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ABSTRACT 

A central enigma of social evolution is the emergence and maintenance of cooperation and 

altruism in the face of selfish, free-loading individuals (i.e., cheaters), which take advantage 

of cooperators. One mechanism to counter cheating is the evolution of resistors. Both cheating 

and resistance appear to be persistent and prevalent in nature. However, whether resistance 

evolves to specifically outcompete local cheats, and whether it comes at the cost of reduced 

fitness in alternate environments is largely unknown. Here, I describe several experiments to: 

(i) test the cost of adaptation in replicate populations of social amoebae evolved in the presence 

of different cheaters, (ii) describe the function, transcriptomics, and population genomics of 

mutations identified in my evolved populations, and (iii) describe the population structure of 

the social amoeba at varying scales. Population structure analyses suggest significant 

differentiation in this species at spatial scales as small as one meter. Resistance readily evolved 

within each selection environment and strains performed better within their respective 

environments, revealing the capacity for cheating resistance with a variety of cheater in D. 

discoideum. I identified several genes mutated in the evolved strains that potentially influence 

resistance to cheating, and interestingly, that balancing selection might affect several of these 

genes. Trade-offs, thought to limit adaptation and drive specialization, were observed between 

selection groups. Thus, rapid adaptation in response to specific cheaters might prevent fixation 

of one cheater type in natural populations and might facilitate local adaptation of cheaters and 

resistors.  

 

 

 



 iv 

 TABLE OF CONTENTS  

LIST OF FIGURES....................................................................................................... vi 

LIST OF TABLES ........................................................................................................vii 
CHAPTER 1: INTRODUCTION .................................................................................. 1 

1.1 Cooperation and Conflict ............................................................................................................ 1 
1.2 Mutualism and Interspecies Cheating ........................................................................................ 2 
1.3 Cooperation and Cheating in Microbes ...................................................................................... 2 
1.4 Mechanisms of Cheater Control ................................................................................................. 3 
1.5 Cooperation and Altruism in D. discoideum ............................................................................... 5 
1.6 Cheating in D. discoideum ........................................................................................................... 5 
1.7 Resistance to Cheating ................................................................................................................ 7 
1.8 Discussion .................................................................................................................................... 8 

CHAPTER 2: EXPERIMENTAL EVOLUTION OF CHEATER RESISTANCE .......13 

2.1 Introduction ............................................................................................................................... 13 
2.2 Methods ..................................................................................................................................... 19 

2.2.1 Growth and Maintenance of Strains ....................................................................................... 19 
2.2.2 G418 efficacy ....................................................................................................................... 21 
2.2.3 Co-development Assays with Cheaters .................................................................................. 21 
2.2.4 Experimental evolution ......................................................................................................... 22 
2.2.5 Germination.......................................................................................................................... 23 
2.2.6 Doubling time ....................................................................................................................... 24 
2.2.7 Sporulation efficiency ........................................................................................................... 24 
2.2.8 Statistical analyses ................................................................................................................ 25 

2.3 Results........................................................................................................................................ 25 
2.3.1 Experimental Mutants Cheat Wild-Type................................................................................ 25 
2.3.2 Evolved Strains Show Fitness Improvements Against Their Focal Cheaters ........................... 29 
2.3.3 Evolved Strains Have Greater Fitness in Familiar Environments ............................................ 33 
2.3.4 Likelihood Ratio Test of Correlated Response ....................................................................... 35 
2.3.5 Trade-Offs Among Selection Environments .......................................................................... 38 

2.4 Discussion .................................................................................................................................. 40 
2.4.1 Summary .............................................................................................................................. 40 
2.4.2 Evolved Resistance ............................................................................................................... 40 
2.4.3 Fitness Trade-Offs ................................................................................................................ 41 

CHAPTER 3: GENETIC BASIS OF RESISTANCE TO CHEATING ........................43 

3.1 Introduction ............................................................................................................................... 43 
3.2 Methods ..................................................................................................................................... 47 

3.2.1 Whole-Genome Resequencing and Variant Calling ............................................................... 47 
3.3 Results........................................................................................................................................ 50 

3.3.1 Summary .............................................................................................................................. 50 
3.3.2 Gene descriptions ................................................................................................................. 53 
3.3.3 Parallelism ............................................................................................................................ 55 



 v 

3.3.4 Population Genomics ............................................................................................................ 57 
3.3.5 Transcriptomics .................................................................................................................... 61 

3.4 Discussion .................................................................................................................................. 63 

CHAPTER 4: POPULATION STRUCTURE OF THE SOCIAL AMOEBA ...............66 

4.1 Introduction ............................................................................................................................... 66 
4.2 Methods ..................................................................................................................................... 69 

4.2.1 Collection ............................................................................................................................. 69 
4.2.2 Isolation ............................................................................................................................... 70 
4.2.3 DNA extraction and PCR ...................................................................................................... 71 
4.2.4 Data analysis ........................................................................................................................ 73 

4.3 Results........................................................................................................................................ 75 
4.4 Discussion .................................................................................................................................. 83 

BIBLIOGRAPHY .........................................................................................................87 
 
  



 vi 

LIST OF FIGURES 
Figure 2.1.1 – Potential Reaction Norms ................................................................................... 15 
Figure 2.2.1 – Evolution Experiment Schematic ....................................................................... 23 
Figure 2.3.1 – CD mutants produce more spores than WT when developed clonally. ................ 27 
Figure 2.3.2 – Observed vs estimated cheating based on sporulation efficiency......................... 28 
Figure 2.3.3 – Evolved populations have increased their share of the spores in chimeras with the 
target strain ............................................................................................................................... 29 
Figure 2.3.4 – Performance of each cheater (or the non-cheating control) against evolved 
populations ............................................................................................................................... 34 
Figure 2.3.5 – Reaction norms of evolved strains with each competitor .................................... 37 
Figure 2.3.6 – Fitness traits among selection groups ................................................................. 38 
Figure 2.4.1 – Performance of non-rWT strains with WT .......................................................... 41 
Figure 3.3.1 – Mutated genes within the 35 evolved strains....................................................... 56 
Figure 3.3.2 – Difference between candidate genes versus random gene sets for different 
evolutionary metrics ................................................................................................................. 58 
Figure 4.2.1 – Collection sites for D. discoideum strains ........................................................... 70 
Figure 4.2.2 – Example electropherogram to illustrate peak calling ........................................... 73 
Figure 4.3.1 – Isolation by distance (IBD) plots ........................................................................ 78 
Figure 4.3.2 – Principal component analysis (PCA) showing positions of all individuals for 2016 
samples. .................................................................................................................................... 80 
Figure 4.3.3 – Population structure analysis of 2015 samples .................................................... 81 
Figure 4.3.4 – Population structure analysis of 2016 samples .................................................... 82 

  



 vii 

LIST OF TABLES 
Table 2.2.1 – List of REMI disrupted genes in cheater mutants. ................................................ 20 
Table 2.3.1 – Separate mixed model ANOVAs testing whether evolved strains show increased 
proportions in the spores compared to the ancestor when co-developed with their target strains.29 
Table 2.3.2 – Separate mixed model ANOVAs for each environment testing the variation among 
evolved lines within each. ......................................................................................................... 31 
Table 2.3.4 – One-sample t-tests based on a null hypothesized value of 0.5 .............................. 31 
Table 2.3.5 – Mixed model ANOVAs, AIC, and likelihood ratio test (χ2). ................................ 35 
Table 2.3.6 – Separate t-tests to compare of the means between evolved strains within rWT 
(rAX4) and rCD1-4 selection environments for germination efficiency, testing the null 
hypothesis that the difference in means is equal to zero............................................................. 39 
Table 3.3.1 – Variants in candidate genes within the evolved strains ......................................... 51 
Table 3.3.2 – Annotations for socially important genes. ............................................................ 54 
Table 3.3.3 – Number of Candidate Genes that are “Extreme” (in the lower 5th or upper 95th 
percentile of the genome-wide distribution) .............................................................................. 59 
Table 3.3.4 – Test of elevated variance in candidate genes compared to random genes ............. 60 
Table 3.3.5 – Candidate genes with values in the tails of the genome-wide distribution for at least 
one metric. ................................................................................................................................ 61 
Table 3.3.6 – Timing of maximum expression .......................................................................... 62 
Table 3.3.7 – Candidate genes with differential expression ....................................................... 62 
Table 4.2.1 – Microsatellite Primer Sequences for 13 loci ......................................................... 72 
Table 4.3.1 – Genetic diversity analyses ................................................................................... 76 
Table 4.3.2 – Pairwise FST among plots .................................................................................... 77 
Table 4.3.3 – Pairwise FST values ............................................................................................. 77 
Table 4.3.4 – Analysis of molecular variance (AMOVA) for amplified microsatellite fragment 
length polymorphism data ......................................................................................................... 79 



 1 

CHAPTER 1: INTRODUCTION
 

1.1 Cooperation and Conflict 

Cooperation has been fundamental to life’s successful increase of complexity. Undeniably, the 

major transitions in evolution are contingent upon the organization of smaller replicating units 

into cooperative groups where individuals incur a direct fitness cost for the benefit of the 

collective (Smith and Szathmary 1997). Individuals that maintain cohesion ultimately benefit 

from the division of labor among unions afforded through specialization and improved 

efficiency (Crespi 2001). From genes cooperating within the genome, cells cooperating within 

an organism, social insects cooperating as superorganisms, to humans cooperating in societies, 

we can see examples of one of the great products of evolution. So long as cooperation provides 

a competitive advantage to participating individuals (be they genes or organisms), natural 

selection should promote increasing levels of cooperation (West et al. 2007a). However, taking 

advantage of cooperators by receiving benefits from societies without contributing might 

provide an even greater advantage to individuals (Axelrod and Hamilton 1981). Therefore, 

cooperative groups are at risk of exploitation by selfish non-cooperators. These selfish 

individuals, called cheaters, can potentially invade populations, spread to fixation and leave 

populations vulnerable to exploitation (Frankham 2005; van Elsas et al. 2012). Mechanisms to 

avoid, mitigate, punish, or otherwise reduce their spread might thus be favored (Özkaya et al. 

2017). Nevertheless, associations between cheaters and non-cheaters can persist (Ferriere et al. 

2002; Ferrière et al. 2007). Understanding the nature of cooperative systems and how they 

achieve cohesiveness is, therefore, paramount to evolutionary and social biologists.  
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1.2 Mutualism and Interspecies Cheating 

Mutualistic interactions can occur when two species exchange goods or services, mainly 

nutrition, energy, protection, or transport. These interactions are defined as being beneficial to 

both parties, and they can play a central role in ecosystem function (Boucher et al. 1982). 

However, the opportunity for cheating is prevalent in interspecies mutualisms (Boucher 1988; 

Ferriere et al. 2002; Ferrière et al. 2007; Jones et al. 2015). Many animal systems provide 

fascinating examples of cheaters invading mutualisms. For example, nectar robbers 

(encompassing some insects, birds, and bats) remove nectar without transporting pollen (Maloof 

and Inouye 2000; Richardson 2004; Rojas-nossa et al. 2016). Sometimes seemingly mutualistic 

relationships arise through coercion, as seen in the lycaenid caterpillars and their attendant ants. 

In this relationship, ants are fed a solution by the caterpillar that induces physiological changes 

in the ants, causing them to protect the caterpillars from other insect attacks (Fiedler 1991; Hojo 

et al. 2015).  

 

1.3 Cooperation and Cheating in Microbes 

Microorganisms provide an efficient way to study fundamental questions in evolution, and 

microbial cooperation is proving to be as ubiquitous as microbes themselves (Strassmann et al. 

2000; Crespi 2001; Rainey and Rainey 2003; West et al. 2007b). Microbial life can also involve 

interactions between individuals that lead to cooperation and conflict. There are several well 

studied systems of microbial cheaters (Strassmann et al. 2000; Fiegna and Velicer 2003; Zhang 

et al. 2009). Cheating can arise when some individuals fail to produce  metabolically expensive 

communal goods (Ennis et al. 2000; Crespi 2001; Fiegna and Velicer 2003; Rainey and Rainey 

2003; H. Koschwanez et al. 2011; Zhang and Rainey 2013). For example, the social bacterium 
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Myxococcus xanthus undergoes multicellular development. Myxococcus cheaters that fail to 

produce C-factor (the product of the csgA gene) can free-ride through development when 

enough producers are present, but lose their advantage when at high frequency (Fiegna and 

Velicer 2003). Pseudomonas aeruginosa, a common microbe found in cystic fibrosis patients 

cooperates through sharing of communal goods, such as pyoverdine, a virulence factor for iron 

sequestration, and elastase, a virulence-enhancing protease. P. aeruginosa defectors that fail to 

produce either product can cheat and thereby outcompete wild-type cells, which can lead to 

population collapse (Dandekar et al. 2012; Asfahl et al. 2015; Wang et al. 2015). Cooperative 

cells of the budding yeast Saccharomyces cerevisiae secrete the enzyme invertase into the 

environment to digest sucrose into simple sugars for absorption. Cheating yeast cells fail to 

produce invertase, but reap the benefit of neighboring cooperators (H. Koschwanez et al. 2011). 

These examples provide ample opportunity to study the maintenance of cooperation in the 

presence of potential instability caused by cheaters. 

 

1.4 Mechanisms of Cheater Control  

Various mechanisms are thought to control the spread of selfish individuals and maintain 

cooperation within groups, including quorum sensing (Miller and Bassler 2001; Waters and 

Bassler 2005), policing (Manhes and Velicer 2011), reciprocity (Axelrod and Hamilton 1981; 

Inglis et al. 2014; Hilbe et al. 2018), and kin discrimination (Roulston et al. 2003; Ostrowski et 

al. 2008; Strassmann and Queller 2011; Strassmann et al. 2011). As mentioned earlier, 

communities of Pseudomonas aeruginosa benefit from the production of multiple communal 

goods. P. aeruginosa cooperators can mitigate cheating, however, using a cell-to-cell 

communication mechanism (quorum sensing) that to measures the density of cooperators and 
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controls gene expression, ensuring expensive communal goods are produced only when the 

strategy is beneficial and defectors are low. Interestingly, co-infection by two cheating P. 

aeruginosa types can also rescue populations risking collapse, suggesting that reciprocal 

cheating can be one means to maintain cooperation (Özkaya et al. 2018). In human societies, 

defection can be deterred through policing, thereby promoting cooperation by punishing 

defectors. Policing has been shown to deter cheating in microorganisms as well (Manhes and 

Velicer 2011), but policing is likely to be a costly endeavor, and may lead to avenues for 

cheating.  

 

Where policing uses active punishment to suppress defectors, reciprocity limits cheating by 

directing immediate or future exchange of altruistic acts between individuals (direct) or among a 

group of individuals (indirect) that are also altruistic (Axelrod and Hamilton 1981; Nowak and 

Sigmund 2005; Hilbe et al. 2018). Reciprocity requires invoking higher order behavioral 

responses and is limited to systems where there is high probability of repeated encounters 

between any two individuals (Riolo et al. 2001, although see Nowak and Sigmund 2005). 

Lastly, kin can help to promote the evolution of altruism (Hamilton 1964a; Axelrod and 

Hamilton 1981; Nowak and Sigmund 2005; Dyken et al. 2011; Strassmann et al. 2011; Ho et al. 

2013), and can help to maintain cooperation within groups by denying altruistic acts to 

strangers. However, it is still possible for cheating to arise in highly related groups (Fiegna and 

Velicer 2003; Fiegna et al. 2006; Santorelli et al. 2008; Hibbing et al. 2010; Butaitė et al. 2017; 

Özkaya et al. 2017). Within many microorganisms, for which ample evidence of cooperation 

exists (Diggle et al. 2007; West et al. 2007b; Strassmann et al. 2011; Celiker and Gore 2013), 

there is potential for mixing between different genotypes and opportunity for encountering non-
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kin (Fortunato et al. 2003b; Vos and Velicer 2009), which sets the conditions were cheating can 

occur and necessitates mechanisms of cheater control.  

 

1.5 Cooperation and Altruism in D. discoideum 

Dictyostelium discoideum is a free-living amoeba, found primarily among leaf litter in 

temperate forest floors (Swanson et al. 1999). The free-living cells spend part of their life as 

individuals feeding on bacteria, but upon starvation, tens to hundreds of thousands of 

individuals culminate into a fruiting body where division of labor and cell differentiation 

occurs. In fruiting bodies, approximately 20% of the cells vacuolize and altruistically die to 

form a rigid stalk that holds the reproductive spores aloft (Bonner 2009). Fruiting body 

formation is thought to aid in dispersal and protection of spores and is therefore a significant 

system for the study of altruism and cooperation (Raper 1984; Bonner 2009).  Furthermore, D. 

discoideum can be indefinitely frozen at the spore stage and recovered from frozen stocks, 

allowing for direct comparison between ancestral and evolved populations and aiding 

experimental evolution (Santorelli et al. 2008; Khare et al. 2009; Kuzdzal-Fick et al. 2011; 

Hollis 2012; Levin et al. 2015).  

 

1.6 Cheating in D. discoideum 

In D. discoideum, cheating is defined as a disproportionate representation of spores in 

chimaeras and a reduced allocation to stalk (Strassmann et al. 2000). Co-occurrence of multiple 

D. discoideum genotypes has been observed in natural populations of D. discoideum (Fortunato 

et al. 2003b). In 12 different pairwise mixes between two natural isolates from North Carolina, 

Strassmann, et al. (2000) found that half of the mixes did not result in fair chimerae, meaning 
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that one strain per chimera contributed more, proportionately, to prespore cells  than to prestalk 

cells when forming chimeric slugs (an intermediate social stage).  

