposed) 68.1(1.8) 75.5(1.1) 81.8(0.7)
SLFDA(proposed) 69.3(2.3) 76.2(1.3) 86.9(1.4)

Table 2.4: Classification performances of kernel methods on University of Houston data:
mean accuracy (%) with standard deviation (%).

University of Houston 5 labeled/class 10 labeled/class 20 labeled/class

KPCA 60.2(1.7) 66.0(1.3) 71.1(1.1)
KLFDA 65.0(2.7) 72.7(2.1) 75.4(1.9)

KRLFDA 70.3(2.2) 76.2(2.1) 79.7(2.2)
KSELF 68.7(1.5) 76.1(0.9) 83.3(1.3)

KULFDA(proposed) 71.1(1.1) 77.7(0.8) 83.9(0.9)
KSLFDA(proposed) 71.7(1.6) 79.5(1.2) 85.9(0.8)

dataset which has 9 classes, DPMM finds 11.38 (1.77) clusters. For the University of Hous-

ton dataset which has 15 classes, DPMM finds 20.88 (1.96) clusters. For the Galveston
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Table 2.5: Classification performances of linear methods on Galveston Wetland data: mean
accuracy (%) with standard deviation (%).

Galveston 5 labeled/class 10 labeled/class 20 labeled/class

PCA 73.0(4.1) 78.0(1.8) 81.1(0.9)
LFDA 36.2(13.6) 34.5(6.7) 30.1(5.2)

RLFDA 78.9(3.4) 81.6(2.5) 80.3(2.4)
SELF 77.6(3.0) 81.8(1.7) 84.7(1.0)

ULFDA(proposed) 78.2(2.6) 82.5(1.8) 83.9(1.1)
SLFDA(proposed) 81.8(3.2) 85.2(1.7) 86.7(1.6)

Table 2.6: Classification performances of kernel methods on Galveston Wetland data: mean
accuracy (%) with standard deviation (%).

Galveston 5 labeled/class 10 labeled/class 20 labeled/class

KPCA 70.1(4.9) 74.6(1.7) 77.9(0.9)
KLFDA 62.7(2.2) 65.9(7.9) 79.8(3.7)

KRLFDA 70.8(3.7) 79.8(3.5) 84.9(2.3)
KSELF 77.3(2.9) 81.3(1.9) 84.1(1.0)

KULFDA(proposed) 81.4(5.6) 87.3(2.8) 87.4(2.2)
KSLFDA(proposed) 86.9(2.5) 87.8(2.2) 87.6(2.3)

Wetland dataset which has 6 classes, DPMM finds 12.75 (1.83) clusters. To show the ad-

vantage of DPMM, we also implement a k-means based ULFDA/SLFDA and compare their

classification performance in Table 2.7. It’s clear to see that DPMM based unsupervised

(ULFDA and KULFDA) and semi-supervised (SLFDA and KSLFDA) methods significantly

outperform the k-means based methods.

Table 2.7: Comparison of k-means based and DPMM based unsupervised and semi-
supervised dimensionality reduction methods on the Galveston Wetland dataset.

Galveston k-means DPMM

ULFDA 76.6(3.7) 78.2(2.6)
SLFDA 76.7(3.2) 81.8(3.2)

KULFDA 69.1(4.7) 81.4(5.6)
KSLFDA 80.2(2.9) 86.9(2.5)

2.7 Conclusions

Discriminant analysis is widely adopted in dimensionality reduction methods to extract

useful and discriminative features for classification. However, due to lack of enough labeled
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samples, supervised dimensionality reduction methods tend to overfit and fail to find the op-

timal lower dimensional embedding space, and traditional unsupervised methods are unable

to perform discriminant analysis. In this chapter, a novel semi-supervised dimensionality

reduction method is introduced which can extract discriminative information in unlabeled

data by making use of pseudo labels learned from DPMM based clustering. Experimental

results have shown that the proposed method significantly improves the classification perfor-

mance compared to the state-of-the-art methods on three practical hyperspectral imagery

data sets. To the best of our knowledge, this is the first work which introduces a semi-

supervised dimensionality reduction with the help of pseudo labels. The proposed method

has profound benefits for a variety of applications when we don’t have enough labeled sam-

ples for training but the unlabeled samples are quite abundant.
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Chapter 3

Active Learning with Unknown

Classes

3.1 Introduction

Active learning [11] is well-motivated in many machine learning problems such as re-

mote sensing [12, 59, 60], image retrieval [61], speech recognition [62] and natural language

processing [63, 64], where unlabeled data are abundant but labeled data is very limited and

annotation work is difficult, expensive and time consuming. The main goal of an active

learning algorithm is to achieve better classification performance by inducting as few sam-

ples as possible from an unlabeled data pool that are labeled by an annotator and added to

the training pool.

A key aspect of active learning is the construction of effective query strategy which is

designed to find the most informative samples and pose queries. A variety of query strategies

have been created for active learning including uncertainty sampling, Query-By-Committee

(QBC) and expected model change, etc [11, 12]. While there has been substantial work on

active learning for classification, active learning with unknown class discovery has received

considerably less attention. Traditional active learning systems assume that we have labeled

data for every class of interest, even if the number of training samples initially available per

class is small. However, we may encounter situations where we do not have labeled data
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for all classes, i.e., nothing is known about possibly new classes in the unlabeled data pool.

This is common, especially in remote sensing applications, where there may be unknown

or new classes in unexplored geospatial areas. In such scenarios, traditional active learning

will not work well with regards to the detection of the unknown classes. Thus, we aim to

design an active learning system which is capable of detecting unknown classes as fast as

possible and queries the most informative samples from them.

The Dirichlet process mixture model (DPMM) [13, 45, 65, 66], a non-parametric Bayesian

model, is well-suited to data with complex mixture structures. A widely used DPMM

is the infinite Gaussian mixture model (IGMM) [15] which overcomes the requirement of

the number of mixture components in traditional Gaussian mixture modeling (GMM) by

assuming that data comes from a Gaussian mixture model with an infinite number of mixture

components. Due to the flexibility of DPMM, it has been used in many applications [16, 18,

67, 68] for clustering and density estimation, etc. Thus, under DPMM, when a new class

emerges, we will have one new cluster assigned to it or a few clusters due to the possible

multimodal distribution of that class. We note that with remote sensing images, due to

spatial variability, new clusters do not have to be new classes — they may also come from

a known class from a different spatial area than the labeled data. In [69, 70] the new class

detection problem has been addressed and solved by utilizing a DPMM, but detecting the

new classes is just the first step to classification. In [69, 70] the new class detection problem

has been addressed and solved by utilizing a DPMM. Detecting new classes is the first step

to classification, so we carry it on to build an active learning framework with the ability of

unknown class detection.

In this work we integrate the new class detection problem into an active learning system

for efficient classification. Although some work has been done on this problem based on
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Figure 3.1: An illustration comparing different methods for active learning with an unknown
class.

DPMM in [71] which aims to discover rare classes in a pool of unlabeled images. The query

strategy in [71] was efficient only for rare class discovery and assumed that every class (both

known and unknown) occupies exactly one cluster. In our proposed framework, the unknown

classes do not have to be rare. Additionally, our framework does not make an assumption

about the number of clusters occupied by the known or unknown classes. This makes our

method suitable for remote sensing, where classes may have multi-modal distributions (e.g.,

due to spatial variability within such images classes can occupy more than one cluster).

The proposed query strategy — local information density (LID), is built on a combina-

tion of conventional uncertainty based active query strategy and a local density generated

by clustering, which makes it more suited for classification. Moreover, when new clusters

are detected, we give priority to query data from new clusters which can contain data from

either new classes or different spatial areas of known classes. That is, we wish to discover

new classes and explore new clusters of existing classes as quickly as possible, since both

cases lead us to query data considered to be informative for the underlying active learning

and image classification task. Fig. 3.1 gives an illustrative example demonstrating the effec-

tiveness of our proposed approach in dealing with unknown classes, compared to traditional

active learning approaches. Uncertainty sampling methods [11, 63] tend to query the most

uncertain samples for the classifier based on the current training set. The queried samples

are mainly located around the boundary between known classes, as illustrated in Fig. 3.1

(b). In such a scenario, the unknown class will correspond to “certain samples”, because
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it’s easy to classify them as the “square” class based on the current training set. Thus the

uncertainty method cannot effectively detect the unknown class. Information density (ID)

based method, as proposed in [63], considers uncertainty and density at the same time, aim-

ing to query uncertain samples that are representative of the unlabeled pool, i.e., have large

global density. It helps to prevent the system from querying outliers which usually have

high uncertainty but are not helpful to classification. A simulated results for ID is shown in

Fig. 3.1 (c), which failed to detect the unknown class because there is no guarantee that

samples of unknown classes have high information density, which is in fact data dependent.

For example, in a remote sensing scenario where the known classes are mainly vegetation

classes and an unknown class is spectrally different, such as an urban class, the unknown

class is more likely to have low information density because it is located far away from the

known ones. Thus, the value of information density will not be large because the density

term in the definition of information density, as described in section 3.2, has a relatively

low value. Thus in this case, ID based methods cannot effectively detect the unknown class.

However, the proposed LID method takes into account both uncertainty and a local density.

It queries uncertain samples which have a high local density which is calculated within clus-

ters generated by DPMM. When unknown classes are detected as new clusters by DPMM,

some samples of unknown classes will have a high local density within the new clusters.

Thus, by quickly identifying the new class as an emerging cluster, LID based method can

direct active queries from that emerging cluster, as illustrated in Fig. 3.1 (d).

Hyperspectral images provide spectral information of objects over a wide range of the

electromagnetic spectrum, usually with hundreds of bands, which yields precise character-

istics of materials in the scene, compared to natural color images and multispectral images

(often less than 10 bands). However, the rich spectral information also comes with a big
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challenge, owing to the high dimensionality especially when using statistical model for pro-

cessing or analyzing such data. Dimensionality reduction is hence commonly undertaken

for feature extraction of hyperspectral images. Popular methods include unsupervised algo-

rithms such as principal component analysis (PCA), Isomap [72], locally linear embedding

(LLE) [73, 74] and locality preserving projection (LPP) [75] and supervised algorithms such

as Fisher linear discriminant analysis (LDA) and local Fisher discriminant analysis [6] and

local tangent space alignment (LTSA) [74, 76]. There are also semi-supervised dimension

reduction methods such as Semi-supervised local Fisher discriminant analysis (SELF) [10]

but they have not been developed for or studied in the context of unknown class discovery.

In our framework, we employ SELF as a preprocessing, with the goal of maximizing sepa-

ration between known classes in a lower dimensional subspace, while also trying to preserve

the local structure of unlabeled samples which may contain data of unknown classes — i.e.,

we want to find a subspace where we can discriminate data from known classes without

confusing data from unknown classes.

The remainder of this chapter is organized as follows. Section 3.2 provides a brief

literature review about related work. The proposed framework is described in detail in

section 3.3. The experimental datasets, setup and results validating the proposed approach

are detailed in 3.4. Section 3.5 summarizes the key ideas and experimental results in this

work and provides concluding remarks.

3.2 Related Work

3.2.1 Active Learning

In general, an active learning system starts with a small labeled dataset L. It iteratively

selects the most informative samples from the unlabeled dataset U , queries their labels
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(which is done by huaman annotator in real world application) and adds them to L, aiming

to improve the classification performance with the least number of queried samples. Three

main scenarios for active learning problem have been considered in the literature — (i) pool-

based sampling, (ii) stream-based selective sampling, and (iii) membership query synthesis.

Since pool-based scenario is the most widely used used in remote sensing, we only consider

this scenario where samples are queried from a large unlabeled data pool and labeled by a

human annotator. The key task in active learning involves evaluating the informativeness

of each unlabeled sample based on an appropriate query strategy φ(·).

For posterior probability based active learning methods, one of most common query

strategies for evaluating informativeness is uncertainty sampling [77] which includes least

confidence (LC), breaking ties (BT), entropy, etc. The least confidence strategy queries the

instance for which the current model has the least confidence in its most likely labeling,

which is defined as

φLC(x) = 1− P (ŷ|x), (3.1)

where ŷ is the most probable class label for x, i.e., ŷ = argmaxyP (y|x).

Breaking ties queries the instance with the smallest difference between posteriors for its

two most likely labelings, which is defined as

φBT (x) = P (ŷ1|x)− P (ŷ2|x), (3.2)

where ŷ1 and ŷ2 are the first and second most probable class labels for x under the current

model.

Entropy based uncertainty sampling queries the instance which has the largest entropy:

φE(x) = −
Nc∑
j=1

P (yj |x)logP (yj |x), (3.3)
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where Nc is the total number of possible class labels.

Query-By-Committee (QBC) [78], another active learning framework, measures informa-

tiveness based on the degree of disagreement between a committee of classification models.

Another framework is the expected model change, which queries the instance that will result

in the biggest change to the current model if added to the labeled set. An example of this

framework is the expected gradient length (EGL) [79].

However, the conventional active learning frameworks such as those described above have

a drawback that they are prone to querying outliers which typically have high uncertainty

and large disagreement between a committee. For uncertainty sampling, outliers and the

most uncertain samples lie on the classification boundary and they are not “representative”

of other samples in the distribution, thus knowing their labels is unlikely to improve the

classification performance on the data as a whole. Representativeness measures the ability

of a sample to express the distribution of the whole data. Thus outliers with high informa-

tiveness are not representative of the unlabeled samples — as a result, they are not beneficial

for classification. Similarly, QBC and EGL will spend time querying possible outliers simply

because they are controversial or they are expected to impart the most significant change to

the model. This is commonly seen during the initial query steps of active learning, when we

do not have enough labeled samples, especially for classifiers built from generative models.

