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ABSTRACT

This investigation is concerned with bounds on the maximum shear 

stress in bars subjected to twisting by applied end couples. The results 

which are found within the framework of the Saint-Venant formulation, 

are applicable to bars of homogeneous, anisotropic material, having a 

simply connected cross section.

In the case of isotropic bars we arrive at an upper bound that 

evidently constitutes an improvement over those available in the 

literature. On the other hand, there appears to be nothing in the 

literature concerning stress bounds for bars of anisotropic materials.

The key idea involved in the derivation of the upper bound for 

the isotropic bars is the minimum principle for superharmonic functions. 

The stress bounds for anisotropic bars are found both in a manner 

analogous to the development to the isotropic case, and by directly 

applying an affine transformation to the results found in the isotropic 

case. Both methods are used for orthotropic and anisotropic bars.
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1. Introduction

In the Saint-Venant theory of torsion for homogeneous bars of 

elastic and isotropic material, bounds fcr the magnitude of the shear 

stress have been deduced by Colombo [1]“ and Protter and Weinberger 

[2, p. 1A8]. Of these two results the latter is considerably simpler 

and easier to derive. Moreover, it is not, like Colombo's bound, 

restricted to bars of star-shaped cross section. However, Colombo's 

estimate has the advantage that it is optimal for the circular cross 

section, whereas it is not clear that there is any cross section for 

which Protter and Weinberger's result is exact.

In the present investigation, we derive an alternative upper 

bound, which is determined by only two geometric parameters: the radius 

of the largest disk contained in the cross section, and the minimum 

curvature of the boundary. It is established by methods closely related 

to those employed by Colombo. This new estimate, in addition to being 

exact for the circular cross section, is simpler than Colombo's, applies 

to cross sections not necessarily star shaped, and is sharper in certain 

cases of interest.

Two lower bounds are also derived for the maximum shear stress. 

Such lower bounds are useful, among other things for assessing the 

quality of the upper bounds. One is in essence found by applying the 

maximum principle for harmonic functions; the other is easily arrived 

at with the aid of Green's theorem for the plane. All of these results 

are considered and discussed in section A.

The torsion problem for homogeneous bars of elastic and

*Numbers in brackets refer to the Bibliography at the end of 
the paper.
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anisotropic material may be reduced to that of the isotropic case by 

an affine transformation. Thus, the upper and lower bounds for this 

case can be derived either in a manner analogous to the derivation in 

section or by directly applying the affine transformation to the 

results of section Both methods are exploited in section 6 and 7 to 

get results for orthotropic and anisotropic bars.

The torsion problem is formulated in section 2. Section 3 is 

in essence a compendium of results on subharmonic functions, drawn from 

the books of Rad6 [31 and Helms [4], as well as a paper [51 by Cimmino. 

A counterpart of this section is developed in section 6, which is aimed 

at establishing certain properties for elliptic operators that are 

needed to get stress bounds for anisotropic bars.



2. Formulation of the torsion problems

Let D designate the open plane domain occupied by a cross

section of the bar, and let (x ,x ,x ) stand for Cartesian coordinates
1 2 3

relative to a frame that contains D in its (x ,x )-plane. Throughout
1 2

this investigation, D is assumed, unless otherwise stated, to be

bounded and simply connected, so that its boundary 9D is a simple

closed curve. If the bar is homogeneous, and has at each point a plane 

of elastic symmetry normal to its axis, then the torsion problem may be

reduced to finding a stress function $, that obeys*

L$ = -2 on D, 5=0 on 3D. (2.1)

Here L denotes the operator

l=a -2a +a -4, (2.
ll, 3X7 lc 3x 3x 55 x44 1 45 1 2 55 2

where a , a and a are material constants. If G and G are the
44 45 55 23 13

shear moduli for planes parallel to (x ,x )- and (x ,x )-planes,
2 3 13

respectively, and p (a,8=1,2) are the shear interaction 
3a,g3

that characterize the strain in (x ,x )-plane resulting from 
3 a

in (xo,x )-plane, thenP 3
 1 1 = y31,23 = y23,31

G ’ a55 G ’ %5 G G
44 23 13 23 13

The shear stresses o , a are given in terms of 5 
31 32

coefficients

shear stress

by

(2.3)

where m is the applied twisting moment, and

K = 2 AdA (2.4)
D

is the torsional rigidity of D.

*See, for example [6].
3
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The problem may alternatively be formulated in terms of a 

function T, that obeys a homogeneous partial differential equation. It 

is related to $ through
9 9X X

¥ = $ + + —- '-a a
44 55

(2.5)

In view of (2.1),

xi2 xo2
LT = 0 on D, T = ~~— ) on 3D. (2.6)

44 55

If the material is orthotropic, then a = 0. Thus, if we write 
45

G = p , G = p , then equations (2.1), (2.5) and (2.6) reduce to 
23 2 13 1

p —— + p —- = -2p p on D, $ = 0 on 3D, (2.7)
1 3x 2 2 3x 2 12

1 2

T = $ + igfp x 2 + p x 2), 
2 1 1 2

(2.8)

and

p .2—L_ + y 8 T  q on d, T = Wp x 2 + p x 2) on 3D. (2.9)
1 3x 2 2 3x 2 21 12

1 2

Equations (2.3) and (2.4) remain unchanged. For an isotropic bar,

equations (2.7), (2.8) and (2.9) furnish

A<j> = -2 on D, 4> = 0 on 3D, (2.10)

ip = <f> + ^(x 2 + x/), (2.11)

and
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Aip = 0 on D, i|> = 2 + x 2) on 3D, (2.12)

where A denotes the Laplacian operator on D, and = i>/p, ip = V/p

and y = p = p is the shear modulus. For this case, (2.3) reduces to 
1 2

where

m 3d>/T S — T ...w (T 5S m 3 <f>
31 k dx2 * a32 k 9x

1

k = 2/<|> dA .
D

(2.13)

(2.14)*

*lf p is the shear modulus, pk is the torsional ricidity.



3. Results on superharmonic functions

The purpose of this section is to bring together a number of 

results that have proved useful in investigations of the present kind. 

For convenience, let C(A) be the class of functions defined and 

continuous on A, if A is a set, and let (^(A) be the set of functions 

m-times continuously differentiable on A. The symbol S(D) denotes the 

set of functions that on the domain D are superharmonic in sense of 

Radd [3J. Points in D will be identified with their position vectors, 

which we ordinarily denote by x, y, or z. If u is defined and 

continuous on the closure, S.(x), Of o

ss(x) = {y | |x-y | < 6},

we put

M(u,x,x) = / u ds (0 < A s 6), (3.1)
2*A c/(x)

where C_(x) = 3S.(x), and write o 6

Au(x) = U lim inf  {-4- [M(u,x,x) - u(x)]}. (3.2)
■*-  A

Lemma 3.1 (Properties of superharmonic functions)

(A) u e S(D)nC(5)^ min u = min u;
5 3D

(B) u e C(P), Au < 0 on D u e S(D);

(C) u e C2(D)^ Au = Au on D.

6
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For the proof of Part (A), see p. 59 of R]. Part (B) follows 

at once from a result on subharmonic functions that appears in 3-7 of 

Radd's monograph [3]. Finally, (C) is easily established by introducing 

polar coordinates in the obvious way anc invoking L'Hospital's rule.

The next lemma requires the notion of the outward normal 

derivative, which we take to mean

(x) „ lim u(x t ln(x)) - u(x) , (3 3)
3n X->0" A

where n(x) stands for the unit outward normal vector at x e 3D.