 

Work to identify genes involved in cheating behavior in D. discoideum began with the use of 

genetic screens, where experimenters selected for a given social behavior (i.e., increased spore 

proportioning in chimerae) from a pool of REMI mutants (Ennis et al. 2000; Khare et al. 2009; 

Khare and Shaulsky 2010; Santorelli et al. 2013). REMI (Restriction Enzyme-Mediated 

Integration) mutants are created by the random insertion of a selectable plasmid, which creates 

random null mutations (Kuspa 2006). The first described cheater was chtA (Ennis et al. 2000), 

which is unable to produce normal fruiting bodies on its own, as it lacks a developmental Fbox 

protein necessary for signaling the development of pre-stalk cells. In chimera with even a small 

percentage of wild-type cells, however, chtA mutants can utilize the wild-type cells’ signal, 

resulting in normal looking fruiting bodies (although with somewhat smaller sori), where fbxA-

contributes only to the spores. This type of cheater, known as an ‘obligate parasite’ (Buss 1982; 

Khare and Shaulsky 2010) because it cannot fruit on its own, serves as an early example of the 

possibility of mechanisms that could induce cheating behavior in D. discoideum.   

 

A later genetic screen for cheating revealed the possibility of numerous mechanisms for 

cheating (Santorelli et al. 2008), with the additional requirement that they form fruiting bodies 

on their own. The chtB mutant identified in the screen was shown to inhibit wild-type from 

producing spores. Additionally, chtB had no measurable pleiotropic costs to cheating, and 

produced normal fruiting bodies when clonal (Santorelli et al. 2013), thus a facultative cheater. 

ChtC is one the more well studied cheater genes in D. discoideum, which is also a facultative 
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cheater identified by Santorelli et al. (2008). The wild type chtC gene is transcribed late in 

development and regulates the maintenance of pre-stalk cell fate. Cells lacking chtC fail to 

maintain their pre-stalk cell fate in chimeras and transdifferentiate into pre-spore cells (meaning 

they initially differentiate into pre-stalk and later change cell fate), leaving the deficiency to be 

filled by the partner cells, and thus form a disproportionate fraction of spores in fruiting bodies 

(Khare and Shaulsky 2010). This cheating by deficiency is different than that of chtB, in that it 

does not appear to coerce partners into producing stalk by secreting a signal to alter their cell 

proportioning, but rather takes advantage of an existing developmental pathway and passively 

cheats (Khare and Shaulsky 2010). In addition to this mutant, an additional 128 unique cheater 

mutants were estimated to have been produced from the screen, showing that there are abundant 

pathways for conflict within populations of D. discoideum (Santorelli, et al. 2008). 

 

1.7 Resistance to Cheating 

In a REMI screen similar to that of  Santorelli et al. (2008), but using the chtC mutant as a 

selective competitor, Khare et al (2009) identified a mutant (rccA) that was resistant to chtC. A 

resistant strain is one that has increased spore production (compared to controls) when in 

chimaera with a cheating strain (Khare et al. 2009). RccA was not resistant to a different cheater 

(LAS1, also known as chtB-), suggesting that there are possibly different mechanisms to 

cheating, and that resistance may be specific to each cheater type. RccA is also a noble resistor, 

meaning that in mixes with the parental strain, it does not cheat. Furthermore, this screen 

resulted in isolation of six additional mutants that showed resistance to chtC. However, their 

resistant phenotypes could not be causally linked to the insertion site, suggesting that random 

mutations during the selection environment led to the observed resistant phenotypes. Further 
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support that selection through natural random variation can produce resistance to cheating is 

provided by the experimental evolution work of Hollis (2012). Hollis repeatedly mixed and co-

developed an evolving strain of D. discoideum with a non-evolving cheater. Hollis’ strains 

evolved resistance within 10 social generations in the presence of a strong cheater, and showed 

evidence of multiple competitive advantages derived through spontaneous mutation alone. 

Together these experiments demonstrate that cheating could be ubiquitous, can potentially 

involve multiple pathways, and that resistance might evolve as a counter measure to avoid 

cheating.  

 

1.8 Discussion 

The previously described experiments have demonstrated that resistance can evolve in response 

to cheating in the laboratory (Khare et al. 2009; Manhes and Velicer 2011; Hollis 2012). Hollis 

(2012) allowed the Dictyostelium discoideum lab strain to evolve in the presence of a strong 

cheater of and selected for spores of the evolving wild-type. After 10 rounds of selection, 

increased spore production of the evolved wild-type compared to the ancestor was observed, 

indicating that D. discoideum can rapidly evolve resistance to cheating through spontaneous 

mutations and that arms races might occur in nature. Evolutionary arms race dynamics are 

characterized by reciprocal selective pressures imposed by two interacting lineages (Dawkins 

and Krebs 1979) resulting in recurrent selective sweeps (Stahl et al. 1999; Bergelson 2001). One 

caveat to Hollis’ study is that vegetative growth and social development were not isolated, 

meaning that the observed did not necessarily depend on social interactions. Additionally, the 

mutations that arose were not determined. Khare et al. (2009) showed that resistance to a 

specific cheater could be selected for from a pool of mutants. However, because of how the 
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mutations were created in these screens, the cheaters and resistor described thus far by Khare et 

al. (2009), Santorelli et al. (2008), and Ennis et al. (2000),  are limited to null mutants, and their 

phenotypic anomalies are from lack of function, typically within developmental signaling 

pathways.  

 

In Chapter 2, I describe a social evolution experiment where the only source of genetic variation 

random mutation, which might allow for different mutations than those in knock out screens. 

Life cycle stages prior to development were intentionally isolated from social competition to 

maximize selection on the social development stage, and I conducted fitness assays to examine 

the level of resistance and the extent to which adaptations to cheating confer costs among the 

evolved strains. I evolved replicate populations in the presence of four, genetically different 

REMI cheater mutants with three major goals in mind. (1) Can resistance evolve simultaneously 

to multiple different cheaters? (2) Is there a cost to cheating resistance? (3) Is the evolution of 

resistance repeatable and predictable? 

 

There has been discussion in the literature about the definition of cheating, what constitutes 

cheating, and whether all observations of unequal investment during development equates to 

cheating (Ghoul et al. 2013; Wolf et al. 2015; Martínez-García and Tarnita 2016). Here, my 

measurement of cheating, the disproportionate contribution to the spores in chimeric fruiting 

bodies, fits within the confines of the definition laid out by Ghoul et al. (2013), who define 

cheating as “ a trait that is beneficial to a cheat and costly to a cooperator in terms of inclusive 

fitness” and “when these benefits and costs arise from the actor directing a cooperative behavior 

toward the cheat, rather than the intended recipient”. That is to say, in this system, stalk 



 10 

production is a costly product for cooperators to produce and cheaters benefit from its use, thus 

gaining a fitness advantage. I use this definition here because even if a cheating strain does not 

coerce its victim into producing additional stalk, stalk production is unfavorable unless used by 

its producer. In other words, if stalk is an expensive communal good, and any one genotype can 

benefit by using more of it (by taking up a larger proportion of the spores), even if they also 

contribute to making the stalk, they gain a fitness advantage over, and thus take advantage of 

those strains with which they co-develop. So outside users of that stalk, even if they do 

contribute equally, still gain the advantage of the stalk produced by others because they make 

better use of it. However, there are examples of mechanisms in the literature of how cheaters 

exploit wild-type cells and cause them preferentially form stalk  (Ennis et al. 2000; Khare and 

Shaulsky 2010; Santorelli et al. 2013). The mechanism used to achieve superior spore 

representation need not be from either coercion or failure to produce communal goods, 

however. For example, in D. discoideum, development is triggered by starvation, and the first 

cells to do so begin propagation of extracellular signaling. Kuzdzal-Fick, Queller, and 

Strassmann (2010), showed that proportioning within fruiting bodies can be determined in part 

by the timing of development among cells in mixes; those that starve first are more likely to 

become spores. In other words, a population that adapts to initiate early development might hold 

an advantage and cheat late developers. I will discuss some of the measures taken to investigate 

these different behaviors within Chapter 2, where I describe assays of several traits that could 

cause cheating under my definition.  

 

In Chapter 3, I describe a bioinformatic and genomic analysis based on genome re-sequencing 

of the evolved strains from Chapter 2. Experimental evolution is a powerful tool to investigate 
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the genetic basis of traits of interest (Cooper et al. 2003; Rainey and Rainey 2003; Nidelet and 

Kaltz 2007; Hollis 2012; Kawecki et al. 2012; Jasmin and Zeyl 2013). I evolved replicate 

populations (described in Chapter 2) started from a single ancestor in the presence of each of 

four genetically different cheaters and observed that evolved populations showed improved 

performance against their focal cheater, and sometimes, to other unfamiliar cheaters as well. 

Evolved clones from each population were assessed using whole-genome resequencing to: (1) 

identify the genetic basis of evolved traits, (2) identify any genetic parallelism (i.e., whether 

similar mutations arise across multiple evolved populations), thereby narrowing the pool of 

potential mutations that caused the resistance to cheating, and (3) assess whether candidate 

genes might be subject to selection in nature. Finally, I describe what is known in the literature 

about the function of mutated genes and how they might confer their effects on cheating and 

resistance. Briefly, I identified several different mutations in each strain (Five mutations on 

average), some of which are likely to be neutral or deleterious, in addition to any beneficial 

mutations. Furthermore, some mutations may be beneficial in the evolution environment, but do 

not impact cheating resistance, instead conferring adaptations to some other component of the 

environment (e.g., temperature, humidity, media). I then further narrowed my candidate pool by 

assessing patterns parallelism at the level of genes and gene function in part by leveraging an 

existing dataset consisting of genome-wide expression during development and pre-spore versus 

pre-stalk expression bias (Parikh et al. 2010). Based on the pool of candidates that were mutated 

in my evolution experiment, I undertook a population genomic analysis designed to understand 

how selection might be acting on these genes in nature. Additionally, using an existing 

population genetic analysis based on genome sequencing of 20 natural isolates of D. discoideum 

(Ostrowski et al. 2015), I explored the sequence polymorphism in my mutated genes found in 
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nature and compared their patterns of polymorphism to those of other genes in the genome with 

the goal of determining whether they, either collectively or individually, show signatures 

consistent with a history of selection in nature. Together, the combination of experimental 

evolution, genome sequencing, and population genomics constitutes a powerful approach to 

understanding the genetic basis of social traits, especially those that potentially mediate social 

conflict, and their evolutionary history in nature. 

 

Finally, in Chapter 4, I describe a hierarchical investigation of the population structure of D. 

discoideum wild isolates. Here my goals were to (1) identify what constitutes a population in 

nature, (2) evaluate gene flow among these populations, and (3) understand the degree of 

differentiation in populations. Using collections of natural isolates isolated at varying distances 

from 1 m to 1000 km, I investigated the genetic variation within and among populations using 

microsatellite fragment analyses. I describe the results of multiple different cluster analyses, 

differentiation analyses, and discuss the current knowledge of microbial population structure. 

 

As I have shown here, there are many examples in nature of cooperation even though the 

potential for defection is high. I aim to provide insight into the underlying means by which 

evolution promotes altruism and cooperation despite these potential vulnerabilities. Specifically, 

I aim to elucidate how cheating and resistance might persist and how stable equilibria might 

exist between these two traits in nature. 
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CHAPTER 2: EXPERIMENTAL EVOLUTION OF CHEATER RESISTANCE 
 

2.1 Introduction 

Cooperative societies can be exploited by individuals that receive group benefits without 

contributing their fair share of the costs (Hamilton 1964a; Axelrod and Hamilton 1981).   

These selfish cheaters, having a proximate fitness advantage over cooperators, can potentially 

invade cooperative systems and can generate local extinctions in laboratory experiments (Fiegna 

and Velicer 2003), which begs the question as to how cheating is moderated in nature. If 

cheating persists in nature, the spread of cheating might be mitigated by traits that help to 

enforce fairness (Rainey and Rainey 2003; Travisano and Velicer 2004; Rankin et al. 2007).  

 

One way to limit the spread of cheating is to cooperate only with kin (Hamilton 1964a; 

Kuzdzal-Fick et al. 2011; Strassmann and Queller 2011; Ho et al. 2013). Hamilton’s theory of 

inclusive fitness (kin selection) is formalized by Hamilton’s rule, which states that altruistic 

traits (those that benefit others at the expense of the actor) will be selected when the sum of 

positive impact of survival and reproduction on relatives (indirect fitness) and cost to self-

survival and reproduction (direct fitness) exceeds zero (Hamilton 1964a). Kin recognition may 

indeed be an important factor allow for the evolution of cooperation and restrain cheating 

(Mehdiabadi et al. 2006; Ostrowski et al. 2008; Strassmann and Queller 2011; Ho et al. 2013). 

However, kin selection may not completely suppress cheating (Van Dyken and Wade 2012), 

and may be difficult in systems where interactions occur frequently between unrelated 

individuals (Rousset and Roze 2007). In the absence of relatedness, cheating might also be 

restricted through the evolution of cheater-resistance, which could manifest in different ways. 

On one hand, resistance could occur through the evolution of super cheaters, which cheat the 
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cheater, potentially leading to an escalating arms race (Hollis 2012; Ostrowski et al. 2015; 

Özkaya et al. 2018). Alternatively, the success or fitness of a cheater may be inversely related to 

the frequency of resistors in the population, and vice versa, akin to the negative frequency 

dependent selection seen in host-parasite co-evolution (Kassen 2002; Brandt et al. 2007; Pruitt 

and Riechert 2009; Tellier and Brown 2011; Van Dyken and Wade 2012).  Moreover, if 

cheating or resistance are both costly (e.g., from trade-offs) it might result in a balanced 

polymorphism and maintenance of both traits in a population. 

 

There are several possible outcomes of for the adaptation of resistance to cheating that may or 

may not involve costs to adaptation (see Figure 2.1.1). Costs of resistance could arise if there 

are trade-offs where mutations that confer resistance negatively affect other traits (i.e., 

antagonistic pleiotropy), which could lead to the evolution of specialists. One possible outcome 

is that increased fitness to a given genotype (the direct response, DR) trades-off with inferior 

fitness with alternate genotypes (the correlated or cross response, CR), thus creating specialists 

(Figure 2.1.1A). However, trade-offs from pleiotropic costs are not necessary for specialists to 

evolve (Figure 2.1.1B). Instead, specialists can result from opportunity costs, where adapting to 

one genotype leaves the specialist at a disadvantage in alternate environments. There are also 

intermediate possibilities, such as the emergence of superior generalists (Figure 2.1.1C), where 

there is no cost of adaptation to some genotypes.  
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Figure 2.1.1 – Potential Reaction Norms. Genotype-by-genotype interactions between 
hypothetical evolved strains (Adapted from Nidelet & Kaltz, 2007). Lines represent two 
populations (rCheater1, rCheater2) evolved in the presence of two hypothetical cheaters 
(Cheater1, Cheater2). The dotted line indicates ancestral state (relative fitness of 1). (A) 
Adaptation to either cheater infers a cost in the form of reduced fitness to alternate cheaters, 
leading to specialists and local adaptation. (B) Opportunity cost of adaptation – evolved 
populations perform better than the ancestor with both novel and familiar cheaters, but Direct 
Response (DR) is greater than Correlated Response (CR). (C) Cost associated with adaptation to 
Cheater1, but not cost of adaptation to Cheater2, leading to superior generalists (rCheater2). 

 

The social amoeba, Dictyostelium discoideum, is an excellent model system for studying the 

dynamics of the evolution of cooperation and conflict (Crespi 2001; Li and Purugganan 2011; 

Strassmann and Queller 2011; Celiker and Gore 2013; Jones et al. 2015). Upon starvation, the 

individual amoebae aggregate and form motile slugs (Raper 1984). These slugs develop into 

fruiting bodies consisting of a rigid stalk, which holds aloft and aids the dispersal of viable 

spores (Bonner 2009). The fate of stalk cells is to sacrifice themselves and die while providing a 

benefit to the reproductive spore cells by lifting them of the surface where they have a greater 

chance of dispersal and protection while in the dormant spore state (Bonner 2009).  
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Unlike many multicellular organisms, which pass through a single cell bottleneck at each 

generation, thereby maintaining high relatedness, D. discoideum amoebae become multicellular 

through aggregation. Aggregation potentially brings together diverse genotypes, which may or 

may not equally contribute to stalk formation, making D. discoideum vulnerable to cheaters 

(Ennis et al. 2000; Strassmann et al. 2000; Khare and Shaulsky 2010; Santorelli et al. 2013). 

When natural isolates of D. discoideum co-develop to form chimeric (mixed genotype) fruiting 

bodies, one genotype is sometimes preferentially represented among viable spores and 

underrepresented in the stalk (Strassmann et al. 2000; Buttery et al. 2010; Khare and Shaulsky 

2010; Santorelli et al. 2013). This unequal sharing in the production of a communal good (the 

stalk) can be considered an example of cheating (Ennis et al. 2000; Strassmann et al. 2000; 

Foster et al. 2002; Fortunato et al. 2003a; Ostrowski et al. 2008; Santorelli et al. 2008; Khare et 

al. 2009; Buttery et al. 2010; Khare and Shaulsky 2010; Strassmann and Queller 2011; Kuzdzal-

Fick et al. 2011; Hollis 2012; Santorelli et al. 2013; Ho et al. 2013; Levin et al. 2015). 

 

In addition to studies of natural isolates, cheating in D. discoideum has been examined in the 

laboratory. For example, in an artificial selection experiment Santorelli et al. (2008) repeatedly 

passaged a genetically diverse pool of amoebae that had been subjected to random insertional 

mutagenesis. This process can enrich for those mutants that disproportionately form spores and 

avoid forming stalk. From the pool of mutants recovered, they identified over 100 genes, that 

when knocked out in the laboratory strain, caused cheating behavior, suggesting ample genetic 

opportunity for cheating in D. discoideum.  In nature, multiple genotypes have been shown to 

co-occur in relatively small patches in the soil (Fortunato et al. 2003b). Fortunado et al. (2003b) 

collected 6 mm diameter soil samples averaging 0.2 g each and identified more than one 
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genotype in 63% of the samples. Furthermore, natural isolates can develop into chimerae with 

varying levels of cooperation and conflict (Strassmann et al. 2000). These findings suggest that 

different strains might encounter one another in nature and that these encounters might 

plausibly result in cheating. 