To address this, information density (ID) as a query strategy was proposed in [63],which

aims to combine informativeness and representativeness, and is defined as

φID(x) = φE(x)

 1

|U| − 1

∑
x(u)∈U\x

sim(x,x(u))

β

, (3.4)

which implies that the informativeness of an unlabeled sample x is weighted by its average
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similarity to all the other samples in U with a parameter β that controls the relative im-

portance of the density term. |U| in (3.4) denotes the number of samples in the candidate

dataset U . φE in (3.4) serves as the “base” informativeness measure which can be an un-

certainty criterion or QBC, etc. Here, we choose entropy to be the “base” measure. Two

commonly used similarity measures are the exponential Euclidean distance defined as

sim(x,x(u)) = exp

(
−||x− x

(u)||
σ2

)
,

and the cosine similarity defined as

sim(x,x(u)) =
x · x(u)

||x|| × ||x(u)||
.

In our experiments, we find that the exponential Euclidean distance performs slightly better

than the cosine distance. Thus the exponential Euclidean distance is employed in this

work. However, ID has a drawback — samples with high information density may not be

sufficiently representative for every class, even though they are representative for the entire

unlabeled dataset. Thus such a query scheme may focus on querying data from only a few

classes which have much higher density than the other classes, making it less competitive

for classification and new class discovery.

3.2.2 Active Learning with New Class Discovery

New class (novelty) detection can be described as the identification of new or “unknown”

data that a machine learning system was not aware of during training. The ability to detect

new classes can have a significant impact in remote sensing applications, where the unlabeled

data may contain information about objects that were not present in the labeled data.

Since DPMMs are capable of fitting data with an unknown number of mixtures, it is

possible to differentiate between known and unknown classes by learning the clustering

structure of the labeled and unlabeled data. If unlabeled data contains new classes, they
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will be assigned to new clusters that are different from those of the known classes. This

has been done in [69] and [70]. Since our final goal is classification, we need to acquire

labeled data of new classes after detecting them. Thus in this work, we embed the new

class discovery problem in an active learning framework, aiming to improve classification

performance with the least possible query effort for both known and unknown classes.

Recent work [71] for this problem based on DPMM is aimed at discovering rare classes

in a pool of unlabeled images. The query strategy in [71] was constructed on the clustering

result, which makes it efficient in class discovery. However, it is assumed that the unknown

classes are rare and every class (including known and unknown) occupies one cluster, which

are not valid assumptions in many remote sensing applications. First, although rare un-

known classes can be commonly encountered in various applications, with remotely sensed

image analysis over wide geographic areas, we can expect scenarios where unknown classes

can also be prevalent (not rare). Second, for remotely sensed hyperspectral images, the

properties of some classes may have large spatial variability, which makes their distribution

possess a complex form (e.g., a multi-modal distribution). Thus, the initial training set of

a known class may only contain samples from a specific region with low spatial variability

while the unlabeled set may contain candidate samples from other unexplored regions with

a different distribution than the samples in the training set. In this case, the samples in

the unlabeled pool can form a new cluster by DPMM which is different from the cluster

occupied by the samples of the same class in the training set. It is expected that these un-

labeled samples are also useful for classification. The method we propose not only detects

new classes but also unexplored areas of known classes which contains useful information for

classification not currently available in the training dataset. It is important to note that not

all new classes may be quickly and effectively detected. Note that there may be scenarios
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where some new classes may not be quickly detected (for e.g., if their spectra is very similar

to some known class, they may merge into the same cluster).

3.3 The proposed framework

The flowchart of the proposed active learning system with a query strategy based on

local information density is shown in Fig. 3.2. In the proposed framework, SELF is used for

semi-supervised dimensionality reduction of the hyperspectral imagery. We expect SELF

to be particularly appropriate for our problem, since the unsupervised (LPP) component

in SELF will ensure that dominant information pertinent to missing classes is not lost in

an otherwise supervised dimensionality reduction approach (with the intuition that not

accounting for missing classes in a completely supervised feature reduction approach will

result in sub-optimal transformations wherein information about missing classes may be

potentially lost). Following this, the unlabeled data are clustered via DPMM and local

density for each candidate is calculated based on the clustering result. At the same time,

entropy for each candidate is computed from the posterior provided by the classifier. Queries

are then made based on local information density which is computed from local density and

entropy. Finally, the queried samples are added to the training set and removed from the

candidate set.

In the following discussion, clustering is applied to data X in a lower dimensional sub-

space obtained from SELF. Compared to a static projection (such as LDA) as is commonly

utilized in traditional classification, we have a dynamic projection which is refined after each

step of active learning. As more data from both known and unknown classes are labeled

and added to the training set, we will reach a better subspace given by SELF.
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Figure 3.2: Flowchart of the proposed active learning framework.

3.3.1 Clustering based on DPMM

Gaussian mixture models (GMMs) can successfully capture the complex multi-modal

statistical structure of various data such as remote sensing [18, 67] and audio data [80],

etc. However, GMM assumes the number of Gaussian components to be known and uses

expectation maximization (EM) algorithm for parameter inference. IGMM doesn’t have this

limitation, by assuming the number of Gaussian components to be infinity. Given the data,

the number of components can be inferred automatically by Markov Chain Monte Carlo

(MCMC) [44] sampling methods. IGMM, as defined in [15], is a special case of a Dirichlet

process mixture, where the mixture components are assumed to be Gaussian distributed.

In our framework, DPMM is used to cluster data in both the labeled set L and unlabeled

set U , as shown in Fig. 3.2. Readers can refer to Section 2.3 of Chapter 2 for more details

about DPMM based clustering.

3.3.2 Query Strategy based on Local Information Density

The information density described in Section 3.2 has a drawback that samples with

high information density may not be representative of every class even though they are
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representative of the entire unlabeled dataset. Hence, it may focus on querying data from

only a few classes which have much higher density than the other classes, making it less

competitive. In this work, a local information density is proposed here to address this

problem, which aims to query samples that are both informative and representative of every

class in U . In the information density strategy, the density of x is calculated by its average

similarity to all the other samples in the unlabeled data pool U . In the proposed local

information density strategy, the density of x is calculated by its average similarity to its

neighboring samples and the neighborhood is defined by clusters generated by DPMM.

Since both labeled samples in L and unlabeled samples in U are clustered together, some

clusters generated by DPMM contain both labeled and unlabeled samples and the others

only contain unlabeled samples. Those containing only unlabeled samples are considered to

be new clusters. These samples in new clusters are either from unknown classes or known

classes in unexplored regions of an image due to spatial variability.

Given the cluster assignments of all the unlabeled candidates in U , the local density for

an unlabeled candidate x with cluster label c can be computed as

φLD(x) =
1

|Uc| − 1

∑
x(u)∈Uc\x

sim(x,x(u)), (3.5)

where Uc represents all the unlabeled samples with the same cluster assignment c and |Uc|

denotes the size of cluster c.

When new clusters emerge, in many applications, it is highly desirable to prioritize new

clusters, to enable fast discovery. Hence, local densities are computed only for the samples

in new clusters, while the local densities for all the other samples are set to be zero. If no

new cluster is found, local densities will be calculated for every unlabeled sample in U . Thus
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our local information density (LID) is formulated as

φLID(x) =


φLD(x)Inew(x), if new cluster exists

φE(x) (φLD(x))β , otherwise

(3.6)

where the indicator function Inew(x) equals to 1 only when x comes from a new cluster and

0 otherwise. As in information density, we choose entropy φE(·) to be the base measure.

The parameter β which controls the relative importance of the local density term can simply

be set to be 1 to make the two terms equally important. In our implementation, the value

of β is set in an adaptive way such that the relative importance of the local density term

φLD(x) gets lower as more and more samples are labeled. Thus we use a simple scheme to

achieve this using

β =
|U|

|U|+ |L|
. (3.7)

The information density (ID) based query strategy defined in Eq. (3.4) that combines

the entropy with a global density term which is calculated by averaging the similarities

between x and all the other samples in the unlabeled pool U . It aims to query globally rep-

resentative samples without emphasizing new classes. For our proposed LID based strategy

queries, when new clusters are detected, it queries samples from the new clusters. When no

new clusters exists, it queries uncertain samples with large local density computed in local

clusters, which are locally representative and more beneficial for classification.

3.4 Experiments

3.4.1 Datasets

The first dataset used in this work, the University of Houston (UH) dataset which has

been described in Section 2.6.
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The second dataset, the Indian Pines hyperspectral image, was acquired using ProSpec-

TIR instrument in May 2010 over an agriculture area in Indiana, USA. The image has

1342× 1287 spatial dimension with 2m spatial resolution. It consists of 180 spectral bands

over the 400nm− 2500nm wavelength range. The 19 classes contain agriculture fields with

different residue cover. Fig. 3.3 shows the true color image of the dataset with the corre-

sponding ground truth, and Fig. 3.4 shows the mean spectral signatures (reflectance) of

these 19 classes.

(a) (b)

Unlabelled 

Area
Corn-high

Corn-

middle
Corn-low

Soybean-

high

Soybean-

middle

Soybean-

low
Residues

Grass/

Pasture
Grass

Wood-

uniform

Wood-

rugged
Highway

Local 

Road

Power 

Station

Power 

Towers

Wheat Hay

Houses/

Buildings

Urban 

Areas

(c)

Figure 3.3: The Indian Pines dataset: (a) True color image and (b) ground-truth with class
names in (c).
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Figure 3.4: Mean spectral signatures of the 19 classes in Indian Pines dataset.
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3.4.2 Experimental Setup

For dimension reduction, we use SELF to reduce the dimensionality of the two datasets

to 15 and a constant γ = 0.5 in SELF is used to balance the effects of LFDA and LPP. To

choose the number of features to retain after SELF, we use a cross validation method (leave

one out) on the training data and we find 15 to be an optimal value for our datasets. For

the active learning setup, 20 samples per class are randomly selected from the dataset to be

the initial training set and 150 samples per class are randomly selected to be the candidate

dataset. The initial number of clusters in DPMM is set to be the number of known classes

and we take the sample mean and sample covariance of the training samples as the parameter

initialization of each Gaussian component, which is a reasonable choice for 20 samples per

cluster when the dimensionality of the data is 15. We run active learning for 80 iterations

with a batch size B = 5 (number of samples queried at each iteration). For validation,

200 samples per class are chosen to be the test dataset on which the classifier is evaluated

for each query step of active learning. For each query step of active learning, labeled and

unlabeled samples are clustered via DPMM using 100 iterations of Gibbs sampling per run.

To simulate scenarios where unknown classes occur in the unlabeled candidate pool,

randomly selected classes are removed from the initial training set. Typically, it is expected

that for most practical applications, at most only a few classes are possibly unknown.

Hence, in our experiments, for the UH dataset, we investigate three cases where the number

of randomly removed classes ranges from 0 to 2 and for Indian Pines dataset, we remove

0 to 3 classes. When no class is removed from the initial training set, it reduces to a

traditional active learning problem. A Bayes classifier is utilized for the classification part

where the kernel density estimation (KDE) algorithm is used to estimate the probability

density functions (pdf) of each class by placing a Gaussian kernel around each training
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sample. After each active learning query, KDE updates the pdf by adding one more Gaussian

kernel around the new labeled sample. Note that our framework can be applied to any

classifier (e.g., support vector machine or logistic regression and their variants). However,

since we require posterior probabilities to calculate entropy, in this work, we use KDE due

to its simplicity and computational efficiency.

Five active learning query strategies are implemented and compared in our experiments

— random sampling (RS), breaking ties (BT), entropy-based uncertainty sampling (En-

tropy), information density (ID) and the proposed local information density (LID). Ran-

dom sampling is implemented such that unlabeled samples are randomly selected from the

candidate set U at each query step, labeled and added to the training set L.

3.4.3 Results

3.4.3.1 Results for University of Houston Dataset

When all the classes in the candidate set are known, the problem reduces to a traditional

active learning problem. We evaluate the performance of each query strategy by construct-

ing learning curves that plot the overall accuracies across all classes as a function of the

number of queries made, which is shown in Fig. 3.5 where each curve is averaged across 10

experiments with different randomly selected initial training set, candidate set and test set.

The proposed LID based query strategy achieves the best performance for this traditional

active learning setting in the sense that it starts with a higher rate of classification improve-

ment. Also note that the overall accuracy for the uncertainty based strategies (BT and

Entropy) and information density drops during the first few query steps, which illustrates

the point that representative samples are more important for classification during the initial

and crucial stage of active learning where we do not have enough labeled samples.

When we have one unknown class in the candidate set, 30 experiments are implemented
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Figure 3.5: Learning curves of overall accuracy for all query strategies without unknown
classes, UH dataset.
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Figure 3.6: Learning curves with 1 unknown classes: (a) Overall accuracy. (b) Class discov-
ery (number of classes found). (c) Accuracy for the unknown class, UH dataset.

and each of them has one randomly selected class removed from the starting training set

L. For the case of two unknown classes, 40 experiments are implemented with each of them

having two randomly selected classes removed from the starting training set L. For both

cases, we plot the learning curves of the overall accuracies, class discovery (number of classes

found) and the average accuracies for the corresponding unknown class in Fig. 3.6 and Fig.

