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Abstract

Reduction in the availability of healthcare due to limited financial resources from

one end and an aging U.S. population from the other end necessitate effective use

of resources in the health sector. This dissertation, addresses two applications of

maximizing the quality of health service, namely, (i) diabetic foot ulcer prevention,

and (ii) mitigating the impact of national pharmaceutical shortages.

The first study deals with assessing the effectiveness of education and timely treat-

ment to prevent diabetic foot ulcers and consequences. Considering the increasing

population of diabetic patients, the lower quality of life in patients with foot ulcers,

and higher treatment costs for diabetic patients with foot ulcers requires effective pre-

vention strategies and timely treatment. In this study, a decision support system is

proposed to evaluate cost-effectiveness for prevention strategies and receiving timely

treatment. The anticipated outcome from this study is not only finding the effect of

prevention strategies and timely treatment for different types of patients, but also an

optimal threshold for expenditures on prevention strategies and treatments.

In the second study, two different analytical approaches to solve the drug shortage

problem are investigated. Despite the importance and value of the pharmaceutical

market, a significant portion of public procurement spending is known to be lost due

to poor practices such as inefficient management of orders and inventory. Together

with the inevitable national drug shortages, inefficient inventory management causes

lack of medicine leading to patients suffering and has direct life or death consequences.

In this research, two different approaches are proposed to reduce critical shortages

of healthcare providers. In the first approach, the optimal inventory policy for a

healthcare facility is studied that minimizes the effect of drug shortages in the presence

of uncertain supply disruptions and uncertain demand. Computational studies show
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significant cost savings for the proposed solution compared to the current inventory

policy for a local healthcare facility. Second, an inventory sharing scheme is proposed,

where hospital decisions are to be studied in a game theory setting. This study is

expected to mitigate the impact of shortages for sets of facilities that can collaborate

in an inventory sharing scheme without logistics issues.
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Chapter 1

Introduction

According to the World Health Organization (WHO) (2009), the United States

has the highest spending on health in the world with 16.2% of its GDP in 2009 and

this amount is expected to grow. The aging U.S. population and limited financial

resources mandate improvements to efficient use of healthcare resources. In this

portion of the dissertation, two main problems in healthcare services are introduced.

In Section 1, a brief introduction about diabetic foot ulcers and the necessity of timely

treatment and primary preventive strategies are presented. Section 1.2, introduces

another major problem in the health sector, national drug shortages. In this section,

the importance of drug shortages is explained and two possible approaches to help

healthcare providers to face this problem are introduced.

1.1 Cost-effectiveness Analysis for Diabetic Foot Ulcers (DFU):

Timely Treatment and Primary Prevention Strategies

The quality of life in diabetic patients is highly affected by microvascular, macrovascular,

and neuropathic complications. Foot ulceration is one of the main health issues of diabetic

patients and can cause lower-limb amputation in patients. More than half of lower-limb

amputations in the U.S. occur in diabetic patients (Reiber et al., 1995). DFUs are associated

with depression, anxiety, guilt, fear and loss of perceived control (Ribu and Wahl, 2004).

Foot ulceration does not only result in a lower quality of life, but healing is costly. Treatment

of foot ulcers needs expert interference, orthopaedic appliances and antimicrobial drugs as

well as costly topical dressings and inpatient care (see e.g., (Boulton et al., 2004); (Cavanagh

et al., 2005); (Edmonds and Foster, 2006); (Jeffcoate and Harding, 2003); (Singh et al.,

2005)). According to Cavanagh et al. (2012), the healing of ulcers costs approximately

1



between $3, 959 - $188, 645 based on the severity of the ulcer.

According to Boyle et al. (2010) the annual diagnosed diabetes incidences (new cases)

will increase from about 0.8% in 2008 to about 1.5% in 2050. Considering low incidence

and relatively high diabetes mortality, total diabetes prevalence, diagnosed and undiagnosed

patients, will increase from 14% in 2010 to 21% of the U.S. adult population by 2050 while

if incidence rate increases with current speed and diabetes mortality is low, prevalence will

increase to 33% by 2050. The prevalence rate of foot ulceration among diabetic patients

ranges from 1.3% to 4.8% in the community, to as high as 12% in hospitals (Boulton et al.,

2005). However, the lifetime risk for any diabetic patient is up to 15% (Reiber et al.,

1998) and 70% of healed foot ulcers recur within 5 years (Apelqvist et al., 1993). In 2007,

diabetes cost the United States more than $174 billion per year, of that $116 billion were

in direct costs and $58.3 billion in indirect costs such as loss of productivity, disability, and

premature mortality. Thirty one percent of these expenses were associated with peripheral

vascular complications and 24% with neurologic complications, and they were among the

major reasons of prolonging the inpatient length of stay (Association, 2008). Therefore

prevention strategies for diabetic foot ulcers is an increasingly important issue.

Resource allocation should be done more systematically in healthcare because of limited

healthcare resources and the unsustainable rate of growth of U.S. health care costs and its

impact on the overall U.S. economy. In light of the rising prevalence of diabetes all over

the world and limited heathcare resources, the cost-effectiveness study of diabetic foot

ulcer prevention strategies and timely treatment is crucial for the U.S. healthcare system.

In the study introduced in Chapter 2, cost-effectiveness of timely treatment and primary

prevention strategies on diabetic foot ulceration is presented.

1.2 Pharmaceutical Supply Chain Analytics

A shortage in healthcare supply chain occurs when a biological product is not commer-

cially available in sufficient quantity to meet patient demand (Food and Administration,

2010). According to the World Health Organization (WHO), the United States has the
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highest expenditure on health in the world with $750 billion spent in the global pharma-

ceuticals market (Boerma et al., 2009). The United States pharmaceutical market itself is

valued at more than $306 billion (US Pharmacy), with an annual growth of approximately

5%. However, 10% to 25% of public procurement spending (including pharmaceuticals) is

lost due to inefficient practices. This leads to shortages and inefficiencies in the delivery

of critical healthcare supplies through the existing pharmaceutical supply chain. In light

of these inefficiencies, Landry and Philippe (2004) estimate that 48% of the costs in the

pharmaceutical supply chain are avoidable. Of these costs, 41% are sustained by health-

care providers, 33% by the manufacturers, and 26% by the distributors. Since much of

the healthcare provider cost is passed along to patients, we believe that there are clear op-

portunities to improve the management of pharmaceuticals to eliminate wasted costs and

improve service to patients.

In addition to the financial implications stemming from inefficient pharmaceutical man-

agement, there are shortages that result from these poor practices. A total of 1190 short-

ages were reported between January 2001 and June 2011. However, from 2006 onwards the

shortages grew annually by 200 percent. A record number of shortages (196) were reported

in 2010, and 2011 in all likelihood surpassed this number (General Accountability Office

(GAO), 2012). Drug shortages can cause delay in treatment, inappropriate treatment, med-

ication errors and thus increase in healthcare resource utilization and expenditures. The

Food and Drug Administration (FDA) has been involved in addressing the problem of drug

shortages. However, despite the fact that it has helped alleviate some of the shortages

through its Drug Shortage Program, its authority to regulate the manufacturers is lim-

ited. There is no mechanism available to the FDA that require the drug manufacturers to

report impending shortages or require them to take certain actions to avert the situation

leading to shortages (General Accountability Office (GAO), 2012). On October 31, 2011,

the President issued an Executive Order in which he urged the congress to legislate requir-

ing drug companies to report shortages. The executive order directed the FDA to take

action to help further prevent and reduce prescription drug shortages (The White House,

2011). Consequently, a drug shortage bill was introduced in January 2012 in the House of

3



Representatives that would force the FDA to speed up its review of applications from the

companies that want to ramp up production to meet the shortages.

The drug shortage problem is a complex phenomenon and stems from legal, regulatory,

economic and clinical factors. There are a number of contributing factors towards creating

drug shortages. A key contributor to the shortage problems are manufacturers’ business

decisions in response to economic environment and incentives to earn profits or mitigate

losses (Fox and Tyler, 2003). This is particularly true of the generic market which has a

major share of the drugs that are in short supply. The generic market typically is very

competitive and thus has low profit margins, which makes it critical for the manufacturers

in the generic industry to constantly allocate and reallocate manufacturing resources and to

deploy existing production capacity among products on the basis of conjectures regarding

their competitors. The generic market further underwent major transformation in the wake

of a series of patent expirations since 2008, in particular chemotherapy drugs, making the

problem of shortage worse since it takes several years for the new firms to enter establish

necessary capacity (Office of Science and Data Policy, 2011).

A survey of 353 pharmacy directors in the United States hospitals conducted by Amer-

ican Society of Health-Systems Pharmacists in 2011 revealed that the yearly labor costs to

manage drug shortage problems amounted to $216 million nationwide (Kaakeh et al., 2011).

Another 2011 survey of 820 U.S. hospital, completed by the American Hospital Association,

showed that the surveyed hospitals experienced at least one shortage in the past 6 months.

Another survey of 1800 health practitioners, of which 68% were pharmacists, was conducted

by the Institute for Safe Medication Practices in 2010. The results of the survey revealed

that the most of those surveyed encountered shortage problems and that they managed the

problems by using less effective and/or more costly alternatives with an increased potential

for medication errors and worse patient health outcomes.

Failures in the pharmaceutical drug supply chain, which includes hospitals and out-

patient clinics, pose a direct threat to the quality of care received by a patient in the

United States. Shortages result in patient treatment times being prolonged or procedures

(e.g., surgeries) being canceled. Specific medical examples of critical shortages are readily
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available (Landis, 2002). The following are only a subset of those reported:

• 10-fold overdoses of epinephrine (adrenaline) have been reported as a result of staff

using an undiluted form of the drug when pre-diluted syringes were unavailable.

• The unavailability of succinylcholine, a rapid-acting neuromuscular, threatens hospital

abilities to position airway tubes in emergency patients.

• Patients with hypertension are at risk in surgery due to the unavailability of ephedria.

The severe consequences and logistic challenges resulting from ineffective pharmaceutical

drug supply chain practices leave hospitals frustrated (Landis, 2002).

In the case that a hospital experiences a drug shortage, several courses of action have

historically been performed. Hospitals often choose from borrowing from another institu-

tion (e.g., hospital or pharmacy), purchasing off-contract from their current vendor, pur-

chasing from an alternative vendor, purchasing from a secondary vendor, obtaining services

from a secondary group purchasing organization (GPO), purchasing a compounded replace-

ment pharmaceutical and using a compound replacement pharmaceutical already in stock

(Baumer et al., 2004). Frustration regarding shortages have been voiced for the last decade,

with key players (e.g., manufacturers and healthcare providers) willing to discuss the issue

from varying perspectives (Landis, 2002). From the discussions amongst practicing profes-

sionals, the following key issues have been raised: (i) limitations of federal regulatory to

require manufacturers to make certain drugs, (ii) increased risk of drug shortages due to

single supplier model and (iii) generic drug product subject to commodity business models.

Solutions to these problems have been brainstormed by the key players. Many of these

suggestions offer new qualitative measures to consider. For example, they suggested: (i)

better communication between the FDA, manufacturers and pharmaceutical customers; (ii)

reporting tools for drug shortages and (iii) increased inspections of manufacturing facilities

to reduce possible production delays. While these solutions merit additional considerations,

they are focused more on managerial oversights than improved operational planning. How-

ever, the decision makers have also identified tactics that could be evaluated and improved

through analytical planning techniques. Specifically, we find the following solutions warrant
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thorough quantitative exploration:

• Refined hospital inventory policies. The coalition cited inventory policy at both

the manufacturer and healthcare provider levels to be in need of improvement. Spe-

cific suggestions include the rationing of inventory, as well as the establishment of

new reorder points in the inventory management system.

• Hospital collaboration through inventory sharing. Opportunities exist to make

use of collaborative inventory agreements that are more standard in retail logistics.

These agreements would make way for portions of individual hospital inventory to be

shared amongst participating hospitals. Policies that ensure the equitable distribution

of inventory costs and supply amongst partnering healthcare facilities could lead to a

drastically reduced number of shortages. These types of institutional collaborations

are quite common in healthcare industry for epidemic control in the form of shared

services.

Motivated by input from contributors to the pharmaceutical supply chain, our proposed

research suggests mathematical models and analysis to intelligently evaluate each of the

preceding options. Our work will be divided into two categories: (i) single hospital critical

inventory analysis and (ii) exploration of collaborative hospital inventory sharing. The

structure of the single hospital inventory problem is explained in more details in Chapter

3. In this chapter, the inventory analysis will propose new myopic inventory models for

stochastic pharmaceutical models. Answer to the second question, using a game-theoretic

approach for collaborative inventory sharing, is proposed in Chapter 4.

1.3 Chapter Organization

This dissertation is divided into 5 chapters. We introduce the first study, Cost-effectiveness

Analysis for Diabetic Foot Ulcer Prevention Strategies and Timely Treatment, in Chapter

2. In this chapter, a detailed literature review of this study, problem statement and cost-

effectiveness approach used for this problem are presented. Chapter 3 presents the second

6



study, Pharmaceutical Supply Chain Problem Under Demand and Supply Uncertainty, and

includes a literature review for inventory planning under uncertainty and assortment or

catalog problem, two proposed stochastic approaches to find the optimal inventory man-

agement strategy, and analysis of results from comparing the proposed strategy with the

current inventory policy. Chapter 4, introduces inventory sharing as another approach for

facing drug shortages and analysis the interaction among hospitals under different condi-

tions. In Chapter 5, the conclusion of each study and future possible extensions of these

studies are explained.
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Chapter 2

Long Term Cost-effectiveness Analysis for Diabetic Foot

Ulcers: Timely Treatment and Primary Prevention Strategies

Due to the increasing population of diabetic patients, the lower quality of life in patients

with foot ulcers, and higher treatment costs for diabetic patients with foot ulcers, receiving

adequate and timely treatment and preventive strategies are necessary. In this chapter,

background and a literature review of the diabetic foot ulcers and cost-effectiveness analysis

are presented. Next, research questions and a model to answer these questions are proposed.

2.1 Background and Literature Review

The growing population of diabetic patients has brought with it an increase in the num-

ber of foot ulceration which can result in limb loss and even death. The most costly and

feared consequence of a foot ulcer is limb amputation. Diabetic foot ulcers precede 25% to

90% of all amputations (Pecoraro et al., 1990, Unwin, 2000). It can cause marked physical

disability and reduction in quality of life (Nabuurs-Franssen et al., 2005, Vileikyte, 2001).

Besides the lower quality of life in diabetic patients with foot ulcers, cost of treatment for

these patients is more than other diabetic patients because they need more emergency de-

partment visits, more frequent admissions to hospital, and longer length of stays. Moreover,

treatment is challenging and usually needs to be long lasting. The cost of care in the year

after the first ulcer episode for diabetic patients with foot ulcers is 5.4 times higher than

patients without foot ulcers and in the second year this factor is 2.8. The treatment cost of

the highest grade ulcers is 8 times more than the treatment cost of low-grade ulcers (Driver

et al., 2010).

Education along with other preventive strategies such as regular inspection of the feet by

health care professionals, optimizing metabolic control, regular podiatric care and adjusted
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shoes and insoles are recommended to lower the risk of foot ulceration in diabetic patients

(Gershater et al., 2011).

Several review papers have been published on the effect of prevention strategies including

education on diabetic foot ulcers (Armstrong et al., 1998, Assal et al., 1985, Bild et al., 1989,

Boulton, 1995, Bowering, 2001, Dorresteijn et al., 2010, Edmonds et al., 1996, Larsson and

Apelqvist, 1995, Levin, 1995, Mason et al., 1999, Mayfield et al., 1998, O’Meara et al.,

2000, Rith-Najarian and Reiber, 2000, Singh et al., 2005, Wu et al., 2007). However, four of

these studies were systematic reviews (Dorresteijn et al., 2010, Mason et al., 1999, O’Meara

et al., 2000, Singh et al., 2005). The most recent systematic review inferred that little

evidence is available to support the effectiveness of patient education for the prevention of

diabetic foot ulceration or amputations (Dorresteijn et al., 2010). According to this review

paper, different studies in this area are not heterogeneous because of the wide variety of

participants, types of control interventions, outcome measures, outcome assessment tools,

duration of follow-up and risk of bias between different studies.

While our study is closely related to the studies that have been surveyed in the above

mentioned review papers, it differs from these earlier studies in several aspects. First and

foremost, the current study includes the most critical sources of variation in other studies

as variable factors and proposes a more generalized model. Generalized structure of the

model addresses the main shortcoming of other studies that have been noted by Dorresteijn

et al. (2010). It enables the decision maker to do sensitivity analysis for different sources

of variation and results in a specified prevention strategy. For example Gershater et al.

(2011) studied a group of patients with diabetes and high risk of ulceration to investigate if

participant-driven patient education in group sessions, compared to provision of standard

information, is effective in reduction of new ulceration during 24 months. They concluded

that these patients develop foot ulcers in spite of participant-driven group education because

high risk patients have external risk factors that are beyond this form of education. The

target of this study are high risk diabetic patients (patients with previously healed ulcers)

while in our study all diabetic patients are considered whether they are low risk or high

risk. However, the model allows the decision maker to asses effectiveness of prevention for
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three different groups of patients, based on their unique risk factors.

Second, to the best of our knowledge, none of the existing studies explore the effec-

tiveness of both primary preventive strategies and timely treatment in one study. Primary

prevention tries to inhibit the onset of health problems while timely treatment, as a sec-

ondary prevention strategy, is trying to restore a person who is already affected to maximum

functioning (Aday et al., 2004). In diabetic foot ulcers, primary prevention is reducing the

risk that diabetic patients develop foot ulcers while secondary prevention is decreasing the

risk of progressing into amputation. Timely treatment for diabetic patients specially those

who already have developed foot ulcer is very crucial. Delay in treatment can easily result

in amputation and limb loss. The key role of timely treatment as a secondary prevention on

diabetic patients has been ignored in previous studies. Providing optimal diabetic limb care

require mitigation of risk associated with the development of DFUs, recognition of a DFU

when it occurs, timely access to appropriate DFU care and adherence to evidence-based

therapy (Wrobel et al., 2011).

