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Abstract 

 

 

The research focuses on varying multiple initialization datasets, along with planetary 

boundary layer and microphysical schemes, for a Houston, Texas-centered, local high - 

resolution Weather Research and Forecast - Environmental Modeling System (WRF - 

EMS) numerical weather prediction model. Statistical and graphical analyses of WRF - 

EMS model output and verification will be explored in an attempt to accurately simulate 

the April 18
th

, 2009 high rainfall event that adversely-affected the greater Houston metro 

area. Previous work has shown that high-resolution modeling has historically performed 

poorly on weakly-forced events (e.g., sea breeze boundary, summer convection) while 

performing more favorably with stronger-forced convective events (e.g., cold frontal 

passages, shortwave disturbances). Thus, numerous WRF - EMS model runs have been 

performed upon this cool season (i.e., stronger synoptically-forced) episode. Numerous 

WRF - EMS model simulations were run employing differing initial conditions while 

varying planetary boundary layer and microphysical scheme combinations. The 

validation of the numerical weather prediction model output will be against quality-

controlled Weather Service Doppler radar (WSR-88D) data (i.e., Stage IV radar data). 

The inclusion of high-resolution land-surface modeling data into the WRF - EMS system 

will be analyzed to discern this data’s overall significance, or consequence, to final WRF 

- EMS model output. The research goal is to determine if, through iterative computer 

model simulation, a specific initialization-planetary boundary layer-microphysical 

scheme combination could more accurately re-create the convective characteristics of a 

southeastern Texas heavy, or extreme, rainfall event. 
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1. Introduction 

 

In recent years, within the United States of America, one of the leading weather 

hazards that has taken the most lives is flooding. Over the past 30 years, non-river 

flooding or flooding (i.e., flash flooding) caused by excessive precipitation accumulation 

over relatively-small geographic areas during brief time periods, has caused more 

fatalities by drowning than any other weather hazard. Since 2002, as documented by the 

National Weather Service (NWS), an average 52 people have perished in flood-related 

drowning episodes across the United States (NWS, 2012). Over the past 20 years, in the 

Texas coastal plains, urban flash flooding within the greater Houston-Galveston area has 

taken more lives than any other weather hazard. The majority of these fatalities have been 

drowning in vehicles as a consequence of driving into water of unknown depth. These 

statistics also hold true for the nation (NWS, 2013 a). The mission of the United States 

National Weather Service is to protect public life and to mitigate property loss, in tandem 

with the overall enhancement of the national economy, by the timely and accurate 

issuance of severe weather watches and warnings. NWS data and products form a 

national information database and infrastructure that can be used by other governmental 

agencies, the private sector, the general public, and the global community (NWS, 2013 

b). It is in the NWS’s best interest to issue lucid, punctual, and precise flood warning 

products that provide a reasonable public lead preparation time.  The positive result is 

that the affected populous could quickly react and make the necessary decisions needed 

in avoiding loss of life and injury while minimizing property loss.  
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Numerical Weather Prediction (NWP) modeling are the main prognostic tools NWS 

operational meteorologists have at their disposal at attempting to forecast the onset, areal 

coverage, and intensity of convection. Accurate quantitative precipitation forecasting 

(QPF) is one of the most desired elements within the general forecasting community 

(Gaudet and Cotton, 1998). Accurate QPF benefits a large range of national and global 

interests such as the agricultural and hydrological communities (e.g., farming and water 

resources), recreational business (e.g., ski resorts), and government warning 

meteorologists (e.g., public safety). Mesoscale simulation research has shown that, when 

NWP models are run at relatively high resolutions as low as 10 kilometers (km) x 10 km, 

they can capture many observed mesoscale storm features. Cold-pool induced meso-

highs or meso-lows behind squall lines can be resolved (Zhang, Gao and Parsons, 1988). 

Precipitation forecasts from the Pennsylvania State University - National Center for 

Atmospheric Research fifth-generation Mesoscale Model (MM5) over the United States 

Pacific Northwest during the 1997–99 cool seasons yielded systematic deficiencies 

within modeled precipitation (Colle, Mass and Westrick, 2000). The MM5 precipitation 

at 36 km x 36 km (36 km
2
), 12 km

2
, and 4 km

2
 horizontal resolutions were compared 

with over 250 National Oceanic and Atmospheric Administration (NOAA) cooperative 

observer, snow telemetry (SNOTEL), avalanche, and NWS sites in order to evaluate the 

effects of increasing horizontal resolution and to document spatial variations in model 

skill. The temporal resolution was determinant upon that model’s areal resolution and to 

the type(s) of observation(s) being used in verifying that particular model run. The 

MM5’s runtime was 0 - 48 hours, with a 12 hour spin-up time for the 4 km
2
 run as the 15 

minute output from the 12 km
2
 domain was used to create its separate initial and 
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boundary conditions beginning at hour 12. Forecast statistics, such as bias, the equitable 

threat score (ETS), and the root-mean-square (RMS) error score were analyzed during 

every 6 and 24 hour interval. (Colle et al., 2000) achieved noticeable improvement in 

bias, ETS, and the RMS error when horizontal resolution increased from 36 km
2
 to 12 

km
2
 resolution; however, going from 12 km

2
 to 4 km

2
 resolution, improvement in skill 

were restricted to only the heavy precipitation events; defined as greater than 50.8 

millimeters (mm) over a 24 hour period. For light to moderate precipitation events, both 

the 12 km
2
 and 4 km

2
 domains had significant over-prediction upon the windward, higher 

terrain slopes. In contrast, for heavy precipitation events, there was no widespread over-

prediction. All resolutions under-predicted lowland and major gap precipitation within 

the Cascade Mountain range (Colle et al., 2000). 

 

As computer processing becomes more powerful and computing speeds increase, NWP 

model suites are becoming more precise at predicting future short-term meteorological 

parameters. The more popular higher resolution NWP model suites currently being 

utilized by the national meteorological community are, but not limited to, the Weather 

Research and Forecast (WRF) model developed through the University Corporation for 

Atmospheric Research (UCAR, 2013 a), the North American Rapid Refresh (RAP) and 

the National Oceanic and Atmospheric Administration’s (NOAA) High-Resolution Rapid 

Refresh (HRRR) models (NOAA, 2012), the North American Model (NAM) 

(NOAA/NWS/NCEP), and the NOAA/Storm Prediction Center’s (SPC) Short Range 

Environmental Forecast (SREF) models (NOAA/SPC, 2012). 
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In years past, NWP model scheme’s temporal and spatial scales may not have been 

resolved to a fine enough scale to accurately determine, or simulate, the correct QPF over 

a particular area of interest (Hong and Lee, 2009). Current central processing unit speed 

can still limit the degree of pertinent and valuable information a forecaster requires in 

properly informing the public about time of onset, location, and rainfall amount for a 

particular event. Dependent upon the size of convective system and its pertinent initiating 

elements, research has suggested that higher resolution models have the ability to 

explicitly resolve convective systems without parameterized convection (Carbone et al., 

2002) (Wilson and Roberts, 2002). Increase in computer power has resulted in a decrease 

of NWP model horizontal grid spacing to less than 5 km
2
, thereby allowing explicit 

resolution of dynamical and thermodynamical processes associated with convective 

systems and related key terrain features that have direct and significant impact upon 

precipitation (Xue and Martin, 2006) (Weisman et al., 2007). 

 

The recent development, operational use and increasing finer grid-spacing resolution of 

the WRF NWP model procures the hypothesis of whether one can accurately simulate a 

mesoscale extreme weather scenario such as an urban, or more localized, flooding event. 

Future research is needed to determine if the WRF can ultimately be the best NWP 

forecasting tool in achieving the mission of saving life and property in high precipitation-

leading-to-flooding events. As of 2012, there are two dynamic physical core WRF 

models; the Advanced Research WRF (ARW) core and the Non-hydrostatic Mesoscale 

Model (NMM) core. Within these two WRF versions, there are four primary physical 

parameters that incorporate planetary boundary layer (PBL), microphysical (mp), 
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convective, and radiation schemes (J. Dudhia, 2012). QPF behavior is driven by 

numerous meteorological factors; all falling into particular alignment to produce efficient 

high precipitation processes. The convective and radiative physical processes that occur 

within our own gulf coast, maritime-influenced PBL, with high consideration given to the 

land-atmosphere relationship, all play a crucial role in determining and properly 

analyzing the commencement, duration, and location of an extreme rainfall episode. 

There has been little to no documented research in utilizing a local WRF model, or 

adjusting its physical combination schemes, with the primary goal of simulating 

southeastern Texas heavy rainfall rates. This thesis will be based upon the exploration of 

the most advanced PBL and microphysical schemes, within a WRF - ARW core, in an 

attempt to accurately forecast an extreme rainfall event that led to significant flooding 

within the greater Houston-Galveston, Texas area.  

 

 

2. Overview of the Weather Research and Forecast - Environmental 

Modeling System (WRF - EMS)  

 

The Weather Research and Forecast Model - Environmental Modeling System (WRF - 

EMS) is a non-hydrostatic NWP model that has two basic physical cores; the Advanced 

Research WRF (ARW) core developed by the National Center of Atmospheric Research 

(NCAR) (UCAR, 2011 a) and the Non-hydrostatic Mesoscale Model (NMM) core that 

evolved at the National Center of Environmental Prediction (NCEP) (UCAR, 2013 b). 
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The WRF - ARW core is based on an Eulerian solver for fully-compressible, non-

hydrostatic equations. Computations are made in flux conservative form while using a 

mass, hydrostatic pressure vertical coordinate. Prognostic variables for this solver are 

column mass of dry air (mu), horizontal velocities u and v, vertical velocity w, potential 

temperature (θ), and geopotential height. Non-conserved variables, such as temperature, 

pressure, and density, are diagnosed from the conserved prognostic variables. The solver 

uses a third order Runge-Kutta time-integration scheme coupled with a split-explicit 

second order time integration scheme for acoustic and gravity-wave modes. Fifth order 

upwind-biased advection operators are used in the fully-conservative flux divergence 

integration. Second and sixth order schemes are run-time selectable (UCAR, 2007 a). The 

WRF - NMM dynamic core time stepping consists of the linear multi-step Adams-

Bashforth Method for horizontal waves and the Crank-Nicholson scheme for vertical 

waves. The forward-backward scheme is used for horizontally-propagating fast waves 

and the implicit scheme is used for vertically-propagating sound waves. Turbulent kinetic 

energy (TKE) calculations are explicit, iterative, and flux-corrected for every two time 

steps. The horizontal advection space is energy/enstrophy-conserved, quadratic 

conservative second-order differential equations. The vertical advection space is a 

quadratic conservative, second-order, differential equation. TKE advection is 

conservative upstream, flux-corrected and positive definite. Diffusion is categorized as 

both lateral and vertical. Lateral diffusion follows the Smagorinsky non-linear approach. 

PBL and free atmosphere vertical diffusion is handled by the surface layer and the 

boundary layer parameterization schemes as defined by Janjić (Janjić, 2002) (UCAR, 

2013 c). 
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Within these two cores, four primary physical schemes are employed for either research 

or operational forecasting. These WRF - EMS physics are categorized under the PBL, 

microphysical, convective, and radiation schemes.  The ARW core package typically runs 

the Yonsei PBL, Kain - Fritsch (KF) convective scheme (Kain and Fritsch, 1993), and the 

Dudhia rapid radiation transfer scheme. Vertical interpolation, whether through the now-

retired Eta (coordinate) model (Instituto Nacional de Pesquisas Espaciais / Centro de 

Previsão de Tempo e Estudos Climáticos (INPE/CPTEC), 2006) or through user-defined 

levels, is performed through the real.exe program. Vertical levels can be user-configured 

to match the two-dimensional horizontal grid domain. An example of a vertical level set-

up is the National Center of Atmospheric Research’s (NCAR) real-time spring 

convection-permitting United States forecasts. This particular run employs defined 

parameters, or configurable variables within namelist files, that is run over a 1 km
2
 to 4 

km
2
 horizontal domain, out to 3 days. There are 35 vertical levels with a default 50 

hectopascal / millibar (hPa / mb) model top (UCAR, 2012).  

 

The NMM core consists of the Mellor-Yamada-Janjic (MYJ) PBL, Betts-Miller-Janjic 

(BMJ) convective scheme, and the older Geophysics Fluid Dynamics Laboratory (GFDL) 

radiation scheme. As is the case with the ARW core, there are configurable vertical levels 

but, when using multiple data sets (i.e., model initiation and lateral boundary condition 

sets), both data sets will have the same number of vertical levels (UCAR, 2013 c). The 

WRF - EMS can import data for its initialization from various sources ranging from 

conventional ground and upper air observations to other gridded numerical weather 

prediction or reanalysis data. In better understanding land surface processes and these 
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processes interaction with the overlying atmosphere, the WRF - EMS can be coupled 

with the Noah Land Surface Model (LSM) (Research Applications Laboratory (RAL), 

2013) and the Urban Canopy Model (UCM). The key inputs into the Noah LSM are land-

use (vegetation) type, soil texture, slope, and such secondary parameters that are 

functions of the aforementioned parameters. Examples of secondary parameters would be 

albedo or the green vegetation fraction. Ultimately, the LSM must provide four quantities 

to the parent atmospheric model, in this case, the WRF - EMS. These quantities are 

surface sensible heat, latent heat flux, upward longwave radiation, and (reflected) 

shortwave radiation (F. Chen, 2007). The Model Evaluation Tools (MET) package for the 

WRF - EMS is a complimentary software package that allows the user to verify the WRF 

- EMS’s output data. This useful verification tool analyzes the WRF - EMS’s gridded 

output and assigns statistical quantification to this data. The MET verification software 

applies ensemble and probabilistic verification methods to WRF gridded output data. The 

MET can assign verification scores that compare temporal and spatial gridded model 

output data to that of gridded or point-based observations (Developmental Testbed Center 

(DTC), 2013). 

 

The WRF - EMS model flow chart is for external gridded binary (GRIB) meteorological 

data to be processed through the WRF - EMS processing system (WPS) file, the wps.exe. 

Through data assimilation in the WRF - Var, or WRFDA, numerous external data sources 

(e.g., surface weather observations, satellite, radar, LSM, gridded model) are integrated 

into the WRF - EMS structure for analysis cycles (Fig. 1). In each analysis cycle, 

observations of the current, or prior, state of a system are combined with the results from 
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a pre-determined gridded NWP model (i.e., forecast data) to produce an analysis. This 

data set is considered as the “best guess” of the current state of the system; the analysis 

step. The analysis step tries to balance the uncertainty in the data and in the forecast by 

minimizing a cost function. The cost function sums the squared deviations of the analysis 

values from the observations, weighted by the accuracy of those observations plus the 

sum of the squared deviations of the forecast fields, along with the analyzed fields 

weighted by the accuracy of those in the forecast (MetEd – UCAR, 2009 a).  The two 

types of data assimilation are three-dimensional (3D VAR) and four-dimensional (4D 

VAR). 3D VAR data assimilation is defined as when only current observations are 

utilized within the analysis cycle. 4D VAR is an extension of the 3D VAR with the added 

dimension of time. An example of 4D VAR is when the model is advanced in time and its 

result becomes the forecast for the next analysis cycle (Schlatter, 2000). Real, ground-

truth observational data (e.g., 3D VAR) is imported into the real.exe (REAL) program for 

future ingestion into the ARW or NMM dynamic core or into the WRF - Var. WRF - Var 

initialization data is either input (or received as output ) by the ARW/NMM dynamic core 

(i.e., 4D VAR). In each analysis cycle, the WRF pre-processors can generate two large 

classes of simulations for WRF - EMS model output; ideal.exe or real.exe.  
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Figure 1: WRF - EMS Model System Flow Chart ((UCAR), 2010) 

 

The WPS is comprised of a set of three programs whose collective role is to prepare the 

input data to the real.exe program for real-data simulation; geogrid defines model 

domains and interpolates static geographical data to the grids; ungrib extracts 

meteorological fields from the GRIB-formatted files and metgrid horizontally 

interpolates the meteorological fields (i.e., extracted by ungrib to those model grids as 

defined by geogrid). The ideal.exe or real.exe file “runs” the model; or executes the 

procedure(s) required to pass the pre-processed initialization data set (e.g., reanalysis) 
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into the dynamic core. Within the dynamic ARW or NMM cores, data is then processed 

through the aforementioned PBL, microphysical, convective, radiation algorithms 

(UCAR, 2012) (UCAR, 2013 c). The post-processing and visualization of the finalized, 

executable output files can be accomplished through UNIX-based GrADS or GEMPAK 

software, or through the Windows-environment Integrated Data Viewer (IDV) from 

Unidata. Output data files can be statistically-analyzed through the MET package 

(Developmental Testbed Center (DTC), 2013). The Visualization and Analysis Platform 

for Ocean, Atmosphere and Solar Researchers (VAPOR), NCAR Command Language 

(NCL), and the Read/Interpolate/Plot (RIP 4) for FORTRAN users are other data 

processing tools that are utilized for the visualization of WRF - EMS output data (UCAR, 

2012). 

 

The WRF - EMS model can utilize various physical packages that include, but are not 

limited to, PBL, microphysical, convective, and radiation schemes. The WRF - EMS 

(version 3.4.1) used in this research will utilize a nested inner grid space of 3 km
2 

and 

allow the model to create its own convection (i.e., explicit convection, cloud updraft 

structure) within this nested domain. Explicit convection will eliminate the need for a 

parameterized convective scheme.  The model domains were built through the WRF - 

EMS’s Domain Wizard. The Domain Wizard is a systematic, GUI-based software 

component that allows the user to construct a pre-determined simulation domain. A 

larger, parent 9 km
2
 gridded domain with a smaller, nested 3 km

2
 grid space was built 

through the Domain Wizard and centered over downtown Houston, Texas (Fig. 2). The 

user executed varying physical package combinations on each domain as each domain is, 
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in essence, a separate model. Numerous domains can be constructed for future studies 

and, with the auto_run program, simulation can be more efficiently maximized through 

pre-scheduled run times. 