3.7, which are computed by averaging the results across all the experiments. Again, in Fig.

3.6 (a) and Fig. 3.7 (a), we observe that LID achieves higher classification improvement

at the beginning and reaches a higher accuracy upon convergence. More importantly, the

proposed method discovers the new class much faster and significantly outperforms the other

methods in classifying the new class, as shown in Fig. 3.6 (b), (c) and Fig. 3.7 (b) , (c). In

more detail, in the first 20 steps of active query, LID based method achieves an improvement

of 10% ∼ 40% on the accuracy of the new class than the other baseline methods and finally
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Figure 3.7: Learning curves with 2 unknown classes: (a) Overall accuracy. (b) Class discov-
ery (number of classes found). (c) Average accuracy for the unknown classes,
UH dataset.

they all converge to the same level.

As discussed in Section 3.2 and 3.3, both ID and LID choose entropy as the base

measure in their query strategies, LID achieves improvements over entropy but ID degrades

the performance of entropy. The reason for this should be that ID only queries uncertain

samples with high global density, which may not be representative for each class. On the

other hand, LID queries uncertain samples with high local density, which help the KDE

based Bayes classifier better estimate the distributions of each class and achieves better

classification results.

Another phenomenon we can observe from these figures is that uncertainty and informa-

tion density based query strategies (BT, Entropy, ID) are performing better than random

sampling in overall classification for all cases in Fig. 3.5 to 3.7. However, as shown in

Fig. 3.6 (b) and Fig. 3.7 (b), they are not always better than random sampling in detect-

ing unknown classes due to the fact that uncertainty and information density based query

strategies may treat the unlabeled samples of unknown classes as less informative than some

samples of known classes while random sampling treat every unlabeled sample equally. Thus

random sampling can occasionally pick up the unknown classes faster than uncertainty and

information density based query strategies. However, the proposed LID based approach still

53



outperforms all other baseline methods in detecting and classifying the unknown classes.

Since the performance of proposed query strategy depends on the clustering quality of

the DPMM, we show the clustering quality using the normalized mutual information (NMI)

[81], a standard method of measuring clustering quality, across all the active learning steps

in Fig. 3.8. As illustrated, the clustering performance becomes better as more samples are

queried because a more accurate parameter initialization and a better subspace from SELF

results, when the training sample size grows.
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Figure 3.8: Learning curves of the normalized mutual information for the cluster results
given by DPMM using UH data set with one unknown class.

3.4.3.2 Results for Indian Pines Dataset

We perform similar experiments for the Indian Pines hyperspectral dataset and obtained

similar results shown in Fig. 3.9 to 3.12 where the number of unknown classes increases

from 0 to 3. In all cases, the proposed LID based query strategy achieved the best overall

classification accuracy due to the reason that the locally representative samples it selected

are more useful for classification when we do not have enough training samples, no matter

whether new classes exist or not in the unlabeled candidate pool. When new classes emerge,

the proposed method will first focus on querying samples which are assigned to new clusters

by the Dirichlet process mixture model and are more likely to be new classes. Thus it
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significantly outperforms the other methods in discovering and classifying the unknown

classes. In particular, in the first 20 steps of active query, LID based method achieves an

improvement of about 10% − 30% in the accuracy of the missing classes, compared to the

other methods. We should keep in mind that the new clusters found by the DPMM do

not have to be new classes especially in remote sensing applications. New clusters usually

emerge at spatial locations which are different from the labeled data, so they can either be

new classes or correspond to unrepresented areas of known classes due to spatial variability

of remote sensing images, which results in multimodal distributions of certain classes.
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Figure 3.9: Learning curves of overall accuracy for all query strategies without unknown
classes, Indian Pines dataset.

0 10 20 30 40 50
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Number of queries

O
ve

ra
ll 

A
cc

ur
ac

y

 

 

RS
BT
Entropy
ID
LID

0 5 10 15 20 25 30
17.5

18

18.5

19

19.5

Number of queries

N
um

be
r 

of
 c

la
ss

es
 f

ou
nd

 

 

RS
BT
Entropy
ID
LID

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of queries

A
cc

ur
ac

y 
fo

r 
U

nk
no

w
n 

C
la

ss

 

 

RS
BT
Entropy
ID
LID

(a) (b) (c)

Figure 3.10: Learning curves with 1 unknown classes: (a) Overall accuracy. (b) Class dis-
covery (number of classes found). (c) Accuracy for the unknown class, Indian
Pines dataset.

3.4.3.3 Visualizing the Detection of New Classes

To demonstrate the clustering performance on an image, we crop a region from the UH

which contains three classes as shown in Fig. 3.13 (a): class 2 (“Grass-stressed”), class
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Figure 3.11: Learning curves with 2 unknown classes: (a) Overall accuracy. (b) Class discov-
ery (number of classes found). (c) Average accuracy for the unknown classes,
Indian Pines dataset.
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Figure 3.12: Learning curves with 3 unknown classes: (a) Overall accuracy. (b) Class discov-
ery (number of classes found). (c) Average accuracy for the unknown classes,
Indian Pines dataset.

3 (“Grass-synthetic”) and class 15 (“Running Track”). We remove the three classes one

at a time (resulting in different “unknown” classes each time). When class 15 is removed,

clustering result (including known and unknown classes) and detected new class are shown

in Fig. 3.13 (b) and (e). Similarly, results when class 3 is removed are shown in Fig. 3.13

(c) and (f); results when class 2 is removed are shown in Fig. 3.13 (d) and (g). As we

can see in all cases, different classes are separated into different clusters (Fig. 3.13 (b) to

(d)) and the unknown class is detected as a new cluster successfully (Fig. 3.13 (b) to (d)).

Note that if there are isolated small clusters comprising of very few pixels, they are likely

to belong to outliers, and we ignore them.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.13: Visualizing the detection of new classes.

3.5 Conclusions

The new active learning paradigm introduced in this work simultaneously improves

classification performance and discovers unknown (missing) classes with the least effort of

labeling/annotating — missing or unknown classes are commonly encountered in machine

learning tasks, particularly image analysis of remotely sensed data where it is of great

value to find and label new classes and unexplored regions of existing classes (that may

exhibit variability in the spectral reflectance characteristics). The framework achieves this

goal by employing local information density as the query strategy where the local density

is obtained via DPMM based clustering. The experimental results have shown that the

proposed method provides significantly better performance than the other commonly used

active learning frameworks both in classification accuracy and detection speed of unknown

classes. To the best of our knowledge, this is the first work that demonstrates a successful

active learning paradigm that seeks out discovery of unseen classes. This has profound

benefits for a variety of applications, including image analysis of big geospatial data cubes,

where it is often not possible to have every class on the ground represented in the initial
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training library. Such an approach is also expected to be particularly advantageous to

geospatial images where class variability (e.g., due to significant illumination differences such

as classes under shadows) can lead to multi-modal distributions which are not effectively

accounted for in traditional labeled training libraries — the proposed framework can assist

with enhancing the library by ensuring that sources of variability that express themselves

as new clusters are systematically accounted for during the creation of a training library.
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Chapter 4

Deep Learning for Remote Sensed

Image Classification

4.1 Introduction

In the last decade, with the advances of computing power of computers and the availabil-

ity of large scale dataset, deep learning [82] techniques such as deep belief networks (DBN),

deep convolutional neural networks (CNN) and deep recurrent neural networks (RNN), have

gained great success in a variety of machine learning tasks such as computer vision, speech

recognition, and natural language processing etc. For example, since first proposed in [83],

CNN has been widely used for various computer vision tasks such as large-scale detection

and classification of object categories [20–24], and speech recognition [84]. RNNs, another

important branch of deep neural networks family, were mainly designed for sequence mod-

eling. The long short term memory (LSTM) [85, 86] network is a special type of RNN,

which is able to capture very long term dependencies embedded in sequence data. Both

the regular RNN and the LSTM networks have been successfully used for time series data

analysis such as speech recognition [25–28], machine translation [29–31], etc.

Hyperspectral data, which captures spectral information of objects over a wide range of

the electromagnetic spectrum, has been played a key role in remote sensed data analysis [87].

With rich spectral information, hyperspectral image data has been used for target detection
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[88, 89], land cover classification [90–92], space surveillance [93], environmental science [94].

Modern advanced hyperspectral sensors are able to collect hyperspetral images of very high

resolution, from which we can a large number of labeled pixels for training a deep neural

networks. Recently, deep learning techniques have been introduced into remote sensing

community especially for hyperspectral data classification [32–37] and achieved achieved

state-of-the-art performance. [32] proposed to use stacked autoencoder to extract deep

features from hyperspectral data. [33] used one dimensional CNN to extract spectral features

for hyperspectral data. [34, 36] employed two dimensional CNN to extract features for

hyperspectral data. [35] trained deep convolutional networks in an unsupervised greedy

layerwise fashion [95] to learn the network filters.

However, all the existing work such as [32, 35, 36] that employed deep learning tech-

niques for hyperspectral data classification all treat the hyperspectral data samples as high

dimensional input vectors to the network and try to extract deep features from it. In this

work, we try to analyze hyperspectral data in a sequential point of view, i.e., each hy-

perspectral sample is seen as a data sequence, which can be modeled by recurrent neural

networks. As the sequence model, RNN assumes that the current output of a sequence

depends not only on the current input but also the previous outputs. In other words, RNNs

are suited for sequences where there are dependencies between different time steps. Since

hyperspectral data is densely sampled from the full spectrum of some material, it is expected

to have dependencies between different spectral bands. First, it is easy to observe that for

any material, the adjacent spectral bands tend to have very close values, which means that

adjacent spectral bands are highly dependent on each other. In addition, some materials

also demonstrate long-term dependency between non-adjacent spectral bands. We show

these dependencies as correlation coefficients between each pair of spectral bands for some
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classes from two hyperspectral datasets in Fig. 4.1 and 4.2. The block diagonal structure

in each figure indicates short-term spectral dependencies. Some classes clearly demonstrate

long-term spectral dependencies such as Fig. 4.1 (d), Fig. 4.2 (b), (c) and (d).

(a) Class 1 (b) Class 5

(c) Class 8 (d) Class 14

Figure 4.1: Correlation coefficient matrix between all spectral bands for 4 classed in the
“University of Houston” dataset.

In this work, our goal is to investigate RNNs for hyperspectral data classification. Al-

though CNNs are also able to capture some dependencies in the input sequence data, it

only model local dependencies since the convolutional filters often have short length. Thus

recurrent networks is a better method for modeling sequence dependency. In addition, we

also propose to use a convolutional neural network (CRNN) [96, 97] which is composed

of a few convolutional layers followed by a few recurrent layers. The motivation to use

convolutional layers (and pooling layers) before recurrent layers is that convolutional layers

can first extract middle-level, locally invariant features from the input sequence. Pooling

layers make the sequence shorter by subsampling, which will accelerate the backpropaga-

tion through recurrent layer since the computation complexity of recurrent layers grows

linearly with respect to the length of the input sequence. Thus recurrent layers can then
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(a) Class 1 (b) Class 8

(c) Class 9 (d) Class 15

Figure 4.2: Correlation coefficient matrix between all spectral bands for 4 classed in the
“Indian Pines” dataset.

extract the spectral dependencies more efficiently from the middle-level features provided

by convolutional layers. Another benefit of RNN is that, unlike CNN, it does not require

the input sequence to have the a fixed length. Although each pixel in a hyperspectral image

has the same length of spectrum in our problem, the method can still be extended to handle

problems where input sequences may have variable lengths.

In remote sensing applications, sensor fusion [98, 99] refers to the process of combining

data from multiple sensors to produce a dataset that contains more detailed information

than each of the individual sources. A sensor by itself provides a unique perspective and

is designed for a specific purpose. Thus combining complementary data modalities from

multiple sensors can generate more accurate interpretation for the features of the objects in

the scene.

Hyperspectral imagery (HSI), collected by hyperspectral sensors, contains spectral in-

formation across the electromagnetic spectrum for each pixel in the image of a scene. With

a wealth of spectral information, HSI has been playing a key role in remote sensed data
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analysis [87] such as land cover classification [92, 100, 101] and anomaly detection [102], etc.

Light detection and ranging (LiDAR) data, another widely used remote sensing modality,

provides geometrical information on the 3D structure of the surface of the ground, which

can also be used for land cover classification such as urban area and tree classification [103–

105]. Due to the complementary information provided by HSI and LiDAR data, combining

them in a sensor fusion system can produce more discriminative features for land cover clas-

sification. For instance, in an urban classification scenario, the materials used in parking

lots and roofs of buildings may have similar hyperspectral measurements which makes them

difficult to discriminate using just HSI. However, just by taking elevation of the surface of

the observed scene into account, they can be discriminated easily. From the LiDAR point

cloud, we can further generate a LiDAR pseudo waveform (LPW) [106] for each pixel on the

hyperspectral image, which results in a LPW data cube with the same spatial dimensions as

the HSI data cube. In this work, the LPW data is produced using a dense point cloud from

a discrete return LiDAR system. This was done via binning the elevation information into

fine slices, and estimating the average intensity in each bin, within each voxel. The voxel

was the same spatial resolution as the HSI. This LPW data provide not only the elevation

information but also the geometry of the objects on the ground. Thus by combining the

registered HSI and LPW data, we are able to create more accurate land cover classification.