Lemma 3.2 Assume:

(a) u e C(5), u = 0 on 3D, exists on 3D, and

Au < -M on D , (3.A)

where M > 0 is a constant;

(b) v,w E C2(D)nC(D), v = w on 3D, and

-M1 < Av < M", Aw = 0 on D, (3.5)

where M1, M" are positive constants.

Then,

3v M" 3u < 3w < 3v M1 du
3n M 3n “ 3n ~ 3n M 3n — (3.6)
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Pa.00^. Consider the function

M1 —v1 = w - v + 77— u on D.
M

Since u = 0 and v = w on 3D,

v1 = 0 on 3D.

Application of Part (C) of Lemma 3-1 yields

M1 Av1 = Aw - Av + 77— Au on D.— M —

Thus, by (3-M and (3.5),

Ay1 £ 0 on D.

From (3.7) and the fact that u, v, w e CCd), it follows that v1 e

Hence, by (3.8), (3.9), and Parts (A) and (B) of Lemma 3.1,

v1 > 0 on D.

3 v1The hypothesis of the present.lemma ensures that -—exists on 3D o n
is given by

3v1  3w  3v M1 3u
3n 3n 3n M 3n on 3D.

Thus, by (3.8) and (3.10),

< 0 on 3D4- 1^- - 
dn — dn

M1 3u > 3w
M 3n — 3n on 3D.

An analogous argument applied to

v" = v - w + 77— u M

(3.7)

(3.8)

(3.9)

C(D).

(3.10)

and
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yields

9w 9v M11 3u
9n — 9n M 9n on 9D.

The proof is now complete.

A result closely related to the foregoing lemma appears in a 

paper by Cimmino [5]. Application of the lemma entails making a 

suitable choice of the functions u and v. A particularly useful 

specification of u, which was deduced by Cimmino [5], is given in the 

following lemma. . In this lemma, 9D is assumed to have continuous 

curvature, the sign of which is determined in the usual way*.  Also, 

we adopt the notation

*Thus, if y is the center of curvature corresponding to
x e 9D, then the curvature has the same sign as the inner product 
(x-y)*n(x), where n(x) refers to the unit normal outward to 9D at x.

6(x) = min |x-y| 
ye9D

(3.11)

for the distance of a point xeD from 9D.

Lemma 3.3 Let D be a plane domain whose boundary has continuous 

curvature, the minimum value of which is k, and let p be the radius 

of a maximal disk contained in D. Let p =p, if D is a disk. If D 

is not a disk and < > 0, let p e f p1 . If k < 0, let p > p. 

Define f(s) for every s e [0,pQ] by.
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f(s) = •

K = 0,

D byand define u for every x e

u(x) = f(6(x)).

Then u e C ( d) ,

u

easily verified that f has the properties

C2[0,p ], f(0) = 0, f(0) = 1, f > 0 on [0,pn], o — of e

u e C(D) andand that these, together with (3.13) imply

3D.

limit as k->0 of the

on [0,po],

*The form of f(s) for k = 0 is the 
form for k * 0.

k2p(2-kp )O 0

n au 1
u = 0, — = -1 on dn

P.h.oo£. It is

= 0 on 3D, = -1 on 3D, Au < —rr~—r on D-— 3n — - — p (2-kpJ —o o

2 2
[ks - ~2~ + 0 ~ Kpo)2ln(l - ks)], if

< fl = -2
1-KS p (2-Kp ) 0 0

* 0

(3.12)*

(3.13)

(3.1M

(3.15)
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Consider now the last of (3-1M, and assume first that k > 0.

If D is a disk, pQ = , and (3.12) gives

9 
f(s) = s - .

Thus, in this instance,

u(x) - po - r - A- (p0-r)2,
o

where r is the distance between x and the center of D. Therefore

Au = — ,
%

which confirms the last of (3.15) for D a disk. Suppose that D is not 

a disk. Choose x° e D, and let y° c 3D be such that 6(x°) = |x° - y°| 

(see Fig.l). Put n = , and let z be such that (^(z) is tangent to

3D at y° and n(yo)*(y°-z)  > 0., Define 61 on D by

61(x) = min |y-x| 
yeC^z)

for every x e D. Let z; > 0 be such that 6 (x) £ 61 (x) < PQ for every 

x e S?(x°), and set

u1(x) = f(S'(x))

for all x e S^(x°). By (3-15),



12

Figure 1. Cross Section with Positive Minimum Curvature
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u1 e C2(S^(x0)). (3.16)

Since 61 (x°) = 6(x°), and 61 (x) 6(x) for every x e S^(x°), and

because f >_0 on [0,po], there follows

u(x) < u'(x), u'(x°) = u(x°). (3.17)

Accordingly,

M(u,x°,X) - u(x°) <_ M(ul,x°,X) - u'Cx0).

Hence, by (3-2), (3.16), and Part (C) of Lemma 3.1,

Au(x°) £Au'(xo). (3.18)

By introducing polar coordinates centered at z, one may show that

Au'(x°) = f"(6'(x0)) - Y-k<ST(7T f'U'U0)),

whence (3.18) and the last of (3.15) imply

Au(x°) < —ry-^-—r .
-po(2-Kpo')

To establish the last of (3.1M for k < 0, take rj = ~ — , 

choose z such that C (z) is tangent to 3D at y° and n(yo)*(y°-z)  < 0,



14

Figure 2. Cross Section with Negative Minimum Curvature



15
(see Fig.2). The remainder of the proof for k < 0 is then entirely 

analogous to the foregoing proof for k > 0.

Consider finally the case k = 0. Fix x° e D, and let x ,x 
1 2

designate Cartesian coordinate in a frame with its origin on 9D at a

distance 6(x°) from x°, its x -axis tangent to 3D, and x° lying on the 
2

positive x -axis (see Fig.3). Let ? > 0 be such that 6(x) £ x < p
1 1 0 

for all x c S^(x°), define

u'(x) = f(x ), 
1

and proceed as in the case k > 0 to arrive at

By (3.12),

Au(x°) £ Au'(x°).

Au'(xo) = f"(x °) = - 2- .
1

The proof is now complete.
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Figure 3. Cross Section with Zero Minimum Curvature



A. Stress bounds for homogeneous elastic bars

In view of (2.13), the maximum shear stress is given by

o = max v'o 2 + a 7 max |Vd>|, (^.1)
D 31 32 k D

from which it is clear that an upper bound on cr may be found by 

establishing a lower bound for k and an upper bound on

t = ma_x | V<t> |. (4.2)
D

On the other hand, lower bounds for a can be obtained by deriving upper 

bounds on k and lower bounds on t. The present investigation is 

concerned mainly with upper bounds on t. The principal mathematical 

tools have been set forth in the preceding paragraph for establishing 

upper bounds on ?. We are now in a position to state

The.(M.e.m 4.1. Let D be bounded and simply connected, and assume 3D 

has continuous curvature. Suppose that <j> e C3(D) nC1 (d) and sat i sf ies 

(2.10).

Then,

ma_x £p(2-Kp), (4.3)
D

where k and p are as in Lemma 3.3.

Ph.00^. By (2.10),

17
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Thus, Parts (A) and (B) of Lemma 3.1 yield

ma_x |V<j>|2= max |V<|>|2.
D 3D

Consequently, and since $ is constant on 3D,

max |V4>| = max |V<j>| = max l-^l •
D 3D 3D d

It therefore suffices to show that

max l-^-l <_ p(2-<p) (4.4)
3D 9

in order to establish (4.3).

Let

v(x) = ^(x2 +x2 )
1 2

for all x e D and put

w = (j> + v on D •

Then,
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Av = 2, Aw = 0 on D, v/ = v on 3D,

because of (2.10). Thus, by Lemma 3.2,

2 3u 3d> 2 3u— —- < < - rr — on 3D,M 3n — 3n — M 3n

provided, of course, u and M conform to hypothesis (a) of the lemma.

