DESIGN AND IMPLEMENTATION OF A PSEUDO LANGUAGE PROCESSOR

A Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment of
the requirement for the degree of

Master of Science

by
Yu-Ping William Sun

November 1979

ACKNOWLEDGMEMTS

I would like to express my sincere gratitude to
Dr. Jayashree Ramanathan, my thesis advisor, who has
patiently read the entire manuscript and offered many
useful suggestions. Her advice and assistance led
to the successful completion of this thesis project.
My appreciation is also extended to Dr. J. C. Huang,
Dr. Souhail El-Asfouri, and Dr. Liang C. Shen for

serving as committee members.,

A special thank goes to my wife Huey-Nan for
her patient and careful typing of the manuscript.
Without her encouragement and understanding, this

thesis may never have been completed.

DESIGN AND IMPLEMENTATION OF A PSEUDO LANGUAGE PROCESSOR

A Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment of
the requirement for the degree of

Master of Science

by
Yu-Ping William Sun

November 1979

ABSTRACT

The two objectives in software development are:
- cost reduction, and

- the production of reliable software.

Structured, top-down design is the major technique currently
used to achieve these objectives. Pseudo Language (PL) is
presented in this thesis as a means for encouraging good
design practices and functional programming. A Pseudo
Language Processor (PLP) which analyses the PL program
structurally is also described in this thesis. PLP is a
software tool which enforces good design practices and
prints out useful messages for validating programs written

in Pseudo Language.

TABLE OF CONTENTS

CHAPTER PAGE
1- INTRODUCTION 4 8 8 8 0 % &8 80 e Bt s e 800 1
2. BACKGROUND AND DEFINITIONS00as 7

3. DESIGN OF PSEUDO LANGUAGE AND
PSEUDO LANGUAGE GRAMMAR ..ceivecaan, 21

b, PROGRAMMING IMPLEMENTATION OF

PSEUDO LANGUAGE PROCESSOR (PLP) ...:. 47
5l CONCLUSION LI I O A DU I I I R D BT I I B IR I I I 93
APPENDICES

BIBLIOGRAPHY -

Chapter 1
INTRODUCTION

Over the past few years, the rapidly increasing cost of
software and the need for improving software reliability
and maintainability has spurred a search for better methods
of software production. Structured programming and top-
down design have emerged as practical tools to the problem
of developing reliable software systems. It has been
observed by vari&us researchers that programmer producti-
vity can be vastly improved if the development of software
is split into two equally important phases [RB]

1) The design phase

2) The implementation phase

Some of the recent design language systems are HIPO
[s], pbL [CG], SEMI-CODE [C], WELLMADE [B]. These software
tools have been suggested for use during the design phase.
For instance, Hierarchy plus Input-Process-Qutput (HIPO)
is a procedure for hierarchical functional design by which
programming projects can be analysed into system, program,
and moudule level. It consists of two basic components:

a hierarchy chart, which shows how each function is divided

into subfunctions; and a input-process-output chart, which
expresses each function in the hierarchy in terms of its
input and output. Program Design Language (PDL) can be
thought of as "Structured English". Input to the PDL pro-
cessor consists of control information plus designs for
procedures. The output is a working design document which
can be photoreduced and included in a project development
workbook., SEMI-CODE is a means of describing software
using English-like sentences. In other words, by using
the notation of verbs and nouns in a top-down refinement

of a sequence of English-like sentences which can be used
to describe functions. This sequence of sentences is
iteratively refined so that the verbs and nouns initially
used could become an implemented program in a specific
language. Finally, WELLMADE is a software design disci-
pline which is based upon constructive approach and which
is intended to be applicable to practical software develop-
ment. It currently addresses the task of deriving provably
correct programs from the functional specifications. The
main theme of-this methodology is a constrained and con-
trolled process of designing software by constructing a
correct design from careful considerations of its functional

requirements.

All the design tools mentioned above - HIPO, PDL,
SEMI-CODE, and WELLMADE - concentrate on the control logic

-2 -

of the programming task, and also have some structure in
its design. But, not enough syntactic structure exists
in programs, designed using these tools, so that they can

not be extensively analysed by a program analyser.

Recent research by Ramanathan and Blattner [RB]
introduces a Pseudo Language (PL) and a Pseudo Language
Processor (PLP) - a translator which examines source pro-
grams in PL and provides a listing of these programs to-

gether with a variety of messages (like symbol cross

reference table, path expression, and possible path ex-

pression anomalies). These messages can be used by the

programmer both during the design and implementation phase.
PL is to enforce structured programming, and it resembles
Pidgin English therefore very readable. It is easy to
program in PL since the programmer can ignore the messy
details necessitated in actual implementation languages
like FORTRAN, PL/I, COBOL, PASCAL etc. The programmer

can concentrate on the logic of design. Another important
characteristic of PL is that it requires the programmer to
explicitly identify the functional components of the pro-
gramming task at hand. A PL program can serve as the
documentation for the implementation version of the program.
A PL program also provides communications among the pro-
grammers in a team and contributes towards increased pro-

grammer productivity.

The PLP is based on the philosophy that it is the
cheapest to correct errors during the earlier stages of
program development. This is because of the fact that
fewer corrective changes have to be made to debug a design
program. In order for the PLP to provide the messages
which can indicate errors in the PL program and list the
functional components in the program, the PL program must
have a recognizable structure. The fundamental components
of a PL program are:

- nouns and their descriptions

- assignments

- commands

- control structures

A simple example of PL is shown in figure 1. It
restricts +the English sentences to be 'commands'. This
restriction forces the programmer to identify the functional
components of the programming problem. The PLP also per-
forms extensive static analysis using a technique which is
based on a symbolic and structural analysis of the source
PL program. This analysis is used to print out messages
that can be used by the programmer for validating and de-

bugging the program [RB].

This thesis presents development and implementation

steps of Pseudo Language and Pseudo Language Processor.

-4 -

The author

- developed a context-free grammar to define the
syntax of Pseudo Language,

- designed a scanner to recognize the input string
(source program),

- generated a semantics to provide some useful
messages (symbol cross reference table, path
expression) for validating the source program, and

- designed a analyser to detect the possible data
flow anomalies for the path expression resulting

from the semantics.

The detailed discussions and examples are presented
in the following chapters of this thesis. Chapter 2
presents some background materials - data flow analysis,
context-free grammar, attribute grammar and so on. Chapter
3 introduces the concepts of PL and PLP. Finally, Chapter 4

presents the detailed development of this processor.

Figure 1 - EXAMPLE OF A PL SORT PROGRAM

BEGIN_INTRO

PL PROGRAM FOR SORT ;
DICTIONARY

INTEGER ;

SIZE_OF TABLE, I
FIRST_ITEM, SECOND _ITEM : POINTER ;

FLAG_OF_CHANGE FLAG INITTIAL 1 ;

TABLE : ARRAY ;
END_INTRO
BEGIN
IF SIZE_OF TABIE > 1 THEN
WHILE FLAG_OF_CHANGE = 1
DO FLAG_OF CHANGE = O ;

FOR I = 1 TO SIZE_OF TABLE
DO GET FIRST ITEM IN TABLE ;
GET SECOND ITEM IN TABLE ;
IF FIRST_ITEM > SECOND_ITEM THEN
BEGIN
INTERCHANGE FIRST ITEM AND
SECOND_ITEM ;
FLAG_OF CHANGE = 1 ;
END ;
END;
END ;
PRINT TABIE ;
END ;

2.1

Chapter
BACKGROUND AND DEFINITIONS

The Pseudo Language, the Pseudo Language Processor,

and some formal definitions are presented in this chapter.

Data Flow Ansglysis

As is usual, the control structure of a program
will be modeled by a flow graph composed of nodes and
edges. Each "collapsed" node is either a simple statement
or a sequence of simple statements or expressions, S1, S2,
S3y+4¢. Sp, such that the statements or expressions are all
executed before any branch can be‘taken. Each edge in the
flow graph models a possible transfer of control. A flow
graph G is a triple ¢ = (N,P,no) where ‘

1) N is a finite set of nodes,

2) P, a subset of N x N, is a finite set of edges,

and

3) no is a unique program start node from which

there is a "path" to every other node in the graph.

A sequence of nodes X1, X2,... Xx is a path of length
K if (Xi, Xi+1) €E for 1 £ i < k. A path P = X1, X2,...Xk
is an execution path if X1 = N0 and if all the nodes

X1....Xkx are executed in order. Note that a path in a

-7 -

flow graph may not necessarily be an execution path. The
translation described in this thesis is based on local
attributes associated with each node of the flow graph.
More precisely, an attributed flow graph has a set of at-

tributes S(X) associated with each node X € N.

This thesis addresses the problem of generating a
program analyzer for detecting a specific class of errors
known as data flow anomalies. For the detection of anom-
alies, the local attributes in the set S(X) are:

- DEF(X): the set of variable(s) defined by the node X,

REF(X): the set of variable(s) referenced by the
node X.

UNDEF(X): the set of all variable(s) in the program

which initially have the undefined attributes

associated with +them.

A path P = X1, X2,...Xk of a flow graph G is said
to have an anomaly with respect to variable A if the vari-
able is imporperly used on the path, such as:

- A € UNDEF(¥9) and A € REF(Xi) and A 4 DEF(Xj), 1Sg<j<iSk.
This is called an Undefine-Reference (UR) anomaly, i.e.,
the variable A is referenced but never been given a

value, that is defined, at previous node(s).

- A € DEF(Xj) and A € DEF(Xj) and A § REF(Xh), 1<i<h<j<k.

This is called Define-Define (DD) anomaly, i.e., the

-8 -

variable A was defined at node Xi and then node Xj without

an intervening reference (4 ¢ REF(Xn), 1<i<h<jsk).

The following partial PL program will be used to
illustrate the two anomalies mentioned above.

1) BEGIN

2) 2 =1 ;

3) SET X TO ZERO ;

4) IF FLAG .EQ. 1 THEN DO

5) Z= Y+ 3;

6) 0D ;

7) END ;

Each line in this program represents a statement. Note

that the variable "FLAG" was used in line 4 to be a component
of relational expression. Obviously, "FLAG" was referenced
but never previously defined, i.e., a UR anomaly occurs in
the program. If statement 5 was executed, then a DD anomaly

would be caused by the definition of variable "Z" at line 2 and

line 5 without an intervening reference.

There are several other types of anomalies such as
defined but never used, defined but never declared and so
forth. Some of these anomalies are dependent on the lan-
guage specifications. As an example, a variable need not

be declared in FORTRAN but not in PL/I or PASCAL. Work

-9 -

done in this thesis analyses Pseudo Language programs to
detect the DD, UR, UU(declared and declared again) and
defined but never referenced anomalies. The model for
the PLP component which analyses the structure of input

PL programs is a grammar.

Context Free Grammar (CFG)

A context free grammar (CFG) is a four-tuple
(VN, VT, P,S) where:

VN: a finite set of non-terminal symbols,

VT: a finite set of terminal symbols,

P : a finite set of productions and,

S : a unique start symbol.

A production (rewriting rule) p € P is written as
p = X0 - X1, X2,... Xnp where np 2 1, X0 € VN " and Xk € VN
U VT for 1<ksNp. The start symbol appears only on the left-
hand side of the zeroth production. We say that W is a

direct derivation of V (V = W), if we can write V = xAy,

W = xay for some string x and y, where A = a is a production

in P. An example of derivation sequence is given below:

Let G be a CFG, where
G = (VN, VT, P,S) such that

VN = (P, E)
VT = (id)
S = (PROGRAM)

- 10 -

P : 1) PROGRAM ~ P

2) P ~ E
3) E -~ E +E
L) E -~ E ¥ E
5) E ~ id

The derivation sequence PROGRAM -~ P — E - E+E - id+E -

id+ E*E - id+E%*id - id+id¥id shows that "PROGRAM" derives
id+id*id. Note that as long as there is a non-terminal in
a string, one can derive a new string from it. However,

a graphical representation can be used to describe the
derivation sequence. This representation is called the
parse tree. A parse tree of the grammar is a finite, ordered
tree with its nodes appropriately indexed. Each interior
node of the parse tree is labeled using symbols from VN and
the leaf nodes labeled using symbols from VI. If the symbol
X0 labels node n and the labels of the immediate descendants
of node n are X1, X2,... an, then we say the production P
applies at node n. A production applies at each interior
node of the parse tree. A parse tree can have more than

one associated derivation. More detailed description of this
problem will be given in Chapter 3. Static attributes maybe
attached to the parse tree nodes by associating attributes
to symbols in VN U VI. More details about attributes are

described below.

- 11 -

2.3 Attribute Grammar

An attribute grammar is an ordinary CFG augmented

with attributes and semantic functions. These attributes

are associated with the various productions of P € G and

may be attached to the parse tree nodes of a programn.

The semantics for an attribute grammar are functions
which are executed as productions are applied. These func-
tions calculate attribute value for the nodes associated

with the production.

Static Attributes

For each X € VN U VT, there are disjoint finite sets

S(X) of synthesized attributes. The attributes of a symbol

X identify the various components of its "meanihg". A
symbol X may occur more than once in a production and hence
an attribute of X may have'more than one realization in
the same production. A production P = X ~ X1, X2,... XZnp

has the attribute occurrence (a,k) if a € A (Xk) for

0 £ k € np. Attribute occurrences are to be thought of
as variables which are used in writing the semantics for
a production. The synthesized attributes pass information
up the tree toward the root. The value of a terminal
symbol's synthesized attributes are given initially.
Usually, in a compiler, this is the job of the scanner.

The term "attribute" is often used ambiguously to mean

- 12 -

some a € S(X), as in "an attribute of a nonterminal;" to
mean some occurrence (a,k), as in "an attribute of a
production;” or to mean a value attached to the parse
tree, as in "an attribute of a node.” It should always

be clear from the context which sense is intended.

Semantic Functions

For each production p € P, there is a set F(P) of
semantic functions as follows: for every synthesized occur-
rence (a,k) with kx 0, 1, 2, 3,...np there is a semantic
function fP(a,k) € F(p) mapping certain other attribute
occurrences of p into a value for (a,k). The dependency
set of fP(a,k) is denoted DP(a,k) and contains those
attribute occurrences of p used in the semantic functions
specify the‘meanings of parse trees lopally, in terms of
only a node and its immediate descendants. The entire set

of semantic functions for the grammar denoted Ffpé%F(p).

Example 2.3a is a CFG which illustrates how to define

the meaning of signed binary integers. Figure 2.3b shows

the typical parse tree for the binary integer -101. The

CFG in Example 2.3c has been extended to an attribute

grammar for signed binary integers. It may be noted that
the notation "A.b" stands for the "b" attribute of non-
terminal "A". We have realized that the meaning of a

binary integer is the numerical value it represents.

- 13 -

Example 2.3a - DEFINITION OF SIGNED BINARY INTEGERS

Let G be a CFG where

G = (VN, VI, P, N) such that
VN = (NUMBER, SIGN, BINARY-STRING, BIT)
VT = (+’ - Oo 1)

START SYMBOL : NUMBER

PRODUCTIONS
1) NUMBER ~ SIGN, BINARY-STRING
2) BINARY-STRING - BINARY-STRING, BIT

3) - BIT
4) BIT -1
5) -0
6) SIGN - +
7) - -

- 14 -

Figure 2.3b - TREE STRUCTURE FOR -101

N ER
SIGN BINARY-STRING
/\
BINARY-STRING BI
/\
BINARY-STRING E

- 15 -

Example 2.3c - DEFINITION OF SYNTHESIZED GRAMMAR FOR

SIGNED BINARY INTEGERS

Let G be the CFG defined in Example 2.3a

1)

2)
3)
L)
5)
6)

7)

PRODUCTION

N -5,0L

L -1, B
~ B

B -1
-0

S -+

- 16 -

SEMANTICS

N.VAL = IF S.NEG
THEN - L.VAL

EISE L.VAL
L.VAL = 2L.VAL + B.VAL
L.VAL = B.VAL
L.VAL = 1
L.VAL = 0
S.NEG = FAISE
S.NEG = TRUE

Figure 2.3d -

EVALUATED PARSE TREE FOR -101

VAL

VAL
1

- 17 -

VAL

VAL

2.”

Accordingly, we have invented the attribute "VAL" is also
an attribute of the binary-string (L) and the bits (B), and

S means sign. FIGURE 2.3d shows the parse tree for -101

associated with the attribute of each node. "VAL" is a
synthesized attribute carrying information up the tree to-
ward the root (start symbol N). In this figure, the effect
of the attribute grammar specify that the meaning of -101

is -5.

Overview of the PLP (Pseudo Language Processor)

The research involving the programming and implemn-
tation of the PLP presented in this thesis was accomplished
in a five part sequence. The realization of each of these
parts used information developed in prior parts. The first
step was to tailor a contex-free grammar (CFG) which could
dictate the structure of the programs it accepted and also
have the properties to make analysis of PL programs quite
easy. The next step was to determine if the input string
(source program) was in the language defined by that CFG.
Parsing was used to accomplish this task. The third step
was to develop a scanner which could recognize the symbols
that made up the programs. The fourth step was to produce
the semantics that provided synthesized information like
symbol cross reference and path expression (PE) for each
symbol appearing in the input string. The fifth and last
step was to analyse the path expression (local synthesized

attribute) resulting from step ¥ and generate all the

- 18 -

possible anomalies for each variable involved in the source
program. Each of these steps will be discussed in the

remainder of this thesis. Figure 2.4a illustrates the

PL processor with the integrated components.

- 19 -

_OZ-

N

VOCABULARY

TABLES
PARSING
‘ TABLES
TOKEN_TYPE TOKEN_TYPE PATH
TOKEN_VALUE TOKEN _V ALUE PE
PL PROGRAM—p SCANNER _» PARSER ACTION y| SEMANTICS p| EXPRESSION
| ANALYSER
- ¢
SYMBOL DATA FLOW
CROSS ANOMALIES
REFERENCE
TABLE

Figure 2.4a - OVERVIEW OF PSEUDO LANGUAGE PROCESSOR

Chapter 3
DESIGN OF PSEUDO LANGUAGE AND PSEUDO LANGUAGE GRAMMAR

A language is usually described by its two components
1) syntax (grammar)

2) semantics (meaning)

We will be mainly concerned with syntax of the lan-
guage in this chapter. Some rules to be obeyed during the
design and implementation of a well-structured language
are given below:

- language must be designed so that the meanings of

the program written in the language are clear.

- language definition should clearly imply its

implementation, and must be complete,.consistent.

- language definition should encourage program

clarity and defensive programming, it can be
accomplished by forbidding
a) interference with the control vériable,
step, and size limit.

b) GOTO's to an external label.

3.1 Design of PL (Pseudo Language) Grammar

A grammar is a finite description for possibly in-

finite sets of strings (languages). Once the characteristics

- 21 -

of the language is determined, a grammar must be developed
that defines these characteristics or structures of the

program to be analysed.

The design of a context-free grammar for Pseudo lan-
guage is based on PASCAL grammar[H] and EULER grammar (a
generalization of ALGOL 60)[WW]. The reason for this is
that PASCAL and ALGOL are structured programming languages
which can cope with our requirements that PL allows "struc-
tured design", and "resembles the Pidgin English". A

detailed discussion of PL grammar is next.

A complete PL grammar is given in Appendix A. As
production 1 implies, all PL programs are seperated into

two protions: the introduction portion and the body portion.

P3 and P4 specify the two terminal symbols - "BEGIN_INTRO",
"END_INTRO" to be the keywords that start and end the
introduction portion. By analysing P5, we find that the
components of "INTRODUCTION" are "EXPRPR", "FILENAME",
"1/0", and "DICTIONARY". This production fully defines

the components of the introdﬁction portion. P6, P7, and
P8 give the syntax for "FILENAME", while P9 - P15 define
all "i/O" syntax which describes the input/output units
used within the PL program. The productions assoclated

with "DICTIONARYS" (P16 - P27) specify all nouns which are

- 22 -

used in the body portion. Since PL allows for many dif-
ferent types, and each of these types can have many variable

occurrences, infinite recursion was used in the productions.

First of all, within a specific type, one or more variable
can be declared. This sequence of variables was allowed

by P20 - P27, and P74 - P85. Here, P25, P26, P27, and

P124 send all variables (including nouns, numbers, and
dimensional array) to "STRU_NOUN, P20 then sends "STRU_NOUN"
to "PRIMARYPR". When P21, P22, and P23 are applied, then
variable recursion is accomplished. Production 18 and
production 19 therefore provide the type recursion. Finally,
production 2 terminates the parsing action of the first
part of PL. Note that the question mark (?) is to be used
as a delimiter in this grammar. The reason is that any
symbol delimited by "?" is treated as a grammar symbol by
PARSER GENERATOR (PG). Without this delimiter, the PG
would use those symbols as an instruction implying the

separation of two grammar symbols. Example 3.la has shown

the acceptance of multiple variables and types.

Production 28 to prodgction 123 fully define the
syntax of PL body portion. We shall think of the body of
PL as being composed of the statement forms which specify
the control flow in the implementation program and statement
forms which specify the executable, functional components

of the implementation program. The fundamental executable

- 23 -

PR
P2
pR op SN op SN
P Pgg | P25
S_N S

Pg5| P25 P12k

P25
A ’ B ’ C

BAFD
 prg 1

—
EXPR

P1

PR
r/ffg///L\\\\j
PR
P22
PR

S_N

P124

INTEGER

N

PR op S_N op S_N
P20 Pgs Pos
s'N S_
P 85 P 25
Pioy
Pp5
AA ' BB , cC

S N
Piol

REAL

VARIABLE AND TYPE RECURSION

Figure 3.la

- ol -

components are assignments, commands, and control struc-
tures. The following paragraph will illustrate the con-

struction and usage of these important program structures.

Production 71 and production 72 define the syntax
of "ASSIGNMENT" to be the same format as in FORTRAN or PASCAL.
A "COMMAND" is a very important feature of PL program. It
helps programmers easily specify functional logic without
involving too much details necessary in an implementation
language. P47, P48, P50, P51, P52, P53, P54, and P55 gave

the syntax to this construct. The grammar production for

" COMMAND"
a) COMMAND ~ VERB PART, RETURN PART,;
b) -~ VERB PART,; .
c) -~ RETURN PART,;

d) VERB PART -~ VERB CLAUSE, COMMENTS
e) VERB CLAUSE - VERB*

f) RETURN PART - RETURN_KEY, COMMENTS
g) COMMENTS -+ COMMENTS, GARBAGEPR
n) - GARBAGEPR

i) GARBAGEPR' - NOUN_GARBAGE*

Here, the terminal symbol "VERB#*" is to be seman-
tically interpreted as any English language verb.
"NOUN_GARBAGE*" is to be interpreted as an English word

(it can be a noun, a proposition, or a conjunction). The

- 25 -

noun-terminal "COMMENTS" can be thought of as a sequence of
English words. Production a and production b terminate
the "COMMAND". A simple example of "COMMAND" is shown

as following:

(verb) (noun) (garbage) (noun) (garbage)
INTERCHANGE FIRST_ITEM IN TABLE WITH
(noun) (garbage) (noun)
SECOND_ITEM IN TABLE ;

Finally, we discuss the productions that define
control structures. The syntactic construct called "CONTROL
STRUCTURES" consists of the "CASE STAT", "WHILE STAT", "FOR
STAT", "IF STAT", "CYCLE STAT", "REPEAT STAT", "EXIT STAT",
"WITH STAT", "COMPOUND STAT", "DO STAT", and "CALL STAT".

These structures in turn may be sent to any of the structures

supported by the various languages currently in use. "P39 -
P43", "P56 - P70", and"P74- P122" give the syntax for these
constructs. Again, the following productions will recur-

sively generate all possible sentences (except keywords) in

control structures.

a) EXPR ~ PRIMARY
b) ~ OPERATOR, PRIMARY
c) ~ EXPR, PRIMARY

d) PRIMARY - LEFT PAREN, EXPR, RIGHT PAREN
e) - NUMBER*
f) - IDENTIFIER*

- 26 -

g) OPERATOR - +

h) - -
i) - ¥
J) -/
k) - #3*
1) - =
m) - >
n) - <
o) - <=
p) - >=
q) - 2,7
r) - ?,é

These productions look quite similar to those pro-
ductions mentioned in the introduction portion (P18 - P24).
Actually, these two structures almost give the same syntax
of the language. The reason for this duplication is to
avoid the "ambiguity" problem during parsing. More speci-
fically a word in the introduction was treated as a "NOUN"
whereas the same word in the body is treated as an
"IDENTIFIER*" or a "NOUN_GARBAGE". -"Ambiguity" is a
typical problem encountered during the design of PL

grammar. This subject will be discussed later in this section.,

As was mentioned in Chapter 2, the data flow
analysis is based on .the knowledge that input programs are

"well-structured". Structured transfer of control is

- 27 -

accomplished by the use of "IF", "WHILE", "CASE", and
"REPEAT" structures. Production 106 to production 113
give the definition of the "IF" as follows:

a) IF STAT - IF CLAUSE, LEFT PAREN, BODY

!

b) IF CLAUSE, LEFT PAREN, BODY, ELSE PART
c) ELSE PART - ELSE _KEY, LEFT PAREN, BODY
d) EISE KEY -~ EISE

e) IF CLAUSE - IF_KEY, EXPR, THEN

f) IF_KEY - 1IF
g) THEN KEY - THEN
h) BODY -~ STAT LIST, RIGHT PAREN, ;

The ability to transfer control to the block of codes 1is
represented by "LEFT PAREN, BODY" when "IF CLAUSE" 1is true’
or to the block of codes represented by "ELSE PART" when
"IF CLAUSE" is false. Sometimes, the "ELSE PART" is not
needed. In other words, "IF" can be just a conditional
check statement followed by a true part statement. This
may be accomplished by the productions in the partial
grammar described above. Note that the "nesting" ability
of "IF" statement is also defined by the grammar. This is
because of that the P63 sends "IF STAT" back to "CONTROL
STAT" , and "CONTROL STAT" may be parsed to "STAT" (PL42)
then "STAT LIST" (P40). Therefore, "STAT LIST" itself may
be a "IF" structure. By applying P39, it is seen that a
"nesting" is recursively defined. An example is shown -

in Figufe 3.1b.

- 28 -

Figure 3.1b -

E

TAT
—
BODY
/ —L
S L
COMMAND
IF CLAUSE IF CLAUSE
EXPR EXPR COMMENTS
R EXPR COMMENTs
LF_PR IF_PR VERB
> B THEN BEGIN IF ¢ EQUAL D THEN BEGIN MOVE A TO

IF A

A

NESTING OF " IF " STATEMENT

B

- 29 -

Another nested structure, the "WHILE" loop, was
defined in the grammar by production 93 and pfoduction oL,
The ability to have "nesting" can be generated by the same
procedure as described in the "IF" productions above.
Production 62 sends "WHILE STAT" back to "CONTROL STAT".
The reminding steps are exactly the same. "REPEAT" loop
is another transfer control structure. Production 99,
and 100 give the syntax. From the syntax, it is easy to
see that "WHILE" loop and "REPEAT" loop have the same
feature to transfer control flow except that the former
checks the conditional expression first and then executes
the loop body when condition is true, or jump out of the
loop when the condition is false; while the latter executes
the loop's body first and then checks the conditional
expression. Either of these two constructs will fulfill
the requirement of transferability without using "GOTO"s.
Note that concurrent execution of statements may be specified
by the PL grammar. The syntax of "CYCLE STAT" is given by
P97. Hence, PL allows the design of program forms for a
wide variety of applications. The rest of the structures
in the body portion like "WITH", "CALL", and "EXIT" statements,
are all "straight-line composition", so that the constructs
of syntax are straightforward, and defined respectively by
P104, P105, P122, and P102, P103, It should be noted that

"EXIT" is allowed in the PL grammar. The reason is because PL

- 30 -

tries to give the users the flexibility to develop their
logic for a variety of applications. But, one should
always keep in mind - "GOTO'S" are not encouraged in
structured programming work. Production 28 requires the

entire body portion to be surrounded by a "LEFT PAREN"

and "RIGHT PAREN" which are seperately defined by P29 - P33,
and P34 - P38. Finally, production 1 defines the PL

program.