In general, there are three common ways of sensor fusion. Data (pixel) fusion combines

raw pixel values from multiple source images into a single image which will then be used for

analysis. Decision fusion fuses the results of multiple algorithms on different sources to yield

a final decision. Feature fusion extracts different features from multiple data sources to yield

combined feature maps for subsequent analysis such as classification. In this chapter, we will

investigate all these three sensor fusion methods using deep learning techniques. Especially
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we will focus on the deep feature fusion method which combined the features extracted

by deep neural networks for HSI and LPW data. However, unlike the traditional feature

fusion method, the feature extraction for different data sources are not independent in our

proposed method because the networks for different sources are trained simultaneously and

they benefit from each other.

The remainder of this Chapter is organized as follows: Section 4.2 talks about different

deep neural networks for hyperspectral data classification: we provide a basic overview for

CNNs and how they have been used for hyperspectral data classification, introduce RNNs

for hyperspectral data classification, and describe how to combine CNN with RNN to get the

proposed method CRNN for hyperspectral data classification. A spatial constraint based

on decision fusion is described in section 4.3 for spectral-spatial classification. Three sensor

fusion methods including the proposed deep sensor fusion method are described in Section

4.4. The detail of the experiments conducted for validating the proposed methods is given

in section 4.5 which includes descriptions of the datasets, experimental setup and results.

Section 4.6 summarizes the key ideas and experimental results in this work and provides

concluding remarks.

4.2 Convolutional and Recurrent Neural Networks for Hy-

perspectral Data Classification

In this section, we will go through different deep neural networks for hyperspectral data

classification. In section 4.2.1, we briefly explain the basics of CNN and how they have

been used for hyperspectral data classification. In section 4.2.2, we introduce RNN for

hyperspectral data classification. In section 4.2.3, we talk about how to construct a CRNN

model by combining CNN with RNN and use it for hyperspectral data classification.
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4.2.1 CNN

As in [33], 1-D CNNs have been successfully used for hyperspectral image pixel-level

classification. Moreover, [34, 36] made use of 2-D CNNs for classification by taking a neigh-

borhood window of size w×w (where w usually takes values about 20) around each labeled

pixel and treat the whole window as a training sample, which is basically image-level classi-

fication instead of pixel-level classification. And this 2-D CNN framework will need a large

number of labeled pixels to generate enough 2-D neighborhood regions to train a deep CNN.

However, we usually don’t have enough labeled pixels on a remotely sensed hyperspectral

image to generate so many neighborhood regions for training a deep network. Another con-

cern is that having a fixed size neighborhood cannot guarantee each neighborhood region

contains only one class of object. Since different classes tend to have different spatial sizes,

so the optimal neighborhood size should be class specific. Thus we think 1-D CNN is more

practical for remotely sensed hyperspectral image classification and we will only focus on

1-D CNNs in the following discussion.

A graphical illustration of the 1-D CNN we used in this work is shown in Fig. 4.3 where

a hyperspectral vector is fed to the input layer and then propagated through several succes-

sive convolutional and pooling layers for feature extraction. Each convolutional layer has

multiple 1-D convolutional filters (kernels). The size of the kernel is a hyperparameter and

data dependent. The pooling layers are used for subsampling to reduce the dimensionality

of the network, which can help reduce computation and control overfitting.

Let’s denote an input hyperspectral vector as x = (x1, x2, ..., xT ) ∈ RT where T is the

length of the input vector. In the first convolutional layer, a set of d filters {φ1,φ2, ...,φd}
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Figure 4.3: Architecture of the CNN for hyperspectral data classification.

of receptive field size r, are applied to the input vector to get the feature map using

F = (f1,f2, ...,fT ) = g(x ? {φ1,φ2, ...,φd}), (4.1)

where ft ∈ Rd and g is a nonlinear activation function such as tanh or a rectified linear unit

(ReLU). ReLU is defined as f(x) = max(0, x) which has become the most used activation

function in CNNs, and we also choose to use it in this work.

The max pooling layer subsample every depth slice of the input by max operation. The

most common form is a pooling layer with filters of length 2 applied with a stride of 2.

After applying the pooling layer, the depth (dimension) remains unchanged but the length
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is reduced by half.

Finally the extracted high-level features will be flattened to be a fixed-dimensional vector

which is then fully connected to the output layer for classification where we have a softmax

activation function to compute the predictive probabilities for all the categories. This is

done by

p(y = k|x) =
exp(w>k x+ bk)∑K

k′=1 exp(w
>
k′x+ bk′)

, (4.2)

where wk’s and bk’s are the weight and bias vectors, and there are K categories.

Training a neural network is to find the best parameters (weights of the network) to

minimize the loss function, which in a classification task measures the compatibility between

a prediction (e.g., the class scores in classification) and the ground truth label. The loss

takes the form of an average over the losses for every training example: L = 1
N

∑N
i=1 Li

where N is the number of samples and Li is the loss for sample i. For output layer with

softmax activation, the cross-entropy loss (also known as negative log likelihood) is most

widely used and is defined as

Li = −log(p(yi|xi)). (4.3)

The network is trained with stochastic gradient descent (SGD) and gradients are calculated

by the back-propagation algorithm. A mini-batch strategy is utilized in our implementation

to reduce loss fluctuation, so the gradients are calculated with respect to mini-batches. The

algorithm will be running iteratively until the loss converges when the change of training

and validation loss is below some threshold.
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4.2.2 RNN

Recurrent neural networks which consists of successive recurrent layers are sequential

models which map a sequence to another sequence. RNN have a strong capability of cap-

turing contextual information within a sequence. The contextual cues are stable and useful

for classifying hyperspectral data. What’s more, RNN is able to operate on sequences of

arbitrary lengths, although this advantage is not utilized in this work. But it’s worth not-

ing that our work can be extended to handle the problem where the input sequences have

variable lengths.

The structure of a basic RNN with one recurrent layer is illustrated in Fig. 4.4 where we

have a sequence of vectors {x1,x2, ...,xT } as input, {h1,h2, ...,hT } is a sequence of hidden

sates, and {o1,o2, ...,oT } is a sequence of outputs.

Figure 4.4: Structure of a basic recurrent layer.

A recurrent layer has a recursive function f which takes as input one input vector xt

and the previous hidden state ht−1, and returns the new hidden state as

ht = f(xt,ht−1) = tanh(Wxt +Uht−1) (4.4)

and the outputs are calculates as

ot = softmax(V ht), (4.5)

where W , U and V are the weight matrices which are shared across all steps, and activation

function tanh is the hyperbolic tangent function. This recursive function however is known
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to suffer from the problem of vanishing gradient [107] for long input sequences such as the

speech signal or text document, which makes it difficult to learn to long-term dependencies.

To overcome this problem, the Long Short Term Memory (LSTM) RNN [85, 86] was intro-

duced which uses a more complicated function that learns to control the flow of information,

allowing the recurrent layer to capture long-term dependencies more easily. The structure

of a basic LSTM unit in an RNN is illustrated in Fig. 4.5.

Figure 4.5: Structure of a basic recurrent layer.

The LSTM unit consists of four sub-units: input gate, output gate, forget gate and new

memory, which are computed as follows:

it = σ(W (i)xt +U (i)ht−1), (4.6)

ot = σ(W (o)xt +U (o)ht−1), (4.7)

ft = σ(W (f)xt +U (f)ht−1), and (4.8)

c̃t = tanh(W (c)xt +U (c)ht−1), (4.9)

where activation function σ and tanh are logistic sigmoid and hyperbolic tangent functions
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respectively. Based on these, the LSTM unit then computes the memory cell and output as

ct = it � c̃t + ft � ct−1 and (4.10)

ht = ot � tanh(ct), (4.11)

where the point-wise multiplication of two vectors is denoted with �.

Figure 4.6: Architecture of the RNN for hyperspectral data classification.

A graphical illustration of the RNN framework (regular RNN or LSTM RNN) we used

in this work is shown in Fig. 4.6 where the input hyperspectral data x = (x1, x2, ..., xT ) is

viewed as a sequence of 1-D vectors, which is propagated through several recurrent layers

to extract deep features. The hidden states of the last recurrent layer are a sequence

of high-level features. As indicated in Fig. 4.6, we only take the last hidden state of

the last recurrent layer as the input to the classification layer since the last hidden state

should already contain all the useful contextual information in previous time steps. Like in

CNN, the softmax activation function is applied at the output layer and the loss function
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is formulated as the cross-entropy. Training is done by mini-batch gradient descent. But

gradients of the loss function are calculated by the back-Propagation through time (BPTT)

algorithm [108].

4.2.3 CRNN

Figure 4.7: Architecture of the CRNN for hyperspectral data classification.

The CRNN is a hybrid of convolutional and recurrent neural networks. It’s composed

of several convolutional (and pooling) layers followed by a few recurrent layers, as indicated

in the graphical illustration of CRNN used in this work in Fig. 5.1. CRNN has the ad-

vantages of both convolutional and recurrent networks. First, the convolutional layers are

able to efficiently extract middle-level, abstract and locally invariant features from the input
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sequence. The pooling layers help reduce computation and control overfitting. Second, the

recurrent layers extract contextual information from the feature sequence generated by the

previous convolutional layers. Contextual information captures the dependencies between

different bands in the hyperspectral sequence, which is more stable and useful for classifica-

tion. Third, recurrent layers can handle variable-length input sequences, though we are not

making using of this benefit in this work.

For the recurrent layers, we can either use regular recurrent function or more complicated

ones like LSTM which can capture very long dependencies more efficiently. However, since

the length of input hyperspectral sequences are not very long (usually below 200) and the

pooling layers additionally reduce the length a lot (usually below 50), we won’t have long-

term dependency and vanishing gradient problems in most cases. Thus regular RNN should

work as well as LSTM networks, which has been verified in our experiments.

Finally, as in RNN, the last hidden state of the last recurrent layer will be fully connected

to the classification layer where a softmax activation function is applied. For training, as in

CNN and RNN, the loss function is chosen as cross-entropy and mini-batch gradient descent

is used to find the best parameters of the network. The gradients in the convolutional layers

are calculated by the back-propagation algorithm and gradients in the recurrent layers are

calculated by the back-propagation through time (BPTT) algorithm [108].

4.3 Spatial Constraint by Decision Fusion

The neural networks described in Section 4.2 all extract features from spectral informa-

tion for each pixel. In order to further improve the classification performance, we integrate

the spatial constraint by linear opinion pools (LOP) [106, 109] based on the fact that, in

pixel-based image classification, spatially neighboring pixels tend to have similar categories.

The spatial constraint encourages piecewise smooth segmentation of images by smoothing
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out noisy predictions due to noisy data or outliers.

Based on the predictive probabilities computed by the output layer (softmax) of the

neural networks, LOP-based decision fusion calculate the posterior probability for each

pixel xi as a weighted sum of the posterior probabilities of the spatial neighbors of that

pixel defined as

p(yi|xi) =
∑
j∈Ni

ωjp(yj |xj), (4.12)

where Ni are the spatial neighbors of pixel xi and ωj ’s are weights for each neighbor that

satisfy
∑

j∈Ni ωj = 1. For simplicity, we use uniform weights for neighbors in our imple-

mentation.

4.4 Deep Sensor Fusion of Hyperspectral Imagery and Li-

DAR Data for Land Cover Classification

The complementary information provided by the HSI and LPW data sources is illus-

trated in Fig. 4.8 which shows the HSI and LPW signatures for a few pixels of different

classes. For example, roads and roofs of commercial buildings, trees and grasses have similar

hyperspectral signatures, but their LPW signatures are quite different from each other. On

the other hand, the grasses and roads have similar LPW signatures but very different hy-

perspectral measurements. Another important property of LiDAR data is that they are not

sensitive to the atmosphere’s condition since LiDAR sensors are active sensors. However,

HSI data can be badly affected by the atmosphere’s condition. For example, as shown in Fig.

4.9, the same object shows different hyperspectral signatures in the sun and in the cloud

shadow, but the LPW data stay very consistent. Therefore, it’s meaningful to combine the

different information provided by the HSI and LPW data for land cover classification in a

sensor fusion system.
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Figure 4.8: Examples of HSI and LPW signatures.

As mentioned in Section ??, there are three common ways of sensor fusion for land

cover classification: data fusion, decision fusion and feature fusion. The proposed deep

feature fusion network has two base networks corresponding to the two data sources. A

CRNN is used for the HSI source in the same way as [110] since it is able to extract robust

contextual features for classification. As shown in Fig. 4.8, LPW data for urban areas

usually demonstrate strong local structures, i.e., the pseudo waveform usually has only one

peak for objects with smooth surface and may have a few peaks for other objects such as

trees. Thus we choose to use a CNN to extract features for the LPW data source. Readers

can refer to Chapter 4 for more details about the CNN [33, 110] and CRNN [110].

4.4.1 Data Fusion

Data fusion [111] concatenates different data sources to form a longer input vector. Let’s

denote hyperspectral data as xH ∈ Rd1, and LiDAR pseudo-waveform data as xL ∈ Rd2,

then data fusion concatenate them to form a new input vector as xC = [xH ,xL] ∈ R(d1+d2).

Then we can design a deep neural network (such as an CNN or CRNN) to classify the

concatenated data x. The flowchart for this sensor fusion system is illustrated in Fig. 4.10.
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Figure 4.9: HSI and LPW signatures for pixels in the cloud shadow and in the sun.

Figure 4.10: Sensor fusion based on data fusion and deep neural networks.