Consequently, Lemma 3.3 yields

-p (2-kp ) < < p (2-kp ),o o — 3n — ro o

whence,

£ po(2-kPq) on 3D, (^.5)

where p = p if D is a disk, p e (p,—) if k > 0, or p > p if k < 0.0 0 K 0 —
Since the left-hand member in (4.5) is independent of p^ if D is not

a disk, (4.3) now follows and the proof is complete.

A different choice of the function v enables us to establish

T/ieOA-im 4.2 (Colombo's bound). Let D conform to the hypothesis of

Lemma 3.3. Assume further that 3D admits a representation

r = a(e) , 0 < 0 < 2ir

in polar coordinates (r,0) , where
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a e C2(-oo,=o), a > 0 on [0,2-rr],

and a is periodic of period 2ir. Let

p = min a, £5 = max a, y = max I a11 , X = max a".
[O,27r] [0,27t] [O,27t] [0,2tt]

Finally, suppose $ e C3(D)nC'(D) and obeys (2.10). Then

2^x1 S Is2 " P2 <■ £(1 + |(2-KP)i(1 +^). (1..6)

P/tOO^. Since the scheme used to prove Theorem 4.1 may be used for the 

present theorem, we need only mention that here one chooses the 

function v as

v(r,6) = ^.{r[a(e) - + i52), (4.7)

and uses the fact that

(4.8)< 0 on 30.

The inequality (4.8) follows from (2.10) and Part (A) of Lemma 3*2.

The bounds (4.3) and (4.6) are optimal for D a disk. Indeed, 

if D is a disk of radius p, and r stands for the distance of (x ,x ) 
1 2

from its center, then
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<f>(x ,x ) = Mp2-r2) (A.9)
1 2

satisfies (2.10). Thus,

I7*! ’! = l|^l = r-

Whence,

max |V<|>| = p.
D

The right-hand members in (^.3) and (4.6) reduce to p, sincel

= p = p = p, y = X = 0.

We turn now to the task of finding lower bounds on t> First, 

we introduce the following lemma.

Lemma 4.1. Assume D to be bounded and simply connected. Let D.,.cD, 

and be simply connected such that the set P = dDndD^ is not empty, and 

JetxoeP. Let <j> e C2(D)nCl('p) and obey (2.10), let <f> e C2(DjnC'(oj 

and satisfy

A<f>A = ~2 on Da, <j>j. = 0 on gD*.

l-Here we have taken a = p, so that the origin of the polar 
coordinates referred to in Theorem 4.2 is situated at the center of D.
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Then,

|V4>(x°) | > |V^(x°) |. (4.10)

The proof of this lemma may be found on p. 148 of [2].

In the following theorem, we arrive at a simple lower bound on 

t by taking D*  to be a disk.

Tke.o^.ejn 4.3 Let D be bounded and simply connected. Assume

<(> c C2(D)nC'(D) and satisfies (2.10). Then,

max | V<|>| > p, (4.11)
D

where p is the radius of the largest disk contained in D.

P/ioo^. Let Dj. be a disk of radius p contained in D. Thus, if 

x° e P = SDndD^, Lemma 4.1 furnishes

IV4>(x°) | > |V<f>A(x°) |,

where is the stress function for the disk. By (4.9),

|V4>.J = p on 9Da.

Therefore,

max > |V<|>| > p,
D 
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and the proof is complete.

The key to finding the lower bound (4.11) was to choose a 

subdomain Dj. for which the stress function is known, namely, a disk. 

As we shall see later on, sharper estimates may be obtained through 

other choices of D^,. Thus, in the case of the cross section bounded by 

the Booth's lemniscate, we will arrive at further lower bounds for t 

by choosing for D^. a disk with a circular notch, a half disk, and an 

el 1ipse.

We turn now to an alternative way of getting lower bounds, 

which takes advantage of the well-known identity

/ M ds = -2A, (4.12)
dD

where A is the area of D.

Tke.oh.ym 4.4. Let D be bounded and simply connected. Assume

<f> e C3(D) nC*  (5) and satisfies (2.10). Further, assume 5 to be a plane

*Cf. Kellogg [7], p. 99-100.

regular*  region.

Then,

9 A
max |V<t>| > 7— , (4.13)

D b

where C is the 1ength of 3D.

Ph.oo£. The identity (4.12) is an elementary consequence of (2.10) and

Green's theorem for the plane. From (4.12), there follows
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2A s max
3D 3n C.

Therefore, since <j> is constant on 3D and satisfies

max |V(j>| = max IV<f>|,
3D D

one has

max |V<j)| > .
D

The proof is now complete.

Bounds for the torsional rigidity have been investigated 

extensively, and it is not our intention to go into the matter for the 

sake of finding new bounds. The brief summary offered here enables us 

to arrive at estimates on the shear stress a by means of (4.1). Our 

main source of reference for the bounds on k is the recent survey 

article [8] by Payne.

The.O/L£m 4.5. (The Saint-Venant isoperimetric inequality). Of al 1 

isotropic elastic beams of a given simply connected cross-sectional area 

the ci rcular beam has the highest torsional rigidity, j_.e_.

2'irk 5 A2 (4.14)

where A is the area of D.
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This theorem was proved by Pdlya [9].

Let be any function Dirichlet integrable over D which vanishes

on 3D, let c C'(D) (a = 1,2), and assume a

d^i d?2
= -2 on D.9X! 3x2

Then,

5 dA)2
(^2 +^2 ) dA > k 5 . (4.15)

Jn f IV?!2 dA

The choice r = -x , leads to a a

k < Io (4.16)

where lo is the polar moment of inertia about centroid. Another useful 

result is obtained from (4.15) by setting r = -a x , a + a =1, and a a a 1 2
suitably choosing a^ and a2. This gives

41 I
k s f , (4.17)

. 1 2

where I1, l2 are moments of inertia about the two principal axes through 

the centroid.

For the lower bounds on k, Polya and Szego [10] have

established

2k > irr^ (4.18)



26

where r is the maximum inner radius*.  It is optimal for D a disk. A 

result due to Weinberger [11, p. 55] implies

*For the definition of inner radius, see p. 2 of [10].

2k > irp1*,  (^.19)

where p is the radius of the largest disk contained in D. Equality 

holds when D is a disk.

The bounds on the maximum shear stress, o, are now easy to 

obtain. For instance, by (.4.1), (^.3), (4.11), (4.17) and (4.18), it 

fol lows that

1 2
— p
12

“ s p(2"Kp) . (4.20)

On the other hand, (4.1), (4.3), (4.13), (4.14) and (4.19) furnish

4 TT < CT 
AC “ m S (2-Kp) .Tip 0 (4.21)

Equality holds throughout (4.20) and (4.21) for D a disk.

The literature on torsion furnishes a substantial number of 

opportunities to compare the foregoing bounds with the exact value for 

t. From the cross sections for which t is known, we have selected two: 

the elliptic cross section and the cross section bounded by Booth's 

lemniscate. They were chosen mainly for the sake of simplicity, but 

the choice was also guided by the desire to consider both convex and 

non-convex cross sections. Let T| stand for the upper bound in (4.3), 
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and Tj। for the one in (^.6). The right-hand member of (^.11) will be 

denoted by tp and the lower bound in (A. 13) by tp.