 

 

Figure 2: Parent 9 km
2
 outer domain and nested 3 km

2
 inner domain 

 

There are three main command functions that make up the WRF - EMS; ems_prep, 

ems_run, and the auto_run command. The ems_prep command introduces initialization 

data (e.g., reanalysis) into the WRF - EMS for model initialization. The ems_run 
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executes the local model. Auto_run is a group of scripts that schedule the execution of the 

ems_prep and ems_run commands.  

 

The research used the java-based Integrated Data Viewer (IDV) software package from 

Unidata to view, analyze, and develop graphical model output within a Microsoft 

Windows environment. Microsoft Excel was used to extract, compile, analyze, and 

develop graphical output of the MET verification statistics. The research involved 

executing the WRF - EMS (version 3.4.1 ARW core) numerous times utilizing varying 

initialization and physical scheme combinations (Fig. 3). 144 planetary boundary layer 

and microphysical scheme combination WRF - EMS runs were initialized with two 

global reanalysis datasets and one model forecast initialization dataset. The two 

reanalysis datasets were the Climate Forecast System Reanalysis (CFSR) and the 

European Reanalysis (ERA - Interim) with the 12 km
2
 resolution North American Model 

(NAM12) being the third (forecast) initialization dataset.  The popular operational 

NAM12 inherently employs reanalysis functionality that makes it a suitable initialization 

/ boundary layer dataset for which to compare against the other two reanalysis datasets. 

One of the key benefits of utilizing NAM12 forecast model data is that it allows the 

forecast to be updated every hour through the first 36 hour period, 3-hourly afterwards. 

The CFSR and ERA - Interim datasets update every 6 hours, or when their respective 

models update at the 0600, 1200, 1800, and 0000 UTC hours. Through the WRF’s 

preparation command line structure the user can have the model ingest updated 

downstream mandatory synoptic hour initialization datasets, 6-hour data for the CFSR 

and ERA - Interim / 3-hour for the NAM, in updating boundary layer conditions. The 
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CFSR and ERA - Interim datasets allow the researcher the benefit from that case event’s 

actual downstream data. Hence, access to this periodically updated initialization and 

boundary layer reanalysis data was very advantageous to this study’s simulation.  

 

 

 

 

Figure 3: Initialization / PBL / Microphysical (mp) scheme configuration 
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3. Previous Works 

 

3.1 Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial     

     Conditions on Warm Season Rainfall Forecasts (Gallus and Bresch, 2005) 

 

A series of WRF simulations were performed for 15 August of 2002 rainfall events 

occurring over the central United States, with an 8 km
2
 resolution domain and 60 vertical 

levels. Four different WRF simulations were integrated over 48 hours, with three-hour 

lateral boundary conditions updates, where rainfall was averaged over six-hour periods. 

Observations were taken from 4 km
2
 gridded Stage IV multi-sensory data. NCEP Stage 

IV analysis is a mosaicked national rainfall accumulation product comprised of regional 

hourly or 6 hourly radar and rain gauge data that is produced and quality controlled by 12 

national River Forecast Centers (RFCs). 

 

The goal was to compare the sensitivity of warm season rainfall forecasts with different 

physics packages and dynamic cores, along with varying initial conditions, within the 

WRF model. The ARW and NMM dynamic cores were used with the NCAR and NCEP 

physics packages. The NCAR suite used the Yonsei University (YSU) planetary 

boundary layer scheme, the Kain - Fritsch (KF) convective scheme, and the Dudhia rapid 

radiative transfer model radiation scheme. The NCEP package utilized the Betts - Miller - 

Janjić (BMJ) convective scheme, the Mellor - Yamada - Janjić (MYJ) planetary boundary 

layer scheme and the Geophysical Fluid Dynamics Laboratory (GFDL) radiation 

package. In all of the model runs, the other physical schemes (i.e., Noah land surface 
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model, microphysics) went unchanged. The simulations suggested that the sensitivity of 

the model to changes in the physical scheme was a direct function of the dynamic core. 

Similarly, the sensitivity of the dynamic core(s) was a direct function of the physical 

scheme(s). Generally, the greatest sensitivity was associated with a change in the physics 

packages within the NMM core while there was less sensitivity (with a physics scheme 

change) within the ARW core. For light rainfall episodes, the WRF model using the 

NCAR physics package (i.e., ARW core) was more sensitive to a change in the dynamic 

core itself than when the WRF model was run with the NCEP physics package (i.e., 

NMM core). The smaller impact of the NCEP physics was likely due to the broader, 

smooth rainfall regions produced by the BMJ convective scheme, thus minimizing the 

correspondence ratio (CR) (Strensrud and Wandishin, 2000). This ratio compared the 

number of grid points exceeding the 0.01 inch (0.25 mm), 0.25 inch (6.35 mm) and 0.50 

inch (12.7 mm) rain thresholds versus those that had at least one grid point exceeding 

those particular thresholds. For heavier rainfall episodes (greater than 0.50 inches / 12.7 

mm), the opposite was true as there was greater sensitivity with the NCEP physical 

scheme(s). The NCEP physics package led to a much smaller bias when simulating 

higher rainfall amounts than did the NCAR physics package, thus these particular high 

rainfall simulations were generally more sensitive to the dynamic core change.  

 

Sensitivity to modeled (e.g., ETA, Rapid Update Cycle (RUC)) initial conditions, with 

negligible grid spacing and vertical layer change, was generally less substantial than the 

sensitivity caused by changes to the WRF’s dynamic core or physics. For heavier rainfall, 

the ranking of sensitivity to changes in specific components varied much more over time. 



17 

 

Concerning warm season rainfall, the fine scale structure of rainfall forecasts was more 

affected by the different physical schemes than by the dynamic core. However, Gallus 

and Bresch’s research showed that the overall domain’s areal coverage and volume of 

rain might have actually been more influenced by the dynamic core than by the physical 

scheme(s).  

 

3.2 On the Impact of WRF Model Vertical Grid Resolution on Midwest Summer 

Rainfall Forecasts (Aligo, Gallus and Segal, 2008) 

 

A refined vertical grid resolution (VGR) should conceptually improve the prediction of 

convection-related, microphysical and boundary layer processes, which in turn should 

improve rainfall forecasts. (Aligo, Gallus, & Segal, 2008) performed 68 WRF ARW core 

model exploratory sensitivity simulations, using the North American Regional Reanalysis 

(NARR) for the initial and lateral boundary conditions in convection-permitting runs, to 

determine the impact of the VGR on the forecast skill of Midwestern United States 

summer rainfall. 

 

The variance of a refined VGR did not necessarily result in a consistent improvement in 

quantitative precipitation forecasts (QPF).  When the VGR was refined in a case study of 

averaged microphysical schemes, there were lower ETS and higher bias values as rainfall 

was over-predicted for half of the rainfall thresholds. Simulations were averaged over 

“strongly-forced” warm season convective cases, or those cases that displayed (non) 

linear bowing, parallel, leading, or trailing stratiform convective characteristics, at least 
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20 m/s 500 hPa winds, and/or near-surface cross-frontal horizontal temperature gradients 

of at least 7° C over 100 km. When the number of vertical levels was increased, ETS 

values worsened for all rainfall thresholds while many biases increased, indicating a 

further over-prediction of rainfall. There was a systematic increase in bias with a VGR 

increase, which was suggested to be related to grid cell saturation occurring more 

frequently in the finer VGR runs. Within these finer VGR runs, enhanced upward 

motion(s), occurring in tandem with higher relative humidity ‘prior’ to convective 

initiation, might indicate that these enhanced upward motion(s) might have led to the 

frequent grid cell saturation. Qualitatively, varying the VGR resulted in noticeable 18 

hour accumulated rainfall differences (> 25 mm) over widespread areas among different 

microphysical schemes and cases. Most of the rainfall differences were due to local shifts 

in rainfall centers; some areas of rainfall were completely removed and/or created. 

 

There was skill improvement for all rainfall thresholds when vertical resolution was 

increased above the melting level. This was possibly related to the better resolution of 

sub-freezing microphysical processes. Skill also improved over most rainfall thresholds 

when above-freezing layer (e.g., warm cloud layer and/or processes) with increased 

VGR. Improved lower QPF skill (< 12.7 mm) was attributed to better-resolved surface 

turbulent momentum and thermal fluxes. This study showed that a more-refined VGR 

resulted in QPF improvement within weakly-forced cases. Vertical motions in these 

weakly-forced situations are mainly governed by thermodynamic forcing; or are more 

sensitive to vertical temperature and moisture profiles. Application of the factor 

separation method (Stein & Alpert, 1993) suggested that a more-refined VGR frequently 
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had a counter-intuitively negative impact on skill through boundary layer and warm cloud 

processes interacting with microphysical processes above the melting level. In relation to 

the non-linear interaction (synergy) between the above and below melting layer physical 

processes, 70% of the higher level (62 level) WRF runs displayed negative synergy while 

28% had positive synergy. These findings suggested that the majority of these higher 

VGR runs displayed degraded ETS while only a third provided positive results. It should 

be noted that that, for higher rain amounts of between 12.7 and 19.0 mm (0.25 in, 0.75 

in), there were improved 62 VGR level QPF skill scores, or increased positive synergy. 

 

In conclusion, QPF skill can be sensitive to the VGR and, at least on a case-by-case basis, 

there may only be limited skill by refining the number of vertical levels, especially if the 

initial conditions (IC) and lateral boundary conditions (LBC) are on a relatively-coarse 

vertical grid. In this study, the ICs and LBCs were from the NARR, which provides 29 

data levels. Conceptually, increasing the number of model levels from 31 to 62 should 

have better resolved the simulated vertical processes, but this increasing VGR did not 

provide any additional IC or LBC refinement. Significant modulation should occur with 

horizontal grid resolution of higher VGR upon forecasted rainfall due to IC/LBC error 

and incomplete model physics formulation. It was noted that future work could focus on 

a detailed evaluation of specific cloud microphysical or boundary layer processes 

affected by VGR modification(s). Carrying out full-seasonal sensitivity simulations, 

while utilizing a more-refined VGR, would provide further insight into this study’s QPF 

evaluations. 
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3.3 The Impact of Different WRF Model Physical Parameterizations and Their 

Interactions on Warm Season MCS Rainfall (Jankov et al., 2005)  

 

In recent years, a mixed-physics ensemble approach has been investigated as a method to 

better predict mesoscale convective system (MCS) rainfall. The main goal of the study 

was to note and quantify general trends in the impact of various physical schemes and 

their interactions upon warm season MCS rainfall forecasts. Knowledge of how different 

physical schemes, or their combinations, influence rainfall forecasts may be of major 

importance in designing and interpreting mixed-physics ensembles. 

 

A matrix of 18 WRF model configurations using different physical scheme combinations 

was run with 12 km
2
 grid spacing for eight International H2O Project (IHOP) MCS cases. 

Each case utilized three convection schemes; the KF, the BMJ, and the use of no 

convective scheme (NC), Three microphysical schemes; NCEP - 5 microphysics (MPN), 

(Lin, 1983) microphysics (MPL), and Ferrier microphysics (MPF), while two PBL 

schemes; the Medium Range Forecast (MRF) and older WRF - NMM (ETA), were used. 

All runs were initialized with a diabatic Local Analysis and Prediction System (LAPS) 

hot start initialization (Jian, Shieh and McGinley, 2003). 

 

In the majority of the cases, MCSs dominated the rainfall field and were captured in the 

interior of the domain. An analysis of ETS and bias indicated that no single model 

configuration was clearly better than the rest. The best configuration varied in both time 

and rainfall threshold(s). Objective testing of sensitivity to physical scheme changes was 
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performed by evaluating correspondence ratio and squared correlation coefficient values. 

Both objective measures were computed for sets of two model runs in which two of three 

model physical schemes were held fixed and the third varied (e.g., the PBL and the 

convective schemes were fixed while the microphysical scheme varied).  Both the 

correspondence ratio and the correlation coefficient indicated that the highest sensitivity 

was in the choice of convective scheme. Less sensitivity occurred with varied PBL 

schemes with the least sensitivity associated with microphysics scheme change. The 

correspondence ratio for light rainfall indicated that sensitivity was highest during the 

first 6 hours. During heavier rainfall events, the correspondence ratio was highest during 

the latter forecast times. 

 

Additional testing of rain rate and volume sensitivity to changes in the physics was 

performed using the factor separation method (Stein and Alpert, 1993). This method was 

used to quantify the impacts of the variation of two different physical schemes as 

compared to a “control run”. The KF, MRF, and the MPN physical schemes were chosen 

to match the real-time model configuration used by NOAA’s Forecast System Laboratory 

(FSL) during the IHOP experiment and for their interaction, or synergy, upon simulated 

rainfall. Statistical significance of the obtained results was tested by following are-

sampling method suggested by (Hamill, 1999). A change from the KF to NC significantly 

increased system rain rate. A change from KF to BMJ significantly increased the areal 

coverage of lighter rainfall while lowering system rain rates, though not significantly, in 

relation to the KF runs. In general, changes in convective schemes were found to have the 

largest impact on rain rates when the KF was replaced with the NC, no matter the 
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microphysical nor PBL scheme. Regarding rain volume, the microphysical scheme 

choice exerted the largest impact in the NC runs with the least impact with the BMJ runs. 

The impact of synergy between different physical schemes, although occasionally of 

comparable magnitude to the impacts from only changing one scheme compared to a 

control run, varied greatly among cases and over time, and was typically not statistically 

significant. One exception was for the interaction of the ETA with the MPL, or the MPF, 

which significantly reduced the rain volume increase that had been previously noted for 

the heavier threshold MPN microphysics scheme. These results suggest that most of the 

significant trends noted for a switch in one physical process scheme (e.g., increase in rain 

rate when KF is switched to NC) remain consistent even when other physical process 

schemes were altered. A switch from the MPN to either the MPL, or the MPF, increased 

rain volume markedly no matter the convective nor PBL scheme. A switch from KF to 

BMJ decreased rain volume, especially for heavier rainfall amounts, regardless of the 

microphysics and PBL scheme. Averaged skill scores over all eight cases for the 18 

configurations indicated that not one configuration was obviously best at all times and/or 

thresholds. The greatest forecast variability was discovered with changes in the 

convective scheme, although notable impacts also occurred from changes in the 

microphysics and PBL schemes. Specifically, convective scheme changes notably 

affected average rain rate forecast numbers. Total rain volume forecasts were influenced 

by the microphysics and the convective schemes.  

 

In conclusion, this study’s results implied that, if an ensemble designed for MCS rainfall 

prediction lacks sufficient spread, model runs with different convective schemes should 
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be included as an efficient way to increase spread. If rain volume is a desired quantity 

(e.g., for hydrological purposes), model runs with the MPL and the MPF microphysical 

schemes may require different bias correction, or weighting, in an ensemble compared to 

runs using the MPN. Future work will focus on more detailed case analyses in order to 

relate the explicit interaction of physics schemes to the larger-scale environment. (Jankov 

et al., 2005) state that detailed case analyses, along with the general findings of this 

study, will be used to design and interpret future mixed-physics ensemble results. 

 

 

4. Project Description 

 

The thesis research primarily focused on varying a WRF - EMS’s multiple PBL and 

microphysical schemes in an attempt to accurately simulate a historically high rainfall 

event that had adversely impacted southeastern Texas. An adverse Houston - Galveston 

regionally high rainfall event that created (flash) flooding is defined as an event that has 

either (a) caused loss of life and/or (b) created significant economic loss. The study will 

mainly focus on a cool seasonal case event (e.g., October - April) where prominent 

synoptic and/or mesoscale forcing existed. Historically, higher resolution modeling has 

been largely unsuccessful at attempting to forecast the initialization and evolution of 

warm season, weakly-forced convection (e.g., sea breeze) (Case et al., 2011). The 

reasoning behind these unsuccessful attempts could be that sub-scale convective physical 

processes have yet to be fully-resolved by current NWP modeling, or even completely 

understood, theoretically, within the meteorological community. This research, as well as 
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near term research studies, will have a higher probability of successfully simulating 

convection within more strongly-forced environments (e.g., cool season) versus weakly-

forced regimes (e.g., warm season). It was advantageous to employ a larger scale 

(spectral) model data set to the regional outer domain (e.g., 9 km
2
 parent domain) as there 

will be a higher probability that a stronger-forced environment will be better resolved by 

spectral modeling. Thus, focusing on stronger-forced convective regimes will likely 

provide a more successful attempt at studying the correlation between a combination of 

selectable physical scheme parameters and the improvement of resolving the temporal 

and areal behavior of intense convection.  The study will research one cool season high 

rainfall event that ultimately produced flooding. The case study event that will be 

intensively researched within this paper will be the April 18
th

, 2009 Houston metro area 

extreme rain/flooding event. Using the scientific method and validating NWP model 

output against ground-truth observations (e.g., quality-controlled radar data), 144 WRF - 

EMS simulations will be run that will employ three initialization datasets while varying 

six PBL and eight microphysical scheme combinations. Inherently, within the WRF - 

EMS system, there are various surface layer physical parameters and LSM datasets that 

will be associated with particular PBL schemes. The research goal is to determine if high-

resolution computer model simulation can accurately re-create the convective 

characteristics of a regional, historically high rainfall event.  

 

If these WRF simulations are structured in the aforementioned manner, then will this 

output have the ability to forecast the magnitude, or scope, of a high rainfall event’s 

temporal and spatial behavior? 
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4.1 Verification Methodology 

 

A verification software package, the Meteorological Evaluation Tool (MET) package, 

will be employed to analyze the WRF - EMS model output data. The main strength of 

this highly-configurable package is that, through a variety of statistical methods, it aids in 

the verification of model output data. The MET software is designed to provide a variety 

of verification techniques. For example, the MET package can provide standard 

verification scores that compare gridded model data output to both gridded and point-

based “ground truth” observations through both time and space. Spatial verification 

methods compare gridded model data to gridded observations using neighborhood, 

object-based, and intensity-scale decomposition approaches. The MET software can also 

utilize ensemble and probabilistic verification methods that correlate gridded model data 

to point-based, or gridded, observations. This research will utilize the MET software to 

verify, through grid-based verification, quantitative rainfall against Stage IV radar data. 