Third, using the proposed model we can define a threshold for the cost of prevention

strategy and timely treatment for each group of patients. This outcome is advantageous

for policy makers. Applying this comprehensive decision support system enables the policy

makers to define the optimal set of actions.

2.1.1 Cost-effectiveness Analysis

The ultimate goal of any healthcare system is maximizing the health of a population

given a fixed amount of resources. In the operational research literature some papers ad-

dress techniques for resource allocation in healthcare. Different mathematical programming

approaches under deterministic conditions (Epstein et al., 2007, Flessa, 2003, Stinnett and

Paltiel, 1996) and stochastic condition (Chalabi et al., 2008, Moreno et al., 2010) have been

proposed in literature.

One approach that has been widely used in healthcare to address this issue is Economic

Evaluation. Economic Evaluation is identifying, measuring, valuing, and comparing the cost
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and consequences of the alternatives being considered (Drummond et al., 2005). Different

economic evaluation approaches are used in healthcare such as cost-consequence analysis

(CCA), cost-minimization analysis (CMA), cost-effectiveness analysis (CEA), cost-utility

analysis (CUA) and cost-benefit analysis (CBA). CCA is simply reporting the costs and

consequences of different alternatives and lets the decision maker interpret them in some

way. In CMA it is assumed that the outcomes of alternatives are identical and the option

which minimizes the costs will be selected. CUA and CEA are sometimes considered the

same because in both costs are monetary values and consequences are non monetary. How-

ever, CUA is more broad that CEA. CUA adjusts consequences of alternatives by health

state preference scores or utility weights while CEA usually evaluates the outcome by one

natural unite such as life-years gained or disability-days saved. CUA commonly measures

the outcomes by Quality-Adjusted Life Years (QALY) (Drummond et al., 2005).

The concept of QALY was first introduced by Klarman and Rosenthal (1968) although

they did not use this term in their research. This measure combines length of life and quality

of life in one measure. According to the National Institute for Health and Clinical Excellence

(NICE), the QALY is a measure of a person’s length of life weighted by a valuation of their

health-related quality of life (for Clinical Excellence , NICE). This measure places weight

on time in different health states. One year of perfect health is worth 1 and a year of

less than perfect health is worth less than 1. Death is equivalent to 0, although some

health states are regarded as being worse than death and have negative scores. One of the

instruments that NICE suggest to evaluate QALY is EuroQoL (EQ-5D). EQ-5D is a simple,

self-administered instrument which provides a composite index score representing a given

health state by defining five dimensions of health: mobility, ability to selfcare, ability to

undertake usual activities, pain and discomfort, and anxiety and depression.

Among all these methods, cost-effectiveness analysis and cost-benefit analysis have been

applied more in studies (Gray et al., 2011). The difference of these two approaches is on how

they measure the outcomes. In CEA no monetary value is placed on the health outcomes.

It does not let the decision maker know whether health spending is high or low but rather

results in how a given budget can maximize the health outcomes. Unlike CEA, CBA
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evaluates all costs and benefits in monetary units.

Based on the essence of input and output in this study, we are planning to use cost-

effectiveness approach. This approach has been used for diabetic foot ulcer prevention

by Ragnarson Tennvall and Apelqvist (2001) and Ortegon et al. (2004). A Markov-based

cost-utility simulation model for a 5-year horizon is presented by Ragnarson Tennvall and

Apelqvist (2001). They conclude that an intensified prevention, including patient education,

foot care and footwear for high-risk patients, is cost-effective if the risk for foot ulcers and

lower extremity amputations can be reduced by 25%. Results of another Markov-based

model for patients with newly diagnosed type 2 diabetes shows that guideline-based care

is cost-effective and even cost saving. Guideline-based care includes intensive glycemic

control (IGC), professional protective foot care, education of patients and staff, regular

inspection of the feet, identification of the high- risk patient, treatment of nonulcerative

lesions, and a multidisciplinary approach to established foot ulcers (Ortegon et al., 2004).

As mentioned in section 2.1, these methods are not heterogeneous and they do not consider

all risk factors and the result of patient education about each factor. Our study will model

a more generalized structure using a cost-effectiveness analysis.

2.2 Problem Statement

As discussed earlier, educating diabetic patients for self-care and timely foot care are

considered as fundamental strategies for prevention and reducing the consequences of dia-

betic foot ulcer. As mentioned in section 2.1, different researchers have studied this prob-

lem but there are questions that have not been answered in the literature. The research

presented in this chapter deals with proposing a decision support system to address the

following questions:

• It is expected that timely and adequate treatment has an effect on reducing the

complications resulting from DFU. How much is the effect of timely treatment on

each group of patients and what is the optimal treatment strategy to minimize the

costs of the system?
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• Diabetic patients who did not receive primary education are not aware of the self

care procedures and possible consequences of DFU. Moreover, it is expected that

preventive strategies have different effects on different types of patients. How much

is the optimal investment for giving primary education to each group of diabetic

patients?

To answer these two questions, our research is using a cost-effectiveness approach along

with sensitivity analysis.

2.3 Proposed Approach

Similar to any other multicriteria approach, the first step of model development is

identifying the risk factors that lead to foot ulceration and limb loss. Several risk factors

have been mentioned in literature as affecting risk factors. According to Boyko et al. (1999)

risk factors affecting foot ulceration are: foot insensitivity, past history of amputation or

foot ulcer, insulin use, Charcot deformity, poor arterial circulation, higher body weight, poor

vision and orthostatic hypotension. Singh et al. (2005) pointed out risk factors such as ankle

brachial index (ABI), using appropriate footwear, plantar pressure, Arterial oxygen supply,

biothesiometry, assess lower extremity vascular status and smoking status. Studies show

that neuropathy and bony abnormalities of the foot are two very important component

causes. In addition to these factors other component causes exist as well (Reiber et al.,

1999), (Boyko et al., 2006), (Lavery et al., 2008). It should be noted that none of the risk

factors associated with DFUs could be considered as sufficient cause, however, although

uncommon, DFUs do occur in patients without significant neuropathy or bony abnormality.

In relevant studies from the US and Europe, the overall prevalence of neuropathy varies

between 28 and 66% (Azad et al., 1999, Boyko et al., 2006, Ramsey et al., 1999). This

rate varies depending on duration of diabetes and age (Young et al., 1993). A large study

found that the ABI is a strong risk factor of foot ulceration (Boyko et al., 1999). Reiber

et al. (2002) suggests that patients with neuropathy and foot deformities may benefit from

custom shoes. Improperly fitting shoes (i.e., a foot size and shoe size mismatch) were found
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in 74.5% of U. S. veterans presenting to an interdisciplinary foot clinic. Among diabetics

with neuropathic feet, improperly fitting shoes was associated with an odds ratio of 4.8 for

the development of foot ulceration (Nixon et al., 2006). A similar incidence of improper fit

has also been found in the United Kingdom (Harrison et al., 2007).

Since this model is tailored to support regional diabetic patients, applicable risk factors,

determined by our collaborators to categorize the patients are neuropathy and peripheral

arterial disease (PAD). Considering these risk factors, diabetic patients can be categorized

under three major groups: PACT 1, PACT 2 and PACT 3. PACT 1 are patients with neither

neuropathy or peripheral arterial disease. PACT 2 are patients with neuropathy and PACT

3 are patients with peripheral arterial disease (PAD), with or without neuropathy.

In the next step, after defining the risk factors, classifying all patients into three groups

the proper incident rate to each group is assigned based on the literature (Table 2.1). If

proper data for a big group of patients would be available, distribution fitting can be done on

the data to get more detailed information about these incident rates. Next all possible health

states for a diabetic patient needs to be identified. All feasible health states that a diabetic

patient can experience are illustrated in picture 2.1. As it is shown in the picture, any

patient can be in any of these seven states, based on either they receive primary prevention

education and timely treatment. Patients who receive foot care, revascularization and

wound care, will have the unhealed ulcer or a healed ulcer while there is a chance that they

go through limb loss. The incident rate of recurrence of ulcer in these patients is very low

so it is assumed equal to zero. Revascularization is a procedure that restores the perfusion

to the limbs. It is either in the form of endovascular intervention or surgical bypass and

greatly decreases the risk of limb loss. This procedure is required just for PACT 3 patients.

The limb loss state can be broken into different components that are out of the scope of

this study. Patients who are not receiving any treatment will have either an unhealed ulcer

or infected ulcer. It is assumed that infected patents will get antibiotic and go to either

stage of the unhealed ulcer, healed ulcer or limb loss during one month. Considering the

high probability of recurrence of ulcer for patients who do not receive treatment, patients

whose ulcer is healed without getting adequate treatment may get the ulcer again.
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Diabetes and foot ulceration is associated with significantly increased mortality (Apelqvist,

1998, Sanders, 1994). From all possible states there is an associated mortality rate for each

group of patients. The mortality rate for each group of patients is presented in Table 2.1.

PACT 1 PACT 2 PACT 3

Ulcer Development Rate Triangular(0.005,0.008,0.002) Triangular(0.0015,0.0025,0.006) Triangular(0.009,0.0123,0.016)

Initial Population 20446 4994 3131

Mortality Rate Triangular(0.003,0.005,0.008) Triangular(0.006,0.008,0.01) Triangular(0.008,0.01,0.012)

With Treatment
Rate of healing Triangular(0.15,0.15,0.2) Triangular(0.1,0.15,0.2) Triangular(0.059,0.109,0.159)

Rate of limb loss Triangular(0.007,0.009,0.0011) Triangular(0.007,0.009,0.0011) Triangular(0.01,0.012,0.014)

No Treatment

Rate of healing Triangular(0.1,0.15,0.2) Triangular(0.05,0.1,0.15) Triangular(0.024,0.043,0.068)

Rate of limb loss Triangular(0.008,0.01,0.015) Triangular(0.015,0.02,0.025) Triangular(0.024,0.031,0.068)

Rate of recurrence of ulcer Triangular(0.005,0.01,0.015) Triangular(0.015,0.02,0.025) Triangular(0.024,0.031,0.068)

Rate of infection Triangular(0.068,0.074,0.078) Triangular(0.1,0.115,0.13) Triangular(0.125,0.1,0.13)

Table 2.1: Monthly incident rates for three group of patients
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Figure 2.1: Clinical transition states for diabetic foot ulcer patients

After defining the states, the associated cost for patients in each state needs to be

defined (Table 2.2). These costs are collected based on multiple studies and expertise of

our collaborator.

After defining the inputs of the model, we need to determine a proper measure to

evaluate the outcome of the model. Based on the expertise of our collaborators from the

Michael E. DeBakey VA Medical Center, the effect of timely treatment in diabetic foot ulcer

patients can be measured by total cost, number of amputations and cost per prevented limb
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PACT 1 PACT 2 PACT 3l

Monthly cost of primary prevention Triangular(4,8,42) Triangular(4,8,42) Triangular(4,8,42)

Monthly cost of treatment Triangular(417,1004,1667) Triangular(417,1004,1667) Triangular(721,1421,1971)

Monthly cost of healed ulcer Triangular(17,42,83) Triangular(17,42,83) Triangular(17,42,83)

Cost of infection Triangular(500,16000,20000) Triangular(500,16000,20000) Triangular(500,16000,20000)

Cost of revascularization NA NA Triangular(47,949,44635)

Cost of amputation surgery Triangular(17,2017,34201) Triangular(17,2017,34201) Triangular(17,2017,34201)

Table 2.2: Associated cost for different health states for three group of patients

loss. The significance of prevention strategies results can be measured by total number of

ulcers avoided and cost per ulcer avoided. Last step of the approach can be defined as

running a sensitivity analysis on the parameters of interest. Two parameters of interest for

sensitivity analysis is percentage of patients who receive primary prevention education (E)

and probability of receiving timely treatment (T). In section 2.4 the results of the model

and sensitivity analysis are presented.

2.4 Numerical Results of Model

Patients are divided into three groups based on identified risk factors by our expert

collaborators. A population of initial patients are generated according to distribution of

patients in these three groups. The agent-based simulation is run for five years horizon

and the unit of time for transition rate is month. Two parameters of interest for sensitivity

analysis in this study are percentage of patients receiving timely treatment and percentage

of patients receiving primary education. It will help healthcare administrators to choose

proper strategy for diabetic foot ulcer patients.

2.4.1 Results for Timely Treatment

Considering different characteristics of the patients in three groups and their different

transition rates among states, receiving adequate timely treatment has different effects on

the population of each group. The effect of timely treatment is studied on two outcomes of

the model: number of limb loss (amputation) and total cost of system.

Number of limb loss in three groups of patients for different treatment rate, is shown
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in Fig. 2.2. In this figure, PACT 1 patients will have more amputations when treatment

rate increases. This result is expected because of two reasons. The rate of amputation for

patients who receive treatment and those who do not receive treatment are slightly different.

Also, the rate of healing for patients who received the treatment is very close to patients

who did not receive treatment. Based on the transition of patients between states, patients

who have not received treatment but their wound has been healed, will not go through

amputation except they develop an ulcer again. Therefore, patients who receive treatment

will be cumulated in two states, healed and unhealed, while there is a loop of states for

patients who do not receive treatment. Consequently, number of patients who are in two

states of receiving treatment will be more than number of patients in two states of having

unhealed ulcer and having infection. It causes the increase in number of limb loss when

rate of timely treatment increases for this group of patients. Number of amputations in

PACT 2 patients will decrease when treatment rate increases, although this decrease is not

as much as PACT 3 patients. Higher incident rate of amputation for non treated patients

in PACT 3 group can justify this decrease in number of patients. Therefore, offering timely

treatment to higher number of PACT 3 patients has the maximum impact in decreasing

total number of amputation in all three groups.
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Figure 2.2: Sensitivity analysis of limb loss relative to percent of patients receiving timely
treatment

The next measure that helps in strategic planning of timely treatment in a hospital is the
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total cost of the system under different treatment rates. For PACT 1 patients, considering

the positive correlation of number of amputation and treatment rate in this group, the

total cost of the system increases when more treatment is given to this group of patients.

The minimum cost for this group of patients happens when treatment rate is around 10%.

What makes this rate 10% instead of 0% is the infection cost. for this group, two main costs

that determine the optimal treatment rate are infection cost and amputation cost. When

rate of treatment increases the number of amputations increases, while infected patients

decreases. The break even point of these two costs happens around 10% rate of treatment.

The changes in total cost for PACT 1 patients is illustrated in Fig. 2.3.
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Figure 2.3: Sensitivity analysis of cost relative to percent of PACT 1 patients receiving
timely treatment

The same analysis should been done for PACT 2 patients. As shown in Fig. 2.2, the

number of amputation in this group increases. Therefore, an increase in the rate of treat-

ment for this group of patients will result in lower amputation cost. On the other hand, a

higher treatment rate will result in a lower infection cost. Accordingly, the total cost will

decrease when the treatment rate increases for this group of patients. The pattern of this

decrease is shown in Fig. 2.4.

In the cost analysis of PACT 3 patients, revascularization surgery cost is a component

that does not happen for PACT 1 and PACT 2 patients. As discussed earlier, the main

procedure in treatment of PACT 3 patients is revascularization. The foremost stage of

treatment for all PACT 3 patients is revascularization which is a very expensive procedure.
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Figure 2.4: Sensitivity analysis of cost relative to percent of PACT 2 patients receiving
timely treatment

Considering the negative correlation of amputation with timely treatment rate in PACT

3 patients, the cost of amputation for this group of patients decreases while treatment

rate increases. However, the cost of revascularization will increase while rate of treatment

increases. Hence, the minimum cost of the system will happen at break even point of

amputation cost and revascularization cost which is around 64 million dollar during five

years when treatment rate is 10%. The trend of total cost for different treatment rates is

illustrated in Fig. 2.5.
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Figure 2.5: Sensitivity analysis of cost relative to percent of PACT 3 patients receiving
timely treatment

Another measure of interest for heathcare decision makers is the cost of each prevented
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limb loss. For PACT 1 patients, it is easy to see that both minimum number of amputations

and minimum cost happen when treatment rate is 10%. Therefore considering this measure

also, treatment rate of 10% is the optimum rate of treatment for PACT 1 patients. Fig. 2.6

illustrates the index of cost over prevented amputations for PACT 2 and PACT 3 patients.

When the value is negative, it means that cost of system is less that when no treatment is

given and also number of amputations is less. Therefore in that rate of treatment, prevented

amputations do not only have cost, but also it decreases the cost of the system. As it is

shown in Fig. 2.6 the maximum benefit for PACT 2 patients happens when all patients get

treatment. For PACT 3 patients, the benefit per prevented amputation happens only when

the rate of receiving treatment is 5%, 10% or 15%. The maximum benefit happens when

the rate of receiving treatment is 10%. This results are similar to the conclusions derived

from analyzing the amputation number and total cost for each group.
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Figure 2.6: Sensitivity analysis of number of prevented amputation relative to percent of
patients receiving timely treatment

2.4.2 Results for Primary Prevention

The second parameter of interest in the analysis is the percentage of patients assigned for

a primary prevention program like education for self care. In this model, the effectiveness of

primary prevention is assumed 20%. This means that primary prevention will decrease the

rate of ulcer development by 20%. The goal is finding the optimal percentage of patients
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that should receive primary prevention. To find the optimal percentage of the patients

receiving primary prevention, the timely treatment rate of each group is set to the optimal

value found in section 2.4.1. Fig. 2.7 illustrates the changes in total cost of the system for

the percentage of patients receiving primary prevention changes. For PACT 1 and PACT 2

patients the total cost increases while for PACT 3 patients this value decreases. Therefore,

if the only measure for picking the optimal strategy is total cost, all PACT 3 patients

should receive primary prevention while PACT 1 and PACT 2 patients should not receive

any primary prevention. Since the measure for healthcare decision makers is maximizing

the quality of service, the number of ulcers prevented under each strategy also should be

analyzed.
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Figure 2.7: Sensitivity analysis of cost relative to percent of patients receiving primary
prevention

The expected number of prevented ulcers under each strategy is shown in Fig. 2.8.