For the ellipse represented by

X1 X2
— + — = 1 (0 < b < a) .
a2 b2

One finds

p = b, k = — , p = b, j5 = a, X = b (1 - ^r), 
9 aaz

y = a h(e), where e = » ar|d

3
h(e) = [(e2+l) (e^-e2+l)^ - (e^+l) 1^7[ (e2+l) -

Moreover, A = irab, C = 4a E(e), where E(q) is the complete elliptic

integral of second kind, and

6 = sin

One can show that

C s 2ir def C. (4.22)

Thus, (4.3) and (4.6) give

I, - | (2 (A.3')
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T,, = 7 [e2+2e-l+£2(l+e2)h2(£) + ^-(2 - ^(l - -Irp)], (A.6') 

while (4.11) and (4.13) furnish

t, = , (4.11')

tlI = 2eE(9) ’ (^.13')

It follows from (4.13') and (4.22) that

tl I "^11 = a /l+e2" * (^-ZB)

The exact value for t is given [12, p. 121] by

2ae (4.24)

Table 1 gives values of x/a and its bounds as determined by 

(4.3'), (4.6'), (4.11'), (4.13') and (4.23). For the upper bounds, 

values of T, are closer to the exact values than those of T||. 

Moreover, the table suggests that T| improves with increasing e, while 

Tj। deteriorates. Indeed, it is not difficult to verify that

1im (t - Tj) = 0,

whereas the limit corresponding to Tj, tends to -=. The table also
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Table 1. Upper and lower bounds for elliptic cross sections, a = 1.

e T
lower bounds upper bounds

(4.11') (4.23) (4.13') (4.3') (4.6')

1.1 0.995 0.910 • 0.951 0.951 1.067 1.208

1.2 0.984 0.834 0.906 0.908 1.088 1.428

1.6 0.899 0.625 0.751 0.957 1.006 2.524

2.0 0.800 0.500 0.633 0.649 0.875 4.466

2.ij 0.714 0.417 0.545 0.563 0.761 8.220

3.0 0.600 0.333 0.448 0.470 0.630 20.45

3.6 0.516 0.278 0.379 0.402 0.534 47.10



tells us that t|| is sharper than tj. By (4.11') and (A.23),

30

t2 - t 2 = ,ar I II e2(l+ez) (1-e2) < 0.

Thus, by (^.23),

5 'll 5 'll*

In order to assess the upper and lower bounds T., t.., we define

the relative error,

a) = 2 (A.25)

Hence, (4.25), (4.3*),  (4.23) furnish

(2e2-l)/l+e2 - VT e3
(2e2 — 1) /l+e2 + Vi e3

(4.26)

Thus,

fl(e) - f2(e) 
“<£) = 2 f/c) + f2(C) ’

where f^ = (2e2-l)/1+e2, = e3«

Consequently,

fje)f'(e) - f.UJflU)
«>'(£) -S ------1---------- 1-------------

[f (c) + f2(e)]2

and
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fi(e) = .3e,(2e2+l) f,(e) = £2a
1 /b^" 2

Finally, we obtain

---------- ----------------------  > 0
[f/^+f^e)]2

(4.27)

It follows from (4.2?) that a)(e) is a non-decreasing function of e.

Obviously, when e->l, w->0. Moreover,

1 im a)(e) = 2 = 0.344 = 34.422 -
•2 + /2-

which shows that the relative error is not more than 34.42.

Next, consider the cross section bounded by the Booth's 

lemniscate which is represented parametrically through ®> by

(a+1) cos® L’ (a-1) sin®----------------------- , x = b   
l+a2+2a cos 20) 2 l+a2+2a cos 2®

(0< ® <2tt) . (4.28)

where a < 1, b < 0 (see Fig.4). An involved caluclation results in



Figure 4. Cross Section Bounded by the Booth's Lemniscate
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(a+1)(1-6a+a2) , 4abK = -----------------------  , x = ----------------- ,
b(a-l)2 (a-l)2(a+l)

and

y = - k a+1 pl(9) 
2 '>a'1Jp^2(g)Q(g)

where P(g) = 1 + a2 + 2ag, P'(g) = -4a(1-g2)^, and Q(g) = (1+a)2 + 2a(l-g).

To get g, let

„  1+a2 TZ  att+1+2a(a2+l) T7  l+4a+a2
2a2 2a2 2a

and

F = j (37 - Z/2), G = (2Z/3 - W + 27V),

X = [- | + G
2

G2 , F^?73 
V 27j

Then,

9 X + Y - U 
3 '

Thus, (4.3' and (4.6) yield
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Tl

b 
iT^ry for 1 < a s 3,

b r„ 1 -6a+a2 
^HT 2 " "T^TP" for a > 3.

(4.3")

" rir*  <vz(a+o +

for 1 < a < 3;
(4.6")

for a > 3.

On the other hand, (4.11) leads to

(4.11")

As pointed out earlier, one might expect to get lower bounds 

sharper than tj by imbedding in D non-circular cross sections for which 

the stress function is known. For instance, we may imbed the largest 

disk with a circular notch such that the bottom of the notch touches 

3D at x° (see Fig.5). If the radius of the notch.is n, then the radius 

of the disk is p + Ign. It is clear from [13, p. 3031 that
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Figure 5. Booth's Lemniscate Imbedded with A Notched Disk
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max |V<j>.J= 2(p + J5n) - n = 2p. 
D*

Consequently, and by Lemma 4.1,

max IV^I > . (4.29)
5

The largest half disk contained in D with the center located at x° may 

also be employed as the subdomain Dj. (see Fig.6). Since,1

max = 0.849 x (2p) = 1.698p,

then,

max |V4>| > . (4.30)

Furthermore, we also can imbed in D an ellipse such that the point x° 

is at one end of the minor axis (see Fig.?)- In this case, and 

—Tj-will be its length of semi-major and semi-minor axes, respectively. 

This furnishes

max IV4>| > .
D a2+l

(4.31)

Finally, the exact value for t is given [14, p. 592] by

^or example, see p. 314 of [13]-
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Figure 6. Booth's Lemniscate Imbedded with A Half Disk



Figure 7. Booth's Lemniscate Imbedded with An Ellipse
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t = ------------------  . (4.32
(a+1)(a-l)2

Computations based on (A.32), (^.3"), (4.6"), (4.11"), (4.29),

(4.30) and (4.31) are shown in Table 2. Concerning the upper bounds, 

we observe from the table that the sharper is Tj. On the other hand, 

lower bounds calculated from (4.29) - (4.31) are better than those 

values obtained from (4.11") for some values of a: (4.29) supercedes 

(4.11") for a in [I.667, 36];  (4.30) is sharper for a in [1.83, 4.6];*

(4.31) is closer if a > /J .

The foregoing examples raise the question whether (4.3) is in 

general sharper than (4.6). Although we have unfortunately not 

succeeded in finding the answer, we have been able to establish that 

for a significant class of cross sections, the answer is affirmative.

Tke.OA.em 4.7 Assume that the hypothesis of Theorem 4.2 holds, and let 

Tj, T|। stand for the respective right-hand members of (4.3), (4.6). 