The features of the PL grammar were not all implemented
at one time. As described in chapter 1, PL was designed
to accept structured constructs and also resemble Pidgin
English - allow English verbs and sentences to appear in a PL
program. Obviously, it is not a trivial contex-free grammar,
therefore,the SLR (simple left - right) parser construction
method initially used is not enough to produce an adequate
parser. In other words, SLR parser just cannot remember
enough left context to decide what action the parser should
take on some particular input string. Unfortunately, a
more complicated and powerful LALR(K) parser (a lookahead
IR parser) could not be generated by the existing parser
generator. Hence, the PL grammar was designed to fulfill
the input requirements of currently existing PARSER GENERATOR.
The grammar designed was SIR(1). Many different techniques
were used to solve the problems which were encountered

during the design phase.

- 31 -

The frequent problem is due to "ambiguity". A gram-
mer is called "ambiguous" if there exists a string in the
language for which there is more than one derivation se-
quence., Example 3.1c shows that the string "babab" has
two derivation trees corresponding to the grammar. When
an ambiguous grammar is fed to the parser generator, the
generator is unable to construct a deterministic parsing
table for the grammar. Certain input strings (programs)
may have more than one translation. This problem is
usually caused when trying to define the grammar produc-
tions to generate a sequence of strings or a sequence' of
statements recursively. Fortunately, the "ambiguity",
usually, can be fixed by inserting in "hard-token" (termi-

nal symbols like keywords, semi-colon, and ?;7?).

One other frequently encountered problem is that
the "left recursion" and "right recursion" occur simulta-
neously causing ambiguity. For example, if production 21
is redefined as:

PRIMARYPR —» = PRIMARYPR, OPERATOR, PRIMARYPR

Then a "left and right recursion" will generate two deri-
vations. However, this problem can be solved by changing
the level of these "trouble" items to another level
(either upper or lower level). A typical example is
shown in the PL grammar (Appendix A, Production 18 -

Production 27). Most of the problems discussed above

- 32 -

Example 3.1c -~ TWO DERIVATION TREES FOR "babab”

Let G be a CFG where

G = (VN, VT, P, N) such that
VW= (E)
VT = (a, b)
PRODUCTIONS :

l) E e E, a, E

2) - b

E
E E
\ [

E E E
b a b a b b ab a

- 33 -

are implicit, which are very hard to detect at the first
"trial run". A lot of tests and refinements had to be

made before the "bugs" were exterminated.

The final grammar of Appendix A was developed after

many changes and corrections. The PL grammar has 1its
limitations as well as its virtures. In addition to the
acceptance of well-structured constructs and resemblance
of Pidgin English, the primary design of
to associate these features with a parse tree which could
be easily analyzed. Note that the partial grammar of
appendix A (production 125 to production 150) was developed
by William R. Ledbetter[L] in order to provids the following
features:
a) Providing a multiple-processing capability.
b) Providing a procedure file management capability
for use within the PLP.
¢) Providing the capability to redefine default
values of indicators which implement some functions

within the PLP.

Details see Chapter 4 of Ledbetter's thesis - "A Pseudo
Language Processor for Design Validation and Implementation

of Systems"

3.2 Description of Pseudo Language (PL)

A PL program is a program form which represents a

- 34 -

broad class of possible implementation in any of the
standard programming languages. The fundamental components
of a PL program are
1) Introduction section
- nouns and their descriptions
2) Body section
- assignments
~ commands

- control structures

All keywords used in the following text are under-
lined. Constructs are parenthesized using "<" and ">".
A <word> is a construct with a string of characters of
length up to twenty. The characters in a word may be
digits, an alphabef symbol, or underscore symbol "_".

The first character in a word must be a letter (A - Z).

3.2.1 Introduction Section of a PL Program

Every PL porgram must begin with an introduction
portion. In the <introduction> the programmer specifies:

- the interface with other programs

- the descriptions of all nouns needed in the body

of the program.

Figure 3.2.1a provides a complete frame of PL intro-

duction section. <Sentence> in the <introduction> can be

- 35 -

Figure 3.2.1a

BEGIN_INTRO

DESCRIPTION OF PL INTRODUCTION STRUCTURES

Required Keyword

<gsentence> ;

-e

<sentence”>

> must use at least
one <gentence~”

Optional Keyword

FILES

<gsentence~

<sentence~ ;

INPUT_PARAMETERS

<gsentence”> ;

<sentence”;

OUTPUT_PARAMETERS
<sentence> 3

<sentence>

Optional Keyword

Optional Keyword

Required Keyword

DICTIONARY
<sentence?

<sentence>

END_INTRO

must use at least
one <sentence>

Required Keyword

- 36 -

any English sentence except if it appears after the keyword

dictionary. It must begin with a sequence of <noun> which

are seperated by commas. In the dictionary a <sentence>

may include the optional keyword initial followed by any

sequence of <constants>.

The keywords used in the introduction are:

begin_intro (required)
files (optional)
input_parameters (optional)
output_parameters (optional)
dictionary (required)
initial (optional)
end_intro (required)

Some restrictions on <sentence> are as follows.

If <sentence> follows keyword dictionary then:

a) A <noun> may not be a keyword used either in the
<introduction> or in the <body>. (keywords used
in the body section will be defined later).

b) A <sentence> must be followed by a ";" and must
contain at least a single noun.

c) After the keyword initial there must be at least
one <constant>. A <constant> can be any number
defined in any of the existing programming lan-

' guages.
- 37 -

d) The general form of <sentence> after dictionary

is:

a) <noun 1>, <noun 2>, ... <noun p> garbage ; or

b) <noun 1>, <noun 2>, ... <noun n> <garbage>
initial <constant 1> ... <constant pn~ ;

where <garbage> is any s quence of words or empty.

There are no restrictions on sentences which follow
other keywords in the <introduction> except that they must

have at least one word and end with a semi-colon (;). An

example of PL <introduction> 1is shown in Example 3.2.1b.

3.2.2 Body Section of a PL Program

The body of a PL program must be surrounded by a
<left parenthesis> and a <right parenthesis> and followed
by a semi-colon (;).

- <left parenthesis> is a do, begin, cobegin or n(n,

- <right parenthesis> is a od, end, coend or ")".

The general form of body section in a PL program
has shown below:
<left parenthesis>

<body sentence>

<body sentence>

<right parenthesis>;

- 38 -

Example 3.2.1b - EXAMPLE OF PL INTRODUCTION

BEGIN TINTRO

SCANNER ;

INPUT_PARAMETERS

TOKEN : SYMBOL OF INPUT STRING ;

]

OUTPUT_PARAMETERS

TOKEN_TYPE : ENTRY POINT OF THE NEW TOKEN IN
VCBIRY TABIE ;
TOKEN_VALUE : VALUE POINTS TO THE ENTRY OF NEW

TOKEN IN SYMBOL_TABLE ;

DICTIONARY

FIRST _TIME : INTEGERS ;

SYMBOL_TABLE : SEQUENCE OF INTRIES ;

VCBLRY_TABLE : TABLE OF TERMINAL AND NON-TERMINAL
SYMBOIS ;

END_OF FLAG : FLAG INITIAL O ;

END_INTRO

- 39 -

A <body sentence> can be
- assignment
- command

- control structure

An <assignment> is just any standard assignment state-
ment in FORTRAN or PASCAL. For instance,
A = (BHC)*D
A := (B*C)*D

A <command> is an English sentence that must begin
with a verb and followed by nouns and acted by the verb.
A general form of a <command> is:
<verb> <garbage> <noun 1> <garbage> <noun 2>...<noun p> <garbage> ;
or
<verb> <garbage> <noun 1> <garbage>....

return <garbage> <noun 1>....

The definition of <garbage> is the same as in the
<introduction>. For instance:

MOVE RECORD TO TABLE;

Here, MOVE is a <verb> and possibly a routine name, RECORD
and TABLE are <nouns> 1f they are declared in the <introduction>.

T0 is a <garbage> (since it is not declared).

- 40 -

To summarize:

1) A <command> must begin with a <verb> which can also
be thought of as a routine name. A <verb> is just
a <word>. A <command> must end with a ";".

2) A <verb> cannot be a keyword which is used either
in the <introductiorn> or <body>.

3) In a command, any <word> following <verb> which
also appears in the <introduction> is treated as
as a <noun>.

k) A <word> must be followed by at least one <word>
prior to return or semi-colon (;).

5) All <nouns> following the keyword return are
considered by the Pseudo Language Processor (PLP)

as being defined in the routine named by the <verb>.

The control structures in PL allow the programmer to
specify a variety of branches without jumping to an uncon-

ditional branch (i.e. GOT0'S). Figure 3.2.2a shows a com-

plete description of the control sturctures. A program of

. PL body is shown in Example 3.2.2b,

To summarize, the restrictions in body sentences are:
1) Keywords used in body sentences are - begin,

begincase, call, case, cobegin, coend, continue,

cycle, do, exit, else, end, endcase, for, if, od,

print, read, repeat, then, until, with, while,

write.

- 41 -

2) A <test> is any sequence of words and special
symbols. The words may not be the keywords begin,

begincase, cobegin, do, then, and the symbol L,

3) Every <body sentence> must terminate with a semi-
colon (3).
4) <label> is a word that is an integer or is not a

keyword.

Note that the <body sentence> is recursively defined.

Details concerning recursion were discussed in Section 3.1.

A <comment> in the PL program is also processed by
the PLP in crder to space and document it appropriately in
the output -isting. If a <sentence> or a <body sentence>
begins with a ."//". then the rest of the line is ignored.
Generally speaking,a sequence of programs in PL has the
following form:

<introduction 1> N

<body 1>

<introduction 2>
PL Program E> PL Program

<body 2> List

<introduction p>

, <body n> P

- 4o _

Figure 3.2.2a - DESCRIPTION OF PL CONTROL STRUCTURES
CALL <sentence? 3

CASE <test> BEGINCASE

<label 1> : <body sentence> _END ;

<label k> : <body sentence> END ;

ENDCASE

POR <test>
<left parenthesis>

<body sentence>

<body sentence>

<right parenthesis> ;

IF <test? THEN

<left parenthesis>

<body sentence>

<body sentence>
<right parenthesis>

ELSE

<left parenthesis>

< >
body sentence- Optional

<body 'sentence”
<right parenthesis> ; -

- 43 -

WHILE <test>
<left parenthesis>

<body sentence>

<body sentence”

<right parenthesis> ;

REPEAT

<body sentence>

<body sentence>

UNTIL <test> ;

WITH <test>
<left parenthesis>
<body sentence>

<body sentence>

<right parenthesis> ;

CYCLE

<body sentence~>

<body sentence~

<right parenthesis”> ;

- Ly -

DO <number”> <sentence> <gsentence>

<body sentence~

<body sentence>

<number> CONTINUE ;

EXIT <sentence> ;
EEAQ <sentence> ;
PRINT <§entence> ;
WRITE <sentence> ;

- b5 -

Example 3.2.2b - EXAMPLE OF PL BODY

BEGIN
IF FIRST_TIME THEN BEGIN
GET SYMBOL AND RETURN SYMBOL ;
SET FIRST_TIME ;

WHILE SYMBOL = END_OF FILE BEGIN
CURRENT_STATE (J) = NEXT_STATE (I) ;
CASE NEXT STATE IS BEGINCASE

KEYWORD : DETERMINE TOKEN_TYPE ;
SET TOKEN_VALUE TO O ;
END ;
IDENTIFIER : INSTALL IDENTIFIER IN SYMBOL TABLE ;

END ;

SPECIAL SYMBOL : DETERMINE TOKEN_TYPE ;

SET TOKEN_VALUE TO O
END ;
NUMBER : 'CONVERT TO INTEGER NUMBER ;
END ;
ENDCASE ;
GET_SYMBOL AND RETURN SYMBOL ;
END ;
END ;

- L6 -

Chapter 4
PROGRAMMING IMPLEMENTATION OF PLP

The implementation work of Pseudo Language Processor
(PLP) consists of five steps. These steps could be grouped
into two parts. The first part includes defining~a PL
grammar, writing a Skeleton Parser and Scanner, and de-
signing the Semantics. The second part contains the design
of a path expression Analyser. The steps in each part
actually implemented a pass of the PLP. Hence, PLP is a
two-pass processor. The entire work for both portions is
based on the parsing techniques using a Parser Generator
to generate parsers. The context-free grammar which defines
the syntax of PL is the input to the Parser Generator.
The Parser Generator generates a parsing table (consisting
of a VOCABULARY table, a READ action table, a APPLY action
table, and a LOOK action table) as output. These tables
contain all the information needed by the parser to deter-
mine the appropriate parsing action for any input string
(source program). A scanner is used to scan each input
string, and return the proper information to the parser.
With this information, and using the information provided
by the parsing table, the parser is able to parse any source
program. During the parsing process, if a symbol is mis-

spelled or left out, then a diagnostic message is generated.

- 47 -

b1

Meanwhile, when a production is being applied, the semantic
functions associated with that production are called. When
the parsing process terminates, the Semantics provides some
messages useful for validating the source program. The
Analyser then analyses the path expression (PE) resulting
from the Semantics of the earlier pass for generating all
possible data flow anomalies. Chapter 3 describes the
grammar development for PL, the remaining steps will be

discussed in their entirety in this chapter.

Parser

A parser for a context-free grammar, G, is a program
that takes as input a string W and produces as output either
a parse tree for W, if W is -a sentence of G, or an error

message indicating that W is not a sentence of G [AU]. The

two basic types of parser for context-free grammar are "bottom-

up" and "top-down". As indicated by their name, "top-down"
parser starts with the top (root) and work down to the bottom
(leaves), while "bottom-up" parser builds parse trees from
leaves to the root. The "bottom-up" method is also know as
"shift-reduce" parser, because it consists of shifting input
symbols onto a stack until the right side of a production
appears on top of the stack. Note that the input stream to
the parser is being scanned from left to right one symbol

at a time. This thesis uses "shift-reduce" parsing method

to construct the Skeleton Parser.

- 48 -

There are four possible actions in the " shift-reduce "
parsing sequence :

1) Shift - Shift next symbol to the top of the stack.

2) Reduce - When the parser determines a sequence of
symbols on the stack is the same as the
right-hand side of a production in the
specified grammar, it may then replace
those symbols with the left-hand side
non-terminal symbol.

3) Error - The parser determines that a syntax error
has occured and takes appropriate action.

4) Accept - The parser announces successful completion

of the parsing.

There are several different " shift-reduce " parsers.
Precedence parsing probably is the easiest one to implement.

Example 4.1a is a good illustration to this parsing method.

However, there are many grammar constructs which can not: be
handled by this method. IR parsing techniques can solve

the probiems encountered by simple precedence parsing. The
IR parser resolves the problems by examining the contents

of the stack to obtain the left-context information of the
input string it has already seen and looking ghead in the
input string to get right-context information of next symbol.
By doing so, most of the problems of " ambiguity " can be

overcome. IR(0) is the simplest method of IR parsing. This

- 49 -

Example

GRAMMAR
P :

L,1a -

1)
2)

INPUT STRING :

STACK
1) ¢
2) $ idg
3) $ E
4) $ E "
5) $E +
6) $ E +
7) $ E
8) $ E
-9) $ E +
10) $ E +

4

+

11) $ E

E
E

3) E - (E
E

PRECEDENCE PARSING ACTION

L) - id
id + id * id $

INPUT
idg + idp * id3 $
t idy * 1dg §
+ idp * idj $
idy * ids $
id2 * id3 $
E *id3$
E * id3$
E * idg $
E *¥ E $
E $
$

- 50 -

ACTION

shift
reduce
shift
shift
reduce
shift
shift
reduce
reduce

reduce

accept

by Py

by Py

by Py
by P2
by Pq

4.2

method uses no-context information to complete the parsing

action. However, for some grammars which can not be parsed
using IR(0), SIR(1) (simple IR) technique may be the good

solution to the problem. SLR(1) uses the right-context

information (look ahead in the input string) to get rid of
the "ambiguity". Sometimes, SIR methods are not suffi-
cient to solve the difficulties and LAIR (lookahead IR)
techniques are employed. LAIR examines both left and right
context information to overcome the problems encountered

in IR(0), or in SIR. As was mentioned in Chapter 3, the
powerful LALR Parser Generator was not implemented, so, a
SIR(1) parsing technique was used in this thesis. Actually,
the Skeleton Parser simulated a push down automata (a finite
state machine with a stack). This push down automata can
recognize the valid PL program and go to an accept state.

Invalid PL programs may send the push down automata to a

recovery routine.

A more precise discussion about parsing techniques
and Skeleton Parser was presented in Jame D. Arthur's thesis
"A Unified Model For Constructing Automatic Analyzers Which

Perform Static And Dynamic Program Validation" [A].

scanner

The function of a scanner is to read the source program,

one symbol at a time, and to translate it into a sequence

- 51 -

of units called tokens. Examples of tokens are keywords,
identifiers, constants, operators,etc.[AU]. The scanner

and parser are coupled. That is, the scanner is a subroutine
which is called by the parser whenever it needs a new token.
The requirements of Skeleton Parser are that for each new
symbol read by the scanner, an integer value, token-type,
and a token-value are to be returned. The token-type is the
pointer which indicates where that symbol appears in the Vo-
cabulary Table (VT). The "Vocabulary Table" is a part of
the parsing table and is composed of all terminal and non-
terminal symbols in the PL grammar. For instance, if the
left-parenthesis "(" is read by the scanner, then the value

returned for token-type would be 1 (see Appendix B).

Furthermore, if the symbol read in is a variable (i.e.,
symbol is not in the list of terminal symbols), and met

the specification for "VERB*", then the position of where
"VERB*" appears in the VT (68) is returned as the token-type
value. Similar logic is used for other variables such as
"NOUN*", "JUNK*", "NOUN_GARBAGE*", and "IDENTIFIER¥*",
However, the value returned for token-value is O for all
symbols except "NOUN*"g, "VERB*"s, and "IDENTIFIER*"s. As

these variables are read, they are placed in a symbol table

by the scamner if they are not already in there. Thus, the
value returned in token-value for a variable is a unique

position in the symbol table. The token-value is used %o

distinguish between instances of a token. For example,

- 52 o

if a token is read and its token-type, returned by scanner,
is a "NOUN*" then the token-value can indicate whether the
"NOUN¥" found is A, B, C, or D, etc. Another primary
function of the scanner is to inform the parser when the
input 1s completed. The Parser Genérator has appended a
terminal symbol "EOF SYMBOL" to production 125 of PL grammar
(see Appendix A). As a matter of fact, the original PL
grammar read by PG does not contain this symbol. In other
words, this symbol is not part of the source input program.
When the scanner finds there is no more input , then the
token-type returned to the parser is a value of the posi-
tion corresponding to "EOF SYMBOL" in the VI. To summarize,
the total information needed by the Skelton Parser about
the symbols read by the scanner is obtained from the values
passed in token-type and token-value. The implementation

details are given below.

We begin with the discussion of designing a program
for scanner. Here, a very useful "flow chart" called

transition diagram 1is introduced. Consider an example of

identifiers. In the ordinary programming language, an iden-
tifier is defined to be a letter followed by zero or more
letters or digits. The transition diagram for an identifier

1s shown below. letter or digit

start letter delimiter
L @R 0

_53-

In this diagram, the circles are called states. The states
are connected by arrows, called edges. The starting state
of this diagram is state 0, the edge from state 0 indicates
that the first input symbol must be a letter. If this is
the case, then the transition enters state 1 and gets the
next input symbol. If another letter or digit is obtained,
then the transition re-enters state 1 (cycle) and looks

at the next symbol. It continues these sfeps until the
input symbol is a delimiter for identifier, then enters
state 2 and terminates the process. This approach is very
helpful for constructing the PL Scanner. It is because

the action taken by this scanner is highly dependent on what
item has been seen recently. The precise specification

for the scanner is called Finite State Automata (FSA).

There are two different types of finite automatas - Non-
determinstic Finite Automata (NFA) and Determininstic
Finite Automata (DFA). The definition of NFA is :

A finite automata M over an alphabet P is a system

(K, P, S, Q, F) where

1) K is a finite, non-empty set of states.
2) P is a finite, non-empty set of states.
3) S is a mapping of KX P into subset of K.
4) Q is a distinguished initial state.

5) F is a non-empty subset of K and is the set of

final states.,

While the definition of DFA are :

- 54 -

A finite automata M over an alphabet P is a system
(XK, P, S, Q, F) where

K, P, Q, F are the same as was defined in NFA, but

there is no transition on input € (empty string)

and S is a mapping of K X P. In other words, for

each state sj and input symbol pj there is at most

one edge labeled pj leaving sj.

Since there is at most one transition out of any
state on any input symbol, obviously, DFA is easier to
simulate by a program than a NFA. Therefore, the auther
implements the scanner by simulating a DFA. The imple-
mentation of the scanner has a program fragment for each
state. The program fragment can determine the proper
transition to make on the current input symbc:., Figure
4.2a is a complete transition diagram for the scanner. The
beauty of using this state diagram is that the scanner
can examine the current state to get the left-context
information and lock ahead at the next symbol to get the
right-c ntext information in order to determine the token-
type, token-value and the appropriate transition action.
Many complicated problems can be overcome by applying this
method. For example, if thé scanner reads a token, and
this token is neither a terminal symbol nor a number, then
the syntax.of PL grammar will tell us that the token could
be the type of "NOUN*", "JUNK*", "VERB*", "NOUN_GARBAGE*",

- 55 -

OTHER TOKEN
(JUNK)

OTHER TOKEN
(JUNK)

BER
(NUMRERPR)

n[/n

OTHER TOKEN
(JUNK)

"FILE3"

N

——

u//u

"n,.n
?

Figure 4.2a - SCANNER

Y

OTHER TOKEN

ﬁm\
OTHER TOKEN - W INITTIAL"

- Starting state is 1
- Edge X - Y denotes transfer of control from X to Y on
reading token a and return type b if it appears in

parenthesis, else return a.

- Raoct+ of +h

a machine

on the following paces

TRANSITION DIAGRAM

OTHER TOKEN
(JUNK)

- 56 -

OTHER TOKEN OTHER TOKEN
(JUNK) (JUNK)
OTHER TOKEN
(JUNK)

if TOKEN IS OTHER

THAN "NUMBER", "//", "FILES",

"END_INTRO" then return TOKEN AS NOUN.

;i TOKEN IS OTHER
then return TOKEN

if TOKEN IS OTHER
"TERMINAL SYMBOL"

if TOKEN IS OTHER

if TOKEN IS OTHER
JUNK.

// COMMENT SYMBOL
// ENCOUNTERED IN

THAN "//" , " INITIALH , " ; " , " ’ "
AS JUNK.

THAN u//n , "DICTIONARY" , "3,
then return TOKEN AS NOUN.

THAN "//", ";" return TOKEN AS JUNK.

THAN "//™, ";", then return TOKEN AS

// INTRODUCTION PART

SIMULATE THE EXPR- PRIMARYPR, ";" PRODUCTION

- 57 -

" DO "

"L/

"NUMBER"

' g By ANY TOKEN
B B (GARBAGE)

"NUMBER"

IDENTIFIER

(VERB)

"w.n

ANY TOKEN
(NOUN_GARGAGE)

LY/,
-

IDENTIFIER
(IDENTP)

" CASE" " IFH nFORu "//"

N

"WHILE""WITH" ~
10
——

" " DO IR 1} BEGIN ()]
"THEN""COBEGIN""BEGINCASE" H

” "

"EXIT""WRITE""READ"
' PRINT""CALL" " UNTIL

u//n
DEnOb

Figure 4.2ab - SCANNER TRANSITION DIAGRAM

- 58 -

5

10

11

12

if TOKEN IS NOT A TERMINAL AND NOT A NUMBER AND
NOT "//", "DO"
if TOKEN IS IN NOUN_TABLE
then return TOKEN AS A IDENTIFIER ;

else
if LOOKAHEAD TOKEN IS A OPERATOR
then return TOKEN AS A IDENTIFIER ;

UPDATE NOUN_TABLE AND NOUN_VALUE TABIE ;
else return TOKEN AS A VERB ; UPDATE VERB_TABLE

AND VERB_VALUE TABIE ;
if TOKEN IS OTHER THAN "//", ".", ";"
then return TOKEN AS A NOUN GARBAGE ;

if TOKEN IS IN NOUN_TABLE

then return VALUE POINTS TO THE SYMBOL TABLE ;

else
if TOKEN IS A TERMINAL OR A SPECIAL KEYS
then return VALUE AS O ;

else UPDATE NOUN_TABLE AND NOUN_VALE TABLE ;

SIMULATE THE PRODUCTION 48;

// COMMAND -~—— VERB PART ;

if TOKEN IS OTHER THAN "//", "DO", "BEGIN", "COBEGIN",
"THEN", "BEGINCASE" |

then return TOKEN AS A IDENTIFIER ;

if TOKEN IS OTHER THAN "//" AND TOKEN = NUMBER

then, return TOKEN AS A LABEL KEY ;

else GO TO STATE 5;

if TOKEN IS OTHER THAN "//", ";"
then return TOKEN AS AN IDENTIFIER;

-59-

or "IDENTIFIER*". The problem is how to decide between
these types. In Figure 4.2a, if current state is 1, then
the value for token-type 1s returned as the position of
"NOUN*" and transition enters state 2. If current state
is 2, then token-type is returned as a "NOUN_GARBAGE*"
and transition still re-enters the same state. However,
if the current state is 5 , then the scanner will return
token-type either as a "VERB*" or as a "IDENTIFIER*"
depending on the right-context information and transition
will enter state 6 or state 10 respectively. Generally
speaking, the type for a token in a language recognized

by its scanner usually contains only the terminal symbols

(keywords, operators, etc.), identifiers and numbers.

However, the PL Scanner must have the ability to distinguish

between various type of the identifiers. The reason is

that the PL grammar is designed to fulfill the requirements
for SIR(1) Parser. As a matter of fact, the SIR(1) grammar
is not powerful enough to handle all the features described
in the Pseudo Language. Hence, the scanner has to do the
work which is normally handled by a more powerful grammar.
Finally, a calling structure for all routines called by the

scanner main routine (SCAN) is shown in Figure 4.2b, and

the scanner itself is given in Appendix C.