The number of patients who have been saved from developing an ulcer is increasing when

the percentage of patients receiving primary prevention is increasing. To find the optimal

strategy the cost per prevented ulcer is calculated and shown in Fig. 2.9. According to

this graph, if around 90% of patients in each group receive primary prevention, the cost

per ulcer prevented will be minimized. Another conclusion derived using this graph is

priority of the patients in receiving primary education. The lowest cost per prevented ulcer

is for PACT 1 patients. Therefore, this group have priority over other groups in receiving
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primary prevention. For education rate more than 15% PACT 2 patients has maximum cost

per prevented ulcer. Therefore, this group is not preferred to receive primary prevention

untill other groups receive primary prevention. For education rates more than 70% cost

per prevented ulcer for PACT 1 and PACT 3 are converging so there is no difference in

these patients in higher rates of providing primary prevention. Another use of this graph is

helping healthcare decision makers to find the threshold for offering preventive strategies.

Based on the value of each ulcer prevented at the healthcare facility, the optimal percentage

of patients who should receive primary prevention can be found.
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Figure 2.8: Sensitivity analysis of number of avoided ulcers relative to percent of patients
receiving primary prevention

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Percentage of patients receiving primary prevention

C
os

t s
av

ed
 p

er
 u

lc
er

 a
vo

id
ed

 

 

Cost per ulcer saved in PACT 1 patients

Cost per ulcer saved in PACT 2 patients
Cost per ulcer saved in PACT 3 patients

Figure 2.9: Sensitivity analysis of cost per prevented ulcer relative to percent of patients
receiving primary prevention
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2.5 Concluding Remarks

In this chapter the effect of two effective parameters on diabetic foot ulcers, receiv-

ing timely treatment and primary prevention, is studied. The contribution of the present

research is studying two key parameters in diabetic foot ulcer development in a single frame-

work. Accordingly, the model has flexibility to predict the outcome of different combination

of strategies associated with providing timely treatment and primary prevention for diabetic

patients. According to the results, around 10% of PACT 1 who are low risk patients should

receive timely treatment to minimize the expected total cost of the system. For this group

of patients, 10% is the break even point for expected amputation cost resulted from getting

treatment and expected infection cost resulted from not getting treatment. This point is

also giving the maximum benefit per prevented amputation. All PACT 2 patients need

to receive timely treatment to minimize the expected total cost of the system, expected

number of amputations and maximize benefit of prevented amputations. Ten percent of

PACT 3 patients should receive timely treatment. This point is the break even point for

expected revascularization cost for treated patients and expected amputation cost for non

treated patients and also the maximum benefit per prevented amputation happens in this

point.

The recommended strategy for using primary prevention, is applying preventive strate-

gies for around 90% of patients in all groups. Applying these strategies will result in more

cost while it will decrease number of developed ulcers. The minimum value of cost for ulcer

prevented for all groups happens when around 90% of patients receive primary prevention.

Besides, PACT 1 patients having priority over PACT 2 and PACT 3 patients in receiving

primary prevention since the cost per prevented ulcer in this group is less than other groups.

Also healthcare administrators can define a value for each prevented ulcer and find their

optimal prevention strategy according to Fig. 2.9. Generally, optimal strategy for providing

timely treatment and prevention strategies depends on the risk parameters of the patient

and the group which patient belongs to.
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Chapter 3

Pharmaceutical Inventory Problem under Supply and Demand

Uncertainty

This chapter addresses a pharmaceutical inventory management problem under

supply and demand uncertainty. First the background of the pharmaceutical sup-

ply chain and relative literature about the pharmaceutical inventory problem under

supply and demand uncertainty are introduced. Then one reorder point model us-

ing a continuous time Markov chain is proposed and its results are compared with

current inventory strategy as well as an (s, S) policy from the literature (Arreola-Risa

and DeCroix, 1998). Next, a more general model using a continuous time Markov

chain is proposed and is solved using a heuristic approach. The numerical results of

this model is compared with current strategy and finally the sensitivity analysis of

different parameters of the model in presented.

3.1 Background and Literature Review

The study of pharmaceutical supply chain has typically been approached from

either managerial analysis perspective (Jaber, 2009). Some managerial approaches

include outsourcing (Li and Benton, 1996, Lunn, 2000, Nicholson et al., 2004), ven-

dor managed inventory (VMI) (Kim, 2005), supply chain integration (Meijboom and

Obel, 2007) and risk in pharmaceutical supply chain (Breen, 2008). Inventory in-

vestments in healthcare industry are estimated to be between 10% and 18% of net

revenues (Holmgren and Wentz, 1982, Nicholson et al., 2004). This percentage is even

higher for hospitals. Nathan and Trinkaus (1996) estimated the inventory manage-

ment costs for anywhere between 17% and 35% of a hospital’s total revenue.
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A number of quantitative models have been introduced to find the optimal inven-

tory planning in a hospital. However, there do exist a few models in the inventory

planning literature that are relevant to the proposed work. First, Dellaert and van de

Poel (1996) introduced an economic order quantity model for inventory control of an

academic hospital in Netherlands. Elsewhere, practical ideas have been introduced

by Jayaraman et al. (2000) to improve the flow of materials in a healthcare facil-

ity. Lapierre and Ruiz (2007) develop a model that optimizes the inventory control

and logistics scheduling in a multi echelon inventory problem to minimize inventory

costs and balance the workload over the weekdays. However, importantly, none of

the models that are specified for pharmaceutical supply chain take into account the

uncertainties in the supply chain.

Uncertainty can be short-term or long-term based on the time-frame over which

the uncertainty affects the system (Subrahmanyam et al., 1994). Long-term uncer-

tainties such as uncertainty in demand and changes in availability of a pharmaceutical

item can be considered in inventory control models to find the optimal ordering policy

to minimize the shortages caused by these uncertainties. There also exist short-term

uncertainties such as recession but this is out of our scope of work. We consider

drug shortages due to long-term uncertainties including but not limited to material

availability, production decisions, and FDA approval strategies. Long-term uncer-

tainties in a hospital can be grouped in two main groups in the supply chain context:

uncertainty in demand and uncertainty (as disruptions) in supply.

Demand uncertainty is one of the major challenges in pharmaceutical inventory

planning. Demand uncertainty is studied in general forecasting studies (Syntetos

et al., 2009, 2010, Willemain et al., 2004, Zhao and Lee, 1993), in system dynamics

(SD) (Catt, 2007, Gardner Jr, 1990, Johnston, 1980), and in inventory control the-

ory (Sani and Kingsman, 1997). The widely-accepted distribution for demand in the

literature is Poisson due to its appropriateness of assumptions (i.e., demands of 0 or
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1), except a few studies where settings are different and compound Poisson distribu-

tion (e.g., negative binomial distribution) is appropriate (Sani and Kingsman, 1997,

Syntetos et al., 2009).

Supply uncertainty is presented in two forms in the literature: yield uncertainty

and disruption. Yield uncertainty is considered when the quantity of supply delivered

is a random variable and can deviate from the order. Disruption is considered when

the supply is subject to partial or complete failure. Disruptions are typically modeled

as events which occur randomly and may have random length. Table 3.1 shows some

of the studies that have introduced a model to solve inventory control problem with

disruption in supply.

Article Supplier Period Demand Policy
(Parlar and Berkin, 1991) single multiple deterministic EOQ

(Weiss and Rosenthal, 1992) single finite-horizon deterministic EOQ
(Parlar and Perry, 1995) single multiple deterministic (Q, r, T )

(Berk and Arreola-Risa, 1994) single multiple deterministic EOQ
(Parlar et al., 1995) single finite-horizon random (s, S)

(Parlar and Perry, 1996) 2 finite-horizon deterministic (Q, r)
(Gupta, 1996) single mutiple random (Q, r)
(Parlar, 1997) single single random (Q, r)

(Gurler and Parlar, 1997) 2 multiple deterministic (Q, r)
(DeCroix and Arreola-Risa, 1998) single multiple random (s, S)
(Arreola-Risa and DeCroix, 1998) single infinite-horizon random (s, S)

(Gullu et al., 1999) single multiple dynamic (Q, r)
(Mohebbi, 2004) single multiple random (Q, r)
(Tomlin, 2006) 2 infinite-horizon random EOQ

(Ross et al., 2008) single finite-horizon random EOQ
(Qi et al., 2009) single multiple deterministic EOQ

(Schmitt et al., 2010) single single random EOQ
(Schmitt and Snyder, 2010) 3 infinite-horizon deterministic (Q, r)

(Yeo and Yuan, 2010) single multiple random (Q, r)

Table 3.1: Inventory management under disruption literature

Studies in Table 3.1 consider disruptions of different forms (e.g., simple disruptions

from the supplier, natural disasters destroying the inventory etc.), different assump-

tions on lead time, and demand cancellation. We do not elucidate the contribution

of each paper separately, but only present key differences in Table 3.1. Furthermore,

there are studies that use integrated modeling for inventory and transportation de-

cisions (e.g., (Geunes and Zeng, 2001, 2003)) investigating the effect of backlogging

and expediting policies on inventory and transportation costs.
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Another key concept that should be considered in pharmaceutical inventory plan-

ning is substitutability of drugs. The early roots of the literature on lot-sizing with

product substitution can be seen in Assortment or Catalog problems. Assortment or

catalog problem is defined as determining which of the possible set of sizes or qualities

of some product should be stocked when it is not possible or desirable to stock all of

them and substitution in one direction (larger for smaller or higher-quality for lower-

quality) is possible at some cost (Pentico, 2008). This problem is first introduced

by Sadowski (1959) though this concept is presented by Hanssmann (1957). Because

of the nature of substitution in pharmaceutical supply chain, our model is different

from available literature handling substitution in different aspects. To address these

differences we can study the literature based on three major parameters that can be

used in classifying assortment problems.

First aspect is the type of substitution, consumer-driven or firm-driven. Majority

of the researches have been done in consumer-driven substitution in which customers

might accept or reject the substitutes (Dong et al., 2009, Hopp and Xu, 2008, Huang

et al., 2011, Khouja et al., 1996, Kok and Fisher, 2007, Mahajan and Van Ryzin, 2001,

McGillivray and Silver, 1978, Nagarajan and Rajagopalan, 2008, Parlar, 1988, Parlar

and Goyal, 1984, Smith and Agrawal, 2000). Despite the prevalence of consumer-

driven substitution, it is not useful in pharmaceutical inventory management because

the probability of impropriety of substitute for a customer is too low and customer is

not a decision maker in substitution of a drug.

Firm-driven substitution, called one-way or downward substitution, assumes that

all items can be sorted in different classes and lower class items with surplus inventory

will be substituted for upper class items (Bassok et al., 1999, Bitran and Dasu, 1992,

Dutta and Chakraborty, 2010, Hsu and Bassok, 1999, Hsu et al., 2005, Lang and

Domschke, 2010, Pentico, 1974, Rao et al., 2004).
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Second parameter that divides the literature to two streams is stochasticity. Sev-

eral studies propose stochastic models dealing with demand and supply uncertainties

while others are deterministic models. Pentico (1974) formulated the problem as a

deterministic inventory optimization model in a continuous time setting and uses dy-

namic programming (DP) approach to solve it. In (Chand et al., 1994) an EOQ-based

optimization model is proposed to find the optimal purchase quantities of the parts

during an infinite time horizon and stationary cost and demand parameters. Hsu et al.

(2005) and also Lang and Domschke (2010) formulate a deterministic, single-level,

multiproduct, multi-period dynamic lot-sizing problem. In pharmaceutical inventory

planning we face uncertainty both in demand and supply and deterministic models

are not able to handle the problem.

Third factor is the time horizon. (Hsu and Bassok, 1999) and also (Bassok et al.,

1999) develop a single period multiproduct inventory model with considering down-

ward substitution and stochastic demand. A two-stage integer stochastic program for

a single period multi-product inventory problem with stochastic demand and setup

cost for production is proposed at (Rao et al., 2004). In this model the first stage

variables determine which products to produce and how much to produce, and the

second stage variables determine how the products are allocated to satisfy the realized

demand. Another single period, two-item model in a fuzzy environment is proposed

at (Dutta and Chakraborty, 2010). Because of the critical role of the items that

face uncertainty in supply, single-period inventory models can not give a longtime

inventory plan to hospitals.

Quantitative models on inventory management in hospitals is limited. It is also

noteworthy that aforementioned models have limitations for managing a pharmaceu-

tical supply chain. First and foremost, the goal of a healthcare facility is not the

minimization of total costs (e.g., inventory holding, ordering). This does not imply

all items have zero cost nor an inefficient and costly policy is acceptable, however, the
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primary concern is the quality of service. The second aspect that differentiates the

pharmaceutical supply chain is the cruciality of demand satisfaction. Shortages in

pharmaceutical supply chain affect patients’ lives directly, thus must be avoided. In

other supply chains, shortages do not have that significant restriction in the model.

For instance, shortages typically cause loss of customer in an apparel supply chain,

which has an associated cost. Depending on the tradeoff between revenues, holding,

ordering, and shortage costs, a lower inventory level leading to loss of some customers

might be a feasible option. On contrary, the main goal of a pharmaceutical supply

chain is to minimize shortages. Another aspect that sets pharmaceutical chains apart

is that some of the items in shortage can be substituted with alternatives. To the

best of our knowledge, a model that considers shortages in an uncertain chain with

substitutable items has not been introduced in the literature. Despite the existence

of some studies in the literature that consider uncertainties in supply chain, our work

is unique with demand disruption and substitution.

3.2 Problem Statement

A paramedical supply chain roughly consists of four main levels: chemical plants,

pharmaceutical plants, marketing affiliates and healthcare users. As we explore in this

dissertation, the pharmaceutical shortage can be addressed through varying strategies

introduced in each of these levels. The hospital is the level that is in direct contact

with patients and where the effect of shortage is the highest. Despite the important

role of the hospital in solving the pharmaceutical shortages, formulating strategies

from the hospital’s perspective has been given little attention by researchers. This

is likely a result of the complexity of the problem, which involves hospital size, geo-

graphic location, diversification, and various specializations (DeScioli, 2005). There-

fore, in the first phase of our research, we propose to offer new stochastic models for

inventory management of pharmaceutical goods at a single hospital.
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In any healthcare organization, two main objectives are the base of all performance

measures: lower cost and improving the quality of service. Because of the critical role

of healthcare organizations before the 1980s the only objective was maximizing the

quality of service. However, the doubling of healthcare costs in the 1970s, and again

in the 1980s, led to the need to more formally account for healthcare expenses (Li

and Benton, 1996). To develop a model to optimize the pharmaceutical ordering

strategies of a hospital, these two main objectives should be considered: minimizing

the holding costs and shortage costs. Current inventory control policy relevant to the

pharmaceutical supply chain makes use of an (s, S) policy, which requires that when

the inventory level is s or below, an order should be placed to bring the inventory

level up to S. Arreola-Risa and DeCroix (1998) have introduced a model to solve

an (s, S) policy with optimality conditions to solve an inventory control problem with

supply disruption, backorder and lost sales. The two models proposed in this part of

the research investigate the important multi-item generalization of this work, which

are applicable for healthcare providers that are required to maintain a number of

critical drugs. First proposed model utilizes drug substitution but disregards holding

and substitution costs. It considers up to 2 drugs (one mainstream and one sub-

stitute/alternative) for each patient/case. The model we propose considers random

shortages for substitutes as well as the mainstream drugs using a continuous time

Markov chain. Note that the objective function that should be minimized is the total

shortage cost. Second proposed model is a more general form of the first model with

less assumptions. The objective function of this model minimizes the total cost of

the system. Moreover this model considers the order quantity as one of the decision

variables and tries to find the optimal order quantity and safety stock level for each

drug. Though these two models are different, they are sharing following common

assumptions:

• There is uncertainty in demand for each pharmaceutical item. We assume
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demands are independent among items. Arrival of demand for each item i is

Poisson distributed with rate αi.

• Shortages for pharmaceuticals are occurring randomly with uncertain durations.

We assume the supply disruptions and their durations for drug i are independent

and exponentially distributed with rate λi and µi, respectively.

• Each mainstream item has one substitute that can be used instead of the main

drug at a cost of πi. Substitute items can also be unavailable independent from

the main item. Supply disruptions and their durations for substitute drugs are

independent and exponentially distributed with rate λ′

i and µ′

i, respectively.

• For each item there is an associated shortage impact. The impact of a shortage

on mainstream drugs is the same as that of its substitute. The pharmaceutical

items under consideration are crucial such as chemotherapeutic drugs. Impacts

are difficult to quantify but an subjective assessment is possible based on how

QALY of a patient is affected without the drug, and how difficult it is to find

the drug from other sources (if any) in an emergency.

• In practice, pharmaceutical items come in lots but lot sizes are not strict. There-

fore, we assume items can be ordered in any quantity.

• Lead time is negligible when drugs are available since deliveries are made every

other day and overnight deliveries are possible as long as the item is not in

shortage.

• When a shortage is over, an order is placed immediately to reach the order-up-to

level.

• A limited storage capacity of V is under consideration.

• A continuous inventory review policy (i.e., (Q, R) policy) is employed for prac-

tical reasons, although, in practice, the inventory is reviewed periodically.
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• There is no differentiation between mainstream and substitute drugs for math-

ematical convenience. When both are on hand, the total number of items is

used rather than exact number of mainstream and substitute items.

• Perishability of drugs has not been considered. Drugs’ shelf lives are assumed

long enough that the inventory is usually depleted before drugs expire.

• There is a single supplier.

3.3 First Solution Approach

In this section, we present a novel stochastic approach using a continuous time

Markov chain to manage the inventory of a healthcare facility that utilizes drug substi-

tution but disregards holding and substitution costs. The proposed model utilizes the

following approximations for the sake of mathematical simplicity and computational

tractability.

• As the goal is to minimize shortages, amount of inventory on hand is ignored

when the drug (mainstream or substitute) is available.

• Order quantity (Q) has virtually no direct effect on the number of shortages.

Therefore, it is assumed to be an input parameter typically set to 1 day of

supplies. Our aim is to keep inventory holding costs at a reasonable level and

avoid excessive holding costs for available items. This can be carefully adjusted

with minimal effect on the shortages (e.g., model can be solved using the demand

of 2 days and orders can be placed once in 4 days alternately for two sets of

drugs since this also ensures feasibility).