 

 

5. Initialization Data 

 

5.1 Initialization Datasets 

 

Model runs were initialized with either reanalysis or model data. Unlike previous 

versions of the WRF - EMS, the WRF - EMS version 3.4 has the ability to ingest 

reanalysis data from the University Collaboration of Atmospheric Research’s (UCAR) 
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data servers.  NCEP literature defines meteorological reanalysis data as “a data 

assimilation project which aims to assimilate historical observational data spanning an 

extended period, using a single consistent assimilation or analysis scheme throughout” 

(Kalnay et al., 1996). While numerical models are used to predict future states of the 

atmosphere, they are based on how the climate system evolves from an initial state. This 

initial state provided as model input must consist of data that ranges over a field of 

predictable meteorological fields; the fields that will ultimately determine the model’s 

future evolution. Gridded meteorological parameters required by the model, with the 

initialization data, must be valid at a single point-in-time that corresponds to the present, 

or the recent past. Issues that arise from using available observation, or real world, data 

within modeling domains are as follows; observational data usually does not include all 

of the model's prognostic fields and may include additional fields, have different spatial 

distribution from the forecast model grid, may be valid over a range of times rather than a 

single time, and quality can suffer due to observational error. Thus, meteorological 

reanalysis data assimilation is used to produce an analysis of the initial state. This is the 

statistical “best fit” of the numerical model to the available data, taking into account error 

in both data sets. In essence, reanalysis data is quality-controlled observational data that 

is continually feed into a model whereas, at every time step, the model’s “first guess” is 

“compared” to observational data at each defined grid point. Bias (e.g., error) is then 

worked into the next time step between the prognostication’s “guess” and observation 

comparison. This study will be performed on an historical event and utilizing reanalysis 

data will allow the research the benefit of time. In lieu of one, initial observational data 

ingest at forecast hour 0 (e.g., NAM, GFS), observational data was continually ingested 

http://en.wikipedia.org/wiki/Data_assimilation
http://en.wikipedia.org/wiki/Data_assimilation
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into the core analysis model (i.e., nudging) to ensure better down-the-line local model 

forecast initialization and downstream input (output).  

 

The two reanalysis data sets that were involved in this study were the Climate Forecast 

System Reanalysis (CFSR) and the European Reanalysis (ERA - Interim) datasets.  The 

CFSR utilizes the operational GFS model and the Noah Land surface model (LSM).  The 

ERA - Interim is so named “interim “as it is was originally planned as a provisionary 

reanalysis in preparation for the next-generation extended reanalysis that would 

eventually replace the previous ERA - 40 reanalysis. The ERA - Interim runs a 2006 

version of the European Center for Medium Range Weather Forecasting (ECMWF) 

integrated forecast model. Both reanalysis datasets go back to the year 1979 and continue 

to run real time through the present (Overview of current atmospheric reanalyses, 2014). 

 

5.1.1 Climate Forecast System Reanalysis (CFSR)  

 

The reanalysis CFSR dataset is a global, high-resolution, coupled atmosphere-ocean-land 

surface-sea ice domain system that has a near 38 km
2
 horizontal resolution, or T382 

model spectrum resolution, with 64 vertical levels. CFSR is designed to provide the best 

estimate of the state of these coupled domains over the years ranging from 1979 to 2010. 

The key strengths of the CFSR is that this finer resolution reanalysis involves the 

coupling of the atmosphere and ocean during the generation of a 6 hour guess field, an 

interactive sea-ice model, and it provides advanced assimilation of satellite radiances.  

Other strengths of this relatively un-tested global data set are that it accounts for CO2 and 
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other trace gases, aerosols, and solar variation (Climate Forecast System Reanalysis 

(CFSR), 2013).   

 

In the study, An Assessment of the Surface Climate in the NCEP Climate Forecast System 

Reanalysis, the CFSR data set was compared to observational estimates and the three 

reanalysis datasets; the NCEP/NCAR reanalysis (R1), the NCEP/DOE reanalysis (R2), 

and the ERA40 produced by the ECMWF (Wanqiu et al., 2011). The study discovered 

that the CFSR had more accurate time-mean precipitation distribution over various 

regions, compared to the three previous reanalysis datasets and this lead to a better 

representation of freshwater flux (i.e., evaporation minus precipitation). CFSR displayed 

improvement over the inter-annual variability in relation to precipitation correlation with 

Indian Ocean and western Pacific observations. The CFSR’s inter-annual variability and 

long-term trend of 2 meter (m) temperatures were found to be superior to the R1 and R2 

reanalysis datasets. The study did find that the CFSR tended to overestimate downward 

solar radiation flux over the tropical Western Hemisphere oceans and this was consistent 

with less cloudiness and resultant higher sea surface temperature. The CFSR’s 

evaporative latent heat flux also appears to be larger than (estimated) global observation. 

There were identified inconsistencies, or noted long-term variation error, in the dramatic 

change of variables during the years between 1998 and 2001 and this was possibly 

attributed to changes in assimilated satellite observation. Other issues involved 

inconsistent soil moisture values and sea ice extent that may have future impacts on the 

application of the CFSR for climate diagnoses and prediction (Wanqui, Pingping and 

Soo-Hyun, 2010). 
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 5.1.2 European Reanalysis (ERA- Interim)  

 

The ERA - Interim spectral resolution is T255 (i.e., ~80 km
2
 horizontal resolution) and 

there are 60 vertical levels (Overview of current atmopsheric anaylses, 2014) (ERA-

Interim, 2008). The ERA - Interim reanalysis is produced with a sequential data 

assimilation scheme, advancing forward in time using 12-hour analysis cycles. In each 

cycle, available observations are combined with prior information from a forecast model 

(e.g., ECMWF operational forecast model) to estimate the evolving state of the global 

atmosphere and its underlying surface. This involves computing a 12-hour 4D Var 

analysis of the basic upper-air atmospheric fields of temperature, wind, humidity, ozone, 

and pressure. A key feature of 4D Var is the flow-dependent influence of observations 

that results from using a forecast model to constrain the analysis (Thépaut et al., 1996). 

The ability of the data assimilation system to exploit physical information implicit in the 

model equations can be very beneficial, especially where observations are sparse. 

(Whitaker, Compo and Thépaut, 2009) have shown that 4D Var outperforms 3D Var in 

such situations, and that it is capable of producing accurate analyses of the large-scale 

tropospheric circulation based only on observations of surface pressure. The ERA - 

Interim’s version of 4D Var updates a set of parameter estimates that define bias 

corrections needed for the majority of satellite-based radiance observations. A following 

analysis occurs of near-surface parameters such as 2 meter temperature and humidity, soil 

moisture and temperature, snow, and ocean waves. These analyses are then used to 

initialize a short-range model forecast, which provides the prior state estimates needed 

for the next analysis cycle. 
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The forecast model has a crucial role in the data assimilation process. Use of the model 

equations makes it possible to extrapolate information from locally observed parameters 

to unobserved parameters in a physically meaningful way, and to also carry this 

information forward in time. As time evolves, the skill and accuracy of the forecast 

model determines how well the assimilated information can be retained. More accurate 

model forecasts translate to smaller adjustments needed to maintain consistency with the 

observations.  While producing a forecast, the model estimates a wide variety of physical 

parameters such as precipitation, turbulent fluxes, radiation fields, cloud properties, soil 

moisture, etc. Even if not directly observed, these are constrained by the observations 

used to initialize the forecast. The accuracy of these model-generated estimates naturally 

depends on the quality of the model physics as well as that of the analysis. 

 

The data assimilation produces a coherent record of the global atmospheric evolution 

constrained by the observations available during the period of reanalysis. The ERA - 

Interim archive currently contains 6-hour gridded estimates of three-dimensional (3D) 

meteorological variables, and 3-hour estimates of a large number of surface parameters 

and other two-dimensional (2D) fields, for all dates from January 1, 1989 (Dee, 2011).   

The research’s statistical scoring concluded that the better initialization dataset was the 

CFSR reanalysis.  The most plausible reasoning for this is that the CFSR reanalysis 

dataset, when compared to the ERA - Interim dataset, has higher overall resolution. The 

CFSR’s horizontal resolution is nearly twice that of the ERA-Interim’s; 38 km
2
 versus 80 

km
2
, respectively. The CFSR also uses more vertical levels; 64 vertical level resolution 

versus 60 vertical levels in the ERA - Interim. Another reason could be that the 
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operational GFS model was a better “first guess” performer than the ECMWF during this 

particular case study.  More accurate prognostication within the reanalysis would allow 

for lower downstream (e.g., every 6 hours) error during the 4D VAR data assimilation 

process, thus resulting in cleaner future data ingestion that more closely matched 

observation data.  

 

 

6. Synoptic Review of April 18
th

, 2009 

 

The synoptic scenario of the April 18
th

, 2009 high rainfall event was of a 1200 UTC 558 

decameter (dam) 500 millibar (mb) closed-off upper low centered over the 5 corners 

region of the Texas and Oklahoma panhandles, northeastern New Mexico, southeastern 

Colorado, and southwestern Nebraska. This vertically-stacked low was observed across 

all mandatory pressure level surfaces. The broadening upper low transitioned eastward 

into the southern plains through 0000 UTC, April 19
th

, 2009. Downstream of this 500 mb 

low, the upper wind pattern became diffluent over southeastern Oklahoma and 

northeastern Texas. At 300 mb, or at the jet stream level, it was noted that there was 

enhanced diffluence associated with a split flow pattern over southeastern Texas; a 39 

m/s (75 knot) upper Sabine River Valley south-southwest wind existed just north of a 

more west-southwest lower Sabine River Valley 33 m/s (65 knot) wind.  Mid-level 

diffulence within a very moist environment was also evident at the 700 mb level as 

moderate 13 - 15 m/s (25 - 30 knot) morning winds advected a 6 degree Celsius (°C) dew 
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point southern Rio Grande Valley air mass into eastern Texas. The 850 mb pressure 

surface indicated relatively high mid-level moisture as 10 °C to 15 °C dew point air was 

advected northward from extreme northeastern Mexico into southeastern Texas. 1200 

UTC local area soundings depicted a saturated column from the surface to around a 

height of 1000 meters (m). In comparing the upper air constant pressure surface 850 mb 

chart to the Corpus Christi, Texas upper air sounding, it was observed that the column 

was becoming more saturated through a higher altitude, or up through 1,500 m, during 

the mid to late morning hours.  

 

By 1800 UTC, surface observations were becoming supportive of a high rainfall event. 

For example, a moderate southeastern 13 - 15 m/s (25 - 30 knot) onshore flow advected 

in approximately 21 °C dew point moist gulf air into a warm inland 21 °C air mass; a 

near zero (0.5 °C) surface dew point depression was observed along the upper Texas 

coastline through the 1200 UTC - 2100 UTC 9 hour period. Of note, a zero dew point 

depression, 19 °C over 19 °C, at 0000 UTC in Galveston was within on-going 

precipitation. A very significant feature for meso-scale precipitation focus was an 

observed 1800 UTC low-level convergence zone created by the formation of a Harris 

County-centered surface trough. Radar imagery depicted the development of a meso-low 

that ultimately enhanced the low-level inflow of extremely moisture rich air into the 

system (i.e., cluster of thunderstorms) during the period of highest observed rainfall 

(rates) across southeastern Harris and northern Galveston counties.  
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6.1 Rainfall Behavior 

 

In relation to rainfall rates, the April 18
th

, 2009 heavy rain event was unprecedented in 

the region’s plus-100 years of modern observing history.  This event recorded the highest 

one hour rainfall of 175.26 millimeters (mm) (6.9 inches) in Texas history (Fig. 4, 5). 

This was recorded at the A100 Clear Creek and Bay Area Boulevard Harris County Flood 

Control District (HCFCD) - maintained rain gauge. (Fig. 6) This hourly rainfall exceeded 

the previous record 172.72 mm (6.8 inches) amount recorded in the June 2007 Marble 

Falls, Texas high rainfall summer event, as well as the 160.02 mm (6.3 inches) hourly 

amount observed during June 2001’s Tropical Storm Allison that impacted the Houston, 

Texas area. All three of these events are considered 1-in-500 year events by flood plain 

statistical standards. Three-hour and six-hour rates were 233.68 mm/3 hours (9.2 inches/3 

hours) and 251.46 mm/6 hours (9.9 inches/6 hours) and both are 1-in-500 year 

occurrences. The 12-hour and 24-hour (1 day) rates were 254.00 mm/12 hours (10 

inches/12 hours) and 279.40 mm/1 day (11 inches/1 day), 1-in-50 year and 1-in-25 year 

occurrences, respectively. The smaller temporal scale unprecedented copious rainfall 

rates were very impressive, as well. Examples of this were the 18.03 mm per minute rate 

(0.71 inches/1 minute rate) at the Willow Spring - Fairmont Parkway gauge, the 15 

minute rate of 61.98 mm (2.44 inches/15 minute rate) at the Clear Creek – I - 45 gauge 

(Fig. 7) and the 30 minute rate of 107.19 mm (4.22 inches/30 minute rate) at the Clear 

Creek - Bay Area Blvd gauge. For reference, the United States national record for a one 

minute rainfall rate is 31.24 mm/1 minute (1.23 inches/1 minute) in Unionville, 

Maryland. 
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The precipitation was measured with a tipping bucket mechanism that has inherent error 

within convective rainfall scenarios. Research has proven that there is 10% to 20% error 

due to the inability of the tipping bucket mechanism to catch up within intense rainfall, 

rain spillage, and rain loss due to wind capture. If rain gauge tipping bucket error is 

considered, then it is reasonable to assume that an additional 10% to 20% more rain fell 

during this episode. Placing this in perspective means that the Clear Lake area could have 

easily experienced over 203.2 mm (8 inches) per hour rainfall rates that Saturday 

afternoon! Probabilistically, this event could be a “once in a lifetime” event, as the one 

and three hour rainfall rates both have a 0.2% chance of annual re-occurrence, while the 

six hour rates equate to a 1% annual chance of reoccurrence. 
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Figure 4: 1 hour maximum rain gauge observations (inches) with major flooded 

areas (HCFCD, 2010) 
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Figure 5: 12 hour maximum rain gauge observations (inches)  

(HCFCD, 2010) 
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Figure 6: 15 minute and 1 hour Clear Creek / Bay Area rain gauge data 

(HCFCD, 2009) 
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Figure 7: 15 minute and 1 hour Clear Creek / I-45 rain gauge data 

(HCFCD, 2009) 
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6.2 Storm Data 

 

Harris County storm data reported homes were flooded, numerous roadways were 

underwater and there was bayou flooding from the localized 203 to 254 mm (8 to 10 

inch) rain totals that had fallen across the county. In the northern part of Harris County, 

five children, all under the age of 7, drowned in a vehicle that drove into a flooded 

drainage ditch. There was wind damage to homes and uprooted trees reported in the town 

of Seabrook, Texas. In northern Galveston County, there were 300 flooded homes in 

League City, Texas. High water rescues were required in the town of Dickinson, Texas. 

Strong thunderstorm winds caused the downing of large trees in the Clear Lake Shores 

area. An EF0 tornado touched down a few miles southeast of Hitchcock, Texas that 

damaged several homes along its path. In Fort Bend County, numerous roadways were 

flooded in and around Missouri City, Texas. In Wharton County, trees and power lines 

were reported downed by storm winds in New Taiton, Texas (NWS, 2009).   

 

 

7. The Planetary Boundary Layer (PBL) 

 

The WRF - EMS is a widely utilized NWP model within the atmospheric science 

community for the purpose of meteorological research and prognostication. Since L.F. 

Richardson first attempted NWP in 1922, advancement in weather forecasting has only 

improved with the continued development and subsequent evolution of computing power. 
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Although modern-era models are operating with unprecedented finer grid resolutions, 

many crucial physical atmospheric processes are still not completely resolved and must 

still be parameterized. These processes include, but are not limited to, the diurnal 

evolution of the PBL, the microphysics of cloud formation and precipitation, the transfer 

of surface heat, moisture, and momentum into the atmosphere, and heat exchange 

between the atmosphere and terrestrial associated with  shortwave and longwave 

radiation. The formation, structure and maintenance of the PBL are critical to the 

prediction of meteorological elements (e.g., temperature, wind, precipitation). An 

accurate depiction of the PBL through NWP simulation demands that the handling of 

turbulent motion/mixing of heat, momentum, and moisture be realistically-resolved 

through parameterization (Xie et al., 2012).  

 

Over the past three or four decades, considerable progress has been made in the 

development and improvement of PBL parameterization within atmospheric modeling. In 

the WRF - EMS, PBL processes can be parameterized either through local closure (e.g., 

K-theory) or non-local closure schemes. The difficulty in accurately simulating PBL 

evolution lies within the inability to properly resolve the convective boundary layer sub-

scale eddies and large asymmetrical thermals. K-theory is limited to simulating turbulent 

mixing within adjacent layers symmetrically, thus mixing is not appropriately 

reproduced.  To better produce turbulent mixing within the PBL various non-local 

closure models have been developed to overcome the shortcomings of K-theory. Non-

local schemes can employ parameterized adjustment terms that represent large scale 

buoyant plume motion (i.e., cloud updrafts, thermals) or can explicitly treat upward or 
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downward heat/momentum/moisture transport through conserved atmospheric scalars. 

The importance of PBL parameterization through such methods as vertical mixing 

formulation and use of the critical Richardson number to determine boundary/mixing 

layer height have been emphasized as a couple of the most important factors in improving 

weather prediction models. PBL parameterizations within large scale NWP modeling are 

mainly divided into either first order or one-and-a-half order total kinetic energy (TKE) 

closure schemes (Xie et al.,  2012). Research has shown that the simulated mean 

boundary layer structure is not very sensitive to the order of closure while turbulent 

structure is better represented, or more sensitive within weak wind regimes, through TKE 

closure schemes. There has been little research in comparing the typical characteristics of 

one scheme to another in both stable and unstable boundary layer regimes. Each PBL 

within the WRF - EMS is tied to a particular surface layer scheme although few studies 

have been conducted that link a surface layer’s contribution to respective PBL behavior.  