 

 Following Santorelli’s work identifying genes for cheating behavior, Khare et al. (2009) 

performed a screen to identify mutants that suppress a known cheater (chtC; cheaterC), carried 

out by repeated rounds of co-development of the cheater with a pool of randomly mutated 

amoebae. The screen was designed to remove mutants that do not resist cheating and to enrich 

any cheater-resistant strains within the pool. The screen led to the identification of a single 

gene, rccA (resistant to cheater c) that, when disrupted, conferred resistance to the chtC- 

mutant. In addition, although the rccA- mutant was resistant to the chtC- mutant, it was not 

resistant to a different cheater (LAS1). This result suggested that resistance could be specific to 

a particular target cheater. However, because Khare only selected for resistance to a single 

cheater (chtC-) and only looked into a single resistance mutation (rccA-), it is not known if this 

pattern will be generally found. Additionally, Hollis (2012) used laboratory experimental 

evolution to show that improvements in social fitness could arise rapidly. The experiment 

revealed that evolved populations can gain increased representation in the spores within 10 

social generations, equivalent to approximately 160 cell generations in his experiment. 

Together, these experiments demonstrate that resistance can evolve rapidly as a counter measure 

to avoid cheating. 
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While it has been demonstrated that D. discoideum harbors numerous cheating pathways 

(Santorelli et al. 2008) and resistance can potentially evolve to counter cheating (Khare et al. 

2009; Hollis 2012; Levin et al. 2015), it is not known how these adaptations evolve. On one 

hand, resistance could result in specialists that are resistant only to those cheaters they have 

encountered previously. Alternatively, resistance could result in generalists that are able to resist 

a wide variety of cheaters. Which of these patterns is found (generalism or specialism) may 

have important consequences for the evolutionary dynamics of cheating behaviors. For 

example, locally adapted specialists may emerge if the evolution of resistance is costly. In 

addition, novel cheaters may be able to invade populations when local genotypes are only 

resistant to the resident cheaters. Finally, specialists may only have a fitness advantage if their 

target cheater is at high frequency in the population. More generally, identifying adaptations to 

counter cheating, as well as potential fitness costs of resistance, may help to clarify why both 

cheating and cooperation appear to be persistent and pervasive in social systems (Axelrod and 

Hamilton 1981; Crespi 2001; Ferriere et al. 2002; Fiegna and Velicer 2003; Rainey and Rainey 

2003; Griffin et al. 2004; West et al. 2007a,b; Diggle et al. 2007; Ferrière et al. 2007; Celiker 

and Gore 2013; Levin et al. 2015).   

 

Here, I used experimental evolution to test the nature of resistance to cheating in D. discoideum. 

Starting from a labeled ancestor (AX4-GFP), I evolved six replicate populations in five different 

environments. Environments consisted of populations evolving in the presence of each of four 

different cheaters or a non-cheating control, for a total of 30 evolved lines (Figure 2.2.1). In 

each round of the experiment, the evolving populations (GFP-labeled, G418-resistant) were co-

developed in equal proportions with their respective non-evolving cheaters (CD1-CD4) or the 
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ancestor (AX4, a non-cheating control). Following each round of development, the two 

competitors were separated by drug selection. The evolving populations were retained, regrown, 

and then co-developed again with the same, non-evolving competitor (either a cheater or the 

non-cheating control). Spontaneous mutation was the only source of genetic variation. 

Following 15 rounds of co-development, I isolated a single clone from each population.  I first 

tested its level of direct resistance by determining how well it does in co-development with the 

cheater it experienced during its evolution. I then asked to what extent improvements against 

the focal cheater also confer improvements against each of the unfamiliar cheaters—those that 

the evolved strain did not experience during evolution. These assays were carried out as “cross 

resistance” assays, using a complete block design. In each block of the experiment, one or more 

evolved populations competed against all four cheaters (1 familiar, 3 novel) and the ancestor. 

Each block was replicated a minimum of three times. Second, I asked whether resistance is 

costly for germination rate or growth rate, and whether resistant strains cheat the ancestor, 

suggesting their resistance may really be a form of cheating.  

 

2.2 Methods 

2.2.1 Growth and Maintenance of Strains 

The four cheater strains (CD1-4) were a gift of Adam Kuspa and Chris Dinh, Baylor College of 

Medicine. The strains were generated through random mutagenesis by using Restriction 

Enzyme Mediated Integration (REMI), whereby mutations are generated through the random 

integration of a selectable DNA fragment at common restriction sites (Kuspa 2006). These four 

strains were enriched and then isolated in an experiment where several mutant pools, each 

containing approximately 700 different mutants was propagated through multiple rounds of 
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development, a process that should select for strains that disproportionately form spores and 

avoid forming the stalk. The plasmid insertion site in each strain was identified by plasmid 

rescue and later confirmed using whole genome re-sequencing (Table 2.2.1). The ancestral 

strain for experimental evolution was a GFP-labeled axenic lab strain (AX4-GFP). This labeled 

strain was generated with the intent to induce multiple copies per cell of an extrachromosomal 

plasmid that expresses cytoplasmic GFP driven by the act15 promotor, which is maintained by 

the aminoglycoside G418 (geneticin). When maintained with 10 µg/ml G418, labeled cell 

cultures had an average of 97% fluorescence as measured by flow cytometry (Accuri C6, BD). 

 

Table 2.2.1 – List of REMI disrupted genes in cheater mutants. 

Strain Gene Name Name Description Annotations 
CD1 DDB_G0272773  NA Contains a predicted signal peptide; 

there are two similar genes in D. 
discoideum (DDB_G0284765). 

CD2 srp54 Signal Recognition 
Particle 54 kDa 
subunit 

Component of the signal recognition 
particle (SRP) - ensures correct 
targeting of nascent secretory proteins 
to the ER. 

CD3 gnt12 GlcNAc Transferas
e 

CAZy family GT49; similar to 
vertebrate 
acetylglucosaminyltransferase-like 
protein. 

CD4 DDB_G0289963 NA None 
 

Frozen stocks were spotted on SM (Formedium, 2% Agar) supplemented with 400 µl Klebsiella 

pneumoniae (Kp) as a food source to obtain spores. Spores were inoculated into petri dishes 

containing 10 ml HL5 with glucose (Formedium) supplemented with PSV (10 µg/ml penicillin, 

50 µg/ml streptomycin sulfate, 60 ng/ml cyanocobalamin, and 20 ng/ml folate). GFP-labeled 

strains were maintained with 10 µg/ml G418.  Once cells reached confluence, the cultures were 

transferred to shaking flasks and maintained at 180 RPM and 22 °C. Cultures were maintained 
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in exponential phase through daily dilutions into fresh media for approximately one week prior 

to development assays.  

 

2.2.2 G418 efficacy 

Selection on 30 µg/ml G418 was found to be effective through two experiments. First, a mix of 

G418 resistant GFP-labeled WT with REMI mutant (with BSR) were subjected to drug 

selection. DNA was extracted and PCR confirmed that BSR was absent. In a second 

experiment, the culture was split after drug selection and half was allowed to grow without drug 

for 24 hours. I used FACS to collect cells below a detectable GFP expression level (to 

conservatively bias my sample towards potential remaining cheaters) and plated cells clonally 

on Kp/SM. I randomly chose 47 amoebae plaques, extracted DNA from the cells, and 

confirmed with PCR that all samples contained the G418 cassette sequence. This means that 

after G418 selection, even cells that are outside the gated threshold for GFP fluorescence are 

true G418 resistant cells.  

 

2.2.3 Co-development Assays with Cheaters 

Cells were harvested from shaking cultures during mid-exponential growth phase (3.5×106 

cells/ml), washed twice in cold KK2 buffer (per liter: KH2PO4 2.25 g, K2HPO4 0.67 g), and 

resuspended at 1×108 cells/ml in KK2 buffer. GFP-labeled cells were then mixed with their non-

labeled competitor at a 1:1 ratio and aliquots corresponding to 2×107 cells were deposited in a 

6×6 square (corresponding to a density of 5.78×105 cells/cm) on 47 mm nitrocellulose filters 

(GVS Maine). Prepared filters were placed in 6 cm petri dishes atop Pall filter pads wetted with 

1.5 ml PDF (20.1 mM KCl, 5.3 mM MgCl2·6H2O, 9.2 mM K2HPO4, 13.2 mM KH2PO4, 0.5 g/L 
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streptomycin sulfate). At the same time, all strains were also developed clonally (without 

mixing with another strain). Plates were incubated at 22 °C in humid chambers with overhead 

light. After 48 hours filters were transferred to 50 ml Falcon tubes containing 5 ml detergent 

(KK2 buffer, 0.1% IGEPAL, 20 mM EDTA), vortexed, and counted to determine total spore 

number using a hemocytometer or cell counter (Countess II, ThermoFisher). The percentage of 

cells expressing GFP was determined using a flow cytometer (Accuri C6, BD). 

 

2.2.4 Experimental evolution 

In each round of the experiment, GFP-labeled, G418-resistant evolving populations were co-

developed at 1:1 with their respective unlabeled, G418-sensitive cheaters or the wild-type (WT) 

lab strain, as a control (Figure 2.2.1). Following co-development, spores were harvested from 

fruiting bodies and an aliquot was preserved in KK2 buffer with 20% glycerol at -80 °C for later 

experimentation. The remaining spores were deposited in HL5 medium at a density of 5×104 

spores/ml with 30 µg/ml of G418 to remove the cheater or non-cheating control strain. Selection 

using 30 µg/ml of G418 was determined to be sufficient at removing the cheater or control 

strain after co-development. During this time, each non-evolving cheater (CD1-CD4) and WT 

(cheaters and non-cheater, respectively) were inoculated onto SM plates from frozen stocks. 

Once all populations (the non-evolving cheaters, WT, and evolving populations) had reached 

exponential growth phase, the experiment was repeated. Each round of the experiment took 

approximately seven days, resulting in ~20 generations of vegetative growth, and was repeated 

for a total of 15 rounds of co-development. At the end of the experiment, there were 30 evolved 

populations (six populations/cheater × four cheaters, plus an additional six populations that 

evolved against the non-cheater control). To isolate a single clone from each evolved 
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population, the population was inoculated at low density on SM plates with 400 µl Kp to form 

well-spaced plaques. Spores were subsequently picked from the center of a single clearing, 

grown to high density, and the spores frozen for future experiments.  

 

Figure 2.2.1 – Evolution Experiment Schematic. (A) GFP-labeled ancestor mixed and co-
developed with naïve cheater or wild-type (unlabeled). In each round of the experiment the 
unlabeled strain was eliminated and only the evolving population was passaged to the next 
round. (B) Each evolution environment (consisting of a GFP-labeled evolving strain paired with 
an unlabeled cheater or control) was replicated in six parallel populations and allowed to evolve 
through 15 rounds of co-development. 

 
2.2.5 Germination 

To determine the germination efficiency, spores were plated from the freezer following the 

identical procedure used in the evolution experiment and then monitored by microscopy. 

Briefly, frozen stocks were spotted on SM agar plates (Formedium, 2% Agar) supplemented 

with 400 µl Klebsiella pneumoniae as a food source to obtain spores. Spores were diluted to 
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5×104/ml in HL5 and placed into wells of a 96 well plate. Wells were photographed 

immediately after plating and then again after incubation for 12 hours. Germination was 

calculated as (1-proportion of spores remaining after 12 hours incubation). The entire 

experiment was repeated three times.  

 

2.2.6 Doubling time 

To estimate the doubling time, the cell density of shaking cultures was measured throughout the 

co-development assays. The cell cultures were maintained at exponential growth throughout 

each assay by daily dilutions to 5×105 cells/ml. The cultures were grown in HL5 with glucose 

(Formedium) supplemented with PSV (10 µg/ml penicillin, 50 µg/ml streptomycin sulfate, 60 

ng/ml cyanocobalamin, and 20 ng/ml folate) and GFP-labeled strains were maintained with 10 

µg/ml G418. Cultures were kept at 22 ℃, shaking at 180 RPM with overhead light. At each 

dilution cell densities were measured by hemocytometer or automated cell counter (Countess II, 

ThermoFisher). The average of three cell density measurements per strain were then used to 

calculate the doubling time (dt) in hours with the formula: dt = duration×log(2)/(log(final 

density)-log(initial density). The entire process was repeated for each replication of the 

experiment.    

 

2.2.7 Sporulation efficiency 

To determine sporulation efficiency of each strain, each population was clonally developed 

alongside each co-development experiment, thus under identical conditions to the 1:1 mixes. 

After 48 hours, the filters were transferred to 50 ml Falcon tubes with 5 ml detergent (KK2 
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buffer, 0.1% IGEPAL, 20 mM EDTA) to lyse any remaining cells and an aliquot was counted 

with a hemocytometer or using an automated cell counter (Countess II, ThermoFisher).  

 

2.2.8 Statistical analyses 

I first made linear mixed models with all factors (full models) for each test. I then dropped 

individual factors (reduced models) and estimated all models with the lmer package (Bates et al. 

2015) in R (R Core Team 2018). Model selection was then carried out by comparing Akaike 

information criterion (AIC) for each model. The model having the lowest AIC was chosen as 

the best supported model. Finally, to test the significance of a given factor, I performed a 

likelihood ratio test (LRT) using the Chi-square statistic to compare the full and reduced models 

using the anova stats package (Chambers and Hastie 1992) in R. 

 

2.3 Results 

2.3.1 Experimental Mutants Cheat Wild-Type 

To test whether the four REMI mutants (CD1-CD4) enriched in a prior screen for cheating 

behaviors do in fact cheat their parental strain (WT-GFP), I co-developed cells of each mutant 

with GFP-labeled wild-type cells (WT-GFP) in equal ratios. At the same time, I developed each 

strain clonally to test their sporulation efficiency. Note that although cells are starved before 

each experiment, cells that had undergone DNA replication before harvesting for co-

development can divide after starvation, resulting in a value for sporulation efficiency that can 

be greater than 100%. When developed clonally, CD1-4 mutants do produce more spores than 

the wild-type (Figure 2.3.1), (t-tests, P<0.05). However, the observed shift in proportions 

(Figure 2.3.2, blue) is greater than estimated from sporulation efficiency (Figure 2.3.2, red). To 
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calculate the estimated proportions, I divided the clonal sporulation efficiency of WT-GFP by 

the total sporulation efficiency (clonal WT-GFP and clonal social partner) for each pairing on a 

given day. This calculation provides an estimate for the expected proportions in chimerae if no 

interaction occurs between strains. I prepared a linear mixed model with percent WT-GFP 

spores as the dependent variable, social partner (CD1-4) as a fixed variable, estimated or 

observed as a fixed variable, and block (date) as a random variable. I then performed a 

likelihood ratio test (LRT) to compare this model to a reduced model without the estimated vs 

observed factor. The LRT showed that observed proportions of WT-GFP spores were, on 

average, 4% lower than estimated proportions (χ2(1) = 9.21, P < 0.01). Finally, I recovered 

significantly fewer WT-GFP spores from chimerae with cheaters (CD1-CD4) compared to 

chimerae with WT (t-tests, all P<0.05), supporting the hypothesis that the four mutants cheat 

the wild-type (Figure 2.3.2, blue).  Together, these results suggest that the overrepresentation of 

each mutant in the spores when co-developed with the wild-type strain is caused, at least in part, 

by a shift in its spore allocation that occurs in chimeras.  
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Figure 2.3.1 – CD mutants produce more spores than WT when developed clonally. Clonal 
sporulation efficiency of wild-type (WT), the labelled wild-type (WT-GFP), or the four mutants 
(CD1-CD4). Sporulation efficiency is calculated as the number of spores following development 
divided by the number of cells prior to development. In t-tests, the mutants CD1-CD4 produced 
more spores than WT-GFP when developed clonally.  
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Figure 2.3.2 – Observed vs estimated cheating based on sporulation efficiency. Observed 
proportions (blue) indicate the measured proportion of WT-GFP spores recovered after co-
development with cheaters or WT. Paired t-tests between each of the cheaters and WT for 
observed data (blue) were significant (all P < 0.05), suggesting that WT-GFP spores are 
suppressed when in chimera with cheaters. Estimated proportion of spores (red) indicates the 
estimated contribution of WT-GFP in spores when co-developed with each strain (WT or 
cheater) based on their development in pure culture (no interaction between strains). There was 
no significant difference between estimated means (red data points) for WT and any of the 
cheaters (paired t-tests, all P > 0.05). A mixed model ANOVA showed that, among cheaters 
(CD1-4), observed values (blue) were, on average, 4% lower than estimated values (red) and that 
the estimated vs observed factor significantly improves the fit of the model (χ2 = 9.21, df = 1, P < 
0.01). These data suggest that although cheaters produce more spores than WT-GFP in pure 
culture, there is a significant shift in WT-GFP spores when in chimera with cheaters. 

 
 
 

0.2

0.4

0.6

WT CD1 CD2 CD3 CD4

 Social Partner (non-GFP)

Pr
op

or
tio

n 
of

 W
T-

G
FP

 in
 s

po
re

s

Estimated
Observed



 29 

2.3.2 Evolved Strains Show Fitness Improvements Against Their Focal Cheaters 

Each evolved strain was tested for its spore production in chimera with its focal cheater, and 

this performance was compared to that of the ancestor under the same conditions (Figure 2.3.3). 