4.4.2 Decision Fusion

Decision fusion [112] averages the predictions from two base neural networks trained on

the two data sources independently. In our case, a CRNN is trained for the HSI data and a

CNN is trained for the LPW data, as shown in the flowchart in Fig. 4.11. When predicting

the label for a new input data {xH ,xL}, we first compute the predictive probabilities for

both networks: PH(y = k|xH) and PL(y = k|xL). The final predictive probability will be

calculated using decision fusion techniques such as Linear Opinion Pooling (LOP):

P (y = k|xH ,xL) = ω1PH(y = k|xH) + ω2PL(y = k|xL), (4.13)
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where the positive weights ω1 and ω2 satisfy ω1 + ω2 = 1.

Figure 4.11: Sensor fusion based on decision fusion and deep neural networks.

4.4.3 Deep Feature Fusion

In a deep feature fusion system [111, 113], we have two base networks designed for two

data sources: a CRNN for HSI and a CNN for LPW. The deep features extracted by the base

networks are concatenated before being fed to the output layer for classification. The cross

entropy loss function for the whole network is calculated based on this concatenated features.

In this way, the CRNN for HSI and the CNN for LPW can be trained simultaneously using

gradient descent and they can benefit from each other, i.e., the former helps to train the

latter and meanwhile the latter also helps to train the former. The flowchart for this sensor

fusion system is illustrated in Fig. 4.11.

Figure 4.12: Sensor fusion based on deep feature fusion.
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Compared with the previous two sensor fusion systems, this method have a few advan-

tages. Data fusion systems use a single network to model the concatenated data. However,

since HSI and LiDAR have very different properties, they should be modeled using different

network structures. As discussed previously, CRNN is a good model for HSI and CNN is a

proper model for LPW. Decision fusion could be a better method than data fusion since it

treat different sources separately and their final predictions are averaged. However, the two

base networks are trained independently. The deep feature fusion system, as an end-to-end

classification model, train the two base networks simultaneously and they benefit from each

other.

4.5 Experiments

This section is devoted to illustrate the capabilities of the presented deep neural networks

(CNN, RNN and CRNN) for two real hyperspectral image datasets in remote sensing. A

traditional method based on support vector machines (SVM) with radial basis function

(RBF) kernel is also implemented for comparison.

4.5.1 Datasets

Two modern high resolution hyperspectral images are used in our study. One covers an

urban area over the University of Houston at Houston, Texas, and the other covers a mixed

vegetation cite at the Indian Pines area in Indiana.

The first dataset used in this work, the University of Houston (UH) hyperspectral image,

has been described in Section 2.6. Here we also show the mean spectral signatures (radiance)

for each class in Fig. 4.13. The spectral signatures tells that different classes have different

shapes and local structures. Thus, when we treat the hyperspectral pixels as sequences,

RNNs can be used to extract discriminative contextual information from them, which is
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very useful for classification.
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Figure 4.13: Mean spectral signatures of the 15 classes from the UH dataset.

The second dataset, the Indian Pines hyperspectral image, has been described in Section

3.4.

4.5.2 Experimental Setup

For both datasets, we randomly split the labeled samples into training and test sets.

During training, 10% of the training samples are used as a validation set to learn the

hyperparameters of the neural networks (i.e., layer size, number of layers, learning rate and

mini-batch size) using a grid search strategy.

In our experiments, the CNN has 4 convolutional (with pooling layers), RNN and LSTM

have 3 recurrent layers, CRNN and CLSTM have 2 convolutional layers (with pooling layers)

and 2 recurrent layers. We also implemented the 2-D CNN in the same way as [34, 36] to

extract spatial features from hyperspectral images. In particular, PCA was first employed on

the whole image to reduce the dimensionality down to 3, and then we take a neighborhood

region of size 11× 11 around each labeled pixel to form 2-D images which will be fed to the

input of the 2-D CNN which has 3 convolutional layers.

The configurations of all networks used in our experiments are summarized in Tables

4.1 and 4.2, where convolutional layers are denoted as “conv〈receptive field size〉-〈number
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of filters〉” and recurrent layers are denoted as “recur-〈feature dimension〉”.

Table 4.1: Summary of network configurations for University of Houston dataset.

CNN 2-D CNN RNN/LSTM CRNN/CLSTM

input-144

conv6-32 conv3×3-32 recur-128 conv6-32
maxpool conv3×3-32 recur-256 maxpool
conv6-32 maxpool recur-512 conv6-32
maxpool conv3×3-64 maxpool
conv3-64 maxpool recur-256
maxpool recur-512
conv3-64
maxpool

fully connected-15

Table 4.2: Summary of network configurations for University of Houston dataset.

CNN 2-D CNN RNN/LSTM CRNN/CLSTM

input-180

conv10-32 conv3×3-64 recur-128 conv10-32
maxpool conv3×3-64 recur-256 maxpool

conv10-32 maxpool recur-512 conv10-32
maxpool conv3×3-96 maxpool
conv5-64 maxpool recur-256
maxpool recur-512
conv5-64
maxpool

fully connected-19

We implemented the neural networks using the TensorFlow [114] and Keras [115] frame-

work. Experiments are carried out on a workstation with a 3.0 GHz Intel(R) Core i7-5960X

CPU, and an NVIDIA(R) GeForce Titan X GPU. The training process starts with the

weights of all networks randomly initialized and the initial learning rate is set to 10−4.

For mini-batch stochastic gradient descent, we use a batch size of 128 in all experiments.

During training, learning rate will be decreased by half every 500 epochs until loss reaches

convergence.
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4.5.3 Results

Since the datasets are highly unbalanced, so we run our experiments with the same

number of training samples for each class. For University of Houston dataset which has 15

classes, we run experiments with 50 samples per class (750 in total), 100 samples per class

(1500 in total) and 200 samples per class (3000 in total). For Indian Pines dataset which

has 19 classes, we run experiments with 100 samples per class (1900 in total), 200 samples

per class (3800 in total) and 300 samples per class (5700 in total). The classification per-

formances for different models (SVM, CNN, 2-D CNN, RNN, LSTM, CRNN, CLSTM) and

the corresponding methods with LOP spatial constraint on University of Houston dataset

are presented in Table 5.3, and results on Indian Pines dataset are presented in Table 4.4.

Table 4.3: Classification results obtained by different approaches with different number of
training samples on University of Houston dataset

training set size 750 1500 3000

RBF-SVM 89.42(±1.91) 92.86(±1.13) 95.43(±0.77)
CNN 90.91(±0.69) 93.42(±0.71) 96.25(±0.46)

2-D CNN 88.85(±1.52) 94.26(±0.61) 97.14(±0.62)
RNN 78.67(±1.93) 82.84(±1.72) 92.16(±0.66)

LSTM 86.55(±0.89) 91.87(±0.63) 94.05(±0.54)
CRNN 93.42(±0.46) 95.33(±0.41) 97.64(±0.30)

CLSTM 90.52(±0.77) 94.53(±0.47) 97.55(±0.44)
CNN-LOP 93.36(±0.81) 95.02(±1.03) 97.87(±0.50)
RNN-LOP 88.11(±1.39) 93.52(±1.43) 96.40(±0.88)

LSTM-LOP 91.86(±1.50) 94.67(±0.62) 97.11(±0.44)
CRNN-LOP 95.17(±0.11) 97.08(±0.36) 98.61(±0.37)

CLSTM-LOP 93.22(±1.16) 96.28(±0.82) 98.21(±0.45)

Analyzing the classification performances on both datasets, we have the following con-

clusions:

1. CNN and CRNN/CLSTM achieved better classification results than traditional

method RBF-SVM in all scenarios, while the performances of RNN/LSTM are still worse

than RBF-SVM.
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Table 4.4: Classification results obtained by different approaches with different number of
training samples on Indian Pines dataset

training set size 1900 3800 5700

RBF-SVM 92.82(±1.07) 94.36(±0.93) 95.13(±0.64)
CNN 93.11(±0.95) 94.53(±0.39) 95.84(±0.31)

2-D CNN 88.78(±0.85) 92.04(±0.58) 92.82(±0.65)
RNN 84.83(±1.62) 89.74(±0.98) 91.86(±0.77)

LSTM 85.04(±1.15) 89.83(±0.74) 92.15(±0.51)
CRNN 94.43(±1.01) 96.24(±0.60) 96.83(±0.47)

CLSTM 92.72(±1.08) 95.13(±0.57) 96.16(±0.55)
CNN-LOP 94.99(±0.85) 96.78(±0.76) 97.26(±0.46)
RNN-LOP 91.39(±1.11) 94.44(±0.53) 95.27(±0.52)

LSTM-LOP 91.62(±0.36) 94.92(±0.38) 95.32(±0.41)
CRNN-LOP 96.61(±0.75) 96.98(±0.29) 98.08(±0.44)

CLSTM-LOP 95.17(±0.68) 96.52(±0.81) 97.01(±0.44)

2. The 2-D spatial CNN performs better than SVM on University of Houston dataset

but worse on the Indians Pines dataset. The reason is that University of Houston dataset

contains urban objects which have much more spatial features than the vegetation categories

in Indian Pines dataset.

3. As expected, the performances of CRNN/CLSTM are better than CNN because

CRNN/CLSTM have advantages of both convolutional networks and recurrent networks.

4. The fact that the performances of CRNN/CLSTM are significantly better than

RNN/LSTM tells us that the middle-level features extracted by the convolutional layers

in CRNN/CLSTM help the following recurrent layers better captures the contextual infor-

mation.

5. LSTM network has better performances than the regular RNN especially for Uni-

versity of Houston dataset because LSTM networks are capable of capturing the long-term

dependencies in the input sequence and thus avoid the gradient vanishing problem.

6. CLSTM performs no better than CRNN in all cases, meaning that CRNN does not

have the long-term dependency and gradient vanishing problem because the length of the
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sequence is already much reduced by the two pooling layers before the recurrent layers. The

reason why CLSTM is even worse than CRNN when the training set is small is that the

CLSTM has much more parameters than CRNN so it tend to overfit the training data and

performs worse on test data.

7. LOP-based spatial constraint further improved the performances of all the 1-D models.

Table 4.5: Number of parameters and training time for University of Houston dataset.

Network # parameters training epochs run time (min.)

CNN 33615 5000 15

2-D CNN 37295 500 3.6

RNN 516623 5000 158

LSTM 2043407 2000 330

CRNN 481807 500 4.7

CLSTM 1884943 500 14

We also show he training and validation loss, training and validation accuracy of when

training the neural networks on the University of Houston dataset with 1500 samples in

Fig. 4.14. For every neural network, the training loss all converged to a level close to 0 and

training accuracy converged to 100%. At the same time, the validation loss all converged to

a low level and the validation accuracy all reached a high number. It’s also worth noting that

CRNN and CLSTM converge faster than than CNN and RNN. The corresponding number

of parameters and training time (in minutes) for each network are summarized in Table 4.5.

We can see that RNN and LSTM needs much more training time than the others because

the computation complexity for RNN/LSTM grows linearly with respect to the length of

the input sequence and most of the computations need to be done sequentially.

To better understand the classification power of each neural network, we take the high

dimensional features extracted by all models trained on the University of Houston dataset

with 1500 training samples, and use t-SNE [116] algorithm to reduce the dimensionality to

2. The results are visualized in Fig. 4.15 where different colors stands for 15 classes in
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Figure 4.14: Loss and accuracy for training and validation set: (a) and (b) for CNN; (c)
and (d) for 2-D CNN; (e) and (f) for RNN; (g) and (h) for LSTM; (i) and (j)
for CRNN; (k) and (l) for CLSTM.

the University of Houston dataset. Similarly, the feature visualizations for the Indian Pines

dataset are depicted in Fig. 4.16. Features extracted by all models are more discriminative

than the original hyperspectral data. Features extracted by the CRNN for different classes
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Figure 4.15: University of Houston dataset: two dimensional embedding extracted by t-SNE
for (a) input data, and features extracted by (b) CNN, (c) 2-D CNN, (d) RNN,
(e) LSTM, (f) CRNN, (g) CLSTM.

are better separated than the other models, which means that features extracted by CRNN

are the most discriminative. The reason is that the first few convolutional (and pooling)

layers in CRNN extract middle level features where the spectral variation has been decreased,

which makes it easier for the following recurrent layers to learn the contextual information.

The efficacy of the convolutional layers can be seen from Fig. 4.17 which shows an example of
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Figure 4.16: Indian Pines dataset: two dimensional embedding extracted by t-SNE for (a)
input data, and features extracted by (b) CNN, (c) 2-D CNN, (d) RNN, (e)
LSTM, (f) CRNN, (g) CLSTM.

features extracted by the convolutional layers. Compared to the input signal, the extracted

features are more smooth since convolutional layers are able to remove local variations.

Furthermore, important information such as locations of peaks and slopes was successfully

captured by the convolutional layer.

Finally, we show the classification maps for different models used in this work in Fig.
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(a) (b)

(c) (d)

Figure 4.17: An input hyperspectral pixel in (a) and features extracted by the convolutional
layer in (b), (c) and (d).

4.18 and 4.19. It is easy to see that the classification map of 2D spatial CNN is more smooth

than the other 1-D models in Fig. 4.18, but a lot of important details (like edges between

different classes) got smoothed out as well, which resulted in incorrect prediction around

the edges. These incorrect classifications are caused by the fact that the 2-D CNN extracts

features from a large sliding window that’s centered on each pixel. However, the sliding

windows around edges contain objects from multiple classes, which makes it difficult for the

model to make the correct predictions. The other 1-D models don’t have such problem even

their maps look noisy in some regions. When adding LOP as spatial constraint to the 1-D

models, the maps for 1-D models all become smoother and less noisy, while the important

edges still got preserved.

