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Abstract

The objective of this study was to examine the relation between the 5, 10-methylenetetrahydrofolate reductase (MTHFR)
gene and behaviors related to attention- deficit/hyperactivity disorder (ADHD) in individuals with myelomeningocele. The
rationale for the study was twofold: folate metabolizing genes, (e.g. MTHFR), are important not only in the etiology of neural
tube defects but are also critical to cognitive function; and individuals with myelomeningocele have an elevated incidence
of ADHD. Here, we tested 478 individuals with myelomeningocele for attention-deficit hyperactivity disorder behavior using
the Swanson Nolan Achenbach Pelham-IV ADHD rating scale. Myelomeningocele participants in this group for whom DNAs
were available were genotyped for seven single nucleotide polymorphisms (SNPs) in the MTHFR gene. The SNPs were
evaluated for an association with manifestation of the ADHD phenotype in children with myelomeningocele. The data show
that 28.7% of myelomeningocele participants exhibit rating scale elevations consistent with ADHD; of these 70.1% had
scores consistent with the predominantly inattentive subtype. In addition, we also show a positive association between the
SNP rs4846049 in the 39-untranslated region of the MTHFR gene and the attention-deficit hyperactivity disorder phenotype
in myelomeningocele participants. These results lend further support to the finding that behavior related to ADHD is more
prevalent in patients with myelomeningocele than in the general population. These data also indicate the potential
importance of the MTHFR gene in the etiology of the ADHD phenotype.
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Introduction

Spina bifida (SB) is the most common disabling birth defect in

North America, with a frequency of ,3–4 in every 10,000 live

births [1,2,3,4]. The most common, and severe, form is

myelomeningocele (MM), accounting for over 90% of all SB

cases. MM is a spinal lesion characterized by an opening in the

vertebral column through which the meninges and neural tissues

protrude. Clinical consequences of the spinal lesion include

difficulties with ambulation, sensation, incontinence, and learning

problems [5,6].

Attention deficits in MM individuals have been identified via

attention deficit hyperactivity disorder (ADHD) ratings. Children

with MM are more likely than controls to show clinically

significant elevations on ratings of ADHD (31% in MM vs. 7%

in the general population) [7]. Notably, 74.5% of MM individuals

with significant elevations on ratings of ADHD were consistent

with the predominantly inattentive subtype of ADHD [7]. An

independent study by Ammerman et al. showed similar results [8].

Folic acid is a B vitamin important in relation to MM, as well.

Studies show that folic acid supplementation decreases both the

occurrence and recurrence of neural tube defects by 72% in seven

countries [9]. Data such as this led to public health recommen-

dations to supplement with folate periconceptionally, and in 1998

to fortify all grain products in the United States with folic acid

[10].

Folic acid is critical to cellular processes including nucleotide

synthesis and methylation. The enzyme, 5, 10-methylenetetrahy-

drofolate reductase (MTHFR) functions in the pathway that

converts folate into metabolites that may be used for cellular

processes including methylation of gene promoter enhancers and

proteins, RNA, DNA, amino acid and phospholipids synthesis (see
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Figure 1). For example, dopamine-stimulated phospholipid

methylation (PLM) is suggested to be an important mechanism

to modulate firing of neurons and impaired methylation activity

can contribute to attention disorders [11]. Neuroblastoma cells

(SH-SY5Y) treated with 5-formylTHF caused an increased

dopamine receptor D4 (DRD4) methylation by protein methyl-

transferase and S-adenosyl-methionine resulting in a dose-depen-

dent increased in both basal and dopamine-stimulated PLM [12].

DRD4 is one of the most replicated genes identified to associate

with ADHD [13].

Genetic variants in MTHFR have been associated with MM

[14,15,16]. The two most common variants studied are C677T

(rs1801133) and A1298C (rs1801131). The presence of either of

these variants in a homozygous state increases the odds of being

affected with SB to 1.5 to 2.4 times that of the general population,

although the data for 1298C is conflicting [17,18,19].

Several studies link folate/homocysteine levels with cognitive

functions. For example, patients with folate deficiencies in the

central nervous system exhibit cognitive deficits [20]. Morris et al.

showed that, relative to controls, individuals with low folate had

significantly reduced memory function [21]. Other studies show

similar results; that is, cognitive functions improve with higher

folate levels, and decrease with higher homocysteine levels.