The physical effects of land surface elements are significant, such as over highly 

urbanized areas, and the understanding of the non-local scheme’s ability to blend 

turbulent mixing characteristics close, or far away, from the surface can ultimately affect 

heat, momentum and moisture transport.  

 

7.1 Yonsei University PBL scheme 

 

This first-order non-local scheme, with a counter gradient term in the eddy-diffusion 

equation, was developed by Yonsei University in South Korea (Hu, Nielsen-Gammon 

and Zhang, 2010). The Yonsei University scheme (YSU) parameterizes the distribution 
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of heat, moisture, and momentum in the part of the atmosphere directly influenced by the 

earth's surface, or the PBL. It determines the vertical extent and intensity of mixing based 

upon the stability of the lowest model layer that is approximately 20 meters thick (Hong, 

Noh and Dudhia, 2006). The YSU scheme is modified in WRF (ver. 2.0) from the (Hong 

et al., 2006) formulation by increasing the critical bulk Richardson number from zero to 

0.25 over land, thereby enhancing mixing in the stable boundary layer (Hong and Kim, 

2008). 

 

The advantages to the YSU scheme, in relation to the previous Medium Range Forecast 

(MRF) PBL scheme, is that its explicit solutions increase boundary layer mixing within 

thermally-induced free convection regimes while decreasing mixing in mechanically-

induced forced convection regimes (Pagowski, 2004). The YSU scheme also does a 

better job at reproducing convective inhibition than did the older MRF PBL scheme. It 

does perform well in the vicinity of frontal boundaries.  The downstream boundary layer 

remains less-diluted by cloud entrainment, thus leaving more available “fuel”, or larger 

regions of Convective Available Potential Energy (CAPE), for imminent stronger 

convection within the frontogenesis zone (Hong et al., 2006). 

 

7.2 Mellor - Yamada - Janjić PBL scheme 

 

The Mellor - Yamada - Janjić PBL scheme (MYJ) is a second-order, single point locally-

closed scheme at which diffusion rates per layer are determined by the wind, moisture, 

and temperature conditions at a particular layer's top and bottom interface. In 2011, 
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NCEP introduced the NMM-B (Non-hydrostatic Multiscale Meteorological model) that is 

based on the Arakawa B-grid (Barcelona Supercomputing Center, 2013). The Arakawa 

B-grid is a “staggered” grid system that separates the evaluation of the two sets of 

quantities; one might evaluate velocities at the grid center and masses at grid corners 

(Arakawa and Lamb, 1977). In equations that describe turbulence, there is a closure 

problem as the number of unknowns is larger the number of equations. These unknown 

turbulence terms are parameterized as a function of known quantities at the same point 

(Stull, 1988). Local closure is employed as diffusion rates in each NMM-B model layer 

are determined by the wind, moisture, and temperature conditions at that particular layer's 

top and bottom interfaces (Mellor and Yamada, 1974) (Janjić, 2002). The MYJ scheme is 

a surface layer scheme based on similarity theory (Monin and Obukhov, 1954). The 

Monin - Obukhov similarity theory is based upon the relationship that describes the 

vertical behavior of non-dimensional mean flow and turbulence properties within the 

atmospheric surface layer (i.e., defined as the lowest 10% of the atmospheric PBL) as a 

function of the Monin - Obukhov key parameters. The Monin - Obukhov similarity 

hypothesis states that surface layer quantities, when properly non-dimensionalized, 

become universal functions of the quotient z/L, where z is the height above ground (in 

meters) and L is the Obukhov length (Air Pollution Training Institute, 2000). The unit-

less Obukhov length is a fundamental scaling quantity in surface layer theory that 

measures the relative importance of mechanical and thermal forcing upon atmospheric 

turbulence. Or, in other words, the Monin - Obukhov length is a rough measure of the 

height at which turbulence is generated more by buoyancy than by wind shear (Stull, 

1988). 
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The MYJ scheme also includes parameterizations of water and land viscous sub-layers. 

Over land, viscous sub-layer effects are taken into account through variable roughness 

heights with respect to temperature and humidity. The more-shallow convective mixed 

layer (e.g., cool and moist boundary layer) produced by the MYJ PBL scheme assumes 

that no mixing occurs with air above the PBL, while air within the PBL is mixed 

intensely amongst adjacent layers. This results in excessive low-level moisture as 

evapotranspiration adds moisture while ample dry air is entrained into the PBL from the 

upper layers (Hu, Nielsen-Gammon and Zhang, 2010). MYJ requires a prediction 

equation and parameterization for the TKE sources and sinks for each model layer. TKE 

is defined as the mean kinetic energy per unit mass associated with turbulent flow eddies. 

The prediction of TKE provides a better emulation of atmospheric mixing, but these 

prognostications can prove to be very complex. The complexities arise when sub-grid 

scale eddies are created as a result of the effects of vertical wind shear and buoyancy 

(MetEd – UCAR, 2011). 

 

7.3 Mellor - Yamada - Nakanishi - Niino PBL scheme 

 

The Mellor - Yamada - Nakanishi - Niino PBL scheme (MYNN) has been recently 

implemented into the WRF - ARW. It is a TKE-based local mixing scheme similar to the 

MYJ PBL scheme. The main features of this scheme include an option to run a 2.5 to 3.0 

closure level (e.g., MYNN 2.5) and it is tuned to a database of large eddy simulations 

(LES) in order to overcome the typical biases associated with other Mellor - Yamada 

schemes (Nakanishi and Niino, 2006). These biases involve insufficient growth of the 
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convective boundary layer and the underestimation of TKE. Liquid water potential 

temperatures and total water content are used as thermodynamic variables. The MYNN 

employs more elaborate mixing length formulations to flexibly change behavior, or 

enhance mixing, across slightly more stable conditions. Recent changes to the scheme 

include the adjustment of closure constants to aid in the suppression of negative TKE 

values while removing the critical Richardson Number (Nakanishi and Niino, 2009). 

There have also been other modifications to closure constants and mixing length 

formulae (e.g., surface layer, buoyancy length) to help in the compensation of overly-

diffusive behavior (Olson and Brown, 2012).  

 

7.4 Asymmetric Convective Model PBL scheme 

 

The Asymmetric Convective Model version 2 PBL (ACM2) is an evolved version of the 

earlier ACM1 PBL. The ACM2 explicitly treats the upward and downward transport of 

conserved atmospheric scalars with local eddy diffusion through a combination of both 

local and non-local closure methods (Pleim, 2007). The design of this model is based 

upon Blackadar’s scheme (Blackadar, 1976), but takes into account the important fact 

that, in the convective boundary layer (CBL), the vertical transport is asymmetric 

(Wyngaard and Brost, 1984). Upward plumes are rather fast and narrow, transporting 

mass more rapidly out of the surface layer into subsequent upper layers, while downward 

streams are wide and slow. Accordingly, upward stream transport (e.g., updrafts) is 

simulated as non-local while downward stream transport (e.g., downdrafts) is local.  



46 

 

One drawback is that, since this method mixes the same amount of mass to every vertical 

layer in the boundary layer, it has the potential to remove too much mass out of the 

surface layer too quickly (Tonnesen et al., 1998). The concept of this model is that 

buoyant plumbs (i.e., cloud updrafts, thermals) rise from the surface layer and transfer the 

air’s thermal, moisture and momentum properties directly into all above layers. 

Downward mixing occurs only between adjacent layers in the form of a slow subsidence, 

or a sedimentation process. Unlike the YSU that uses the parameterized adjustment term 

γc, ACM2’s explicit treatment of non-local fluxes is expected to properly simulate a 

wider array of more applicable quantities, such as humidity and wind, in addition to the 

heat components. For any scalar quantity, Ci, the ACM2 governing equation is: 

 

δCi /δt = fconvection Mu Ci - fconvection Mdi Ci + fconvection Mdi Ci+1 Δzi+1 / Δzi + δ/δz [Kc (1 - 

fconvection) δCi /δz] 

 

where Mu is the non-local upward convective mixing rate, Mdi is the downward mixing 

rate from layer i to i – 1, Mdi Ci+1 Δzi+1 / Δzi is the asymmetric downward flux from the 

adjacent upper layer, δ/δz [Kc (1 - fconvection) δCi /δz] is the local upward eddy diffusion 

term. Ci represents the scalar at the lowest model layer and Δzi is the thickness of layer i, 

fconvection is the key parameter that controls the contribution of non-local mixing versus 

that of local mixing and is defined as: 

 

fconvection = [1 + k 
-2/3

 / 0.1a (-h/L)
-1/3

]
-1 
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where a is a constant set 7.2, k is the von Karman constant whose value is 0.4, h is PBL 

height and L is the Monin-Obukhov length scale.  

 

The non-local mass exchange in the ACM2 PBL is a physical representation of upward 

transport by detraining convective plumes that can apply to any quantity (Xie et al., 

2012). 

 

7.5 PBL mathematics & physics 

 

Sub-grid turbulent fluxes within PBL parameterization are handled through 

parameterization using the prognostic mean variables C, u, v, θ, and q within vertical 

diffusion equations. A simple relation to for vertical diffusion can be expressed as: 

 

δC/δt = -δ/δz (w`c`) = δ/δz [Kc (δC/δz)] 

 

where Kc  is the eddy diffusivity coefficient for the mean variable C, the heat/momentum 

variable (Shin and Hong, 2011). 

 

The YSU PBL is a first-order non-local closure scheme as it does not require any 

additional prognostic equations to express the effects of turbulence on the mean 

variables. In other words, a non-local closure method alone explicitly treats the upward 

and downward transport of conserved atmospheric scalars (e.g., heat, momentum). This 

scheme is based on the K profile in the determining the diffusivity, Kc , within the 
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boundary layer while Kc is a function of local wind shear and the local Richardson 

number within the free atmosphere. Within the mixed layer, following the “non-local K” 

approach and adding the non-local gradient adjustment term γc to express turbulent 

diffusion, the YSU is characterized as: 

 

 δC/δt = δ/δz [Kc (δC/δz - γc) - (w`c`)h (z/h)
3
] 

 

where C represents the heat or momentum variable, Kc is the eddy diffusivity coefficient, 

γc is a correction to the local gradient that incorporates the contribution of large scale 

eddies to the total flux, and (w`c`)h is the flux at the inversion layer. One critical revision 

within the YSU’s PBL scheme, and that set it apart from its parent MRF PBL scheme, 

was to its vertical diffusion package; the inclusion of a asymptotic entrainment flux term 

at the inversion layer - (w`c`)h (z/h)
3
 that explicitly treats the entrainment process (Xie et 

al., 2012).  

 

The YSU PBL scheme has been found to increase boundary layer mixing in a thermally-

induced free convection regime and to reduce it within mechanically-induced forced 

convection regimes. This yields a more realistic PBL structure than predicted with its 

predecessor, the MRF PBL scheme. Local closure schemes (e.g., TKE closure, one-and-

one-half order closure), are employed within the MYJ, QNSE, MYNN2, and BouLac 

PBLs. These PBL schemes estimate the turbulent fluxes at each grid point from the mean 

values of atmospheric variables, or their gradients, at a particular grid point. In other 

words, local closure schemes only allow for vertical mixing within the boundary layer to 
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occur between neighboring grid boxes. These schemes require one additional prognostic 

equation of the TKE, e. These schemes are called turbulent kinetic energy (TKE) closure 

schemes because they derive their eddy diffusion coefficients from prognostic TKE 

equations. The governing equations for the TKE local closure schemes are: 

 

δe/δt = -1/ρ δ/δZ ρw’e’ – u’w’ δU/δZ – v’w’ δV/δZ + βw’θ’ – ε 

w’u’ = -Km δU / δZ 

w’v’ = -Km δV / δZ 

w’e’ = -Ke δe / δZ 

w’θ’ = -Kh δθ / δZ 

 

where e is the turbulent kinetic energy, β is the buoyancy coefficient, ε denotes TKE 

dissipation by molecular processes, ( – u’w’ δU/δZ – v’w’ δV/δZ) describes the 

production of TKE  due to shear, and the βw’θ’ term is TKE production due to buoyancy.  

 

Diffusivity in the MYJ, QNSE, and BouLac PBL schemes is commonly expressed as: 

 

Kc = l    Sc 

 

where l is the mixing length and Sc is the proportional coefficient.  All three PBL schemes 

differ on how they handle l and Sc (Shin and Hong, 2011).  
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The surface layer schemes compute frictional velocities u* and exchange coefficients for 

the computation of surface heat/moisture fluxes created by land surface models and 

surface stress within the PBL schemes. There are limitations to the allowable 

combinations between PBL schemes and surface layer schemes. The MYJ PBL is a one-

dimensional 1.5 order, level 2.5 TKE local closure scheme. The MYJ has the tendency to 

simulate a cooler and more moist boundary layer that limits the depth of the convective 

mixing layer (Hu, Nielsen-Gammon and Zhang, 2010).  

 

The Quasi-Normal Scale Elimination (QNSE) PBL is local TKE closure scheme that uses 

modern QNSE theory for the handling of small scale eddy viscosity and eddy diffusivity 

variables.  The QNSE theory treats turbulence and the resulting waves as one entity to 

better resolve the effect of internal waves. This theory has been suggested to better 

improve turbulence representation within the WRF (Sukoriansky, Galperin and Perov, 

2006).  

 

The more recently developed Mellor - Yamada - Nakanishi - Niino (MYNN) PBL for 

WRF - ARW core is a TKE-based local mixing scheme. The main feature of this scheme 

is the option to run it at a level 2.5 or level 3.0 closure. This research ran the MYNN 

scheme with the 2.5 closure scheme. The MYNN is tuned to a database of Large Eddy 

Simulations (LES). This LES relation aids in overcoming the typical lower level cooler 

and more moist biases associated with other Mellor - Yamada-type schemes, or for the 

insufficient growth of the convective boundary layer and subsequent TKE 
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underestimation.  The MYNN updates its stability functions that allow for more mixing 

within slightly stable conditions (Nakanishi and Niino, 2009).  

 

The Bougeault and Lacarrere (BouLac) PBL is a local TKE closure scheme developed at 

the University of South Florida and is designed specifically for use with the Noah LSM 

and the multi-layer urban canopy model (UCM) (Bougeault and P., 1989). 

 

7.6 Surface layer schemes 

 

Surface layer schemes in the WRF handle the surface layer physics that are typically 

observed within the lower 10% of the atmospheric boundary layer (i.e., lowest 

atmospheric layer most influenced by the Earth’s surface). WRF’s surface layer schemes 

calculate heat, moisture and momentum fluxes between the surface skin, or lowest layer 

of air in contact with the surface, and the reference model level (e.g., 2 m or 10 m). 

Surface layer schemes work in tandem with their respective PBL schemes to calculate the 

roughness length (Ζo) and friction velocity (u*) as a function of land-use type. Monin - 

Obukhov similarity theory, or the relationship describing the vertical behavior of non-

dimensionalized mean flow and turbulence properties within the atmospheric surface 

layer, are inherently linked with the YSU, MYJ, QNSE, MYNN, and BouLac PBLs. 

(Shin and Hong, 2011) Each PBL is assigned it’s unique surface layer scheme (e.g., MYJ 

Monin - Obukhov similarity theory, QNSE Monin - Obukhov similarity theory) to work 

in accordance within that PBL’s algorithms. The ACM2 PBL is linked to the Pleim - Xiu 

(EPA) surface layer scheme. The Pleim - Xiu (EPA) surface layer scheme has been 
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associated with earlier versions of the WRF and is primarily utilized within air quality 

studies (Gilliam, Pliem and Xiu, 2007).  

 

7.7 Noah land surface model (LSM) 

 

The land surface physics scheme that was utilized in all of this research’s WRF -EMS 

runs was the Noah Land Surface model (LSM). This LSM uses soil temperature and soil 

moisture at depths of 10, 30, 60, and 100 cm, fractional snow cover, and frozen soil 

physics (Chen and Dudhia, 2001).  The Noah LSM provides the essential quantities of 

surface sensible and latent heat and moisture flux, along with upward-directed shortwave 

and longwave radiation, to the WRF’s assigned PBL scheme. The Noah LSM scheme 

diagnoses skin temperature and surface longwave radiative emissivity as well as 

shortwave radiative (reflected) surface albedo. Vegetation transpiration and potential 

evaporation, if near a sufficient water source, are both parameterized within this LSM.  

Through such satellite-derived measures as the Normalized Difference Vegetation Index 

(NDVI) the effects of vegetation are included within the LSM to aid in the seasonal 

calculation of the green vegetation index, or the amount of photosynthetic-active healthy, 

green vegetation. Other parameters include the green vegetation fraction that partitions 

direct, bare soil evaporation from canopy transpiration and canopy (frictional) resistance 

(F. Chen, 2007) (Chen and Dudhia, 2001). 

 

The coupling of the Noah LSM and the single layer Urban Canopy Model (UCM) was 

used in conjunction with the MYJ and BouLac PBL schemes. The UCM is used to better 
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represent the physical processes that are involved in the exchange of heat, water vapor, 

and momentum within the urban environment. While the Noah LSM handles natural 

surfaces, the single-layer UCM parameterizes man-made surfaces. This includes the 

shadowing effects of buildings, shortwave and longwave radiation reflection, canopy 

layer wind profiles and multi-layer heat transfer equations for roof, wall and roadway 

surfaces (Kusaka and Kimura, 2004). 

 

 

8. Microphysical Schemes 

 

The WRF’s microphysical schemes are responsible in resolving such cloud-scale physical 

processes as cloud formation and evolution (e.g., updraft and downdraft structure) as well 

as warm/cold precipitation generation and the subsequent downstream sustainability of 

existing hydrometeors (i.e., sedimentation). The handling of the vertical transport of 

various atmospheric hydro/frozen species due to sedimentation, or the tendency for 

suspended hydrometeors to “fall out”, is a key aspect to modeling atmospheric 

microphysical (cloud) scale processes (Morrison, 2011). It has important implications in 

the timing and amount of accumulated ground-level precipitation along with the vertical 

distribution of hydrometeors within the resident, or regional, atmosphere.  