• When there is a shortage of both mainstream and substitute item, the inventory

level is assumed to drop to reorder point (R) instantaneously.

The main goal is to cope with national drug shortages. The idea is holding more

safety stock for crucial items and finding the perfect balance between items so that
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the drawbacks of shortages are minimized. The decision for holding an item is affected

by the shortage likeliness, probable duration of a shortage, demand rate, substitute

availability, and volume of the drug as discussed in the sequel.

3.3.1 Proposed Model

To the best of our knowledge, two underlying facts with regard to a pharmaceutical

supply chain are not considered in the literature. First, some of the substitutes may

also face random supply. Second, minimization of shortages is the primary goal.

In order to satisfy these two shortcomings of the previously proposed models, we

propose a reorder point model that considers up to 2 drugs (one mainstream and

one substitute/alternative) for each patient/case. The model we propose considers

random shortages for substitutes as well as the mainstream drugs using a continuous

time Markov chain. Note that the objective function that should be minimized is the

total shortage cost. Fig. 3.1 illustrates the transition-rate diagram for the reorder

point model.

(X, A, A)

αi αi ...(Ri, NA, NA) (−1, NA, NA)
αi ... (0, NA, NA)

αi

αi αi αi
µi

µi

µi

µi

µi′

µi′

µi′

λi′

λi

λi′

λi

µi′

(X, A, NA) (X, NA, A)

Figure 3.1: Transition-rate diagram for item i in the inventory system for reorder point
model.

In this model, states are denoted as triplets where the first entry denotes the

inventory level, the second and third entry denote the availability of the mainstream
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and substitute item, respectively. It should be noted that when the item or the

substitute is available for ordering, the inventory level is between Ri and Qi + Ri. We

denote the case where the inventory level is between Ri and Qi + Ri with X, since

the exact inventory level and the associated cost is out of our scope. αi is the daily

demand rate for the drug under consideration, which may be drug i (mainstream)

and i′ (substitute) depending on availability. λi and λi′ denote the shortage rate for

mainstream drug i and it’s substitute i′, respectively. Similarly, µi and µi′ denote the

shortage recovery rate of mainstream and substitute drugs.

In order to find the expected number of items in shortage per day, we first find

the stationary probabilities using the transition-rate diagram in Fig. 3.1.

(λi + λi′)P(Ri ,A,A) = µi′P(Ri ,A,NA) + µiP(Ri ,NA,A) (3.1)

(µi′ + λi)P(Ri ,A,NA) = µiΩi + λi′P(Ri ,A,A) (3.2)

(λi′ + µi)P(Ri ,NA,A) = µi′Ωi + λiP(Ri ,A,A), (3.3)

where Ωi =

∞
∑

j=0

P(Ri−j,NA,NA). From (3.1), (3.2), and (3.3), we have

P(Ri ,A,A) =
µiµi′

λiλi′

Ωi (3.4)

P(Ri ,A,NA) =
µiλi + µiµi′

(µi′ + λi)λi

Ωi (3.5)

P(Ri ,NA,A) =
µi′λi′ + µiµi′

(µi′ + λi)λi′

Ωi. (3.6)

Using P(Ri ,A,A) + P(Ri ,A,NA) + P(Ri ,NA,A) + Ωi = 1, (3.4), (3.5), and (3.6) we obtain the

following:

Ωi =
λiλi′(λi + µi′)

λiλi′(µi + 2µi′ + λi) + 2λiµiµi′ + λi′ µiµi′ + µiµi′
2

(3.7)

Using the definition of Ωi
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P(Ri−j,NA,NA) =

(

αi

µi + µi′ + αi

)j (

µi + µi′

µi + µi′ + αi

)

Ωi j = 0, ..., ∞. (3.8)

Given Ri, the expected number of items in shortage per day can be calculated as

follows:

Ni(Ri) =

∞
∑

j=1

jP(−j,NA,NA) =

(

αi

µi + µi′ + αi

)Ri
(

µi + µi′

µi + µi′ + αi

)

Ωi

∞
∑

j=1

j

(

αi

µi + µi′ + αi

)j

(3.9)

=

(

αi

µi + µi′ + αi

)Ri
(

µi + µi′

µi + µi′ + αi

)

Ωi

αi(µi + µi′ + αi)

(µi + µi′)2
(3.10)

=
αiΩi

µi + µi′

(

αi

µi + µi′ + αi

)Ri

(3.11)

The optimal reorder points that minimize the expected impact of shortages can

be obtained solving

min
R

m
∑

i=1

πiNi(Ri) (3.12a)

subject to
m
∑

i=1

vi [Qi + Ri] ≤ V (3.12b)

Ri ≥ 0 i = 1, ..., m, (3.12c)

where Ni(Ri) is the expected number of items in shortage per day as defined in (3.11)

and Ωi is defined in (3.7). Qi is set to the daily demand αi as discussed above. πi is the

cost of shortage for item i that is obtained by quantifying the impacts in Table 3.2

and m is the number of mainstream drugs. It should also be noted that substitute

items (i′), which are not used unless there is shortage on mainstream drugs (i), are

considered implicitly in the model. Next, we customize the most suitable model from

the literature for the scenario on hand. We will compare both solutions with the

current policy to highlight the benefits in section 3.3.3.
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3.3.2 An Optimal (s, S) policy

Arreola-Risa and DeCroix (1998) propose an (s, S) policy for items with supply

disruption and demand uncertainty. The employed inventory policy (with a contin-

uous review approximation similar to our model) and the assumptions on demand

and supply make the model very suitable for the healthcare pharmaceuticals. On

the other hand, the following aspects of the model are the shortcomings within the

healthcare supply chain context:

• Substitute items are not considered.

• There is unlimited capacity for storage.

• The model considers a single item.

• The objective is to find the optimal stock levels for an item to perfectly balance

the tradeoff between ordering cost, inventory holding cost, and lost sales cost.

Fig. 3.2 illustrates the transition-rate diagram for the model presented in (Arreola-

Risa and DeCroix, 1998).

αi(1 − qi)

αi

αi

αi

(Si, NA)
αi ... αiαi ... αi

λi µi λi

µi

µi

αi µi µi

...

(0, NA)
αiqi

(−1, NA) ...αiqi

(si, NA)(si + 1, NA)

(si + 1, A)(Si, A)

αi(1 − qi)

Figure 3.2: Transition-rate diagram for item i in the inventory system for (s, S) model.

The states are denoted using the exact number of items on hand and the availabil-

ity of the item. This model is a perfect representation of a retailer’s continuous review

36



policy with uncertain demand (with rate αi), random disruptions in supply (occur-

ring with rate λi and expected duration of 1/µi), and lost customers (with probability

1 − qi).

The model proposed in this section investigates the important multi-item gener-

alization of this work with substitute information, which is applicable for healthcare

providers that are required to maintain a number of critical drugs. Substitute short-

ages cannot be incorporated directly into the model but assuming substitutes are not

stocked, we let the probability of availability of a substitute is 1 − qi. In an effort

to utilize shortage information for substitutes, µi′ and λi′ we set qi to the long term

fraction of time the substitute is unavailable, thus qi = λi′ /(µi′ + λi′)1.

In order to handle multiple items, we constrain the total capacity used. The cost

of ordering is available and unit holding cost per unit time is estimated as accurate

as possible. We conjecture the optimal solution is not very sensitive with respect

to these cost figures considering the high cost of shortages. Nevertheless, for a fair

benchmarking of two methods, exact figures are used where available. The slightly

modified model of Arreola-Risa and DeCroix (1998) for our case is as follows:

min
S,s

m
∑

i=1

Ni

{

ki + hi

[

∆i

αi

(

∆i + 1

2
+ si

)

+
βi

µ

(

si −
(1 − ρ

si
i )αi

µi

)]

+
ρ

si
i βiαiγi

µi

}

(3.13a)

subject to
m
∑

i=1

viSi ≤ V (3.13b)

Si = ∆i + si (3.13c)

∆i ≥ αi i = 1, ..., m (3.13d)

qi = λi′/(µi′ + λi′) i = 1, ..., m (3.13e)

si ≥ 0 i = 1, ..., m, (3.13f)

1If λi′ = 0, then qi = 0 no matter what the value of µi is, because the demand is never disrupted
and the substitute is always available.
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where

βi =
λi

λi + µi

[

1 −

(

αi

αi + λi + µi

)∆i

]

(3.14)

ρi =
αi

αi + µi

, (3.15)

γi = (1 − qi)pi + qiπi, (3.16)

Ni =
αiµi

µi∆i + αiβi

. (3.17)

In this formulation, ∆i is the order quantity as can be seen in constraint (3.13c).

It should be noted that the model is capable of handling both unit backordering cost

and backordering cost rate. We use unit backordering cost πi rather than the rate,

since one shortage does not cost with a constant rate over time. πi are set to dollar

amounts using the impacts in Table 3.2, as discussed in the previous model. Since

the items share a common space, the total occupied space should not exceed the total

warehouse capacity. Constraint (3.13b) ensures that warehouse capacity is not ex-

ceeded. Constraint (3.13d) provides a practical lower bound for order quantity so that

an unrealistic output is not produced such as placing multiple orders in one day. As

discussed earlier, constraint (3.13e) utilizes the substitute items’ shortage and recov-

ery rates. Finally, the objective function (3.13a) considers the sum of ordering cost,

holding cost, and shortage cost. In this model, Ni will provide the long-run average

number of orders placed per unit time for item i and βi will provide the probability of

finding the supply unavailable when the inventory level for item i hits si. The inter-

ested reader is referred to (Arreola-Risa and DeCroix, 1998) for details of the model

and the derivation of the equations. In section 3.3.3, we present optimal inventory

levels for the proposed models and simulation results to highlight the improvement

over the current policy employed by a healthcare facility.
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3.3.3 Computational Results

The healthcare facility we consider in this study is Harris County Hospital District

(HCHD) in Houston, TX, which consists of a rehabilitation and specialty hospital,

two full-service hospitals, 16 community health centers, seven school-based clinics,

a dental and dialysis center, and mobile health units. HCHD participates in Dis-

proportionate Share Hospital (DSH) programs, which is a special funding provided

by the U.S. government for hospitals that treat significant populations of indigent

patients. There are DSH programs for both Medicare and Medicaid, as well as for

pharmacies, known as the 340B program. Inpatient pharmaceuticals are purchased

through a wholesaler under an inpatient Group Purchasing Organization (GPO) ac-

count named Premier. Outpatient Pharmaceuticals are purchased through a whole-

saler under Federal 340B Public Health Service (PHS) drug pricing program, which

limits the cost of drugs to certain grantees of federal agencies. PHS pricing is sub-

ject to change quarterly. Participation in this program results in significant savings

estimated to be 20% to 50% of the pharmaceuticals cost when compared with GPO

pricing. The data provided by HCHD for critical items to be held in the warehouse is

presented in Table 3.2. For privacy reasons, we do not present cost figures explicitly.

Our results provide insights into the most efficient strategy for utilization of the 1200

ft3 warehouse space reserved for these critical items.

In Table 3.2, the impact of shortages are estimated based on the QALYs of a

patient without the drug and availability of alternative sources. Daily demand is

obtained using the historical data. Disruption information is organized by the status

of drugs (i.e., FDA approval, raw material availability, national shortages in the past)

and pharmaeconomic expertise. Holding costs are calculated based on ordering cost

and an annual interest rate for all items except those that require special handling or

refrigeration requirements. Items that are relatively costly to hold are doxorubicin,
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Item Shortage Demand Rate Shortage Rate Exp(Shortage Duration) Volume

Impact (items/day)

(

shortages

year

)

(months) (ft3)

Furosemide C 98.11 1 6 0.001
Bumetanide Inj N N 1 3 N

Morphine F 248 1 3 0.001
Hydromorphone Inj N N 1 1 N

Levothyroxine F 0.9 1 3 0.037
Liothyronine Inj N N 0 – N

Dipyridamole G 8.7 2 3 0.008
Regadenosine N N 0 – N

Doxorubicin E 4.22 1 7 0.125
Epirubicin N N 1 1 N

Succinylcholine D 46 1 6 0.001
Rocuronium N N 1 1 N

Aminoacid E 3.8 1 6 0.166
Premixed TPN N N 0 – N

Bleomycin A 1 1 7 0.033
Cisplatin B 2.38 1 6 0.125

Cytarabine A 1.47 1 10 0.125
Etoposide Inj A 3.77 1 7 0.008

Etoposide Oral N N 1 1 N

Leucovorin Inj A 5.1 2 9 0.008
Methotrexate Inj B 3.63 2 3 0.166

Vincristine B 2 1 6 0.033
Vinblastine B 1.04 1 3 0.033

Asparaginase F 0.06 1 3 0.037
Pegaspargase N N 1 6 N

Mitomycin C 0.5 2 3 0.037
Cyclophosphamide Inj E 4.39 1 2 0.166

Fluorouracil E 22.11 1 1 0.664
Capecitabine Inj N N 1 1 N

Acetazolamide Inj C 1.39 1 6 0.033
Acyclovir Inj C 16.15 1 6 0.664
Alfentanyl Inj G 2.22 1 2 0.125
Alprostadil Inj C 0.27 1 6 0.037

Desmopressin Inj E 4.27 1 3 0.166
Intralipids Inj E 0.62 1 8 0.166
Folic Acid Inj F 0.19 1 6 0.037
Fosphenytoin C 28.25 2 4 0.664
Phenytoin Inj N N 2 3 N

Norepinephrine B 41 1 4 0.664
Propofol D 152 1 6 0.664

Sulfamethoxazole/TMP Inj F 12.78 1 4 0.664
Tromethamine Inj F 0.22 1 4 0.125

Sodium Bicarbonate Inj N N 0 – N

Table 3.2: Parameters for critical items to be stored

succinylcholine, aminoacid, bleomycin, vincristine, vinblastine, asparaginase, and pe-

gaspargase. Each row with N sign corresponds to a substitute for the mainstream

drug presented in the previous row, thus shortage impact, demand rate, and volume

are the assumed same with the mainstream drug.

In order to evaluate the performance of different nonlinear programming formu-

lations, General Algebraic Modeling System (GAMS) is used with CONOPT solver

that is based on the extended cutting plane (ECP) method (GAMS, 2011). The input

parameters are those in Table 3.2, where λ parameters are shortage rate column and

µ parameters are reciprocals of expected shortage duration column. It is noteworthy

that the modified model of Arreola-Risa and DeCroix (1998) took more time to solve
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than the optimal reorder point model due to an increased number of decision vari-

ables and the structure of the objective function. Since the proposed models consider

different objectives, Arena simulation software is used to compare different policies

under the most realistic real-life scenario.

Table 3.3 presents the current policy, optimal solution of formulation (3.13), and

optimal solution for formulation (3.70). The current policy does not utilize all avail-

able warehouse space as can be seen in the first column.

Item
Current Strategy Modified (s, S) Policy Reorder Point Model

Safety Order Quantity Safety Order Quantity Safety Order Quantity
Furosemide Inj 125 125 79,761 98 29,859 98
Morphine Inj 1,700 2,300 46,725 248 10,945 248

Levothyroxine Inj 12 12 66 7 0 1
Dipyridamole 20 30 1381 14 0 9
Doxorubicin 20 30 0 8 0 4

Succinylcholine 25 25 26,951 63 4,776 46
Aminoacid 8 4 0 6 0 4
Bleomycin 15 15 679 6 810 1
Cisplatin 15 15 715 4 902 2

Cytarabine 20 20 776 2 1,197 1
Etoposide Inj 40 40 1667 11 298 4
Leucovorin Inj 30 30 6,789 7 7,961 5

Methotrexate Inj 10 20 681 4 594 4
Vincristine 20 20 1,083 5 1,245 2
Vinblastine 10 10 297 5 276 1

Asparaginase 5 5 2 2 0 1
Mitomycin 20 20 139 7 133 1

Cyclophosphamide Inj 15 15 130 11 0 4
Fluorouracil 10 10 0 22 0 22

Acetazolamide Inj 8 12 644 8 763 1
Acyclovir Inj 50 50 0 16 2 16
Alfentanyl Inj 10 10 0 2 0 2
Alprostadil Inj 10 10 119 3 143 1

Desmopressin Inj 10 10 170 8 71 4
Intralipids Inj 20 20 23 1 132 1
Folic Acid Inj 14 16 28 2 44 1
Fosphenytoin 100 100 0 28 0 28

Norepinephrine 20 30 485 41 591 41
Propofol 100 100 0 152 0 152

Sulfamethoxazole/TMP Inj 50 50 0 13 0 13
Tromethamine Inj 5 5 0 3 0 1

Table 3.3: Safety stock and order quantities for 3 different strategies

The simulation analysis is performed on a ten year time period. Simulation results

for 10 replications for the current policy, modified (s, S) policy, and proposed reorder

point model have been summarized in Tables 3.4 and 3.9.

Table 3.4 shows that the total number of shortages is the most with the current

strategy, which is expected due to extremely low utilization of space. Our proposed
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Item
Number of shortages

Current strategy Modified (s, S) Policy Proposed Reorder Point Model
Furosemide Inj 11,444 0 0
Morphine Inj 4,025 0 87

Levothyroxine Inj 0 0 0
Dipyridamole 0 0 0
Doxorubicin 200 282 290

Succinylcholine 4,790 0 0
Aminoacid 0 0 0
Bleomycin 723 0 0
Cisplatin 2,096 156 77

Cytarabine 1,926 144 46
Etoposide Inj 102 0 0
Leucovorin Inj 7,163 0 0

Methotrexate Inj 3,445 249 348
Vincristine 2,203 51 35
Vinblastine 610 6 8

Asparaginase 1 4 8
Mitomycin 190 5 7

Cyclophosphamide Inj 2,129 1,317 2,313
Fluorouracil 617 623 623

Acetazolamide Inj 1,356 66 29
Acyclovir Inj 15,041 15,536 15,530
Alfentanyl Inj 963 1,078 1,078
Alprostadil Inj 152 9 4

Desmopressin Inj 2,475 1,417 2,000
Intralipids Inj 561 601 153
Folic Acid Inj 114 93 55
Fosphenytoin 6,317 7,242 7,242

Norepinephrine 37,370 33,621 32,832
Propofol 180,644 181,224 181,224

Sulfamethoxazole/TMP Inj 8,400 8,838 8,838
Tromethamine Inj 0 0 0

Table 3.4: Average number of shortages for each item over 10 replications of 10 years for
3 different strategies

Current strategy Modified (s, S) Policy Proposed Reorder Point Model
Shortage cost $1,384,282,500 $1,116,322,500 $1,112,140,500

Substitute cost $9,448,342 $9,128,225 $8,508,457
Ordering cost $9,319,650 $6,878,720 $8,617,103
Holding cost $41,417 $638,498 $353,568

Total cost $1,403,091,908 $1,132,967,943 $1,129,619,628

Table 3.5: Average costs over 10 replications of 10 years for 3 different strategies

reorder point model leads to a larger average number of shortages compared to the

modified (s, S) policy, however, when impacts are considered these shortages cost less,

as expected (see Table 3.9). Surprisingly, the proposed reorder point model also leads

to less substitute and holding cost. We conjecture this is because of the relatively

low demand of high impact items in this dataset, thus cannot be expected in general.