For the sensor fusion experiments, we randomly selected 750 samples (i.e., 50 per class)

or 1500 sample (i.e., 100 per class) for training the neural networks and test on another

1500 samples (i.e., 100 per class). The classification results for single source and different

sensor fusion systems are presented in Table 4.6 where each experiment is repeated 10 times
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Figure 4.18: University of Houston dataset: (a) RGB image. (b)–(f) Classification maps for
different models: (b) SVM, (c) CNN, (d) 2-D CNN, (e) RNN, (f) LSTM, (g)
CRNN and (h) CLSTM.
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Figure 4.19: University of Houston dataset: Classification maps for different models when
using LOP as spatial constraint: (a) CNN, (b) RNN, (c) LSTM, (d) CRNN
and (e) CLSTM.

with randomly selected training and test sets, and the average accuracy with the standard

deviation is reported.

Table 4.6 shows that the proposed deep feature fusion achieved the best performances

among all methods. It’s also interesting to note that, for single source classification, HSI is

much better than LPW because HSI alone provides more discriminative information than

the LPW. In addition, data fusion and decision fusion show no significant improvement

compared to the HSI only classification method. Moreover, if we apply these methods to

the whole image, we can get the classification maps. Fig. 4.20 shows the classification maps
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Table 4.6: Classification performances for single source and different sensor fusion methods.

Training set size 750 1500

HSI only 92.75(1.39) 95.26(0.77)

LPW only 54.03(1.89) 56.99(1.82)

Data fusion 93.14(1.36) 95.47(0.35)

Decision fusion 93.01(0.92) 95.79(0.54)

Deep feature fusion 94.87(1.24) 96.89(0.67)

for a cropped region (with a spatial dimension of 300 × 300) from the UH dataset, which

demonstrates the benefit of sensor fusion. For example, the HSI only method incorrectly

classified the roof of one building as parking lot because they have similar spectral mea-

surements. LPW only method can correctly recognize the building roof but is not doing

well for other classes such as roads and grass. The three sensor fusion methods generate

better classification maps than the single source methods. Especially, the proposed deep

feature fusion method produced the best classification map (e.g., the predictions on the

building roof and parking lot are less noisy and more accurate than the other two sensor

fusion methods).

4.6 Conclusions

In this Chapter, we proposed to use RNN to extract the contextual information in

hyperspectral data by modeling the dependencies between different spectral bands. In

particular, we employed a CRNN model, which consists of several convolutional layers and

a few recurrent layers, for hyperspectral data classification. The first convolutional layers

are utilized to extract middle-level and locally invariant features which are then fed to a
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Figure 4.20: Classification maps by different systems: (a) RGB image, (b) HSI only, (c)

LPW only, (d) Data fusion, (e) Decision fusion, (f) Deep feature fusion.

few recurrent layers to additionally extract the contextual information between different

spectral bands. By combining convolutional and recurrent layers, our CRNN model is able

to extract more discriminative feature representations for classification, and it outperformed

other state-of-the-art methods on real hyperspectral image datasets.

We also investigated different sensor fusion methods using deep learning techniques and

experimental results have shown that the proposed deep feature fusion method outperforms

the other sensor fusion methods including data fusion and decision fusion. The proposed

method has profound benefits for modern remote sensing applications where we have mul-

tiple data sources and enough training samples to train deep neural networks.
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Chapter 5

Semi-supervised Deep Learning

using Pseudo Labels

5.1 Introduction

In recent years, with the development of computing hardware like GPUs and the avail-

ability of large scale datasets, deep learning [82] techniques have gained a lot of success in a

variety of machine learning tasks such as computer vision [20, 21, 23, 24], speech recognition

[25–28], and natural language processing [29–31] etc.

Hyperspectral data, with rich spectral information, have been playing a key role in re-

mote sensed data analysis [87] such as land cover classification [92, 100, 101] and anomaly

detection [102]. Recently, deep learning techniques was introduced into the remote sens-

ing community especially for hyperspectral image analysis and achieved state-of-the-art

performance. For example, stacked autoencoders were used to extract deep features from

hyperspectral data in [32]. Convolutional neural networks (CNN) were utilized for hyper-

spectral image classification in [33]. In [117], a recurrent neural network (RNN) was used for

land cover change detection on multi-spectral images. By treating the hyperspectral data

as spectral sequences, convolutional recurrent neural networks (CRNN) [110] were used to

extract the contextual information (i.e., dependencies between different spectral bands) for

91



hyperspectral image classification and achieved better performances than CNN based classi-

fication methods. The CRNN is composed of a few convolutional layers (and pooling layers)

followed by a few recurrent layers. The convolutional layers first extract middle-level, locally

invariant features from the input hyperspectral sequence. Pooling layers make the feature

sequence shorter by subsampling, which will accelerate the computation and help avoid

overfitting. The following recurrent layers can then extract contextual information from the

middle-level feature sequences generated by the previous convolutional layers. Thus, in this

work, we choose to use CRNN as the basic model for hyperspectral image classification.

Training a deep neural network for classification requires a large amount of labeled sam-

ples to learn a large number of parameters. However, for hyperspectral image classification

in real remote sensing applications, we are usually provided a large hyperspectral image with

only a small amount of labeled samples available for training because collecting them are ex-

pensive and time-consuming. On the other hand, we always have access to a large quantity

of unlabeled data from the given hyperspectral images. Thus, semi-supervised learning [38]

techniques, which make use of both labeled and unlabeled data, have been popular in classi-

fication of remotely sensed hyperspectral images. For instance, transductive Support Vector

Machines (TSVM) were used in [118, 119] for semi-supervised classification of hyperspectral

data. Laplacian Support Vector Machines (LapSVM) [120] were used for semi-supervised

classification by regularizing the standard SVM with the graph Laplacian using unlabeled

data. A spatio-spectral LapSVM (SS-LapSVM) was proposed in [121] which also took the

spatial information of hyperspectral images into consideration. Deep neural networks can

also be used in semi-supervised learning. This can be done by pre-training a deep network

such as a stacked denoising autoencoder [122] using unlabeled data in an unsupervised way,

followed by supervised fine-tuning using labeled data [123, 124]. Ladder networks [125] was
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a recently proposed method for semi-supervised learning which simultaneously minimize a

supervised and an unsupervised cost during training.

Traditionally, we need a large set of labeled data to train supervised deep neural net-

works. In our proposed semi-supervised learning framework, the large set of unlabeled sam-

ples are utilized with their pseudo labels to pre-train a deep neural network. The pseudo

labels are defined as the cluster labels generated by a clustering algorithm and they have

been used for semi-supervised dimensionality reduction in Chapter 2 where the Dirichlet

process mixture model (DPMM) [14, 15, 18] based clustering algorithm was employed. In

this work, the proposed method is named as Semi-Supervised Deep Learning using Pseudo

Labels (PL-SSDL). It works in the following way: We first run clustering on all the training

data (both labeled and unlabeled) to get their pseudo labels. Since the clustering algo-

rithm tends to assign samples from different classes to different groups, the discriminative

information get preserved in the pseudo labels. This is why we can use unlabeled data

with pseudo labels to train a deep neural network to extract discriminative features which

are useful for classification. Next, all the training data together with their pseudo labels

are used to pre-train a deep neural network (such as a CRNN). Then, we construct a new

deep network by taking all the layers except the last layer from the pre-trained network,

and add a few more fully connected layers and a classification layer afterwards. Finally,

we fine-tune this new deep network using only the labeled data with the true labels. Since

the labeled data are very limited in quantity, we only fine-tune the newly added layers

using backpropagation and freeze the pre-trained layers. In order to further improve the

performance, we propose to use the spatial information in the clustering process via the

constrained DPMM (C-DPMM) [126] which adds pairwise must-link constraints enforced

by superpixels [127, 128] and cannot-link constraints enforced by the labeled samples. The
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C-DPMM generates pseudo labels of higher quality, which results in a better pre-trained

model.

Typically, we need a large set of labeled data to effectively train supervised deep neural

networks. In our proposed semi-supervised learning framework, a large set of unlabeled

samples are utilized instead, wherein their pseudo labels are used to pre-train a deep neural

network. Pseudo labels are defined as the cluster labels generated by a clustering algorithm,

such as the Dirichlet process mixture model (DPMM) [14, 15, 18]. In this work, the proposed

method is called Semi-Supervised Deep Learning using Pseudo Labels (PL-SSDL).

Our approach works in the following way: We first perform clustering on all the training

data (both labeled and unlabeled) and obtain pseudo labels. Since the clustering algorithm

tends to assign samples from different classes to different groups, the discriminative infor-

mation is preserved in these pseudo labels. Hence, we suggest that one can use unlabeled

data with pseudo labels to train a deep neural network to extract discriminative features

which are useful for classification tasks related to the dataset. Next, all the training data

together with their pseudo labels are used to pre-train a deep neural network (such as a

CRNN). Following this, we construct a new deep network by taking all the layers except the

last layer from the pre-trained network, and add fully connected layers and a classification

layer. Finally, we fine-tune this new deep network using only the labeled data with the

true class labels. Since the labeled data are very limited in quantity, we only fine-tune the

newly added layers using back-propagation, while freezing the pre-trained layers. In order

to further improve the performance, we propose to use the spatial information in the clus-

tering process via the constrained DPMM (C-DPMM) [126] which adds pairwise must-link

constraints enforced by superpixels [127, 128] and cannot-link constraints enforced by the

labeled samples. The C-DPMM generates pseudo labels of higher quality, which results in
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a better pre-trained model.

The remainder of this Chapter is organized as follows. Section 5.2 provides a review of

previous work on DPMM and deep learning for hyperspectral data classification that are

related to our method. The proposed semi-supervised deep learning method using pseudo

labels is described in detail in Section 5.3. The experimental datasets, setup and results are

presented in Section 5.4. Section 5.5 summarizes the key ideas in this work and provides

concluding remarks.

5.2 Related Work

5.2.1 DPMM based Clustering

Clustering is an unsupervised learning task that separates data into different groups

based on their similarities. Parametric clustering models such as k-means and Gaussian

mixture models assume the number of clusters is known a priori. However, due to spatial

variation, many classes in a hyperspectral image have multi-modal distributions, so assuming

the number of clusters to be the number of classes is not an optimal choice. The DPMM

[14, 15, 18] is a nonparametric model for clustering, which has the ability to infer the number

of clusters from the data. Readers can refer to Section 2.3 of Chapter 2 for more details

about DPMM based clustering.

5.2.2 CRNN

Deep neural networks such as CNNs, RNNs and CRNNs have been used for hyperspec-

tral data classification successfully [33, 110]. CNNs view the hyperspectral data samples as

high dimensional input vectors to the network and are trained to extract deep features from

them. RNNs are a type of sequence models which are widely used for extracting contex-

tual information from sequential data by modeling the dependencies between different steps
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of the input sequence. When RNNs are applied to hyperspectral data classification, each

hyperspectral sample is treated as a spectral sequence. The features extracted by RNNs

contains the contextual information between different spectral bands and can be used for

classification [110]. The CRNN is a hybrid model of convolutional and recurrent neural

networks [96, 97, 110]. It’s composed of several convolutional (and pooling) layers followed

by a few recurrent layers, as indicated in the graphical illustration of the architecture of the

CRNN used in this work in Fig. 5.1. The convolutional layers first extract middle-level and

locally invariant features from the input sequence. The pooling layers help reduce compu-

tation and control overfitting. The recurrent layers further extract contextual information

from the feature sequences generated by the convolutional layers. Contextual information

captures the dependencies between different spectral bands of the input sequence, which is

more stable and useful for classification.

Let’s denote an input hyperspectral vector as x = (x1, x2, ..., xT ) ∈ RT where T is the

length of the input vector. In the first convolutional layer, a set of d filters {φ1,φ2, ...,φd}

of receptive field size (i.e., length of convolutional filters) r, are applied to the input vector

via convolution operation (∗) to get the feature map using

F = (f1,f2, ...,fT ) = g(x ∗ {φ1,φ2, ...,φd}), (5.1)

where ft ∈ Rd and g is a nonlinear activation function such as the hyperbolic tangent

function or rectified linear unit (ReLU). ReLU is defined as g(x) = max(0, x) which has

become the most widely used activation function in CNNs, and we also choose to use it

in this work. The max pooling layer subsample every depth slice of the input by max

operation. In this work, we used a pooling layer with filters of length 2 applied with a

stride of 2. After applying the pooling layer, the depth (dimension) of the features remains
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Figure 5.1: Architecture of the CRNN consisting of multiple convolutional layers and recur-
rent layers for hyperspectral data classification.

unchanged but the length is reduced by half.

The convolutional layers are followed by a few recurrent layers which treat the features

extracted by the convolutional layers as a sequence of inputs and aim to extract contextual

information from them. A recurrent layer has a recursive function f which takes as input

one feature vector ft and the previous hidden state ht−1, and returns the new hidden state
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as

ht = f(xt,ht−1) = tanh(Wxt +Uht−1), (5.2)

and the outputs are calculates by

ot = softmax(V ht), (5.3)

where W , U and V are the weight matrices which are shared across all steps, and activation

function tanh is the hyperbolic tangent function. The output of one recurrent layer is a

sequence of features which will be feed into the next recurrent layer. The last recurrent layer

will return a sequence of high-level features. As indicated in Fig. 5.1, we only need to take

the last hidden state of the last recurrent layer as the input to the following fully recurrent

layers because the last hidden state already contains all the useful contextual information

in the previous hidden states.