Overall, evolved strains show a significantly higher representation in the spores compared to the 

ancestor (c2 = 6.2, df = 1, P = 0.013), indicating response to selection. As a group, only CD1 

and CD3 populations were significantly improved, whereas CD2 and CD4 populations were not 

(Table 2.3.1).  
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with the target strain. Following 15 rounds of co-development, 28 out of 30 evolved 
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0.001). Each panel shows the performance of the six lines that evolved with a given target 
strain (gray bars) as well as the performances of the ancestor against that strain (white bars) ± 
s.e.m. for comparison. The dotted line indicates the expected percentage of 50% when no 
cheating occurs. 
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Table 2.3.1 – Separate mixed model ANOVAs testing whether evolved strains show 
increased proportions in the spores compared to the ancestor when co-developed with their 
target strains. In the full models, the proportion of GFP spores is the dependent variable, 
whether the GFP strain was evolved or ancestor was considered to be a fixed effect, and 
population and block were treated as random effects. Significance is determined by comparing 
the fit of full and reduced models that lack a term of interest. In this case, the reduced model 
removed the term that indicated whether the strain was evolved or ancestral. These results 
suggest that evolved strains are significantly better only in the CD1 and CD3 environments. 

Cheater 
Treatment Model df AIC dev c2 P  
WT Full 5 -73.87 -83.87 3.41 0.06  
 Reduced  4 -72.46 -80.46    
CD1 Full 5 -116.53 -126.53 6.77 0.01 * 
 Reduced 4 -111.76 -119.76    
CD2 Full 5 -86.71 -96.71 0.36 0.55  
 Reduced 4 -88.35 -96.35    
CD3 Full 5 -111.83 -121.83 8.88 <0.01 * 
 Reduced 4 -104.95 -112.95    
CD4 Full 5 -46.78 -56.78 0.62 0.43  
 Reduced 4 -48.16 -56.16    

 

I also asked whether there was significant variation among evolved lines within an environment 

(Table 2.3.2). These analyses indicate significant among-line variance in the non-cheating 

evolved lines (WT-evolved) and among those that evolved with CD2 (CD2-evolved).  
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Table 2.3.2 – Separate mixed model ANOVAs for each environment testing the variation 
among evolved lines within each. 

Cheater 
Treatment Model df AIC dev c2 P  
WT Full 4 -73.47 -81.47 4.69 0.03 * 
 Reduced 3 -70.77 -76.77    
CD1 Full 4 -107.64 -115.64 0.00 1  
 Reduced 3 -109.64 -115.64    
CD2 Full 4 -75.65 -83.65 11.99 <.01 * 
 Reduced 3 -65.66 -71.66    
CD3 Full 4 -111.09 -119.09 <0.01 0.99  
 Reduced 3 -113.09 -119.09    
CD4 Full 4 -44.43 -52.43 0.52 0.47  
 Reduced 3 -45.91 -51.91    

 

To test whether each strain was fully resistant I performed t-tests for each strain against the 

hypothesized null of 50% spores for resistance.  Of the 30 evolved strains, 10 formed 

significantly less than 50% of the spores in chimeras with their target cheaters, indicating that 

they had not evolved full resistance (Table 2.3.3).  

Table 2.3.3 – One-sample t-tests based on a null hypothesized value of 0.5. Among the 30 
evolved strains, 10 strains formed significantly <50% of the spores when co-developed with their 
focal cheaters, indicating that they have not evolved to fully counter the effects of the cheater. 
The remaining 20 strains are not significantly different from 50%. 

     95% CI  
Strain Estimate Statistic P Parameter Lower Upper 
rAX4.1_R15 0.58 2.49 0.98 6 -inf 0.65 
rAX4.2_R15 0.57 1.79 0.94 8 -inf 0.64 
rAX4.3_R15 0.63 4.18 1.00 6 -inf 0.69 
rAX4.4_R15 0.46 -0.85 0.22 4 -inf 0.55 
rAX4.5_R15 0.52 0.24 0.59 6 -inf 0.66 
rAX4.6_R15 0.54 0.83 0.78 5 -inf 0.63 
rCD1.1_R15 0.43 -2.75 0.01 7 -inf 0.48 
rCD1.2_R15 0.44 -2.18 0.03 7 -inf 0.49 
rCD1.3_R15 0.42 -2.22 0.03 7 -inf 0.49 
rCD1.4_R15 0.44 -1.62 0.08 6 -inf 0.51 
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Table 2.3.3 Continued      

     95% CI  
Strain Estimate Statistic P Parameter Lower Upper 
rCD1.5_R15 0.48 -1.23 0.13 7 -inf 0.51 
rCD1.6_R15 0.47 -0.97 0.18 7 -inf 0.53 
rCD2.1_R15 0.45 -2.07 0.04 8 -inf 0.49 
rCD2.2_R15 0.53 0.97 0.82 8 -inf 0.60 
rCD2.3_R15 0.43 -2.44 0.02 8 -inf 0.48 
rCD2.4_R15 0.45 -1.86 0.06 6 -inf 0.50 
rCD2.5_R15 0.49 -0.39 0.35 6 -inf 0.55 
rCD2.6_R15 0.21 -5.14 0.02 2 -inf 0.38 
rCD3.1_R15 0.49 -0.44 0.34 6 -inf 0.54 
rCD3.2_R15 0.49 -0.48 0.32 7 -inf 0.54 
rCD3.3_R15 0.50 -0.03 0.49 6 -inf 0.53 
rCD3.4_R15 0.44 -3.14 0.01 6 -inf 0.48 
rCD3.5_R15 0.48 -0.72 0.25 5 -inf 0.54 
rCD3.6_R15 0.48 -0.89 0.20 6 -inf 0.52 
rCD4.1_R15 0.38 -5.04 <0.01 6 -inf 0.43 
rCD4.2_R15 0.46 -1.28 0.13 4 -inf 0.53 
rCD4.3_R15 0.36 -2.37 0.03 6 -inf 0.48 
rCD4.4_R15 0.29 -11.78 <0.01 4 -inf 0.33 
rCD4.5_R15 0.46 -0.74 0.24 7 -inf 0.56 
rCD4.6_R15 0.40 -1.35 0.11 6 -inf 0.54 

 

Finally, to ask whether the level of resistance varied depending on the target strain (i.e., whether 

some mutants are easier to adapt to than others), I examined the effect of the competitor’s 

identity on the proportion of spores in each environment, relative to the ancestor in the same 

mix. In the full model, relative spore proportion is the dependent variable, target strain was 

considered to be a fixed effect, and population and block were treated as random effects. 

However, this analysis did not show a significant effect of the target strain on the proportion of 

evolved spores in mixes (c2 = 1.34, df = 4, P = 0.86), suggesting that the magnitude of 
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evolutionary improvement did not differ among the groups, and thus that there were no 

differences in the ease or propensity to adapt to some targets over others.  

 

2.3.3 Evolved Strains Have Greater Fitness in Familiar Environments 

To test whether improvements were specific to the targeted strain or whether they were general 

adaptations to all strains or to abiotic aspects of the evolution environment, I co-developed all 

evolved strains with all four mutants. If adaptations are specific to the targeted strain, then I 

expect that mutants will do consistently worse when paired with the strains that evolved with it 

compared to strains that did not. Indeed, this pattern is what I observed—in all five 

environments, the cheater performed worse with the strains that evolved against it, compared to 

novice strains. For example, CD1 does worse, on average, against CD1-evolved strains than 

against non-CD1-evolved strains (a lowercase ‘r’ indicates strains that evolved in the presence 

of a particular cheater. For example, “rCD1” indicates those strains that evolved in the presence 

of CD1, Figure 2.3.4). This result is further supported by mixed model ANOVA, which shows 

that including direct vs correlated response as a factor significantly improves the fit of the 

model (c2 = 6.102, df = 1, P = 0.012). On average, strains that had been exposed to a given 

cheater during their evolution had 3.59% more spores in chimera than strains that had not 

experienced that cheater (Table 2.3.4). 
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Figure 2.3.4 – Performance of each cheater (or the non-cheating control) against evolved 
populations. In all five cases, mean performance of a given cheater (CD1-CD4) or the non-
cheating control (AX4) was worse when it was paired with strains that were directly selected 
to resist it (in blue) compared to strains that evolved to resist some other competitor (in red). 
This result suggests that the evolutionary improvements in performance were, at least in part, 
specific to the identity of the competitor, rather than being general adaptations to either the 
abiotic environment or aspects that were common to all competitors. 
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2.3.4 Likelihood Ratio Test of Correlated Response 

I used linear mixed models with spore proportion as the dependent variable and CR/DR (i.e., 

whether the performance of a given pair is a direct or correlated response to selection) as the 

dependent variable.  For example, the proportion of rCD1.1 spores when co-developed with 

CD1 is considered a direct response, whereas the proportion of rCD3.1 spores with CD1 is 

considered a correlated response, since rCD3.1 was not directly selected for its resistance to 

CD1. Additional factors included in the model were the evolved strain (nested within selection 

environment), the test strain (CD1-CD4 or the ancestor) and experimental block, all of which 

were random factors. Each factor was dropped to create four alternative models, which were 

estimated using the lmer package (Bates et al. 2015) in R (R Core Team 2018). 

 

Table 2.3.4 – Mixed model ANOVAs, AIC, and likelihood ratio test (χ2). 

Models 
Full: dependent variable = spore proportion, with test strain, evolved (nested within environment), CR 
vs DR, and block all considered random effects. 
Drop CR/DR: dependent variable = spore proportion, with test strain, evolved (nested within 
environment), and block all considered random effects. 
Drop environment: dependent variable = spore proportion, with test strain, evolved (nested within 
environment), CR vs DR, and block all considered random effects. 
Drop test strain: dependent variable = spore proportion, with test strain, evolved (nested within 
environment), CR vs DR, and block all considered random effects. 
 

Model df AIC dev χ2 P  
Full 7 -541.97 -555.97 

  
 

Drop CR/DR 6 -537.87 -549.87 6.102 0.0135 * 
Drop environment 5 -536.97 -546.97 8.997 0.0111 * 
Drop test strain 6 -462.15 -474.15 81.82 <.0001 *** 
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Table 2.3.4 shows the formulae for each mixed model. Model selection was carried out by 

comparing Akaike information criterion (AIC) for each model. Significance was assessed using 

likelihood ratio tests that compare the difference in fit of full and reduced models that drop a 

factor of interest (Chambers and Hastie 1992). The difference in AIC between the full model 

and drop DR/CR model is significant (ΔAIC = 4.1), indicating that the performance of a given 

strain depends in part on whether its evolutionary improvement was a direct or correlated 

response to selection. This result confirms the graphical pattern shown in Figure 2.3.4 and 

suggests that there was some specificity in the response to given target strain. 

  
Figure 2.3.5 shows the direct and correlated responses to selection for all pairs of selection 

environments with all cheaters as relative social fitness. Relative social fitness is the evolved 

strain’s representation in the spores when co-developed with a given test strain divided by that 

of the ancestor when developed with the same strain. If there are trade-offs, then improvements 

relative to the ancestor against a target strain might cause reduced fitness against other strains 

(i.e., DR > 1 and CR < 1). I observed negative CR in only two cases: rCD3 and rWT strains, 

both when mixed with cheater CD4 (Figure 2.3.5H and 2.3.5J, respectively). A negative CR 

indicates a classic cost-of-adaptation scenario. In one-sample t-tests, the relative fitness of rCD3 

strains (x̅ = 0.24, SD = 0.25) and rWT strains (x̅ = 0.43, SD = 0.27) were both significantly less 

than one; t = -7.53, df = 5, P<.001 and t = -4.19, df = 3, P = 0.012 against CD4, respectively. In 

some selection environments, the correlated response was greater than the direct response, 

suggesting the evolution of superior generalists in these environments. For example, the mean 

relative fitness was greater for rCD1 strains than rCD3 strains against the CD3 cheater (t = 

3.065, df = 10, P = 0.006). Similarly, the rCD1 strains are more fit than the rCD4 strains against 
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the CD4 cheater (t = 4.57, df = 8, P<0.001). In these few cases, the correlated responses 

exceeded the direct responses, indicating that occasionally adaptation to one cheater can make a 

strain pre-adapted to be highly resistance to another. 

 

 

Figure 2.3.5 – Reaction norms of evolved strains with each competitor. Fitness relative to the 
ancestor is a function of the evolved strain’s proportion in spores divided by ancestor’s when 
mixed separately with the test strain (cheater or WT). Each point shows the relative social fitness 
(grand mean ± s.e.m.) of a group of evolved strains (labeled) when co-developed with a given 
cheater or the wild-type indicated on the x-axis. Each panel (A-J) shows one of each possible 
pairing between two environments. 

 

Evolved Strains: rWT rCD1 rCD2 rCD3 rCD4

rCD1
rCD2

0

1

2

3

4

CD1 CD2

A

rCD1

rCD3

CD1 CD3

B

rCD1

rCD4

CD1 CD4

C

rWT
rCD1

WT CD1

D

rCD2
rCD3

CD2 CD3

E

rCD2

rCD4

0

1

2

3

4

CD2 CD4

F

rWT
rCD2

WT CD2

G

rCD3

rCD4

CD3 CD4

H

rWT
rCD3

WT CD3

I

rWT

rCD4

WT CD4

J

Test Strain

Fi
tn

es
s 

R
el

at
iv

e 
to

 A
nc

es
to

r



 38 

2.3.5 Trade-Offs Among Selection Environments 

To test whether evolutionary improvements during the social stage entail fitness trade-offs 

during other stages of the life cycle, I measured three traits in each evolved strain: doubling 

time during exponential growth, spore germination efficiency (proportion of spores that produce 

amoebae), and sporulation efficiency (the number of spores produced from a given number of 

starting cells). Analysis of variance for doubling time (Figure 2.3.6A), germination efficiency 

(Figure 2.3.6B), and sporulation efficiency (Figure 2.3.6C) was carried out to examine any 

differences in these traits as a function of the selection environment (CD1-4 or WT).  

 

Figure 2.3.6 – Fitness traits among selection groups.  Each point represents the mean value for 
each of the six strains that evolved in that environment. Boxplots show the mean for each 
selection group (rCD1, rCD2, rCD3, rCD4, or rWT). (A) doubling time, (B) germination 
efficiency, and (C) sporulation efficiency. The dotted line in each plot indicates the mean of the 
ancestor. 
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I found no significant differences in growth rate (F = 0.95, df = 4,25, P = 0.45) or for 

sporulation efficiency (F = 1.73, df = 4,25, P = 0.18) among the selection environments. 

However, I did find significant variation among selection environments for germination 

efficiency (F = 3.82, df = 4,25, P = 0.02), and t-tests show that this variation is caused by 

differences between WT and the four cheater environments (CD1-4, see Table 2.3.5).  

Table 2.3.5 – Separate t-tests to compare the means between evolved strains within rWT 
(rAX4) and rCD1-4 selection environments for germination efficiency, testing the null 
hypothesis that the difference in means is equal to zero. 

      95% CI   
Group1 x̄ Group2 x̄ t df Lower Upper P  
rAX4 90.92 rCD1 83.99 4.03 9.95 3.09 10.76 0.002 ** 
rAX4 90.92 rCD2 84.66 2.83 8.38 1.19 11.32 0.021 * 
rAX4 90.92 rCD3 81.73 7.15 3.37 2.76 15.63 0.012 * 
rAX4 90.92 rCD4 85.40 2.75 9.08 0.99 10.06 0.022 * 

 

Specifically, populations that evolved in the control environment (WT) that lacked cheating, at 

least initially, evolved increased rates of spore germination, whereas the other populations 

(those evolving in the presence of a cheater) did not. This intriguing result is difficult to explain, 

but one possibility is that resistance mutations in the CD1-CD4 environments conferred bigger 

benefits than the germination mutations, and thus may have preferentially fixed. Regardless of 

the specific explanation, the result suggests more generally that populations evolving in the 

presence of a cheater were not able to simultaneously achieve the same degree of adaptation to 

their physical environment as those evolving in the absence of this additional hurdle. 
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2.4 Discussion 

2.4.1 Summary 

In this study, 30 populations within five cheater environments were evolved in the presence of 

four, genetically different cheaters. The results show that improvements in social fitness 

evolved readily in response to a variety of competitor strains that vary in the magnitude of their 

fitness advantages and possibly in the mechanisms, Trade-offs for social fitness among 

experimental environments, both in the form of opportunity cost and in one particular life cycle 

trait (germination) were observed. Overall, strains evolved to be better adapted within their 

selection environments (greater DR than CR). In other words, the data support the hypothesis of 

the evolution of specialists, even though general beneficial adaptive traits emerged during the 

experiment. 

 

2.4.2 Evolved Resistance 

Previous work has shown that improvements in social fitness rapidly evolve in lab experiments 

(Hollis 2012), but the extent to which resistance will be specific to a given cheater is less well 

understood. In these experiments, competition occurred primarily during the developmental 

stage. For this reason, the selection procedure was expected to enrich for mutations that confer 

resistance through processes that involve development in chimerae. I evolved six lines in 

parallel within each environment to test for repeated evolution and I simultaneously tested 

within five environments to test the specificity of the evolution of resistance to cheating. Most 

evolved showed improvements in their representation in the spores in chimeras with their target 

strain. Adaptation occurred through spontaneous mutations that conferred varying levels of 

improvement to each environment. Importantly, none of the evolved strains from cheater 
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environments showed significant evidence that they cheat their ancestor (Figure 2.4.1), 

suggesting that these strains may be noble resistors (Khare et al. 2009), meaning that they did 

not themselves become cheaters when adapting resistance. This finding is interesting in that, the 

only other strain known to resist cheating (rccA-) is also noble (Khare et al. 2009), further 

supporting the hypothesis that resistance does not necessarily involve the evolution of greater 

cheating. 