4.3 Semantics for PL

As was mentioned in Chapter 1.5, the fourth step of

- 60 -

SCAN

A: anytable
B: working area

1: STIZE of A

f

WORD | VALUE
PIR IDENTP / TYPE

\

SNSTAT

WORD \TYPE

WORD
SNSTAT

N
CONVER INPUT TOKEN STATE , = TBUPDT '\ TSTIMN TSTT
WORD / \ '
N WORD / R\ 3
\
CHj‘R NOUN_TABLE '
f VERB_TABLE
COMBNE LETTER CHANGE

NOUNTB, NOUNVL
or
VERBTB, VERBVL
VALUE

\

Figure 4.2b - CALLING STRUCTURE OF SCAN

PLP implementation is to construct the semantic functions
for the PL grammar. In other words, the Skeleton parser
should pass information regarding the derivation sequence
to the semantic routines. In reality the derivation
sequence is a node by node representation of the parse
tree. In this thesis, the auther uses: synthesized attribute
values to evaluate the attribute of each node (token).

An illustration and discussion of the implementation of

PL semantics will be presented in this section.

For each interior node of a parser tree, there is an
associated production. The semantics is called by Skeleton
Parser whenever a production is about to be applied, i.e.,
the application of a production is the reduction of one or
more symbols to a single non-terminal symbol. The parser
passes information to semantics by three arguments used in
the call statement - action, token-type, token-value. The
action argument is the value of the production that the
parser is ready to apply. The token-type and token-value
contain the same information described in the previous
section (4.2); These two arguments are those of the last
variable read by the scanner. The other useful information
such as "noun table", "verb table" are referenced and mod-
ified in both the scanner and the Semantic routines. The
transfer of information is done by using a FORTRAN COMMON

statement. The function of semantics is to analyse the

- 62 -

parse tree and generate a variety of messages for validating
the source PL program. These messages are listed below to-
gether with a brief description of their characteristics.

1) Cross Reference Tables -

Tables indicating variable in the PL program con-
sisting of :
a) A list of declared nouns together with the state-
ment numbers where they appear.
b) A list of undeclared nouns together with the
statement numbers where they appear.
c) A list of verbs together with the statement
numbers where they appear.
2) Path Expression (PE) -
A list of synthesized PE attributes for the de-
clared and undeclared nouns. The symtols used in
PE are
a) U <number> : variable is declared in line <number>
in the <introduction~.
b) R <number> : variable is referenced in line
<number->.
¢c) D <number> : variable is defined in line <number>.
a) (--_---)¥ : variable is used zero or more times
within a while loop as described
by the parenthesized sequence of
symbols., Variable is referenced in
a test, at least once, as described

by symbols on the left of the underscore.

- 63 -

e) (---) # : variable is used within a repeat
as described by the parenthesized
sequence of symbols.

f) —-ete-- : variable has alternative usage
depending on the execution.

g) (---)1? : variable is referenced unlimited
number of times within a cycle as
described by the parenthesized

sequence of symbols. .

The semantics program is shown in Appendix D. Note
that all actions taken by semantics are dependent on the
value of "action". The implementation details of semantics
program is discussed as below. The main data structures

of semantics program is shown in Figure 4.3a. The "symbol

table", "noun table", and "verb table" are used to build

up the cross reference information for all nouns and verbs.
The "symbol table" is a buffer which contains the variables
such as nouns, verbs, and files. In other words, the "symbol

table" is just like a dictionary and contains all information

needed, through the entire PLP, about the source PL program.
The "noun table" and "verb table" are just subsets of "symbol

table". "Verdb table" is used to construct the verb directory

file for use in the "file management of procedures" [L].
However, the "noun value table" (NOUNVL) and "verb value

table" (VERBVL) are the index table for nouns and verbs.

- 64 -

Figure 4.3a - DATA STRUCTURES OF SEMANTICS

NOUN NOUN VALUE VERB VERB
SYMBOL TABLE TABLE TABLE TABLE VALUE
(SYMTAB) (NOUNTB) (NOUNVL) (VERBTB) (VERBVL)
indexto ln%ﬁ?
symbol name noun name sym. tab, verb name sym tab,
TOKEN LINK_LIST PATH_EXPRESSION
VALUE POINTER_TABLE (TEMP) LINK _LIST
STACK ()
(VS) HEAD TAIL PELT
attri- next stmt.
. symbol| symbol bute link no.
first { last
link link . ' .
index to
sym. tab.

- 65 -

Each index points to the symbol table entry where the symbol
is located. The other data structure that is useful for the
semantic routine is the path expression (PE) consisting of .
three components:

1) A value_stack (VS) - a one-dimensional array -
with each value in the stack treated as the entry
point to the linked list pointer table. Actually,
stack V3 is an index directory.

2) A linked_list pointer_table (LLPT) - a two-dimen-
sional array in which the first field contains the
symbol first index (HEAD), while the second field
contains the symbol last index (TAIL).

3) A path expression linked list (PELT) - a three-
dimensional array in which the first field contains
the attribute for each token, while the second
field contains the value for the next available
location in PELT (next link), and the third field
contains the statement number for the token in the

first field.

Figure 4.3b shows the basic chain-relation between

the data structures. This figure also shows a statement of
PL program read by the scanner. On reading X, the scanner
translates it to 1 - the position in the symbol table.

During the parsing phase, a call is issued to the semantics

while production 116 (PRIMARYPR » IDENTIFIER*) is applied.

- 66 -

Figure 4.3b - CHAIN RELATION BETWEEN THE DATA STRUCTURES
OF SEMANTICS

INPUT STRING :

1) X=Y -X; —_— 1 =2 -1 ;
TEMP

Vs HEAD TAIL
3 1 g 1 gy s
2 2 7 3 g u \
1 1 0 0

PELT
ATTR. NEXT IINK STMT NOJ

grow |4 2 |41

fe = o am -

Zre | £ 5 551-/

g | 4 [g1

The semantic action is to push the token-value into the value
stack (VS). Using the same procedure, the token-value 2
(value for Y) is also pushed onto the VS. When the symbol
"3" is read, the parser applies production 71 to pro-

duce "ASSIGNIMENT", then transfers control to semantics.

The corresponding semantic function is to construct the
attribute "D" (define) for the bottom token stacked in the

VS and attribute "R" (reference) for other token(s) stacked
in the same VS. Therefore, the attributes for statement

"X = Y - X ;" should be PE(X) = DR, and PE(Y) = R. The

attributes for these two tokens are moved to a linked list

(PELT) for later use.

The algorithm for constructing the path expression is:
begin
while VS is not empty do
1. pick up the "TOP" token-value (V) from VS;
2. if the content of HEAD(V) is O,
a. put the "next 1link" onto HEAD(V);
b. put the appropriate attribute onto the
first field of PELT(HEAD(V));
c. put the statement number onto the third
field of PELT(HEAD(V));
d. get another "next link" in PELT;
e. put the new "next 1link" onto the second
field of PELT(HEAD(V));

- 68 -

. f. put the new "next link" onto TAIL(V).

a. put the appropriate attribute onto
the first field of PELT(TAIL(V));

b. put the statement number onto the third
field of PELT(TAIL(V));

c. get another "new link" in PELT;

d. put the "new link" onto the second
field of PELT(TAIL(V));

e. put the "new link" onto TAIL(V).

3. TOP = TOP - 1.

The detailed semantic functions corresponding to each

action are shown below.
ACTION SEMANTIC

1 a. Build up and print out the cross reference

table for declared nouns; .

b. Build up and print out the cross reference
table for undeclared noﬁns;

c¢. Build up and print out the cross reference
table for all verbs.

e. Print out the path expression for each
declared noun;

f. Output the path expression and the name of

each declared noun to a temporary disc file.

- 69 -

2 Set up the starting pointer for undeclared

nouns.

18 or 19 if flag is ture
then bPuild up the attribute "U” for all
token which are already stacked in

the value_stack (VS).

turn on flag.

23 Build up the attribute "D" for all token

which already stacked in the VS.

25 or 27 a. if scan state equals 3
thernr update the file table.

els..

update the noun table.

b. Stack the current token_value into the VS.

29,30,31,32 if production 101 has been applied
then insert the underscore symbol "_"
into the 1link list of path expression
(PELT). And turn off the production

number.

if oproduction 112 already has been
applied

then turn off production number.

- 70 -

Ls Build up the attribute "D" for all tokens

which are already stacked in the VS.

L6 Build up the attribute "R" for all tokens

which are already stacked in the V3.
L9 Same as Action 45.

50 if comments_flag is false

then turn on the comments_flag.

51 Insert the minus sign "-" into the PELT.
52 Same as Action 46,
56,59 if the flag of production 95, 101, 108,

112, 118 is on
then build up the attribute "R" for all
tokens which are already stacked

in the VS.
71 Build up attribute "D" for the first token
stacked in the VS and attribute "R" for
the rest.

86 Stick two ")" symbols into the PELT.

- 71 -

87 a. Stick two symbols, "(" into the PELT.

b. Turn off the flag of any production number.

88 Turn on the flag of production number 88.
90 a. Stick three symbols, ")", "#", "(" into
the PELT.

b. Build up the attribute "D" for all token(s)

which are already stacked into the VS.

oL a. Stick "(" symbol into the PELT.

b. Turn on the flag of production number 101.

96 Turn on the flag of production 96.

97 Spick two symbols, ")", "T" into the PELT.
98 Stick "9" symbol into the PELT.

99 a. Stick two symbols, ")", "#" into the PELT.

b. Turn off the flag of production number.

100 Same as Action 105,
101 Turn on the flag of production number 108,
102 Same as Action 46.

- 72 -

105 Turn on the flag of production number 105,

106,108 Same as Action 94.
109 Same as Action 97.
110 a. Stick two "(" symbols into the PELT.

b. Turn off the flag or production number.

111 Turn on the flag of production number 118.
116 Stack current token_value into the VS.

118 Same as Action 71.

120 Same as Action 116.

Finally, the call structure of routines called by

SEMNTC is shown in Figure 4.3c.

L.4 PE (Path Expression) Analyser

The last part presented in this thesis is the analysis
of the data flow. In other words,an analyser has been im-

plemented for examining the PE for each declared noun to

indicate the possible errors known as data flow anomalies.

- 73 -

(STKPTR, INIT
ATRB, LNENUM

(x,J,I,K)

;

SEMNTC

(ACTION, TYTKN, VLTKN)

PTHEXP PTHEXP STRING
STKPTR , INIT NOUNVL
ATRB,LINE PTHEXP NPTR ID
BLSTK
N
BLDLNK INSERT REFINE INTCHR |(INPUT I,
c CHAR,IEN)
(OCRNCE, 1J)

PTHEXP, PTHEXP, iiHﬁgP (NVAL, ICOUNT, ID) \
ok | [PrHEXP ISTES I PTHEXP | PTHEXP -

’ ' [\
LNENUM | LNENUMX l// PIHRXP NOUNTL ll[.
BGNLNK PTHLNK (STACK,J,I,K) | BGNLNK

LNKNO__LNKNO LNKNZ//'LNKNO LNKNO \LLNKNO
GETLNK GETLNK

Figure 4.3c - CALLING STRUCTURES OF SEMANTICS

The PE Analyser is just like another independent pro-
cessor which has its own parser, scanner, and semantic
actions. As is usual, a context-free grammar which can
accept all possible path expressions must be defined in
advance, and run through the Parser Generator to generate
a parsing table. A grammar for accepting the PE is shown

in Appendix E. Again, a scanner is used to scan the input

string (the path expression for each declared noun generated
by the Semantics in the previous execution pass) from a

disk file, and return the proper information to the Skeleton
Parser. The parsing actions are the same as was mentioned
in the previous section (4.1). The Semantics for the PE
Analyser implements the algorithm to detect the data flow
anomalies. In this section, the-author will concentrate

on the development of Semantics.

The semantics program for PE Analyser is shown in

Appendix F. The functions of Semantics is to analyse the

parse tree and detect various anomalies of PE associated

with the parse tree. When an anomaly is found, information
is printed out displaying what type (DD, UR, etc.) of anomaly
has occured, also which statement(s) caused them. In order
to determine this information, the Semantics has to compute
the value of two attributes - PE and Statement number asso-
ciated with each parse tree node. The detailed implementa-

tion work for evaluating those attributes will be discussed

- 75 -

later. Here, several basic data structures of PE Analyser

are shown in Figure 4.4a, where

1) attribute_value_stack (ATBSTK) is a two-dimensional
array which is used to store all the values of the PE
attributes; each value in this stack represents
the PE for variables at a specific node; symbol
"APTR" is used as the stack pointer.

2) left_number_list (LNUM) is a multiple-dimensional
array which contains the statement number(s) of
left PE attribute for each variable; symbol "LPTR"
is used as the table pointer, while "LIEN" is used
to indicate the length for those left PE attributes.

3) right_number_list (RNUM) is the same definition as
those of LNUM unless RNUM is used for the right
PE attributes.

4) while_relation_flag stack (WLREFG) is a one-dimen-
sional array which is used to indicate if a "while
relation"is encountered in the different "nesting"
levels.

5) counter (COUNT) is a one-dimensional array which
is used as a table to bookkeep the parenthesis

within a "WHILE" loop.

- Note that the size of these stacks and tables can be adjusted

by changing the size parameters.

- 76 -

APTR —>

Figure 4.4a - DATA STRUCTURES OF PE ANALYSER

ATTRIBUTE_STACK
ATBSTK(50,2)

LPTR —>

LEFT_NUMBER_LIST

LNUM(50,10)

LIEN

RIGHT NUMBER_LIST

RNUM(50,10)

RPTR —

1RLEN

- 77 -

Now we examine the evaluation of the PE attributes.
There are four different types of anomalies to be dectected
by the Analyser. The anomalies are:

- UU : declared and declared again

- UR : referenced without defined

- DD : defined and redefined

- defined but never referenced

First, consider a simple example -

1) X = 1 ;
2) Y = 1
3) X = Y + 2 ;

The path expression, PE(X) is DiD3. An obvious DD anomaly
occurs in this block of code. The error is detected at
the time the first two attributes collapsed to one attribute.
However, an example 1) X =1 ; 2) Y =1 ; 3) X =X + 2 ;
does not have the DD anomaly, because of an intervening
reference to X. The semantic steps for detecting those
anomalies are given as follows:
begin
1. initialize all stacks, tables, and pointers;
2. if ACTION = 8, 9, or 10
then
stack the current attribute value onto ATBITK;
// Note that the attribute value was dispatched
// into two field of ATBSTK.
stack statement number onto LNUM;

stack statement number onto RNUM;

- 78 -

end

X =

3. if ACTION = 2

then

a. set up the left attribute (LATB) ;

set up the right attribute (RATB) ;

// This semantic routine always deal with the
// top two attributes in the ATBSTK. Since
// the parser parses input string from left
// to right, so the lower attribute is LATB,
// the upper attribute is RATE.

. build up the statement number list for LATB

and RATB ;
// This information is used for the error

// analysis routine.

c. employ the error analyse routine ;

// This routine examines the LATB and RATRE
// to indicate the possible errors for asso-

// ciated node.

d. employ a collapsing routine ;

// This routine combine the LATB and RATB,
// the result is pushed back onto ATBSTK.

e. re-initialize all stacks, tables and pointers.

Using the example mentioned above (X = 1; Y = 1;

Y * 2;) and applying the above steps, a DD anomaly .

- 79 -

will be detected automatically. The resulting stack for

steps 2 and 3 is shown below.

PE STACK FOR STEP 2

ATBSTK LNUM RNUM
APTR—> | D D LPTR— | J RPTR— | 3
D D 1 1

LLEN RLEN

PE STACK FOR STEP 3 :

ATBSTK ILNUM RNUM
APTR—> | D D |1Pm->| 1 RPTR—>| 3
¢ |
LLEN RIEN

- 80 -

The meaning of the figure for step 3 is that node X is
first defined at statement 1 and last defined at statement
3. In step 2.d a collapsing routine was used to propagate
the attributes in the stack. Further discussion will be
given in later of this section. However, the error analysis
routine is quite simple and straightforward. The program

for the error analysis routine is shown in Appendix F.

The analysis of attribute is relatively easy and
straightforward as long as there are no loops and branches.
However, with the "IF", "WHILE", "CASE" and "REPEAT" state-
ments, the analytical work become more complicated. The
discussion here starts with the "WHILE" statement. First

consider the flow graph representing a "WHILE" loop:

<_Pri°r PE(X) = (1) (2) (3) ()

node

ﬂ D D R

"WHILE" @
. ?

relation

(::>4 body of
- : vaHIIE|! R D D

; following
1‘!abé_—hode D R .D D

Note that the variable X can be either in No Ni, Np or Ns.

<
O é¢— 0 é&——Jg

pd
~
&
~
y
~

- 81 -

Here, NO represents all statements before the "WHILE"
loop. Ni represents the codes for "WHILE" relation. N2
represents the statements in the body portion of "WHIIE"
loop. N3 is the node following the "WHILE" loop. Each of
these nodes has a set of PE attribute values. Consider

four different cases of PE values for a wvariable X in these

nodes ¢
1) D (R) * D
2) D (D) * R
3)” R (D) #* D
4) D (R _D)* D

- The first case means that variable X is defined before
and after the "WHILE" loop. It is also referenced in the
body portion of the "WHILE" loop. Intuitively, one would
say no possible anomaly exists, because if X is defined
first at NO then referenced at N2 and defined at N3.

However, if the "WHILE" relation was false then X would be
defined at N0 and then égain N3 without intervening reference.
This is a DD anomaly. Now, try another approach - ignore

the body portion of "WHILE" loop. Consider the second case,
if the attributes of N2 are ignored, then a DD anomaly does

not exist. Same suitation will happen to case 3.

The solution to the "WHILE" loop lies in considering

what attribute values should be computed for the variables,

- 82 -~

used 1in the body and relation part of "WHILE" loop. The
algorithm shown below can handle the cases we just

mentioned.

Algorithm for Evaluating "WHILE" Bodv Attributes

Assume PEg(X) is the attribute for variable X in the
"WHILE" body. PEpg, represents the left PE attribute stacked
in the ATBSTK for X. PEggr(X) represents the right PE attri-
bute stacked in the ATESTK for X.

begin
if ACTION = 12 or 13
then
if: PEggr(X) = "R "
then PEqp(x) = " B v

end

Note that blank (" ¥ ") means empty attribute. This
attribute allows " D " or " R " %o override it during the

parsing of attributes from left to right. Consequently,

an algorithm for the node collapsing routine is shown below:

Algorithm for Node Collapsing

First, assume there are two nodes X1, and X2 to be
collapsed into node X3. The PE attributes associated with

each node are represented as PE1, PEp and PE3 repectively.

- 83 -

then

PE3L = PE2L
else

PE31, = PEIL ;
then

PEBR = PE1{R
eglse

PE3r = PE2R ;

end

An example would be the best illustration for this
algorithm. Consider the first case : D (R) *# D. As action
equals 7 or 8 (See Appendix E - PE grammar), then the attri-
bute "D" or "R" will be pushed onto the attribute stack.

In other words, PE11, = "D", PE{1R = "D", PEsy, = "R", PE2R =
"R"., While action equal 12 or 13, then PEsr equal npgn
Collapsing routine is employed, when action is 2. This
routine pops off the top two attributes from ATBSTK and
causes the following result : PE5p, = "D", PEsgp = "D". Again
as action equals 7,another "D" is pushed onto ATBSTK. Hence,
a left attribute "D" and a right attribute "D" pass to error
analysis routine when action 2 is reached. Therefore, a DD

anomaly is detected. This is justwhat we want ! Case 2 and

- 84 -

case 3 can be handled with the same approach. Now, consider
the "WHILE" relation. That is whether or not the body por-
tion of the "WHILE" loop is executed, the first and last
statement executed is the relation expression. Hence, if a
variable 1is referenced in relation expression before entering
the "WHILE" body, thus it will be also referenced after the
body is executed. Consider the case 4 : D (R_D) # D. This
path expression means variable X was defined at prior node Ng
and referenced in the relation expression of "WHILE" loop
(N1), defined at body portion N,, and again defined at the
following node N3. From the point of view of straight-line
composition, it looks like a DD anomaly will occur as collapsing
function takes place between Nz and N3. Actually, there is
no such error. The philosophy to prevent this anomaly from
happening is to stick a "R" attribute just after "WHILE"
loop. In other words, the PE analyser needs to insert a "R"
into the ATBSTK just before the next attribute is pushed -into
the stack. The following algorithm can correctly handle the

"WHILE" relation construct.

Algorithm for Computing "WHILE" Relation Attribute

The definition of PE is the same as that described in
the previous algorithm. "WLREFG" and "COUNT" were defined
in the early discussion of this section. "I" is used as a

flag counter.

- 85 -

begin
if ACTION = 12
then

if WILREFG(I) = 1 AND COUNT(I) # -1

then

PEo1, = PE11,

PE2R PE11,

end

Noting that "WIREFG(I) = 1" means the "WHILE" relation
expression has been encountered for a "WHILE" nesting level.
"COUNT(I) # -1"means a appropriate position in the attribute
stack 1s ready for sticking in a "R" attribute for the cor-
responding "WHILE" nesting level. The beauty of using the
technique of flag-stack 1s that the flag-stack can handle
a group of nested "WHILE" loop. In other words, this flag-
stack can accurately point out which level of "WHILE" rela-
tion expression is encountered or past. Now, apply this
algorithm to illustrate case 4. PEygre(X) will equal "RR"
The PE for No is "DD". By collapsing No with Nyygrim, PE(X)
equal "DR". Again, collapse this attribute with the attri-
bute of N3 ("DD"). Therefore, the error analyse routine
takes the left attribute (LATB) as "R", and right attribute

(RATB) as "D", so there is no anomaly.

The approach for the "IF" statement is quite similar

- 86 -

to that of "WHILE" statement. A flow graph for "IF" is

«——prior node

é—conditional

K//// relation

true part— é—else part

given as follows:

"IF" Flow Graph

¢~ succeeding node
v
No represents all codes before "IF".
N1 represents the codes for conditional relation.
N2 represents the codes for ture part of "IF" body.
N5 represents the codes for else part of "IF" Dbody.

Ny represents the codes following the "IF".

Consider the following PE types for a variable X in
these nodes:
1) D (D +R)R
2) D (D+D) R
3) R(D+R)D
4) R(D+D)D

The first case represents a variable X defined before

the "IF" and then redefined in the true part.of "IF" , while

- 87 -

second case means that X is defined before and redefined
in both the true and else parts. Case 4, and Case 3 are
quite similar to Cases 1 and 2, except they are defined
in the "IF" body and again defined in the. following nodes.

The algorithm given below computes the "IF" attributes.

The central idea in this algorithm is to calculate the
occurrance of "D" attribute within the "IF" body portion.
Actually, the algorithm gives the details for another special
collapsing routine. As before,

PE1(X) represents the attributes for X in first node.

PE>(X) represents the attributes for X in second node.

PE3(X) represents the attributes for X after being

collapsed of N7 and N2.

if ACTION = 4 then

begin
if PEyg = "D
then
PE3, = "D" ;
if PEpr = "D"
then
4 PEqr, = "D" ;
if PER = "D"
then
PEsR = "D" ;
if ©PEgr = "D"
then
PER = "D" ;

Now, examine the algorithm to illustrate ase 2, the
PE of "IF" body is equal to "DD" and the PE for NO is "DD".
Collapse these two attributes to automatically detect a DD.
Besides, a list of statement number(s) is generated to point
out where the "error" occurred. For example, if the anomaly
of case 2 was detected, then the numbers are printed out to
indicate that the DD anomaly occurred either in the true part

or in the else part.

The approach and solution to the "CASE" statement are
just the same as those of "IF" statement, so no detailed

discussion will be given.

Since the execution path of "REPEAT" loop will go
through the body portion and relation at least once before
exiting the loop, this construct is treated as those of

"Straight-line" composition.

Finally, the functions employed by each action is

described as follows:

ACTION SEMANTIC FUNCTION

1 a. if the right node of attribute_stack
| (ATBSTK) is "D"
then print out the message of "Defined
before and never referenced”.

b. Initialize all tables and pointers.

- 89 -

8,9,10

11

12,13

. Set up the left attribute and right

attribute for ERROR routine.
Call error analyse routine.

Call collapse routine.

Build up the left attribute and right
attribute for first node and second node.
Build up "D" attribute and corresponding
line number for third node.

Initialize all tables and pointers.

Turn on the flag of while_relation for

each occurance (WLREFG(INT)).

Stack the current token value into ATBSTK.

Stack the current token_value into number

stack (LNUM,RNUM).

if +the flag of while_relation is on,

then insert a attribute "R" before next
attribute is pushed into the ATBSTK.

Rearrange the number list for new attri-

bute.

c. Call collapse routine.

d.

Turn off the flag of while_relation.

- 90 -

16 if the flag of while_relation is on,
then increment the parenthesis counter

(COUNT(INT)).

19 if the flag of while_relation is on,

then decrement the parenthesis counter.

A list of all possible anomalies for the input source

program (See Appendix E) is given in Appendix H. Figure

L.4o 1illustrates the path expression attributes for a

specific program.

- 91 -

Figure 4.4b - TREE EXPRESSION FOR ' PE(X)=UD

3# 3% 3%
PE ANOMALIES N

DD
ANOMALY
Note:

1) PE of variable X comes PE(X)=UD

from Appendix E. : N

2) % - indicate this / Q\
"R" attribute is _ .
not a part of ori- PE(X)=UR
ginal PE; is gene- N

rated by the
PE Analyser.

PE(X)=R¥
N]_ ‘ N1

Y

PE(X)=RD =~
No

PE(X)=UR PE(X)=RR
No *%% UR NZ
~ ANOMALY

N3 N3 N3 N3 N3 N3 N3

X: U R (R - D) *= (D + D) D

T
i
|
I
|
|
|
|
|
|
. i
PE(X)=UU PE{X)=RR | PE(X)=RR PE(X)=DD l PE(X)=DD | PE(X)=DD | PE(X)=DD
I
f
il

- 92 -

Chapter 5
CONCLUSION

The major expense in developing computer systems is
in writing software - software costs are expected to rise
even further. By 1985, computer software expenses will
constitute about ninety percent of the total system cost[Bl].
However, the cost of finding an error in software increases
as the software development comes nearer to completion.
Errors found during the early stages of design and specifi-
cation are relatively inexpensive to correct as compared
with errors found during total system integration [R].
Another factor resulting the cost of large systems is the
problem of communication between the different programmers

in a team.

In this thesis, the author has presented a design
language, called Pseudo Language (PL), which improves com-
munications between programmefs and thereby improves the
chances of detecting errors. The reason is that

1) PL programs resemble Pidgin English, and

2) PL encourages top-down, structured design practices:
Programs written in PL are called program forms. Program

forms avoid implementation details and are therefore easily

93

readable. PL also forces the programmer to identify the
control structures as well as the functional components

of the program system during the design phase [RB].

A Pseudo Language Processor (PLP) has also been pre-
sented. This processor 1is an automatic tool for analysing a
PL program and print out messages that include

1) a list of nouns and verbs together with the state-

ment numbers where they appear.

2) a list of path expression for nouns.

3) a list of self explanatory warning messages of

certain conditions detected by the PLP for nouns.

These message are used to indicate the violations of good

design practices and possible errors in the source program.

In the future, PLP can also be designed as an inter-
active system which aids program form validation and imple-
mentation program synthesis. The variety of messages that
can be generated more than those described in thesis.
However, the techniques for generating all messages will
be the same as described in this thesis. Another important
research effort should be in the automatic translation of
PL programs to the current implementation languages (FORTRAN,
PASCAL, etc.) All this work is certainly possible. Software

engineering, however, is quite a new area in computer science

- 9h -

Lot of research work still needs to be done in this field

in developing tools useful in the early stages of design.