Finally, the features extracted by the last fully connected layer are fully connected to

the output layer for classification where we have a softmax activation function to compute

the predictive probabilities for all categories. This is done by calculating

p(y = k|x) =
exp(w>k x+ bk)∑K

k′=1 exp(w
>
k′x+ bk′)

, (5.4)

where wk’s and bk’s are the weight and bias vectors, and there are K categories.

Training a neural network is to find values for the parameters (weights of all layers) to

minimize the loss function, which in a classification task measures the compatibility between

a prediction (e.g., the class scores calculated by the softmax function) and the ground truth

label. The loss takes the form of an average over the losses for every training example using

L =
1

N

N∑
i=1

Li, (5.5)
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where N is the number of training samples and Li is the loss for the i-th sample. In our

study, we used the cross-entropy loss (also known as negative log likelihood), which is the

most widely used loss function for the softmax activation function defined as

Li = −log(p(yi|xi)). (5.6)

The network is trained using stochastic gradient descent (SGD) method. The gradients in

the convolutional layers are calculated by the back-propagation algorithm and gradients in

the recurrent layers are calculated by the back-propagation through time (BPTT) algorithm

[108]. A mini-batch strategy is utilized in our implementation to reduce the loss fluctuation,

so the gradients are calculated with respect to mini-batches. The algorithm will be running

iteratively until the loss converges when the change of training and validation loss is below

some threshold.

5.3 The proposed Method

Section 5.2 describes DPMM for clustering and CRNN for hyperspectral data classifica-

tion. In this section, we are going to introduce a semi-supervised clustering algorithm based

on C-DPMM for pseudo label generation, and a semi-supervised deep learning framework

which trains two CRNNs. The structure for the proposed semi-supervised deep learning

framework is shown in Fig. 5.2. In the following discussion, the labeled data set is denoted

as {XL,YL}, the unlabeled data set is denoted as {XU}, and the pseudo labels for the

labeled and unlabeled data set X = {XL,XU} is denoted as Z. There are mainly three

steps to run this semi-supervised learning framework. Firstly, the pseudo labels for the

labeled and unlabeled data are generated by the constrained DPMM (C-DPMM) where

the constraints come from pairwise must-link and cannot-link constraints. Secondly, the

combined data set X with the corresponding pseudo labels Z are used to pre-train a deep
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CRNN which aims to discriminate data points with different pseudo labels. Thirdly, the

pre-trained CRNN is used to initialize the first part of another CRNN. The second part

of this new CRNN consists of a few fully connected layers and a classification layer (i.e.,

softmax classifier). Then we fine-tune the second part of the new CRNN using only the

labeled samples. This proposed semi-supervised deep learning using pseudo labels We are

going to discuss each step with more detail in the following paragraphs.

Figure 5.2: The structure of the proposed semi-supervised deep learning framework.

5.3.1 Generation of Pseudo Labels via C-DPMM

Pseudo labels are defined as cluster assignments generated by any clustering algorithm.

The DPMM based clustering described in Section 5.2.1 is done in an unsupervised fash-

ion without using any label information. In our problem, since we are given a labeled set

{XL,YL}, we propose to use the constrained DPMM (C-DPMM) [126] for semi-supervised

clustering to further improve the clustering performance. C-DPMM imposes must-link and

cannot-link pairwise constraints between the labeled samples in {XL,YL} to the standard

DPMM. Specifically, the must-link pairwise constraints require that two samples with the

same label should be assigned the same cluster label, whereas the cannot-link pairwise

constraints specify that samples from different classes should not be assigned to the same

cluster. Here we useM and C to denote the set of must-links and set of cannot-links. How-

ever, for hyperspectral data, it is common that some classes have multi-modal distributions

due to spatial variations. Thus the must-link constraints may not be valid for them. Thus

100



in our implementation, we didn’t impose the must-link constraints between the labeled sam-

ples. Instead, we impose spatial must-link constraints between samples in both the labeled

and unlabeled data X = {XL,XU} via superpixels [127, 128]. In other words, we segment

the hyperspectral image into superpixels and require that pixels in X that are from the

same superpixel on the image should be grouped to the same cluster. This spatial must-link

constraints are valid based on the fact that pixels within the same superpixel usually belong

to the same object and have similar values, as illustrated in Fig. 5.3.

Figure 5.3: A cropped region of the University of Houston hyperspectral image with super-
pixel segmentation.

Compared to DPMM, the generative process of C-DPMM is modified in the following

way [126]: must-linked samples are always generated by the same component, while cannot-

linked samples are always by different ones. [126] derived an inference method based on

Gibbs sampling. As discussed in Section 5.2.1, Gibbs sampling is usually much slower to

converge than VI. So in our study, we derived an inference scheme for C-DPMM based on

VI.

First, we identify linked groups of samples where each group is linked via the must-link

constraints. For samples in a linked group, we compute their component assignment jointly

while taking into account the cannot-link constraints. Based on Eq. 2.22, the variational
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distribution for C-DPMM is modified as

q(V ,Θ,Z) =

[
T∏
t=1

q(vt)

][
T∏
k=1

q(θk)

][
L∏
l=1

q(Zl|C)

]
, (5.7)

where l is the index of the groups enforced by the set of must-linksM, L is the total number

of groups, and Zl is the corresponding component assignment for the l-th linked group.

Then the free energy, the objective function to be optimized, for C-DPMM can be written

as

F =
T∑
k=1

E
[
log

q(θk)

p(θk)

]
q(θk)

+
T∑
k=1

E
[
log

q(vk)

p(vk)

]
q(vk)

+
L∑
l=1

E
[
log

q(Zl)

p(Xl|Zl,Θ)p(Zl|V )

]
q(Zl,V ,Θ)

,

which can be further simplifies as

F =

T∑
k=1

E
[
log

q(θk)

p(θk)

]
q(θk)

+

T∑
k=1

E
[
log

q(vk)

p(vk)

]
q(vk)

+
L∑
l=1

log
T∑
k=1

exp(Sl,k). (5.8)

In Eq. 5.8, we have defined

Sl,k = E [log p(Xl|θk)]q(θk) + E [log p(Zl = k|V )]q(V ) , (5.9)

where

p(Xl|θk) =

Nl∏
i=1

p(xi|µk,Rk) and

p(Zl = k|V ) =

Nl∏
i=1

p(zi = k|V ) = (vk

k−1∏
j=1

(1− vj))Nl .

The free energy F is minimized using the CAVI algorithm by iteratively updating each

factor in Eq. 5.7 until F converges. Using the properties of conjugate priors, the update

rules for each factor in Eq. 5.7 can be calculated in the following way:
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(a) For t = 1, ..., T :

q(vt) = B(at1, at2), (5.10)

which is a Beta distribution with parameters at1 and at2 defined as

at1 = 1 +
N∑
i=1

q(zi = t) and

at2 = α+

N∑
i=1

T∑
j=t+1

q(zi = j).

(b) For k = 1, ..., T :

q(θk) = NW(rk,mk, νc,Bc), (5.11)

which is a Normal-Wishart distribution with the following parameters:

rk = r0 +Nk,

mk =
Nkxk + r0m0

rk
,

νk = ν0 +Nk, and

Bk = B0 +NkSk +
Nkr0
rk

(xk −m0)(xk −m0)
>,

where we define

Nk =

N∑
i=1

q(zi = k),

xk =
1

Nk

N∑
i=1

q(zi = k)xi, and

Sk =
1

Nk

N∑
i=1

q(zi = k)(xi − xk)(xi − xk)>.

(c) For l = 1, ..., L:

q(Zl = k) ∝


exp(Sl,k), if Xk,−l ∩ C = ∅

0, otherwise

, (5.12)
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where Xk,−l denotes all samples assigned to the kth component excluding Xl.

By iterating these updates derived in (a), (b) and (c), the CAVI algorithm finds a local

minimum of the free energy upon convergence. Finally the clustering label for each group

Xl is given by Zl = argmaxk q(Zl = k), which will be used as pseudo labels in the following

semi-supervised deep learning procedure.

5.3.2 Semi-supervised Deep Learning using Pseudo Labels (PL-SSDL)

Once we have acquired the pseudo labels Z for X = {XL,XU} as discussed in Section

5.3.1, we can use {X,Z} to train a deep CRNN, which is denoted as CRNN1 in Fig. 5.2.

This CRNN aims to classify samples in X according to their pseudo labels Z. Although

samples from the same class may have different pseudo labels due to within-class variation,

samples from different classes tend to have different pseudo labels. In other words, the

pseudo labels are mostly consistent with the unknown true labels in discriminating different

classes. Thus the discriminative information can still be preserved by the features extracted

by the hidden layers of CRNN1 trained using {X,Z}.

Then we construct a new CRNN, denoted as CRNN2 in Fig. 5.2, which has two parts:

the first part has the same architecture as CRNN1 without the output layer, and the second

part consists of two fully connected layers followed by a classification layer (i.e., Softmax

classifier). Then we fine-tune CRNNs using only the labeled data {XL,YL}. In our imple-

mentation, the parameters of the first part of CRNN2 is initialized using the parameters

of the pre-trained CRNN1 and will be frozen during training. Fine-tuning CRNN2 only

updates the parameters of the second part since we only have a limited number of samples

in XL.

The pre-training and fine-tuning stages for this PL-SSDL framework are illustrated in

Fig. 5.4.
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Figure 5.4: The pre-training and fine-tuning stages for the proposed PL-SSDL framework.

5.4 Experiments

5.4.1 Datasets

Three real-world hyperspectral image datasets are used to validate the efficacy of the

proposed method and other state-of-the-art algorithms in our study. The first and second

hyperspectral image datasets, the University of Pavia (UP) and the University of Houston

(UH), have been described in Section 2.6.

The third dataset, called “Wetland”, is an airborne hyperspectral image collected using

the ProSpecTIR VS sensor over a wetland in Galveston, Texas in 2015. A true color image

of this hyperspectral image is shown in Fig. 5.5. This dataset contains 17 labeled land cover

classes (12 vegetation classes and 5 other classes) and consists of 360 spectral bands spanning

the VNIR and SWIR spectral range from 400 nm to 2450 nm at a 5 nm spectral resolution.

The image has a spatial dimension of 3462 × 5037 pixels at a 1 m spatial resolution.
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Figure 5.5: True color image of the Wetland hyperspectral dataset.

5.4.2 Experimental Setup and Results

In our experiments, the labeled set XL contains 10 labeled pixels per class randomly

selected from the labeled pixels on the hyperspectral image. A test set which includes 100

samples per class is used for validating different methods for classification. Practically, the

unlabeled set XU can include all pixels from the whole image but excluding XL and XT .

But we should note that unlabeled pixels from the whole image may contain some other

background classes that are not present in the labeled pixels. We select XU in this way

because this is what we usually do in practical applications where we are given an image

with some labeled pixels and all the other pixels can be used as unlabeled data for semi-

supervised learning. In our experiments, to reduce the computation time, 50000 samples

from the whole image excluding XL and XT are selected to form the unlabeled set XU .

For the C-DPMM in pseudo label generation, we get the spatial must-link constraints

from superpixels generated by the Entropy Rate algorithm [127]. In the experiments, the

number of superpixels selected for the UP, UH and the Wetland datasets are 2000, 10000

and 50000 respectively.
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While pre-training CRNN1, 10% of the training samples in {X,Z} are used as a val-

idation set to learn the hyperparameters of the network (i.e., layer size, number of layers

and learning rate) using a grid search strategy. The training process starts with the weights

of all layers randomly initialized and the initial learning rate is set to 10−4. Updating the

parameters of the network is done by the mini-batch stochastic gradient descent algorithm

with momentum and a batch size of 128. We run gradient descent for 1000 epochs and the

learning rate decays by half every 200 epochs. CRNN2 copied the hidden layers of the pre-

trained CRNN1 and adds two more randomly initialized fully connected layers after them.

Fine-tuning CRNN2 using labeled set {XL,YL} only updates the parameters of the newly

added fully connected layers because we only have limited amount of labeled samples. The

fine-tuning process runs the mini-batch stochastic gradient descent for 1000 epochs with a

initial learning rate set to 10−4 which will decay by half every 200 epochs. The configura-

tions of the CRNNs used for all datasets are summarized in Tables 5.1, where input layers

are denoted as “input-dimension”, convolutional layers are denoted as “conv〈receptive field

size〉-〈number of filters〉”, recurrent layers are denoted as “recur-〈feature dimension〉”, fully

connected layers are denoted as “fc-〈feature dimension〉”, and the output layers are denoted

as “output-number of classes”. We implemented the neural networks using the TensorFlow

[114] and Keras [115] framework. Experiments are carried out on a workstation with a 3.0

GHz Intel(R) Core i7-5960X CPU, and an NVIDIA(R) GeForce Titan X GPU.

We compared the proposed method PL-SSDL with other state-of-the-art methods in-

cluding supervised methods such as kNN and SVM (with RBF kernel), and semi-supervised

methods such as Label Propagation [129], TSVM [119], LapSVM [120], SS-LapSVM [121],

Stacked Denoising Autoencoder (SDA) [122] and Ladder Networks [125]. Label propaga-

tion is a graph based semi-supervised learning algorithm which propagate labels through the

107



Table 5.1: Summary of network configurations for Different Datasets.