 

Figure 2.4.1 – Performance of non-rWT strains with WT. To test whether evolved strains 
cheat the WT, I co-developed the evolved strains from the four cheater treatments with WT and 
measured their representation in spores. In t-tests, none of the evolved strains were significantly 
better than WT (P>0.05). 
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One possibility is that cheaters have a numerical advantage during the social stage, but 

mutations that confer cheating ability will trade off with other traits. For example, Wolf et al. 
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quality, reflected in their smaller size and lower rates of germination. Thus, higher spore 

production might trade off with spore viability, and trade-offs negate the benefits of increased 

spore representation in chimerae (Wolf et al. 2015). Consistent with some of these findings in 

studies of naturally occurring strains, I found that strains evolved in the absence of a cheater 

tended to evolve improvements in spore germination efficiency, meaning that a higher fraction 

of the spores germinated and produced amoebae (Figure 2.3.6), whereas populations that 

evolved with cheaters did not. This result suggests the evolution of adaptations to counter the 

effect of cheating might have hampered the ability of these populations to obtain other fitness 

improvements, such that a jack-of-all trades is effectively master of none (Whitlock 1996). In 

this way, resistance could be considered costly, in that evolving resistance results in a lost 

opportunity to adapt to other aspects of the environment. 

 

Taken together, these findings demonstrate that cheating in social systems might be resolved 

through evolution of novel resistance traits. In addition, this work has thus demonstrated several 

ways in which resistance might be costly. The first is that adaptation to one cheater prevents 

maximal adaptation to other cheaters, such that there is some degree of specialization. Second, 

adaptations to reduce cheating or inequity in the spores prevented populations from adapting to 

other aspects of the environment. These subtle trade-offs and “opportunity” costs associated 

with the evolution of resistance may help to reconcile the seemingly conflicting observations 

that, on one hand, resistance to cheating evolves and yet variation in cheating and cooperation 

appears to be prevalent and persistent in nature. 
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CHAPTER 3: GENETIC BASIS OF RESISTANCE TO CHEATING 

3.1 Introduction 

Experimental evolution is a valuable tool to investigate the genetic basis of traits of interest 

(Kawecki et al. 2012). In these experiments, replicate populations are initiated from a common 

ancestor and evolved in a defined environment. In experimental evolution studies that use 

microorganisms, it is typically possible for the evolved populations, as well as the ancestor, to 

be frozen and subsequently revived, which enables direct comparison of evolved and ancestral 

populations (Elena and Lenski 2003; Bennett and Hughes 2009). In addition to the ability to 

observe directly the adaptations that result from a given selective environment, recent 

improvements in sequencing technology have made it possible to sequence the genomes of 

evolved populations to identify the genetic bases of the adaptations (Turner and Miller 2012; 

Kofler and Schlötterer 2014; Long et al. 2015; Schlötterer et al. 2015; Franssen et al. 2017). 

 

Given that many different mutations can arise during experimental evolution, it can be difficult 

to know which mutations identified through whole genome sequencing are responsible for the 

adaptive phenotypes. One way is to introduce the mutations individually into the ancestral 

background, but constructing these strains can be difficult, and they might still not capture the 

phenotypic benefit that the mutation conferred in the particular genetic background in which it 

arose. One alternative way to further narrow the pool of candidate adaptive mutations is to look 

for the same changes in the genome across multiple populations that evolved in parallel. 

Parallelism (defined as similar mutations from the same starting point), convergence (defined as 

similar mutations from different starting points), and divergence across different environments 

are signatures of strong selection (Endler 1986; Harvey and Pagel 1991; Schluter 2000; Losos 
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2011; Conte et al. 2012)  and can indicate a limited number of available pathways to achieve 

fitness improvements. Parallel or convergent evolution can be useful tools to distinguish 

functionally relevant changes from background mutations partly because deleterious mutations 

can fix only by genetic hitchhiking when populations are sufficiently large and thus are unlikely 

to arise in parallel across independently evolved lines (Smith and Haigh 1974; Wood et al. 

2005; Woods et al. 2006; Ogura et al. 2009; Huse et al. 2010; Lieberman et al. 2011). For 

example, Ogura et al. (2009) identified important virulence genes in E. coli using a comparative 

genomics approach between two strains with different phylogenies, thus aiding potential 

strategies to control infections. Similarly, Huse et al. (2010) identified 24 genes linked to 

chronic colonization in cystic fibrosis lung infections by comparing gene expression profiles of 

parallel evolving Pseudomonas aeruginosa lines. Furthermore, when replicate populations are 

evolved in a variety of different environments, divergence between them can help to identify 

distinct mechanisms important to each through the unique mutations that arise in each 

environment (Deatherage et al. 2017). Thus, identifying the genetic basis of traits of interest can 

be aided through detection of similar changes among parallel evolving populations.  

 

Once the putative genetic bases of traits of interest have been identified using evolve-and-re-

sequence approaches (Kofler and Schlötterer 2014; Schlötterer et al. 2015), the methods of 

population genomics can then be applied to try to understand whether and how selection might 

be operating on these traits in nature (Hohenlohe et al. 2010; Jha et al. 2015; Long et al. 2015). 

Briefly, population genomics is an extension of population genetics that involves whole genome 

sequencing (WGS) of many individuals in a population to identify naturally occurring single 

nucleotide polymorphisms (SNPs), insertions and deletions, copy number variation, and 



 45 

structural variation. When combined with analyses of molecular evolution, population genomics 

can be used to address the evolutionary history of variation at loci in nature. For example, 

regions in the genome with reduced genetic diversity compared to the rest of the genome can 

indicate a recent selective sweep, where positive selection has driven a particular allele to 

fixation (Grünwald et al. 2016). Selective sweeps can reduce diversity at closely linked loci 

because of genetic hitchhiking, the process by which allele frequencies change not from direct 

selection, but because of their proximity to loci under selection (Elena and Lenski 2003; 

Buskirk et al. 2017). On the other end of the spectrum, selection can also maintain multiple 

alleles in a population for long periods of time, through several different mechanisms, including 

negative-frequency dependence. Here the more common variants in a population have a 

selective disadvantage compared to rare variants. Signatures of balancing selection in the 

genome include shared similar polymorphisms between closely related species (excluding 

convergent evolution) (Klein et al. 1998), increased diversity around target loci (Roux et al. 

2013), an excess of polymorphic sites at intermediate (balanced) frequencies, an even 

distribution of allele frequencies relative to expectations under neutrality (Weedall and Conway 

2010), and increased linkage disequilibrium around more recent target loci (Charlesworth 

2006). Thus, the combination of experimental evolution, genome re-sequencing, and population 

genomics can constitute a powerful approach to understanding what phenotypes might be 

favored, the genetic basis of these traits, and the evolutionary history of these traits in natural 

populations. 

 

In the previous Chapter, I described a laboratory evolution experiment where I selected for 

resistance to cheating. Briefly, I evolved replicate populations of D. discoideum in the presence 
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of different cheaters or a non-cheating control. I assayed the evolved strains for their level of 

resistance to their respective cheaters, novel cheaters, and the ancestor. I found that strains in 

each experimental environment readily evolved improved social fitness against their 

evolutionary partner. Following evolution, I isolated a single evolved clone from each 

population and sequenced it with Illumina. Here, I describe the mutations that I identified. I 

describe what is known in the literature on a subset of them that might impact spore-stalk 

allocation and thus make them plausible candidates for conferring resistance to cheating. In 

addition, I leverage two existing datasets to better understand the function of these genes and 

whether selection has been operating on these genes in nature. The first dataset comes from a 

comparative transcriptomics study of social amoebae, in which Parikh et al. (2010) used RNA-

seq to quantify the expression level of every gene in the genome every four hours during the 24 

hour development cycle. Additionally, the dataset identifies which genes are differentially 

expressed between the two main cell types: prespore and prestalk cells. I used this dataset to 

assess whether the genes that were mutated in my experiment were preferentially prespore or 

prestalk biased in their expression as biases might indicate parallel mechanisms in the evolution 

of resistance. The second dataset comes from a population genomics study that used whole 

genome resequencing of 20 natural D. discoideum isolates to examine the evolutionary history 

of candidate loci involved in cheating behaviors (Ostrowski et al. 2015). The dataset provides 

several molecular evolution metrics for each gene in the genome, albeit based on only 20 

strains. I leveraged this dataset to test the hypothesis that my candidate genes might be targets 

of selection in nature, and therefore might show distinctive signatures of molecular evolution 

compared to the rest of the genome. Finally, I found several genes among those mutated in my 

experiment that were of particular interest because of their involvement in development, which I 
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describe in detail. While I found only a few examples of parallelism, some molecular 

evolutionary metrics suggest the possibility of balancing selection at these loci. Together these 

analyses might aid in the identification of the genetic underpinnings of resistance to cheating 

and help to elucidate the importance of these components in nature. 

 
3.2 Methods 

3.2.1 Whole-Genome Resequencing and Variant Calling 

Genomic DNA was prepared using phenol:chloroform extraction from axenic cell culture 

initiated by clones from each of the 30 evolved populations, the four cheaters, and the ancestral 

wild-type (AX4). DNA extraction was carried out on nuclei, which were prepared by spinning 

and washing cells in KK2 and resuspending in 15 ml nuclei buffer (40 mM Tris-HCl, pH 7.8, 6 

mM MgCl2, 40 mM KCl, 0.1 mM EDTA, 5 mM DTT, 1.5% sucrose, 0.4% IGEPAL) while on 

ice for 10 minutes and centrifuging at 4000 RPM for 20 minutes. Nuclei were kept at -80 ℃ until 

DNA extraction. To purify DNA, nuclei were thawed on ice and resuspended in 100 µl EDTA 

[100 mM]. The following was added sequentially while incubating at 60 ℃: 450 µl STE solution 

(10 mM Tris-HCl, pH 8, 10 mM EDTA, 400 mM NaCl), 50 µl 10% SDS, 10 µl of 10 mg/µl 

Proteinase K. The solution was incubated for 1 hour at 60 ℃. Using cut tips throughout, the 

solution was transferred to a microcenterfuge tube, 500 µl of phenol:choloroform:isoamyl alcohol 

was added and tubes were spun at top speed for 10 minutes. The aqueous phase was transferred 

to a new tube and the process was repeated until no interface was observed. The supernatant was 

then treated with one round of chloroform followed by ethanol precipitation before adding Tris-

EDTA (TE) with 100 µg/ml ribonuclease A (RNase) and incubating overnight at 4 ℃. Following 
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RNase treatment, phenol:chloroform extraction, and ethanol precipitation was repeated to remove 

remaining RNase.   

 

Libraries were prepared using the Illumina NexteraXT kit according to the manufacturer’s 

protocol, except that reaction volumes were reduced to 0.25×,  before size selection using 

SPRIselect beads (Becker Coulter B23319) for a target size of 300-500 bp. Raw sequencing 

reads were mapped to the chromosomal sequences of AX4 (GFF files dated 30 November, 

2016, available at: http://dictybase.org/download/gff3/) using BWA-MEM (Li and Durbin 

2009). The AX4 genome contains a large (~750 Kb) duplication within chromosome 2, which 

was masked from the reference for the alignment. Duplicate reads were marked using Picard 

2.18.13 MarkDuplicates (http://broadinstitute.github.io/picard). Variant calling, genotyping, and 

hard filtering was performed with GATK4.0.11.0 (McKenna et al. 2010) following GATK Best 

Practices (Depristo et al. 2011; Van der Auwera et al. 2013). Base quality score recalibration 

was performed on a join-call cohort and final variant calling was applied to individual samples. 

Variants were called using GATK4 Haplotype Caller with the PCR indel model set to hostile. 

This model attempts to correct for PCR errors by penalizing the variant likelihood based on the 

surrounding level of repetition. After initial variant calling, filtering thresholds were applied to 

remove variants likely to be false positives. These thresholds were set for eight statistics which 

describe each variant and provide evidence on the likelihood of each being a true variant. The 

threshold for depth (DP) and Read Position Rank Sum (ReadPosRandSum) were determined 

using Tukey’s method to identify outliers scored above and below 1.5×IQR (inter quartile rage). 

QualitybyDepth (QD), Mapping Quality (MQ), StandOddsRatio (SOR), 
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MappingQualityRankSum (MQRankSum) were set according to the GATK4 hard filtering 

recommendations (available at: https://software.broadinstitute.org/gatk/documentation/article. 

php?id=6925). Variants were filtered by the following criteria: (QD > 2.0, FS < 5.0, MQ > 58.0, 

SOR < 2.0, DP > 10.0, DP < 260.0, MQRankSum > -0.5, MQRankSum < 0.5, 

ReadPosRankSum > -2.5, ReadPosRankSum < 2.5). 

 

Following variant calling and hard filtering, the data set still contained numerous calls that were 

potentially false positives. The complex D. discoideum genome contains an abundance of 

duplicated genes and repetitive regions (Glöckner et al. 2001; Eichinger et al. 2005). These 

duplicates and repeat regions can lead to mis-mapping of reads and therefore erroneous variant 

calls. Additionally, the PCR amplification of libraries, as in the NexteraXT protocol, is known 

to introduce sequencing artifacts, especially within homopolymer and other repetitive regions 

(Kozarewa et al. 2009). To further reduce the likelihood of false positives, calls were manually 

reviewed and some were removed because they were within: (i) variant clusters (multiple 

variants in close proximity across more than one sample), (ii) repetitive regions (homopolymer 

runs, tandem repeats), (iii) gene duplicates (when reads map to multiple genes), or (iv) had a 

significantly high sample read depth (260×) – good indicators of improper read mapping or 

increased chance of PCR errors (Li 2014; Meynert et al. 2014). Annotations were added to 

variants using SnpEFF v4.0 (Cingolani et al. 2012) with AX4 GFF3 file generated November 

30th, 2016 (available at: http://dictybase.org/download/gff3/).  

 



 50 

3.3 Results 

3.3.1 Summary 

The 30 evolved strains were re-sequenced using Illumina HiSeq 150 bp paired end reads to an 

average coverage of 25×. After filtering, 196 variants remained across all strains, with a mean 

of 6.5 variants per strain. Of the total 196 variants, 118 were either synonymous, located within 

introns, intergenic, or single amino acid insertions/deletions within tandem repeats (such as 

microsatellite repeats), and thus considered low-impact and removed. The remaining 77 

mutations consisted of 70 missense SNPs with a predicted moderate impact (according to 

snpEFF putative impact assessment), two nonsense mutations, one stop loss mutation, and three 

splice region variants.  

 

Of the 77 remaining mutations (Table 3.3.1), 27 occurred within genes where the gene products 

have been described in the literature, as I discuss below. The annotations from the literature for 

these candidate genes are mostly based on studies of gene disruptions or knock outs, meaning 

that the annotations generally describe the phenotypic effect of null or inactivating mutations. 

However, most of the mutations in these same genes in my evolving populations are missense 

mutations, which potentially have different impacts on the phenotype, compared to null 

mutations. This is because point mutations (unlike insertional mutagenesis) can cause loss-of-

function, gain-of-function (novel function), or increase-in-function.   
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Table 3.3.1 – Variants in candidate genes within the evolved strains. The predicted impact of 
the mutation is indicated with either a L (Low), M (Moderate), or H (High). Impact predictions 
were added using SnpEff 4.3 (Cingolani et al. 2012).   