MTHFR is a key regulator of folate versus homocysteine levels

[22,23,24,25,26].

In this study we tested whether genetic variation in the folate

metabolism enzyme MTHFR was associated with manifestation of

the ADHD behavioral phenotype in children with MM.

Materials and Methods

Participants
The participants in this study were an expanded population

from that used in Burmeister et al. [7]. The sample genotyped for

SNPs in the MTHFR gene consisted of 262 MM individuals. Fifty

percent of these individuals were White and 50% were Hispanic.

The sample consisted of 53% females and 47% males and median

age was 12.4 years.

Parent rating scales for ADHD were also completed on

additional patients for whom DNA was not available. These

patients were used to compare frequency of positive ADHD test

results in MM individuals versus positive ADHD tests in controls.

For this comparison, the group sizes were as follows: the MM

sample consisted of 478 patients and the control sample consisted

of 196 control individuals not affected with MM. Ethnicity of

individuals with MM and the control individuals without MM are

listed in Table 1. Both samples consisted of approximately 50%

males and 50% females with a median age of 13.06 years in the

MM patients, and a median age of 12.73 years in the control

group.

These experiments were undertaken with the understanding

and written consent of each subject abiding by the Code of Ethics

of the World Medical Association. The study was approved by the

University of Texas Health Science Center at Houston’s

Institutional Review Board under approval number HSC-MS-

00-0001 and The Hospital for Sick Children Research Ethics

Board approval number 1000006149.

Assessment of ADHD Behavior
The parents of each participant completed the Swanson Nolan

Achenbach Pelham-IV (SNAP-IV; www.adhd.net) rating scale to

assess ADHD status. The SNAP-IV scale consists of 18 items, 9

representing behaviors associated with inattention and 9 with

hyperactivity-impulsivity. It is designed to align with the criteria in

the Diagnostic and Statistical Manual-IV (DSM-IV), widely

accepted as a gold standard for diagnosis of ADHD. Parents

rated their child’s behavior on a four point scale, from zero (not at

all) to three (very much), as previously described [7]. Participants

who met clinically-defined cutoffs representing the upper 5% of

the population on the inattention scale were designated ‘‘ADHD-

Predominantly Inattentive Type’’; those with elevations in the

upper 5% only on the hyperactivity-impulsivity scale represented

the ‘‘Hyperactive-Impulsive Type’’. Elevation on both scales

Figure 1. Simplified schematic of the folic acid metabolic cycle.
Folate receptors transport dietary folate into cells and the folate is
converted into dihydrogolate (DHF) then tetrahydrofolate (THF) by
dihydrofolate reductase (DHFR). In the folate metabolic cycle, THF is
converted to 5,10-methyleneTHF, a substrate of 5,10-methyleneTHF
reductase (MTHFR), then to 5-methylTHF. 5-methylTHF can be recycled
by methionine synthase/methionine synthase reductase (MTR/MTRR) to
THF and methionine. Alternatively, 5-methylTHF can be use to
synthesize purine. The Methionine can be used in the methionine
cycle to produce S-Adenosyl-methionine (SAM), S-adenosyl-homocys-
teine (SAH) and homocysteine. Conversion of SAM to SAH requires
betaine, a product of choline metabolism. SAM is a major cellular
methylation agent for DNA, RNA, protein, and phospholipids.
doi:10.1371/journal.pone.0051330.g001

Table 1. Ethnicities of individuals in the study.

Americans Individuals with MM Individuals without MM

total No ADHD ADHD total No ADHD ADHD

White 233 148 85 135 123 12

Hispanic 180 144 36 27 24 3

African 41 29 12 6 4 2

Asian 12 9 3 18 18 0

Other 12 9 3 10 10 0

total 478 339 139 196 179 17

doi:10.1371/journal.pone.0051330.t001

Association of MTHFR to ADHD with Myelomeningocele
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represented ‘‘ADHD Combined Type’’. The SNAP-IV is a

reliable parent-based assessment of ADHD behavior with good

concordance to structured interviews [27], widely used to assess

ADHD in clinical trials and in numerous researches studies in the

US and Worldwide [28].