- 95 -

APPENDIX A

PL GRAMMAR

/ * 1 PRIGRAM ¢+ INTRODUCTION STAT, £O0MEJYND STAT */
/ * 2 INTR0DUCTION STAT : START, INTROGUCTICM, FINISH x/
/* 2 START : REGINE€INTRO * [/
/ « 4 FINISHY : END®INTRG , * /
A S5 INTRODUCTION : EXPRPR, FILENAYE, 1/C, DICTICNARYS x!
/* é FILENAME : FILE€KEY, EXPRPR x7
e R MR S — e a s
/ * g FILE¢KXEY : FILES */
/ * 5 I1/0 : INPUT, CUTFUT */
/% 10 INPUT : INPUTEKEY, EXPRER x/
/ * 11 ; EYPTY */
T TR INPUTEKEY : INPUT®#EARAMETERS B x/
e T BT BITE Y Fe KET B ER AT R _ — -
/ * 14 ; EMPTY */
/* 15 OUTPUT®KEY : OUTPUT¢PARAMETERS */
/ * 14 DICTIONARYS : DICTIONARY¢KEY, EXPRPR x/
/ * 17 DICTIONARY¢KEY : DICTICNARY: x/
o /* 18 EXPRPR : EXPRPR, PRIMARYFR, s * /
T e . o
f* 2C PRIMARYPR STRUENOUN * [
/! * 21 5 PRIMARYPR, CFERATOR, STRUENCUN x/
! * 22 ; PRIMARYPR, STRU#MCLN * /
/ * 23 ; PRIMARYPR, INITIAL PART * /
Y 24 TINITIAU PART ¢ INITIAL, STRU«NCUN Y
o e TR RN AU R e g e e Y
/* 2¢ ; NUMSEZRCR«)
! * 27 ; NQUN*, (, FRIMARYPR,) * /
/% 28 COMPOUND STAT : LEFT PAREN, STAT LIST, RIGHT PAREN, */
22 ; */
S5 - —53 e e e "
fo R EER——— - -
; BEGIN 'Y
¢ L * /
;s (* /
o s 34 RIGHT PAREN : 00 “/
L 357 T i COEND </
/* 36 ; END * /
/* 27 P | * [/
/* 38 _ D */
/* 39 STAT LIST : STAT LIST, STAT * /
[* sa ; STAT . * /
/ * 41 STAT : LABEL, STAT x/
/* 42 ; CCNTROL STAT * /
/* 43 .2 COMMAND * /
/ * TAA COMMAND : ASSIGNMENT */
/* 45 ' ; READ, EXPR, * [
/* L6 ; PRINT, EXPR, * /[
/* 47 ; VERZS PART, RETJTURN PART, * /
/ * 4 8 ; VER3 PART, . * /
/* 49 ; WRITE, EXPR, 7 */
/ * 5C VERS3 PART : VERB CLAUSE, COMMEKTS x/

/ * 51 VERA CLAUSE : VER3~ * /
/ * 52 RETURN PART : RETJRNEXEY, CCY¥“ENTS */
/* 53 RETURN®KEY : RETURN «f
/ * 54 COMMEMNTS ¢+ CNH4MENTS, GARIAGEOR x /
A 5% o ¢ GARIAGZPR x/
/* 5¢ EXPR : PRIMARY e . I xS/
/* 57 ; OPERATCR, SQI4ARY x/
/ 58 > EXPR, OPERATOR «/
/ * SG r EXPR, PRIMARY k f/
/ * 6C CONTROL STAT : CASE STAT * /
A 61 ; WHILE STAT - oy
/* 62 i FOR_STAT . x
i x 63 ; IF STAT */
[* 64 ; CYCLE STAT * /
/ * 65 5 REPEAT STAT */
1 &é ; EXIT STAT */
] * 57 ; WITH STAT * /
o d® .68 s COMPOUND STAT x/
! * 66 ;7 DO STAT * /
/* 7¢C ; CALL STAT o/
] x 71 ASSIGNMENT : EXFR, ASSIGNMENT SYMBOL, EXPR. */
/* ?2 ASSIGNMENT SYMagQtL : = x/

/ * 73 ;s = * /
A 74 OPERATOR : + x/
/ * 75 ;- +/
7 76 7« «/
/* 77 ;o * /
/ * 73 ;e x/
/ * 75 5 t= x/
- e e) — et
A i i2 L
/ * 82 ; <= x/
/* 23 7 >= x [
f* 24 ;e * /

R A S & i : */
A 36 CASE STAT : CASE CLAUSE, UMITS, ENDCASE, * /oo
/ * 87 CASE CLAUSE : CASE€KEY, EXPR, EEGINCASE x/
/* R& CASE€KEY : CASE *x/
! * 29 UNIT ¢ LABEL, STAT LIST, END, - */
/% 7?0 _LA3EL : EXPR, : x/
I1x %1 _UNITS 1 UNIT UNIT *x/
I*x . 3z 1. » e e e x /
/ * 92 WHILE STAT : WHILE€KEY, EXPR, LEFT PAREN, */
/ * 94 WHILE€KEY : WHILE _ * /
/ * 95 FOR STAT : FOR€KEY, EXPR, LEFT PAREN, 20DY x/
/ * 94 FOREKEY 1 FOR * /
e X 97 CYCLE STAT : CYCLE€KEY, BODY */
A 78 CYCLE«KEY : CYCLE — A
/* 26 REPEAT STAT : REPEAT¢KEY, STAT LIST, UNTIL¢KEY, EXPR, * /
/! * 36 : - */
/ * 3¢ REPEAT®KEY : REFEAT ~ * /

/ * 101 UNTILeKEY ¢ UNTIL
/ * 102 EXIT STAT T EXIT, EXFR, : o *x/
/ * 1C2 JOSXIT, «/
/ * 124 WITH STAT : WJITHeKEY, E£XCR, LZIFT FAREAN, 3DDY
I 105 ~ WITHeKEY @ WITH o
/ * 10¢ IF STAT ¢ TF CLAUSE, LESFT SAREAN, 39DV
/I 107 ' 7 IF CLAULSE, LEFT FAREN, =0DY, ELSE EarT 777
7* 108 ELSE PART : ELSE€KEY, LEFT PAREN., B8CDY
/* 109 ELSE€XEY : ELSE
/ * 110 IF CLAUSE : IF¢KEY, EXPR, THEN¢KEY
[* 711 [IFeKEY : IF

R R T TR EN e e e e e

CrETTTTO113 O BOOY T USTATY LTS T, U RIGHT PARENL S - Y
1A 1% PRIMARY : LEFT FPAREN, EXFPR, RIGHT PAREN
/ * 115 ; NUMRER %"

/* 11¢ > IDENTIFIER~
[* 117 DO STAT : 501, DO LIST

/% 178 D01 : DO, LA3EL€KEY*, EXPR, ASSIGNYENT SYM3CL, EXPR,

e g e e . L - SANAENT YRS uLe -
/> 716 DO LIST : STAT LIST, NUMBER*, CONTINUE+XEY, / */
/% 12C GARBAGEPR : MNCUN€GARBAGEx
/* 121 CONTINUE®KEY : CONTINUE
/% 122 CALL STAT : CALL, EXPR, - x/
% 129 TR AR iR ET QR B R 7 e e e e L
R § 30 STRUCNOUN & "SLRg & “hom o e e e
/ * 125 JOB : PROG¢LIST, EOF SYNMECL
/* 12¢ PROGE€LIST : PROG¢LIST, DIR#3LOCK
/% 127 : ; PROGE€LIST, FROGRAM#PRIME
/% 122 ;7 DIR€BLOCK A

T G T e e AR PR I E e e e e e e e]
/* 130 DIR€BLACK ¢+ BEGIN€DIR, DIR€LIST, END¢DIR
/* 131 PROGRAM&PRIME : PROGRAM
/% 132 DIR€LIST : DIReLIST, DIR€ARGS
/] * 1332 ; DIR€ARGS
/* 134 DIR€ARGS : DIRECTIVE, DIR€NAME, NOUN*x, JUNK*, ; */

/* 135 B ; DIRECTIVE, DIR€NAME, NOUN*, ; */
/ * 13¢ ; DIRECTIVE, DIR€NANME, ; * /
/* 137 ; OPT®ARGS, ! * /
/* 138 DIR#NAME : GET¢VERSB :

! * 136 ;5 SAVE€VERS

/ * 140 ; PRINT¢VERBeLIB

/* 141 ; INIT¢VERBe¢LIR

/* 142 J DEL€VERSB

/ * 143 ; ZERO€USE

/% 144 OPT€ARGS : OPTICN, OFT#LIST
/* 145 OPT€LIST : OPT#LIST, OPTENAME
/ * 146 ; OPTeNAME

/ % 147 OPT#NAME : NO#STRUC

/ * 148 ; PRINTe€30

/ * 146 ; COMMENTSeT
/ * 150 ; NO€PATH

APPENDIX B

VOCABULARY TABIE

FOR PL GRAMMAR

DATA ((VCI3LRY(L,J),J=1,10),1=1,151)

I 2HC »29 24 -2H 29 S2H S2H 42H L2ZH S2H L2H) L,2H
2H s2H s 2H s 24d +2H s 2H s2F s 2F P2H% L, 2H P 72H s2Hh

2H s2H s 2H ,24 s2H p2H %k, 2H s2H s24d s2H ¢ 2H s 24 s 2H
: s 2H=

AT Y

2H »2H 17‘4'* s 24 12"{/2H 12:.'%“""12"‘ .1.."4 s2H

2H ¢2H »2H s 2HL=,2H s2H4 s2H s2H s2 1 s2H s 2 r2H r2H ’
2H= ,2H #2H s 2H #2H s 2H s 2H s2F #2H s2H »2H> ,2H s 2H ’
Z2H 22 H s 2H s 24 r2H s2H s2H r2H>=,2H f2H s2H #22H s 2H ’
2H s2H s 2H s 2H s2hs #2H s 2 H s 2k ,2H s 2H s 2H s2H s ZH ,
--------- CH .24, ,7H s 2H s 2 H IZH s CH r2H IZHMM s 2H s 2H JoHI=,2H 7,7
TR LR TS oH U R2H T L 2H T L2 T L2 T L2 T L 2 HY L 2H T TS 2H T T 2R T 2H T,

2H sZ2H s 2H s 2H s 2H r2H7 #2H s2H s 2H s2H s2H s2H s 2H ’
2H 724 r2HBEL2HGT »2HN »2d s 28 s2F s 2H s2H s2H s 2H s 2HBE
2HGI,2HNC,2HAS ,2HE ,2H s2H s2H s2H rZH s2HBE ,ZHGI ,2ZHN*,2HDI »
2HR ,2H s 2H s 2H s 2H s 2H #PHBE,2HGL,2HN®,2HIN,2HTR,2HO ,2H ’
2H L 2H ”2‘4 F2HCA ,2HLL, 2H s 2 H ’ ZHWM s 2H IZH s 2H IZH IZH
ZHN ,2H s 2H s 24 s2H #2H s2H)'JCCI)HEN 7HD r2H s 2H 12H ’
2H s2H r24 +s2H 22HCO,2HMM 2 HEM,2FTS,2HeT ,2H s 2H s 2H s 2H ’
2H 22HCO ,2HNT ,2HIN,2HUE, 24 r2H r2K s2H s 2H s2H s2HCY P 2HCL ,

¢
2
J
J
3
-
3
R
%
g
g
3
g
K
&
g
g
&
:
3
)
8
B
g
&
g
8

2HE ,24 s 2H s 2H 221 s 24 r2H s 2H DHC:I;HL"I’H\JEI/L‘IR:IC"‘ ’
2H ,2H s24H " .24 l’H IZ"DIIZHCTIE}'IJIZH\AIZH‘QV}’H" 2R 2H T
T T2HTT2H T S 2HDI S2HRE L2ZACT L 2HINV,2HE L2k L 2H 0 28 L 2A TL2H T,2HDO S

24 s2H s 2H s 2H r2H 224 r2H s2H ,2H ,2HEL,2HSE,ZH s 2H ,;
2H s2H s 2H 24 s 2H s 2H s ZEEN,2FD ,2H s2H s H s 2H rH ’
2H #2H s 2H s 2HEN ,2HDC,2HAS,2HE L, 2H s2H #2H s 2H r2H s 2H ’
ZHF’\JIZI‘l')"IzHDIIZHQ r2d r 2 r2H s 20 s 24 s 2H 12H:\1/7HD(’12HIIJI

2HT R s2H O '2 H .74 L0 ,2H s 2H JORRO,2AF S2H3Y, 203,200, 20 5
2HTTL2H T, O S OH T LZHERL,THIT, ZE s 2F F2HTT T, 7H r2H s 2H sH T,
2H s2HFL1,2HLE,2HS »,2H s24 s2H s 2H s 2H s24 s2H s2HFO,2HR
2H f2H s 24 »2H e 2H r2H P24 £ 2k r2HdGES2HT® ,2HYE,2HRB,2H ,
2H s2H 2K s 2H s2H sCHID,2HEN,2HTIS2HFLI,2HER ,2H* »2H r2H ’
2H +2H4 IZ"'IFI’HA s2H 224 s CH s 2k - s 2H s 2H .ICH- s 2H s ZHIN,
"2HIT,2HIA,2HL I?H’IZHI?_H ”.:IZH m',?h T,2H WrZHIN-r_ IT,2H&V
2HB€,2HLI,2H3 ,2H ,24 ,2H ,2HIN,2FPU,2HT¢,2HPA,2HRA,2AME, 2HTE,
ZHRS,2H . ,2H 2 2HIUY »2HNK,2HY ,2H r2H 224 s2H s2H s2H »2H ’
2HLALZ2HBE ,2HL® ,2HKE ,2HY*,2H ,28 sk rZH r2H SCHNC,Z2HUN,ZHYx ,
Z2H s2H s 2H s 2H r2H. »2H s2H s 2HNO,2HUNAZ2HEG,2HAR,ZHBA,2HGE,
ZH* ,2H »2H s 2H IZHNOIZF‘I(’PIZHA\le"H s 24 s2H »2H s2H s 2H ’
2H ,2HNO,2H®S,2HTR ,2HUC,2H ,2k ,2F ,2H ,2H ,2H ,2HNU,2HM3,
T2HER,2HY L 2H L 2H L2H 2K L 2R SO T 2HNU L 2HME L ZHER S 2HPRLZHY T,
2H ,2H +2H s 2H 22H S2HOD,Z2H S,2H L2H ,2H s 2H s2H s 2H ’
2H 24 2 2HOP,2HTI ,2HON,2H s2H P2F #Z2H s2H s2H #2H »2HOU »
CHTP,2HUT ,2H€P,2HAR ,2HAM,2HET ,2HER,2ZHS ,2H s 2HPR ,2ZHIMN,2HT ,2H ’
2H s2H4 r2H ,2H s2H s2H s2EPR,ZFINSZ2HT € ,2HR0 ,2H s 2H s 2H ’
2H s2H s 2H 2 2HPR J2HIN,2HT®,2HVE ,2FRE,2H¢L ,2HIB,2H s2H s2H ’
2HRE,2HAD , 2H s 2H s 2H s 2H s2H P2 F s2H s 2H #2HRE,Z2ZHPE,2HAT,
2H s2H L 2H s 2H s2H ,2H s2H s 2HREL,2HTL) ZHRN »2H s 2H s 2H ,
2H +2H s 2H s 2H s2HSA,2HVE,2HEEV,2FERL,2HE ,2H s 2H F2H s 2H ’

2H s2HTH) 2HEN, 2H s2H s2H s2H r2F #2H s2H s 2H s 2HUN» ZHTI'
UL ,2H ,24 s2H ,2H ,2H 2% S2H ,2HVEL2HR3,2nx ,2H ,2H
2H s2H s 24 s2H r2H s 2HWH,ZHIL ,2FE L2H s 2H P s 2H rén ’
Z_IL_ {_?_H_‘ __’»'i!’r?HT1 _2_._?1 s 2H s2h +2H s 2 H s 24 s 24 s2H sr2HdAdR s
SHIT,2HE , 34 ,3H »38 ,2 2K 2k 3 ,2HIC,2HRC,23AFU,2HSE,
2+ 22 H IZH $2H L 2H F2H I?HE T, 2H r2H ,2H »24 2r s2H ’
2H ,2H s 2H 241 2R L2H ,ZH LER 0 ,2H 0 L2H sZH ;2H L 2H .
2HT=,2H s 2H s2H s 2H 224 r2H s2¥F s2H4 s2H /?HASIZHSI;ZHGVf
CHME ,2HNT , 2H s 2H s 2H s 2H s2H s 2HAS ,2HS T ,2HGN JZHME L, 24NT,2H S,
2HYM,2H30,2HL »2H s2H30,2HDY ,2H e2H s2H s2H s 2H s2H s2H ’
~ 2H IZHCA/?"{L' s 24 b/?HTA;7HT_‘;7F ~12F" M.r7“ ‘ICH ”réH__m_IZHCArZHS__IM
2H C,2HLA,2HUS »2HE +2H s H 2H r2h IZHCAIZH)C124 Sr7HTA'7HT ,

T2H L,2H 7H'”,?H'",DH'W,2HcA,2Hs:,7H+K,2H=Y,?H "s2H 2K L2H T,

2H s2H e 2HCO,2HMM ,2HANLZ2HD ,2H s2H
2HNMNM ,2HEN,2HTS »2H s2H s 2H sCH s2H

s 2 H
#2H

2R ,2H ,2H ,2HCO,
sHCO ,2HMP L, 2HCU , 2HND »

2H S,2HTA,Z2HT ,2H s2H s2H p2HCC,2HNT S 2HINSZHUE yZH€K »2HEY ,2H ,

& 2H ,2H ,2H M_;2HCO'?HAT,ZHROIZHL #2HST,2HAT,2H ,2H ,2H ,2H o,
e 24 C Ys2HCL,2HE ,2HST ,2HAT,2H ,2H ,2H ,2H ,2H ,2HC Y #2HC L r3 2 H E €,
"2HKE,2HY ,2H 7H P2H ,2H 4 2H J2HCI,2HCT,2FI0 ;t“\ﬁ;ZHK ldHS ’
2H s2H s 2H s 2H 22HDY L, 2HCT »2HIC ,2HNA,2HRY S 2HEK) 2HEY »2H s 2H ,
2H +2HD I, 2HR€,2HAR ,2HGS , 2H s2H s 2k s2H s2H s 2+ #2HDI,2HRe,
2H3L ,2HOC , 24K ,2H4 »2H s 2H r2k s2k 22HDO 1, 2HRe ,2HLT ,2HSTL2H 7
R 2H a2H p2H . 2H 7H‘W,PQCI,7UQ+,Z% 8,24V, 2K L,2H L2H ,ZH
T2H sCH s 2HDO ,2H L’PHIJIZHT s2r s 24 74 s 2H »2H r24 ,2RDC,
) 2H S,2HTAL2HT ,2H L2H ,2H ,2F ,2F J2n s2u50,241 20 2w .
2H #2H s 2H s 2H +2H s2H s2HEL,2hSE,2H F,2HAR,ZHT »2H s 2H ,
2H s2H s 24 s 2HEL s2HSZ ,2HeX ,2HEY, 2k r2H4 s2H s 2H #2H ¢ 2H ’
ZHEX,2HIT,24 S,24TA,2KHT ,24 s2H s 2H r2H »2H rZHEX ,2HPR,2H ,
e e L2H o #2H s 2H g 2H s2H s 2H 2R g 2FEX,2EPRZHPR2H ,2H ,2H .
2"1) 17HHI7H7"_M’2H “‘IZHFIIZHLC’ZH\JAI)}‘“"I’H L 220 17"""M12H

7H s2HF I ,2HLE y2HE€X ,2HEY , 2H 12k s 2k

s 2H

i
.

12QMMIZH s Z2HFI »Z2HN f;n

2HSH,2H s24 s2H s2H s2H s2H s2H

2H s2H s 2H s2H s2H s2HFQ,200R €, 2RKE,2HY

2H 72 H »2HGA,2HRB ,2HAS,2HEP,2HR ,2H

s 2HFC,2HR »2HST,2HAT ,2H ’

2H

s2H s2H s 2H r2H ’
s2H +2H s 2H s2HI/ »

2HC ,2H ,2H ,2H m/7H.M12H,"17H 22k

ZHE /ZHW ;DQ r2H #2H ,2H ,ZHf% 2H S

2H 42H ,2H s2HIF,2H¢<K,2HEY,2H ,2k

Li —nama

¢2HIF,2H Cp2HLA,2HUS,

P2HTAL2HT _42H. . 22H__422H s

:ZH

s2H s 2H e 2H s 2H

CHIN,ZHIT,2HIA,2HL ,»2HPA,2HRT,2H ,2H

2H 2H s2H S2H s 2H s2H s 2K 2 CEIN,2HEL s2HT*® ,CHKE,2RY L,2ZH
2H s2H 2 2H r2H pCHIN,Z2HTR,2HOD,2HUC,2HT I ,2HON,2H e 2H e Z2H

s2H

s2H p2HIN,2HPU,2HT

eH sZHIN,2HTR,2HOD ,2HUC,2HTL,2HON,2H S,2HTA,2HT ,2H ,2HJC,2HB

2H s2H #2H #2H 24 s2H 42H s 2H

s Z2HLA,2H3E ,2HL »2H s 2H

H

2H s2H s 2H s 2H s 2H s2HLESZHFT,2F FP,2HBR,2HEN ,CH s2H s 2H

\\:\\\\\

2H s2H »2HOP ,2HER ,2HAT ,2HCR,2H s2H
ZHT€,2HAR,2HGS,2H s2H s2H s2H s 2K

2H s2H 22H s 2H s 2H s 2H r2HOP,2hT€,2HNA

ZH “IZH IZH'MIZHOUIZdTPIZ{Lled 2+

ZHOU,ZHTP'ZHUT:2H+Y 2HE mighnﬂ'ZH

2HY J2H ,2H »2H L2H L2H L,2F J2FPR,2HIVM,2HAR,2HYP,2HR L2H

@ o QU-QO;uo @0 @0 @o[woieuioles 2o v Qogeo eoleu @0 Qu‘JO;eo @ g golwo Qofuo Lo RO O u0520§uo O N R N R R Ol R

2H ,24 ,2H ,2H ,ZHPR,2HOG,2HRA:2hM
2H 2s2HPR,2HOG,2HRA J2HM € ,2HFR,2HIN,2FE

s2H s2H s 2H r2H P 2HOP,
s2H s2HOP p2HT ¢, 2HLI,2HST,
2 2HME ,2H ¢ 2H s2H ’

s 2H sCH s 2H s 2H s2H ’
22H ,2H #2HPR,2HIM,2HAR,
r2H s 2H +2H s2H r2H ,
s2H s2H ¢2H +2HPR,2HOG,

& 2H®L,2HIS, 24T ,2+ s 2H 221 sk s 2F P 2HRZISP2HPE »2nAT ,25 3,2HTAS
& 2HT +2H ,2° 224 ,2H S2ARESCHPE,/ZRAT,2He<K,2HEY »2n 4,24 ,2H 4
& 2H s2H s 2HRE L, 20T S p2HRN,2H FL2FAR,ZFT ,2H s 2H s CH s 24 sCRRE,
% ZHTU,Z2HIAN,2HEK ,2HEY ,2K s 2H s 2 sk r2H 22HRI » 2R 3H,2HT ,2H2 3,
% 2HRE,Z2HY ,2H s 2H s 2H s 2H r2RST,2RAR,Z2HT ,2H s2H s 24 s2H ,
% 2HST,249AT,24 L,2HIS,2HT ,2H ,2H ,2F ,2F ,2d ,ZEST,2HRU,2HeN,
& 2HCU,Z2HY »2H s 2H s2H s 2H s H ¢ Z2RTH,2HEN 72HeRK 2R =Y »2H s 2H ’
§ 2H ,2H ,2H »2H s2HUNL,2HIT,2H »2k 22K ,2H 224 20 S2H ,
% 2H sP2HUNSZHIT ,2HS ,2H s2H s 2H s 2H #2H ¢2H s2H s 2HUN,2HTI »
& 2HL&,2HKE,2HY ,2H s 2H s 2H s2H s 2k r2HVZ,2HR3,ZH C,2HLA,Z2HUS,
TR UZHE S2H U L2H U L2H T ,2H S ZHVEL2HREL,2F PL2HBR,2HT L,2H ,2H ,2H
T T T AR S 2HWH S ZHIU S 2HE TS HST S ZHAT L 26 T2 T L 2H T L 2H TS 2H T S 2HWH,
& 2HIL,2HE®,2HKE,2HY ,Z2H s2H s2H s 2H 22 H 2 2HAL »2HTHLZ2H S,2HTA,
2 2HT ,2H s 2H 72H s2H s2H s2HNl 2 FTH,2HERX ,Z2HEY S 2k s 2H s 2H ’
& 2H ,2H ,2H /)

APPENDIX C

SCANNER PROGRAM

SUBROUTINE SCAN(TYPE,VALUE)

**************i*************t*****************&********t*******t*

BEGIN#INTRO

i
i
t
|

PLP SCANNER:

// PSEUDO LANGUAGE PROCESSOR SCANNER

C
C *
C =
ko WRITTEN BY YU-PING SUN, DATE: 2-6=79 .
c * INPUT¢PARATERS - CARD¢ IMAGE
C = QUTPUT¢PARAMETERS - TOKEN®TYPE, TOKEN¢VALUE
c * INTERFACE - CALLED BY ROUTINE INTPSR,NEXTKN?
C * CALLING ROUTINE CONVER, INPUT, TSTTMN,
e o * TSTNUM, TOKEN, STATE, TBUPDT., _ . —
G ox DI CTIONARY T
c * SNSTAT - 1: STARTING FROM LABEL 1000,//0DETAILS SEE USER'S
c * : MANUAL=~ SCAN DIAGRAM
c * - 2: STARTING FROM LABEL 2000, // SEE USER'S MANUAL’
C * 3: STARTING FROM LABEL 3000, // SEE USER®'S MANUAL
LLox _b: STARTING FROM LABEL 40007 // SEE USER'S MANUAL
C =* S: STARTING FROM LABEL 50007 // SEE USER'S MANUAL
C = 6: STARTING FROM LABEL 6000, // SEE USER'S MANUAL
C = 7: STARTING FROM LABEL 7000, // SEE USER'S MANUAL
C * 8: STARTING FROM LABEL 8000, // SEE USER'S MANUAL
C = 9: STARTING FROM LABEL 9000; // SEE USER'S MANUAL
Lox 10: STARTING FROM LABEL 10000/ // SEE USER'S MANUAL
C * 11: STARTING FROM LABEL 11000, // SEE USER'S MANUAL
C * 12: STARTING FROM LABEL 12000, // SEE USER'S MANUAL
c * SYMTAB -~ SYMBOL TABLE , SIZE DEPENDENT,
C * CURRENT SIZE CAN HANDLE 300 DIFFERENT SYMBOLS?
C_* NOUNVL - VALUE TABLE OF NOUNS, SIZE DEPENDENT.
c * CURRENT SIZE CAN HANDLE 200 DIFFERENT NOUNS,
C = VERBVL - VALUE TABLE OF VERBS, SIZ2E DEPENDENT,
C *x L CURRENT SIZE CAN HANDLE 200 DIFFERENT VERBS.’
c * FILETB - TABLE OF FILES, SIZE DEPENDENT,
C CURRENT SIZE CAN CONTAIN SO DIFFERENT FILES,
€ * NOUNTB - TABLE_OF NOUNS, SIZE DEPENDENT,
cC * CURRENT SIZE CAN CONTAIN 200 DIFFERENT NOUNS,
C * VERBTB - TABLE OF VERBS, SIZE DEPENDENT,)
C * CURRENT SIZE CAN CONTAIN 200 DIFFERENT VERBS:
C * FLAG - FLAG FOR DETECTING COMMENTS,
C » INITIALIZE TO ".TRUE.".
c_* FGONUM - FLAG FOR DETECTING NUMBER,INITIALIZE TO ".FALSE."
L. % _FGOTMN - FLAG FOR DETECTING TERMINALmSXMQOLeWMMMMW ‘‘‘‘‘‘
C.* .. _INITIALIZE TO ".FALSE. . e
C * FST80 - FLAG FOR DETECTING 1Ff THE FIRST TIME REACH 80TH
C * COLUMN, INITIALIZE TO ".TRUE."’
C * TC - FLAG FOR DETECTING TRANS€COMMENT.,
C * INITIALIZE TO ".FALSE."’
C * END€INTRO .
C *******************************t**t***t****t******************
¢