 
Sample 

 
Chr 

cDNA 
pos/length 

 
Ref 

 
Alt 

 
Annotation 

 
Impact 

 
Gene Name 

rAX4.6_R15 5 2914/3093 A G missense M adcF 
rCD2.1_R15 2 103/3339 C A missense M argB 

rCD4.1_R15 3  C A splice 
region L cog3 

rCD1.5_R15 1 602/1313 A AT frameshift H DDB_G0269614 
rAX4.6_R15 1 602/2439 A C missense M DDB_G0269732 
rCD3.3_R15 1 602/2439 A C missense M DDB_G0269732 
rCD3.1_R15 1 102/6135 G T missense M DDB_G0269934 
rAX4.4_R15 1 285/909 G T missense M DDB_G0269944 
rAX4.3_R15 1 394/1458 A C missense M DDB_G0270532 
rCD1.4_R15 2 3006/5052 C A missense M DDB_G0272338 
rCD2.1_R15 2 3006/5052 C A missense M DDB_G0272338 
rCD3.2_R15 2 947/1434 G A missense M DDB_G0272432 
rCD1.5_R15 2 2494/3241 G A missense M DDB_G0272558 
rCD3.4_R15 2 203/2211 T C missense M DDB_G0272678 
rAX4.6_R15 2 527/1368 C A missense M DDB_G0272686 
rCD3.3_R15 2 590/1284 T G missense M DDB_G0272955 
rAX4.6_R15 2 500/1989 C G missense M DDB_G0274349 
rCD3.1_R15 2 1037/4074 G C missense M DDB_G0274795 
rCD2.4_R15 2 2324/2514 T G missense M DDB_G0274981 
rCD1.2_R15 2 7105/8607 T A missense M DDB_G0275305 
rCD4.4_R15 2 2128/2607 A C missense M DDB_G0275509 
rCD4.2_R15 2 2581/3813 A G missense M DDB_G0275937 
rCD2.3_R15 2 385/1794 C G missense M DDB_G0276317 
rAX4.2_R15 2 659/705 C G missense M DDB_G0276557 
rAX4.5_R15 2 54/219 G T missense M DDB_G0276837 
rAX4.6_R15 2 1587/2187 G C missense M DDB_G0277043 
rCD3.2_R15 2 28/171 T C missense M DDB_G0277607 
rAX4.1_R15 2 143/171 A T missense M DDB_G0277607 
rCD2.4_R15 2 143/171 A T missense M DDB_G0277607 
rCD1.5_R15 3 5247/5700 G T missense M DDB_G0278215 
rCD4.6_R15 3 40/453 A G missense M DDB_G0278399 
rCD1.5_R15 3 3358/5097 C T missense M DDB_G0279255 
rCD3.1_R15 3 1709/3627 T G missense M DDB_G0279309 
rCD4.5_R15 3 274/474 C A missense M DDB_G0279681 
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Table 3.3.1 
(continued)        

 
Sample 

 
Chr 

cDNA 
pos/length 

 
Ref 

 
Alt 

 
Annotation 

 
Impact 

 
Gene Name 

rCD2.4_R15 3 229/921 C A missense M DDB_G0280779 
rAX4.3_R15 3 1552/2673 A C missense M DDB_G0280811 
rAX4.4_R15 3 1268/1464 A G missense M DDB_G0281225 
rCD4.2_R15 3 1105/1161 A C missense M DDB_G0281429 
rCD4.4_R15 3 102/1128 A C missense M DDB_G0281653 
rCD2.4_R15 3 275/423 T C missense M DDB_G0281811 
rCD3.6_R15 3 1220/4923 A C missense M DDB_G0282115 
rAX4.2_R15 3 644/4197 A G missense M DDB_G0282421 
rCD3.2_R15 3 239/642 C T missense M DDB_G0282865 
rCD1.5_R15 4 736/3960 C A missense M DDB_G0283325 
rCD2.2_R15 4 1957/2067 G T missense M DDB_G0286807 
rCD4.2_R15 5 3236/5637 G A missense M DDB_G0288007 
rCD2.2_R15 5 544/4431 A G missense M DDB_G0288241 
rCD4.4_R15 5 650/1540 G T missense M DDB_G0289053 
rCD2.1_R15 5 3979/5952 C A missense M DDB_G0290289 
rCD2.6_R15 5 3979/5952 C A missense M DDB_G0290289 
rCD3.1_R15 6 2729/3492 A C missense M DDB_G0292124 
rAX4.5_R15 6 1448/2460 A T missense M DDB_G0292936 
rCD2.5_R15 6 1202/6132 T C missense M DG1098 
rCD1.5_R15 4 6083/8379 T G missense M DG1104 
rCD2.2_R15 1 2458/2637 C G missense M glcS 
rCD3.2_R15 1 118/2859 T A missense M gtaE 
rCD4.1_R15 2 10/1407 A G missense M hgsB 
rAX4.3_R15 1 1750/2034 C A stop gained H mkcF 
rAX4.5_R15 1 322/2034 G A stop gained H mkcF 
rCD3.4_R15 3 10/2457 A G missense M mybE 
rAX4.4_R15 2 1337/1464 C A missense M nat6 
rCD3.2_R15 5 1925/3621 A C missense M nup133 
rAX4.3_R15 2 1054/4353 T G missense M pds5 
rCD4.5_R15 1 1810/1926 G T missense M phg1a 
rCD4.5_R15 4 1687/1710 G A missense M plbD 

rCD1.5_R15 5  GT G splice 
region L rbx1 

rCD2.1_R15 3 2326/3357 A G stop lost H rliB 
rCD4.3_R15 3 1454/3219 A C missense M spt16 
rCD2.2_R15 6 1072/5259 G T missense M tagA 
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Table 3.3.1 
(continued)        

 
Sample 

 
Chr 

cDNA 
pos/length 

 
Ref 

 
Alt 

 
Annotation 

 
Impact 

 
Gene Name 

rCD3.3_R15 3 6897/13751 T G missense M tra1 
rCD3.2_R15 3 52/1509 C A missense M ugpB 
rAX4.6_R15 5 3350/5034 C A missense M usp40 
rCD3.6_R15 2 1171/1338 T G missense M vatH 
rCD3.6_R15 2 274/1752 T C missense M wasB 
rCD3.6_R15 6 1962/3174 G T missense M xpo1 

 

3.3.2 Gene descriptions 

Several mutated genes are of particular interest because of their involvement in developmental 

phenotypes (Table 3.3.2). For example, the phg1A gene encodes a transmembrane signaling 

receptor involved in phagocytosis, cell-substrate adhesion, defense response to bacteria, and 

asexual reproduction (Benghezal et al. 2003; Gebbie et al. 2004). Disruption of phg1A has been 

shown to cause developmental arrest and loss of culmination, the final stage of fruiting body 

formation (Benghezal et al. 2003). The tagA gene was mutated in one strain from my 

experimental evolution cohort (rCD2.2_R15 - resistant to CD2, population 2 of 6, Round 15 of 

selection). This gene is necessary for cell type differentiation and is differentially expressed in 

pre-spore cells (Good 2003). The tagA gene is crucial in cell fate determination and required for 

the initial specification and maintenance of prespore cell lineage (Good 2003). In chimeras with 

the wild-type strain, the tagA- mutant forms very few prestalk cells (Khare and Shaulsky 2010).  
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Table 3.3.2 – Annotations for socially important genes. 

Gene Description Annotations 

mkcf MAP Kinase Cascade mkcf null mutant preferentially forms prestalk 
cells (Parkinson et al., 2011) 

   

mybE myb domain containing  mybE is necessary for correct differentiation of 
prestalk cells (Fukuzawa et al., 2006) 

   

tagA ABC transporter B family  tagA null mutant has abolished sorting to 
prestalk region (Cabral et al., 2006) 

   
ugpB UDP-Glucase Pyrophosphorylase both ugpB and glcS null mutants have aberrant 

stalk morphogenesis with similar phenotypes 
lacking glycogen for stalk structure (Tresse et 
al., 2008) 

glcS GLyCogen Synthase 

   

phg1A PHaGocytosis 

phg1A null mutant has abolished culmination, 
decreased growth rate, decreased phagocytosis, 
and arrested developmentat tipped mound stage 
(Benghezal et al., 2003) 

 

Moreover, its prestalk allocation was unaffected when co-developed with a known cheater 

(chtC-), meaning the tagA- is likely resistant to cheating by chtC- and a cheater of wild-type 

(Khare and Shaulsky 2010). Finally, the strain that harbored the tagA mutation (rCD2.2_R15) 

produced significantly more spores than CD2 in chimerae, making it one of very few strains that 

possibly countered cheating by becoming a cheater itself, and finding of a known cheater 

mutation in this strain furthermore suggests this interpretation is correct (see Figure 2.3.3).  

 

In addition to tagA, other genes involved in stalk formation were also mutated, including mkcF, 

mybE, ugpB, glcS, and phg1A. The mkcF null mutant was identified in a genetic screen for 

insertional mutants that cause a loser phenotype, meaning that they disproportionately formed 

pre-stalk cells in chimerae (Parkinson et al. 2011). The MybE gene is necessary for the correct 

differentiation of prestalk cells (Fukuzawa 2006). Interestingly, two of the mutated genes, ugpB 
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and glcS, are both involved in the process of cell vacuolization, an important step in stalk 

formation. The ugpB- and glcS- null mutants both show abnormal stalk phenotype that causes 

short stalks and frequent delayed development (Tresse et al. 2008). Functional changes in these 

genes could alter the allocation to stalk or stalk morphology thereby countering cheating by 

either self-avoidance of stalk or by exploiting the stalk of others. 

 

3.3.3 Parallelism 

Four genes were mutated in more than one strain (Figure 3.3.1). In three cases 

(DDB_G0269732, DDB_G0272338, and DDB_G0277607) identical mutations were found in 

two different populations. One possibility is that these identical mutations are caused by cross-

contamination of populations at some point during the evolution experiment. However, pairs of 

strains that shared an identical mutation also harbored, on average, 12 non-identical mutations, 

making cross-contamination an unlikely explanation, unless the mutation and the cross-

contamination occurred early in the experiment. 
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In addition to the mutations that were identical, there were two genes with non-identical 

mutations. The mkcF gene was mutated in two populations that evolved in the presence of the 

wild-type (AX4) - in both cases, the mutations produced a premature stop codon. In 

rAX4.3_R15, the stop codon occurred towards the end of the gene (position 1750 of 2034). The 
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Figure 3.3.1 – Mutated genes within the 35 evolved strains. Rows indicate individual 
genes (ordered and colored by chromosome). Columns indicate individual strains (grouped 
by cheater treatment). Triangles (▲) indicate mutations that occurred in the same gene, in 
more than one strain. 
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second mkcF mutant gained a stop codon early in the transcript (position 322 of 2034). In 

addition to the two identical mutations in the gene DDB_G0277607, there was a third strain 

with a unique mutation in this gene and all three mutations arose in different selection 

environments. Overall, there was no evidence of parallelism at the gene level, aside from 

distinct, and therefore, independent, mutations in mkcF. Given the occurrence of one mutation 

within the same gene out of 30 evolved strains (6 populations per environment), the probability 

of a second mutation in the same gene occurring in the same environment by chance is ~17% 

(5/29). Thus, even in this one instance, I do not have any evidence that parallel mutations were 

somehow more likely to occur within an environment than across.  

 

3.3.4 Population Genomics 

The 77 genes that harbored mutations following evolution were then assessed for several 

metrics of sequence diversity in natural populations that might help to identify whether any of 

these genes show unusual patters of polymorphism, suggestive of selection in nature. To do so, I 

use a dataset generated by Ostrowski et al. (2015) using WGS of 20 natural isolates of D. 

discoideum. With that dataset I created a null distribution of 10,000 random gene sets of the 

same size as my mutated gene set and compared them against my genes for several metrics of 

molecular evolution (Figure 3.3.2). The mean length of the mutated genes (3173 bp) was 

significantly greater than expected based on other genes in the genome (percentiles: 5th = 1412, 

95th = 2036). This result also explains the increased number of singletons, segregating sites (S), 

the number of mutations, and the number of haplotypes that I observed in my mutated genes 

compared to random gene sets. When scaling these metrics to gene length, none differed 

significantly from the null expectation based on other genes in the genome. The mutated genes 
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showed elevated levels of intragenic linkage disequilibrium (low recombination, or Hudson’s 

C). Consistent with what is expected in regions of low recombination, I also observed that the 

mean number of haplotypes (scaled for gene length) was somewhat lower than expected (6.5th 

percentile; Figure 3.3.2). 

 
Figure 3.3.2 – Difference between candidate genes versus random gene sets for different 
evolutionary metrics. Dotted lines indicate the mean value for each molecular evolution statistic 
for mutated genes as a group, calculated by Ostrowski et al. (2015) using WGS of 20 natural 
isolates. The observed value for these genes is compared to a null distribution based on 10,000 
random gene sets of the same size. Asterisks indicate statically significant results. 

 

In addition, I did not observe overrepresentation of the mutated genes in either tail of the 

genome-wide distribution for any metric after correction for gene length (Table 3.3.3), nor 
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elevated variance for any of the molecular evolution metrics (Table 3.3.4), which might occur if 

extreme values at both ends of the genome distribution were averaged out.  

Table 3.3.3 – Number of Candidate Genes that are “Extreme” (in the lower 5th or upper 95th 
percentile of the genome-wide distribution). Boldface indicates metrics where candidate genes 
are significantly overrepresented in either tail of the genome-wide distribution. 

Statistic 

Number (and 
percentage) of 
mutated genes in 
the lower 5th 
percentile of the 
genome-wide 
distributiona 

Number (and 
percentage) of 
mutated genes in 
the upper 95th 
percentile of the 
genome-wide 
distributiona P-valueb 

S 0(0) 8(12.9) 0.024 
Singletons 0(0) 8(12.9) 0.024 
NMut 0(0) 8(12.9) 0.024 
nhap 0(0) 10(16.7) 0.003 
hapdiv 0(0) 2(2.9) 0.871 
WallsB 0(0) 1(1.5) 0.969 
WallsQ 0(0) 2(3) 0.860 
ThetaW 0(0) 2(2.9) 0.871 
ThetaPi 0(0) 3(4.5) 0.687 
Tajima’s D 3(4.5) 4(6.1) 0.468 
Fu and Li’s D* 1(1.4) 4(6.1) 0.468 
Fu and Li’s F* 2(2.9) 4(6.1) 0.468 
Hudson’s Ĉ (rho) 0(0) 0(0) 1.000 
Number of 
Segregating Sitesc 0(0) 2(2.9) 0.871 
Number of 
Haplotypesc 1(1.4) 1(1.4) 0.972 
Number of 
Singletonsc 0(0) 3(4.5) 0.687 

aNull expectation is that 5% of the candidate genes will reside in the top 95% and bottom 
5% of the genome-wide distribution.  

bP-value is the result of a Fisher’s Exact test that compares the number of extreme genes 
versus not for candidate versus non-candidate genes. 
cPer site (divided by gene length) 
 
 



 60 

Table 3.3.4 – Test of elevated variance in candidate genes compared to random genes. For 
each evolutionary metric, I tested whether the variance was lower or higher for mutated genes 
compared to 10,000 datasets consisting of genes chosen at random. 

Metric 
5th 
percentile 

95th 
percentile 

Observed 
value for 
mutated genes 

Number of 
segregating sites 73.187 713.575 352.433 
Number of 
Singletons 30.072 263.300 207.666 
Number of 
Mutations 74.137 721.373 352.074 
Number of 
Haplotypes 18.398 32.250 25.587 
Haplotype 
Diversity 0.100 0.152 0.032(low) 
Walls B 0.056 0.096 0.04(low) 
Walls Q 0.077 0.114 0.056(low) 
Theta W 2.10E-06 1.44E-05 3.45E-06 
Theta Pi 1.31E-06 1.34E-05 1.39E-06 
Tajima’s D 0.681 1.200 0.780 
Fu and Li’s 
DStar 1.253 1.917 1.24(low) 
Fu and Li’s F* 1.380 2.138 1.405 
Hudson’s Ĉ 
(rho) 5.50E+06 1.61E+07 2.83E+6(low) 
Number of 
Segregating Sitesa 2.40E-05 1.54E-04 4.25E-05 
Number of 
Haplotypesa 1.31E-05 6.68E-05 

8.70E-
06(low) 

Number of 
Singletonsa 9.86E-06 8.28E-05 3.12E-05 

aPer Site (divided by gene length) 
 
Despite seeing no consistent signals of selection in my mutated genes as a group, 17 of 77 genes 

had “extreme” values (defined as <5th or >95th percentile of the genome wide distribution based 

on n = 20) for at least one metric from the population genomics dataset (Table 3.3.5). Most of 

these genes (10 out of 14) show unusually high (i.e., positive) values for metrics of the site 

frequency spectrum, (Tajima’s D, Fu and Li’s D* or F*), which might reflect balancing 

selection. 
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Table 3.3.5 – Candidate genes with values in the tails of the genome-wide distribution for at 
least one metric. 

Gene 

Metrics in the lower 
5th percentile of the 
genome wide 
distribution  

 

Gene 

Metrics in the upper 
95th percentile of the 
genome wide 
distribution 

DDB_G0269934 Tajima’s D  DDB_G0281811 Wall’s B,Wall’s Q 
   

DDB_G0272686 Tajima’s D, Fu and 
Li’s F* 

 DDB_G0272432 Wall’s Q, 

   
DDB_G0292936 Tajima’s D, Fu and 

Li’s D*, Fu and Li’s 
F* 

 DDB_G0267674 Tajima’s D, Fu and Li’s 
D*, Fu and Li’s F* 

   
DDB_G0279309 Number of 

Haplotypes/Site 
 DDB_G0277607 Tajima’s D 

   

  
 DDB_G0278399 Tajima’s D, Fu and Li’s 

D*, Fu and Li’s F* 
    
   DDB_G0280779 Tajima’s D 
    

  
 DDB_G0274627 Fu and Li’s D*, Fu and 

Li’s F* 
    

  
 DDB_G0274871 Fu and Li’s D*, Fu and 

Li’s F* 
    
   DDB_G0282865 S/site, Singletons/site 
     
   DDB_G0292936 S/site, Singletons/site 

 

 
3.3.5 Transcriptomics 

If resistance impacts stalk or spore allocation, I might expect that the candidate genes (those 

mutated in the selection experiment for resistance) would be disproportionately expressed 

during the timepoint in development when cell fate is determined, or that they would be 

disproportionately expressed in one cell type or another. To test this hypothesis, I compared the 

gene expression timing during development between candidate genes and the whole genome 
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using the data from Parikh et al. (2010). These results indicated no difference in maximal 

expression timing (Table 3.3.6), meaning that candidate genes were not biased towards a 

particular life-cycle stage.  

Table 3.3.6 – Timing of maximum expression. The number of mutated genes versus all genes 
whose maximal expression occurs at the indicated timepoint during the life cycle, according to 
Parikh et al. (2010). The mutated genes were not overrepresented in any of these categories. P-
values are based on a two-tailed Fisher’s Exact test. 

Timepoint 
(hours) 

Number (and 
percentage) of 
mutated genes 

Number (and 
percentage) of 
all genes  

P-value 
(two-
sided) 

0 10(14) 2160(17) 0.64 
4 13(18) 1551(12) 0.14 
8 12(17) 1903(15) 0.62 
12 6(8) 1875(15) 0.18 
16 15(21) 2105(16) 0.34 
20 6(8) 1683(13) 0.29 
24 10(14) 1592(12) 0.72 

 
 
Table 3.3.7 – Candidate genes with differential expression. Genes with at least a two-fold 
change in RNA abundance and a P-value lower than 0.05 were considered to be significantly 
cell-type enriched (as determined by Parikh et al. 2010). There was no significant enrichment for 
either cell type among candidate genes (Fisher’s exact test, P = 0.73). 