Genotyping
SNP selection, genotyping, and statistical analysis were

performed as previously described [29,30]. Briefly, SNPs were

selected within the reference MTHFR gene (NM_005957) from the

University of California Santa Cruz (UCSC) Genome Browser

dbSNP Build132 database as well as the HapMap3 public release

#27. SNPs were prioritized for genotyping based on potential

function (e.g. if the variant changes the amino acid), gene location,

and a minor allele frequency greater than 0.05. A total of 7 SNPs

in the MTHFR gene were selected (see Figure 2 for approximate

locations): rs3737965, rs2066470, rs9651118, rs1801133 (also

known as 677C.T), rs1801131 (also known as 1298A.C,

rs2274976, and rs4846049.

DNA was collected from MM patients for analysis. Genotyping

was performed using the SNPlex platform on the ABI3730 genetic

analyzer (Applied Biosystems Inc., Carlsbad, California, USA;

ABI). Genotype calls were performed using the GeneMapper v4.0

software from ABI. For case-control analyses, MM participants

with scores consistent with ADHD were defined as affected and

were compared to MM participants without evidence of ADHD

behavior.

Statistical analysis
Genotype-phenotype association was examined by logistic

regression using PLINK [31]. The sample was divided into ethnic

strata (White and Hispanic) to avoid artifacts due to difference in

genotype frequency between ethnicities. The critical level of alpha

adopted for statistical significance was p#0.05 and multiple testing

effect was evaluated via permutation of disease status to generate

empirical p-values. Linkage disequilibrium (LD) between two

SNPs was evaluated using Haploview4.2 and significant LD is

concluded with a correlation coefficient (rˆ
2) $0.8. Association of

haplotypes of the six SNPs is examined using Haploview4.2 and

the significance is evaluated by the 10,000 permutations.

Results

Behavioral testing
Results of ADHD assessment showed that of the 478 MM

participants rated, 137 had clinically significant elevations on the

SNAP-IV (28.7%). Of the MM participants with scores consistent

with ADHD thresholds, the vast majority had elevations on the

inattention scale associated with ‘‘ADHD Predominantly Inatten-

tive-Type’’ (N = 96; 70.1%). Only 17 MM participants had

elevations on the hyperactive-impulsive scale (12.4%) and 24

had elevations on both scales (21%). Of the 197 controls not

affected by MM, 17 had significant elevations on any one or both

of the SNAP-IV scales (8.6%). Of these 17 control individuals, 7

had elevations on inattention scale (38.9%), 3 had elevations on

the hyperactive-impulsive scale (16.7%) and 7 had elevations on

both scales (38.9%).

Genotype/Phenotype association
Genotype-phenotype association analyses were performed using

only the 478 MM affected individuals between a group with

elevated score for ADHD and another group with score below the

threshold. The numbers of White and Hispanic MM individuals

genotyped for ADHD association analyses are listed in Table 2.

Allele frequencies of MTHFR SNPs were evaluated for deviation

from Hardy-Weinberg equilibrium (HWE) expectations (p#0.05).

All SNP genotypes were in HWE except rs9651118 in Hispanics

(p,0.01), and this SNP was therefore eliminated from further

analysis in that group (Table 3). Logistic regression models

identified one of the seven SNPs in the MTHFR gene that was

significantly associated with the ADHD phenotype (see Table 4).

Specifically, the T allele of SNP rs4846049 in the 39 untranslated

region (39-UTR) (see Figure 2) of the MTHFR gene is associated

with risk for the ADHD phenotype with an empirical p-value of

0.00687 in the White MM participants tested. None of the tested

SNPs showed association with ADHD in the Hispanic MM

participants tested (Table 5). The rare allele frequency of

rs4846049 is not significantly different between the White MM

participants and the Hispanic MM participants; therefore, we

performed association analyses of this SNP using data combing all

the White and Hispanic MM participants. An association of the T

allele of rs4846049 with ADHD in the combined group of all MM

participants was observed with empirical p-value of 0.0474 (Odd

ratio of 1.564; confidence interval of 1.014–1.475).