If

(4.33)

then T. < T... If K(e) (0 < 0 S 2ir) denotes the curvature associated ------- I । । — ----------------------------------------------------- 

with the angle 6, K(6)=k, and

K < --- 1- ,
a(e)

(4.34)

then (4.33) is true.
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Table 2. Upper and lower bounds for cross section bounded by Booth's 
lemniscate, b = 1.

a T
lower bounds upper bounds

(4.11") (4.29) (4.30) (4.31) (4.3") (4.6")

1.1 105.24 5.0 0.231X105 0.112x10s

1.2 27.73 2.5 0.164X104 0.601X107

1.6 3.803 0.833 59.5 O.931xlOlt

2.0 1.667 0.500 0.667 0.566 0.600 6.25 129.13

2.4 1.015 0.354 0.588 0.499 0.571 2.40 22.42

3.0 0.625 0.250 0.500 0.425 0.400 1.0 4.871

3.6 0.449 0.217 0.435 0.369 0.385 0.681 2.232

4.0 0.378 0.200 0.340 0.333 0.556 1.525

4.6 0.305 0.178 0.303 0.278 0.432 0.978

5.0 0.271 0.167 0.250 0.375 0.772

5.5 0.237 0.154 0.222 0.321 0.602



41

P/LOO^. By (4.3), (4.6),

1 -
2(T|. - T.) = - (u + p) + 2p + 1 +
III" 9P P I PZ,

+ y (2-kq) — 1 + — - 2p(2-Kp).
2 - ~2P P 1

Thus, since p < p < p and Kp S 1,

2(T। । ~ Tj) > y (p+p) (p-p) + + p [2 + (2-kp) 3 - 2 ] . (4.35)
p P '•P J

Since ep < 1, (4.33) ensures that the last term in (4.35) is positive.

it now follows that T|| > T|.

With a view toward establishing that (4.34) implies (4.33), 

recall that

K = K(e) =
1 + 2

r[l +

where

r = a(e), r1 = a'(e), r" = a"(0).

Thus, by (4.34)

r
P

-rx [ 1 + L- ] /2+ ] + 2 
r

> -r< + 1 > 2,

which completes the proof.
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The main importance of the conclusion that T| < T|j for

k s —is its implication that (4.3) is sharper than (4.6) for a 
a(6)

class of cross-sections with negative curvature.



5. Some results on elliptic operators

This section, which is a counterpart of section 3, is aimed at 

establishing certain properties for elliptic operators that are needed 

to get bounds for anisotropic bars.

We denote by L the differential operator

L = y c 9- «S=1 9x«9xS (5.1)

where C  = are constants. We assume henceforth that L is elliptic a3 pa
so that C „ are elements of a positive definite matrix. Since C n are otg ag
constants, L is uniformly elliptic. Thus, there is a non-singular 

linear coordinate transformation such that L becomes the Laplacian 

on the transformed domain D*.  Let

x1 = e, x + E, x , x1 = n x + n x (5.2)1 ^1 1 ^2 2’ 2 1 1 2 2

be such a transformation. Here Sa>na (a=l,2) are constants. Let J be

the matrix associated with (5.2).

Let Nr.(x°) denote the inverse image of S.(y°) under the mapping 6 0
(5-2) where y° = Jx°. If a-function u is defined and continuous on

Ng(x°), we put

M'tu.x’jX) =7! u ds, (0 < X < 6) (5.3)
Ex(x°)

where Ex(x°) = 9Nx(x°), and £ is the length of Ex(x°), and write

43



Lu(x) = A lim inf •-— [M'(u,x,X) - u(x)] ■ .
X->0 X2

(5.4)

We will call a function u super c-harmonic*  * on D if:

*We adopt the terminology of Morrey [15] which would label a
solution of Lu = 0 "c-harmonic."

(a) M'(u,x,X) is defined and u(x) > M'(u,x,X) on D;

(b) u is not identical +® on D;

(c) u > -” on D;

(d) u is lower semi-continuous on D.

The class of super c-harmonic functions on D will be designated by 

S'(D).

Lemma 5./. (Properties of super c-harmonic functions)

(A) u c Sl(D)nC(D) min u = min u;
D 3D

(B) u e C (D), L_u s 0 on D => u e S1 (D);

(C) u £ C2(D) Ljj =' Lu on D.

The truth of this lemma is easily established with the aid of

Lemma 3.1 and the affine transformation (5.2).

Lemma 5.2. Assume:

(a) u e C(5), u = 0 on 3D, exists on 3D, and■***■  dn ...... ——

(5.5)
Lu s -M on D,

n



45

where M > 0 is a constant;

(b) v,w e C2(D)nC(5), v = w on 3D and

(5.6)

-M1 < Lv < M", Lw = 0 on D,

where M1, M" are positive constants.

Then

3v , M" 3u , 3w . 3v M! 3u ,r
aK+M“aKsa^s57r’H-a7 2!l81’- (5-7)

The proof of this lemma is sufficiently close to the proof of

Lemma 3-2 that it may safely be omitted.

Let $ be a function such that

LS = -2 on D, $ = 0 on 3D. (5.8)

By (5.2), the above equation may be reduced to

A'5> = -2G on D1, $ = 0 on 30'. (5.9)

32 32Here A1 = ----- + ------  , and G is a constant. Moreover, if we write
3x'2 3x'2 1 2

$ = $/G, then (5.9) gives way to

A'i = -2 on D', $ = 0 on 3D1. (5.10)
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If A is a square matrix, we write UAH for the square root of the 

largest eigenvalue of ATA; it is easily verified that II-Il is a norm.

Lemma, 5.3. Let $ e C3(D)nC'(D) and satisfy (5.8). Then

G Uh II ' max | V1 $ | S max | V$| s Gil Mil max | V $ | . (5.11)
D' D D*

where H = JT.

P/too^. By (5.2), one has

GHV'S = V$. (5.12)

Take the Euclidean vector norm on both sides of (5.12) to get

G||H|] |V'$| > |V$|. (5.13)

By (5.12),

GV'$ =

Accordingly,

gIIh"U-1 |v'$| < |v$|. (5.14)

The proof is now complete.

The significance of (5.11) is that the bounds on max |V$| for
D



anisotropic materials may be obtained from the bounds for isotropic

bars.

$ e C3(D)nC' (5)

and obeys (5.8). Assume further, that the coefficients in (5.8) satisfy

the condition

(5.15)

Then,

(5.16)

P/too^.

2d2$ 92$

22
d2$l 92*

’22 3x2k 2,)

The condition (5.15) implies

L |V$|2> 0.

max
5

Lemma. 5.4. Let D be simply connected, and suppose that

2C12
9x 9xI T

L |VC>|2 = 2 [cjj
9x 9x

c2 s C c12 11 22

C22

92$ '

9x 9x1 2V
C11

2c12
92$

-92$'

9x2 I

9x? 9x 9x

|V$| = max . 
9D 80

Application of Lemma 5.1 gives
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max |V4|2 = max|V$|2 
5 3D

Consequently, and since $ is constant on 3D,

max |V$| = max IV$|,
D 3D

which completes the proof.

Lemma 5.5. Let D be bounded and simply connected, and let D.,.cD be 

simply connected such that the set P = 3Dn3DA is not empty, and let 

x° e P. I f $ e C2(D)nC'(D) and obeys (5*8),  e C2(Dj_)nCl (6*)  and 

satisfies

L$j. = -2 on D*,  = .0 on 3Dj_.

Then

|V$(x°)| > |V^(x°)|. (5.17)

Pa.oo^. By hypothesis and Lemma 5.1,

4 s 0 on D, $> 0 on D*.

Define $ = $ - on DA. Clearly i > 0 on 3D*,  5(x°) = 0, and
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LS = 0 on Dy..

Thus, and by Lemma 5-1,

2i (x“) s |S*.  (x-). 
on on

Since ~5:- < 0 on 3D*  and $, are constant on 3D and 3D*,  the desired 

conclusion (5.1?) now follows.



6. Stress bounds for homogeneous orthotropic elastic bars

If the material is orthotropic, the operator L reduces to

Clearly, Li is uniformly elliptic on D. The affine transformation (5.2) 

may take the form

^2

The maximum shear stress is given by

m । — , ।a = tt max |V$| .
K 5

(6.3)

As pointed out earlier, bounds on cr may be arrived at by getting bounds 

on K and the quantity

(6.4)t = max ||.
D

We will consider the bounds on t first.