Cell-type  

Number of 
mutated genes 
(Proportion) 

Number of all 
genes 
(Proportion)  

Prespore 1(1.4) 850(7.2) 
Prestalk 1(1.4) 915(7.7) 

 

Two genes were differentially expressed between prespore and prestalk cells, based on data 

from Parikh et al. (2010). The evolved strain rAX4.3_R15 has a mutation in gene 

DDB_G280811 (unknown gene product) that is preferentially expressed in prespore cells. This 

same strain also has a nonsense mutation in mkcF, a gene that has been shown to be involved in 

prestalk proportioning (Parkinson et al., 2011). Specifically, the mkcF knock-out causes a 
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“losing” phenotype, meaning it disproportionately allocates cells to the prestalk region in 

chimeras with the WT. Thus, both of these mutation present in rAX4.3 could conceivably 

impact spore or stalk allocation. However, it is not clear currently what impact these mutations 

have individually on this phenotype, nor whether their effects in combination differs from their 

effects singly. This is something that might be addressed in the future. Nevertheless, it is 

notable that the evolved strain that carries these two mutations is one of very few that I found 

that have evolved to cheat their ancestor (i.e., they produce >50% of the spores in chimera). 

Finally, strain rCD1.5_R15 has a mutation in a gene that shows a prestalk biased expression 

pattern in WT. This gene, DDB_G0278215, encodes an integral transmembrane protein with 

roles in chemotaxis (inferred through characterization of an ancestral gene) (Gaudet et al. 2011). 

 

3.4 Discussion 

The emergence and maintenance of cooperation has been a focus of evolutionary biologists 

(Axelrod and Hamilton 1981; Smith and Szathmary 1997; Crespi 2001). The social amoebae 

Dictyostelium discoideum is an excellent model system to investigate the maintenance of 

cooperation (Strassmann et al. 2000; Crespi 2001; Gilbert et al. 2007; Santorelli et al. 2008; 

Kuzdzal-Fick et al. 2011; Strassmann et al. 2011; Li and Purugganan 2011; Hollis 2012; Celiker 

and Gore 2013; Jones et al. 2015; Ostrowski et al. 2015). This work has helped to identify over 

100 genes that, when knocked out in the lab strain, cause cheating in (Santorelli et al. 2008), 

and population genomic analysis showed that these genes have increased polymorphism and 

other signatures of balancing selection, suggesting the selective maintenance of multiple alleles 

in natural populations (Ostrowski et al. 2015). Finally, prior work has shown that cheating in D. 

discoideum can be countered by the evolution of cheater-resistance (Khare et al. 2009; Levin et 
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al. 2015), and that counter adaptations between strains can rapidly evolve through spontaneous 

mutation in lab experiments (Hollis 2012). 

 

 Although prior work demonstrated that resistance could evolve to cheating, there was still little 

knowledge of the genes involved in resistance to cheating – in fact, only a single gene, rccA, 

had been identified (see Khare et al. 2009) and nothing was known about whether selection 

might be operating on resistance in nature. Using a combination of experimental evolution and 

population genomic analyses, I have identified several genes that potentially influence 

resistance to cheating. I have also shown that balancing selection might affect several of these 

genes, which is interesting, given that balancing selection is the best explanation for 

polymorphism in loci that impact cheating behaviors in this species (Ostrowski et al. 2015). 

Signatures of balancing selection have also been identified in genes within co-evolving 

mutualists (Yoder 2016). Under balancing selection, long-standing genetic variation can persist 

because of heterozygote advantage (Carrington 1999), negative frequency-dependent selection 

(where rare alleles are favored) (Carius et al. 2001), or selection in a fluctuating environment 

(Gillespie and Turelli 1989). In D. discoideum, for example, rare resistance alleles may be more 

or less beneficial depending on the frequency and type of cheating alleles in the population. 

Although parallelism has commonly been found in experimental evolution studies (Rainey and 

Travisano 1998; West et al. 2006; Woods et al. 2006; Tenaillon et al. 2012; Deatherage et al. 

2017; Zee and Velicer 2017), it is unclear why I found little evidence of parallel evolution at the 

molecular level in my experiments. One possibility is that there are many genetic avenues 

available to achieve resistance. However, some events were suggestive of parallel evolution – 

for example, in two cases I observed different mutations in the same gene (mkcf and 
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DDB_G0277607). Additionally, some of the candidate genes are known to involve similar 

phenotypic traits.  

 

Looking at parallelism beyond the level of the gene, the analyses of differential expression by 

cell type or developmental timepoint revealed no evidence of overrepresentation for genes that 

are expressed in a particular developmental or cell type. This finding also suggests that there 

may be a variety of routes to available to achieve resistance to cheating. One important 

limitation is that I have not introduced each of these mutations into the WT background to 

determine their phenotypic effects apart from other mutations that arose during the experiment. 

Thus, many of these mutations might not be beneficial, or they could be beneficial but their 

benefits are unrelated to resistance. Finally, it may also be that these mutations work in tandem 

with other mutations. Future work is therefore necessary to determine whether and how these 

mutations might impact resistance by introducing them singly or in combinations in the 

ancestral genetic background. Additionally, population genomic analyses using a larger data set 

of sequences might also provide greater sensitivity to uncover the evolutionary history of these 

genes in nature. However, these analyses lend further support to the hypothesis that both 

cheating and resistance could be ubiquitous and possibly persistent in nature, and aid in our 

understanding of how social conflicts might be mitigated in natural populations of cooperators.  
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CHAPTER 4: POPULATION STRUCTURE OF THE SOCIAL AMOEBA 
 

4.1 Introduction 

Cooperative groups are vulnerable to conflict in the form of cheating, where some individuals 

benefit from the altruism or collective action of others, while failing to contribute their share of 

the cost (Ferriere et al. 2002; Ghoul et al. 2013; Zhang and Rainey 2013). However, the costs 

and benefits of cooperation will depend on the number and identity of social partners, and 

whether these social partners are cooperators or non-cooperators, kin or non-kin, as well as the 

frequency of these different  interactions (Travisano and Velicer 2004; Ostrowski et al. 2008; 

Dyken et al. 2011; Frénoy et al. 2013; Gruenheit et al. 2017). For this reason, investigating the 

diversity and distribution of individuals among populations is a valuable tool to understand the 

impact of population structure on conflict and cooperation in nature. 

 

The social amoebae, Dictyostelium discoideum, is an excellent model for investigating social 

interactions (Strassmann et al. 2000; Fortunato et al. 2003b; Brown and Buckling 2008; 

Santorelli et al. 2008; Khare et al. 2009; Buttery et al. 2010; Khare and Shaulsky 2010; 

Kuzdzal-Fick et al. 2010, 2011; Parkinson et al. 2011; Levin et al. 2015; Noh et al. 2018). In 

this organism, individual amoebae aggregate when starved and form a multicellular fruiting 

body. The fruiting body consists of a dead stalk, containing cells that altruistically sacrifice 

themselves to aid in survival and dispersal of the spores, which sit on top of the stalk (Raper 

1984; Bonner 2009). Different strains of amoebae can potentially co-develop to form chimeric 

(multi-genotype) fruiting bodies with non-kin—and under these circumstances, there is 

potential for cheating, where one genotype does not contribute fairly to the stalk (Strassmann et 

al. 2000; Santorelli et al. 2008; Khare and Shaulsky 2010).  
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Although cheating has been well studied in this system (Ennis et al. 2000; Strassmann et al. 

2000; Santorelli et al. 2008; Buttery et al. 2010; Flowers et al. 2010; Khare and Shaulsky 2010; 

Strassmann and Queller 2011; Santorelli et al. 2013; Ostrowski et al. 2015; Noh et al. 2018), 

knowledge of resistance to cheating in limited (Khare et al. 2009; Hollis 2012; Levin et al. 

2015). Prior work has shown that cheating in D. discoideum can be countered by the evolution 

of cheater-resistance (Khare et al. 2009; Hollis 2012; Levin et al. 2015), defined as increased 

spore production (compared to ancestor) in chimera with a cheater (Khare et al. 2009). For 

example, Khare et al (2009) isolated a single mutant (rccA-) that was resistant to the cheater 

chtC-.  To date, rccA is the only gene that, when disrupted in the lab strain, is known to confer 

resistance to a cheating.  

 

While there are multiple examples of how these different genotypes interact in laboratory 

experiments, it is not known how different genotypes might interact in nature, or even how 

often they might encounter each other in natural populations. Dictyostelium discoideum is found 

in soil and leaf litter in temperate deciduous forests of the eastern United States, as well as in 

Japan, Mexico, and Costa Rica (Raper 1984; Cavender and Kawabe 1989; Douglas et al. 2011). 

Flowers et al. (2010) sequenced 137 gene fragments per strain spread throughout the genome in 

24 wild strains (13 of which came from one locale in Virginia, 3 from TX, 1 each from IN, AR, 

MA, NC, IL, MO, KY, and TN) to investigate the genetic diversity and differentiation in D 

discoideum. Their analyses of SNP data among strains using bootstrap supported neighbor-

joining clustering, multiple correspondence analysis, and Bayesian clustering found no clear 

geographic differentiation (extensive admixture between samples), and they found no evidence 

off isolation-by-distance (Mantel test r = 0.11, 0.05<P<0.11). However, as the authors state, 
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they found very low variation among strains (average pairwise difference per site, π, = 0.08%), 

and D. discoideum is a species with very low genetic variation (Ostrowski et al. 2015; Noh et al. 

2018), making studies of genetic variation difficult with small sample sizes. Douglas et al. 

(2011) investigated population differentiation among locations covering large geographic 

regions (comparing MA, NC, VA, TX, and central America) and found significant pairwise 

differentiation between regions (pairwise FST between 0.112 and 0.5). A more recent study 

looking at population differentiation among four locations separated between 40 and 1000 km, 

with sample size between 15 and 57 isolates, found that populations are moderately 

differentiated (mean: FST = 0.103 , G’ST = 0.548) at this spatial scale (Douglas et al. 2016). 

 

While population structure has been demonstrated over distances of hundreds of kilometers, 

little is known about population structure over smaller spatial scales, despite the potential 

existence and importance of smaller spatial scales for microbial social interactions and 

evolution. I use microsatellite genotyping to address the following questions: what constitutes a 

population in D. discoideum throughout its natural range? What amount of mixing occurs 

between these populations, and what is the range at which these populations might be 

interacting? What indication is there that social genes play a role in local adaptation and 

population structure? I approached these questions by genotyping between 7-21 strains from 

each of twelve 10 x 10 cm plots, separated by distances ranging from 2.4 m to 1,002 km. I 

genotyped the strains at 10 randomly chosen microsatellite loci, as well as two microsatellite 

loci that were in or linked to genes associated with cheating or resistance behaviors, chtC and 

rccA. I used these data to estimate and compare population structure across different spatial 

scales, ranging from the meter scale to ~1,000 km scale, thus covering 6 orders of magnitude. I 
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estimated migration rate between populations and the genetic diversity within different 

populations, thereby aiding the understanding of the spatial scale of interactions, which may 

have important consequences for the evolutionary dynamics of cooperation.  

 

4.2 Methods 

4.2.1 Collection 

Soil samples were collected from twelve 10 x 10 cm plots in two regional locations between 

June and July of 2015 and 2016. Eight of the plots were located in the vicinity of Mountain 

Lake Biological Station (“MLBS”) in Pembroke, Virginia. The remaining four plots were 

located at Proctor Academy in Andover, New Hampshire (“NHPA”). Within the MLBS site, 

there were eight plots, consisting of four sites (A-D; separated by distances of ~0.5 to 2 km), 

and within each site, there were two paired plots separated by a few meters (see Figure 4.2.1).  

MLBS is located in a 259 ha mixed deciduous forested reserve on a 1160 m ridge in the 

unglaciated Appalachians, with an average annual temperature of 13 °C and average annual 

rainfall of 1030 mm. Distance between MLBS plots ranges from 2 m to 5.7 m within sites at 

altitudes from 1167-1255 meters. NHPA is surrounded by a 1011 ha mixed forest on the 

southern slope of the Ragged Mountains, with an average annual temperature of 12.6 ℃ and 

average annual rainfall of 976 mm. NHPA plots are separated by distances of .25 to 1.4 km 

apart at altitudes between 249 and 309 meters. At each plot, the top 1 cm of soil in a 10 x 10 cm 

square was collected into sterile a Whirl Pak bag. The date, time, altitude, and coordinates were 

recorded using a handheld GPS unit (Magellan). Samples were stored at 4 ℃ until plating.  
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Figure 4.2.1 – Collection sites for D. discoideum strains. (A) Regions: New Hampshire and 
Virginia (B) Each NHPA (New Hampshire, Proctor Academy) sample was obtained from a 10 x 
10 cm area, separated by .25 to 1.4 km (C) MLBS sites A-D, separated by 0.5 to 2 km. Within 
each MLBS site (A-D) a pair of 10 x 10 cm plots are separated by 2 to 6 meters. 

 
4.2.2 Isolation 

To isolate D. discoideum from soil samples, 6 g of soil were mixed with 30 ml of deionized and 

autoclaved water (ddH2O) and agitated to loosen amoebae from soil particles. 0.3 ml of soil 

slurry was deposited onto hay infusion plates (1.5 g KH2PO4, 0.62 g Na2HPO4, and 20 g of agar 

to 1 L of filtered hay infusion, prepared by soaking 15 g hay in 1.5 L deionized water) with 0.4 

ml of a Klebsiella pneumoniae (Kp) bacterial culture grown in SM broth (10 g of peptone, 1 g 
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of yeast extract, 10 g of glucose, 1.9 g of KH2PO4, 1.3 g of K2HPO4, 0.49 g of MgSO4 

anhydrous, and 17 g of agar in 1 L of ddH2O). The plates were dried in a laminar flow hood and 

then incubated at room temperature in the dark. Once slugs had formed, the plates were moved 

to overhead light to promote fruiting.  Spores from fruiting bodies were collected with a sterile 

pin, transferred to 20% glycerol, and frozen at -80 ℃. Only a single fruiting body was collected 

per plate. Isolates were later cloned by plating spores at low density on SM plates with Kp and 

isolating cells or spores that formed from a single circular clearing (plaque) in the bacterial 

lawn.  

 

4.2.3 DNA extraction and PCR 

For each soil sample, twenty cloned isolates were inoculated from frozen stocks onto SM agar 

plates with 400 µl of K. pneumoniae. Approximately 10 fruiting bodies were collected with a 

sterile pin and deposited into wells of a standard PCR plate containing 50 µl 5% Bio-rad Chelex 

100 resin, followed by 3.3 µl Proteinase K [20 µg/ml]. Samples were incubated for four hours at 

58 ℃ followed by 1 hour at 98 ℃.  

 

Microsatellite loci were amplified using either custom primers tagged with FAM, HEX, or NED 

fluorophores or M13-tagged primers (as described by Schuelke 2000) (Table 4.2.1). 

Microsatellite loci were chosen to cover all six chromosomes in addition to two loci, chtC and 

rccA, associated with cheating and resistance to cheating, respectively (Khare et al. 2009; Khare 

and Shaulsky 2010).  PCR reactions were multiplexed such that each reaction resulted in 

amplification of alleles at three different loci, each tagged with a unique fluorophore to allow 
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them to be distinguished. Fragment analysis was carried out by capillary electrophoresis on an 

ABI 3730 sequencer at Arizona State University (School of Life Sciences, OKED DNAlab).  

Table 4.2.1 – Microsatellite Primer Sequences for 13 loci. Primer pairs 307 – 366 were 
previously designed (described by McConnell et al. 2007). Primer pairs rccA and chtC were 
designed for this study using Tandem Repeat Finder (Benson 1999) and Primer3 (Koressaar and 
Remm 2007; Untergasser et al. 2012). 

Primer Dir Primer sequence (5′-3′)  
Size 
(bp) 

Gene ID 
(DDB_G) Motif Chr 

307 F AGGATAGCTCTCAGCCATCAA 230 0277255 TCA 2 
 R1 AATGTTGGTTGGGATGATGA     

308 F CCTGAACAAACACATTCCTCAA 239 0274889 TCA 2 
  R2 GGGGTTATTGTTGGTGCTGA         
317 F CAATACCACCACCACCACAG 195 0293414 TCA 6 
  R1 GGTGGCGATGATGATGTAGTT         
319 F GAGTCGATGTAATCAACCATCAG 384 0287449 AAT 5 
  R3 AAAACTGGTACTGCAACCACAA         
323 F TTGGAAAAAGCCAACAACCT 440 0269582 AAT 1 
  R3 TCAAAGTCCATGGTACAAAACC         
327 F TGGACAACAACCAATTCAACA 225 0280133 CAA 3 
  R1 TGTGGCTGAAAATTAGGGTCA         
328 F TTGATCAAAAGATACATCATTATTTGG 238 0290527 CAA 5 
  R2 TGATCAACAGCAACAACAACAA         
329 F CACAAACCTCAACTTCAACAACA 245 0281709 TCA 3 
  R2 TTGGTTTTGTTGATGACTCAA         
330 F TTAATCAAAGTCAAATTGGTTTACAA 227 0284853 TCA 4 
  R1 ATTATTGTTATTTGATGATGATGATGT         
357 F CAATTGGTGAATTTGCTCTAATTT 250 0284313 AAT 4 
  R3 AAAGAAGAAGAGATTGGTAATCAAGA         
366 F TCAAATCAACTTTGGGAGCA 239 0268102 CAA 1 
  R2 TTTGTTGGTTGTTGTTGTTGC         
chtC F TCTCATACTTATGGAGTCCCTTCA 608 0290959 AAT 5 
  R3 ATAGGCAAAACCTTTACAGCA         
rccA F CTTCCATTGCTACTGCTGCT 315 0271758 TAT 2 
 R2 CACTTGAATTTGCACTTGCA     
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4.2.4 Data analysis 

Fragment peaks were analyzed and called using a combination of Peak Scanner 2.0 and the 

Geneious (v6) microsatellite package v1.4.4. As a control, a standard strain (the lab strain 

AX4), with known allele sizes, was included on each plate. The control (lab strain AX4) was 

analyzed on four separate fragment analyses consisting of three different loci. Of the three 

control loci, the greatest standard deviation across the four runs was 0.54 bp, indicating that the 

fragment analyses were consistent across runs. Electropherograms were scored for the tallest 

peak when assigning alleles (Figure 4.2.2).  