 

The microphysical schemes utilized within this research are classified as bulk schemes. 

These parameter manipulation-friendly bulk schemes are favored as they require fewer 

prognostic variables with easier integration that make for a more computational cost-
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effective scheme. The basic concept of bulk parameterization is to relate surface layer 

fluxes (i.e., bulk transfer coefficients of wind, temperature, moisture) at particular heights 

to logarithmic profiles of particle quantities. Bulk schemes assume some functional form 

for hydrometeor particle size distribution (e.g., gamma function) and prognose one or two 

mathematical moments of these particle size distributions. In traditional bulk schemes, 

sedimentation is calculated using a characteristic moment-weighted fall speed for each 

forecasted bulk quantity.  One or more hydrometeor bulk quantities (e.g., cloud water, 

rain, snow, etc…) and a characteristic moment-weighted velocity is used to calculate the 

sedimentation of each quantity. The particle size distribution for each category, or 

species, is generally assumed to follow some analytic basis function. Exponential size 

distributions are assumed to be in the gamma form of: 

 

N’ = N0e
-λD 

 

 

where D is the particle diameter and N0 and λ are the intercept and slope parameters, 

respectively. Hydrometeor quantity, ψ, follows the conservation equation: 

 

 δ (ρψ)/δt = -δ(vρψ)/δz = - δ[(w – V) ρψ]/δz 

 

where ρ is air density, t is time, z is height, v = w - V is the velocity (positive in the 

upward direction), w is the vertical air motion, and V is the hydrometeor fall speed due to 

the gravitation force.  
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The definition of a mathematic moment is the quantitative measure of the shape of a set 

of points or, in microphysical schemes, species (e.g., ice crystals, rain, graupel, etc...). A 

single moment is defined as the arithmetic mean about a distribution of a points/species 

(Fig. 8). A double moment is the variance within a group of species, or that species’ 

standard deviation (Morrison, 2011) (Milbrandt and Yau, 2005).  

 

The WRF’s prognostication of precipitation uses a two-step, time-splitting approach for 

solving the time-dependent advection and sedimentation equations. In the two-step time-

splitting approach, prognostic quantities of rain, snow, hail, etc… are initially updated 

after advection, followed by sedimentation calculation using these aforementioned 

forecasted quantities. This method has been utilized in a high number of microphysical 

schemes due to its simplicity, low computational cost, and other desirable characteristics 

such as monotonicity and positive definiteness, although the method is diffusive in 

relation to other higher-order methods. Sedimentation has traditionally been considered a 

component of microphysical schemes since particle fall speeds are calculated by the 

scheme and are ultimately used for the calculation of several other microphysical 

processes. The calculation of sedimentation and particle fall speeds is usually contained 

within the microphysical code and therefore separated from the advection code. This has 

made for easier WRF model implementation in giving the end-user a higher number of 

microphysical schemes for which to choose (Morrison, 2011).  

 



56 

 

 

Figure 8: WRF single moment 5-Class and Lin / WRF single moment 6-Class 

microphysical scheme’s species mixing ratio (Q) relationships (UCAR, 2012) 

 

8.1 Microphysical scheme descriptions 

There were eight microphysical schemes employed in this research (Fig. 9). A brief 

description of each scheme is as follows: 

 

8.1.1 (Purdue) Lin  

 

Originated from the Purdue cloud model, the Lin microphysics scheme offers six classes 

of hydrometeors; water vapor, cloud water, rain, ice, snow and graupel. Ice sedimentation 

and time-split fall terms, along with saturation adjustment following (Tao et al., 1989), 

are included within this relatively-sophisticated scheme (Lin, Farley and Orville, 1983).  
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8.1.2 WRF Single Moment 6-Class  

 

The WRF Single-Moment 6-Class (WSM6) is a single moment six-class microphysical 

scheme that includes the graupel species. This scheme employs ice number concentration 

with an improved snow and graupel fall speed algorithms with semi-Lagrangian fall 

terms.  Semi-Lagrangian schemes or terms use the Eulerian framework (i.e., observing 

the parcel from a fixed point), but the discrete equations are from a Lagrangian 

perspective (i.e., following the air parcel). The fall speeds of both snow and graupel, 

within either the sedimentation or accretion processes, are assigned the same fall speed, 

but the speed is weighted based upon that particle’s mixing ratio(s) (Hong, Dudhia and 

Chen, 2004).  

 

8.1.3 Thompson 

 

This revised version of the Reisner2 scheme is a six-class microphysical scheme that 

includes graupel. A double moment scheme that predicts both the ice and rain number 

concentration and utilizes time-split fall terms. This newer scheme is more advanced with 

the handling of snow size distribution. Snow size distribution is dependent upon ice water 

content and temperature and is represented as a sum of exponential and gamma 

distributions. Unlike other bulk schemes that assume a spherical snow shape with 

constant density, snow within the new Thompson scheme takes on a non-spherical shape 

with a bulk density that varies inversely with diameter as has been discovered in real 

world observation (Thompson et al., 2008). 



58 

 

8.1.4 Milbrandt - Yau  

 

The Milbrandt - Yau (Mil - Yau) is a sophisticated double moment, seven-class 

microphysical scheme that separates graupel and hail. There is a prognostication of 

number concentration for all six water and ice species with a total of 13 variables (e.g., 

six species mass, six species number concentration plus a water vapor species) and time-

split fall terms. This scheme is unique in that it does not treat the spectral shape 

parameter of a particle, α, as a constant.  A diagnostic equation is used for the spectral 

shape parameter based upon a gamma distribution of the mean particle size for 

hydrometeor sedimentation in narrowing the size spectra (Milbrandt and Yau, 2005). 

 

8.1.5 Morrison 

 

The Morrison is a double moment, six-class microphysical scheme that uses time-split 

fall terms. Along with the prediction of species mass mixing ratios, this cloud-resolving 

scheme also predicts the number concentrations for both ice and water particles. This 

double moment prediction of both mixing ratio and number concentration is 

advantageous for the evolution of precipitation processes as it allows for a more robust 

treatment of all particle size distributions (Morrison, Thompson and Tatarskii, 2009). 
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8.1.6 Stonybrook-Lin 

 

The SB - Lin microphysical scheme is a five-class scheme that includes riming intensity 

to account for mixed phase processes and temperature-dependent ice characteristics. A 

continuous spectrum, from pristine ice crystals to heavily rimed particles and graupel, the 

SB - Lin only uses one prognostic variable (i.e., precipitating ice) rather than two 

separate variables for snow and graupel. This method nearly halves the number of 

parameterized processes, as compared to other six class schemes, thus making it more 

computationally-efficient (Lin and Colle, 2011).  

 

8.1.7 WRF Double Moment 5-Class  

 

The WRF Double Moment five-class (WDM5) microphysical scheme that differentiates 

it from the WSM5 by utilizing a double moment for warm rain processes.  Mass mixing 

ratio and number concentration are calculated for cloud condensation nuclei (CCN), 

cloud, and rain particles (Lim and Hong, 2010).   

 

8.1.8 WRF Double Moment 6-Class 

 

The WRF Double Moment six-class (WDM6) is based upon the WSM6 as it provides a 

prognostication for 13 different mass mixing ratio and number concentration variables; 

water vapor, cloud, rain, ice, snow, and graupel particles along with the CCN number 

concentration variable. The main strength of this scheme is its ability to allow flexibility 
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in varying rain drop size distribution by predicting cloud and rain number concentrations, 

coupled with explicit CCN distribution, at reasonable computational cost (Lim and Hong, 

2010).   

 

 

Figure 9: Microphysical schemes 
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9. Radiation 

 

9.1 Dudhia shortwave radiation scheme   

 

This NCAR radiation scheme runs in ten minute intervals (UCAR, 2012 ). Only the 

downward fluxes of Rayleigh scattering, reflection, and absorption characteristics of a 

cloudless (i.e., clear sky) model atmosphere, with respect to shortwave radiation, are 

determined within this scheme. Scattering and water vapor absorption are both assumed 

to be independent of wavelength. Total downward radiative flux equals the clear sky 

effects upon downward radiative flux out of a layer toward the surface in tandem with 

cloud albedo and absorption properties. Upward reflected shortwave radiation from the 

surface and cloud cover is essentially ignored with the assumption that this radiation has 

escaped to space. Although the Dudhia shortwave scheme only utilizes one large 

shortwave spectral band in its calculation of radiative transfer, this scheme is requested 

more frequently so it is more adequate for short-range forecasts. The shortwave scheme 

also accounts for water vapor absorption over the full solar spectrum throughout a 

particular layer (J. Dudhia, 1989). Solar radiation absorption calculations in the model 

atmosphere are based upon the Lacis and Hansen water vapor formula (Lacis and 

Hansen, 1974 a). This method is described for rapidly computing the amount of solar 

energy absorbed at the earth's surface and within the atmosphere as a function of altitude. 

This method’s parametric calculation accounts for absorption variance due to the amount 

of clouds and cloud type, the amount of water vapor in each layer and the albedo of the 

earth's surface. The formula calculates a particular layer’s water vapor path, the total 
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amount of water vapor present in the column measured by a microwave radiometer (U. S. 

Dept. of Energy, 2013), while adjusting for the solar zenith angle and solar beam length 

throughout the layer (Lacis and Hansen, 1974 b). 

 

9.2  Rapid Radiation Transfer Method (RRTM) longwave radiation scheme  

 

Longwave radiative processes are calculated using correlated k-distribution method from 

wavelengths ranging from 3.33 µm to 1 mm. The variation of absorption coefficients in 

the vertical must be remedied as they significantly vary over temperature and pressure 

surfaces. The correlated k-distribution’s approach to this problem is to correlate different 

absorption line profiles with one another.  The method takes thorough line-by-line 

calculations over 16 longwave band intervals and calculates the probability distribution 

of absorption coefficients within those intervals (Fu and Liou, 1992) (Mlawer et al., 

1997). Absorption coefficients, as a function of temperature and pressure, are maintained 

for each band for both lower and upper atmosphere over 59 pressure levels, from 1050 

hPa (mb) to 0.01 hPa (mb). The longwave radiative transfer routine takes into account the 

effect of overlapping absorption lines for multiple absorbing gases by adjusting the 

absorption coefficient by a factor that takes into account the amount and strength of each 

absorber (MetEd, 2012 a). A probability distribution is used to determine each layer’s 

temperature change with the longwave radiative processes ultimately determining a 

layer’s temperature (pressure), and amount of longwave absorber(s). The amount of 

longwave absorbers in each layer, such as greenhouse gases and clouds, is calculated 

every three hours. Longwave radiation leaving the surface, based on skin temperature, is 
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calculated in three minute time steps. The RRTM calculates cloud optical depth while its 

parameterization methods uses pre-set tables in accurately representing the longwave 

radiative effects of ozone (O3), carbon dioxide (CO2), water vapor (H2O), 

chlorofluorocarbons (CFCs), carbon tetrachloride (CCl4), methane (CH4), and nitrous 

oxide (N2O) (Mlawer et al., 1997). 

 

 

10. Verification Results 

 

10.1 Description of the parameterized temporal, rainfall accumulation, areal 

verification domain categories 

 

In handling the hypothesis of whether the 3 km
2 

WRF - EMS could affectively resolve an 

extreme rainfall event, five parameters were set up within the MET software. The 

research method of the verification process was to not only vary the rainfall accumulation 

quantities, but to also vary the temporal and spatial elements. Understanding the current 

limitations of the WRF - EMS system and its associated physical schemes made it clear 

that, if verification parameters were set too low, the majority of model output would be of 

no value to this particular study. The numerous complexities of the ever-evolving PBL 

and microphysical schemes within numerical weather prediction of any resolution stress 

the modern inability to successfully re-produce skillful output (e.g., scores) for extreme, 

or rare, events. Hence, this research wanted to vary the verification scoring parameters to 
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better comprehend which physical scheme modeled output would better display 

correlation with observed rainfall accumulation.  

 

The research goal was to observe what initialization datasets and physical scheme WRF - 

EMS model output would best resolve a regional high rainfall event. The case study 

produced extreme values of greater than 150 mm per hour rates, but the majority of the 

higher hourly rates ranged from 50 mm to 100 mm over Harris and Galveston counties. 

Most of the rain fell within a 6 hour period, from around 1800 UTC through 2400 UTC 

on the 18
th

 of April, 2009 over Harris and Galveston counties. In capturing the most 

pertinent rain accumulation in the regional surface rain gauge network and local radar 

observation, this study wanted to verify three quantitative rain measures; 25 mm, 50 mm, 

and 100 mm accumulation. The researcher wanted to set hourly, three hourly, and six 

hourly parameters. The reasoning for this was that the WRF - EMS output was verified 

against quality-controlled Stage IV hourly and six hourly radar-derived rainfall 

accumulation data. The six-hourly parameter was included to capture a realistic, full 

duration high rainfall event. The desire to accurately depict the geographic coverage of 

the most intense rain allowed for three areal coverage domains; county, city, and town 

scale. Setting these areal coverage parameters through the MET software afforded a 17 x 

17 grid that translated to a 48 km x 48 km (2,304 km
2
) geographic area that could roughly 

be equated to a typical southeastern Texas county. The other two spatial parameters of 9 

x 9 (24 km
2
) and 3 x 3 (6 km

2
) grid spacing translated to regional city (e.g., Houston in 

Harris County) and town (e.g., League City in Galveston County) geographical 
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interpretations, respectively. These areal parameters were a logical fit for the WRF - 

EMS’s 9 km
2
 parent, with a nested 3 km

2
, domain set-up. 

 

The research employed the five parameterized verification domains as follows; 1 hour / 

50 mm / 24 km
2
, 3 hour / 25mm / 6 km

2
, 3 hour / 100 mm / 24 km

2
, 6 hour / 100 mm / 24 

km
2
, and 6 hour / 100 mm / 48 km

2
. 

 

Statistical Score Definitions (Verification) 

 

Figure 10: Verification chart 

 

10.2 Frequency Bias (FB) 

 

Frequency Bias is the dichotomous forecast measurement of the ratio of the frequency of 

forecast events (n11 + n10) to the frequency of observed events (n11 + n01) (Fig. 10). 

Frequency Bias indicated whether model output had a tendency to over or under, forecast 

the defined rain accumulation over a particular temporal and spatial parameter. A perfect 
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value is 1. Values less than 1 were an under-forecast while values greater than 1 were an 

over-forecast. MET verification software defines Frequency Bias as:  

 

n11 + n10 / n11 + n01 = n1 + n1 

 

10.3 Critical Success Index (CSI) 

 

The Critical Success Index measures the fraction of the number of times the event was 

correctly forecast (n11) to the number of times it was either correctly forecast or it 

occurred without being forecast (n11 + n10 + n01) (Fig. 10). This index is a measure of 

accuracy when correct negatives have been removed from consideration. The Critical 

Success Index is only concerned with the forecasts that “count”. This index is sensitive to 

hits and penalizes both misses and false alarms. The Critical Success Index score depends 

on the climatological frequency of events (i.e., poorer scores for rarer events) since some 

hits can occur purely due to random chance. The Critical Success Index ranges from 0 to 

1, with 1 being the perfect score. MET verification software defines the Critical Success 

Index as:  

 

n11 / n11 + n10 + n01 
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10.4 Heidke Skill Score (HSS) 

 

The Heidke Skill Score measures the fraction of correct forecasts after eliminating those 

forecasts that would have been correct purely due to random chance. A generalized skill 

score where the score in the numerator is the number of correct forecasts minus the 

correct forecast due to pure random chance (n11 + n00 – C) while the denominator is the 

total observed/forecasted events (T) minus the correct forecast due to pure random 

chance (C). The Heidke Skill Score ranges from minus infinity (-∞) to 1, with 1 being the 

perfect score. MET verification software defines the Heidke Skill Score as:  

 

n11 + n00 – C / T – C 

 

where, C = (n11 + n10) (n11 + n01) + (n01 + n00) (n10 + n00) / T 

 

The five 108 temporal/rainfall/spatial statistical parameterized verification domain 

categories, with 324 statistics (1,620 total) of FB, CSI, and HSS PBL - microphysical 

relationship statistics (i.e., scores), utilizing the CFSR and ERA reanalysis initialization 

datasets, are discussed in the following chapter; Chapter 11. Results and Discussion.  
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11.  Results and Discussion 

 

11.1 Climate Forecast System Re-Analysis (CFSR) initialization  

 

The best bias and maximum (i.e., highest) accuracy score results will be discussed and 

analyzed within each parameterized verification domain. 

 

It must be noted that the maximum score(s) did not always correspond to the overall 

better performer(s). Typically, the highest scoring PBL - microphysical (mp) schemes did 

correspond to those PBL - microphysical scheme combinations that consistently 

performed the best across space and time. With that being said, this research did have 

certain scenarios occur in which the maximum accuracy score did not necessarily 

correspond to the overall better PBL - microphysical scheme performer(s). Unfortunately, 

it was physically impossible to plot thousands of PBL - microphysical scheme 

combination data points within one table or into one graph. Thus, this dilemma was 

handled through discussion within my individual parameterized verification domain 

categories. 

 

Table 1: Maximum accuracy scores over the five verification domains (CFSR) 
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The best one hour 50 mm 24 km
2 

FB (i.e., bias) statistics were with the MYJ - Lin PBL - 

microphysical combination. The MYJ - Lin achieved the best bias scoring with a 28% top 

ranking occurrence across all PBL - microphysical combinations and displayed 

improvement with time. The ACM2 - Mil - Yau combination exhibited the maximum 

accuracy with a 0.265 Critical Success Index (CSI) score and a 0.405 Heidke Skill Score 

(HSS) (Table 1). The WDM5 microphysics, when associated with either the MYNN or 

the BouLac PBL scheme, scored maximum accuracy scores. This microphysical scheme 

scored the relatively highest scores within the BouLac PBL with a 0.131 CSI score and a 

0.161 HSS (Table 1). The PBL - microphysical scheme combination that was most 

successful at resolving an hourly rainfall amount of 50 mm over a city scale was the 

ACM2 - Mil - Yau relationship. The ACM2 - Mil - Yau scored the highest with an 80% 

chance of being the maximum scoring combination. While the MYJ  - Thompson (e.g., 

66% first place occurrence), and the YSU  - WDM6 or QNSE - Thompson (e.g., 58% 

first place occurrence)  PBL - microphysical combination schemes were better 

performers at resolving hourly 50 mm rainfall over a city scale, the maximum accuracy 

scores belong to the ACM2 - Mil - Yau and the  MYJ - Thompson relationships (Fig. 11, 

12). 