By selecting suitable functions u and v in Lemma 5.2, we may 

obtain an upper bound on t. The next lemma is concerned with a function 

u that confirms to hypothesis (a) of Lemma 5.2.

Lemma. 6.1. Let D be a plane domain whose boundary has continuous 

curvature, the minimum value of which is k, and let p be the radius of

50
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the largest disk contained in D. Let po = p if D is a disk. If D is not 

a_ disk and k > 0, let pQ e (p, i). ' _Lf k < 0, let pQ > p. Define f (s) 

for every s e [0,p ] by.

s (1 - 2^-), i f k = 0
Ho

1
-l]+^[(1-ks)2-11 k if K * 0

K * 0.
*The form of f(s) for k = 0 is the limit as <-*0 of the form for

(6.5)*

where v = u /u and assume u > u > 0.
----------  2 1---------------------2 1

x e D by

Define a function u for every

u(x) = f (6(x)) . (6.6)

Then u e C(D), u = 0

(6.7)

Pvloo^. It is easy to verify that f has the properties

L1U

9 uon 9D, — = -1 on 3D, and— dn — ’ -----

-P1(v+1)k

1 - "

f e C2[0,p ], f(0) = 0, f’(0) = 1, f > 0 on [0,p ], o o

f" - vf' . 1 -KS
-(v+1)K 

|-(l-KPo)',+ l
on [0,poJ.

(6.8)
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From these,

The 

case for k 

that 6(x°) 

the circle 

n(y°)*(y°-z

for every x 

x e N^(xo),

for al 1 x e

Since 61(x°

because f

together with (6.6), it follows that

u e C(D) and u = 0, = -1 on 8D.on

last of (6.7) remains to be proven. We consider first the

0 and D not a disk. Pick x° e D, and let y° e 3D be such

: lx°~y0| (see Fig.l). Put n = , and let z be such that

^(z) with radius n centered at z is tangent to 3D at y° and

> 0. Define 6 1 on D by

61(x) = min |y-x| 
yeC^z)

e D. Let r, > 0 be such that 6(x) < 6 1 (x) < pQ for every

and set

u'(x) = f(5'(x)) (6.9)

Nc(x°). By (6.8),

u1 e C2(N^(x0)). (6.10)

= 6(x°), and 61(x) > 6(x) for every x e N^(x°), and

: 0 on [0,p ]; there follows o

u(x) < u'(x), u'(x°) = u(x’). (6.11)

Accordingly,
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Ml(u,x°,X) - u(x°) < M'Cu'.x0^) - u'Cx0), (0<X<?)

Hence, by (5.^), (6.9), and Part (C) of Lemma 5.1.

u(x°) < L1 u'(x°). (6.12)

For convenience, let the origin of the coordinate system be centered at

z. One finds 

LjU^x0) =
+ p x°2

2 2

r2

-2 i i P X°z + p x°z . dzu' J_ 12 21 9u
a 9 r o 9 . o 9 9 rdr2 p-^^ + p2x22

(6.13)

where r is the distance of the point x° from z. Now fix the coordinate 

system such that x° = r, x° = 0. Therefore, and in view of (6.9), (6.13) 

reduces to

L u'(x°) = plfts^x’)) - 7—rrhr fVS'tx0))],
X 1 I K 0 \X /

whence (6.12) and the last of (6.8) imply

-p^v+^K
L u(x«>) < -------1-------- .
—1 , /, \V+11-(1-Kpo)

This confirms the last of (6.7) for k > 0 and D not a disk.

The proofs for the remaining two cases, D a disk and k < 0, are 

easily constructed'along the lines of the proofs of their counterparts 

in Lemma 3.3, and may safely be omitted.



54

We are now able to establish

Tk^oA-CJm 6.1. Let D be bounded and simply connected, and assume 8D has 

continuous curvature. Suppose that 4 e C3(D)nC1(5) and obeys (2.7).

Then,

v*41 4.1
max |V4| < [1 - (1-kq)V ], (6.14)

where k and p are as in Lemma 6.1.

The proof of the theorem is strictly analogous to that of

Theorem 4.1. Here we may choose the function

v(x) = + P^^),

and employ Lemma 6.1, Lemma 5-2 and Lemma 5.4.

If we put v = 1 in (6.14), then it reduces to (4.3). Indeed,

P.
max |V4| s — (2kp - x2p2) = p p(2-Kp).

5 K 1

It is easy to show that for a circular cross section with 

radius p, the exact value of t is

2piv
T = —p- (6.15)

Thus, in view of (6.15), the bound in (6.14) is optimal when D is a 

di sk.

The foregoing upper bound for t was derived in a manner analogous 
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to the derivation of (4.3). The affine transformation that relates 

to A plays a significant role in this procedure. One might expect that 

the affine transformation could be applied directly in connection with 

(4.3) to get a bound. This conjecture :s confirmed by

Th.e.oh.ejn 6.2. Let D be bounded and simply connected, and assume 3D has 

continuous curvature. Suppose that $ e C3(D)nC'(D) and obeys (2.7).

Then

max |V$| < /pu p'(2-Klpl),
5

(6.16)

where p1 is the radius of the largest disk contained in D1 and k 1 is 

the minimum curvature of 3D1.

Pa.00£. Recall

max |V$| < Gil HU max |V,$|.
D D'

By (6.2), it is not difficult to show that

(6.17)

(6.18)

Thus, the desired conclusion follows immediately from (6.17), (6.18) 

and (4.3), and the proof is now complete.

Equality holds in (6.16) if D is a disk and the material is 

isotropic.-

By taking Dj. to be a disk in Lemma 5.5, we may arrive at a 

simple lower bound.
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T/ieo/LCffl 6.3. Let D be bounded and simply connected. Assume

$ e C2(D)nC'(D) and satisfies (2.7). Then

2vu
max |V<>| > —p- p, (6.19)

D VT|

where p is the radius of the 1argest disk contained in D.

Pa_Oo£. Let Dj. be a disk of radius p contained in D. Thus, if 

x° £ P = SDnaDj., Lemma 5.5 furnishes

|V$(x°)| > |V$*(x°)| ,

where is the stress function for the disk. By (6.15),

2vu
|V£.J = —5— p on dDj..* v+1 *

Therefore,

2vp1 
max |V41 > p,

and the proof is complete.

Clearly, equality holds in (6.19) for D a disk.

Th.e,o^.yn 6.4. Let D be bounded and simply connected. Assume 

$ e C2(D)riCl(5) and satisfies (2.7).

Then
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max |V$| > /jjp, P1, (6.20)
D

where p1 is the radius of the largest disk contained in D1. Further, 

if D is a plane regular region, and $ e C3(D)nC1(D), then

___ A I 
max |V$|________ pT , (6.21)

D 1 L

where A1 is the area of D1 and C1 is the length of 3D1.

Both (6.20) and (6.21) are elementary consequence of (5.11)> 

(6.2), (4.11) and (4.13).

So far, we have been concerned exclusively with bounds on t. 

In order to get complete bounds on the maximum shear stress a, we turn 

now to the task of finding bounds on the torsional rigidity.

Research aimed at bounds on the torsional rigidity for 

orthotropic bars has not been so extensive as that for isotropic media. 

In the sequel, we will deduce bounds for the orthotropic case from 

bounds appropriate to the isotropic case by means of the affine 

transformation (6.2).

In the next lemma, we designate by k1 the torsional rigidity, 

corresponding to p = 1, for the transformed domain D' under (6.2). It 

is not difficult to verify that K and k1 are related by

2
K = —— k'. (6.22)

A counterpart of the Saint-Venant isoperimetric inequality for
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the orthotropic case is furnished by

TA.e.Ov'teffl 6.5. Of all homogeneous orthotropic elastic beams of a given 

simply connected cross-sectional area A, the elliptic beam with the form

(6.23)

where 

2
2~ » a

has the greatest torsional rigidity, _i_.e_.,

(6.2/.)