It is also noteworthy from Table 3.9 that the proposed reorder point model is saving

around $300,000 more than the modified (s, S) policy annually, when shortage impacts
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are matched with meaningful dollar costs. This is mainly due to the following reasons:

• For each highest impact drug (i.e., shortage impact of A), reorder point model

has the same or less number of shortages compared to the modified (s, S) policy.

• For the second highest impact drugs (i.e., shortage impact of B), reorder point

model has the same or less number of shortages compared to the modified (s, S)

policy, except for Methotrexate Inj and Vinblastine, where there is a marginal

difference. On the other hand, reorder point model is considerably better in

Norepinephrine shortages.

Table 3.9 justifies disregarding other costs when shortages are present and have

such a high impact, although these results are data dependent. Our proposed model

aims to minimize solely the shortage cost, which is at least two orders of magnitude

larger than other costs under real-life circumstances.

3.4 Second Solution Approach

This model is a more general form of the first model with less assumptions. The

objective function of this model minimizes the total cost of the system. This model

considers the order quantity as one of the decision variables and tries to find the

optimal order quantity and safety stock level for each drug. In addition to the as-

sumptions mentioned in Section 3.2, the proposed model in this preliminary work is

considering the following assumption:

• An order for item i will be placed (i) when the inventory level hits reorder

pointRi and supply is available (regular reorder of size Qi), (ii) if either one

of the mainstream or substitute becomes unavailable when both were available

(as a precaution), (iii) if either one of the mainstream or substitute becomes

available, i.e., national shortage is over (as a recovery step). The orders are

always placed to bring net inventory up to order-up-to level Qi + Ri.
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• Perishability of drugs has been considered by limiting the total inventory of

each item proportional to its shelf life łi.

3.4.1 Proposed Model

As we mentioned earlier, to solve this problem a stochastic approach using a

continuous time Markov chain is proposed. In the light of assumptions in section 3.2,

a Continuous Time Markov Chain is constructed as in Fig. 3.3.

In this transition-rate diagram, states are denoted as triplets where the first
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Figure 3.3: Transition-rate diagram for item i in the inventory system for the second
model.
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entry denotes the inventory level, the second and third entry denote the availability

of the mainstream and substitute item, respectively. Note that, A denotes item is

available, U denotes item is not available. αi is the daily demand rate for the drug

under consideration that may be mainstream drug or its substitute. λi and λ′

i denote

the shortage rate for mainstream drug and it’s substitute, respectively. Similarly,

µi and µ′

i denote the shortage recovery rate of mainstream and substitute drugs,

respectively. Next, we present a mathematical formulation to be solved to determine

optimal reorder point and order quantity for each item.

αi Demand rate for drug i
λi Supply disruption rate for drug i
µi Rate of recovery from shortage for drug i
λ′i Supply disruption rate for substitute of drug i
µ′i Rate of recovery from shortage for substitute of drug i
łi Shelf life of drug i
πi shortage cost per drug i per year
π′i Substitution cost for drug i per year
hi Holding cost per drug i per year
vi Space occupied by drug i
V Total warehouse capacity

Table 3.6: Proposed Model Parameters

In order to find the expected costs associated with this system, we first find the

limiting probabilities using the transition-rate diagram in Fig. 3.3. First, we use the

relationship between states that are grouped based on availability of a mainstream

drug and its substitute. For example, when both the mainstream drug and its substi-

tute are available (i.e., the set of states on top of Fig. 3.3), all limiting probabilities

can be obtained in terms of PQ+R,A,A as follows:

PQ+R−j,A,A = (
α

α + λ + λ′
)jPQ+R,A,A j = 0, ..., Q − 1, (3.18)

Similarly, when the mainstream drug is unavailable and the substitute is available,
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we obtain

PQ+R−j,U,A = ΩjPQ+R,U,A j = 0, ..., Q − 1, (3.19)

where Ω = α/(α + µ + λ′). When only the substitute drug is unavailable, the steady

state probabilities are derived as

PQ+R−j,A,U = Ω′jPQ+R,A,U j = 0, ..., Q − 1, (3.20)

where Ω′ =
α

α + λ + µ′
. Finally, when both the mainstream and substitute drugs are

unavailable, we have

PQ+R−j,U,U = PQ+R,U,A

(

(
λ′αj

(α + µ + µ′)j+1
) +

j
∑

k=1

(
λ′αj−kΩk

(α + µ + µ′)j−k+1
)

)

(3.21)

+ PQ+R,A,U

(

(
λαj

(α + µ + µ′)j+1
) +

j
∑

k=1

(
λαj−kΩ′k

(α + µ + µ′)j−k+1
)

)

j = 1, ..., Q − 1,

PR−j,U,U = PR+1,U,U(
α

α + µ + µ′
)j+1 j = 0, ..., ∞. (3.22)

Using (3.18), we obtain

Q+R
∑

k=R+1

Pk,A,A = PQ+R,A,A

(

1 − ( α

α+λ+λ′ )
Q

1 − ( α

α+λ+λ′ )

)

, (3.23)

and thus

PQ+R,A,A =
(α + λ + λ′)Q−1(λ + λ′)

(α + λ + λ′)Q − αQ

Q+R
∑

k=R+1

Pk,A,A. (3.24)

Similarly, (3.19) and (3.20) can be used to obtain the following:

PQ+R,U,A =
(α + µ + λ′)Q−1(µ + λ′)

(α + µ + λ′)Q − αQ

Q+R
∑

k=R+1

Pk,U,A, (3.25)

PQ+R,A,U =
(α + λ + µ′)Q−1(λ + µ′)

(α + λ + µ′)Q − αQ

Q+R
∑

k=R+1

Pk,A,U . (3.26)

The limiting probability for state Q + R, A, A can be written equating the rate at
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which the process leaves and enters that state.

(α + λ + λ′)PQ+R,A,A = µ′

Q+R
∑

k=R+1

Pk,A,U + µ

Q+R
∑

k=R+1

Pk,U,A + αPR+1,A,A, (3.27)

We can rearrange terms and use equation (3.18) to obtain

PQ+R,A,A =
µ′

α + λ + λ′

Q+R
∑

k=R+1

Pk,A,U +
µ

α + λ + λ′

Q+R
∑

k=R+1

Pk,U,A + (
α

α + λ + λ′
)QPQ+R,A,A. (3.28)

Adding
Q+R−1
∑

k=R+1

Pk,A,A on both sides, we have

Q+R
∑

k=R+1

Pk,A,A =
µ′

α + λ + λ′

Q+R
∑

k=R+1

Pk,A,U +
µ

α + λ + λ′

Q+R
∑

k=R+1

Pk,U,A +

Q
∑

j=1

(
α

α + λ + λ′
)jPQ+R,A,A,

(3.29)

because (3.18) implies

Q+R−1
∑

k=R+1

Pk,A,A =

Q−1
∑

j=1

(
α

α + λ + λ′
)jPQ+R,A,A. (3.30)

Using properties of geometric series and (3.29), we obtain

Q+R
∑

k=R+1

Pk,A,A =
µ′((α + λ + λ′)Q − αQ)

(λ + λ′)((α + λ + λ′)Q − αQ)

Q+R
∑

k=R+1

Pk,A,U (3.31)

+
µ((α + λ + λ′)Q − αQ)

(λ + λ′)((α + λ + λ′)Q − αQ)

Q+R
∑

k=R+1

Pk,U,A, (3.32)

which can be simplified as

Q+R
∑

k=R+1

Pk,A,A =
µ′

λ + λ′

Q+R
∑

k=R+1

Pk,A,U +
µ

λ + λ′

Q+R
∑

k=R+1

Pk,U,A. (3.33)

The limiting probability for state Q + R, U, A can be obtained similar to Q + R, A, A.
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First, the limiting probability is written as

(α + µ + λ′)PQ+R,U,A = λ

Q+R
∑

k=R+1

Pk,A,A + µ′

∞
∑

j=0

PQ+R−j,U,U + αPR+1,U,A. (3.34)

Next,
Q+R−1
∑

k=R+1

Pk,U,A is added on both sides and we obtain

Q+R
∑

k=R+1

Pk,U,A =
λ

µ + λ′

Q+R
∑

k=R+1

Pk,A,A +
µ′

µ + λ′

∞
∑

j=0

PQ+R−j,U,U . (3.35)

Similarly, when the mainstream drug is available and the substitute is unavailable,

we obtain

Q+R
∑

k=R+1

Pk,A,U =
λ′

µ′ + λ

Q+R
∑

k=R+1

Pk,A,A +
µ

µ′ + λ

∞
∑

j=0

PQ+R−j,U,U . (3.36)

Using the fact that the summation of limiting probabilities for all states is 1, i.e.,

Q+R
∑

k=R+1

Pk,A,A +

Q+R
∑

k=R+1

Pk,U,A +

Q+R
∑

k=R+1

Pk,A,U +

∞
∑

j=0

PQ+R−j,U,U = 1, (3.37)

and equations (3.33), (3.35) and (3.36) we have

Q+R
∑

k=R+1

Pk,A,A =
µµ′

(µ + λ)(µ′ + λ′)
(3.38)

Q+R
∑

k=R+1

Pk,A,U =
µλ′

(µ + λ)(µ′ + λ′)
(3.39)

Q+R
∑

k=R+1

Pk,U,A =
µ′λ

(µ + λ)(µ′ + λ′)
(3.40)

∞
∑

j=0

PQ+R−j,U,U =
λλ′

(µ + λ)(µ′ + λ′)
. (3.41)

Next, plugging (3.38), (3.39),(3.40), and (3.41) in (3.24), (3.25), and (3.26), steady

state probabilities PQ+R,A,A, PQ+R,U,A and PQ+R,A,U are found, which can be used to

calculate all other steady state probabilities through (3.18), (3.19), and (3.20).
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The states during unavailability of both the mainstream drug and its substitute

can be divided into two groups for convenience. Using equation (3.21) we have

PR+1,U,U = PQ+R,U,A

(

λ′αQ−1

(α + µ + µ′)Q
+

Q−1
∑

k=1

λ′αQ−k−1Ωk

(α + µ + µ′)Q−k

)

+ PQ+R,A,U

(

λαQ−1

(α + µ + µ′)Q
+

Q−1
∑

k=1

λαQ−1−kΩ′k

(α + µ + µ′)Q−k

)

, (3.42)

which can be simplified as

PR+1,U,U = PQ+R,U,A

(

λ′αQ−1

(α + µ + µ′)Q
+

λ′αQ−1

(α + µ + µ′)Q

Q−1
∑

k=1

(
α + µ + µ′

α + µ + λ′
)k

)

+ PQ+R,A,U

(

λαQ−1

(α + µ + µ′)Q
+

λαQ−1

(α + µ + µ′)Q

Q−1
∑

k=1

(
α + µ + µ′

α + λ + µ′
)k

)

. (3.43)

Using geometric series characteristics we obtain the following:

PR+1,U,U = PQ+R,U,A

(

λ′αQ−1

(α + µ + µ′)Q
+

λ′αQ−1

(α + µ + µ′)Q
(
(α + µ + λ′)Q − (α + µ + µ′)Q

(λ′ − µ′)(α + µ + λ′)Q−1
− 1)

)

+ PQ+R,A,U

(

λαQ−1

(α + µ + µ′)Q
+

λαQ−1

(α + µ + µ′)Q
(
(α + λ + µ′)Q − (α + µ + µ′)Q

(λ − µ)(α + µ′ + λ)Q−1
− 1)

)

.

(3.44)

Note again that PQ+R,U,A and PQ+R,A,U are obtained using equations (3.25, 3.40) and

(3.26, 3.39), respectively.

3.4.2 Optimization Problem

In this model, the objective function that should be minimized is the expected

annual total costs of the system which is the summation of expected shortage cost

(SC), expected substitution cost (SubC) and expected holding cost (HC). Due to the

specifics of healthcare sector described in the list of assumptions, there is no fixed

ordering cost. Furthermore, variable ordering cost is billed directly to the patient

because these facilities are operated on a non-profit basis. In this formulation πi
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denotes shortage cost per item i per year, π′

i denotes cost of substitution for each item

i per year and hi is holding cost per item i per year and the objective is to minimize
m
∑

i=1

T Ci(Qi, Ri), where

T Ci(Qi, Ri) = SCi(Qi, Ri) + SubCi(Qi, Ri) + HCi(Qi, Ri). (3.45)

In this section, we explain the expected total cost for one item only ignoring index

i for the sake of simplicity. Note that, shortage cost is charged when a state where

both mainstream and substitute are unavailable is visited, independent from the time

spent in these states. On the other hand, the holding cost is calculated considering

the time spent in states using steady state probabilities directly. Thus, annual holding

cost is

HC(Q, R) =h(

Q−1
∑

j=0

(Q + R − j)PQ+R−j,A,A +

Q−1
∑

j=0

(Q + R − j)PQ+R−j,A,U

+

Q−1
∑

j=0

(Q + R − j)PQ+R−j,U,A +

Q+R
∑

j=0

(Q + R − j)PQ+R−j,U,U), (3.46)

which can be re-stated as

HC(Q, R) =h(Q + R)(

Q−1
∑

j=0

PQ+R−j,A,A +

Q−1
∑

j=0

PQ+R−j,A,U +

Q−1
∑

j=0

PQ+R−j,U,A)

− h(

Q−1
∑

j=0

jPQ+R−j,A,A +

Q−1
∑

j=0

jPQ+R−j,A,U

+

Q−1
∑

j=0

jPQ+R−j,U,A −

Q+R
∑

j=0

(Q + R − j)PQ+R−j,U,U), (3.47)

where
Q−1
∑

j=1

jPQ+R−j,A,A =
α((α + λ + λ′)Q − Q(λ + λ′)αQ−1 − αQ)

(λ + λ′)2(α + λ + λ′)Q−1
PQ+R,A,A (3.48)

Q−1
∑

j=1

jPQ+R−j,A,U =
α((α + µ′ + λ)Q − Q(µ′ + λ)αQ−1 − αQ)

(µ′ + λ)2(α + µ′ + λ)Q−1
PQ+R,A,U , (3.49)
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Q−1
∑

j=1

jPQ+R−j,U,A =
α((α + µ + λ′)Q − Q(µ + λ′)αQ−1 − αQ)

(µ + λ′)2(α + µ + λ′)Q−1
PQ+R,U,A, (3.50)

Q+R
∑

j=0

(Q + R − j)PQ+R−j,U,U =

Q−1
∑

j=0

(Q + R − j)PQ+R−j,U,U +

Q+R
∑

j=Q

(Q + R − j)PQ+R−j,U,U . (3.51)

The second term in (3.51) can be calculated as follows:

Q+R
∑

j=Q

(Q + R − j)PQ+R−j,U,U =

R
∑

j=0

(R − j)PR

(

α

α + µ + µ′

)j

, (3.52)

= PR

(

R
∑

j=0

R

(

α

α + µ + µ′

)j

−

R
∑

j=0

j

(

α

α + µ + µ′

)j

)

, (3.53)

= PR

(

R

(

(α + µ + µ′)R+1 − αR+1

(µ + µ′)(α + µ + µ′)R

)

−

(

α(α + µ + µ′)((α + µ + µ′)R+1 − αR(R + 1)(α + µ + µ′) + Rα)

(α + µ + µ′)R+1(µ + µ′)2

))

.

(3.54)

We approximate the first term in (3.51) because the exact derivation is tedious.

Q−1
∑

j=0

(Q + R− j)PQ+R−j,U,U ≈
Q + 1 + 2R

2

Q−1
∑

j=0

PQ+R−j,U,U =
Q + 1 + 2R

2
(

∞
∑

j=0

PQ+R−j,U,U −

R
∑

j=−∞

Pj,U,U )

=
Q + 1 + 2R

2
(

∞
∑

j=0

PQ+R−j,U,U − PR,U,U

(α + µ + µ′)

µ + µ′
). (3.55)

Equations (3.41) and (3.44) can be plugged in (3.55) to provide necessary term for

holding cost. Next, we calculate shortage and substitution costs using annual rate of

visiting relevant states, which is either rate in or rate out. Shortage cost is obtained

as:

SC(Q, R) = π(α + µ′ + µ)

∞
∑

j=1

P−j,U,U = πPR+1,U,U

αR+1

(α + µ + µ′)R

∞
∑

j=1

(

α

α + µ + µ′

)j

, (3.56)

= πPR+1,U,U

αR+1

(α + µ + µ′)R

(

α

µ + µ′

)

. (3.57)

In order to find the rate of substitution, we find the rate of ordering for substitute

items because the number of substitute items on hand do not diverge in the long
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run. The rate of ordering for substitutes can be computed and multiplied by per unit

substitution cost as follows:

SubC(Q, R) = π′

(

αQPR+1,U,A + λ

Q−1
∑

j=1

(Q − j)PR+j,A,A + µ′

Q+R
∑

j=1

jPQ+R−j,U,U + µ′(Q + R)

∞
∑

j=1

P−j,U,U

)

.