To test whether rs4846049 is in LD with the other five SNPs, we

performed LD analyses using Haploview 4.2 among Whites and

Hispanics with MM separately. The results showed rˆ
2 ,0.8 for all

tested SNPs (see Table 6).

We also perform haplotypes analyses of Whites subjects with

MM on the six SNPs using Haploview 4.2 and observed significant

between the rare allele T of rs4846049 with one of the major

alleles of the other five tested SNPs (Table 7). In addition, a four

SNPs haplotypes (CCGT) with the major alleles of rs3737965,

Figure 2. Genomic structure of the MTHFR gene and the location of the seven SNPs examined in this study. Shaded boxes represent the
exons (1 to 12) of MTHFR gene and the line in between represent intron regions. Distances and locations are approximate.
doi:10.1371/journal.pone.0051330.g002

Table 2. White and Hispanic MM individuals genotyped.

Americans rs1801131 & rs1801133 Other SNPs*

total No ADHD ADHD total No ADHD ADHD

White 213 136 77 126 72 54

Hispanic 152 123 29 120 98 22

*– other SNPs include rs3737965, rs2066470, rs9651118, rs2274976, and
rs4846049.
doi:10.1371/journal.pone.0051330.t002
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rs2066470, rs2274976 and the rare allele T of rs4846049 also

showed significant association. Haplotypes with other combina-

tions of three, four five and six SNPs did not reach significant level

by permutation (data not shown). Analyses of the haplotypes of

Hispanics subjects with MM did not reach significant level (data

not shown).

Discussion

Folic acid is a critical nutrient for gestational development as

evidenced by the finding that neural tube defects were reduced by

19–55% after fortification of grain products with folic acid [32].

Additionally, folates have long been hypothesized to be important

to central nervous system function and development. Lack of

dietary nutrients such as folate and vitamin B has been associated

with the development of neurodevelopmental disorders including

attention deficit disorder/attention deficit hyperactivity disorder

and autism [33]. Impaired methylation of dopamine receptor and

membrane phospholipids can contribute to problem in firing of

neurons and subsequently to attention disorders [11].

In addition, higher folate levels have been associated with slower

cognitive decline in the elderly [26]. Elderly individuals who took

daily folic acid supplements showed significantly improved global

cognitive functioning [23]. In a non-elderly population of school-

aged girls, it has been shown that taking iron and folic acid

supplementation twice weekly improved cognitive skills [25].

Lastly, the Rotterdam study showed that cognition and psycho-

motor speed was positively correlated with higher plasma folate

levels [22].

Children with MM have a pattern of preserved cognitive skills

and cognitive-academic deficits [34,35]. In MM populations,

specifically, attention problems have been reported in a range of

assessment contexts [36]. On cognitive tasks, children with MM

have difficulty orienting to, and disengaging from external stimuli

and they fail to inhibit attending to previously explored locations

[37]. Children with MM make more sustained attention errors

than controls [38].

The above studies suggest a complex relation among folate

metabolism, neural development, and cognitive/behavioral func-

tion. The specific underpinnings of these relationships are not yet

understood, but may be especially relevant for MM given the

association of folate metabolism with the MM phenotype, as well

as the increased incidence of attention problems and ADHD in

MM patients.

Results of this study confirmed previous reports that the

Table 3. Allele frequency of seven SNPs in the MTHFR locus of White and Hispanic MM individuals in the study.

Whites Hispanics

dbSNP ID Func. A1 A2 N Freq. HWE N Freq. HWE

rs3737965 promoter C T 126 0.94/0.06 NS 117 0.92/0.08 NS

rs2066470 p.P39P C T 123 0.90/0.10 NS 120 0.90/0.10 NS

rs9651118 intron C T 115 0.82/0.18 NS 109 0.72/0.28 ,0.01

rs1801133 p.A222V C T 209 0.62/0.38 NS 145 0.49/0.51 NS

rs1801131 p.E429A A C 213 0.69/0.31 NS 152 0.86/0.14 NS

rs2274976 p.Q594R G A 117 0.96/0.04 NS 108 0.97/0.03 NS

rs4846049 39-URT G T 120 0.78/0.22 NS 114 0.81/0.19 NS

Notes: rs – reference identification number of SNPs in the dbSNP database, Func. – functional significance of SNP, A1 – common allele of SNP, A2 – rare allele of SNP, N –
number of subject successfully genotyped, Freq. – frequency of A1/2, HWE – Hardy Weinberg Equilibrium test result, NS – not significantly deviated from Hardy
Weinberg Equilibrium (p.0.05). Additional samples were genotyped for rs1801133 and rs1801131 because these two SNPs have previously been examined with
suggested association to ADHD [42].
doi:10.1371/journal.pone.0051330.t003