?^ioo£. (6.24) is a straightforward consequence of (6.22), (4.14) and

(6.2). For the derivation of (6.23), let D1 be a disk of the form

x12 = a2 
2

By (6.2), one has

Thus, the desired result follows, and the proof is complete.

Further application of (6.22) to the previous results (4.16)

(4.19) leads to
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u2

2 2K = -JJ-k. >-jl

K < —H— I' , (6.25)

2 bin'll
K 2 -H—-----y-2_ , (6.26)

^^2 (|{+IP

K > 7uL2^H , (6.27)
/u u

12

and

u2 -rrn | l1-K > -Ji— 52—, (6.28)

1 2

where all quantities refer to the transformed domain D1 which is 

obtained under (6.2).

A result of Weinberger [11] is extended by

Lemma 6.2. Let D be the union of two disjoint domains D1 and , and 

let K, Kj and K2 be the torsional rigidities, respectively.

Then

K S + K2. (6.29)

P^loo£. By (6.22) and a result from [11],

(k1 + k') = K + K 
1 2 1 2
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where k1, k| and are the torsional rigidities corresponding to unit 

shear modulus, for D1, and D^, respectively, and the proof is complete.

The importance of this lemma is its implication that a lower 

bound on K may be obtained by imbedding a subdomain in D for which the 

torsional rigidity is known. For instance, by taking to be the 

largest disk contained in D, we arrive at

Theo-'tem 6.6. Let D be bounded and simply connected. Then,

P U u
K > , (6.30)

where p is the radius of the largest disk contained in D.

Pa.oo^. Let be a disk of radius p contained in D. It is easy to

verify that

K -^2121
iX i o •1 P 2

Thus, Lemma 6.2 furnishes

K > "P1*
K 8 “~ '

and the proof is now complete.

Now the bounds on the maximum shear stress, c, follow 

immediately. For example, by (6.3), (6.14), (6.19), (6.24) and (6.30),

izge-sz-s-t-n - (i-kp)'*'].  (6.31)
v+1 .9 m b.A2- Kirp^
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On the other hand, (6.3), (6.16), (6.20), (6.25) and (6.28) furnish

h. A P' ^2 A2(2-k'p') 
p / p I * - m " p / p ^,3 (6.32)

Equality holds throughout (6.31) and (6.32) for D an isotropic disk.

In order to demonstrate the quality of the bounds on t, let us 

consider an elliptic cross section of the form

x2
2

b2

X2X1

a2
(0 < b < a). (6.33)

One can easily show that

where E(0') is the complete elliptic integral of second kind, and

, . -I /v2"yib2
6 1 = s i n / ------------------

Thus, (6.14) and (6.16) give

_!_< [| . (I . 
p^a v+l ez (6.34)
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and

_I_ < 121 (2 - -J—)
V £

while (6.1Sj), (6.20) and (6.21) supply

T > 2v 
Pia (v+T)"e ’

(6.35)

(6.36)

and

_L_ > 1 
l^a e ’

t > ir 
Pia * 2eE(6') *

(6.37)

(6.38)

Here, of course, e = a/b. Furthermore, it is not difficult to verify

that the exact value of t is given by

t _ 2ve
Via ve2+l

(6.39)

Table 3 gives a typical example of values of rAi^a and various 

bounds for the case v=2. For v=l.l and v=3, the results are plotted in 

Figures 8 and 9, respectively. In these figures, we denote the upper 

bounds in 1,6.3^) and (6.35) by T| and T, । » likewise, tj, t|| and tj । । 

stand for the lower bounds in (6.36) - (6.38). From these, we observe 

that for upper bounds, Tj is sharper than T,। for small values of e ,
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Table 3. Upper and lower bounds for elliptic cross sections for v = 2.

e T/u1a upper bounds lower bounds

(6.34) (6.35) (6.36) (6.37) (6.38)

1.1 1.2865 ■1.459 2.04 1.2121 0.9090 1.0938

1.2 1.2371 1.5544 1.9478 1.1111 0.8333 1.0314

1.5 1.0909 1.6571 1.6761 0.8889 0.6667 0.8778

2.0 0.8889 1.5417 1.3258 0.6667 0.50 0.6984

2.5 0.7407 1.3577 1.0861 0.5333 0.40 0.5777

3.0 0.6316 1.1907 0.9166 0.4444 0.3333 0.4914

3.6 0.5349 1.0276 0.7705 0.3704 0.2778 0.4190

4.0 0.4849 0.9388 0.6961 0.3333 0.25 0.3771

4.6 0.4248 0.8291 0.6076 0.2899 0.2174 0.3307

5.0 0.3922 0.7684 0.56 0.2667 0.20 0.3055

5.5 0.3577 0.7035 0.51 0.2424 0.1818 0.2788

6.0 0.3288 0.6483 0.4681 0.2222 0.1667 0.2563

6.6 0.2996 0.5923 0.4261 0.2020 0.1515 0.2339

7.0 0.2828 0.5596 0.402 0.1905' 0.1429 0.2208
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Figure 8. Upper and Lower Bounds for Various Elliptic Cross Sections

(v = 1.1)
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8
Figure 9. Upper and Lower Bounds for Various Elliptic Cross Sections

(v - 3)
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say e < 1.5- For e > 1.5, T|। is closer to the exact value. As for the 

lower bounds, the best one is afforded by t[|| for large values of e, 

while for small e, t| is sharper than t|।।. In all cases, t|| is the 

crudest of the lower bounds. These conclusions are borne out by the 

plots in Figures 10 and 11.



0 ---------------1------- 1------- 1------- 1------- 1------- 1____ I____ I____ I____ |____ I____ I____ I
i iTz iji 176 i78 2.o 2.2 274 2.6 2.8 To STI STS 

y-------------

Figure 10. Upper and Lower Bounds for Various Values of \> (Elliptic
Cross Section with e = 1.5)
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Figure 11. Upper and Lower Bounds for Various Values of v (Elliptic
Cross Section with e = 3)



7. Stress bounds for homogeneous anisotropic elastic bars

The operator L, in view of (2.1), reduces to

3x dx
1 2

32ar ----- on D
55 ax2

2

। _ d2 9 a2L = a--------2auq
‘"•ax*  *5 (7.')

The eigenvalues of the constant coefficient matrix

a -a

-a a
U5 55_

(7.2)

in (6.1) are easily found to be

a = ^[a. +a + /""(a -a )2+4a 2], 
2 “+4 55 55 . 45

and (7.3)

a = ^[a +a - Aa -a )2+4ak2].

The ellipticity of L on D requires that

Accordingly, A confirms to the condition (5.15) in Lemma 5.^. An affine 

transformation that takes this operator into the Laplacian is given by

69
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(7.5)+

where

x'
1

X
2

X
1

“l+“2

2

a
45 .-—X , x'
\ 2 2

a
45 - ----- X

X2 1

a, . ~ct«44 2
X2

a55~ai

X1

a =

We turn now to the task of getting bounds on

t = max |V£| . (7.6)
5

As in the orthotropic case, two upper bounds will be derived by 

employing Lemmas 5.2 and 5.3. On the other hand, we will appeal to 

Lemmas 5.3 and 5.5 to arrive at the lower bounds. The following lemma 

ensures the existence of a function that confirms to hypothesis (a) of 

Lemma 5.2.