UP UH Wetland

input-103 input-144 input-360
conv3-32 conv3-32 conv10-32
maxpool maxpool maxpool
conv3-32 conv3-32 conv10-32
maxpool maxpool maxpool
conv3-64 conv3-64 conv5-64
conv3-64 maxpool maxpool
maxpool conv3-64 conv5-64
recur-256 maxpool maxpool
recur-512 recur-256 conv5-64

fc-64 recur-512 maxpool
fc-64 fc-64 recur-64

softmax-9 fc-64 recur-128
softmax-15 recur-256

fc-64
fc-64

softmax-17

dataset along high density areas defined by unlabeled data. TSVM exploits specific iterative

algorithms that gradually search a reliable separating hyperplane (in the kernel space) with

a transductive process that incorporates both labeled and unlabeled samples in the training

phase. LapSVM is another semi-supervised extension of standard SVMs, which introduces

an additional regularization term on the geometry of both labeled and unlabeled samples

by using the graph Laplacian [130]. SS-LapSVM extends LapSVM by taking the spatial

information of hyperspectral images into account. SDA per se is an unsupervised neural

network which aims to reconstruct the input data from the hidden features it extracts. It

can be used in a semi-supervised framework in a similar way to our proposed method. We

first pre-train a SDA using labeled and unlabeled data and the features extracted by the

this model are good representations for the input data. Then we construct another neural

network by adding a few more fully connected layers and a classification layer after the

pre-trained model, and fine-tune it using only the labeled data. Ladder networks was a
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recently proposed method for semi-supervised deep learning which simultaneously minimize

a supervised and an unsupervised cost during training. The model parameters for SVM, La-

bel Propagation, TSVM and LapSVM are selected based on the grid search cross-validation

strategy. SDA and Ladder Propagation are trained using backpropagation and their hy-

perparameters (e.g., number of layers and size of each layer) are selected using 10% of the

training data as the validation set. The size of each hidden layer in the pre-trained SDA is

selected as: 64-48-32 (for UP dataset), 128-64-32 (for UH dataset), and 128-96-64 (for Wet-

land dataset). When fine-tuning, we added two more fully connected layers (128-128) after

the hidden layers of the pre-trained network. The architecture (from the input layer to the

output layer) of the Ladder Networks used in our experiments is selected as: 103-150-100-

50-9 (for UP dataset), 144-150-100-50-14 (for UH dataset), and 360-200-150-100-50-17 (for

Wetland dataset). The classification performances on the three datasets for all methods are

presented in Tables 5.2, 5.3 and 5.4 respectively where each experiment is repeated 10 times

with randomly selected training and test sets, and the average accuracy with the standard

deviation is reported.

Table 5.2: Classification results for different methods on the University of Pavia dataset.

Method Accuracy

kNN 73.76(1.64)
SVM 78.91(1.76)

Label Propagation 74.34(1.32)
TSVM 79.07(1.48)

LapSVM 80.09(1.54)
SS-LapSVM 81.17(1.88)

SDA 79.07(2.21)
Ladder Networks 79.58(1.35)

PL-SSDL 88.43(1.91)

The classification results in Tables 5.2, 5.3 and 5.4 show that our proposed method, PL-

SSDL, achieved the best performance for all datasets. In general, when we are given only
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Table 5.3: Classification results for different methods on the University of Houston dataset.

Method Accuracy

kNN 73.52(1.41)
SVM 77.51(2.08)

Label Propagation 73.07(1.04)
TSVM 78.63(2.48)

LapSVM 79.15(2.67)
SS-LapSVM 80.24(1.52)

SDA 77.57(1.19)
Ladder Networks 80.29(1.71)

PL-SSDL 82.61(1.23)

Table 5.4: Classification results for different methods on the Wetland dataset.

Method Accuracy

kNN 83.47(1.34)
SVM 89.08(2.06)

Label Propagation 89.28(1.07)
TSVM 92.24(0.81)

LapSVM 94.08(0.67)
SS-LapSVM 95.17(0.85)

SDA 90.05(1.81)
Ladder Networks 93.17(1.49)

PL-SSDL 97.33(0.48)

a small number of the labeled data, semi-supervised learning methods are better than the

supervised methods because they make use of the abundant unlabeled data during training.

We should note that since the unlabeled data XU used in our experiments are pixels from

the whole image which contains some other background classes that are not present in

XL and XT , the performance of all the semi-supervised methods may get badly affected.

However, this won’t be a big problem for our proposed method since the background classes

are usually different from the labeled classes in our library. Thus the pseudo labels for

the background classes are different from the pseudo labels for the labeled classes, and the

pre-trained network can still extract the useful information from the unlabeled data.

Both SDA and the proposed PL-SSDL use unlabeled data for pre-training, but they

differ in the way of using the unlabeled data. For SDA, the pre-training aims to reconstruct
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the input data from features extracted by the hidden layer. The features extracted by the

SDA preserve the most important information for reconstruction but they may not be useful

for classification. For PL-SSDL, the pre-training stage aims to discriminate samples accord-

ing to their pseudo labels, which are consistent to their true labels (although unknown),

i.e., samples belonging to different classes tend to have different pseudo labels. Thus the

pre-trained network is able to extract discriminative information that are important for

classification. That’s why PL-SSDL achieved much better classification performances than

the SDA.

The classification performance of the proposed PL-SSDL framework depends on the

quality of the pseudo labels, which are generated by the C-DPMM based clustering algo-

rithm. To understand the benefits brought by the pairwise constraints in C-DPMM, we

can evaluate the clustering quality of both DPMM and C-DPMM using Normalized Mutual

Information (NMI) [81]. We run this experiment using 10 labeled samples per class and

200 unlabeled samples per class randomly chosen from the ground truth data pool. The

clustering experiments are repeated 10 times and the average number of clusters and aver-

age values of NMI with standard deviation for DPMM and C-DPMM with the University

of Houston dataset are reported in Table 5.5. It is clear that the clustering quality for

C-DPMM is better than DPMM, implying that the pseudo labels generated by C-DPMM

are more consistent to the true labels than those generated by DPMM. With pseudo labels

of higher quality, the pre-trained model is able to extract more discriminative features.

To better understand the efficacy of the pre-trained neural network (CRNN1) using

pseudo labels, we can use use t-SNE [116] to reduce the dimensionality of features learned

by the last hidden layer of the pre-trained CRNN for the test data XT to 2. Then we can

visualize the 2-dimensional representation, which is shown in Fig. 5.6 (b) where different
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Table 5.5: Comparison of clustering performance between DPMM and C-DPMM for the

University of Houston Dataset.

Method Number of Clusters NMI

DPMM 20.3(1.2) 83.15(1.23)

C-DPMM 24.1(1.6) 89.91(1.09)

colors stands for different classes in the University of Pavia dataset. Similarly, we can

apply t-SNE to the features extracted by the last hidden layer of the fine-tuned network

(CRNN2), as shown in Fig. 5.6 (c). For comparison, we also apply t-SNE to the raw data

XT and show them in Fig. 5.6 (a). Similarly, we visualize the input data and features

extracted by the neural networks for the University of Houston dataset and the Wetland

dataset in Fig. 5.7 and Fig. 5.8. As we can observe from these visualizations, the deep

features extracted by the two networks (CRNN1 and CRNN2) are much more discriminative

than the original hyperspectral data, which means that the separability between different

classes in the feature space of the deep features is significantly improved compared to the

input feature space. Furthermore, since CRNN2 is fine-tuned using the labeled data, the

separability for its features between different classes is improved a little bit compared to the

features extracted by the pre-trained CRNN1.

To study the influence of the depth (number of convolutional and recurrent layers) of

the pre-trained CRNN1 on the classification performance of the fine-tuned CRNN2, we

plot the classification accuracy of CRNN2 on the UH dataset as a function of the depth

of the pre-trained model, which ranges from 2 to 6, in Fig. 5.9. On the horizontal axis of

Fig. 5.9, 2 represents two convolutional layers, 3 represents two convolutional layers and

one recurrent layer, 4 represents four convolutional layers, 5 represents four convolutional
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(a) (b) (c)

Figure 5.6: University of Pavia dataset: two-dimensional embeddings extracted by t-SNE
for (a) input data, and features extracted by: (b) CRNN1 (the pre-trained
model) and (c) CRNN2 (the fine-tuned model).

(a) (b) (c)

Figure 5.7: University of Houston dataset: two-dimensional embeddings extracted by t-
SNE for (a) input data, and features extracted by: (b) CRNN1 (the pre-trained
model) and (c) CRNN2 (the fine-tuned model).

layers and one recurrent layer, and 6 represents four convolutional layers and two recurrent

layers. Similarly, we show classification accuracy as a function of depth of the pre-trained

model for UP and Wetland dataset in Fig. 5.10 and 5.11. On the horizontal axis of Fig.

5.11, 3 represents three convolutional layers, 4 represents three convolutional layers and one

recurrent layer, 5 represents five convolutional layers, 6 represents five convolutional layers

and one recurrent layer, 7 represents five convolutional layers and two recurrent layers, and 8

represents five convolutional layers and three recurrent layers. From these figures, it is easy

to observe that deeper pre-trained models are more beneficial to the final performances of

the fine-tuned models. This is because deeper pre-trained models can be trained to extract
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(a) (b) (c)

Figure 5.8: Wetland dataset: two-dimensional embeddings extracted by t-SNE for (a) input
data, and features extracted by: (b) CRNN1 (the pre-trained model) and (c)
CRNN2 (the fine-tuned model).

more discriminative features than shallower models.

Figure 5.9: UH dataset: Classification performance as a function of the depth of the pre-
trained model.

5.5 Conclusions

In this Chapter, we proposed a novel semi-supervised deep learning framework – PL-

SSDL. Our method make use of the unlabeled data with pseudo labels generated by the

C-DPMM based clustering algorithm. Since the pseudo labels preserved the differences be-

tween samples belonging to difference classes, pre-training a deep CRNN using data with

pseudo labels can help us extract discriminative features which are useful for classification.

Fine-tuning the second deep CRNN will further adjust the features from the pre-trained
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Figure 5.10: UP dataset: Classification performance as a function of the depth of the pre-
trained model.

Figure 5.11: Wetland dataset: Classification performance as a function of the depth of the
pre-trained model.

CRNN to make them more beneficial to classification. Experimental results have shown

that the proposed method significantly outperforms the other state-of-the-art supervised

and semi-supervised methods on three practical hyperspectral imagery datasets. This semi-

supervised deep learning framework can be very meaningful in practical remote sending

applications where we are usually given hyperspectral images with very limited pixels la-

beled, which makes it quite difficult to train a complicated model (such as a deep neural
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network) without suffering from severe overfitting problems. By making use of the abun-

dant unlabeled pixels from the hyperspectral images, the proposed semi-supervised learning

method is able to train deep neural networks effectively.
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Chapter 6

Summary and Conclusion
In this dissertation, we proposed several semi-supervised and deep learning methods for

hyperspectral image analysis. The main contributions of this dissertation are summarized

as follows:

• To perform dimensionality reduction on hyperspectral data with limited labeled sam-

ples, a semi-supervised dimensionality reduction algorithm called SSLFDA and its

kernel extension are proposed in Chapter 2, aiming to perform discriminant analysis

on both labeled and unlabeled samples. SPLFDA performs discriminative analysis

on unlabeled data by utilizing the pseudo labels generated by the Dirichlet process

mixture model (DPMM). This method avoids the overfitting problems for supervised

dimensionality reduction algorithms and has profound benefits for various applications

when we don’t have enough labeled samples for training but the unlabeled samples

are abundant.

• An active learning system with a new query strategy called local information density

(LID) is proposed in Chapter 3, which provides robust classification performance with

minimum manual labeling effort while simultaneously discovering unknown classes.

The unknown classes are discovered as new clusters when we apply DPMM-based

clustering analysis on the whole dataset including both labeled and unlabeled samples.

This is the first work that demonstrates a successful active learning paradigm that

seeks out discovery of unseen classes, which has profound benefits for a variety of
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practical remote sensing applications, including image analysis of big geospatial data

cubes, where it is often not possible to have every class on the ground represented in

the initial training library.

• To perform classification on hyperspectral data when we have enough labeled samples

for training, a deep convolutional recurrent neural network (CRNN) is designed in

Chapter 4, which is the first work to extract contextual information from hyperspectral

data via recurrent neural networks. By utilizing large amount of labeled training data,

CRNN is able to extract more discriminative features and achieves better performances

than existing methods. This is a very effective and practical method for hyperspectral

data classification applications when we have access to large labeled training datasets.

• A deep sensor fusion system based on deep learning techniques is proposed in Chapter

??, which combines hyperspectral and LiDAR data for land cover classification. The

method has profound benefits for modern remote sensing applications where we have

multiple data sources and enough training samples to train deep neural networks.

• To perform deep learning based classification under the circumstance that very limited

labeled samples are provided but a large amount of unlabeled data are available, a new

semi-supervised deep learning framework using pseudo labels is proposed in Chapter

5, which involves pre-training a deep neural network using labeled and unlabeled

data with pseudo labels followed by fine-tuning using labeled data with true labels.

This semi-supervised deep learning framework provides significant improvement on

classification performances compared to state-of-the-art methods, and has profound

benefits for real-world applications when we don’t have enough labeled samples for

training deep neural networks but the unlabeled samples are quite abundant.
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