(3.58)

Equations (3.19), (3.25), and (3.40) are used to obtain

PR+1,U,A =
αQ−1(µ + λ′)

(α + µ + λ′)Q − αQ
×

µ′λ

(µ + λ)(µ′ + λ′)
. (3.59)

For the second term, equation (3.18) is used to provide

Q−1
∑

j=1

(Q − j)PR+j,A,A = PQ+R,A,A

Q−1
∑

k=1

k

(

α

α + λ + λ′

)k

(3.60)

= PQ+R,A,A

α ((α + λ + λ′)Q − QαQ−1(α + λ + λ′) + αQ(Q − 1))

(λ + λ′)2(α + λ + λ′)Q−1
, (3.61)

where PQ+R,A,A can be obtained using (3.24) and (3.38).

The third term can be separated to two parts:

Q+R
∑

j=1

jPQ+R−j,U,U =

Q−1
∑

j=1

jPQ+R−j,U,U +

Q+R
∑

j=Q

jPQ+R−j,U,U . (3.62)

The first part can be estimated as:

Q−1
∑

j=1

jPQ+R−j,U,U ≈
Q

2

Q−1
∑

j=1

PQ+R−j,U,U =
Q

2
(

Q−1
∑

j=0

PQ+R−j,U,U − PQ+R,U,U), (3.63)

=
Q

2
(

∞
∑

j=0

PQ+R−j,U,U −

∞
∑

j=Q

PQ+R−j,U,U − PQ+R,U,U). (3.64)
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Using geometric series characteristics
∞
∑

j=Q

PQ+R−j,U,U can be calculated as

∞
∑

j=Q

PQ+R−j,U,U = PR+1(
α

µ + µ′
). (3.65)

The steady state probability PQ+R,U,U can be simply calculated as:

PQ+R,U,U =
PQ+R,U,Aλ′

α + µ + µ′
+

PQ+R,A,U λ

α + µ + µ′
. (3.66)

Equation (3.63) can be calculated plugging equations (3.65), (3.66) and (3.41) in it.

Second part can be written as:

Q+R
∑

j=Q

jPQ+R−j,U,U = Q

Q+R
∑

j=Q

PQ+R−j,U,U +

Q+R,U,U
∑

j=Q

(j − Q)PQ+R−j,U,U , (3.67)

= QPR+1,U,U(
α

µ + µ′
)(1 − (

α

α + µ + µ
)R+1) + PR+1,U,U(

α

µ + µ′
)2(1 −

αR(R + 1)(α + µ + µ′) − RαR+1

(α + µ + µ′)R+1
).

(3.68)

Equation (3.67) can be calculated using equation (3.44).

Last term to be calculated is
∞
∑

j=1

P−j,U,U , using equation (3.44).

∞
∑

j=1

P−j,U,U = PR+1,U,U(
α

µ + µ′
)(

α

α + µ + µ′
)R+1. (3.69)

Equations (3.59), (3.60), (3.62), (3.69) are plugged in (3.58) and derivation of substi-

tute cost is complete.

The optimal reorder points for all items that minimize the expected annual cost
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of the system can be obtained solving

min
R,Q

m
∑

i=1

T C(Qi, Ri) (3.70a)

subject to
m
∑

i=1

vi [Qi + Ri] ≤ V (3.70b)

łiαi ≥ Qi + Ri i = 1, ..., m, (3.70c)

Ri ≥ 0 i = 1, ..., m, (3.70d)

Qi ≥ 0 i = 1, ..., m. (3.70e)

The two constraints that have been considered in this model are capacitated ware-

house (3.70b), and perishability constraints for drugs (3.70c). We ensure that the

system under consideration never carries more than the expected demand to appear

during the average lifetime of a drug. It should be noted that a more rigorous model

that integrates perishability can also be studied by keeping track of dates for each

drug on hand in a stochastic framework. However, based on our discussions with

healthcare professionals, we agreed that it is an overcomplicated model that is virtu-

ally impossible to implement considering varying and inconsistent expiration dates in

different batches and some of the current inventory management tools that disregard

expiration dates for simplicity. Despite the fact that there is significant spoilage in

some hospitals, it is the way inventory is controlled and the technology employed that

has to change before proposing through models.

3.4.3 Solution Algorithm

When problem size increases, computation time for the formulation obtained in the

previous section grows exponentially because it is a nonconvex optimization problem.

In this section, a practical heuristic algorithm is proposed to solve the problem and

find the near-optimal solution. The parameters used in our algorithm are as follows:
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In order to construct the initial solution for our algorithm, the order quantity of

γ Coefficient to construct the initial solution, e.g., initial order quantities are γ times
the daily demand where γ ≥ 1

θ Number of critical items
β Fraction of warehouse that is initially allocated to critical items

Table 3.7: Heuristic Algorithm Parameters

each item is fixed to γ times the daily demand. Assuming the orders are placed

at least daily, γ can be any number greater than or equal to one since we need to

order at least one day’s demand. After assigning a portion of the warehouse to the

order quantities, β percent of the remaining capacity of warehouse is assigned to θ

critical items. Criticality of an item is roughly quantified based on demand rate,

shortage cost per item, and shortage rate for both the mainstream and its substitute.

Once the items are decided, warehouse capacity is distributed for safety stocks of

these items based on their daily demand and volume. The idea is to allocate more

space for larger items with higher daily demand. During this procedure, shelf lives of

items are considered to make sure the assigned capacity is not expected to result in

expired drugs. The remaining capacity of the warehouse will be assigned to the rest

of the items (i.e., noncritical) in a similar fashion considering their daily demand and

volume.

Next, we start with the initial solution and perform a neighborhood search. The

neighborhood search includes two main steps, (1) removing the item that results

in the minimum increase in the objective function per volume we free up, and (2)

adding the item that results in the maximum decrease in the objective function per

volume we occupy. The procedure continues until we observe no improvement in the

objective function (3.70a). To provide uniformity in the removing procedure, the

volume we free up and occupy is initially approximately the size of the largest item,

which gradually decreases. Below is the detailed pseudocode of the algorithm and

note that parameters are summarized in Tables 3.6 and 3.7.
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Algorithm 1 Two-Phase Heuristic Algorithm
INPUT: (α1, . . . , αm), (λ1, . . . , λm), (λ′

1, . . . , λ′

m), (µ1, . . . , µm), (µ′

1, . . . , µ′

m), (h1, . . . , hm),
(π1, . . . , πm), (π′

1, . . . , π′

m), (v1, . . . , vm), (l1, . . . , lm), V, γ, θ, β

OUTPUT: (R1, . . . , Rm), (Q1, . . . , Qm)

{Finding Initial Solution}
(Q1, . . . , Qm) ← γ × (α1, . . . , αm)

V ′ ← V −

m
∑

i=1

(vi ×Qi)

if V ′ < 0 then
Break
{No feasible solution with provided parameters}

end if

Rk ← min {lkαk −Qk,
β × V ′αkvk

θ
∑θ

i=1
αivi

}, ∀k ∈ 1, . . . , θ

Rk ← min {lkαk −Qk,
(1 − β)× V ′αkvk

(m− θ)
∑m

i=θ
αivi

}, ∀k ∈ θ, . . . , m

t← 1
{Neighborhood Search}
while GRi∈1,...,m = 1 do

GRi ←
max(vi)

vit
, ∀i ∈ 1, . . . , m

T C′(Qi, Ri)←∞ ∀i ∈ 1, . . . , m

while

m
∑

i=1

T C′(Qi, Ri)−

m
∑

i=1

T C(Qi, Ri) > 0 do

T C′(Qi, Ri)← T C(Qi, Ri) ∀i ∈ 1, . . . , m
{Removal of items}
for all i ∈ 1, . . . , m do

R′

i ← Ri −GRi, ∀i ∈ 1, . . . , m
Q′

i ← Qi −GRi, ∀i ∈ 1, . . . , m
end for

j ← argmini∈1,...,m

T C(Qi, R′

i) − T C(Qi, Ri)

viGRi

k ← argmini∈1,...,m

T C(Q′

i, Ri)− T C(Qi, Ri)

viGRi

if
T C(Q′

k
, Rk)− T C(Qk, Rk)

vkGRk

<
T C(Qj , R′

j)− T C(Qj , Rj)

vjGRj

then

(Qk, Rk)← (Q′

k, Rk)
else

(Qj , Rj) ← (Qj , R′

j)
end if

V ′′ ← V −

m
∑

i=1

vi(Qi + Ri)

{Adding new items}

GR′

i ← min {liαi −Qi −Ri,
V ′′

vi

}, ∀i ∈ 1, . . . , m

for all i ∈ 1, . . . , m do
R′′

i ← Ri + GR′

i, ∀i ∈ 1, . . . , m
Q′′

i ← Qi + GR′

i, ∀i ∈ 1, . . . , m
end for

j′ ← argmaxi∈1,...,m

T C(Qi, Ri)− T C(Qi, R′′

i )

viGR′

i

k′ ← argmaxi∈1,...,m

T C(Qi, Ri)− T C(Q′′

i , Ri)

viGR′

i

if
T C(Qk′ , Rk′ )− T C(Q′′

k′
, Rk′ )

vk′ GR′

k′

>
T C(Qj , R′

j)− T C(Qj , Rj)

vj′ GR′

j′

then

(Qk′ , Rk′ )← (Q′′

k′ , Rk′ )
else

(Qj′ , Rj′ ) ← (Qj′ , R′′

j′ )

end if
end while
t← 2t

end while
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3.4.4 Computational Results

Current inventory control strategies in two healthcare facilities (an anonymous

hospital in Houston, TX and HCHD) and the result of the heuristic model are pre-

sented in Table 3.8. As shown in the table, resulting order quantity levels of the

heuristic algorithm, regardless of the initial solution, are always close to one day of

demand. In general, order quantities are set to the smallest possible value based on

how deliveries are made.

Item
Anonymous Hospital’s Strategy HCHD’s Strategy Proposed Policy
Safety Order Quantity Safety Order Quantity Safety Order Quantity

Furosemide 98 196 125 125 33,865 99
Morphine 248 496 1,700 2,300 20,121 248

Levothyroxine 1 2 12 12 0 1
Dipyridamole 9 18 20 30 0 9
Doxorubicin 4 8 20 30 3 5

Succinylcholine 46 92 25 25 4,717 46
Aminoacid 4 8 8 4 0 4
Bleomycin 1 2 15 15 359 1
Cisplatin 2 4 15 15 425 3

Cytarabine 1 2 20 20 262 2
Etoposide 4 8 40 40 428 4
Leucovorin 5 10 30 30 2,748 6

Methotrexate 4 8 10 20 710 4
Vincristine 2 4 20 20 358 2
Vinblastine 1 2 10 10 279 2

Asparaginase 1 2 5 5 0 1
Mitomycin 1 2 20 20 150 1

Cyclophosphamide 4 8 15 15 158 5
Fluorouracil 22 44 10 10 0 23

Acetazolamide 1 2 8 12 624 2
Acyclovir 16 32 50 50 0 17
Alfentanyl 2 4 10 10 0 3
Alprostadil 1 2 10 10 121 1

Desmopressin 4 8 10 10 208 5
Intralipids 1 2 20 20 37 1
Folic Acid 1 2 14 16 33 1

Fosphenytoin 28 56 100 100 34 29
Norepinephrine 41 82 20 30 857 41

Propofol 152 304 100 100 0 152
Sulfamethoxazole/TMP 13 26 50 50 0 13

Tromethamine 1 2 5 5 0 1

Table 3.8: Safety stock and order quantities for 3 different strategies

The expected costs for each strategy have been summarized in Table 3.9. It is

noteworthy from Table 3.9 that the expected savings using the proposed model is more

than $35,000,000 per year compared to current strategies, when shortage impacts are

matched with meaningful dollar costs. The expected holding cost of the proposed
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model, on the other hand, is higher than current strategies which do not utilize all

available warehouse space.

Anonymous Hospital’s strategy HCHD’s strategy Proposed Policy
Expected shortage cost $ 158,702,574 $ 157,044,031 $ 121,423,566

Expected substitute cost $ 7,018,190 $ 5,698,994 $ 3,951,208
Expected holding cost $ 2,663 $ 3,352 $ 146,590

Expected total annual cost $ 165,723,427 $ 162,746,377 $ 125,521,374

Table 3.9: Expected costs for 3 different strategies

Next, we focus on the solution provided by the heuristic algorithm via Table 3.10.

In this table, items that have a substitute are presented bold. First column shows how

many days of demand constitutes the safety stock. Drugs are listed in decreasing order

of percentage of warehouse space allocated, which is presented in the second column.

The last column in this table shows a soft measure for risk factor. It is the normalized

value of multiplication of shortage impact, disruption rate and demand rate over the

disruption recovery rate. The items that have a high shortage impact, high disruption

rate, lengthy disruption duration (low recovery rate) and high demand rate have a

higher risk factor value. In general, it is expected that (i) items with substitute

occupy lower percentage of the warehouse, (ii) drugs with higher risk factor occupy

higher percentage of the inventory space. This trend is generally observed in the table

with a few exceptions:

• Although substitutes exist, some items occupy more space than expected be-

cause of the extremely high risk factors (e.g., Furosemide, Morphine).

• For some items, despite the relatively high risk factor, the percentage of the total

space occupied is less that expected because they are relatively small items (e.g.,

Etoposide, Succinylcholine).

• Some items with substitutes and low risk factor occupy more space than ex-

pected because of their large volume (e.g., Foshphenytoin, Fluorouracil).
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Because there are a number of attributes for each item that affect the total ex-

pected cost, we do not expect a simple ordering of items based on one measure.

However, a pairwise comparison reveals the reasoning behind the safety stock and or-

der quantity levels. If the total space was assigned uniformly to all items, each should

be allocated approximately 3% of the total warehouse space. However, for example,

Norepinephrine occupies almost half of the warehouse space. This is because of the

large volume — even though most of the warehouse is used, safety stock provides only

21 days of demand. Despite the capacity occupied by Norepinephrine, the number of

days safety stock for Norepinephrine would suffice is the lowest among drugs with a

shortage impact of B. Likewise, items that appear higher than expected on the list

due to large volume such as Foshphenytoin and Fluorouracil can suffice no more than

a day.

3.5 Sensitivity Analysis

In this section, we present sensitivity analysis results to evaluate the effect of vari-

ations in input parameters such as disruption types and capacity on the expected total

cost. Sensitivity analysis is performed for three group of input parameters: heuristic

algorithm parameters, disruption related parameters, and warehouse capacity.

First group of the parameters are heuristic algorithm parameters used in con-

structing the initial solution. Table 3.11 shows the result of the heuristic algorithm

under different values for θ, γ, and β. The convergence of the objective function for the

parameters that result in the best and worst objective function values are presented in

Fig. 3.4. The results show that (i) the second phase of the heuristic algorithm works

pretty well improving the objective function value drastically, (ii) proposed neighbor-

hood search is sensitive to the initial solution, and (iii) regardless of the values of

input parameters, the objective function converges to a decent quality solution.

Second group of parameters are the rate of disruption and the rate of recovery from
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Item
# of days safety

stock would
suffice (Ri/αi)

Percentage of total space Risk factor

Norepinephrine 21 49.689 0.000629
Methotrexate 196 9.877 0.000334

Propofol 0 8.411 0.001867
Cisplatin 179 4.458 0.000291

Fosphenytoin 1 3.486 0.000578
Desmopressin 49 2.947 0.000066
Furosemide 345 2.83 1
Cytarabine 178 2.75 0.0004

Cyclophosphamide 36 2.255 0.000045
Leucovorin 539 1.836 0.038987

Acetazolamide 449 1.722 0.000429
Morphine 81 1.697 0.252777

Fluorouracil 0 1.273 0.000028
Bleomycin 359 0.99 0.000721
Vincristine 179 0.99 0.000927
Acyclovir 0 0.941 0.000248

Vinblastine 268 0.773 0.000241
Sulfamethoxazole/TMP 0 0.719 0.000026

Intralipids 60 0.526 0.000025
Mitomycin 300 0.466 0.000138

Succinylcholine 103 0.397 0.375089
Alprostadil 448 0.376 0.000074
Etoposide 114 0.288 0.011208
Folic Acid 174 0.105 0.00001

Doxorubicin 1 0.083 0.000201
Aminoacid 0 0.055 0.00014
Alfentanyl 0 0.031 0.000006

Tromethamine 0 0.01 0.000002
Dipyridamole 0 0.006 0.001108
Levothyroxine 0 0.003 0.000025
Asparaginase 0 0.003 0.000002

Table 3.10: Ratio of the safety stock to the daily demand, percentage of the warehouse
allocated to each item and shortage impact of each item
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Figure 3.4: Convergence of objective function for best solution (θ = 10, γ = 1, β = 0.4)
and worst solution (θ = 10, γ = 3, β = 0.6)
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θ
H
H
H
H

β
γ

1 2 3 4 5 6

0% 0% 127,083,672 125,554,428 125,644,742 125,557,192 125,559,570 125,562,832

5%

20% 125,529,524 Infeasible Infeasible Infeasible Infeasible Infeasible

40% 127,034,870 125,533,250 125,824,120 Infeasible Infeasible Infeasible

60% 127,412,136 125,626,351 125,544,110 125,556,194 125,602,362 Infeasible

80% 127,071,188 125,546,000 125,546,326 125,543,176 125,595,255 Infeasible

10%

20% 125,526,867 Infeasible Infeasible Infeasible Infeasible Infeasible

40% 125,519,170 125,531,578 125,542,079 Infeasible Infeasible Infeasible

60% 125,525,914 125,533,323 127,470,121 125,558,791 Infeasible Infeasible

80% 127,469,498 125,536,069 125,562,350 125,559,029 125,560,366 125,563,278

15%

20% 125,526,961 Infeasible Infeasible Infeasible Infeasible Infeasible

40% 125,535,323 125,523,628 125,534,237 Infeasible Infeasible Infeasible

60% 125,525,841 125,539,181 125,633,374 125,708,020 infeasible Infeasible

80% 125,571,032 125,568,937 125,561,715 125,561,212 125,556,658 125,563,306

Table 3.11: Sensitivity analysis results for parameters of heuristic algorithm (θ, γ, β)

disruption. For this set of experiments we set θ, γ, and β to the values that provide the

best solution above (i.e., θ = 10, γ = 1, and β = 0.4). The input parameters are those

in Table 3.2, where λ is the disruption rate and µ is the reciprocal of the expected

disruption duration. In Fig. 3.5, we present the effect of frequency of disruptions

on the total cost. ζ is the coefficient of increase or decrease for disruption rates (λ).