 

It was determined that the better performing PBL and microphysical combinations 

inherently utilized the more complex physics within their respective schemes. The ACM2 

PBL benefits from the asymmetric method of better simulating cumulonimbus updraft 

and downdraft structure. The BouLac PBL algorithm’s benefit from their ability to ingest 

higher-resolution urban canopy data. Ultimately, this attribute better handled the land use 
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data idiosyncrasies of resolving heat and moisture transport into the evolving-convective 

mixing layer across an urban landscape versus that of a non-urban environment. The 

MYNN’s primary strength was its ability to better close off (i.e., resolve) highly erratic 

sub-grid eddy behavior within its more-advanced 2.5 order differential mathematical 

array structure.  The Lin and the WDM5 microphysical scheme strengths are their ability 

to attempt to model the existence of graupel within a storm cloud. The Mil - Yau is the 

most advanced microphysical scheme employed within this research. The Mil - Yau is a 

double moment scheme that can prognosticate the relative amount and number of the hail 

and graupel species. More complex microphysical cloud schemes that employ more 

species and higher moment mathematics, when in association with the above PBL 

schemes, were more successful at better resolving rainfall within the pre-determined 

domains of this research. 
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Figure 11: Maximum 1 Hr 50 mm 24 km
2
 PBL - mp Critical Success Index (CSI) 

scores 
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Figure 12: Maximum 1 Hr 50 mm 24 km
2
 PBL - mp Heidke Skill Score (HSS) 

 

Higher scores for the three hourly 25 mm rainfall accumulations over an area 

approximately the size of a typical U. S. town, or suburb, again favored the more 

advanced PBL and microphysical scheme combinations. One of the few combinations 

that scored a perfect bias score of 1 within the study was the MYJ - WDM6 at 2300 UTC. 

Although the MYJ has been known to under forecast PBL height, the associated 

microphysical scheme of the WDM6 is one of the more advanced microphysical schemes 

within this study. The WDM6 is a double moment, 6 - class scheme that has the ability to 

forecast the existence and amount of graupel within a cumulonimbus cloud.  The WDM6 

also has the unique ability to prognosticate the number of cloud condensation nuclei 
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(CCN). These attributes are the main reasons this microphysical scheme, even when 

coupled with the historically cooler and more moist MYJ PBL, remained one of the top 

performers of this research. Strong PBL - microphysical scheme combination performers, 

with respect to maximum accuracy scores, were the ACM2 - Mil - Yau, the BouLac and 

MYNN when in association with the WSM5.  These combinations scored above a 0.397 

within this particular domain (Table 1); relatively consistently higher accuracy scores that 

were discovered within the verification.  The Lin and WDM6 microphysical schemes 

successfully forecasted the event in time (e.g., typically greater than 0.75 bias) (Fig. 13). 

Generally, between the hours of 2000 UTC and 2100 UTC, the WDM6 microphysics 

scheme was a top ranked performer across all PBLs, with the exception of the MYNN 

and the ACM2  PBLs, while the WSM6 scheme was a solid performer. The WDM5 was 

ranked number one 8 out of 10 times while it also improved with time across all PBLs, 

with the exception of the ACM2 PBL, in the CSI results (Fig. 14). A strong CSI 

performer was the Thompson microphysical scheme as it ranked number two nearly three 

quarters of the time (i.e., 73% occurrence). The best HSS performer was the WDM5 

scheme. The WDM5 was ranked number one across all PBLs, with the exception of the 

ACM2, and improved with time (Fig. 15). Although not a consistent top scorer, the 

Morrison microphysical scheme performed admirably with relatively higher HSSs. 

Between the hours of 1900 UTC and 2000 UTC; the Thompson scheme dominated the 

rankings across all PBLs, with the lone exception being the ACM2 PBL. The favored 

PBL and microphysical relationships, or those combinations that consistently ranked 

number one, were the BouLac - WDM5 (e.g., 100% occurrence), the ACM2 - Mil - Yau 

(e.g., 83% occurrence) and the MYJ - WDM5 (e.g., 75% occurrence).  It was again 
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determined that the better performing PBL and microphysical combinations within this 

verification domain inherently utilized the more complex physics within their respective 

schemes. The better performing combinations, such as the ACM2 - Mil-Yau and the 

BouLac or MYNN with the WRF microphysical double moment schemes (e.g., WDM5, 

WDM6), repeatedly scored higher when forecasting three hourly 25 mm rainfall amounts 

over a town or suburb geographical scale (Table 1). 
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Figure 13: ACM2 PBL - mp frequency bias (FB)  

 

 

 



76 

 

 

 

 

 

 

 

 

Figure 14: Maximum 3 Hr 25 mm 6 km
2
 PBL - mp CSI 
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Figure 15:  Maximum 3 Hr 25 mm 6 km
2
 PBL - mp HSS 

 

When determining which microphysical scheme best simulated three-hour 100 mm 

rainfall accumulation over an area approximately the size of a large U.S. city, the Lin 

microphysical scheme consistently scored highest across all PBLs, with the exception of 

the ACM2 where the WSM6 was favored. Even though there was gross over-forecasting 

early in the event and when the ACM2 - WDM6 combination scored highest, the ACM2 - 

Lin / WSM6 combinations consistently attained the highest bias scores from 2000 

through 2400 UTC (Fig. 16). Although not usually within the maximum scoring 

category, this study proved that the Thompson and WDM6 microphysical schemes were 

also strong indicators of forecasting the occurrence of high rainfall of 100 mm within 
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three hours over a city-sized domain. The Thompson did well as it is a double moment 6 - 

class scheme that forecasts the existence of graupel particles. The WDM5 scored the 

highest CSI scores with a 31% first place occurrence while the Lin and Mil - Yau 

microphysical scheme combinations out-performed most of the other combinations the 

majority of the time (Fig. 17). Microphysical schemes that performed consistently better, 

or those that recorded the maximum HSS, were the WDM5 and the Mil - Yau 

microphysical schemes (Table 1) (Fig. 18).  The favored PBL and microphysics “power” 

relationship was the MYNN - WDM5 whose scores ranked number one across the board. 

The ACM2 - Mil - Yau and the BouLac - WDM5 PBL - microphysical scheme 

combinations were strong second and third place performers, respectively (Fig. 17, 18).   
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Figure 16: ACM2 PBL - mp FB  
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Figure 17: Maximum 3 Hr 100 mm 24 km
2
 PBL - mp CSI scores 
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Figure 18: Maximum 3 Hr 100 mm 24 km
2
 PBL - mp HSS 

 

The Lin microphysical scheme was the best indicator, in relation to bias, of forecasting 

the occurrence of six-hour 100 mm over a city scale with a 56% top ranking occurrence 

across all PBL schemes (Fig. 19).  The exceptions to this rule were the WSM6 or 

Morrison microphysical schemes that were both linked the ACM2 PBL. In terms of bias, 

the Thompson and WDM6 microphysical schemes were generally strong. The best early-

in-time (i.e., 1900 – 2100 UTC) performer was the Thompson microphysical scheme. 

The Lin microphysical scheme was the better late period (2200 – 2400 UTC) performer. 

The overall better accuracy scores were typically associated with the Thompson or the 

WDM5 microphysical schemes with a 25% number one ranking occurrence (Fig. 20).  
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The Lin or Mil - Yau microphysical schemes scored the maximum CSI scores (Fig. 21).  

Early period strength belonged to the Thompson microphysics with late period maximum 

scoring favoring the Lin microphysics scheme. The WDM5 microphysics ranked the 

highest within the HSS with a 25% first place occurrence but, overall, the ACM2 - Mil-

Yau relationship dominated the category in relation to top three (re)occurrences. There 

was ample variance amongst PBL - microphysical combinations with relation to the 

highest HSS, but the Lin and the Mil - Yau microphysics favored the more advanced PBL 

schemes (Fig 22).  The maximum PBL - microphysical combination accuracy scores 

were in good correlation with those better PBL - microphysical combination performers 

over time and space. The BouLac - WDM5 and MYNN - Mil - Yau combinations were 

evidence to this fact (Table 1). The PBL- microphysical relationships that most 

frequently achieved the maximum accuracy scores, across all possible 48 PBL - 

microphysical combinations, were the ACM2 - Mil - Yau and the MYNN - WDM5 

relationships. An example of the highest accuracy score(s) not necessarily correlating 

with the overall better performer(s) is shown within the QNSE PBL (Fig 20). The 

Thompson microphysics performed better over time while the Lin microphysics achieved 

the maximum HSS, 0.471, at 2000 UTC.  
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Figure 19: YSU PBL - mp FB  
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Figure 20: QNSE PBL - mp HSS 
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Figure 21: Maximum 6 Hr 100 mm 24 km
2
 PBL - mp CSI scores 
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Figure 22: Maximum 6 Hr 100 mm 24 km
2
 PBL - mp HSS 
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Figure 23: Maximum 6 Hr 100mm 48 km
2
 PBL - mp CSI scores 

 

The parameterized verification domain category of six-hour 100 mm rain accumulation 

over 48 km
2
,
 
or a geographic county scale, displayed better bias with the Lin 

microphysical scheme (i.e., 47% highest score occurrence). Strong performers were the 

WRF’s 6 - class microphysical schemes; the WDM6 and WSM6. The Lin microphysics 

scheme consistently performed the best through the entire 6 hour period between 1800 - 

2400 UTC. CSI best microphysical scheme performers were the Lin (i.e., 25% number 

one occurrence across all PBLs), with the WDM5 and Thompson schemes a near second 

(i.e., both 22% number one occurrences across all PBLs). There was correlation between 

the better microphysical performers and maximum CSI scoring; particularly with the Lin 
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scheme (Fig. 23). Early period notable performers were the Lin and Thompson schemes 

with the late period favoring the WDM5 microphysical scheme. Within the HSS 

statistics, the WDM5 microphysical scheme displayed a number one occurrence 26% of 

the time with the Mil - Yau and Thompson microphysical schemes following up second 

(i.e., 20%) and third (i.e., 14%), respectively. The best early period HSS performers were 

the Mil - Yau and Thompson microphysical schemes with the WDM5 scheme being the 

best late period performer. The best microphysical scheme correlation between the top 

performers and the maximum accuracy (i.e., skill) scores were the Lin and WDM6 

microphysical schemes and the Mil - Yau and Thompson microphysical schemes (Fig. 

23, 24). In doubling the areal coverage, overall six-hour 100 mm rainfall accumulation 

skill was much improved with 86% of the PBL - microphysical schemes displaying skill 

(i.e., positive HSS statistics). The favored PBL - microphysical relationship best 

performers were the MYJ - Lin (e.g., 75% number one occurrence) with a second-place 

tie occurring with the ACM2 - Mil-Yau and MYNN - WDM5 combination schemes (e.g., 

50% number one occurrence). The ACM2 - Mil-Yau and the BouLac - WDM5 PBL - 

microphysical scheme combinations achieved the maximum accuracy scores (Table 1).  
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Figure 24: Maximum 6 Hr 100mm 48 km
2
 PBL - mp HSS 

 

Within the CFSR dataset, the best overall skill pattern (i.e., best performers) amongst the 

eight microphysical schemes was the WDM5, followed by the Thompson and the Lin. 

The reasoning for this success was that the WDM5 and Thompson microphysical 

schemes employed double moments while the Lin and Thompson forecasted the 

existence of graupel.  

 

The better PBL - microphysical combination performers, across the five 

temporal/quantitative rainfall accumulation/spatial parameterized verification domain 

categories, were the ACM2 - Mil - Yau with a 67.2% number one ranking occurrence 
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rate. It should be noted that the ACM2 - Mil - Yau relationship also displayed the highest 

occurrence of obtaining a top three score ranking within all five of the verification 

domain categories. The MYNN - WDM 5 combination came in with a mean number one 

ranking 69.3% of the time while having a 60% occurrence top three placement rate. 

Although the BouLac - WDM5 PBL - microphysical combination ranked within the top 

three overall rankings 40% of the time, its average number one placement rankings were 

the highest; a 81.5 % occurrence rate. 

 

11.2 European Re-Analysis (ERA - Interim) initialization  

 

The ERA - Interim re-analysis data set was used to initialize a third of the WRF - EMS 

output data. One interesting observation was that this dataset differed in how it handled 

bias (i.e., FB). Typically, during the first hour of 1800 - 1900 UTC, there was gross over-

forecasting across all five temporal/quantitative/spatial parameterized verification domain 

categories followed by an under-forecasting trend through the remainder of the six-hour 

period (Fig. 25). Overall skill was lacking with negative HSS statistics recorded for the 

majority of the PBL - microphysical scheme combinations. A climate-based, or pure 

chance forecast, would prove to be just as accurate as many of these ERA-Interim - 

initialized WRF - EMS output data. In a relative sense, there were various PBLs or 

microphysical schemes that performed better than others amongst the five parameterized 

verification domain categories. 
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Table 2: Maximum accuracy scores over the five verification domains  

(ERA - Interim) 

 

The parameterized hourly 50 mm rain accumulation over a geographic city scale 

verification domain category’s bias exhibited extreme over-forecasting within the first 

hour, then a subsequent hourly decline in the various scheme combinations’ ability to 

accurately gauge the forecast occurrence of the temporal/quantitative rainfall 

accumulation/spatial thresholds (i.e., large variance about 1) (Fig. 25). Typically, the 

WDM5 microphysical scheme performed the best, or recorded scores nearest to 1, in 

time. Within FB, the best microphysical performer was the Thompson microphysical 

scheme across all PBLs (i.e., 22% number one ranking occurrence). Two strong 

microphysical scheme performers were the WDM5 and WDM6 schemes. The Thompson, 

WDM5 and WDM6 microphysical schemes made the  top three score rankings for  all 

PBL - microphysical combinations in the latter half of the period (i.e., 2200 – 2400 

UTC); 17 out of the total 18 ranking matrices. This success can be attributed to all three 

of these schemes employing double moment mathematics that include rain droplet 

concentration number. Within the first four hours, the Mil - Yau microphysical scheme 

repeatedly ranked within various PBL’s top three rankings; a relatively high 14% top 
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three occurrence rate. Skill was very low, or non-existent, as nearly all of CSI scores 

were between 0 and 0.1. The best microphysical scheme performer was the Lin scheme 

where it ranked number one 69% of the time across all PBLs. The WSM6 was another 

scheme that registered relatively higher CSI scores, albeit low, with a 17% occurrence 

within the top three rankings. There were many fails in the first (1800 - 1900 UTC) and 

last (2300 - 2400 UTC) periods with only three out of 36 possibles, all Lin microphysical 

schemes, registering an actual (non-zero) score during the last 2300 - 2400 UTC hour. All 

HSS values were negative for every scheme during every hour except between 2100 - 

2200 UTC. Any low positive values were produced either by the Lin or WDM6 

microphysical schemes. The relatively highest scoring PBL - microphysical combination 

schemes were MYNN - Lin and the YSU - Lin combinations (Fig. 26). The favored PBL 

- microphysical scheme combination that ranked number one in FB and CSI scoring was 

the MYNN - Lin (i.e., 56% occurrence) with the ACM2 - Mil-Yau and MYNN or 

BouLac - Thompson microphysical scheme relationships displaying the highest top 

ranking occurrences. The maximum accuracy scores aligned with the ACM2 and the 

MYNN PBLs in association with the Lin microphysical scheme (Table 2). Higher-order 

PBL schemes, in association with the Lin microphysics, statistically performed better 

over time and produced the highest statistical scores. This success can be attributed to the 

Lin being a 6-Class microphysical scheme that can prognosticate the development and 

existence of graupel within cumulonimbus clouds.  
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Figure 25: QNSE PBL - mp FB  
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Figure 26: Maximum 1 Hr 50 mm 24 km
2
 PBL - mp HSS 

 

The parameterized three-hour 25 mm town/suburb scale verification domain category 

was unique in that it was the only category that actually depicted better bias statistics 

with time (Fig. 27, 28). The advanced 2.5 closure MYNN PBL scheme’s microphysics 

bias improved through the first half of the period (Fig. 28). The top rated Thompson 

scheme (i.e., 28% number one occurrence rate) improved with time across all PBL 

schemes. Of note, the WSM6 microphysical scheme recorded a perfect bias score at 2000 

UTC within both the MYNN and ACM2 PBL schemes (Fig. 27, 28). Another perfect bias 

score was registered by the MYNN - Morrison PBL - microphysical scheme combination 

at 2100 UTC (Fig. 28). CSI scoring was dominated by the four microphysical schemes of 
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the WDM6, WSM6, Lin, and the Morrison. The WDM6 scheme recorded a number one 

ranking 64% of the time while the WSM6 performed strong with a number one 

occurrence of 19%. The WDM6 was ranked number one 67% of the time and, during 

2200 UTC, ranked number one across every PBL scheme. The WSM6 and Lin 

microphysics were again top bias and skill performers (Fig. 27 - 29). The favored top 

ranking PBL and microphysical relationships within the CSI and HSS statistical 

categories were the WDM6 across four PBLs; the YSU, MYJ, MYNN, and the BouLac 

(Fig. 29). The MYNN / ACM2 - Lin and the BouLac - WSM6 PBL - microphysical 

scheme relationships ranked number one 50% of the time. The reoccurrence of these 

regularly higher scoring combinations is in correlation with more advanced PBL schemes 

being in association with more complex microphysical schemes.  
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Figure 27: ACM2 PBL - mp FB 
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Figure 28: MYNN PBL - mp FB   
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Figure 29: Maximum 3 Hr 25 mm 6 km
2
 PBL - mp HSS 
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Figure 30: BouLac PBL - mp HSS 
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Figure 31: ACM2 PBL - mp HSS  
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Figure 32: Maximum 3 Hr 100 mm 24 km
2
 PBL - mp HSS 

 

The three-hour 100 mm rain accumulation over the 24 km
2
 (i.e., city scale) domain’s 

more accurate bias scores favored the Lin microphysical scheme; registering top rankings 

with a 36% occurrence. The WDM6 microphysical scheme was a strong scheme with a 

17% number one occurrence rate. The first 1800 - 1900 UTC hour was significantly over-

forecast while the last hour was severely under-forecast. It should be noted that the 

ACM2 - WDM6 PBL - microphysical scheme combination scored a near-perfect 0.999 

score at 2200 UTC. The CSI showed no skill with not a single PBL - microphysical 

scheme combination registered a score (i.e., 0) during the first hour of 1800 - 1900 UTC. 