Table 4. Case-Control Analyses of ADHD phenotypes in
White subjects with MM.

dbSNP ID N
Odds
Ratio 95% CI p-value

Empirical
p-value

rs3737965 126 0.471 0.12–1.86 0.2830 0.3330

rs2066470 123 0.707 0.27–1.82 0.4720 0.5260

rs9651118 115 0.734 0.36–1.48 0.3890 0.4400

rs1801133 209 1.212 0.78–1.89 0.3960 0.5710

rs1801131 213 0.833 0.54–1.28 0.4030 0.8570

rs2274976 117 2.274 0.44–11.78 0.3280 0.4400

rs4846049 120 2.068 1.17–3.65 0.0121 0.0069

Note: N – number of subjects successfully genotyped. Cases are MM individuals
testing positive for ADHD, controls are MM individuals testing negative for
ADHD. Significant p-values #0.05 are indicated by bold lettering. Empirical p-
value is the p-value obtained through random permutation of the experimental
data to evaluate the effect of multiple testing.
doi:10.1371/journal.pone.0051330.t004

Table 5. Case-Control Analyses of ADHD phenotypes in
Hispanic subjects with MM.

dbSNP ID N
Odds
Ratio 95% CI p-value

Empirical
p-value

rs3737965 117 0.513 0.11–2.43 0.4000 0.3610

rs2066470 120 0.826 0.27–2.57 0.7410 0.5630

rs1801133 145 0.430 0.15–1.27 0.1260 0.1530

rs1801131 152 1.378 0.79–2.41 0.2600 0.2240

rs2274976 108 1.220 0.13–11.03 0.8600 0.4580

rs4846049 114 0.509 0.19–1.37 0.1820 0.1760

Note: N – number of subjects successfully genotyped. Cases are MM individuals
testing positive for ADHD, controls are MM individuals testing negative for
ADHD. Significant p-values are indicated by bold lettering. Empirical p-value is
the p-value obtained through random permutation of the experimental data to
evaluate the effect of multiple testing.
doi:10.1371/journal.pone.0051330.t005
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incidence of ADHD behavior is more than three times higher in

MM populations (28.7%) than in the general population

(approximately 8%) [39]. In addition, the proportion of inattentive

behaviors in the MM population is almost twice that observed in

the ADHD-affected control population (70.1% and 38.9%

respectively). One of the seven SNPs tested in this study,

rs4846049 in the 39-UTR of the MTHFR gene, was significantly

associated with ADHD behaviors in MM individuals. These

Table 6. Linkage disequilibrium analysis of rs4846049 versus the other six SNPs tested.

SNP1 SNP2 SNP1 Chr1 Loc. SNP2 Chr1 Loc. HapMap CEU rˆ
2 White MM rˆ

2 Hispanic MM rˆ
2

rs4846049 rs3737965 11850365 11866451 0.10 0.09 0.11

rs4846049 rs2066470 11850365 11863057 0.22 0.21 0.29

rs4849049 rs1801133 11850365 11856378 0.19 0.15 0.11

rs4846049 rs1801131 11850365 11854476 0.93 0.63 0.70

rs4846049 rs2274976 11850365 11850927 0.10 0.10 0.14

rs4846049 rs4846049 11850365 11850365 1.00 1.00 1.00

Notes: Chr1 – Chromosome 1, Loc. – location in bases from p-arm of chromosome 1 with reference to human genome sequence GRCH37/hg19 assembly, r ˆ
2 –

correlation coefficient between SNP1 and SNP2, a value $0.8 suggests linkage disequilibrium.
doi:10.1371/journal.pone.0051330.t006

Table 7. Haplotype analyses of MTHFR SNPs and ADHD in White subjects with MM.