IMPLICIT INTEGER

(A=1)

LOGICAL PATH,FLAG,FGONUM,FGOTMN,TRACNG
LOGICAL PP,PR0,TC,ANAL,FST80

DIMENSION NUMBER(12),TYPES(9,10),GRABGE(30,10)
DIMENSION VERKEY(13,10),TMPVCB(151,10)
DIMENSION KEYWRD(4,10),TMPWRD(10),DOKEY(10)

DIMENSION INITAL(10),RETURNC(I0),ENDEXP(6,10)
DIMENSION MACVAR(10)

"COMMON WORD(1D)

COMMON /BLOCK/ NOTERM,VCBLRY(151,10),SYMTAB(300,10),5SYMS,IV0CSZ

COMMON /COMMENT/ FLAG

"COMMON /DEVICE/ INUSE,SAVUSE
COMMON /E/ TRACNG
COMMON /FLAGS/ SNSTAT,CHECK,EOF

COMMON /POINTR/ FLPTR,VLPTR,VBPTRANPTR,LNKNO, STKPTR,IJ,IR
COMMON /RECMSG/ CARD(80),PTR
COMMON /REPLAC/ MACINC(IO0O0),MACOUT(100),MACSUSB

~ COMMON /SWITCH/ PP,P80,TC,ANAL

COMMON /SIZE/SYMSZI,FILESZ

COMMON /TABLE/ MAXPET, FILETB(SO:10);NOUNTB(ZOO;10);VERBTB(ZOD;11):_

NOUNVL(200),VERBVL(200) ,PTHEXP (3000.,3).,
VLSTK(200),TEMP(200,2)
COMMON /TYPE/ NUMTP,NOUNTP,NUMTPP,VERBTP,IDENTP,NGRBTP,LABLTP

&
g

" DATA FGONUM,FGOTMN/.FALSE sy -_52./

& +JUNKTP,COMATP
COMMON /Z/ PATH

DATA FSTR0/.TRUE./
DATA PTR,TIME/BO,1/

DATA SEMCLN/2H; 7/

 DATA GRABGE/2HA ,9%2H ,2HAN,9*2H ,2HAN,2HD ,8+2H ,2HAS,

3 9x2H ,2HEQ,2HUA,2HL ,7%2H ,2HFR,2HOM
$ 8%x2H ,2HGE,9%x2H ,2HGR,2HEA,2HTE,2HR ,6%2H .-
% 2HGT ,9%2H s2HHA,2HS ,8%*2H s2HHA ,2HVE ,8%2H ,

3 2HIN,9*2H s2HIS,9%2H s2HIT,9%2H s 2HLE ,2HSS,

N 8%*2H ,2HLE,9*2H ,2HLT,9%*2H ,2HNO,2HT ,8%2H i
s 2HOF,9%2H ,2HOF,2HF ,8%2H ,2HOR,9%2H ,2HOU,
$ 2HT ,8%2H ,2HTH,2HAN,8*2H ,2HTH,2HE ,8%2H ,

3 2HT0,9+2H s2HUS,2HINL,Z2HG ,7%2H 22HIN,2HTO0,8%2H
b3 2HBY,9*2H L2HON,9+%2H s2HONL,Z2HTO,8%2H [/
DATA TYPES/2HNU,2HMB,2HER,2H* ,6%*2H ’

_32HNO,2HUN,2H* ,7%2H ,2HNU,2HMB,2HER,2ZHPR,2H* ,S5%2H o
&ZHVEIZHRBIZH* f?*ZH “IZHIDIZHENIZHTIIZHFIIZHERIZH*"14*2H s

" &2HNO,2HUN,2H€G,2HAR,2HBA,2HGE,2H* ,3%2H ,2HLA,2HBE,2HL¢,

§2HKE,2HY*,S*2H s2HJUS2HNK ,2H* ,7*2H s2Hs »9%2H /
DATA NUMBER/2HO ,2H1Y ,2HZ2 ,2H3 ,2H4 ,2HS ,2H6 ,2H7 ,2H8 ,2H9
EB2H ,2H. [/

DATA COMMENT/2H///

 DATA INITAL/2HIN,2HIT,2HIA,2HL ,6%2H /

DATA RETURN/2HRE,2HTU,2HRN,7%2H [

DATA BLANK/ZH /
DATA COMMA/2H, /
DATA VERKEY/2H:=,9%x2H sZ2H= ,9%2H 22H+ ,9%2H p2H= »9%2H ,

2Hx*
2H;
2H,

F9%2H
s I*2H
rg*ZH /

réH/
s 2H)

19*2;4~
s 9%*2H

gjég;;r9*éH

s2H: ,9%2H

DATA ENDEXP/ZHTHrZHEN:B*ZH

C7#2H

+2HDO,

IZHCOIZHBEIZHGIIZHN

T2HRE,2HGI,2HNC,2HAS,2HE »

TSI
16*2H‘
Sx2H [

22H(
’ZHn

,9%2H .
+3*2H

IZHBEIZHGIIZHN
IZH[

LA

29*2H .

DATA MACV

AR /

& 2HBE,2HGI »2HN®,2HMA,2HC
DATA MACIN,MACOUT / 100%0.,

Sx2H
100=*0 /

/

LE(PATHYWR ITECETTBY ~ ™

10
20

FORMAT(10X,10HENTER SCAN)
IF(TIME.EQ,O0)GO TO 150

R
OO |O

TYPES T

ABLEI

BY USING CONVER ROUTINE TO TRANSFER VCBLRY TABLE
AND VERKEY TABLE FROM COLUMN=-WISE TO ROW -WISE.,

CALL
CALL
CALL

CONVER(VCBLRY,TMPVC3,IV0CSZ,10)
CONVER(TYPES,TMPV(CEB,9,10)
CONVER(VERKEY,TMPV(3,13,10)

CALL.

CALL

CONVER(GRABGE,TMPVCE,30,10) = .
CONVER(ENDEXP,TMPVCB,6,10)

* k &
* & %k
* % %

SEARCH VOCABULARY TABLE RETURN

TOKEN®TY
TOKEN®TY

PE
PE

FOR
FOR

NUMBER,
NOUN,

* * %
* %k
¥ %k

TOKEN€TY
TOKEN€TY
TOKEN®TY

* % k
* %k %
* k %

TOKEN€TY
TOKEN®TY
TOKENeTY

* k *k

PE

PE
PE

FOR
FOR
FOR

NUMBERPR.,
VERB.,

IDENTIFIER,

PE
PE
PE.

FOR
FOR
_FOR.

TOKEN¢TYPE FOR COMATP(;?

NOUN®GARBAG_.,
LABEL.,
_JUNK/;,

oo oloonoooionnonl

DO 140 K

=1,9
DO_130 1=1,NOTERM

~35

DO 30 J4=1

#10

TF(VCBLRY(I,J) NELTYPES(K,J"

CONTINUE

YGO TO

130

40

GO TO (40,50,60,70,80,90,100,110,120),K

NUMTP=1
GO 70 140

.20

60

NOUNTP=1

G0 TO 140

NUMTPP=1

70

GO TO 140
VERBTP=I
GO T0 140

80 IDENTP=I
GO T0 140
90 NGRBTP=]

GO To 140

100 tAsLTP=I
GO TO 140

110 JUNKTP=I
GO TO 140
120 COMATP=1

GO TO 140

130 CONTINUE

7140 CONTINUE

TIME=D
c
C **+ BY USING ROUTINE INPUT TO GET A TOKEN
¢
150 CALL INPUT (WORD,PTR)
¢
C *** CHECK COMMENTS FLAG (TC)
c
IF(WORD (1) .NE.COMMENT)GO TO 155
o IF(royeo 1O 155 e B
__PTR=80 o
GO _T0 150
c
 *hxdkkhkkkhkhdhkhkkh bk b had kb bk btk dhkhkkrdkkkhkkhhdk & kkdkkkdkkx
c = VERSION 2. WRITTEN BY Y.P. SUN DATE 5-15-79 *
) C ************************'*i‘-.**********************************
c
e e T -
c
C ' SEE IF MACRO SHOULD BE INVOKED
¢ | ‘
DO _156 J = 1,10
. IF (WORD(J) .NE. MACVAR(J)) GO T0O 158
156 CONTINUE
SAVSTA = SNSTAT
SNSTAT = 13
MACSUB = 0
—...80 70 150 B B — -
c ae- o el W atenre v rena et semims cresess cmsssrsemies s 4
¢
C *xx STARTING FINITE STATE MACHINE (FSM)
¢
¢
158 6o 1O (1000,2000,3000,4000,5000,6000,7000,8000,9000,
. .& . .10000,11000,12000,13000,14000,15000,16000),SNSTAT
c

1000 CONTINUE
¢
IF(TRACNG)WRITE(S6,700)SNSTAT

700 FORMAT(SX,"ENTER SCAN, SCAN¢STAT= ",14/)
IF(WORD (1) .NE.COMMENT)GO TO 160
—TYPESJUNKTP

VAaLUE=]
. .. 60 1O 190 e
160 CALL TSTTMN(WORD,TYPE,FGOTMN)

IF(,NOT.FGOTMNIGO TO 170
VALUE=0
GO _T0 190

170 CALL TSTNUM(WORD,NUMBER,FGONUM)
IF(.NOT.FGONUM)GO TO 180
TYPESNUMTPP

VALUE=0
GO0 10 190
180 CALL TOKEN(WORD,TYPE,VALUE,IDENTP)

TYPE=NOUNTP

RETURN

190 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE) =~

2000 CONTINUE
IF(TRACNGIWRITE(6,700)SNSTAT

. LFCWORD(1) .NELCOMMENT)GO TO 200
TYPE=JUNKTP

VALUE=0
GO T0 220
200 CALL TSTTMN(WORD,TYPE,FGOTMN)

 IF(.NOT.FGOTMN)GO TO 215
 VALUE=0

I1FCWORD(1) NE.COMMA. AND.WORD(1) .NE,SEMCLNIGO TO 205

GO TO0 220
205 b0 210 1=1,10
IF(WORDC(I) NELINITAL(CID)GO TO 215

210 CONTINUE
. 00 TQ 2200
215 TYPE=JUNKTP

220 CALL STATE{(WORD,SNSTAT,RLSTAT,TYPE)
RETURN

D000 CONTINUE o e e e
VIF(TRACNGIWRITE(6,700)SNSTAT

IFC(WORD(1) NE.COMMENT)GO TO 230
TYPE=JUNKTP) ‘
VALUE=0

6070 260

IF(.NOT.FGOTMN)GO TO 240

VALUE=0
G0 TO 260
240 CALL TSTNUM(WORD,NUMBER,FGONUM)

230 CALL TSTTMN(WORD,TYPE,FGOTMNY

TIF(.NOT.FGONUMIGO TO 250
TYPE=NUMTPP
VALUE=D

GO TO 260

250 CALL TOKEN(w0RD:TYPE'VALUErIDENTP) ::;1itf?ijﬁi:jwwwwmwm‘Mwmumwmmwwm

TYPE=NOUNTP

c

260 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
RETURN

4000 CONTINUE B
 IF(TRACNG)WRITE(6,700)SNSTAT

IF(WORD (1) .NE.COMMENT)IGO TO 270
TYPE=JUNKTP
VALUE=0

GO T0 290

270 CALL TSTTMN(WORD,TYPE,FGOTMN)

IF(.NOT.FGOTMN)GO TO 290

VALUE=0
IFC(WORD (1)
GO T0 290

«NELCOMMA,AND,WORD(T) ,NE,SEMCLN)GO TO 280

" 290 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)

280 TYPE=JUNKTP

" RETURN

C

5000 CONTINUE
IF(TRACNGIWRITE(6,700)SNSTAT

" IF(WORD(1) JNELCOMMENT)GO TO 300

TYPE=VERBTP

VALUE=0
60 70 370
300 CALL TSTTMN(WORD,TYPE,FGOTMN)

IF(.NOT.FGOTMN)GO TO 310

VALUE 0

G0 TO 370

310 CALL TSTNUM(WORD,NUMBER,FGONU)
IF{.NOT.FGONUMIGO TO 320
TYPE=NUMTP

VALUE=0Q

GO _TO 370

320 CALL TOKEN(WORD,TYPE:VALUE;IDENTD)

D0 330 I=1,NPTR
IF(VALUE.NE.NOUNVL(I))GO TO 33C

RLPTR=PTR
CALL INPUT(TMPWRD,PTR)

G0 TO0 370
330 CONTINUE e
€. - e e e e e e
C ***x LOOKAHEAD KEYS (=, =, +s =4 22 [482)r **y 7, PP AP |
C

DO 360 I=1,13
DO 340 J=1,10
 IF(TMPWRD(J).NE.VERKEY(I,J))GO TO 360
340 CONTINUE o ~
PTR=RLPTR o
¢
C *** UPDATE NOUN®TABLE AND NOUN€VALUE€STACK
c
_ __CALL _TBUPDT(1,VALUE)
c
G0 TO 370
360 CONTINUE
PTR=RLPTR
¢ .
C **x+ UPDATE VERB¢TABLE AND VER€VALUE€STACK
C
CALL TBUPDT(2,VALUE) -~
. __TYPE=VERBTP
370 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
RETURN
¢
6000 CONTINUE , _ .
. IF(TRACNG)WRITE(6,700)SNSTAT
C
IF(WORD (1) ,NEL.COMMENT)GO TO 380
TYPE=VERBTP
VALUE=0
. GO TO0 450 A A e
380 CALL TSTTMN(WORD,TYPE,FGOTMN))
IF(.NOT.FGOTMN)GO TO 410
VALUE=0
IF(WORDC(1) .NE,SEMCLN)GO TO 390
GO TO 450
390 00 400 1=1,10 . e e s+ e e+ o e+ et et + e o e
.. IFCWORD(I)LNELRETURNCIIIGO TO 405 o e
400 CONTINUE
GO TO 450 -
405 TYPE=NGRBTP
GO TO 450
410 TYPE=NGRBTP = e s e
CALL TSTNUM(WORD,NUMBER,FGONUM) e e -
IF(.NOT.FGONUM)GO TO 415
VALUE=0
- GO TO 450
c . .
.G *x*x SPECIAL KEY (A,AN,AND,AS,BY,EQUAL,FROM,GE,GREATER,GT,HAS,HAVE =
CCoxxx . IN,INTO,IS,IT,LESS,LE,LT,NOT,OF,O0FF,ON,ONTO,OR»
C *x% OQUT,THAN,THE,TO,USING)
C
415 D0 430 J=1,30
DO 420 1=1,10

420

IF(WORD(I) NE.GRABGE(J,I1))GO TO 430
CONTINUE
VALUE=0

60 _T0 450

430

CONTINUE

CALL TOKEN(WORD,TYPE,VALUE,IDENTPY =~

C
C

* k Xk

TYPE=NGRBTP

UPDATE NOUN¢TABLE AND NOUN€VALUE€STACK

Lo

450

CALL TBUPDT(1IVALUE) llllllllll

CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)

o

RETURN

7000 CONTINUE

IF(TRACNGIWRITE(6,700)SNSTAT

IF(PTR.NE.B80)GO TO 470

* %k %
% e ok

IF POINTER EQUAL 80 THEN RETURN TWO PSEUDO TOKENS AS

JUNK AND ":"

ol o

oy

CTF(.NOT.FST80)GO TO 455

* % %

IF SEEN THE 80TH COLUMN THEN TURN OFF THE FLAG (FST&O)

FST80=,FALSE,

~ PTR=PTR-1

DO 452 I 1 ,10“”" e e e

452

WORD(I)Y=BLANK
CONTINUE
GO 70 470

455

TYPE=COMATP

FST80=.TRUE.

VALUE=D
SNSTAT=RLSTAT

* %k *

IF_SEEN A COMMENTS SYMBOL(//)

* %k %

THEN TURN OFF THE THE FLAG (FLAG) FOR SEMANTICS.

O OVIO MY

FLAG=,FALSE,
DO 460 1=1,10
WORD(I)=8BLANK

460

CONTINUE

RETURN . ..

470

TYPE=JUNKTP
VALUE=0
RETURN

8000

CONTINUE
IF(TRACNG)WRITE(6,700)SNSTAT

CUUIF(PTRLNELBO0YGO TO 490

* % %k
* &k *

=¥z Nalla¥

IF POINTER EQUAL 80 THEN RETURN TWO TOKENS AS
NOUN€GARBAGE AND "7 "

o O

* % %k

IFC.NOT.FST803GO TO 475

TURN OFF FST80

FST80=.FALSE,

472

C

_PTR=PTR-1

i.bovg72.Isf;i6 mwmeMumwwmmmuwwmm.,

WORD(I)=BLANK

CONTINUE
GO TO 490

475

 *%xx

TYPE=COMATP
FST80=.TRUE.
VALUE=]

SNSTAT=RLSTAT

TURN OFF SEMANTICS FLAG (FLAG)

FLAG=,FALSE,

o DO 480 I=1,10
WORD(I)=BLANK
480 CONTINUE
RETURN
¢
490 TYPE=NGRBTP -
VALUE =0
RETURN
c
9000 CONTINUE
e JLECTRACNGI WRITECG 2700 SNST AT e .
C

TYPE=JUNKTP
VALUE=0
GO TO0 520

..200 CALL TSTTMN(WORD,TYPE,FGOTMN)
o LECSNOT.FGOTMN)GO TO 510

TF(WORD(1) NE,SEMCLN)GO TO 510

510

VALUE=0
GO T0.520
TYPE=JUNKTP

VALUE =]
S20 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
RETURN

C
1 O 0 O 0 c o N T I N U E e 4 dstermEinas avens snsnss ne emesssmenesones
IF(TRACNGIWRITE(6,700)SNSTAT

¢ .
IF(WORD(1) ,NE,COMMENT)IGO TO 530
TYPE=VERBTP

VALUE=0

6o 10 600
530 CALL TSTTMN(WORD,TYPE,FGOTMN)

IF(.NOT.FGOTMNIGO TO 555
DO 550 I=1.,7
DO 540 J=1,10

IF(WORD(J) .NE, ENDEXP(I'J))GO TO 550

~"_”5100 CONTINUEUWWW

VALUE=0

GO TO0 600
550 CONTINUE
555 TYPE=IDENTP

50 570 1=1,VLPT
D0 560 J=1,10
IF (WORD(J) JNE.NOUNTB(I,J))GO TO 570

1
i
H

S60 CONTINUE A S
CALL TOKEN(WORD,TYPE,VALUE,IDENTP)
GO TO 600

570 CONTINUE
DO 590 1=1,FLPTR
DO 580 J=1,10

IF(WORD(J) .NE.FILETB(I,J))GO TO 590
580 CONTINUE
CALL TOKEN(WORD,TYPE,VALUE,IDENTP)

GO TO 600

590 CONTINUE

VALUE=0

600 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
RETURN
¢

..11000 CONTINUE o e
IF(TRACNG)WRITE(6,700)SNSTAT

S

IF(WORD (1) NE.COMMENT)GO TO 610
TYPE=SVERBTP
VALUE =0

. .60 TO 630 e e
610 CALL TSTNUM(WORD,NUMBER,FGONUM)
IF(.NOT.FGONUM)GO TO 620

TYPE=LABLTP
VALUE=0
GO TOQ 630

¢20 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)

G0 70 S000
630 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
CRETURN .

C
12000 CONTINUE
o
TF(TRACNGIWRITE(6,7D00)SNSTAT
¢
IF(WORD(1) NE.COMMENT)GO TO 640
TYPE=VERBIP
VALUE =0
GO T0 710
7640 CALL TSTTMN(WORD,TYPE,FGOTMN)
_IF(.NOT.FGOTMNIGO TO 650
_______________ TF(WORD (1) .NELSEMCLNIGO T0 650
VALUE=O
G0 T0 710
650 TYPE=IDENTP
D0 670 I=1,VLPTR
D0 660 J=1,10
e ... IFCWORD(J) .NE.NOUNTB(I,J))GO TO 670 .
E60 CONTINUE o e e e e e e o e - .
CALL TOKEN(WORD,TYPE,VALUE,IDENTP)
G0 70 710
¢ 70 CONTINUE
C
O O o 1

DO 680 J=1,10 _ S
 IF(WORD(J) .NE.FILETB(I,J))GO TO 690
620 CONTINUE
CALL TOKEN(WORD,TYPE,VALUE,IDENTP)
__ 60_T70_710
690 CONTINUE

VALUE=0 -
c o S
710 CALL STATE(WORD,SNSTAT,RLSTAT,TYPE)
RETURN
¢ L
13000 CONTINUE -
¢
IF _(TRACNG) WRITE (6,700) SNSTAT
¢
CALL STATE (WORD,SNSTAT,RLSTAT,TYPE)
If (SNSTAT .EQ. 14) GO TO 150
L SNSTAT = SAVST A o - R
GO0 T0 170
C -
14000 CONTINUE
¢
IF (TRACNG) WRITE (6,700) SNSTAT

¢
CALL STATE (WORD,SNSTAT,RLSTAT,TYPE)
IF (SNSTAT LEQ. 15) GO TO0 750
_SNSTAT = SAVSTA T
C

750 MACSUB = MACSUB + 1
IF (MACSUB .LE. 20) GO TO 770
WRITE (6,760)

760 FORMAT (1X,36HTO0 MANY MACRO VARIABLE REPLACEMENTS)
e 80 TO A0 ——
770 IF (MOD(MACSUB,2) .EQ. 0) GO TO 790

Isus = MACSUB/Z2 * 10
DO 780 I = 1,10
780 MACIN(ISUB+I) = WORD(I)

GO _T0 150

790 IsuB = (MACSUB-1)/2 * 10

DO 800 I = 1,10
800 MACOUTCISUB+I) = WORD(I)
60 TO 150
¢ .
15000 CONTINUE e
¢
h "IF (TRACNG) WRITE (6,700) SNSTAT -
3
CALL STATE (WORD,SNSTAT,RLSTAT,TYPE)
IF (SNSTAT .EQ. 16 .OR. SNSTAT _EQ. 14) GO TO 150
. MACsye =0
. SNSTAT = SAVSTA 3 . .
GO TO 170
C
16000 CONTINUE
C
IF_(TRACNG) WRITE (6,700) SNSTAT
C
) CALL STATE (WORD,SNSTAT,RLSTAT,TYPE)]
IF (SNSTAT .EQ. 17) GO T0 820
MACSUB = 0
SNSTAT = SAVSTA
- GO T0 170
C
820 CALL MMAINT (0)
SAVUSE = INUSE
INUSE = 8
PTR = 80
.. . SNSTAT = SAVSTA .
GO0 TO 150 . -
c
¢

END

OO0

SUBROUTINE CONVER(A,B, I1,41)

I EEEEZEE RS R EES SRR RS RSN B RS RSRRERS R R R R ARRERSR SRS ERREEEESR RSN

*
*

ROUTINE WHICH CAN REARRANGE THE INPUT ARRAY_
FROM COLUMN=-WISE TO ROW-WISE.

I EEEEEE R RS SRR RS SRR R ER SRR R R R RERER R LR SERRRRESREEESERESESRSESE,]

IMPLICIT INTEGER (A=)

*

*

LOGICAL PATH
DIMENSION A(IT,J01),8(11,401)
COMMON [/Z/ PATH

30

IF(PATH) WRITE(6,30)
FORMAT(10X,"ENTER CONVER")

- [Sy

o'z
ow.w|n

Q== O

S K=1,41

DO S L=1,I1
IF(I.NE.IT)YGO TO 10
J=J+1

10

I=MOD(I,11)+1
IF(N,NE.JT1)GO TO 15
M=M+1

15

N=MOD(N,J1)+1
BI(M,NI=AC(L ,4)
CONTINUE

20

b0 20 Jd=1,41
D0 20 11=1,11
A(II1,30)=B(11,JJ)

CONTINUE
RETURN
END

" "SUBROUTINE INPUT(WORD,PTR)

C I EEEZTEEEETREEEEEREEE SRR LR RS IR R R AR SRS SRR REE RERERRERESEEEEEEEE:

* ROUTINE WHICH CAN GET A TOKEN FROM INPUT CARD¢IMIAGE

*

*

* _WHENEVER IT BEING CALLED. = L
* DELIMETERS : +, =, x, [, *%x, >, >=, <, <=, (, L,),

j won . "o . - 4= "o
’ 4 ’ a4 - ’ P AR 4 -

*

*

m*”ww_wwmwuu

Ao alo

IMPLICIT INTEGER (A-2)
LOGICAL PATH

IR EEEEREZE AR EEERE SR EESREE RSN R RS REREEE R RS2SR R RS SRR RARES S

.. DIMENSION I1A(10),1B(10),WORD(10),EOFSYB(1D)

___COMMON /DEVICE/ INUSE,SAVUSE

COMMON /FLAGS/SNSTAT,CHECK,EOF
COMMON /Z/ PATH

10 CONTINUE

C
_ DATA EOFSYB / 2HEOQ,2HF ,2HSY,2HMB,2HOL,5*2H /
...DATA BLANK/Z2H [/ .. e o e e e eeees e
DATA IA/2H+ ,2H= ,2HC »2HL »2H) ,2H] ,2H? ,2H, ,2H= ,2H., [/
DATA IR/2H> ,2H<C ,2H: ,»2HT ,6%2H /
DATA ISLASH/Z2H/ /
DATA STAR/2H* /,EQUAL/2H= /
C
. CTEPATHY WRIFECHL50) T .
SO FORMAT(T1O0X,"ENTER INPUT™)
c
DO 3 11=1,10
3 WORD(IT)=BLANK
... LHAR=BLANK .] -
o NEO _ i -
2 IF(CHAR.NE.BLANK)IGO TO S
CALL LETTER(CHAR,PTR)
C
GO TO (6+6+,60606060707+676+6,60606,6,6,6)+SNSTAT
. 7 TF(PTR.NE.80)GO TO0 6
C
T RETURN
6 CONTINUE
C
IF(EQOF.NEL,1) GO TO 2
DO 4 11=1,10
WORD(IT)=EQFSYB(I1)
4 CONTINUE
: RETURN
C
5 b0 10 1=1,10
e JECCHAR (EQ.TACINIGO TO 15 -

IF(CHAR.EQ.1B(I))60 TO 35~

IF(CHAR,EQ,STAR)IGO TO 45
IF(CHAR,EQ,ISLASH)GO TO 45

13 IF(EOF.EQ.1)CHAR=BLANK

11 N=N+1
CALL COMBNE (WORD,N,CHAR)
CALL LETTER(CHAR,PTR)

00 20 II1=1,10

IF(CHAR.EQ.IACII).OR.CHAR.EQ.IB(II))IGO TO 25

20 CONTINUE
IF(CHAR.EQ.BLANK.OR.CHAR,EQ.ISLASH)GO TO 25
IF(CHAR.FQ.STAR.OR.CHAR.EQ.EQUAL)GO TO 25

RERE S

GO TO 11

CALL COMBNE(WORD,N,CHAR)

CALL LETTER(CHAR,PTR)
CHAR=BL ANK
GO _T0 25

35 N=N#+1

~ CALL COMBNE(WORD,N,CHAR)
CALL LETTER(CHAR,PTR)

IF(EQF.EQ.T1)CHAR=BLANK
IF(CHAR,EQ.EQUAL)IGO TO 15
GO TO0 25

LS N=N+1

CCALL COMQNE(udkﬂ;ﬁ;fﬁﬂayfff?;f;:ﬂ!ﬁmmwwwwmmmwwum

_CALL LETTER(CHAR,PTR)

IF(CHAP . £Q.STARIGO TO 15
IF(CHAT.Z3,ISLASHIGO TO 15
25_PIR=PTR-1_

IF (INUSE JEQ. SAVUSE) RETURN
CALL CHANGE (WORD)
RETURN

END

SUBROUTINE CHANGE (WORD)

THIS ROUTINE COMPARES THE CURRENT INPUT TOKEN WITH

€
¢
C o A SET OF TOKENS IN ORDER TO CHANGE THE CURRENT TOKEN TO ONE IN
¢
C

A SET OF OTHER TOKENS FOR MODIFICATION OF MACRO VARIABLES.

