
CONCURRENT MULTI-TE RMINAL

OPERATION OF THE ’CRIMS' SYSTEM

A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Asif Karachiwala

1 July 1976

ACKNOWLEDGEMENT

The author would like to express sincere gratitude

to his major advisor Dr. Batten, for his helpful suggestions

and patience during this entire project. Additional gratitude

is due to Dr. Bargainer for his comments and interest in this

project, and to Dr. Johnson for serving on the committee.

The author gratefully acknowledges the financial

support of the Law Enforcement Assistance Agency and the

Electrical Engineering Department at University of Houston.

CONCURRENT I1ULTI-TERMINAL

OPERATION OF THE 'CRIME' SYSTEM

An Abstract of A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by
Asif Karachiwala

July 1976

ABSTRACT

CRIME File System is a computerised data base

system being used by the Oakland Police Department to aid

investigators in identifying suspects on basis of known

characteristics. The system can accomodate upto six

investigating terminals, and the object of this thesis

project is to study the extent to which time sharing can be

introduced in the system with respect to these terminals,

and incorporate the same.

TABLE OF CONTENTS

Page
1. INTRODUCTION

1.1 CRIME File System 1

1.2 Project Problem 4

1.3 System Implementation 5

2. SYSTEM DESIGN

2.1 Design Concepts 8

2.2 Design Implementation 13

2.3 Example24

3. DOCUMENTATION

3.1 QUERY29

3.2 QSEG130

3.3 QSG1 .. 34

4. CONCLUSION .. 61

5. REFERANCES .. 62

6. APPENDIX A (PROGRAM, LISTING) 63

1

CHAPTER 1

INTRODUCTION

1.1 CRIME File System.

1.1.1 Purpose.

'Computerised Retrieval of identifiers and Modus

Operandi Elements' is the approach taken by the Oakland

Police Department .in utilising advanced technology for

criminal investigation. Before the advent of computer

random search systems, many of law enforcement's traditional

crime fighting resources broke down under the sheer volume

of crime. In police department such as Oakland, where

40,218 persons were arrested in 1970, the information

necessary to identify the perpetrator of a crime was very

often 'hidden1 within a document storage facility. Hence

the department wanted a fast, reliable and convenient means

of searching sizable storage of identification elements of

people, fingerprints and vehicles. Also, the system had to

provide a means of updating information, and of presenting

visual records of persons matching the observed character­

istics.

2

1.1.2 System Description.

The CRIME File System was designed and built by

Hewlett Packard Company and has been in operation since

September 4, 1972. The system employs a computerised data

base as a source of investigative leads to help in identi­

fying suspects whose characteristics are partially known.

There are four major characteristics contained in the data

base; they are physical description, type of crime, address

of mug shots and fingerprint cards, and description of

vehicles with occupants of recent police interest. By

entering known characteristics into the system, a search on the

data base can yield a summary list and/or display of mug

shots or fingerprints of all listed persons who match the

information entered.

1.1.3 Hardware Configuration.

Hardware configuration of the system consists of :

. HP2100 Computer with 24K of memory.

. Two HP7900 Cartridge Disc Drives (12960-010).

. HP2748A Papertape Reader.

. HP2752A Teleprinter.

. HP2761A Mark Sense Card Reader.

. Two terminals each consisting of one IMAGE SYSTEMS

microfilm unit with 100 address buffer and one KSR 33

3

teletype.

Note: The system is designed to handle expansion upto

six terminals.

HP12563A - Five spare disc cartridges.

Note: The total system contains seven removable disc

platters (cartridges) and two fixed disc platters

(one in each HP7900A).

1.1.4 Software Architecture.

General software architecture of the system

consists of special application programs in HP's Moving

Head Disc Operating System (DOS-M) with Extended File

Management Package (EFMP). These programs are under the

control of the operator at the system console. There are four

programs each consisting of several segments, they are :

. UPDAT for updating data base.

. QUERY for implementing search on data base.

. INTIL for initializing data base.

. VERUP for verifying the file structure of data base.

UPDAT, VERUP and INTIL can be executed only from the system

console, and INITL and VERUP are activated only when a. new

data base is to be initialized. While QUERY is initiated

and terminated from the system console but accepts search

commands and outputs results to the query terminals;

4

however only one of the six can be active at any one time.

The data base is divide into two functional files,

the Subject File (SF) and Vehicle File (VF). Actual file

structure is designed to provide fast retrieval for frequen­

tly used parameters, by maintaining reference files sorted

on different characteristics. All files associated with

SF and VF data bases are contained on three disc packs,

and the fourth disc pack is used for DOS-M and CRIME

programs.

1.2 Project Problem.

System experience with CRIME File System revealed

appreciable success, as indicated by the Project Report of

Oakland Police Department. However their evaluation also

pointed out certain problems. One of their major complaints

was that, if one terminal is executing the QUERY program,

all other terminals are locked out until that terminal is

released. Query from one terminal involves appreciable

amount of system - investigator conversation before a search

can be initiated. And since the system is locked to one

terminal at a time,.considerable time is wasted while the

system is waiting for slow human response to its inquiry.