Haplotype Total freq Freq in ADHD Freq in no ADHD Chi Square p-value permutation p-value*

rs3737965, rs4846049

CG 0.709 0.640 0.761 4.317 0.038 0.088

CT 0.242 0.323 0.180 6.645 0.010 0.022

TT 0.044 0.036 0.049 0.253 0.615 1.000

rs2066470, rs4846049

CG 0.705 0.640 0.755 3.795 0.051 0.181

CT 0.193 0.268 0.136 6.736 0.009 0.031

TG 0.011 0.002 0.017 1.249 0.264 0.764

TT 0.090 0.089 0.092 0.006 0.940 1.000

rs1801133, rs4846049

TG 0.371 0.325 0.405 1.649 0.199 0.462

CT 0.258 0.329 0.204 4.892 0.027 0.071

CG 0.344 0.313 0.367 0.794 0.373 0.742

TT 0.028 0.033 0.023 0.216 0.643 0.955

rs1801131, rs4846049

AG 0.663 0.601 0.711 3.275 0.070 0.196

AT 0.032 0.060 0.011 4.708 0.030 0.098

CG 0.053 0.041 0.062 0.523 0.470 0.873

CT 0.252 0.298 0.216 2.151 0.143 0.412

rs2274976, rs4846049

GG 0.713 0.637 0.770 5.017 0.025 0.090

GT 0.247 0.331 0.184 6.751 0.009 0.043

AT 0.040 0.032 0.046 0.297 0.586 0.981

rs3737965, rs2066470, rs2274976, rs4846049,

CCGG 0.706 0.641 0.755 3.781 0.052 0.117

CCGT 0.188 0.255 0.136 5.594 0.018 0.041

CTGT 0.041 0.046 0.037 0.131 0.718 1.000

TTAT 0.035 0.023 0.044 0.790 0.374 0.907

TTGT 0.010 0.014 0.008 0.182 0.670 1.000

Notes: Haplotypes are generated by Haploview 4.2, freq – frequency of haplotypes, ADHD –Attention Deficit Hyperactivity Disorders.
*results of 10,000 permutations were performed using Haploview4.2 on. Significant p-values #0.05 are indicated by bold lettering.
doi:10.1371/journal.pone.0051330.t007
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findings provide a possible connection between variants of

MTHFR gene, folate deficiency, MM and ADHD phenotypes

and may help explain some of the variability in attention

outcomes. More broadly, the data suggest avenues for future

research involving the functional link between folic acid and

specific behaviors. MM may represent a model disease for

investigating the genetic etiologies and developing therapies for

ADHD, at least for the inattentive subtypes potentially relating to

folate/B12 deficiency.

Association studies of the MTHFR A1298C allele and ADHD

are small, limited and inconclusive. Children affected by ALL are

known to have deficits in IQ scores [40] and attention difficulties

[40,41]. Cognitive deficits are typically attributed to chemotherapy

with methotrexate which inhibits folate pathway enzymes, and the

A1298C variant in MTHFR is implied to associate with ADHD

risk in 11 cases among 48 ALL patients [42]. Another study also

found that the A1298C high-risk allele is more frequent in the 40

Turkish children with ADHD than the 30 controls [43]. However,

another larger independent study of 100 Turkish children with

ADHD and 300 controls concluded neither C677T nor A1289C

alleles contribute to ADHD risk [44].

In our cohort of MM individuals, the C677T and A1298C

variants did not associate with the ADHD phenotype, in contrast

to the observation reported by Krull et al. [42] and Gokcen et al.

[43]. However, these observations are consistent with those found

by the family-based IMAGE and PUWMa ADHD genome-wide

association (GWA) studies [44,45]. Several case-control GWA

studies (CHOP, NIMH, Utah and IMAGESII) using genotyping

arrays (Affymetrix 5.0 and Illumina Hap550K) contain C677T but

not A1298C and did not find association between C677T and

ADHD. The SNP rs4846049 is not present in the genotyping

arrays used by all these ADHD GWA studies therefore it has never

been tested for ADHD association. An important difference

between the two patient populations is that MM is a neurodevel-

opmental disorder and cognitive problems in ALL emerge from

treatment, so it is an acquired phenotype. The specific mechanism

behind the folate reduction is likely distinct. Deficiency in folate

among ALL patients is most likely contributed by the presence of

the thermolabile MTHFR variants in addition to MTX treatment.