IMPLICIT INTEGER (A=-2)

DIMENSION WORDC(C1Q)

LOGICAL PATH

" COMMON /REPLAC/ MACIN(100),MACOUT(100),MACSUSB

COMMON /2/ PATH

¢
IF (PATH) WRITE (6,5)
S FORMAT (40X,12HENTER CHANGE)
_IF (MACSUB L,LE, 0) RETURN j
DO 40 I = 1,MACSUB/?2
ISUB = (I-1) * 10
0O 10 II = 1,10
IF (WORD(II) NE. MACIN(II+ISUB)) GO TO 30
10 CONTINUVE .
00 20 II = 1,10 , R
20 WORD(II) = MACOUT(II+ISUB)
GO TO 40
30 CONTINUE
__40 CONTINUE -
RETURN B
LC

N T e

SUBROUTINE STATE(WORD,SNSTAT,RLSTAT,TYPE)

I EE R SR RS EERRZEREE R R RS EE NSRS SRS R RS R R IR AR R RS R R AN

* ROTINE WHICH BASE ON THE CURREMT STATE AND TOKEN =

}nfﬁr)n

% TO DECIDE THE NEXT STATE. x

* ***********t**

IMPLICIT INTEGER(A-2)

LOGICAL TRACNG,PATH
DIMENSION VERKEY(8),EXPRKY(S,10),IDKEY(6,10),TMPEXP(6,10)
DIMENSION INITAL(10),RETURN(ID), FILEKY(10),ENDEXP(7,10)

... DIMENSION TMPEND(6,10),ENDKEY(10),WORDC(10),DCTNRY(C10)
" DIMENSION MACVAR(20)

COMMON /E/TRACNG
COMMON /Z/ PATH
COMMON /TYPE/NUMTP,NOUNTP,NUMTPP,VERBTP,IDENTP,NGRBTP,LABLTP,

& JUNKTP, COMATP
DATA TIME/1/
DATA COMMENT/2H///

DATA INITAL/2HIN,2HIT,2HIA,2HL ,6%2H /
DATA RETURN/2HRE,2HTU,2HRN,7*2H /
__DATA _COMMA/24H, /

 DATA SEMCLN/2H: /
DATA BLANK/2H /
DATA DOKEY/2HDO/

DATA FILEKY/2HFI,2HLE,2HS ,7#%2H /
DATA VERKEY/2H:=,2H= L,2H+ ,2H= ,2H* L,2H/ ,2H: ,2H, [/
DATA EXPRKY/Z2HIF,9%Z2H s 2HWH,ZHIL p2HE ,7%2H 2Z2HCA,2HSE,

& . L 8*2H ,2HWI,2HTH,8%2H ,2HFO,2HR ,8%*2H /

DATA IDKEY/2HRE,2HAD,8%2H ,2HWR,2HIT,2HE ,7%2H .,
$ 2HPR,2HIN,2HT ,7%2H ,2HEX,2HIT,8%2H ,

3 2HCA,2HLL,8*2H 22HUNL,22HTI,2HL ,7%2H /
DATA ENDKEY/2HEN,2HD€,2HIN,2HTR,2HO »5%*2H /
DATA DCTNRY/ZHDI,2HCT,2HIO,2HNA,2HRY,S5*2H /

DATA MACVAR /

& 2HRE,2HPL,2H€M,2HAC,2H_ , 5%2H o,
& ZHGE,2HT ¢ ,2HMA ,2HC ,2H s S*2H /

IF(PATHIWRITE(6,5)
S FORMAT(10X,"ENTER STATE'")

__IF(TIME.NE.1)60 TO 10 _

CALL CONVER(EXPRKY/TMPEND,5,10)

CALL CONVERCENDEXP,TMPEND,7,10)
CALL CONVERUCIDKEY,TMPEND,6,10) .
TIME=0

10 RLSTAT=SNSTAT

Anjoin

GO 70 (¢1000.,2000.,3000.,4000.,5000,6000,7000,.8000,9000,

& 10000,11060,12000,13000,14000,15000,76000), SNSTAT

1000 CONTINUE

 IFC(TRACNG)WRITE(6,90)SNSTAT)
FORMAT(10X,"ENTER STATE ,SCAN€STAT=",14)

IF(WORD(1) ,NE.COMMENT)GO TO 100
SNSTAT=7
RETURN

100 IF(TY.PE.NE.NUMTPP)GO TO 110
L SNSTAT=1
RETURN

C *#x* CHECK FILE KEY (FILES)

110 00 120 I=1,10
_WWWMMIF<“ORD(I> NE.FILEKY(1))GO 70 130
120 CONTINUE

SNSTAT=3
RETURN

130 00 140 1=1,10
I CWORD (1) JNELENDKEY (13260 TO 150
140 CONTINUE

SNSTAT=S
RETURN

150 IF(TYPE.NE.NOUNTPIGO TO 160
 SNSTAT=2
RETURN

160 SNSTAT=1
RETURN

2000 CONTINUE .
IFC(TRACNG)WRITE(6,90)SNSTAT

IF(WORD(1) .NE.COMMENT)GO TO 170
SNSTAT=7

RETURN .

170 IF(WORD(1).NE.COMMA.AND.WORD(1) NE,SEMCLN)GO TO 180 "~

SNSTAT=1
RETURN

180 DO 1 90 I=1,00
o __IF(HORD(I).NE.INITAL(J))GQ_TQMZQD_“mwmmmmmm
190 CONTINUE

SNSTAT=9
RETURN

200 IF(TYPE.NE.JUNKTP)ISNSTAT=?
SNSTAT=2
RETURN

3000 CONTINUE

IF(WORD (1) .NE.COMMENTIGO TO 210
SNSTAT=7
RETURN

()

**x CHECK DICTIONARY KEY (DICTIONARY)

210 b0 220 1=1,10
IF(WORD(I) . NE,DCTNRY(I))GO TO 23D
220 CONTINUE

e SNSTATE
LVCRETURN

230 IF(TYPE.NELNUMTPP)GO TO 240
SNSTAT=3
RETURN

240, TF(TYPE.NE.NOUNTP)GO TO 250
SNSTAT=4

RETURN

250 SNSTAT=3

CRETURN e e

VDB CONTINGE T T T T T T T T

IF(WORD(1) .NE.COMMENT)IGO TO 260
SNSTAT=7

RETURN

TR R R ETI T R

: IF(WORD(I) NE,INITAL(I))GO TO 280
270 CONTINUE
SNSTAT=3

RETURN

280 IF(WORD(1) NE.COMMA,AND.WORD(1) . NE.SEMCLNIGO TO 290

SNSTAT=3
RETURN

290 IFC(TYPE.NELJUNKTP)SNSTAT=4

SN S T AT s e e
RETURN

5000 CONTINUE

1F(WORD(1) .NE.COMMENT)GO TO 3GO
SNSTAT=8
RETURN

O

* % %

. CHECK DO KEY (0O) =

300

IF(WORD(1) .NE.DOKEY)GO TO 310
SNSTAT=11
RETURN

e

* % *

| CHECK EXPRESSION KEYS (IF, WHILE, CASE, WITH, FOR)

310

DO 330 I=1,5
DO 320 J4=1,10
IF(WORD(J) .NELEXPRKY(I,J))GO TO 330

.320

_SNSTAT=10

CONTINUE

RETURN

330

CONTINUE

* % %k

CHECK T/0 KEYS (READ, WRITE, PRINT, CALL, EXIT, UNTIL) — "

CBoT ¥4 iR ET T

335

R RN e

D0 335 J=1,10
IF(WORD(J) NE.IDKEY(I,J))GO TO 340
CONTEINUE

SNSTAT=12

340

CONTINUE

IF(TYPE.NE.VERBTP)GO TO 345

SNSTAT=6

IF(WORD(1) NE.COMMENT)GO TO 350

o RETURN -) o
C
345 SNSTAT=S
’ RETURN
¢ .
... 6000 _CONTINUE e
C

SNSTAT=S8
RETURN

0. 1F (WORD(1) .NE.SEMCLNIGO TO 360 .
SN T AT S e

RETURN

bo 370 1=1.,10
IFC(WORD(I) NE.RETURN(I)IGO T0O 380

CONTINUE
SNSTAT=6
RETURN

0 IF(TYPELNE.NGRBTPISNSTAT=6
_SNSTAT=6.

RETURN

CONTINUE

_ SNSTAT=7

e ... RETURN
C
8000 CONTINUE
c ,
SNSTAT=8
R
L N -
9000 CONTINUE
c
IF(WORD(1).NE,COMMENT)GO TO 390
SNSTAT=7)
e . RETURN - et e e e e e
. C . . ,
390 IF(WORD (1) .NE.SEMCLN)GO TO 400
SNSTAT=1
RETURN
400 IF(TYPE.NE.JUNKTP)SNSTAT=9
o SN S T AT =G e e
e RETURN
¢
10000 CONTINUE
c
IF(WORD(1) .NE.COMMENT)GO TO 410
- oo SNSTAT=8 . S e e e e e e
. 3 -5 1 123 U
410 IF(TYPE.NE.IDENTP)GO TO 420
SNSTAT=10
RETURN
o
................ 420 SNSTAT=S = o e e — e
e RETURN e .
€
11000 CONTINUE
¢
IF(WORD(1) .NE.COMMENT)GO TO 430
CSNSTAT=8 e
RETURN - ~

430

CONTINUE

SNSTAT=5
RETURN

12000 CONTINUE

C
IF(WORD(1) ,NELCOMMENT)GO TO 440
SNSTAT=8 -
. . RETURN -
¢
440 IF(TYPE.NE.IDENTP)GO TO 450
SNSTAT=12
RETURN
e e e .
450 SNSTAT=5 - .
RETURN
C.
13000 CONTINUE
C
00 _460 1 = 1,10
. IF CWORD(I1) .NE. MACVAR(I)) RETURN
460 CONTINUE
SNSTAT = 14
RETURN
c
14000 CONTINUE
¢
SNSTAT = 15
" RETURN B
c .
15000 CONTINUE
C
o LF (JORD(1) .EQ, COMMA) GO TO 481 N
DO 480 I = 1,10
IF (WORD(I) . NE. MACVAR(I)) GO TO 490
480 CONTINUE
481 SNSTAT = 14
RETURN
C ..
490 p0 S00 I = 11,20
IF (WORD(I-10) .NE. MACVAR(I)) RETURN
‘500 CONTINUE
SNSTAT = 16
RETURN
¢
16000 CONTINUE
c
SNSTAT = 17
: RETURN
¢

END

SUBROUTINE TBUPDT(FLAG,VALUE)

C **x\'*******

¢ * 'ROUTINE WHICH CAN UPDATE THE INPUT TABLE I
C * FLAG = 1 : UPDATE THE NOUN¢TABLE AND NOUN€VALUE€STACK *
C * ~ 2 : UPDATE THE VERB¢TABLE AND VERB€VALUE¢STACK *
C v d dk otk dr de sk drde do d do dk de de d de sk sk de d v de sk o sk dk ok dk vk sk Sk de dk dr dk %k de de dh de e sk dede de ke dk bk Kk dr e ok gk b ok sk e ok ke e ek

IMPLICIT INTEGER (A=-2)
LOGICAL PATH

COMMON /Z/ PATH | P
COMMON /BLOCK/ NOTERM,VCBLRY(151,10),SYMTAB(300,10),5YMS,V0CS12

COMMON /POINTR/ FLPTR:VLPTR;VBPTR;NPTRrLNKNO; STKPTR,1IJ,IR
COMMON /SIZE/SYMSZ,FILESZ
COMMON /TABLE/ MAXPET:FILETB(SO;1O)'NOUNTB(200p1OLLYERBTB(ZOOr11);

B e v NOUNVL (2000 »VERBVL (200) »,PTHEXP (3000230
& C VLSTK(200),TEMP(200,2) .

IF(PATH) WRITE(6,5)
S FORMAT(10X,"ENTER TBUPDT")

. .GO TO0 (10,40), FLAG .
10 D0 20 I11=1,NPTR
IF(NOUNVL(I1) ., NE‘E#LUE)GO TO 20

RETURN o
20 CONTINUE
VLPTR=VLPTR+1

CIF(VLPTR.GT.SYMSZ)WRITE(6,70)

b0 30 J1=1,10
NOUNTB(VLPTR,J1)=SYMTAB(VALUE,J1)
30 CONTINUE

___NPTR=NPTR+1_ .
NOQUNVL(NPTR)= VALUE

RETURN

40 DO 50 12=1,VBPTR

IF(VERBVL(IZ2).NE_VALUE)GO TO 50

C.*x___ INCREMENT REFERENCE COUNT FOR THIS VERB _

VERBTB(12,11) = VERBTB(I2,11) + 1
RETURN ’

SO CONTINUE

VBPTR=VBPTR+1

o IF(VBPTR.GT.SYMSZ)WRITE(6,80)

0O 60 J2=1,10

VERBTB(VBPTR,J2)=SYMTAB(VALUE,J2)
60 CONTINUE
VERBVL(VBPTRI=VALUE

C SET REFERENCE COUNT TO 1 FOR THIS VERS
VERBTB(VBPTR,11) =1

c
70 FORMAT(/10xX,"+++ NOUN¢TABLE OVERFLOW IN ROUTINE TBUPDT **x") ~
80 FORMAT(/10X,"+«%* VERB¢TABLE OVERFLOW IN ROUTINE TBUPDT #%*")
C
RETURN
c
____END

¢
SUBROUTINE TSTTMN(WORD,TYPE,FGOTMN)

R E R R R R R R R R R R RS SR R R EE R R RS RS R AR R R LR AR RS SRR REREESSERERERERESRS:,

C * __ ROUTINE WHICH CAN DISTINGUISH TERMINAL SYMBOL FROM

¢ NON-TERMINAL SYMBOL. :

e ynmnmmmmmm MMM T, MMM T I T T T!rT T T T MM T M T I M T T T T T
IMPLICIT INTEGER (A-2)
LOGICAL FGOTMN,PATH
DIMENSION WORDC(10)
COMMON /Z/ PATH . ..

C
COMMON /BLOCK/ NOTERM,VCBLRY(151,10),SYMTAB(300,10),SYMS,VOCSIZ
C
IF(PATH) WRITE(6.,5)
S FORMAT(I10X,"ENTER TSTTMN")
00 20 I=1,NOTERM
IF(WORD(J) .NEVCBLRY(I,J))GO TO 20
10 CONTINUE
TYPE=]
FGOTMN=,TRUE.
_RETURN T e o
¢ .
20 CONTINUE
FGOTMN=,FALSE.
RETURN
END

SUBROUTINE LETTER(CHAR,PTR)

khkkhhkhkhkhkhkhkhhhrdbhrhbhrhkxkhhhhbdkhkdhhokkdkhkkhdkkdkhkddkd

* ROUTINE WHICH CAN GET A CHARACTER AND UPDATE *
* THE SYMBOL TABLE POINTER WHENEVER IT BEING _ x
* CALLED. *

Ak khkhhhkhkkkhkxhkhkkhbhkhkhkkhhhkdhhkhkhhkhkddbdkhkhbhbdhbhbhkhkhhkddkdhhtdhth

IMPLICIT INTEGER (A-2)
LOGICAL PATH,PP,PB0,TC,ANAL

Iz Ha¥sllal

_.COMMON /2/ PATH D
COMMON /DEVICE/ INUSE,SAVUSE

COMMON /FLAGS/SNSTAT,CHECK,EOQF
COMMON /RECMSG/ CARD(80),IPTR

JLF(PATH) WRITE(6,60)

IF(PTR.NE.80)GO TO 30
5 PTR=0
READ(INUSE,10,END=40)CARD

10 FORMAT (80AT)
20 FOQUAT(SXISOA1;/)_
30 PTR=PTR+

IPTR = PTR
CHAR=CARD(PTR)
RETURN .

40 1F (INUSE .EQ, SAVUSE) GO TO 50
CALL MMAINT (1)
INUSE = SAVUSE

GO TO S
50 EOF=1
60 FORMAT(10X,"ENTER LETTER")

_.RETURN

END

SUBROUTINE TSTNUM(WORD,NUMBER,TEST)

B R A I I I T T I I I I a2
C * ROUTINE WHICH CAN DISTINGUISH THE TOXKEN IS A .
e &% . NUMBER OR A VARIABLE. = X
C = *
I I Immmm,mmmMmMTTmmmmnT M I T I mmMmMmM I I

IMPLICIT INTEGER (A-2Z)
LOGICAL TEST,PATH
DIMENSION WORD(10),NUMBER(12)

- COMMON /Z/ PATH

. DATA BLANK/2H /o -
C
IF(PATH) WRITE(6,5)
S FORMAT(IOX,"™ENTER TSTNUM")
C
JEST=,FALSE.
o NN O e
10 _NN=NN+1
IP=BL ANK

CSHEL LEN=(NN/2*2-NN+1)+8
LEN=(NN/2*x2-NN+1)*6

e GEEONNRT Y2 e e e e
CSHEL CALL LFLD(0,8,IP,FLD(LEN,8,WORD(I)))
_FLO(0,6,1P)=FLDCLEN,6,WORD(L))

D0 20 J=1,12
IF(IP.EQ.NUMBER(JIIGO TO 30
20 CONTINUE

TEST=.FALSE.
RETURN
30 IF(I.LT.10)G0 TO 10

TEST=.TRUE.
RETURN
END

SUBROUTINE COMBNE(WORD,N,CHAR)

R R RS R IR XSS RS E R R R EERE AR RESREREESLERERERREEREEE

C * ROUTINE WHICH CAN CONCATENATE CHARACTER TO A WORD »
c F ok k ok kk kod ok ok kk okoh ok okd ok ok ok ok oAk ke gk ok ko dk ok ke deodk ok ke ko kokk ok ke ok
IMPLICIT INTEGER (A-2) 3
LOGICAL PATH
DIMENSION WORD(10)
COMMON/ Z / PATH
C
... IF(PATH) WRITE(6,100 S e
e N0 _FORMATC10X,"ENTER COMBNE") S -
c
C CSHEL LEN=(N/2#%#2-N+1)+8
LEN=(N/2%2-N+1)%6
I=(N+1)/2
c
IF(I.GT.10) RETURN
c
CSHEL CALL LFLDCLEN,8,WORDCI),FLD(O,8,CHAR))
FLDCLEN,6,WORD(I))=FLD(0,6,CHAR)
RETURN
END -)

de de ok bk ko de ks ke ok ke kW ko k ok k ok ok k ok ok ok ok ok ok bk k ok kA ok ok ok kk ko k ok kk kk ok k ok k ok k ok

ROUTINE WHICH SET TOKEN€VALUE(VALUE) TO THE ENTRY

I E R R AR R ETREEESEEREREEERNETERE NS ELEESERSAESR S AR ER RS RS RREREERSRRS S

*

*

_POINT IN SYMBOL¢TABLE(SYMTAB) AND TOKEN®TYPE(TYPE) _*

*

. COMMON /BLOCK/ NOTERM,VCBLRY(151,10),SYMTAB(300,10),SYMS,VOCSIZ

SYMBOL¢TABLE OVERFLOW IN ROUTINE TOKEN #*%")

VALUE=SYMS

SUBROUTINE TOKEN(WORD,TYPELVALUE,IDENTP)
C
C =*
C *
C * TO THE TYPE OF IDENTIFIER(IDENTP).
¢
IMPLICIT INTEGER (A-2Z)
LOGICAL PATH
DIMENSION WORD(10)
L
COMMON /SIZE/SYMSZ,FILESZ,SZ0OSYM
COMMON /Z/ PATH
C
IF(PATH) WJRITE(6.,5)
5 _FORMAT(10X,"ENTER TOKEN")
TYPE=IDENTP
WRITE(6.,7)
7 FORMAT(/10X,"xx
T VALUE=300
~ RETURN _
10 D0 9 L=1,5YMS
DO 8 J=1.10
IFCWORD(J) JNEL.SYMTAB(L,J)IGO TO 9
8 CONTINUE
L CVALUE B e e e e
CTYPE=IDENTP o e .
RETURN
9 CONTINUE
SYMS=SYMS+1
0o 15 1=1,10
. - LSYMTAB(SYMS,I1)=WORD(I)

TYPE=IDENTP
RETURN
END

APPENDIX D

SEMANTICS PROGRAM

'

SUBROUTINE SEMNTC(ACTION,TYTKN,VLTKN)

IR R R R RS R R R R R E R R R R RS R REER SRR RS R R R R AR RREER SR RERRELS SRR N

* BEGIN¢INTRO
_PLP SEMANTICS,

// ROUTINE SEMNTC BASES ON THE PARSING ALGORITHM CHECKING
// _ALL THE PRODUCTION NUMBERS WHILE THEM BEING APPLIED,

// AND BUILDS UP THE PATH EXPRESSION FOR EACH PROCEDURE,

WRITTEN BY YU-PING SUN, DATE: 5-10-79

INPUT¢PARAMETERS = TYTKN,VLTKN; //TOKEN+*TYPE,TOKEN®VALUE

DICTIONARY

OCRNCE

- TABLE OF OCCURANCE FOR EACH SYMBOL

NUMLST

s+ SIZE DEPENDENT, CURRENT SIZE CAN HANODLE 200
NOTATIONS?
- TABLE OF STATEMENT NUMBERS FOR EACH SYMBOL

coolmmalocomcalocmamoanioo

*
*
*
*
*
L 4
*
*
* QUTPUT¢PARAMETERS - PATHEXP,
*
*
*
*
*
*
*
%*

 BEING USED,SIZE DEPENDENT, CURRENT SIZE CAN .
HANDLE 200 DIFFERENT NOTATIONS;

COMMON /|

. * TEMP =~ TABLE WHICH CONTAINS OF THE . INDEX OF HEAD AND TAIL
C = FOR EACH SYMBOLs SIZE DEPENDENT, CURRENT SIZE CAN
C =* HANDLE 200 DIFFERENT SYMBOLS’
C * PTHEXP - TABLE WHICH CONTAINS Of THE PATH EXPRESSION
C = FOR ALL SYMBOLS » SIZE DEPENDENT, CURRENT CAN . ..
c = HANDLE 3000 NOTATIONS. _ o A
C = OQUTBUF - TABLE WHICH CONTAINS OF THE PATH EXPRESSION AND
C * STATEMENT NUMBER FOR EACH NOUN , SIZE DEPENDENT
C * s CURRENT SIZE CAN HANDLE 500 NOTATIONS,
C * VLSTK - STACKX OF TOKEN¢#VALUE ,SIZE DEPEDENT.,
¢c* CURRENT SIZE CAN CONTAIN 200 NODES.
C * FLPTR - FILE TABLE POINTER, o
C « VLPTR - NOUN TABLE POINTER,
c =~ VBPTR - VERB TABLE POINTER?/
C * NPTR - NOUN€VALUE STACK POINTER/
C = STKPTR - TOKEN€VALUE STACK POINTER,

L% 0UTSZ - LENGTH OF OQUPUT BUFFER _COUTBUF)/ o e
C * ENDEINTRO, . . — e o e
c ****t*****************t****t***t********t*****t*****************

IMPLICIT INTEGER (A-2)
LOGICAL PATH,FLAG,PP,PBO,TC,ANAL
DIMENSION WORD(10),SYMBOL(12),0CRNCE(200).,.NUMLST(200)

N L DIMENSION OUTBUF (S500) aSTRINGCIO) e e e ;

C

/BLOCK/ NOTERM,VCBLRY(151:10)'SYMTAB(300:10)'SYMSoVOCSIZ

COMMON
COMMON
COMMON

/SWITCH/PP,PB8O,TC,ANAL
/COMMENT/FLAG
/FLAGS/SNSTAT’CHECK'JDUMNY

COMMON

COMMON

COMMON_/

/POINTR/FLPTR,VLPTR,VBPTR,NPTR,LNKNO, STKPTR,IJ,IR

[/PP3I/LNEBUF(121),LNENO .