An example of this was the one positive BouLac - Lin PBL - microphysical scheme score 
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within the 2100 - 2200 UTC hour (Fig. 30). When there were non-zero scores, the Lin 

microphysical scheme ranked the highest 83% of the time with the second highest-skilled 

scheme being the WDM6 at a 19% number one occurrence. HSSs were very poor with 

the majority of these scores being negative (Fig. 30, 31). The relatively best 

microphysical schemes, or those schemes that recorded the maximum accuracy values, 

were the Lin and WDM6 schemes across most PBLs (Fig. 32). 

 

The 6-hour 100 mm 24 km
2 

domain skill scores were very low with no dominant scheme 

noted within the bias statistics. The relatively best microphysical scheme was the Lin 

with the WSM6 and WDM6 being notable performers. The Lin microphysical scheme 

dominated the CSI category by ranking number one with a 72% occurrence rate. The Lin 

microphysical scheme scored highest across every PBL between 2000 and 2100 UTC. 

Early in the period, the Mil - Yau microphysical scheme performed admirably while, 

latter in the period, the WDM6 and WSM6 microphysical schemes consistently achieved 

top rankings. The HSS values were very low and were all negative between 2000 - 2100 

UTC. The favored number one ranked (i.e., maximum score producing) PBL - 

microphysical scheme relationships belonged to either the Lin or the WDM6 

microphysical schemes across numerous PBLs (Fig. 33). 
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Figure 33: Maximum 6 Hr 100 mm 24 km
2
 PBL - mp HSS 

 

The Lin microphysical scheme displayed the most accurate bias within the 6-hour 100 

mm 48 km
2
 domain; a 25% occurrence of a maximum score. The WDM6, WSM6, and 

the Lin microphysics were again consistent top ranking schemes. A near perfect bias 

score of 0.999 was recorded by the MYJ - WDM5 PBL - microphysical scheme 

relationship between 2200 - 2300 UTC. The Lin microphysical scheme ranked number 

one over 50% of the model runs. The WRF microphysical schemes of the WSM6, 

WDM5 and the WDM6 frequently ranked high early in the period. The WDM5/6 and Lin 

microphysical schemes consistently scored the maximum skill (Fig. 34, 35). The one 
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favored PBL - microphysical scheme combination, in relation to top ranking, was the Lin 

microphysical scheme across many PBLs (Fig. 35).  

 

 

 

 

Figure 34:  Maximum 6 Hr 100 mm 48 km
2
 PBL - mp HSS 
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Figure 35: MYNN PBL - mp HSS 

 

Amongst all parameterized verification domain categories, the best overall skill displayed 

by any microphysical scheme was the Lin, followed by the WDM6. Although the WDM6 

scheme achieved the highest number of top three rankings at over 300, it only ranked 

number one 33% of the time. The Lin microphysical scheme was in the top three nearly 

300 times, but boasted a maximum ranking score 61% of the time. The Lin and WDM6 

microphysics are schemes that inherently include the existence of graupel. Prior research 

has indicated that accurately forecasting the existence of graupel within a cumulonimbus’ 
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cloud rain-ice precipitation microphysical processes may improve NWP precipitation 

forecasts. Statistically, these two microphysical schemes frequently scored higher than 

the remainder of the six schemes used in this particular case study.  

 

The overall best PBL - microphysical scheme combination performers (e.g., maximum 

CSI/HSS statistics), or those relationships that ranked number one with the highest 

frequency, were the MYNN - Lin at a 74% occurrence, the ACM2 - Lin with a 59% 

occurrence and the BouLac -  Lin with a 37% occurrence. The research has shown that, 

when associating these more complex microphysical schemes with higher order PBL 

schemes, there is good correlation with maximum skill scores.  

 

11.3 12 km
2
 North American Model (NAM12) initialization  

 

The third set of WRF - EMS output were initialized with the NAM at a 12 km
2
 

resolution,  updated on three-hour cycles commencing on April 18
th

, 2009 at 0000 UTC 

through April 19
th

, 2009 at 0000 UTC. Of the three main initialization data sets, the 

NAM12 model initialization resulted in the poorest scores. The poor results were 

attributed to the fact that the NAM12 model did not initialize well while not having the 

benefit of subsequent meteorological parameter updates. Three-hour updates from 0300 

UTC onward were initialized with the prior three-hour prognosis. Since the NAM12 did 

not initialize well on April, 18
th 

at 0000 UTC, subsequent updates were only 

compounding initialization error downstream. Many hourly PBL - microphysical output 

within all rain rate/accumulation, temporal, and spatial domain categories resulted in very 
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low, or simply no, skill. In fact, when analyzing all the 4,320 WRF - EMS output PBL - 

microphysical combination files, the majority displayed little to no data. Thus, statistical 

thresholds were fixed as to what was deemed relative to a project that had two previous 

large reanalysis datasets. FB was set between 0.80 and 1.20, CSI greater than 0.20 and 

HSS greater than 0.15. FB results were scarce, but it was discovered that the scores that 

fell within the +/- 0.20 range around 1.0 typically occurred during the first 1800 – 1900 

UTC hour or the within the last hour of 2300 - 2400 UTC.  In perspective, out of the 

4,320 possible bias candidates, only 27 met the +/- 0.20 range centered on 1.0, or 0.625 

% of all runs. The majority of the frequency bias sets were significantly over, or under, 

forecast. Favored PBLs were the ACM2 and YSU with the favored microphysical 

scheme being the Mil - Yau. It is logical then that the two best PBL - microphysical 

relationships favored the ACM2 - Mil - Yau and the YSU - WSM6 relationships where 

both combinations had the best scores within their respective rain domain categories. It 

was noted that two ACM2 - Mil - Yau runs scored a perfect 1.0 in the 6 hour / 100 mm / 

48 km
2
 domain category and a 0.99 in the 3 hour / 100 mm / 24 km

2 
domain category. 

The YSU - WSM6 PBL - microphysical scheme combination performed well; only 

slightly over-forecasting three out of the five parameterized verification domain 

categories. CSI scoring is where the NAM12 truly displayed how poor it performed as 

only 8 of 4,320 possible scores were registered, a meager 0.19% success rate of achieving 

a 0.20 CSI value or higher. A 0.26 from the BouLac - WSM6 was the highest CSI score 

and it was the favored PBL - microphysical relationship. This is significant marker as this 

relationship recorded a top three ranking in three of only eight scores greater than 0.20, or 

a 38% occurrence. This BouLac - WSM6 combination also did well in the CFSR and 
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ERA - Interim datasets, scoring a 30% and 47% top three rankings occurrence, 

respectively.  

 

11.4 CSI / HSS statistical (accuracy score) results and discussion 

 

The WRF - EMS output was statistically scored for accuracy by using two indices, the 

Critical Success Index (CSI) and the Heidke Skill Score (HSS). The CSI and HSS were 

used in the verification of five rainfall accumulation categories defined over specific 

parameterized temporal and areal verification domains. 

 

 

Table 3: Maximum accuracy scores over the five verification domains  

(CFSR / ERA - Interim) 
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The highest CSI scores, or those scores over 0.50, were rare, but those scores did occur 

within the three hour duration of both low rainfall over a small area and high rainfall over 

a more moderate area. The CFSR initialized YSU - Thompson combination scored the 

highest CSI score in the study with a 0.68 at 2300 UTC for the three hour 100 mm 24 

km
2
 category. The second highest score of a 0.65 was from the 2200 UTC CFSR 

initialized MYNN - Stonybrook combination over the three hour 25 mm 6 km
2 

category.  

This study’s higher CSI scores were associated with the model output that was initialized 

by the CFSR reanalysis data set. All of the highest CSI scores, within the five 

parameterized verification domain categories, resided in the CFSR data set (Table 1, 2). 

Across all PBL - microphysical scheme combinations, the highest mean categorical 

CFSR CSI score was 0.31 with the ERA - Interim average being a 0.23. The NAM12’s 

mean was also 0.23 but, only over a much smaller sample size (e.g., eight data points), 

versus a 30 sample size in the CFSR and ERA - Interim data sets. As previously 

discussed, this study’s statistical data was analyzed by using a two-prong approach; 

marking those notable PBL - microphysical scheme combinations that consistently 

performed well across all verification domains (i.e., best performers) as well as those 

PBL - microphysical scheme combinations that recorded the highest, or maximum, 

quantitative scores.  

 

Within the CFSR initialization data set, the best performing PBL was the YSU; the 

MYNN was the best performing PBL within the ERA - Interim data set. The best 

performing microphysical scheme was the Lin; recording the highest score in 20 out of 

30 possible parameterized verification domains (i.e., a 67% occurrence). There was noted 



110 

 

correlation between higher CSI scores and particular PBL and microphysical scheme 

relationships. The ACM2 - Mil - Yau within the CFSR dataset scored the highest 

accuracy scores across all parameterized verification domain categories (Table 1). The 

ERA - Interim data set produced two PBL - microphysical combinations that displayed 

the attribute of achieving the highest accuracy scores in nearly all five parameterized 

verification domain categories; the ACM2 - Lin and MYNN - Lin  (Table 2).  

 

The maximum accuracy scores across both the CFSR and ERA - Interim reanalysis 

initialization datasets revealed that the two PBL - microphysical scheme combinations 

that consistently scored the highest were the MYNN - Lin and the BouLac - WDM5 

(Table 3). The overall best performing PBL - microphysical scheme relationships, across 

both initialization datasets, were the MYJ - Lin and the BouLac - WSM6 combinations. 

These combinations registered the highest CSI scores in 5 of the possible 15 scenarios 

(i.e., a 33% occurrence). The PBL and microphysical scheme that continually show up 

within this research, or display the most consistency in terms of overall performance or 

when registering maximum skill scores, are the BouLac PBL and the Lin microphysical 

scheme, respectively. Deductive reasoning can fortify the theory that there is a viable 

connection between higher order PBLs that, when placed in tandem with microphysical 

schemes that inherently resolve the graupel species, lead to a higher skill success rate 

(i.e., more accurate bias and skill scores). The more successful BouLac is a PBL scheme 

that is related to another fairly successful MYJ scheme within this research in terms of 

sharing the same surface layer scheme; the Monin - Obukhov similarity theory surface 

layer scheme. Along with the Noah LSM, the BouLac and MYJ also ingest the Urban 
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Canopy Model (UCM) into their algorithmic structure. Logically, these PBLs ingested 

and utilized more high resolution land surface data. The additional LSM/UCM data 

would aid in better differentiating TKE-related physical processes that arise from 

modeling over an urban landscape versus that of agricultural or forest land coverage (e.g. 

crop fields, groves of trees). The physics of heat, moisture, and momentum advection 

over an urban landscape, when radiation reflectivity and shadowing created by man-made 

surfaces are parameterized, may give the BouLac PBL scheme an advantage in the 

development of a suitable PBL in which to create and maintain strong high-precipitation 

thunderstorms.  

 

The highest HSS statistics across all PBL and microphysical scheme combinations, or 

scores over 0.50, were just as rare as the CSI. Four of the five highest HSS values in the 

parameterized verification domain categories occurred within the CFSR data set. 

Intuitively, the maximum HSS values occurred in the six hour 100 mm 48 km
2
 category 

during the last 2300 - 2400 UTC hour; a 0.54 for the QNSE - Lin and a 0.51 for the YSU 

- WSM6 PBL - microphysical scheme combinations. Generally, maximum HSS, in 

relation to the overall better performers, belonged to model output that was initialized by 

the CFSR reanalysis data set. The highest mean categorical CFSR HSS score was 0.34, 

while the ERA - Interim HSS average was 0.22. The NAM12’s mean was also 0.20 but 

only out of a sample of six data points, versus 30 in the CFSR and ERA-Interim data sets. 

The highest accuracy scores generally occurred in three verification domain categories; 

the three hour 25 mm over town/suburb geographic scale and over the two six hour 

domains (Table 3). Logical reasoning for these higher scores being grouped within this 
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three hour domain is that, even though it was the smallest areal coverage domain, 25 mm 

of rain was easier achieved within a grid-based verification method.  A promising aspect 

of this research was with the six hour domain statistical success. The research focused on 

simulating an extreme rainfall event, defined as an event that produced at least 100 mm 

of rain during a relatively short period of time (e.g., six hours), and the higher accuracy 

scores fell within these two six hour domains (Table 3). This domain’s highest skill 

scores were varied amongst five better performing microphysics across all PBLs, but 

consistent scores greater than 0.25, with many in the .30 to .50 range (Table 3). This 

increases confidence that progress is being made in improving the forecast of a high 

rainfall event, within a six hour precipitation forecast window used by the U.S. National 

Weather Service over a typical United States city or county geographic scale, 24 hours 

out. The highest six hour 100 mm county scale accuracy scores (i.e., greater than 0.40) 

aligned themselves with the more complex Lin or Mil - Yau microphysical schemes in 

association with the higher order closure, LSM/UCM data-fed MYNN or BouLac PBL 

schemes (Table 3).  

 

When forming 3 x 6 matrices of the statistical data in a more qualitative-sense (i.e., 

simply ranking bias and skill scores), the overall better performing PBLs were the ACM2 

and YSU when initialized with the CFSR dataset. The MYNN consistently performed the 

best when initialized with the ERA - Interim dataset. The best performing microphysical 

scheme was the Lin scheme; achieving the highest ranking 16 out of the 30 possible 

outcomes (i.e., 53% occurrence). There was correlation between higher HSS and 

particular PBL and microphysical schemes. The CFSR initialized ACM2 - Mil - Yau 
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relationship scored maximum HSS in four-out-of-five rainfall accumulation, over varying 

temporal and spatial categories. The PBL - microphysical scheme combinations in the 

ERA - Interim dataset that matched the same four-out-of-five maximum HSS rainfall 

accumulation categorical scores were the Lin across both the MYNN and ACM2 PBLs. 

The best performing PBL - microphysical scheme combinations across all three 

initialization data sets were the ACM2 - Mil - Yau and the BouLac - WDM5 

combinations; scoring maximum HSS in 4 of the possible 15 scenarios (i.e., 27% 

occurrence). The highest scoring PBL - microphysical scheme combinations across the 

CFSR and ERA-Interim datasets were the ACM2 - Mil - Yau and the MYNN - Lin 

combinations (Table 3). 

 

11.5 Final results and discussion 

 

This research gathered all three statistical score results on Frequency Bias, Critical 

Success Index, and Heidke Skill Score across the three initialization data sets (e.g., 

CFSR, ERA - Interim, and NAM12) and discovered there were correlations between 

higher statistical scores (i.e., maximum scores) and particular PBL and/or microphysical 

schemes.  Although the NAM12 was a poor performer within this research, it was still 

important to include this initialization data. In real world forecasting, this model may be 

the “model of choice” for initialization. This is a popular initialization model as it is a 

higher resolution model, compared to a spectral model (e.g., GFS), and updates more 

frequently (i.e., every three hours) than would the 12 hour-updated ECMWF. The study’s 
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results are categorized as best performers or maximum scorers within the five 

parameterized verification domain categories that may, or may not, have correlation. 

 

The 1 hour / 50 mm / 24 km
2
 category’s best microphysical scheme performers were the 

Lin, WDM5, Thompson, and Mil - Yau. The most accurate PBL - microphysical 

combinations were the ACM2 - Mil - Yau, QNSE - Thompson, and the YSU - WDM6. 

The maximum scoring PBL - microphysical scheme combination was the ACM2 - Mil - 

Yau (Table 3).  

 

The 3 hour / 25 mm / 6 km
2
 category’s best microphysical scheme performers were the 

WDM6, Lin, Thompson, and WDM5. The most consistently accurate PBL - 

microphysical combination was the ACM2 - Mil - Yau. The maximum scoring PBL - 

microphysical scheme combination was the MYJ - WDM5 (Table 3). 

 

The 3 hour / 100 mm / 24 km
2
 category’s best microphysical scheme performers were the 

WDM5, Lin, Mil-Yau, and WDM6. The most consistently accurate PBL - microphysical 

scheme relationships were the ACM2 - Mil - Yau and the BouLac - WDM5. The YSU - 

Thompson scheme combination scored the highest accuracy (CSI) score within this study 

of a 0.68 at 2300 UTC. The maximum scoring PBL - microphysical scheme combination 

within this relatively-lower scored verification domain was the ACM2 - Lin (Table 3). 

The reason this category received lower scores is because it is generally more difficult, 

with current high-resolution modeling, to accurately simulate extreme rainfall rates of 
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100 mm within a relatively-short three hour duration over a geographic area 

approximately the size of a large U.S. city (e.g., 24 km
2
). 

 

The 6 hour / 100 mm / 24 km
2
 category’s best microphysical scheme performers were the 

Lin, WDM5, Thompson, and the Stonybrook. The most accurate PBL - microphysical 

combinations were the MYJ - Lin, QNSE - Lin, and ACM2 - Lin.  The maximum scoring 

PBL - microphysical scheme combination was the QNSE - Lin (Table 3). Within this 

verification domain, there was good correlation between the best performer and the 

maximum scoring combination; the QNSE - Lin relationship. Logically, when more 

advanced QNSE PBL theory was coupled with the historically strong performing six-

class Lin microphysical scheme, higher accuracy was achieved.   