In other words, the disruption rate for each item, regardless of being mainstream or

substitute, is multiplied by ζ. As it is shown, increasing the rate of disruption will

cause almost a linear increase in the expected total cost so objective function is highly

sensitive to changes on the disruption rate.

Fig. 3.6 represents the changes in disruption and recovery rate simultaneously. In

this figure, ζ ′ corresponds to the multiplier for both disruption and recovery rate, i.e.,

the new disruption rate for item i is ζ ′
× λi and its recovery rate from disruption is

ζ ′
× µi. As shown in the figure, if supplies are unavailable more frequently but the

unavailability duration decreases, the expected total cost will decrease. Despite the

fact that the long-run fraction of supply unavailability stays the same, shorter and

more frequent supply unavailability periods give the hospital a better opportunity for
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recovery.
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Figure 3.5: Sensitivity analysis on supply disruption multiplier (ζ). New disruption rate
for items, regardless of being mainstream or substitute, is multiplied by ζ. (θ = 10, γ = 1,
β = 0.4)
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Figure 3.6: Sensitivity analysis on supply disruption and recovery rate multiplier ζ ′. New
disruption and recovery rates for items, regardless of being mainstream or substitute, is
multiplied by ζ ′. (θ = 10, γ = 1, β = 0.4)

The last input parameter that we analyze is the total warehouse capacity. Fig. 3.7

shows, as it is expected, increasing the total capacity leads to a decrease in expected

total cost. It should be noted that no cost improvement is observed beyond a certain

value (for our data ≈ 55, 000 ft3). A further increase in capacity beyond this point

provides only a marginal decrease in the expected shortage cost but increases the

holding cost as well. Another interesting observation is that the runtime of our
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algorithm increases with increased warehouse space because of the number of feasible

solutions (see Fig. 3.8). However, in the case of space abundance (beyond ≈ 55, 000

ft3), the runtime decreases drastically because the quality of the initial solutions. As

expected, increased space solves major drawbacks of national shortages to a certain

extent. The practical implementation of this might be inventory pooling. A vast

majority of the problems arising with national drug shortages can be alleviated via

inventory pooling between hospitals. That available warehouse space, if managed well,

will help reduce shortages as presented here and balance the variation in uncertain

demand among different healthcare facilities as well.
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Figure 3.7: Sensitivity analysis on total inventory space (θ = 10, γ = 1, β = 0.6)

3.6 Concluding Remarks

The main goal of this section is to present a framework for a healthcare facility to

cope with inevitable supply disruptions. The more crucial an item is, the more safety

stock is expected to be held. We present two stochastic optimization framework to

find the optimal inventory management strategy. First model minimizes the shortage

cost while finding the best safety stock levels. Simulating the results of this model and

comparing them by current strategies, proposed model will save considerable amount
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Figure 3.8: Time analysis for different inventory spaces (θ = 10, γ = 1, β = 0.4)

of costs. The second stochastic model is proposed to define the optimal safety stock

levels and order quantity levels that minimize the total cost, thus effect of supply

disruptions. This model considers shelf life of the drugs as a constraint.

Conventional models consider the tradeoff between different costs of an item and

achieving an optimal solution even in the case of unlimited capacity. What makes

pharmaceutical supply chains unique is a set of attributes such as zero lead time, zero

fixed-cost ordering, supply disruption, item substitution, and importance of service

levels, implying a high warehouse utilization independent from the size. Therefore,

we seek to find the balance point between items, considering the space occupied by an

item, disruption rates, expected duration of a disruption (i.e., recovery rate), demand

rate, as well as substitute item’s disruption rate and duration. The results show that

the proposed scheme is better compared to the current policies in all aspects of the

inventory in a healthcare facility except for the holding cost, which is expected due

to the currently low utilization of space.

Substitute items often cost more than mainstream drugs and may go short, how-

ever no model in the literature, to the best of our knowledge, utilizes that information.

We assume that some of the drugs have substitutes and if they are available substi-

tution can be performed with some cost. An interesting immediate extension of the
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model would be considering items with more than one substitute. Furthermore, there

is a quality of service aspect related to substitutes. A substitute may not be as ef-

fective as a mainstream drug for all patients. Some substitutes may not be preferred

agents although they might be less expensive such as sodium bicarbonate (substi-

tuting tromethamine) or capecitabine (substituting fluorouracil). A multi-criteria

framework can consider the total cost similar to a conventional inventory model on

one dimension and the quality of service that assesses the impacts of shortage and

substitution on another. Rather than one optimal solution, a set of solutions on the

efficient frontier can be further evaluated under different conditions. In current study

the shelf life of drugs is assumed to a deterministic value. Another possible branch

to extend current work is considering the shelf life of each item probabilistic which

will add another source of stochasticity to the model.
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Chapter 4

A Game Theoretical Approach for Inventory Sharing

This chapter addresses inventory sharing as an advantageous strategy for hospitals

during a drug shortage. In this chapter a game theoric approach has been used to

suggest a strategy for inventory sharing during a drug shortage and analyze the

interactions among hospitals in this collaboration.

4.1 Background and Literature Review

Evidence shows that, like many elements of the drug shortage problem, the re-

sponse to these shortages is both hospital/pharmacy dependent, and somewhat ad-

hoc. Among the most popular options for healthcare providers in immediate need is ei-

ther (i) transaction from secondary supplier or (ii) trade/borrow from other healthcare

providers (Young, 2009). Such practices have been reported as recently as February

2011 between the University of Chicago Medical Center and Chicago-area hospitals

(Rubin, 2011).

Information from our partnering hospital in Houston, TX suggests that hospitals

would have interest in exploring the option of considering efforts that allow the deter-

mination of a hospital’s inventory to be, perhaps in part, determined in conjunction

with partnering healthcare facilities. Other evidence of interest in this area is seen

through separate work that represents aggregate inventories via a virtual pharmacy

inventory system for hospitals in the same geographical region (Danas et al., 2006).

This visual tool does strives to provide the infrastructure for the cooperation of hospi-

tal pharmacies. This is particularly relevant to the proposed work, since the concept

of inventory sharing is familiar to healthcare providers and data for decision tools is
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available via systems such as the virtual pharmacy. In this section, we propose to

complete the first preemptive modeling for combating pharmaceutical drug shortage by

approaching the problem from a game theoric point-of-view.

When there is a decision making problem with multiple decision makers with 1

objective each, a game is forming. Decision makers are called the players, decision

alternatives are called the strategies and objective functions are called the payoff

functions. Game theory models can be roughly divided into two groups, cooperative

and non-cooperative, based on interdependence among the players. Non-cooperative

game theory assumes that the goal of each player in the game is to optimize its own

objective ignoring the effect of its decisions on other players. The goal in these models

is finding optimal strategies for each player. Binding agreements among the players

are not allowed. The existing coordination mechanisms or strategies that coordinate

the supply chain in reality to maximize the total joint profit of the firms, is one of

the main concerns when applying cooperative game theory for supply chains.

On the other hand, cooperative game theory models assume that players can make

binding agreements. In these models the focus is on which coalition of players will

form and which allocation of the joint worth will be used. This concept was first

introduced by Von Neumann and Morgenstern (1944) with coalitional games in char-

acteristic function form, known as transferable utility games (TU-games). Inventory

centralization or inventory sharing, one of the important aspects of supply chain col-

laboration, has been studied using a cooperative game theory approach. The main

reason for using cooperative games is developing a framework across structurally

different inventory centralization models to determine the effect of coordinated or-

dering/holding by retailers, which results in joint worth (benefit or cost). The first

main concern in these models is finding a stable allocation of worth such that no

group of players can do better on its own and tends to leave the coalition. If such an

allocation exists, the core of the game is not empty, or in other words the coalition is
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stable (Meca and Timmer, 2007). The set of cost allocations, under which no group

of players should be charged more than they would pay if they were separate and

follow an optimal strategy for themselves, is called core. Second main question in a

cooperative inventory game is identifying an allocation in the core which is usually

challenging. It is shown that even in a very simple setting, determining whether an

allocation is in the core of the newsvendor game is NP-hard (Chen and Zhang, 2009).

Benefits of inventory sharing, which are decreasing costs and increasing profits,

have been shown in different inventory problems (Eppen, 1979), (Eppen and Schrage,

1981), (Chen and Lin, 1989) and (Chang and Lin, 1991). These early studies assume

single ownership of the system while in real world problems players are interested in

what they gain from inventory sharing.

The literature of Inventory centralization can be roughly divided into two sec-

tions: cooperation in deterministic inventory situation and cooperation in stochastic

inventory situation. Cooperation under deterministic situation was studied for the

first time by Meca et al. (2003) in which the SOC rule (Share the Ordering Costs)

is introduced and defined as a core allocation for inventory cost games. Extension

of this work has been done in (Meca et al., 2004), (Dror and Hartman, 2007) and

(Mosquera et al., 2008).

The focus of most of the papers in centralization under non-deterministic situa-

tions is on the Newsvendor problem. These models often assume complete pooling of

inventory. In complete pooling of inventory, inventory is diverted to satisfy demand

that creates the highest profit from any stock point. The Newsvendor centralization

game has been first presented by Hartman (1994). Hartman et al. (2000) studied

identical newsvendors with normally distributed demand and proved the core of the

game is not empty. Müller et al. (2002) generalizes this result for all possible distribu-

tions of demand. An extension of this work for an infinite number of players is done

in (Montrucchio and Scarsini, 2007). While in these models the newsvendor game is a
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cost game, Slikker et al. (2005) transform it into profit game by adding transshipment

to model. In their model, stores do transshipment after demand realization. They also

prove that newsvendor games with transshipments have a non-empty core even if the

stores have different retail and wholesale prices. Also in general newsvendor games

are not concave. An extension of this work has been done by Özen et al. (2008).

In their model the original orders are kept in warehouse and shipment to retailers

takes place after demand realization. Another study of the Slikker et al. (2005) and

Özen et al. (2008)’s games is introduced in (Chen and Zhang, 2009). In this model

a unified approach using stochastic programming and strong duality of stochastic

linear programming is presented to examine the game. This approach proves the

non-emptiness of the game, and also suggests a way to find a core-allocation. An

adaptation of this work is introduced to analyze the inventory centralization game

with price-dependent demand and quantity discounts (Chen, 2009). This is the first

work considering pricing decisions for inventory centralization games.

Another group of studies with more restrictive setting and no complete pooling

was first introduced by Anupindi et al. (2001). In their model, the retailers keep local

inventory and after satisfying their local demand, they cooperate by transshipping

excess inventory to satisfy excess demand in other locations. This work has been

extended by Granot and SoŠić (2003) by considering an intermediate stage in which

the retailers decide how much of their excess inventory/demand they want to share

with others. Further extension of later work has been done by Sošić (2006). Ozen

et al. (2012) assume that the retailers invest in a common pool of inventory but

they impose some level of stock that should be dedicated to them. They prove the

associated cooperative game has a non-empty core.

Most of the aforementioned studies prove the non-emptiness of core but they do

not determine an allocation in the core except (Montrucchio and Scarsini, 2007) and

(Chen and Zhang, 2009). Montrucchio and Scarsini (2007) prove that the core of a
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simple newsvendor game is non-empty by identifying a core element. Chen and Zhang

(2009) introduce an approach using strong duality of stochastic linear programs to

identify core elements. Although this study used the model by Özen et al. (2008), it

can be applied to a broad class of cooperative games arising from inventory sharing.

Considering the compatibility of the assumptions of this model with pharmaceutical

inventory sharing, a modified version of it can be used to handle pharmaceutical

inventory sharing.

4.2 Problem Statement

As discussed earlier in Section 1.2 and 4.1, one of the possible approaches for

facing shortages is inventory sharing among hospitals and it can be approached using

a cooperative game theory structure. The main goal in a collaboration is minimizing

the cost or maximizing the benefit of the collaborators in a way that they can’t do

better on their own. Considering the high impact of shortages in the service level of a

hospital, in a hospital inventory sharing setting, a hospital will stay in collaboration

if the expected value of the number of items that it receives from other hospitals

during the shortage period is more than zero. On the other hand, when demand of

the hospital is less than its inventory level, it can share its extra inventory with other

hospitals and minimize its holding cost. Before a hospital joins a collaboration two

main questions arise: (i) Whether the benefit is more in collaboration? (ii) Which

hospitals are better choice in an inventory sharing? To answer these two questions

the model for the collaborative game among hospitals is developed in section 4.3 and

synergy of sharing among hospitals is analyzed in section 4.4.
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4.3 Proposed Model

In this section using two stage stochastic programming and game theoric approach,

introduced by Chen and Zhang (2009), a near optimal strategy for the inventory

sharing problem between a set of pharmacies is suggested. Chen and Zhang (2009)

have proved nonemptiness of the core of this game. Therefore solving the model

results in an optimal strategy for cooperation among hospitals.

The proposed model considers the following assumptions:

• System consists of a supplier and a set of n pharmacies denoted by N = 1, 2, ..., n

with an associated warehouse.

• The supplier supplies a single type of drug.

• The pharmacies may face supply disruption. The rate of recovery from supply

disruption is µ and it follows exponential distribution. The pharmacies will be

informed about an upcoming disruption right before disruption happens.

• Each pharmacy j ∈ N faces random demand dj(ω).

• When a subset S ⊂ N of pharmacies forms a coalition, then any pharmacy in S

can borrow items from other pharmacies in coalition.

• For any coalition S, dS(ω) = (dj(ω))j∈S and when the demand of pharmacy j is

realized dS = (dj)j∈S.

• Since we are considering the period of disruption as a single period, the lead

time is assumed zero without loss of generality.

The problem has been modeled using two stage stochastic programming. In the

first stage, pharmacy j will order yj units of drug with ordering cost of cj per item.

The first stage decision variable is yj. In this stage demand at each pharmacy and

the length of shortage period is unknown.

In second stage, the demands for each pharmacy and length of shortage period
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is realized. Then, the available drugs are allocated to the pharmacies. xij units of

drug are shipped from warehouse of pharmacy i to pharmacy j. The transportation

cost of sending one unit of drug from i to j is sij. However, the cost of sending drugs

from warehouse of pharmacy j to pharmacy j is zero. The unsatisfied demands in

pharmacy j have a direct effect on patients’ health so the pharmacy should pay a per-

unit penalty cost of πj for each shortage. If pharmacy j has zj unsatisfied demand,

the shortage cost for it will be πjzj for whole shortage period. The holding cost for

shortage period for each item at pharmacy j is hj. Without loss of generality, it

can be assumed that the average number of items in the warehouse of pharmacy j

during shortage period is half the summation of the inventory level at beginning of

the period, yj, and excess inventory at the end of the period, Ij. All parameters and

variables used in the model are summarized in Table 4.1.

ω Demand scenario during shortage

ci Ordering cost per item in hospital i

πi Penalty cost of shortage per item in hospital i

hi Holding cost per item for hospital i

sij Transportation cost per item fromhospital i to hospital j

Table 4.1: Cooperation Model Parameters

The goal in this problem is minimizing the expected total cost of coalition, C(S).

It includes the ordering cost, transportation cost, inventory holding cost, and penalty

cost. It can be formulated as following two stage stochastic programming,

C(S) = min
yi

∑

i∈S

ciyi + E[f(y, dS(ω))] (4.1a)

s.t.yi ≥ 0, i ∈ S, (4.1b)
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where y = (yi)i∈S and, and f(y, dS) is shown as

f(y, dS) := min
xij

∑

j∈S

πjzj +
∑

j∈S

hj

yj + Ij

2
+
∑

j∈S

sijxij (4.2a)

s.t. zj +
∑

i∈S

xij ≥ dj j ∈ S, (4.2b)

Ij −
∑

i∈S

xij ≥ −dj j ∈ S, (4.2c)

yi −
∑

j∈S

xij = 0 i ∈ S, (4.2d)

zj, Ij , xij ≥ 0. (4.2e)

In second stage formulation, the first constraint implies that the unsatisfied de-

mand is a lost patient. The second constraint shows that the summation of received

drugs at each pharmacy should not exceed the summation of demand and excess in-

ventory and the third constraint implies that the warehouses will be empty at the end

of the period. This constraint is for ease of presentation. Using an auxiliary pharmacy

attached to each warehouse with zero demand and zero transportation cost from the

associated warehouse, without loss of generality it can be assumed that the warehouse

do not hold any inventory at the end.

To solve a two-stage stochastic linear programming problem, it can be reformu-

lated as a deterministic equivalent problem which is a large scale problem. Consider-

ing discrete distribution of demand, negative binomial, we can formulate the recourse

function or expected second-stage value function as:

E[f(y, dS(ω))] =
∑

dS(ω)∈Ω

p(dS(ω))f(y, dS(ω)). (4.3)

In which Ω is the set of all possible demand scenarios during the shortage period.
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Using equation (4.3), deterministic equivalent of the model is as follow:

C(S) = min
yi

∑

i∈S

ciyi +
∑

Ω

p(ω)(
∑

j∈S

πjzω
j + hj

yj + Iω
j

2
+ sijxω

ij) (4.4a)

s.t. zω
j +

∑

i∈S

xω
ij ≥ dω

j j ∈ S, (4.4b)

Iω
j −

∑

i∈S

xω
ij ≥ −dω

j j ∈ S, (4.4c)

yi −
∑

j∈S

xω
ij = 0 i ∈ S, (4.4d)

yi ≥ 0, i ∈ S, (4.4e)

zω
j , Iω

j , xω
ij ≥ 0. (4.4f)

To solve the deterministic equivalant of the model, possible demand scenarios should

be identified. Each pharmacy j ∈ N faces random demand dj(ω). It is assumed

earlier in section 3.2 that daily demand, ddaily, follows Poisson distribution with rate

α. Considering the characteristics of Poisson distribution, summation of independent

Poisson random variables is Poisson. Therefore, assuming demand at each day is

independent from other days, demand during y days of shortage, dshortage, follows

Poisson distribution with parameter αy. It is known that the length of shortage, y,

is stochastic and follows exponential distribution with rate µ. Therefore we have the

following inputs:

ddaily ∼P oisson(α), (4.5a)

dshortage ∼P oisson(αy), (4.5b)

y ∼Expo(µ). (4.5c)

We need to find distribution of αy to use compound distributions and find the dis-

tribution of demand. To find the distribution of αy, the moment generation function
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of it is calculated as:

E[etαy] =

∫

∞

0

etαyµe−µydy = µ

∫

∞

0

e−(µ−tα)ydy =
µ

µ − tα
=

(µ/α)

(µ/α) − t
. (4.6)

Since the moment generation function of exponential distribution with parameter

µ is known as
µ

µ − t
and on the other hand the moment generating function uniquely

determines the distribution, it is concluded that αy is exponentially distributed with

rate µ/α,

αy ∼ Exponential(µ/α). (4.7)

Knowing the distribution of αy, distribution of daily demand and properties of com-

pound distributions, distribution of demand can be found. According to compound

distribution properties, compounding a Poisson distribution with rate parameter dis-

tributed according to a gamma distribution yields a negative binomial distribution.