/S12E/SYMSZ2,FILESZ

COMMON

/TABLE/ MAXPET,FILETB(S50,10),NOUNTB(200.,10),VERBTB(200,11),
NOUNVL(200) ,VERBVL(200) ,PTHEXP(3000,3).,
VLSTK(200),TEMP(200,2)

COMMON /Z/PATH

DATA 0UTSZ/500/
DATA ENDORC/2HE& /
DATA ENDOFL/2H$3/

DATA SPCIDT/1/

DATA SYMBOL/ZHN ,2HU »2HD ,2HR L,2H+ ,2H* ,2H(.,
&2H) ,2He ,2HH ,2Ht ,2H~- [/
DATA COMMA/2H, [/

10

IF(PATH)WRITE(6,10) o
FORMAT (30X ,"ENTER SEMANTIC'"/)

PROGRAM : INTRO STAT, COMPOUND STAT

100

i i
hhﬁk\ncﬂrsn

0 CONTINUE

aNel

* % %

20

C **xx

IF(ACTION,NE.T1)G0O TO 2000

BUILD UP THE PROCEDURE NAME

WRITE(6,20) (SYMTAB(NOUNVL(1),J1),J1=1,10)
FORMAT(15X,"SYMBOL CROSS REFERENCE TABLE FOR ",

3 1082,/,15%X,50C1H=),771)

BUILD UP REFERENCE TABLE FOR NOUNS

30

WRITE(6,30)

FORMAT(SX,"DECLARED NOUNS",22X,"USED IN STATEMENT",

3 L 25X s T4 CTH=) 22X, 17 (T H=),//)

DO 90 J=2,NPTR

IN = NOUNVL(J)

40

IP =TEMP (IN,1)

IF(PTHEXP(IP,3).EQ.0)G0 T0 50

IR=IR+}

IFCIR.GE.SYMSZIWRITE(6,500)

 NUMLSTC(IR)Y=PTHEXP(IP,3)

IP=PTHEXP(IP,2)

IF(PTHEXP(IP,1).NE.0)GO TO 40
TF(J.NE.IENDPT)IGO TO 65
WRITE(6,60)

60 FORMAT(TH1,5X," "UNDECLARED NOUNS",18X,"USED IN STATEMENT",

3 76X 16CIH=) 18X A7 CIH=Y D)

65

CONTINUE

ICOUNT=IR-1
IF(ICOUNT.NE.D)GO TO 70

Jd1=4-1
WRITE(6'80)JJ1p(SYWTAB(IN:J1):J1 1,10) ,NUMLST(IR)
IR=0

60 10 90

"~ 70 CONTINUE
JJ1 = J -1

WRITE(6,802JJ1,(SYMTABCINLIT),,J1=1,10),(NUMLST(J2),COMMA
$,J2=1,1COUNT) ,NUMLST(IR)
IR=0

80 FORMAT(2X,15,1X,1082,10X,8C14,A1),/9(38X,8(14,A1)/))
90 CONTINUE.

x BUILD UP REFERENCE TABLE FOR VERBS

[2Y e

WRITE(6,100)

100 FORMAT(T1HT1,S5X,"ALL VERBS",25X,"USED IN STATEMENT",

5 L ISXS9CTH=) 225X N TIH=D A0

IF(VBPTR.EQ.D)GO TO 145
DO 140 J=1,VBPTR
__IM=VERBVL(J)

IP=TEMP(IM,1) -
110 IF(PTHEXP(IP,3).EQ,0)GO0 TO 120
IR=IR*1

IF(IR.GT.SYMSZIWRITE(6,500)

NUMLST(IR)=PTHEXP(IP,3)
120 IP=PTHEXP(IP,2) _ _
CIF(PTHEXP(IP,1),NE,0)GO TO 110

C
ICOUNT=IR-1
e IFCICOUNT.NE.0)GO TO 130
WRITEC(6,80)J,(SYMTABCIM,J1),J1=1,10),NUMLSTCIR)
c o
GO TO 135
¢

130 CONTINUE
WRITE(6,80)J,(SYMTAB(IM,J1),J1=1,10) ,(NUMLST(J2),COMMA,

s 3 d EEV 4 TCOUNTY o NUMLSTCIRD s e
S i et
135 CONTINUE
C
IR=0

140 CONTINUE

145 CONTINUE

TURITEGGLisgy T

150 FORMATC(1HT,/,5X,"PATH EXPRESSION :",//)
DO 250 I=2,NPTR
IQ=NOUNVLC(I)

IP=TEMP(13,1)

160 1J=IJ+1
oo o | e | L
IF(lJ.GT.SYMSZIWRITE(6,600)
¢ .
OCRNCE(IJ)=PTHEXP(IP,1) L e B
C
IF(PTHEXP(IP,3).EQR.0)GO TO 170
IR=IR+1
T NUMLSTCIR)=PTHEXP(IP,3) _ . .
170 CONTINUE 3
¢
IP=PTHEXP(IP,2)
IF(PTHEXP(IP,1).NE.O)GO TO 160
€
TC +sr CALL REFINEWENT ROUTINE
c ©1 maee s emane ee bes ss 4 au eas sss ¢ N eoversn emiee = er t ee-sice 4 wetssmamrassees win en B % =% ee s ard veriam s e & erasie gveeesovs stn mmont D— S Jo—
CALL REFINE(OCRNCE,I1J)
c
€ *xx CONVER NUMLST FROM INTEGER TYPE TO CHARACTER TYPE
C
B INT=0 e - —
ICNT=0
00 200 J2=1,1J
INT=INT+%
IFCINT.GT.OUTSZ)WRITE(6,180)
180 FORMAT(/S5X,"OUTPUT BUFFER OVERFLOW™)
QUTBUF(INT)=SYMBOL(OCRNCE(JZ2))
IF(OUTBUF{INT) . NE.SYMBOL(2). AND. OUTBUF(INT) NE SYMBOL(3)
$ AND.OUTBUF(INT).NE.SYMBOL(4))G0 TO 200
ICNT=ICNT+1
c
CALL INTCHR(NUMLST,ICNT,STRING,LEN)
C
DO 190 I2=1,LEN
INT=INT+1
OUTBUF(INT)I=STRING(IZ)
190 CONTINUE
200 CONTINUE
R WRITE(61210)(SYMTAB(IQIJ1)lJ1-1I1O)I(OUTBUF(II)111 1,INT)
_WEWEJQ FORMAT(SXI1OAZIZXI1H.IZXI1OOA11/4(30XI1OOA1)/)'"
210 FORMAT(S5X,10A2,2X+,1H:,2X,50A1,/9(30X,5041)/7)
"
IFCILGELIENDPTIGO TO 240
C
3 C *xx OQUTPUT THE PATH EXPRESSION AND NAME OF EACH -
n WEW***M‘DECLARED NOUN TO A TEMPARY DISC FILE 11).
C

230

WRITE(11,230)INT,(OUTBUFCII),II=1,INT),ENDORC
WRITE(11,235)(SYMTAB(1IQ,J1),31=1,10)
FORMAT(IS,500A1)

FORMAT(10A2)

[A=TA+1

Id=0

QUTPUT A END«OFe¢FILE SYMBOL TO DISC FILE

AT THE END OF THE PROCEDURE.

Al ool
»
»*
»

i
o

_ WRITE(11,230)SPCIDT,ENDOFLLENDOFL

RETURN

;
i

¥ el el aXa)
i
! ‘

INTRO STAT: START, INTRO, FINISH . __ ..

2000

CONTINUE

IF(ACTION.NEL.2)GO TO 1800

. IENDPT=NPTR+1
RETURN

eRaRalal

EXPRPR EXPRPR, PRIMYPR

_.. 1800

o

TF(ACTION.NE.18.AND.ACTION.NE.19)60_T0 2300

CONTINUE

* k %
* %k %

IF FLAG IS TRUE THEN
BUILD UP ATTRIBUTE "Uu”

oo oo
i

* k %

. ELSE RESET FLAG

L. IFCFLAG)GO TO 260

FLAG=,TRUE,

260

RETURN
LINE=LNENO
INIT=1

_ATRB=2

IF(STKPTR.EQ.ODRETURN

CALL BLDLNK(STKPTR,INITLATRB,LINE) _

RETURN

ool o
:

o PRIMAYPR 2 PRIMAYPR, INIT PART

2300 CONTINUE] -
C

IFCACTION.NE.23)GO TO 2500

LINE=LNENOQ+1

INIT=1
ATRB=3
IF(STKPTRLEQG.D)RETURN

_CALL BLOLNK(STKPTR,INIT,ATRB,LINE) =

. _RETURN
¢
3 STRUENOUN s NOUN*
¢
C
. 2500 CONTINUE . e
¢ e e e e
IF(ACTION.NE.25.AND.ACTIONLNE,.27)G0 TO 2900
IF(SNSTAT.NE.3)GO TO 280
c , ,
C *xx UPDATE FILE TABLE
C
FLPTR=FLPTR+1 B
c
IF(FLPTR.GT.FILESZ)WRITE(6,700)
c
NPTR=NPTR+1 e
. DO 270 J=1,10 o
270 FILETB(FLPTR,J)=SYMTAB(VLTIKN,J)
_____STKPTR=STKPTR+1 S o L
VLSTK{(STKPTR)=VLTKN
NOUNVL(NPTR)=VLTKN
RETURN N
o o o e
€ *x* UPDATE NOUN TABLE
C
280 VLPTR=VLPTR+1
DO 285 J=1,NPTR
IF(VLTKN.NE ,NOUNVL(J))IGO TO 285
60 TO 305
285 CONTINUE - -
NPTR=NPTR+1
¢
IF(NPTR.GT.SYMSZ)WRITE(4,800)
C

D0 300 J=1,10 _
NOUNTB(VLPTR'J)-SYMTAB(VLTKN:J)

300 CONTINUE

c

NOUNVL(NPTR)=VLTKN

305 STKPTR=STKPTR+1

. VLSTK(STKPTRI=VLTKN
_RETURN

OO

LEFT PAREN : DO
¢ COBEGIN

2900 CONTINUE

C
C
¢

END

C e
IF(ACTION NE.29.AND.ACTION,NE.30.,AND.
3 ACTION.,NE.31_AND.ACTION,NE.32)G0 TO 4500
IF(PRDNUMJ.NE.94)GO TO 306
C
CALL INSERT(VLSTK,NPTR,9) B

 PRONUM=0
RETURN

306 IF(PRDNUM,NE.105.AND,PRONUM,NE.96)G0 TO 4500

e ATR8Z4

c _
c COMMAND : READ, EXPR
o
c
L4500 CONTINUE e
c
IF(ACTIONJNELLS5)GO TO 4600
LINE=LNENO+1
INIT=1
ATRB=3
e o IFCSTRKPTRGEQGOIRETURN .
3 CALL BLDULNK(STKPTR,INIT,ATRB,LINE)
RETURN
c
c
o COMMAND : PRINT, EXPR
R S - —
O S ST S — . .
4600 CONTINUE
c
IF(ACTIONJNEL.46)GO TO 4900
LINESLNENO+1
INTT=Y e

IF(STKPTR.EQ.O)RETURN

CALL BLODLNK(STKPTR,INIT,ATRB,LINE)
RETURN

_.COMMAND 'z WRITE, EXPR

IF(ACTION.NELL4O)GO TO 5000
LINE=LNENO+1

INIT 1

chsrxer EQ.O)RETURN e
CCALL BLDLNK(STKPTR'INIT;ATRB:LINE)

RETURN

c
c

Cos L VERB_PART 'z VERB CL., COMMENTS
c
c

5000 CONTINUE

IF(ACTION.NE.50)G0 TO 5100
"IF(FLAG)GO T0 310
FLAG=.TRUE.
RETURN

310 LINE=LNENO+1

. INIT=1
ATRB=4
IF(STKPTR.EQ.D)GO TO 315
T CALL BLDLNK(STKPTRrINIT,ATRBaLINE)'

315 PRONUM=D
RETURN

5100 CONTINUE

IFC(ACTION,NE.51)G0 T0 5200
LINE=LNENO+1

INIT=1
ATRB=12
STKPTR=1
VLSTK(STKPTR)=VLTKN

CALL BLDLNK(STKPTR,INIT,ATRB,LINE)
RETURN

RETURN PART ¢ RETURNE€KEY, COMMENTS

200 CONTINUE

IFCACTIONL,NE.52)G0 TO 5600
LINE=LNENO+1
INIT=1

ATRR=3
IF(STKPTR.EQ.O)RETURN
CALL BLDUNK(STKPTR,INIT,ATRB,LINE)

RETURN

EXPR PRIMARY

EXPR, PRIMARY

DY OO OO O

5600

(]

* % %k
* % %

OO MmO

CONTINUE

"IF(ACTION.NE.S6.AND.ACTION.NE.S59)GO T0 7100

CHECK CASE€KEY, WHILE¢KEY, UNTIL¢KEY, WITH€KEY

AND IFeKEY

1F(PRONUM,NE.B88.AND.PRONUM.NE .94, AND,

3 PRONUM,NE.101.AND.PRDNUM.,NE.105.AND.
$ PRONUMJ.NE.111)G0 TO 320
ATRB=4

(]

* % %

G0 TO 325

CHECK FORe€KEY

320

If(PRDNUM,NE.96)G0 TO 7100
ATRB=3

325

LINE=LNENO+T
CINIT=T 4 .
IF(STKPTR,EGQG,D)RETURN

CALL BLDLNK(STKPTR,INIT,ATRB,LINE)
RETURN

 ASSIGMNT : EXPR, ASSIGMNT SYMB, EXPR_

Y O OO

7100

CONTINUE

C LINE=LNENO+1

IFCACTIONLNE.71)G0 TO0 8600

IF(STKPTR.LE.1)G0 TO 330

INIT=2
ATRB=4
CALL BLDLNK(STKPTR,INIT,ATRB,LINE)

INIT=1

ATRB=3

CALL BLDLNK(STKPTR,INIT,ATRB,LINE)

RETURN

C
C
c

CASE STAT : CASE CL, UNITS, ENDCASE

_ B600 CONTINUE

CALL INSERT(NOUNVL,NPTR,7)

IFCACTIONJNE.B8S)GO T0O 8700
CALL INSERT(NOUNVL,NPTR,8)
CALL INSERT(NOUNVL,NPTR,8)
RETURN
i ~ o
T . e)
C CASE CL : CASE¢KEY, EXPR, BEGINCASE
: .
C
8700 CONTINUE
C
IF(ACTION.NE.87)G0_T0 8800 ._ e

CALL INSERT(NOUNVL,NPTR.,7)
PRONUM=0
RETURN

CASE¢KEY : CASE

OO OO

CONTINUE

CALL INSERT(NOUNVL,NPTR,5)

CIFCACTION.NE.88Y60 70 9000 o

PRDNUM=8S B
RETURN

C

C

C _LABEL : EXPR —

c - JUS——— P rrte b b nmn e 4 s s memas mrmnts

C

© 9000 CONTINUE

C .
IF(ACTION,NE.,90)GO0 TO 9300 3
TF(PRONUM.NE,88)60 T0 350 __
CALL INSERT(NOUNVL/NPTR,8) - o

CALL INSERT(NOUNVL,NPTR,7)

LINE=SLNENO+1

CALL BLOLNX(STKPTR,INIT,ATRB,LINE)

RETURN

c
¢
C._ WHILE STAT : WHILE€KEY, EXPR, LP, BODY _
€ e e e e e e e e+ eoean e e e e = et
B e e et e+ e e
9300 CONTINUE
c
IF(ACTIONJNE,.93)GO TO 9400
CALL INSERT(NOUNVL,NPTR,8)
CALL INSERT(NOUNVL,NPTR,6) B A e
o RETURN
C
c
C WHILE®KEY : WHILE
c
R
- 9400 CONTINUE -
¢
IF(ACTION.NE.94)GO TO 9600
CALL INSERT(NOUNVL,NPTR,7)
PRONUM=94
S CRETURN e e e
c
¢ o o
¢ FOR¢KEY : FOR
C
c
9600 CONTINUE B ~
C
IF(ACTION,NE.96) GO TO 9700
PRONUM=96)
RETURN
C
c , e e e e e s+ s et o oo
c CYCLE STAT ¢ CYCLE€KEY, BODY
c
c
9700 CONTINUE
c .
. IFC(ACTION,NE.97)GO TO 9800 - . .. - e
..CALL INSERT(NOUNVL,NPTR,8) .
CALL INSERT(NOUNVL,NPTR,11)
RETURN
C
¢
C CYCLE€KEY : CYCLE
L
¢

9800 CONTINUE

IF(ACTION,NE,.98)G0 TO 9940

CALL INSERT(NOUNVL,NPTR,7)
RETURN

 _REPEAT STAT : REPEAT¢KEY, SL, UNTIL®KEY, EXPR

OY OY.OY[OY

2900 CONTINUE
¢

.. LFCACTION,NE.99)60 TO 10000
. CALL INSERT(NOUNVL,NPTR,8)
CALL INSERT(NOUNVL,NPTR,10)

PRDNUM=(0
RETURN

_ REPEATEKEY @ REPEAT

0000 CONTINUE

IFCACTION,NE.T00)GO TO 10100
CALL INSERT(NOUNVL,NPTR,7)
RETURN

c
c
€ UNTILeKEY : UNTIL : ' .

c
C . -
10100 CONTINUE

C
IF(ACTION.NE.101)G0 TO 10200
PRDNUM=101

_RETURN.

_C e]
c EXIT STAT : EXIT, EXPR
C
c
10200 CONTINUE
o e e e+ e —
. IFCACTION.NE,102)60 70 10500 ,) R

LINE=LNENO

INIT=1
ATRB=4
IF(STKPTR.EQ.0)RETURN

CCALL BLDLNK(STKPTR,INIT,ATRB,LINE)
RETURN

WITHeKEY : WITH

2N sXzllal

C

10500 CONTINUE

C

 IF(ACTION.NE.105)60 T0 10600 .

PRDNUM=105

SEeE TN INGE T

RETURN
C
c -
C IF STAT : IF CL, LP, BOODY
L omt e s+ o e L e oo e < i i o e e e s e
¢ -
3
c

IFCACTION.NE,106)G0 TO 10800
CALL INSERT(NOQUNVL,NPTR,.8)

CALL INSERT(NOUNVL,NPTR,8)

; RETURN o e e o e e o e e
c
C
¢ ELSE PART : ELSE¢KEY, LP, BODY
c
S O e e o s e e
... 10800 CONTINUE
c
IFCACTION.NE,108)G60 TO 10900
CALL INSERT(NOUNVL,NPTR,8)
CALL INSERT(NOUNVL,NPTR,8)
e . . RETURN
N
C
C ELSE¢KEY : ELSE
C
c
10900 CONTINUE e 1+ 5t s e e e
C

CALL INSERT(NOUNVL,NPTR.,8)
CALL INSERT(NOUNVLsNPTR,5)
CALL_INSERT(NOUNVL#NPTR,7)

. RETURN

IF CL 2 IFe¢KEY, EXPR, THEN®KEY

1000 CONTINUE

IF(ACTION.NE.110)60 T0 11100

CALL INSERT(NOUNVL,NPTR,7)
CALL INSERTU(NOUNVL,NPTR,7)
PRDNUM=(

RETURN

.. LFEKEY = IF

o =looionio o
t i
HI

1100

CONTINUE

IF(ACTIONJLNELT1113G0 TO0 11600

PRDNUM=111

o RETURN_ R — —
c
c
c PRIMARY : ID#
c
C - B -
11600 CONTINUE - S
c
IFCACTION.NE.116)60 TO 11800
IF(VLTKN.EQ.O)RETURN
STKPTR=STKPTR+1
VLSTK(STKPTR)=VLTKN
7 RETURN. T
C -
C
c DO1 : DO, LABEL®KEY*, EXPR, ASSIGNT, SYMB, EXPR
c
e e e
..11800 CONTINUE et e+ e e i et e
c
IF(ACTION.NE.118)60 TO 12000
LINE=LNENO
TF(STKPTR.LE.1)G0 TO 340
INIT=2
e ATBR=A R .
CALL BLDLNK(STKPTR,INIT,ATRB,LINE)
340 INIT=1
ATRB=3 ,
CALL BLDLNK(STKPTR,INIT,ATRB,LINE)
_____ RETURN
c
c
c
C GARBGE : NOUN¢GARBGE*
¢
B e
12000 CONTINUE . . - -
c
IF(ACTION.NE.120)RETURN
IF(VLTKN.EQ.O)RETURN
STKPTR=STKPTR+1

VLSTK(STKPTR)=VLTKN

c
500 FORMAT(/10X,"** NUMBER LIST(NUMLST) OVERFLOW IN ROUTINE
3 SEMNTC *x") : e s e

600 FORMAT(/10X,"** OCCURANCE TABLE OVERFLOW IN ROUTINE SEMNTC **")
700 _FORMAT(/10X,"*+ FILE_ TABLE OVERFLOW IN ROUTINE SEMNTC **")
800 FORMAT(/1J3X,"** NOUN TABLE OVERFLOW IN ROUTINE SEMNT(C **')

RETURN

¢
END , e et et

" SUBROUTINE BULDLNK(STKPTR,INIT,ATRB,LNENUM)

I EEERE SRR AR AR R R SRR R RS R RS SRR R R RS R SRR ESRRE R ERER R REEEE R EESESSE]

*

ROUTINE WHICH CAN BUILD UP THE LINK LIST OF

*

En‘n aka!

*

THE ATTRIBUTE FOR EACH TOKEN STACKED IN THE VLSTK

********************t***************************************

CIMPLICIT INTEGER (A-2)

*

LOGICAL PATH
COMMON /Z/ PATH

COMMON /TABLE/ MAXPET,FILETB(50,10),NOUNTB(200,10),VERBTB(200.,11),

NOUNVL (2000 ,vERBVL (2000 ,PTHEXP(3000,30,

_VLSTK(200) ,TEMP(200,2)

IF(PATH) WRITE(6.,5)
FORMAT(I10X,"ENTER BLDLNK')

DO 20 I=INIT,STKPIR

CVALEVLSTK(I)

IK=1

IF(TEMP(VAL,1) ,NE.0)GO TO 10
CALL BGNLNK(VLSTK,IK,ATRB,LNENUM)
GO0 70 20

10

20

RETURN
END

CALL PTHLNK(VLSTK,IK,ATRB,LNENUM)
CONTINUE
STKPTR=0

SUBROUTINE BGNLNK(STACK,J,I1,X)

IMPLICIT INTEGER (A-2)
LOGICAL PATH _
DIMENSION STACK(100)

COMMON /Z/ PATH
COMMON /POINTR/ FLPTR,VLPTR,VBPTR,NPTR,LNKNO, STKPTR,IJ,IR
COMMON /TABLE/ MAXPET,FILETB(50,10),NOUNTB(200,10),VERBTB(200,11)~

NOUNVL (200) ,VERBVL (2003 »PTHEXP(3000,3),

g
3 VLSTK(200) ,TEMP(200,2)

IF (PATH) WRITE(6,10)
10 FORMAT(10X,"ENTER BGNLNK')

ilialiaRooRoRalooliolafolalofolafiohofiafiofioBafiofioiafiolaliafioofiofioBaliofioalieBoalofioliofiofofiofiofioioliallofielio BN
* ROUTINE WHICH CAN BUILD UP THE LINK TABLE
* FOR EACH OCCURANCE FROM BEGINNING

OO OO

222X RS RS E RS R RN EREERER R RS RS RRRRRRE R R AR RRS R SRR RRERE LRSS

CALL GETLNK
TEMP(STACK(J),1)=LNKNO

PTHEXP(LNKNO,1) =1

___PTHEXP(LNKNO,3)=K

PPTR=LNKNO
CALL GETLNK
PTHEXP(PPTR,Z2)=LNKNO

C TEMP(STACK (J),2)=UNKNO = . .
SRETURN 0
END

T SUBROUTINE PTHLNK(STACK,J,I1,K)

IMPLICIT INTEGER (A=2)

LOGICAL PATH
DIMENSION STACK(100)
__COMMON /Z/ PATH

COMMON /POINTR/ FLPTR,VLPTR,LVBPTRANPTR,LNKNO, STKPTR,IJ,IR
COMMON /TABLE/ MAXPET,FILETB(50,10) ,NOUNTB(200,10),VERBTB(200,11),

& © NOUNVL(200),VERBVL(200),PTHEXP(3000,3),
& T VLSTK(200) ,TEMP(200,2)

IF (PATH) WRITE(6, 10)
10 FORMAT(I0X,"ENTER PTHLNK")

'+ ROUTINE TRY TO BUILD UP LINK TABLE

ti****************************i*************t*******f*

* FOR EACH OCCURANCE

rwnnﬂksn

IZEEE R AR AR R R RS R R RS REREERR R LR R R R R Rl Rl S RRRRRERERERSE]

PTHEXP(TEMP(STACK(J),2),1)=1
PPTR=TEMP(STACK(J),2)

PTHEXP(PPTR.,3)=K
CALL GETLNK
PTHEXP(PPTR,2)=LNKNO

TEMP(STACK(J),2) =LNKNO
RETURN
END

SUBROUTINE INSERT(NVAL,ICOUNT,ID)

IMPLICIT INTEGER (A=2)

. LOGICAL PATH o o
_ DIMENSION NVALC10Q) .

COMMON /2/ PATH
COMMON /TABLE/ MAXPET,FILETB(S0,10),NOUNTB(200,10),VERBTB(200,11),

g NOUNVL (200, VERBVL(200) ,PTHEXP(3000,3),
& ..VLSTK(200) ,TEMP(200,2)

IF (PATH) WRITE(6,5)

5 FORMAT(10X,"ENTER INSERT'")

khkkhrhhkhkhkh bk hkhkhk bk dhrbhbhkhkhhkrbhkrrhhbhkhkrkhbrkrrrhkhkkhkrrkhkk

* THIS ROUTINE CAN INSERT SPECIAL SYMBOL INTO =
* PATH EXPRESSION TABLE

I E S SRR RS RS R RS RER R R TR R R RS R RS R R R R RSl RS RERRSRERRSRE]

ol o ajoo

pbOo 20 I=1,ICOUNT
IK=1

IF(TEMP(I,1).NE.0)GO TO 10
CALL BGNLNK(NVAL,IK,1D,0)
GO _TO0 10 o

10 CALL PTHLNK(NVAL,IK,ID,0)
20 CONTINUE
RETURN

. END

C
C

SUBROUTINE REFINE(OCRNCE,IJ)

kkkkkhhkkdhkkhkhk hdkkbhkk Ak kb hkhkdthhdhkhhkkkhkdbhkdhhhhhkdhbdhhkhkhkkkdt

*

ROUTINE WHICH REFINE THE PATH EXPRESSION

L.