 

If multiple peaks could not be distinguished, the locus was discarded for that genotype. The 

completed data set consisted of 13% missing data, genotypes with missing data were removed 

for calculations that are not designed to handle missing data (PCA, AMOVA). 
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Figure 4.2.2 – Example electropherogram to illustrate peak calling. The reference ladder is 
shown in red, with the number on top indicating the observed peak location (in numbers of 
base pairs) and the expected fragment size in parentheses. Two PCR-amplified fragments are 
shown in green and black. Allele sizes were assigned according to the tallest peak within 3bp 
bin windows. 
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Pairwise FST was calculated in Arlequin (winarl 3.5) using molecular distance as the number of 

different alleles. Nei's GST, Hedrick's G’ST and Jost's D were calculated using the mmod 

package in R (Nei 1973; Nei and Chesser 1983; Hedrick 2005; Jost 2008; Meirmans and 

Hedrick 2011; Winter 2012). GST is a generalized form of Wright’s FST for use with multiple 

alleles and can thus handle the high mutation rates and diversity of microsatellites (Meirmans 

and Hedrick 2011). Estimates for these estimators range from 0, no differentiation or no 

difference in allele frequencies between populations, to 1, complete differentiation or 

populations are fixed for alternate alleles. However, with high within-population diversity, 

estimators FST and GST will never reach 1. Hedrick’s G’ST accounts for this limitation and 

creates a standardized estimate by dividing the differentiation estimate by the maximum 

theoretical GST based on the heterozygosity at each locus (Hedrick 2005). Jost’s D is an 

alternative measure of differentiation that creates a standardized estimate by measuring the 

fraction of allelic variation among populations (Jost 2008). 

 

To assess the correlation between genetic distance and geographic distance a matrix of genetic 

chord distance (Cavalli-Sforza and Edwards 1967) between plots was compared to the matrix of 

geographic distances between them using the mantel.rtest function within the ade4 (Analysis of 

Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences) toolset 

(Bougeard & Dray, 2018; Chessel et al. 2004; Dray & Dufour, 2007) within the popprR 

package (Kamvar et al. 2015; Kamvar et al. 2014). Analyses of molecular variation (AMOVA) 

were carried out using ade4. Principal component analyses were performed following centering 



 75 

and scaling (as described previously by Odong et al. 2013; Putman and Carbone 2014), using 

the dudi.pca function within the ade4 R package. 

 
4.3 Results 

In total, 367 strains from two collection seasons were genotyped using short tandem repeats 

(STR), known as microsatellites. For the 2015 collection, 177 strains from eight plots were 

genotyped for nine loci. In the 2016 collection, 190 samples from 12 plots were genotyped for 11 

loci (Table 4.2.1). An average of 18 and 24 alleles per locus were identified for the 2015 and 

2016 samples, respectively. For the 2015 samples, I found 150 unique genotypes with a mean 

diversity within populations (HS) ranging from 0.55 for locus 308 to 0.73 for locus 327. For the 

2016 samples I found 189 unique genotypes with a mean diversity within populations ranging 

from 0.61 for locus rccA to 0.83 for locus 329. Within the 2015 samples I found lower levels of 

genetic differentiation at the two loci with roles in cheating and resistance behaviors, rccA and 

chtC, (G’ST = 0.61 and 0.59, respectively). Both G’ST and Jost’s D estimates for rccA and chtC 

fall below the 95% confidence intervals for random loci (see Table 4.3.1). 
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Table 4.3.1 – Genetic diversity analyses. Sets consisted of nine and 11 loci for 2015 (A) & 
2016 (B) sample sets, respectively. Total number of alleles scored, genetic diversity of pooled 
populations (HT), mean diversity within populations  (HS), Nei’s coefficient of gene differentiation 
(GST) (Nei 1973), Hedrick’s G’ST (Hedrick 2005), Jost’s D (Jost 2008). 

A 
Locus # Alleles Hs Ht GST G’ST D 
L317 19 0.640 0.815 0.215 0.674 0.569 
L327 24 0.640 0.816 0.216 0.675 0.570 
L357 24 0.628 0.866 0.275 0.825 0.747 
L308 18 0.545 0.847 0.357 0.863 0.775 
L329 25 0.693 0.868 0.202 0.743 0.667 
L319 24 0.624 0.822 0.241 0.719 0.615 
L323 20 0.635 0.869 0.269 0.824 0.748 
rccA 13 0.546 0.725 0.247 0.610 0.461 
chtC 14 0.627 0.779 0.196 0.593 0.477 
Global  0.619 0.823 0.247 0.728 0.605 

 
 
B 

Locus # Alleles Hs Ht GST G’ST D 
L329 31 0.673 0.940 0.284 0.935 0.906 
L357 28 0.688 0.941 0.269 0.929 0.900 
L330 24 0.655 0.925 0.292 0.910 0.868 
L366 22 0.590 0.908 0.351 0.915 0.863 
L317 28 0.729 0.930 0.216 0.864 0.822 
L328 30 0.647 0.934 0.307 0.935 0.903 
L308 29 0.651 0.920 0.293 0.902 0.858 
L327 25 0.691 0.918 0.248 0.866 0.817 
rccA 15 0.477 0.790 0.396 0.806 0.665 
L319 11 0.558 0.847 0.342 0.827 0.728 
L307 27 0.714 0.879 0.188 0.716 0.642 
Global  0.643 0.903 0.288 0.868 0.804 

 
 

I calculated population differentiation at three hierarchical levels: plot (m-scale), site (km-

scale), and region (~1000 km scale). Pairwise FST among plots ranged from 0.01-0.24, and all 

but three values were statistically significant based on a non-parametric permutation test (as 
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described by Excoffier et al. 1992). All three non-significant FST values consisted of 

comparisons to plot D2, which had the lowest sample number (n = 7 isolates). At larger spatial 

scales, all comparisons showed significant differentiation (mean pairwise FST = 0.137).  

 

Table 4.3.2 – Pairwise FST among plots. The Virginia (MLBS) locations are indicated in bold, 
whereas the New Hampshire locations (NHPA) are indicated by italics. 
Plot A1 A2 B1 B2 C1 C2 D1 D2 N1 N10 N14 
A1 

           

A2 0.09* 
          

B1 0.12* 0.13* 
         

B2 0.11* 0.05* 0.1* 
        

C1 0.1* 0.05* 0.1* 0.07* 
       

C2 0.13* 0.09* 0.19* 0.12* 0.1* 
      

D1 0.18* 0.11* 0.19* 0.13* 0.07* 0.18* 
     

D2 0.08* 0.04 0.1* 0.06* 0.01 0.08* 0.04 
    

N1 0.21* 0.18* 0.19* 0.18* 0.17* 0.24* 0.22* 0.15* 
   

N10 0.19* 0.15* 0.19* 0.17* 0.12* 0.22* 0.23* 0.14* 0.22* 
  

N14 0.17* 0.13* 0.16* 0.14* 0.13* 0.2* 0.2* 0.14* 0.18* 0.16* 
 

N2 0.12* 0.08* 0.11* 0.09* 0.07* 0.12* 0.15* 0.04* 0.14* 0.09* 0.08* 
 
Table 4.3.3 – Pairwise FST values. (A) Among sites within regions. The Virginia (MLBS) 
locations are indicated in bold, whereas the New Hampshire locations (NHPA) are indicated by 
italics. (B) Among regions 
A         B  
Site A B C D N1 N10 N14  Region MLBS 
A         MLBS  
B 0.05*        NHPA 0.058* 
C 0.05* 0.07*       

  

D 0.08* 0.09* 0.07*      
  

N1 0.17* 0.15* 0.18* 0.18*     
  

N10 0.14* 0.15* 0.15* 0.18* 0.22*    
  

N14 0.12* 0.12* 0.15* 0.17* 0.18* 0.16*   
  

N2 0.08* 0.08* 0.08* 0.1* 0.14* 0.09* 0.08*  
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Significant isolation by distance (2015 samples: r = 0.729, simulated p = 0.001. 2016 samples: r 

= 0.703, simulated p = 0.001, 1000 permutations) was detected using Mantel tests between 

genetic (chord) distance and geographic distance (Figure 4.3.1). 

 
Figure 4.3.1 – Isolation by distance (IBD) plots. (A) 2016 samples and (B) 2015 samples 
grouped by random loci (yellow) and loci associated with cheating or resistance (blue or grey, 
respectively). Each point represents one comparison between two sample plots. 

 
 Further support for genetic differentiation at all spatial scales is found in analyses of molecular 

variation (AMOVA, Table 4.3.4). The AMOVA does not support differentiation among sites 

(e.g., A vs B) within regions. According to the AMOVA, the majority of genetic variation 

within the 2016 samples (84.6%) was from variation within plots, although there was also a 

significant portion (8.4%) from variation among plots, within sites (e.g., A1 vs A2).  A small 

(3.4%) but significant portion of variation was from between region variation.  
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Table 4.3.4 – Analysis of molecular variance (AMOVA) for amplified microsatellite 
fragment length polymorphism data. The 12 Dictyostelium discoideum samples from MLBS, 
VA and Proctor Academy, NH, collected in 2016. Significance values were obtained by 
performing Monte-Carlo tests over 999 permutations on clone corrected data. 

 

Hierarchical level df % Obs Std.Obs P 
Between Regions 1.00 3.34 0.35 3.84 0.025 

Between Sites Within Region 6.00 3.48 0.36 1.51 0.073 
Between Samples Within Sites 4.00 8.36 0.87 10.76 0.001 
Within Samples 177.00 84.82 8.81 -43.44 0.001 
Total 188.00 100.00    

 

 

To better understand the relationships among the sample populations of this study, I performed 

a principal component analyses (PCA) (Figure 4.3.2). In the PCA based on the 2016 samples, 

the first three axes explain 25.5% of the variation (Figure 4.3.2A). These components show that 

New Hampshire collectively harbors more overall variation than Virginia, indicated by the 

greater spread of the points (Figure 4.3.2A). Interestingly, there is greater distance among some 

pairs of sites within NHPA than there is among some pairs of sites between the two regions 

(NH and VA). 
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The genetic population structure of the D. discoideum strains was also inferred using 

STRUCTURE 2.4.3 (Pritchard et al. 2000). The software uses a Bayesian model-based 

clustering method to infer population structure from multi-locus genotype data and assign 

individuals to K populations, where K is equal to the number of individual clusters or 

Figure 4.3.2 – Principal component analysis (PCA) showing positions of all individuals for 
2016 samples. In A-C, each point represents one strain. In panel D, each point represents a 
single plot, calculated as the centroid (the arithmetic mean) of the strains within each plot. 
Panel A shows the distinct clustering of samples by region. Panels B and C show separate 
analyses for MLBS and NHPA, respectively. Analyses performed using the R package ade4 
v1.7-13 (Dray and Dufour 2007). 
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populations.  The log-likelihood of each individual belonging to a given cluster was averaged 

over 20 runs for each value of K ranging from K = 1 to K = #plots + 3, where #plots = the 

number of sampled plots (A1, A2, etc). To estimate K, I followed the DK method described by 

Evanno, Regnaut, & Goudet (2005). For the 2015 samples, the populations identified by 

STRUCTURE corresponded well to the collection sites, although STRUCTURE identified only 

three clusters instead of four, indicating some admixture (Figure 4.3.3C). A neighbor joining 

tree based on Hedrick’s estimator of pairwise G’ST (Figure 4.3.3B) resulted in a similar pattern 

of clustering compared to the STRUCTURE model.  

 

Figure 4.3.3 – Population structure analysis of 2015 samples. (A) ΔK for each value of K 
from 2 to 10. (B) Neighbor joining tree based on Hedrick’s estimator of pairwise GST between 
each 10 x10 cm plot. Only MLBS. (C) Model-based clustering from multi-locus genotype data 
for K = 3 from Structure 2.3.4. 
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Similar to the PCA (Figure 4.3.2), these analyses reveal strong differentiation between New 

Hampshire and Virginia (e.g., see Figure 4.3.4B), with these sites not showing an intermingling 

within the tree. Similarly, there is little to no admixture between the New Hampshire and 

Virginia sites based on the STRUCTURE analyses. In contrast to strong differentiation at the 

regional level, there is greater evidence of gene flow within the regions. For example, the 

closest neighbors in the G’ST-based NJ tree are sometimes (e.g., C1 and C2, D1 and D2 in 2016) 

closest geographically, but not always (e.g., A1 and A2 in 2016). 

 
 
Figure 4.3.4 – Population structure analysis of 2016 samples. (A) ΔK for each value of K 
from 2 to 10. (B) Neighbor joining tree based on Nei’s estimator of pairwise GST between each 10 
x 10 cm sample plot. Model-based clustering from multi-locus genotype data for (C) K = 4 and 
(D) K = 8 from Structure 2.3.4. 
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4.4 Discussion 

Classically, microorganisms were thought to have unrestricted migration because of their 

apparent lack of barriers to distribution, large population size, and small body size (Zwart et al. 

1998; Finlay 2002; Finlay and Fenchel 2004). However, more recent evidence suggests 

microbes can have biogeographic patterns similar to macro-organisms (Bell 2010; Lindström 

and Östman 2011; Hanson et al. 2012; Albright and Martiny 2018). For example, a recent 

biogeography study of the model ciliate Tetrahymena thermophila investigated the limits to 

distribution and diversity of the microbial eukaryote to test whether these protists are ubiquitous 

or endemic. Zufall, Dimond, & Doerder, (2013) sampled ciliates from 43 ponds and streams 

downstream from ponds throughout the eastern United States and estimated significantly high 

population subdivision (FST between 0.14 and 0.5) and low rates of migration (<1 migrant per 

generation) between sample sites. My analyses support the existence of genetic structure in 

Dictyostelium discoideum among samples at all levels of organization (plot, site, and region). 

Similar to Douglas et al., (2011), I found differentiation at the largest spatial scale, which 

covered ~1000 km in this study. However, I found evidence of differentiation at spatial scales as 

small as a few meters. In fact, these results (supported by AMOVA) suggest that population 

structure in D. discoideum occurs at a scale of several meters or less. Fine-scale population 

structure was also observed in another social microbe, the bacterium Mixococcus xanthus, 

which also forms aggregative fruiting bodies in response to starvation. Vos and Velicer (2006) 

collected 78 M. xanthus isolates from a 16 by 16 cm grid of soil samples (each separated by 

1cm) and found evidence of genetic population structure over spatial scales as small as 1cm. In 

Caenorhabditis elegans, high genetic diversity was observed at the scale of a few centimeters, 

which was surprising, given fairly low global genetic diversity. The authors suggest that this 
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pattern arises from a high migration rate in combination with local bottlenecks—in this case, a 

high migration rate prevents isolation by distance at large spatial scales, but bottlenecks cause 

allele frequency shifts (and thus population structure) at small spatial scales (Barrière and Félix 

2005). Together this body of evidence supports that microbes are specially structured at small 

scale despite their seemingly abundant opportunities for dispersal. 

 

In addition to fine-scale population structure, I found fewer alleles and lower levels of 

population structure (i.e., more gene flow) at the two loci with known roles in cheating and 

resistance behaviors, rccA and chtC, compared to randomly chosen loci. On one hand, these 

results might indicate stronger purifying selection on the social genes, which would reduce 

genetic diversity at these loci compared to others. On the other hand, Ostrowski et al. 2015 

found lower levels of population structure, on average, for candidate genes that influence 

cheating behaviors compared to other genes in the genome, albeit in combination with other 

signatures of balancing selection. 

 

Another factor that could influence population structure is seasonality. The sampling of multiple 

timepoints revealed a shift of genetic differentiation across seasons. For example, some plots 

within the MLBS samples (e.g., B1, B2 in figures 4.3.3B and 4.3.4B) cluster differently across 

season, but this finding would need to be confirmed with additional timepoints. Because the 

sampling locations experience freezing conditions in winter, these populations might experience 

population bottlenecks across seasons. If so, strains that form dormant spores before freezing 

temperatures arrive might survive better (Villa Martín et al. 2019). Alternatively, strains that 

recover faster from dormancy might lead a succession in following seasons (Lennon and Jones 
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2011). However, our preliminary population genomic sequencing results (Kuzdzal-Fick et al, in 

prep) indicate that multiple, genetically divergent strains are present within each 10 x 10 cm 

site, and these same strains are present across years. Although preliminary, this result suggests 

that there is some stability in population genetic composition across time and argues against a 

strong role for seasonality—at least in terms of losses of genetic diversity, although further 

analyses are needed. 

 

Seasonality is also quite different between my two main sample locations, MLBS and NHPA 

(in Virginia and New Hampshire, respectively). The collection sites are at different elevations 

and longitudes and therefore experience different timing, intensity, and longevity of seasons. 

The STRUCTURE analyses also revealed greater admixture of strains among sites at MLBS 

location compared to among sites at NHPA, raising the question of how environmental 

differences between these locations might impact genetic variation and structure at these two 

locations.  

 

Overall, my findings of small scale structure suggest that microbes like D. discoideum do have 

differentiation at spatial scales that should allow for interaction between diverse genotypes, yet 

other factors, such as social interactions and discrimination, could be preventing local 

establishment of rare migrants leading to structure at a small scale (Yanni et al. 2019). If 

migration occurs at this small scale, it is possible that the formation of chimera could occur 

between genetically distinct strains. If these interactions between genotypes occur in nature, and 

the strains have differing altruistic investment to stalk production (Votaw and Ostrowski 2017), 

this could allow for the invasion of less altruistic or cheating strains into new populations which 
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could then sweep through. Therefore, it is important to understand how often different 

individuals encounter each other in the soil and how often these encounters might be between 

individuals that are geographically and genetically divergent, potentially posing a risk to the 

cooperative individuals.  
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