 

The 6 hour / 100 mm / 48 km
2
 category’s best performers were the Lin, WDM5, 

Thompson, and WSM6. The most consistently accurate PBL - microphysical 

combinations were the QNSE - Lin and ACM2 - Mil - Yau relationships.  The maximum 

scoring PBL - microphysical scheme combination within this six-hour 100 mm county-

size domain was the QNSE - Lin (Table 3). This QNSE - Lin relationship proved again 

that there was a strong correlation between the more qualitative best performer and the 

most quantitative maximum scorer across this important event-capturing domain. 

 

The majority of these PBL - microphysical scheme combinations, although performing 

statistically well (i.e., occasionally achieving high skill scores), still suffered from 

improper timing and poor spatial placement of the highest hourly rain accumulation. 
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When the modeled output data was visually-analyzed through IDV, there were a few PBL 

and microphysical scheme combinations that best simulated the placement of highest 

rainfall that occurred within a couple of hours of the (actual) observed occurrence. Thus, 

success in this research is defined in a relative-sense. The majority of the numerous PBL 

- microphysical scheme combinations failed to adequately resolve the temporal and 

spatial nature of the observed, or remotely-sensed, rainfall accumulation with any 

mentionable degree of accuracy.  

 

The three initialization data sets provided varied results amongst the 48 PBL - 

microphysical scheme combinations. The CFSR reanalysis was the best performer 

between both reanalysis datasets and this reasoning is discussed within Chapter 5’s 

Initialization Data. CFSR-initialized output outscored the ERA - Interim initialized 

output in 44 out of the possible 60 highest accuracy/skill scores (i.e., CSI, HSS) across all 

five parameterized verification domain categories. It should be noted that the CFSR 

initialized output accounted for the highest maximum accuracy/skill scores across all six 

PBLs in the 3 hour/ 25 mm/ 6 km
2
 and the 6 hour / 100 mm / 24 km

2
 parameterized 

verification domain categories. The NAM12 model output results were extremely poor as 

the majority of its CSI and HSS results across all five parameterized verification domain 

categories were of low skill. Generally, the NAM12 initialized CSI and HSS accuracy 

values were under 0.20 with the majority of the combined scores being either zero or 

negative (i.e., no HSS skill). The NAM12 initialization dataset proved to have little, to 

no, skill within this research and, therefore, may not be considered in future studies. 
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When comparing the graphical output data against Stage IV radar verification data (Fig. 

36), WRF- EMS output would tend to over-forecast early in the six hour time period. 

Generally, output data would trend to an under-forecast during the latter hours of the 

event across all five parameterized verification domains; during the time of the extreme 

rainfall over southern Harris and northern Galveston counties. In determining how the 

simulations handled the downstream nature of the event, three better performing PBL - 

microphysical scheme relationships were chosen for graphical representation. The CFSR 

ACM2 - Mil - Yau simulation was the one scheme combination that best handled the 

timing and location of the most extreme rainfall. Although the heaviest rainfall of 

approximately 175 mm fell over the Clear Creek channel from 1800 - 2000 UTC, the 

ACM2 - Mil - Yau simulated one or two heavy rain core 80 - 90 mm per hour rates 

between 2000 - 2200 UTC. The two hour-simulated rain accumulations measured 

between 160 - 180 mm accumulations that match up well with observed storm (rain) 

totals of between 150 - 200 mm across this same geographic region from southern Fort 

Bend County into northern Brazoria County (Fig. 37, 38). A two hour lag in the timing of 

the simulation’s core rain, compared to that observed over Clear Creek, may be an 

inaccurate perception; an  assumption that the simulation’s extreme rainfall 

accumulations were an attempt to resolve the highest core rainfall over Clear Creek.  If 

one does not make this assumption, than the ACM2 - Mil-Yau accurately simulated the 

quantitative hourly rainfall rates of greater than 80 mm approximately over the same 

geographic location (e.g., southern Fort Bend and northern Brazoria counties) that 

received the region’s highest training-in-nature core rain.  The ERA - Interim MYJ - Lin 

relationship simulation advected the core rain in from the northwest, versus from the 
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observed south and west direction. Hence, this PBL - microphysical combination’s core 

hour rainfall rates of 103 mm were displaced further north, over the western side of 

Houston during 2000 - 2100 UTC (Fig. 39, 40). This PBL - microphysical scheme 

combination displayed the greatest skill with its ability to accurately simulate, albeit 

delayed by an hour, greater than 100 mm per hour rainfall rates. Very few simulations 

could simulate hourly rainfall rates of greater than 75 mm, much less 100 mm per hour. 

The QNSE - Thompson PBL - microphysical scheme did well with forecasting the timing 

and spatial nature of the event (Fig. 41, 42). Although significantly under-forecasting 

hourly rainfall rates (e.g., 50 mm/hr), this combination displayed skill with its ability to 

properly place its core rain accumulation within 40 km (i.e., southwestern Harris County) 

of the highest observed rain swath extending east from southern Fort Bend County into 

northern Galveston County. If these simulations were used in a real-world National 

Weather Service operational forecasting scenario, many forecasters would be delighted to 

resolve an event with the accuracy displayed with these particular PBL - microphysical 

scheme combinations.  

 

The better performing PBL - microphysical schemes exhibited the creation and 

downstream evolution of a meso-low within the modeled surface mass (i.e., pressure) 

field. The highest precipitation during the afternoon of April 18
th

, 2009 occurred just 

north and east of an observed meso-low within the surface pressure field. There was a 

correlation made between the more accurate precipitation-forecasting PBL - 

microphysical schemes (e.g., ACM2 - Mil - Yau) and the existence of a vicinity meso-

low.  The enhanced moist inflow into the cluster of thunderstorms from this mesoscale 
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low likely contributed to the higher core rain accumulation observed along the west-to-

east path from southern Fort Bend County into northern Galveston Counties’ Clear Creek 

channel. Therefore, it is a logical assumption that, if a PBL - microphysical scheme 

combination can accurately create (i.e., simulate) a mesoscale low within the surface 

pressure field, then there will be a higher probability of that particular PBL - 

microphysical relationship producing extreme rainfall rates within the vicinity of the 

modeled meso-low. The ACM2 - Mil - Yau PBL - microphysical scheme combination 

simulated a meso-low between 1004 – 1006 mb just south and/or west of its simulated 

maximum (core) rainfall (Fig. 43, 44). Surrounding Automated Surface Observing 

System (ASOS) observations of surface pressure during the event were between 1007 - 

1008 mb, although un-measurable mesoscale surface pressures were likely lower closer 

to the cumulonimbus updrafts. The MYJ - Lin and QNSE - Thompson PBL - 

microphysical schemes were also able to resolve a meso-low in the vicinity of their core 

rains. Albeit slightly early, the MYJ - Lin PBL - microphysical schemes combination did 

simulate a tight 1008 mb meso-low within the pressure field just west of its highest 

simulated rainfall over west Houston (Fig. 45). The QNSE - Thompson PBL - 

microphysical scheme combination was also successful at creating, developing, and 

evolving a vicinity 1010 mb meso-low within a few kilometers of its simulated highest 

core rain (Fig. 47, 48). 
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12.  Conclusions 

 

Thesis Prediction: If this research’s WRF simulations are structured in the 

aforementioned manner, then will this output have the ability to forecast the magnitude, 

or scope, of a high rainfall event’s temporal and spatial behavior? 

 

Thesis (Working) Hypothesis: There were favorable PBL - microphysical scheme 

combinations that more accurately forecast the magnitude and scope of this particular 

case study’s extreme rainfall event in both time and space. These scheme combinations 

all exhibited higher order mathematical derivations within their PBL structures as well 

as double moment and higher specie numbers within the microphysical scheme 

algorithms. The PBL - microphysical schemes that achieved higher skill, through 

statistical scoring methods across various parameterized verification domains, were 

those tandem relationships that inherently owned higher order, or more advanced, 

mathematical and physical characteristics.   

 

This research discovered that generally half of the chosen eight microphysical schemes 

consistently came up with relatively higher scores when compared across this work’s 

parameterized verification domains. The better performing microphysical schemes that 

achieved these highest statistical results in frequency bias, CSI, and HSS were the Lin, 

Mil - Yau, Thompson, and the WDM6 schemes. All four of these microphysical schemes 

include the presence of graupel within their cloud physics. The definition of graupel is 

precipitation that forms when supercooled water droplets freeze upon contact with a 
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falling ice crystal or snowflake. Cumulonimbus clouds that exhibit strong updraft and 

downdraft structure through higher altitudes will have a greater probability of more 

efficiently initiating this ice accretion process within the hail growth zone (e.g., between -

10 °C and -20 °C) that is typically required in the creation of graupel. The introduction of 

graupel within a cumulonimbus is typically a marker of a high precipitation supercell. If 

graupel is properly simulated within a towering, high echo top cumulonimbus cloud then 

the assumption is that the Wegener-Bergeron-Findeisen processes of effective ice crystal 

growth within a mixed phase deep convective cloud will be sufficient to produce a super-

saturated environment for supercooled liquid droplets and a sub-saturated environment 

for ice. A higher saturation vapor pressure over the supercooled droplets, in relation to 

the ice crystals, would ultimately result in rapid evaporation of supercooled droplets in 

favor of rapid ice crystal growth through vapor deposition (i.e., ice crystal growth at the 

expense of the evaporating supercooled droplet field).  Efficient ice crystal development 

will allow a high flux of ice crystal, hail, or even graupel to fall into the lower, warm 

layers and melt. The additional downward fluxes of mid-layer ice into the sub-freezing 

lower layers (e.g., lower 3 km) would only increase rain production, or create a high 

rainfall rate scenario. Thus, if graupel is more accurately simulated within the evolution 

of strong convective environments then it can deduced that a more accurate gauge, or 

measure, of the graupel species would be beneficial to more accurate high rainfall rate 

forecasts.  

 

This study concluded those microphysical schemes that included double moments, or the 

ability to calculate the number concentration along with the mass (mixing ratio) 
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concentration of the various species, had a positive impact upon achieving higher 

accuracy. Those schemes that included both the species’ mixing ratios and their number 

concentration had a higher probability of achieving maximum statistical scores within 

their respective PBLs. The research showed that, concerning this particular spring season 

southeastern Texas high rainfall event, the better performing microphysical schemes were 

the Thompson, Mil - Yau, and WDM6 schemes. These schemes either have the ability to 

simulate the concentration number of ice and rain nuclei (e.g., Thompson), cloud, rain, 

and CCN nuclei number concentration (e.g., WDM6) or can differentiate the  number 

concentration for six different species (e.g., cloud, rain, ice, snow, graupel, and hail) such 

as within the highly complex Mil - Yau microphysical scheme. Within the Mil - Yau 

scheme, water vapor is included with the 12 mixing ratio and number concentration 

variables of cloud, rain, ice, snow, graupel, and hail; 13 total variables. The importance of 

including the number concentration variables, in tandem with the mixing ratio variables, 

cannot be understated as three of this study’s four best performers (e.g., Thompson, Mil - 

Yau, and WDM6) all contain these particular double moment attributes.  

 

High rainfall events are those climatologically rare events that are typically difficult to 

resolve even with the tool of high-resolution NWP modeling. The model’s ability to 

create and properly develop mesoscale features within the mass field algorithms (e.g., 

surface pressure) in both time and space will significantly improve that system’s 

capability of accurately simulating locally high rainfall. It is difficult to determine if a 

particular PBL received a high score, or performed better in relation to the other schemes, 

because it was influenced by its associated microphysical scheme, land use modeling, 
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and/or surface layer physics. Deductive reasoning states that, since the ACM2 was the 

more successful PBL within this research, that there was correlation between this 

scheme’s ability to more accurately reproduce cumulonimbus updraft / downdraft 

structure (i.e., narrow and fast / wide and diffusive, respectively) to that of better 

resolving the temporal and spatial nature of the highest rainfall. Logically, the MYNN 

PBL scheme was another successful scheme as it was more mathematically advanced in 

its higher 2.5 order closure methodology. There was correlation between the MYNN’s 

ability to better resolve sub-grid diffusivity and this study’s higher accuracy scores. Other 

successful PBL schemes, in relation to this work’s higher rainfall forecast statistics, were 

the QNSE and the BouLac. A correlation can be made between this case study’s higher 

statistical scores and the QNSE’s advanced theory on simulating diffusive sub-grid eddy 

flow behavior within vicious environments. The BouLac PBL’s scheme relationship with 

the Noah LSM, coupled with the UCM, may have positive feedback on improving 

rainfall forecast statistics. The BouLac’s ability to assimilate more land surface and urban 

landscape data may be beneficial in better resolving smaller scale high rainfall-leading-

to-flooding events over urbanized areas.  In summary, when comparing all PBLs within 

this research, there are more advanced algorithms within the more modern PBLs that can 

handle such complexities as upward or downward flux (e.g., ACM2) or that can better 

close off sub-scale/grid eddy behavior within viscous flow (e.g., QNSE) or even those 

more closely related to surface layer schemes or LSM/UCMs (e.g., BouLac). As was 

discovered within this research, it may be advantageous to pair these more advanced 

PBLs with more complex microphysical schemes in better resolving extreme rainfall. 

Because of the numerous tangential influences inherent within these PBL - microphysical 
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scheme relationships, the scope of this study did not have the breadth required in making 

truly definitive “end-all” conclusions. 

 

 

13.  Future Work 

 

This research has opened up many more avenues of future study. Although this study 

thoroughly examined many physical schemes within various initialization modes, 

significantly more work needs to be accomplished on similar high rainfall events.  This 

research has laid the foundation for using this study’s stronger initialization PBL - 

microphysical scheme combinations with the WRF - EMS (version 3.x) in attempting to 

accurately simulate similar synoptically-forced high rainfall events. Fortunately, this 

research has the benefit of having two more high rainfall events to explore within a 10-

day period of the April 18
th

, 2009 event; the April 24
th

 and April 28
th

, 2009
 
greater 

Houston, Texas area high rainfall events. Even though this case study was the most 

extreme in terms of localized extreme rainfall production, it is highly unusual to have 

three high rainfall events occur within a 10-day period of one another. This is 

advantageous for future research as the other two events occurred within a similar 

synoptic environment and in close proximity of one another. The seasonal timing of these 

three events is not the only unique quality driving future exploration. The commonality of 

each event’s historical significance alone will continue an interest to continue research. 

All three events had 3 hour rain rates of a 100 year return period or better. All three 

events were rather short in duration (e.g. 6 hours or less) as rainfall totals did not increase 
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much during 12 and 24 hour periods.  The example was this case study where 252 mm of 

its total 279 mm (9.9 of its total 11 inches) of rain fell within 6 hours; 175 mm (6.9 

inches) in one hour! The motivation to continue future work exists based upon a couple 

of interesting facts about the other two high rainfall events. The April 24
th

, 2009 event 

was only a 6 hour event with over half of its total rainfall of 97 mm (3.8 inches) being 

measured within just one hour. The April 28
th

, 2009 event had a slightly longer duration 

with 107 mm (4.2 inches) of rain that fell within the first 6 hours.  

 

Computer program scripts need to be written to more efficiently handle the automatic 

execution of numerous NWP modeling runs. Automatic run scripts could be scheduled to 

run at specific times while varying the PBL - microphysical schemes. Future research 

could better determine the idiosyncrasies of each successfully performing physical 

scheme. Collaboration with the model developers could provide the necessary feedback 

required in furthering PBL and microphysical evolution. Questions have arisen during 

this research, such as do certain PBL - microphysical scheme combinations complement 

one another and, if so, why the correlation? Future research and collaboration with the 

modeling developers may provide some insight into the questions that have arisen within 

the scope of this study.  Lastly, future research and continued interest in this area of high 

resolution regional NWP modeling will only strengthen confidence on what particular 

PBL - microphysical scheme(s) an operational forecasting unit employs within their local 

WRF - EMS model in better resolving (i.e., forecasting) the future evolution of an 

approaching, potentially dangerous, high rainfall-producing storm system. 
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Figure 36: Stage IV radar verification data for rain accumulation (mm)  

(1800 – 2400 UTC) 

Millimeters (mm) 
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Figure 37: Stage IV (left column) / ACM2 - Mil - Yau (right column) 

Verification / PBL - mp rain accumulation (mm) 

Millimeters (mm) 
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Figure 38: Stage IV (left column) / ACM2 - Mil - Yau (right column) 

Verification / PBL - mp rain accumulation (mm) 

Millimeters (mm) 
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Figure 39: Stage IV (left column) / MYJ - Lin (right column) 

Verification / PBL - mp rain accumulation (mm) 

 

 

Millimeters (mm) 
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Figure 40: Stage IV (left column) / MYJ - Lin (right column) 

Verification / PBL - mp rain accumulation (mm) 

 

Millimeters (mm) 
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Figure 41: Stage IV (left column) / QNSE - Thompson (right column) 

Verification / PBL - mp rain accumulation (mm) 

 

Millimeters (mm) 
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Figure 42: Stage IV (left column) / QNSE - Thompson (right column) 

Verification / PBL - mp rain accumulation (mm) 

 

Millimeters (mm) 
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millibars (mb) 

 
Figure 43: 1900 – 2000 UTC meso-low (blue) within the ACM2 – Mil - Yau 

PBL - mp relationship  
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millibars (mb) 

 
Figure 44: 2100 – 2200 UTC meso-low (blue) within the ACM2 – Mil - Yau 

PBL - mp relationship
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millibars (mb) 

 
Figure 45: 1900 – 2000 UTC meso-low within the MYJ - Lin 

PBL - mp relationship 
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millibars (mb) 

 
Figure 46: 2100 – 2200 UTC meso-low within the MYJ - Lin 

PBL - mp relationship 
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millibars (mb) 

 
Figure 47: 1900 – 2000 UTC meso-low within the QNSE - Thompson  

PBL - mp relationship  
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millibars (mb) 

 
Figure 48: 2000 – 2100 UTC meso-low within the QNSE - Thompson  

PBL - mp relationship 
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