Our study indirectly suggests there may be a deficiency in folate in

the MM cohort and that it may be secondary to altered levels of

the MTHFR transcript in addition to the presence of the

thermolabile variants 677C.T and/or 1298A.C. Secondly,

analysis of linkage disequilibrium of the reference HapMap

CEU population shows that the rs4846049 SNP is in linkage

disequilibrium (LD; rˆ
2 = 0.931) with the A1298C (rs1801131) (see

Table 6). It is possible that the association observed in the

previous studies was a proxy for the rs4846049 SNP. However, we

did not find rs4846049 in LD with A1298C (rs1801131) in Whites

with MM (rˆ
2 = 0.634) nor in Hispanics with MM (rˆ

2 = 0.702) in

our MM cohort suggesting the present of complex LD correlations

among individuals affected by MM.

The rare allele T of rs4846049 is demonstrated to have

biological function. A recent study of micro-RNA has shown miR-

149 inhibiting the expression of the luciferase reporter engineered

with the T allele of the MTHFR rs4846049 at the 39-UTR [46]. In

addition, rs4846049 is located approximately 233 bp downstream

of a predicted miR-22 target with sequences conserved between

human and rodents (chr1:11850598–11850605, TargetScan

miRNA Sites, UCSC Genome Browser on Human GRCh37/

hg19 Assembly). Exogenous miR-22 has been shown to downreg-

ulate expression of Mthfr and Mat1a in rat liver epithelial cells [47]

but the effect on human MTHFR is unknown. There are two

known SNPs (rs45482794 and rs35737219) located 91bp and

145bp respectively upstream to the miR-22 site in the 39-UTR of

MTHFR. Unfortunately, the rare allele frequencies of these two

SNPs are too low (,1 and 3% respectively) to be used in an

association study. Further investigations are necessary to verify

how individual alleles of rs4846049 affect miR-22 or mir-149 in

regulating the expression level of MTHFR.

It seems unlikely that elevated ratings on the SNAP-IV, or other

tests for ADHD, are simply related to IQ or severity of disease.

Burmeister et al. showed that there is no difference in level of

treatment or treatment revisions, such as hydrocephalus and

shunting, between individuals who test positive for ADHD and

individuals who do not [7]. In addition, there was no difference in

IQ or ambulatory status between those testing positive for ADHD

and those testing negative for ADHD [7]. Therefore ADHD status

does not appear dependent on IQ, severity of disease and its

treatment, or lesion level.

There are several limitations of the current study. One

significant limitation is the sample size. However, unlike common

diseases such as hypertension, enrolling large samples of MM

individuals is relatively difficult because MM is a rare human

disorder only affecting 1 in 2,500 live-births in the US. The 478

MM individuals reported here represent the largest sample size to

date studied for ADHD who have been genotyped for MTHFR

gene variants. A second limitation of the study is the confounding

factors present in the mixed ethnic backgrounds of the study

participants. For example, the rare allele frequencies of C677T

and A1298C are significantly different between Whites and

Hispanics (see Table 3). For this reason, we only performed

case-control analyses and present results within each ethnic group.

Lastly, we are limited by our knowledge of the LD structure for the

MTHFR locus. The SNP rs4846049 is a tagSNP selected by the

HapMap tagSNP Picker program but it is absent in the majority of

the commercial GWA study arrays and was not genotyped for the

HapMap Mexican Hispanics. The current report presents results

of a pilot study suggesting a possible association of a functional

SNP rs4846049 with ADHD among individuals affected by MM.

It is necessary to validate the observation in cohorts with large

sample sizes and among individuals with and without MM.

In summary, this study demonstrated a positive association

between the ADHD phenotype in MM individuals and one SNP,

rs4846049, in the 39-UTR of the MTHFR gene. It confirmed

results from earlier studies that demonstrate that ADHD behavior

is more prevalent in MM individuals than in the general

population. These data indicate that MTHFR (and, by extension,

folic acid) are likely involved in the etiology of ADHD behavior in

MM individuals.
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