Since exponential distribution is a special case of gamma distribution, demand during

shortage follows negative binomial distribution with r = 1 and p = 1/(1 + µ/α),

dshortage ∼ NegativeBinomial(1,
1

1 + µ/α
). (4.8)

Knowing the distribution of demand during the shortage, probability of each de-

mand scenario p(ω) can be calculated. Therefore, equation (4.4) is ready for opti-

mization after plugging p(ω) and other parameters given in Table 4.1. The resulting

formulation is linear and General Algebraic Modeling System (GAMS) is used to op-

timize the problem. Since the number of scenarios is high, an extension of Monte

Carlo approach is used to solve the problem. All possible demand scenarios are cate-

gorized in 10 groups. The first group is starting from demand zero to 10th percentile

of demand. The last group is from 90th percentile to 99.99th percentile of demand. The

expected value of each group is defined as representative of the group. Since negative

binomial distribution is not limited, the maximum possible demand is assumed to be
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99.99% percentile of the binomial distribution.

The optimization model minimizes the total cost of the system. Therefore, when

shortage cost and shipping cost are identical for hospitals receiving the items, no

hospital has priority over others in receiving as far as it is facing shortage. Therefore,

one shortcoming of the results of the optimization model is that the distribution of

the items among hospitals may not be balanced. Considering the equal impact of

the shortage at all hospitals, the shortage cost is identical for all hospitals. Therefore

unbalanced results may happen in situation when shipping costs are identical. To

resolve this problem, we developed a heuristic algorithm for three hospitals to balance

the items received by each hospital proportional to their initial inventory level before

shortage period. This algorithm can easily be extended for more than three hospitals.

In this algorithm, algorithm 2, the results of optimization modeling for each scenario

are balanced so identical hospitals receive equal amount of drugs while they are in

shortage. This algorithm should be run for each demand scenario to find the balanced

results.

Algorithm 2 Heuristic Algorithm for Balancing Results in Identical Hospitals
INPUT: d1, d2, d3, y1, y2, y3, x12, x13, x21, x23, x31, x32

OUTPUT: x′

12, x′

13, x′

21, x′

23, x′

31, x′

32

j ← Index of the hospital that shares the maximum amount
k ← Index of the hospital that shares the second maximum amount
t ← Index of the hospital that shares the minimum amount
{Case 1: No sharing}
if xjk + xjt = 0 then

Break
{No Sharing exist}

end if
{Case 2: One hospital shares}
if xkj + xkt = 0 then

x′

jk ← min{(dk − yk), (
xjk + xjt

yk + yt
yk)}

x′

jt ← min{(dt − yt), max {(
xjk + xjt

yk + yt

yt), (xjk + xjt− x′jk)}}

x′

jk ← min{x′

jk, (xjk + xjt − x′jt)}
end if
{Case 3: Two hospitals share}
if xkj + xkt > 0 then

x′

jt ← min{(xjk + xjt), (
xjt + xkt

yj + yk

yj)}

x′

kt ← min{(xkj + xkt), max {(
xjt + xkt

yj + yk

yk), (dt − yt − x′

jt)}}

x′

jk ← min{x′

jt, (dt − yt − x′

kt)}
end if
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4.4 Computational Results and Sensitivity Analysis

To analyze the interaction among hospitals during the shortage, three main sce-

narios for three hospitals are assumed. First all hospitals have identical demands

and warehouse capacity. In the second scenario, the first hospital’s demand rate is

twice, that of other hospitals while they have equal warehouse capacity. The third

scenario assumes equal demand rate for all hospitals while the warehouse capacity

of the first hospital is twice as much as the others. Costs are identical in all these

hospitals. The cost and capacity parameters used for analysis are related to a drug

with daily demand rate of 4 that occupies the 21% of the warehouse space of the

hospital introduced in section 3.4.4.

The result of the first scenario is illustrated in Fig. 4.1. Demand in hospital 1 is

shown in the x axis. When demand of hospital 1 is less than its available inventory

level, it shares the extra inventory with hospital 2 and 3 equally. Because of the

identical properties of hospital 2 and 3, the number of items that each of them share

with hospital 1 is equal and also they share an equal amount with each other. Since

both hospital 2 and 3 receive items from hospital 1 when demand of hospital 1 is low,

they share more items with hospital 1 than with each other when demand of hospital

1 is high. The same figure can be drawn for hospital 2 and 3. Since the characteristics

of these hospitals are identical, the figure is the same. Therefore, similar analysis will

arise.

The results of the second scenario are illustrated in Fig. 4.2 and Fig. 4.3. In Fig. 4.2

demand in hospital 1 is shown in the x axis. Since hospital 2 and 3 are identical, the

amount that hospital 1 shares with them is equal. Compared to scenario 1, Fig. 4.1,

the first hospital shares under less demand scenarios because it faces more demand

while its warehouse capacity is the same as the first scenario. Hospital 2 and 3

are identical therefore they share an equal amount with hospital 1. This amount
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Figure 4.1: Sensitivity Analysis of expected number of sharing among hospitals relative
to demand in hospital 1 (First scenario)

is more than what they share with each other because the demand in hospital 1 is

more and balance in sharing needs to be considered. It is easy to see that they will

share more with each other when hospital 1 is not facing shortage. Fig. 4.3 shows
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Figure 4.2: Sensitivity Analysis of expected number of sharing among hospitals relative
to demand scenarios in hospital 1 (Second scenario)

the sharing among different hospitals relative to the demand scenario in hospital 2.

When demand in hospital 2 is low it shares more items with hospital 1 than hospital

3 because hospital 1 has a higher demand rate and it will face shortages more. It

is easy to comprehend that hospital 2 will not share when its demand is more than

its available inventory level. When demand of hospital 2 faces shortages, hospital 3
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shares more items with hospital 2 than it shares with hospital 1 because it shares

some items with hospital 1 while hospital 2 is not in shortage. Hospital 1 has similar

interaction. It shares more items with hospital 2 than it shares with hospital 3.

Fig. 4.3 can be drawn based on demand scenarios in hospital 3 but since hospital

2 and 3 are identical these graphs will be same. The results of the third scenario
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Figure 4.3: Sensitivity Analysis of expected number of sharing among hospitals relative
to demand scenarios in hospital 2 (Second scenario)

are presented in Fig. 4.4 and Fig. 4.5. In this scenario demand rates are identical

while the capacity of hospital 1 is twice of hospital 2 and 3. Because of the higher

warehouse capacity, when demand of hospital 1 is low the maximum items that it

shares is more than in the case that the capacities are identical. It will share same

amount with hospital 2 and 3 because they are identical. The amount that hospital

2 and 3 are sharing with hospital 1 is more than amount they share with each other

because they receive items when its demand is low and the balance for sharing needs

to be considered. Fig. 4.5 illustrates the sharing interactions among hospitals based

on the demand scenarios for hospital 2. When demand of hospital 2 is low, it shares

more items with hospital 3 than hospital 1 because hospital 1 has more capacity and

will face shortages less. Comparing Fig. 4.5 with Fig. 4.3, the amount that hospital

2 shares with hospital 1 is more in the second scenario. It happens because when
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Figure 4.4: Sensitivity Analysis of expected number of sharing among hospitals relative
to demand scenarios in hospital 1 (Third scenario)

demand rate of hospital 1 is twice it will face more shortage and it receives more but

in third scenario it faces less shortages. When demand is high in hospital 2, hospital

1 shares more items with hospital 2 than hospital 3 because it receives item when

demand in hospital 2 is low. The amount hospital 3 shares with hospital 2 is more

than what it shares with hospital 1 because hospital 1 faces less shortages. This figure

can be drawn based on demand scenarios in hospital 3 but hospital 2 and hospital 3

are identical and the result will be same as current figure.
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As it is discussed in section 4.1, collaborators are willing to stay in collaboration if

their benefits are higher in collaboration. Considering the affect of shortages in service

level of the hospitals their ultimate goal is minimizing their shortages when their

demand is more than their inventory level and minimizing their holding cost when

their demand is less than their inventory level. Table 4.2 is showing the expected

number of shortage in each hospital j, zj, and expected number of extra items in

warehouse for all three scenarios. To calculate expected number of shortages equation

(4.9) is used,

E(zj) =
Ω
∑

ω=1

zω
j pω ≈ zω

j pω ω = 1, ..., 10. (4.9)

Scenario Hospital Collaboration status Expected number of
shortages

Expected number of left
overs in warehouse

1 1,2,3
Collaboration 178 317

No Collaboration 276 415

2

1
Collaboration 597 187

No Collaboration 830 247

2,3
Collaboration 200 253

No Collaboration 276 415

3

1
Collaboration 87 312

No Collaboration 164 415

2,3
Collaboration 105 330

No Collaboration 276 415

Table 4.2: Expected number of shortages and extra items in warehouse for each hospital
under 3 different scenarios

According to Table 4.2, the maximum reduction in number of shortage for this

drug using collaboration synergy happens when a hospital is collaborating with an-

other hospital that has same capacity but half demand rate. Minimum reduction in

number of shortages using collaboration synergy happens when a hospital collaborates

with a smaller hospital or a hospital with same size but twice demand. Maximum

reduction in left overs happens when hospital shares with another hospital with twice

demand.
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4.5 Concluding Remarks

This chapter provides a hospital with a structure for its inventory sharing based

on information that it has from other collaborators. The game theory model results

in a collaboration which is beneficial for each hospital. It minimizes the shortage

cost in each hospital while it minimizes the holding cost of the items. To balance

the result of the game theory model in such a way that identical hospitals receive

equal amount of item, a heuristic algorithm is developed which using the result of

game theory model as input will give a balanced structure for sharing. The model is

verified using sensitivity analysis on shortage rate and as it is expected when shortage

rate increases, hospitals are willing to share more. An immediate extension for this

work is developing a structure for scheduling the sharings during the shortage period.

In current model it is assumed that when hospitals enter the shortage period after

few days they have an estimation about their demand during shortage and can start

sharing their excess inventory. While the current model defines the amount of sharing

among hospitals, it does not give a schedule for doing the sharing during the shortage

period. In current study hospitals are purchasing just from a single hospital while

in reality when hospitals are not able to receive their demand through their common

supplier, they have purchase limited number of drugs with higher price from secondary

vendors. Therefore a possible directions for future research is assuming more than

one supplier for the hospitals with different ordering costs.
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Chapter 5

Summary and Future Study

This dissertation presents two major problems in healthcare area: (i) diabetic foot

ulcer prevention, and (ii) mitigating the impact of national pharmaceutical shortages.

In this chapter, summary of dissertation and future extensions are presented.

5.1 Analysis for Diabetic Foot Ulcers (DFU) Primary and

Secondary Prevention Strategies

As mentioned in Chapter 2, the goal of this study is answering two main questions.

First, finding the affect of timely treatment in different groups of patients. Second

analyzing the affect of primary preventive strategies and the threshold value of the

primary preventive strategies for each group of patients. To answer these questions

a decision support system is designed using a cost-effectiveness analysis along with

sensitivity analysis.

All patients are divided into three groups based on two critical risk factors in

diabetic patients: Neuropathy and Peripheral arterial disease. Based on the group

that the patient belongs to, the strategy for providing timely treatment and primary

prevention varies. According to the results, around 10% of PACT 1 should receive

timely treatment to minimize the expected total cost of the system. For this group

of patients, 10% is the break even point for expected amputation cost resulted from

getting treatment and expected infection cost resulting from not getting treatment.

All PACT 2 patients need to receive timely treatment to minimize the expected total

cost of the system and expected number of amputations. Ten percent of PACT 3

patients should receive timely treatment. This point is the break even point for
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expected revascularization cost for treated patients and expected amputation cost

for non treated patients. According to sensitivity analysis for primary prevention

strategies, minimum cost per prevented ulcer happens when around 90% of patients

in all groups receive primary prevention. Applying these strategies will result in higher

cost while it will decrease number of developed ulcers. This analysis, section 2.4.2,

can also help healthcare decision makers to find their optimal prevention strategy by

defining a value for each prevented ulcer. Possible extensions of current model can be

done by adding more risk factors and increase number of possible groups that each

patients can belong to. Although, finding the incident rates for the other group of

patients based on available literature is very challenging. Another interesting setting

is adding the different states of limb loss and their associated costs to the model to

have a more detailed analysis on patients that go though amputation.

5.2 Pharmaceutical Supply Chain Analytics

As discussed in Chapter 1, two practical approaches to help solving national drug

shortages are: (i) single hospital critical inventory planning and (ii) collaborative

hospital inventory sharing. In Section 5.2.1, the conclusion and future extensions of

the first study will be discussed. Next, the conclusion and future extensions of Game

Theory approach for inventory sharing will be presented.

5.2.1 Individual Pharmaceutical Inventory Control Problem

under Uncertainty

Conventional inventory models consider the tradeoff between different costs of an

item and achieving an optimal solution even in the case of unlimited capacity. What

makes pharmaceutical supply chains unique is a set of attributes such as zero lead

time, zero fixed-cost ordering, supply disruption, item substitution, and importance
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of service levels, implying a high warehouse utilization independent from the size.

Therefore, we seek to find the balance point between items, considering the space

occupied by an item, disruption rates, expected duration of a disruption (i.e., recovery

rate), demand rate, as well as substitute item’s disruption rate and duration. To

achieve this objective, Chapter 3 introduced two stochastic models using continuous

time Markov chain method. First model utilized drug substitution and minimized

shortages but disregarded holding and substitution costs. Its objective was finding

the optimal reorder point level for different drugs considering a predefined warehouse

capacity. This model was solved by General Algebraic Modeling System (GAMS)

with CONOPT solver. Using simulation, our results were compared with current

inventory strategy as well as an (s, S) policy from the literature (Arreola-Risa and

DeCroix, 1998). It should be noted that the setting introduced by Arreola-Risa and

DeCroix (1998) was not a perfect fit for the pharmaceutical problem, thus we modified

the way our input parameters were fed to the algorithm for better solution quality.

Proposed strategy showed a significant improvement in comparison with other two

strategies. Second model, utilized drug substitution and minimized total costs of the

system while had both safety stock level and order quantity level as model variables.

The objective of this model was finding optimal reorder point level as well as order

quantity for each drug. Since exact procedures for solving current model did not

have a good time performance, development of an approximation or heuristic method

was necessary. A two phase heuristic algorithm was developed for the problem. The

results showed that the proposed scheme is better compared to the current policies in

all aspects of the inventory in a healthcare facility except for the holding cost, which

is expected due to the currently low utilization of space.

One of the major problems in pharmacies is inventory inaccuracies. Inventory

inaccuracy happens when real number of drugs in inventory is different from the

value entered for inventory management purposes. Considering inventory inaccuracy
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in model adds another stochasticity and illustrates the real world problem in a hos-

pital’s pharmacy. Substitute items often cost more than mainstream drugs and may

go short, however no model in the literature, to the best of our knowledge, utilizes

that information. We assume that some of the drugs have substitutes and if they are

available substitution can be performed with some cost. An interesting immediate

extension of the model would be considering items with more than one substitute.

Furthermore, there is a quality of service aspect related to substitutes. A substi-

tute may not be as effective as a mainstream drug for all patients. Some substitutes

may not be preferred agents although they might be less expensive such as sodium

bicarbonate (substituting tromethamine) or capecitabine (substituting fluorouracil).

A multi-criteria framework can consider the total cost similar to a conventional in-

ventory model on one dimension and the quality of service that assesses the impacts

of shortage and substitution on another. Rather than one optimal solution, a set of

solutions on the efficient frontier can be further evaluated under different conditions.

5.2.2 Inventory Sharing

Inventory sharing as one of the actions for facing shortages, is studied using a

game theory structure in this dissertation. Coordinated ordering allows hospitals to

incur reduced shortage and inventory costs. We developed a game-theoretic model

using an exciting model in literature. The optimization problem was a two stage

stochastic programming which was solved using the deterministic equivalent of the

model. It was a large linear optimization problem that for simplifying it all possible

demand scenarios are categorized into 10 groups. First group was all demand between

zero and the 10th percentile of the distribution of demand during shortage. The

last group included all demands between 9th percentile to 99.99th percentile of the

distribution of demand during shortage. Results gave insight to the hospitals that

are willing to collaborate in defining a strategy for amount that they share and the
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sharing interactions based on other hospitals information. In this study hospitals were

purchasing from a single hospital while in reality when hospitals are not able to receive

their demand through their usual supplier, they have some back up providers and

they can purchase limited number of drugs with higher price from them. Therefore

a possible directions for future research would be assuming more than one supplier

for the hospitals with different ordering costs. Another promising direction of future

research is investigating a structure for scheduling the shadings during the shortage

period. In current model it is assumed that when hospitals enter the shortage period

after few days they have an estimation about their demand during shortage and

can start sharing their excess inventory. While current model defines the amount of

sharing among hospitals but it does not give a schedule on sharing during the shortage

period.
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