Lemma 7.1. Let D be a plane domain whose boundary has continuous 

curvature, the minimum value of which is k, and let p be the radius of 

the largest disk contained in D. Let p = p if D is a disk. I f D j_s_ 

not a disk and k > 0, let p e (p,— ). If k < 0, let p > p. Define 

f(s) for every s e [0,p ] by
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f (s)

________ 1
K[(l-KPo)P+1-l]

(a \B+l(1-Kpn)

3-1

(
S 1 s

2%J , i f k=0

r i )3-i
[ -pTj -1]+^[(1-ks)2-1] ■, if k*0

(7.7)*

where 3 = a /a and assume a^,. > a , > 0.
----------  2 1---------------------5 5 Uk

Define a function u for every

x e D by

u(x) = f(6(x)). (7.8)

Then u e C(5), u = 0 on 3D, = -I on 3D, and— d n ■*  ■

-01^0+1 )K
5 l-(l-Kp0)s+1 (7.9)

The proof is entirely analogous to that of Lemma 5.1. In this 

proof, one should note that, by placing the origin of the coordinate 

system at z (see Fig.l), it follows

Lu'(xo)
a x°2“2a x°xo+a xo^ z-ai+5 1 2 55 2--------------- --------------------- d2u'

+ 1 ai+ttx22+2ait5xlx2+a55xl2 du1 

r a, ।xi2-2a. cx°x°+a x°2 ^r 
4L 1 45 1 2 55 2 -1

(7.10)

where r is the distance of x° from z. Thus if we choose the

*The form of (7.7) is similar to that in (6.5), except that v 
is replaced by g.



coordinate system

x” = r cos0, x° = r sinQ 1 2

such that

tan 26
2a4 =

a -a
55

then (7-10) reduces to

Lu'(x°) = aJf'U'Cx0)) gf (6'(x6))].
* I K 0 \ X )

Now the conclusion can be easily reached by means of the procedure used 

to prove Lemma 5.1.

The foregoing lemma, (7.4), and Lemmas 5.2 and 5.^ furnish the 

upper bound in

Tkeo^tejfn 7.1. Let D be bounded and simply connected, and assume 3D has 

continuous curvature. • Suppose that $ e C3(D)nCl(5) and obeys (2.1).

Then

T 17,1 5 a'(^r)'K [l " (7.11)

The proof of this theorem is strictly analogous to that of

Theorem 4.1. Here one picks
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v(x) = H
X2 X2

. a55-
(7.12)

and employs Lemma 6.1, (7-^)» and Lemmas 5-2 and 5-^.

then
a55

akit

If a = 0 in (7.11) *+ o 
= ---  = \)

P1

it reduces to (6.1 If). Thus 1a = a = —
1 u2

2vp ,1
max | V4>| < -------- — [1 - (l-icp)V ].
•D k(v+1)

It is not difficult to verify that for D a disk with radius p, 

t is given by

T = 2p 
a +a

44 55
(7.13)

Hence, the right-hand member of (7.11) reduces to the exact value when 

D is a disk.

We turn now to another upper bound which is in essence found 

by direct application of the affine transformation to (4.3).

Tke.OA.tin 7.2. Let D be bounded and simply connected, and assume 9D 

has continuous curvature. Suppose that $ e C3(D)nCl(D) and obeys (2.1).

Then

max |V$| s -— / —• pl(2-Klpl),
D “1 a2

(7.14)

where p1 is the radius of the largest disk contained in D1 and k1 is the 

minimum curvature of 3D'.
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P/loo^. Recall

max |V$| < G ||H || max |V'5|.
5 Dl

(7.15)

For this case, by (7.5), one has

a55"al a«

X1 X2

H =

a45 akit~a2

X1 X2

and G = a/(a a ). It is easily found that

Thus, the desired conclusion follows from (7.15) and (4.3), and the 

proof is now complete.

The inequality (7.14) reduces to (6.16), if we let a^ = 0.

Equality holds in (7.14) if D is a disk with the isotropic material.

A simple lower bound will be arrived at in the next theorem by 

picking D*  to be a disk.

Tke.Ov'tejn 7.3. Let D be bounded and simply connected. Assume

$ e C2(D)nC'(D) and satisfies (2.1). Then

max |V$| > -—— , (7.16)
5 Utt 55

where p is the radius of the 1argest disk contained in D.
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The proof, which is closely analogous to the proof of Theorem 6.3, 

is easily constructed with the aid of Lemma 5.5.

Direct application of the affine transformation to the results 

in (^.11) and (4.13) is the key idea involved in

Theo/tem 7.4. Let D be bounded and simply connected. Assume 

$ e C2(D)nC'(D) and satisfies (2.1).

Then

max |V$|
D

1
a2

where p1 is the radius of the largest disk contained in D1. Further, if 

D is a plane regular region, and 4 e (d)nC1(6), then

max |V$|
5

1
a 2

2A' 
C

where A1 is the area of D1 and C1 is the length of 3D1.

Ph.00Lemma 5.3 gives

G ||h | ’ max | V1 S> | S max | | .
D' 5

(7.19)

By (7-5), one has

x1x2
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and hence

I H'1

Thus, (7.17) follows from (7.19) and (4.11). On the other hand, (7.18)

is implied by (7.19) and (4.13). The proof is now complete.

With a view toward getting bounds on the maximum shear stress a, 

we now take up the problem of determining bounds on the torsional rigidity. 

The procedure followed here is closely related to the one used in the 

preceding section for orthotropic bars.

Let us denote by k1 the torsional rigidity of the transformed 

domain, corresponding to p = 1. By (2.4) and (7.5), the relation between 

K and k*  can be established by

K =
(a1a2)3>/2

(7.20)

Let c = det J, where J. is the matrix associated with the 

transformation (7.5). A generalization of the Saint-Venant isoperimetric 

inequality is given by

Tkeo^C-m 7.5. Of al 1 homogeneous anisotropic elastic beams of a given 

simply connected cross-sectional area A, the elliptic beam with the form

B1X1 + B2X1X2 + B3X2 " A' (7.21)

where
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-0^2 2'11
+

(a55* al)

2

has the greatest torsional

A2.2ttK < 

1 2

The proof is entirely analogous to that of Theorem 6.

safely be omitted.

Further application of (7.20) to the previous results

(4.19) of the isotropic case also furnishes

K

7t
C

2L 
c

B
2

1 2

,B1

B3

irr1

_ 27r%5 

c

’^5 
lA2

4111112

rigidity, i.e

i2
(“1“2)3/2

-----^3—1'
(a1a2) /2 0

'a55^ul

a2
(a a )d/2 2 
K 1 2Z

[a45'|
21

l.x2

( ^ Lj. Iq. —Ct 2.)

+

(7.22)

, and may

(4.16) -

(7.23)

(7.24)

(7.25)
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and

a2 ' irp 1
~( ^/2
(a1a2) /z

(7.26)

where all quantities refer to D*  which is obtained under (7.5).

*The exact value of the torsional rigidity for a disk can be 
found, for example, in [6, p. 197].

By using (7-20) and a result of Weinberger [11], one may 

establish

Lemma 7.2. Let D be the union of two disjoint domains and D^, and 

let K, and be their torsional rigid? ties.

Then

K > K + K .
1 2 (7.27)

A proof may be constructed along the lines of the arguments used 

to establish Lemma 6.2.

We may imbed any subdomain with known torsional rigidity 

in D. Thus, (7.27) affords us a simple lower bound on K. If D1 is the 

largest disk with radius p, we arrive at

K >
ii

—JL£_—
a +a44 55

(7.28)*

Now the information that we need to get complete bounds on the 

maximum shear stress is at hand. For instance, by (7.11), (7.16), (7-22) 

and (7.28), one obtains



13

Attp a ,a^+a55x 
l^ss^2 S ” -P-*  ai(S+,,K - d-Kp)e+1]. (7.29)
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