FOR EACH NOUN

(R E R R R R R E SRR R R EE RS EERASE RS RS ESR SRR R RREEERRRREREESERESEESE)

IMPLICIT INTEGER (A=2) o
LOGICAL PATH
DIMENSION OCRNCE(100),SYMBOL(11)
COMMON /Z/ PATH
DATA SYMBOL/1¢2+3,6+7,8,5,6,11,10,9/ .
IF(PATH) WRITE(6,5)
S FORMAT(10X,"ENTER REFINE™)
c
D0 SO M=1,50
1=1
T 5.0 S e e e e e e e)
10 IF(I.GT.IJ)GO TO 40
15 IF(OCRNCE(I).NE.SYMBOL(5))GO TO 25
o
IFC(OCRNCECI+1) . NE.SYMBOL(11),AND,OCRNCE(I+1) NE.SYMBOL(7))
& GO 10 11
OCRRCE (4= 0CRNCE (1) . — e e e
I=1+2 o)
J=J+1 -
G0 TO 10
c
11 IFCOCRNCE(I+1) ,NE.SYMBOL(6))GO TO 30
C
00 20 K=7,10
IF(OCRNCE(I+2) NE.SYMBOL(K))GO TO 20
1=1+3
.. ..6Go 1O 10
280 CONTINUE . .
I=1+2
GO TO 10
25 IFCOCRNCECI).NE,.SYMBOL(7))GO0 TO 30
IF(OCRNCE(I+1) . NE,SYMBOL(6))G0 TO 30
I=I+1 . e e
6o 1o 10 A e
30 IF(OCRNCE(I)JNE.SYMBOL(11))G60 TO 35

IFCOCRNCE(I+1) ,NE,SYMBOL(11))GO TO 35
I=1+1

.60 To 10
35 OCRNCE(J)=O0CRNCEC(I) ~
c - .
1=1+1
ENES
G0 T0 10
40 1J4=J-1

RETURN
END

SUBROUTINE INTCHRCINPUT,I,CHAR,LEN)

ROUTINE WHICH CAN CONVER INPUT ARRAY FROM INTEGER

Y v Jed Kk d gk d de e dr dedr sk v dr sk i d ok e dt dr db b d b o ok ek de ok de sk Kk ek ek k ko kb ke sk ke ok ok R ke X

%*

_TYPE(I - FORMAT) TO CHARACTER TYPE (A - FORMAT)

*

%*

; ***********‘**************‘****;“;‘;';‘*‘;"';:*;';';"‘;‘k“‘**“';"';"*"***;';':**'****** -
IMPLICIT INTEGER (A-2)
LOGICAL PATH
DIMENSION INPUT(100),CHARC10),TEMP(10),DIGIT(1Q)
. . COMMON /Z/ PATH . .
e _..DATA DIGIT/2HO ,2H1 ,2H2 »2H3 ,2H4 ,2HS5 ,2H6 » -)
& 2H7 ,2H8 ,2H9 /
DATA BLANK/2H /
¢
IF (PATH) WRITE(6.,20)
20 FORMAT(I0X,"ENTER INTCHR™)
C

CHAR(IT)=BLANK
TEMP(IT1)=BLANK
CONTINUE

NUM=INPUT(I)
2 IF(NUM,GE,T10)G60 TO 10
CHAR(LEN)=DIGIT(NUM+1T)
DO 5 IP=1,LEN
II=LEN-IP+1
TEMP(II)=CHAR(IP)
S CONTINUE
00 8 J=1,10
CHARCJII=TEMP(J)
8 CONTINUE
e RETURN
o] O_RMNDR=MOD(NUM,10) .
NUM=NUM/1]
CHAR(LEN)=DIGIT(RMNDR+1)
LEN=LEN+T
GO0 70 2

SUBROUTINE GETLNK

IMPLICIT INTEGER (A=-2)

L LOGICAL PATH

-
COMMON /2/ PATH
COMMON /POINTR/ FLPTR,VLPTR,VBPTR,NPTR,LNKNO, STKPTR,IJ,IR
COMMON /TABLE/ MAXPET,FILETB(50,10),NOUNTB(200,10),VERBTB(200,11),
& NOUNVL(200) ,VERBVL (200) ,PTHEXP(3000,3),
e & VLSTK (2000 ,TEMPC200,2) .
S e e
C THIS SUBROUTINE PASSES TO THE CALLING ROUTINE THE INDEX
c OF THE NEXT AVAILABLE NODE IN THE PATH EXPRESSION LINKED
C LIST. A CHECK IS MADE TO DETERMINE IF THE AVAILABLE
¢ NODES ARE EXHAUSTED AND IF SO A MESSAGE TO THAT EFFECT
¢ IS PRINTED AND EXECUTION IS STOPPED,
c
DATA LNKNO / 0 /
C
IFC(PATH) WRITE(6,5)
S FORMAT(10X,"ENTER GETLNK')
T
C LNKNO = LNKNO + 1] B
IF (LNKNO .LE. MAXPET) RETURN o o

WRITE (6,10)
10 FORMAT (10X,"THE PATH EXPRESSION LINKED LIST IS EXHAUSTED
$ IN ROUTINE GETLNX. UPDATE THE SIZE OF PTHEXP

¥ ... AND THE VALUE OF MAXPET") S T

e STOPL i
END

APPENDIX E

PL SOURCE PROGRAM

AND SEMANTICS OUTPUT

1 BEGI"_INTRO

2 SAMPLE PL PROGRAM 7

3 o DICTIONARY _ _

4 X » Y = ARRAY CF INTECEP My“2En 7

5 FLAG » I ¢ INTEIGEP INITIAL O ¢

6 TASLE - 4%RAY CCTAINS OF STUDENT PECOT
7 ; 01 Na%E , 02 ADDRESS » 23 ID

8 END_INTRD

9 3EGIN

10 1 I =90 3

11 1 FLAG = O 7

12 1 Y 1= X + 10

13 1 WHILE FLAG GREATER THAN J DO
14 12 SEARCH * FOR TAELE RETURN ™
15 12 oD) a

16 1 WHILE ¥ (1) <= 10 poO

17 1 2 X 1Y =Y (1) + 13
18 12 ' END o

19 1 IF I > 17 THEN BEGIN

20 12 X ¢ I) =Y (1) *2 + 13
21 12 I =13)

22 1 END -

23 1 ELSE BEGIN

24 12 X = 1 s

25 1 2 Y = 3 ;

26 12 END

27 1 CASE I BEGINCASE

28 1 2 1 ¢+ X 1= 0 ~

29 123 END

30T T2 2 Y =10 5

31 123 END

32 12 ENDCASE 7

33 ' END

SYMBOL CROSS REFERENCE TABLE FOR SAMPLE

DECLARED NOUNS USED IN STATEMENT

X 4, 12, 16, 17, 20, 24, 28
Y 4, 12, 17, 20, 25, 30
FLAG S, 11, 13

I S5, 10, 17, 17, 19, 20, 20, 21,
T TS TTABLE S A

6 NAME 7

" 7 ADDRESS
T8 10 '

UNDECLARED NOUNS USED IN STATEMENT

ALL VERBS USED IN STATEMENT

1 SEARCH 14

PATH EXPRESSION
X _—
Y
FLAG
_A—I -
TA3LE
NAME
~ ADDRESS
10
M

U4LRT12(R16_D17)x((D2C)+(D24)){(D28))
UeD12(RI7)*x((R2D)+(D25)) ((D3D))
DSDTT(RIZ_)*
DSDT1D(RT17RI7I*R19((R20R20D21))IR27
U6(RT14) %

uz

uv

ur

R14D14) %

APPENDIX F

PE GRAMMAR

APPENDIX G

PE ANATLYSER PROGRAM

€ * BEGIN€INTRO

c************t***************ttxtt&v**tkikti&*k***t***tk*k*k**t*

* %

SYUBROUTINE ANALYSECACTICON,TYPE,VALUE)

C khkkkhk kXhkhkhkhbk hdkdhhkdkdhhkokhhkkhkhk kb dkdkhk oot btvhhhbhkihkhhkhdthkiikdidkkdax

N PLP ANALYSER:

//ROUTINE WHICH CAN ANALYZE ThE PCQSIQLE ANCVALIES FOQ
//THE PATH EXPRESSION OF EACH VARIAQLE

DICTIONARY
AT3STK - TOKEN€ATTRIBUTE€STACK, S5C 3Y 10 ARRAY ;
LNUM - LEFT¢NUMBER€STACK, 50 8Y 10 ARRAY;

RNUM - RIGHT¢NUMBER®STACK, 50 BY 1C ARRAY; 4
WLREFG - FLAG STACK FOR DETECTING CONTROL STRUCTURE
"WHILE" STATEMENT;

COUNT - PARENTHESIS COUNTER:S
APTR = ATTRISUTE€STACK POINTER;
LPTR = LEFT¢NUMBER¢STACK POINTERS

RPTR - RIGHTE€NUMBER€STACK POINTER;

LLEN - LENGTF POINTER FOR LEFTeNUMBEReSTACK:
RLEN = LENGTH POINTER FOR RIGHT€NUMSER€STACK;

INT - LENTH POINTER FCR WLREFG;

SYMSZ - SIZE OF ATBSTK,LNUM,RNUYM, CURRENT

LENGTH IS 537

LENGTH - SIZE OF NUMBEReSTACK, CURRENT LENGTH IS 1C;
LEVOFG - SIZE OF WLREFG STACK, CURRENT LENGTH IS 1C;
* ENDEIATRO

* ik % X% X HiH ¥ A % X i ¥ *' A W

OO O OO0 OO0 00

o

LE SR EEEEEEEIEEEERE SR SRR LRl R R R RN EE R EEE R RS R R R R SEREEEREEENNEEERXNRES,

IMPLICIT INTEGER (A-2)
LOGICAL RDFLAG

APk x %y % ko wid| o x kA A A% A % A ix|x

DIMENSION VCBLRY(21;10);SY1TA3(1C9:17)
COMMON /VAR/VARBLE(T1()
COMNON /3LOCK/DUMNY,VCBLRY,SYNTARB

COMMON /TKNVAL/VLODCL,VLODEF,VLCREF
COMMON /TABLES/ATBSTK(5Q,2),LNUM(S0,10),RNU¥(5D,10)

3 LPWLREFG(10) ,COUNT (IO
... COMMON /POINTR/APTR,LPTR,RPTR,LLEN,RLEN,LLOABT,LLOAB2, ..
.3 . _RLOAB1,RLOAB2,PTR,INT

COMMON /READD/RDFLAG

DATA ATBSTK/100=x0/
DATA LNUM,RNUM/S500+0,500*0/
DATA APTR,LPTR,RPTR,LLEN,RLEN/S*x(Q/

.DATA LLOAB1,LLOAB2,RLOABI,RLOAB2/4*0/

DATA LEVOFG/10/

DATA LENGTH/10/

DATA SYMSZ /50Q/
DATA BLANK/Z2H /

o0 olo

Jxrx LF READ€FLAG IS "ON" THEN READS IN THE VARIABLE NAME

LEROM DISK FILE (11).

IF(.NOT.RDFLAG)GO TO 1300
READ(11,5,END=19000) VARBLE

5 FORMAT(1242)

RDFLAG=,FALSE

C
c
¢ N . e . e
¢ PATH @ NO, EOF SYwB0OL
C
1000 CONTINUE
¢
IF(ACTION.NE.1)GO TO 2000
C
C *+* IF THE RIGHT NODE OF ATTRIBUTE€STACK(ATISTK) IS "D
C *+**x THEN PRINT OUT THE ERRCR MESSAGE.
3
RATE=ATBSTK (APTR,2)
c
 IF(RATB.NE.VLODEF)GO TO 20
10 RLEN=RLEN+1T
Cr e e e T e e e e S e
IF(RLEN.GT.LENGTHIWRITE(6,320)
C
IF(RNUM{RPTR,RLEN+1) .NE.D)GO TO 17
S WRITE(6,300)VARBLE, ((SYMTAS(RNUM(RPTR,I),J),J=1,10), B
3 I=1,RLEN)
WRITE(6,3173) o . B -)
¢
C %x%x INITIALIZE ALL STACKS AND POINTERS
c
20 CALL INALZE
o . RLEN=0_)) -])
c .
C
300 FORMAT(///2X,10HVARIASLE: ,10A2,2X,25H%WAS DEFINED IN STATEMENT ,
$ T(10A2))

310 FORMAT(34X,24HBUT WAS NEVER REFERENCED)

320 FORMAT(/5X,"*x* RIGHT NUMBER LIST OVERFLOW IN ROUTINE

3 ANALYSE *xx")

330 FORMAT(/SX,»"%xx* LEFT NUMLST LIST OVERFLOW IN ROUTINMNE
$ ANALYSE %)

340 FORMAT(/SX,"*+* STACK OF WHILE¢FLAG OVERFLOW IN
3 R UTINE ANALYSE #*x+")

350 FORMAT(/S%,"«x%x STACK OF ATTRIBUTE OVERFLOW IN

3 ROUTINE ANALYSE %% xm)

3640 FORMAT(/S5X,"*+x STACK OF TOKEN®VALUE OVERFLOW IN
$ ROUTINE ANALYSE xx%')

C
RETURN

2000

CONTINUE

IFCACTIONJ,NE.2)GO TO 4000

SO

* k%

SET UP THE LEFT AND RIGHT ATTRIBUTE FOR ERROR ROYTINE

30

LATB=ATBSTK (APTR=-1,2)
RATB=ATBSTK(APTR,1)
RLEN=RLEN+1

 IF(RLEN.ST.LENGTH) WRITE(6,320)

40

IF(RNUM(RPTR-T,RLEN+1),

LLEN=LLEN+T

NE.O)GO TO 30

CIFCLLEN.GTLLENGTH) WRITE(6,.330)

TF(LNUM(LPTR,LLEN+1) .NE.O)GO TO 40

C *+x%

CALLING ERROR ANALYSE ROUTINE

~ CALL ERRNR(LATB,RATI)

C
C **% REDIFINE THI NUM2Z2 LENGTH 37 SIZHT ATTRIAUTE
c
RLEN=C
45 RLENSRLEM+T1 o : .
IF(RNUM(RPTR,RLEN="2 . %2.0)G2 72 45 .
c ‘ } .
S —_ —
C **+ CALLING COLLAPSE ROUTINE
c
CALL COLLAPSE
o RETURN] B w o
. C . S .
c
c N1 = N1, N2
c
¢
c —
IF(ACTION,NE.4)GO TO 7000
c
C *** BUILD UP THE LEFT AND RIGHT ATTRISUTE FOR
C **%* FIRST NODE AND SECOND NODE
c
LLATE1=ATBSTK(APTR=1,1)
LATB2=ATBSTK(APTR,1)
RATB1=ATSSTK(APTR=1,2)
RATEB2=AT3STK(APTR,2)

C *xx SQUILD UP "D ATTRIBUTE FOR THIRD N0OdE 7 o
¢
IF(LATS1.NE.VLODEF)IGS TO 4C
ATBSTK(APTR=1,1)=VLODEF] -
SO LLOAB1=LLOABT+1 _ _)
T IFC(LNUM(LPTR=-1,LLOABT+1)/NE.O0)GO TO 5C
C
60 IF(LATB2.NE.VLODEF)GC TO 80
AT3STK(APTR=1,1)=VLODEF
- 70 L L O 'AE\2=LLO A 92+1 - he ea i ve e bemewa o cmseeam v n e Cee e P . .
IFCLNUMC(LPTR,LLOABZ2+1) . NELD)GO TO 7T .

80

IF(RATB1.NE.VLODEFIGO TO 100
ATBSTK(APTR=-1,2)=VLODEF

Y

100"

RLOABI=RLOABI+T
LF(RNUM(RPTR=-1,RLOAB1+1) ,NE.0)GO TO 30
IF(RATB2.NE.VLODEFIGH T4 120

110

ATSSTK(APTR-1,2)=VLODEF
RLOAB2=RLOAB2+1
IF(RNUM(RPTR,RLOAB2+1) ,NE.O)GO TO 110

- -
‘ ; . }
*22 TF(LLOAB2.EQR.0)GO To 140
- D9 130 1=1,LLO0AS? o o
JELLOABT+I
LMUYC(LPTR=1,J)=LNUMCLPTR,I)
140 IF(RLOAB2.EQ.0)GO TO 160
O
JSRLOABT+I
RNUM(RPTR=1,J)=RNUM(RPTR,I)
150 CONTINUE
o ¢
. L ‘ e — o
160 LLOABT=0
LLOAB2=0
RLOABT=0
RLOAB2=0
e
€ *x*x INITIALIZE ALL STACKS AND POINTERS
¢
CALL INALZE
RETURN
c
Co . .
. N2t NS NUMBE RP Ry € e .
C
¢

7000

CONTINUE

G

PR

T IF(ACTINN.NE.7)GD TO 8000

C *** TURN THE FLAG OF WHILE¢ RELATICN (WLREFE) FCR SACH CCCURANCE

INT=INT#T

IF(INT.GT.LEVOFGIWRITE(6,3460)

WLREFGCINT) =1

RETLRN

8000

.G
C
C N3 ¢ U
C -
C ¢ D
B N
W B} - . .

CONTINUE

IF(ACTION.NE.B,ANDLACTION.NELF.AND ACTIONJNELTOIGO TO 11000

* Xk %k

APTR=APTR+1

IF(APTR.GT.SYMSZIWRITE(6,350)

ATSSTK(APTR,1)=VALUE

ATBSTK(APTR,2)=VALUE

RETURN

CNUPNMBERPR 30 NUMBER o o o oo o oo e s s e e

el Ne el aie]

1000

CONTINUE

IF(ACTIONJNELT11)GO TO 12300

iy

* % %

PUT TOKEN€VALUE INTO NUMBER STACK

LPTR=LPTR+1

IFC(LPTR.GT.SYMSZIWRITE(6,36C)

CRPTR=RPTR+1

LNUM(LPTR,1)=VALUE

IF(RPTR.GT.SYMSZ) WRITE(6;360)

C
RNUM(RPTR,1)=VALUE
RETURN
3
— - S
- N2 : LEFTPR, NO, RIGHTPR
: —
C
12000 CONTINUE
C

T WRITE(6,850)ACTION

CIFCACTIONJNEVIZUAND ACTION.NE.13)50 T 16000

*kx [F WHILE€RELATIONeFLAG IS TRUEVTHEN
*%k% INSERT A "R" ATTRIBUTE 3EFORE NEXT ATTRIBUTE

i
VOO O OO
: i

TTECATBS TR CAPTR=T,2)ET VLOREFIATASTK(APTR-T,2Y=8LANK

IF(ATBSTK(APTR,2)Y.EQ,VLOREF)IATBSTK (APTR,2)=BLANK

IF(WLREFG(INT) .NELT)RETURN
IF(COUNT(INT) NEL.-T) RETURN

_APTR=APTR+1
TLPTR=LPTR+1

RPTR=RPTR +1
AT3STK(APTR,1)=ATBSTK(AFTR-1,1)
ATBSTK(APTR,2)=ATBSTK(APTR-1,1)

D 0 1 70 I -‘1 , LL EN e+ e e

LNUM(LPTR, ID=LNUM(LPTR=T,1)

RNUM(RPTR,IDI=LNUM(LPTR=-1,1D
170 CONTINUE

C
CALL COLLAPSE -
C
C **x RESET NHILE*RELATION+FLAG
C
C WLREFG=,FALSE,

WLREFG(INT)=0

_COUNTC(INT)=0

INT=INT-1

RETURN

LEFTPR : (

16000 CONTINUE

P
Pl
n-—ln§nnnn

IFCACTIONLNELT6)GO TO 19000

**x% IF THE FLAG OF WILE®€RELATION (WLREFG)
* &% THEN INCREMENT THE PARENTHSES (COUNTER(COUNT).

IS ON

x%% IF THE FLAG OF WHILE€RELATION IS ON
**% THEN DECREMENT THE PARENTHSES COUNTER.

olevyeoalo m olo

IF(WLREFGCINT) . EQ.0)RETURN
COUNT(INT)=COUNT(INT) +1

RETURN

RIGHTPR :)

EdinEnN e He X

9000 CONTINUE

.n=

CIF(ACTION.NE.T19)RETURN

IF(WLREFG(INT).EQ,0)RETURN
DO 200 I=1,INT
COUNT(I)=COUNT(I)-1

200 CONTINUE
RETURN

END

SUBROUTINE ERROR(LATB,RATS)

IMPLICIT INTEGER (A-2)
DIMENSION VCBLRY(21,10),SYMTAB(1C3,10)
COMMON /TABLES/ATESTK(50,2),LNU¥(50,10) ,RNUY(50,10)

~ COMMON /BLOCK/IDUMNY ,VC3LRY,SYMTAB
COMMON /VAR/VARBLE (10)

 COMMON /TKNVAL/VLODCL,VLODEF,VLOREF

COMMON /POINTR/APTR,LPTR,RPTR,LLEN,RLEN

c
IF(LATB.NE.VLODCL.OR.RATB.NE.VLODCL)GC TO 10
WRITE(6,500)VARBLE , ((SYMTAB(RNUM(RPTR=1,1),1),J=1,10),
g TR TTE e e e
CWRITECE,510) C(SYMTAB (LNUMCLURTR,IY IV »u=1,10),1=1,0(Eny ™ = 777
3
RETURN
¢
.10 CONTINUE
¢
""""" T I F(LATE U NELVLODEFLORLRATS UNELVLODEFYGE T0 20
WRITE(6,520)VARBLE ,C(SYMTABC(RNUM(RPTR=1,1),40,d=1,1C),
$ I1=1,RLEN)
WRITE(6,530)C(SYMTAS(LNUM(LPTR,II»J)»J=1,10),I=1,LLEN)
C
R ETURN e e e e -
. —
T 20 CONTIN.E o
C
IF(LAT3.NE.VLADCL . NR,RAT3 . AF.VLOREF)IGC TO 30 .
 WRITE(6,540)VAR3LI,((SY¥TAB(LNULN(LFTR,1),J),J=1,100,
U S I AL END -
: ‘
30 CONTINUE
RETURN
C
500 FORMAT(///2X,"VARIASLE: ",10A2,2X,"WAS DECLARED IN STATEMENT "
3 #3(10A2)/34X,3(10A2)/) -
S10 FORMAT(34X,"AND DECLARED AGAIN IN STATEMENT ",3(1042)/
5 34X,46(10A2))
S40 FORMAT(///2X,"VARIASLE: ",10A2,2X,"WAS NOT DEFINED BEFORE "
$ /34X,"AND REFERENCED IN STATEMENT ".,3(1042))
520 FORMAT(///2X,"VARIASBLE: ",10A2,2X,"WAS DEFINED IN_STATEMENT "
B 3 3(10A2)/57%,3(10A2))
530 FORMAT(34X,"AND REDIFINED AGAIN IN STATEMENT *,3¢10A2)
3 /57X,3(10A2))

END

T SUBROUTINE COLLASSE R S

C *hdhd ko ke kA AKX R AR K KRR KA AR AR A Kk AR A Ak ko kk ko k ok kXX koxx

€ = ROUTINE WHICH CAN PROPAGATE THE LEFT AND RIGHT

¢ = ATTRIBUTE OF FIRST NCDE ANC SECCNDC NODE INTO *

¢+ " THE THIRD NodE. | 3 e

) C Hhkk ok kKRR Rk Rk Ak kK Rk Ak A ARk kA Rk kXA Ak kAR kR Ak ko kk kK Ak Ak Kk K Lk Ak Kk kK x o

IMPLICIT INTEGER (A-17) '
DIMENSION VCBLRY(21,10),S5YM7A8(¢100.,10)
COMMON /TKNVAL/VLODCL,VLODEF,VLOREF
COMMGON /BLOCK/DUMNY,VCSLRY,SYMTAR

o " COMMON /TABLES/ATBSTK(SC,2),LNLM(50,1C) ,RNU®(53,10)

COMMON /POINTR/APTR,LPTR,RPTR,LLEN,RLEN,LLOABT,LLOAE2
$,RLOAS1,RLOAB?
DATA BLANK/2H [

C

JLATEB1=ATSSTK(APTR=1,1) . U
RATB2=ATSSTK(APTR,2)

C

IFC(LATBT.NEL.BLANK)GO TO 20
ATBSTK(APTR=-1,1)=AT3STK(APTR,1)
DO 10 I=1,LLEN
LNUVM(LPTR=1,1)=LNUM(LPTR,I)

10 CONTINUE) T
¢
20 IF(RATB2.EQ.BLANK)GO TO 35 T) T
ATSSTK(APTR=-1,2)=AT8STK(APTR,2)
DO 30 J=1,RLEN
. RNUM(RPTR=1,J)=RNUM(RPTR,J)
... 30 CONTINUE e e e e e)
¢
35 CALL INALZE
¢
RETURN
B END e

SUBROUTINE INALZE

c I EE SRR ESEEE R RS R ERNEESEEFES R EFEERERSEEEEESEREREEEEESEIERIEIEIESENISES

C * ROUTINE WHICH INITIALIZE THE STACK VALUE TC ZERC *
o ox FCINTING BY THE APTR(CURRENT ATTRIBUTE PGINTER). *
L€

***********k***

IMPLICIT INTEGER (A-2)

COMMON /TABLES/ATBSTK(S0,2),LNUM(SO,10),RNUM(S50,10)
COMMON /POINTR/APTR,LPTR,RPTR,LLEN,RLEN

ATBSTK(APTR,1)=0
ATBSTK(APTR,2)=0
00 10 1=1,10

LNUM(LPTR,I)=0
10 CONTINUE

DO 20 _I=111O

RNUM(RPTR,I1D=0
20 CONTINUE

APTR=APTR-1
LPTR=LPTR=-1

RPTR=RPTR=1
LLEN=0
RLEN=0

TURN
1

ey L
(0N

»

APPENDIX H

PE ANALYSER QUTPUT

ARIABLF:

ARIABLE:

ARIABLE:

ARIABLE:

ARIABLE:
ARIABLE:

ARIABLE:

ARIABLE:

X

X

X

FLAG

I

TABLE

ALL POSSIBLE ANOMALIES FOR EACH VARIABLE OF PROCEDURE

WAS NOT DEFINED EEFORE
AND REFERENCED IN STATEMENT 12

WAS DEFINED IN STATEMENT 20
AND REDIFINED AGAIN IN STATEMENT 28

WAS DEFINED IN STATEYENT 28
8UT WAS NEVER REFERENCED

WAS DEFINED IN STATEMENT 12
AND REDIFINED AGAIN IN STATEMENT 25

WAS DEFINED IN STATEMENT 25
AND REDIFIMNED AGAIN IN STATEMENT 30

wAS DEFINED IMN STATEMENT 30
ALT WAS NEVER REFERENCED

whAS DEFINED IM STATEZENT 5§
AND REDIFINED AGAIN IN STATEYMENT 11

WAS DEFIMED IN STATEMENT 5
AND REDIFINED AGAIN IN STATEMENT 10

WAS NOT DEFINED BEFORE
_AND REFERENCED IN STATEMENT 14

™)

24

BIBLIOGRAPHY

[A] ARTHUR J. D., "A Unified Model for Constructing
Automatic Analysers Which Performs Static and
Dynamic Program Validation", Master Thesis,
Department of Computer Science, University of
Houston, (may, 1979). :

[AU] AHO, A. V., ULIMAN, J. D., Principles of Compiler
Design, Addison-Weseley Publishing Company, (1977).

[B] BOYD, D. L., PIZZARELLO, "Introduction to the WELLMADE
Design Methodology", IEEE Transactions on Software
Engineering, Vol SE-4, No. 4,(July, 1978).

[B1] BOEHM, B., "Software and Its Impact: A Quantitative
Assessment", Datamation, 19, (1973).

[c] CHAPIN, N., "Semi-Code in Design and Maintenance".
Computer and People, Vol. 27, No. 6, (June 1978).

[CG] CAINE, S.H., GORDON, E. K., "PDL - A Tool for Software
Design", Tutorial on Software Design Techniques,
IEEE Catalog No. 76CH1145-2C, (October, 1976).

[H] HARTMAN, A. C., A Concurrent Pascal Compiler for
Minicomputers, Springer-Verlag Berlin Heidlberg,(1977)

[1] LEDBETTER, W. R., "A Pseudo Language Processor for
Design Validation and Implementation of Systems",
Master Thesis, Department of Computer Scilence,
University of Houston, (June 1979).

[R] RAMAMOORTHY, C. V., "Testing Large Software with
Automated Software Evaluation Systems", IEEE
Transactions on Software Engineering, Vol SE-1,

No, 1, (March, 1978).

[RB] RAMANATHAN, J., BLATTNER, M., "Program Forms and Program
Form Analysers for High Level Structured Design",
Technical Report UH-CS-79-1, Department of Computer
Science, University of Houston, (February, 1979).

[s] sTAY, J. F., "HIPO and Integerated Program Design",
Tutorial on Software Design Techniques, IEEE
Catalog No. 76CH11L45-2C, %gctober, 1976)",

[Www] WIRTH, N., WEBER, H., "EULER : A Generalization of
ALGOL and Its Formal Definition", Comm. ACM Vol. 9,
No. 1, (1966).