Extreme is, of course, the case when the investigator forgets

5

to give the terminal release command at the end of his query

job. Hence there was a competetion for the use of the system,

and many times very promising jobs had to be aborted due

to delayed access to the system. Hence it was highly

recommended to incorporate in the system a sort of time

sharing capability to enable multiple inquiry from terminals.

The object of this thesis project is to study

the extent and the manner in which the problem outlined

above can be tackled; and incorporate necessary changes

in the system.

1.3 System Implementation.

Project work was to be carried out at the Image

Analysis Labratory of Electrical Engineering Department,

University of Houston; and hence the CRIME File System

had to be implemented on the available resources. Though

these were quite compatible to the requirements, some minor

differences warrented certain changes in the original system.

. The CRIME File System was designed to operate under HP's

DOS-M system, while we needed to implement it under the

DOS-Ill system. These two DOS systems are quite similar

except for certain minor differences in the EFMP routines.

Basically, the DEFINE statement, that defines the number

6

of words to be used by EFMP for its internal tables and

buffers, had to modified in all program segments.

At the Oakland Police Department, hardware configuration

included a two-drive disc unit, giving a total of four

disc cartridges. At the Image Analysis Labratory

we have a single-drive unit. Hence to be able to

implement the CRIME File System on a two-disc system

instead of a four-disc system, the size of the data base

had to be reduced by a factor of ten. Thus the

maximum number of entries in SF was reduced from 25,200

to 2,520, and VF was reduced from 31,500 to 3,150.

This was achieved by making appropriate changes in the

data base initialization program INITL.

Oakland Police Department had obvious reservations in

releasing their data base, hence a synthetic data base

was generated. And since we did not have a card reader

at the Image Analysis Labratory, card images were

generated and stored on magnetic tape, and then read-off

the tape by the UPDAT program. A Synthetic Data Base

Generation Program was developed by this author in

conjunction with Ha Nguyen, and it is documented in his

thesis.

In this thesis the author has tried to explain all

the aspects of the CRIME File System that are relevant to

7

this project. However, for documentation of the complete

original system, the reader is referred to :

. Oakland Police Department CRIME File System Project

Report.

. Oakland Police Department CRIME System Internal

Maintenance Specification.

. Source listing of the CRIME programs.

8

CHAPTER 2

SYSTEM DESIGN

2.1 Design Concepts.

The idea of incorporating time sharing capability

in the CRIME system, is based on the reasoning that because

human thinking processes and responses are slow relative

to the logical and arithmetic capabilities of the computer,

it should be possible to switch the computing resources

from one user to another in such a way that each user could

interact with a terminal online to the computer and think

he had sole access to the computer. Now, I/O devices also

have a speed disadvantage compared to the Central Processing

Unit. Hence if the user is considered as much a part of

the system as I/O devices, the idea of time sharing would

be to share system resousces sequentially in time.

Time sharing systems can be classified as :

. Online File Maintenance and Retrieval Systems.

These systems are characterized by the limited range of

queries or additions which can be made to a common

information base.

. Special Purpose Time Sharing Systems.

These systems allow the user to prepare and execute

programs in a very limited number of languages.

. General purpose time sharing systems.

CRIME File System is data base system, and hence after

time sharing is incorporatedr it could be included in

the first classification. However, since updating of the

data base is done only from the system console, time sharing

need only be incorporated in the QUERY section. Thus the

object is to design an Online Retrieval System with time

sharing capability.

There may be several users wanting to use the QUERY

program at the same time, if time sharing is introduced. One

way would be to provide seperate copies of the program for

each user. However, considering the limited memory space of

24K words and the sizable QUERY program, an alternative way

obviously need be sought. Hence let there be just one

program being shared, but each user using it does so as a

seperate process; and the processes run concurrently. By

concurrent, we mean that two or more processes are in a

•state of execution'. A process is in a •state of execution'

if it has been started but not completed or terminated. Such
a concurrent execution of two or more processes is called

'multiprogramming', and - is employed in this project.

10

A single copy of the program which can be used

concurrently by several processes is called a 'pure procedure1

or is said to be 'reentrant*. For a program to be reentrant

it must not modify itself, hence it was necessary to avoid

any instruction modifying programming techniques in the

QUERY program. Secondly, the program should not store data

local to itself, hence separate data and temporary storage

areas must be provided for each user of the program. This

was taken care of in the 'context block1 as explained in the

next paragraph.

In order to switch the physical processor from one

process to another, some information must be saved when a

process is removed from control, and restored again when a

process returns to control. This information is often

called the 'context block'. The following is the type of

information that must be saved and restored,:

. The process must know what instruction to execute next

when it assumes control of the physical processor.

. The address space of the process must be saved. This

also ensures separate data and temporary storage areas

as required for reentrant programs, mentioned in previous

paragraph.

. The state of the I/O devices affecting the process must

be saved.

11

There may be additional information required in other

systems, but for QUERY this seems sufficient.

Assignment of the physical processor to processes

is scheduled by 'processor management'. General description

of the processor management employed in QUERY is illustrated

in Figure 2.1. 'Process scheduler' and 'traffic controller'

are two modules that control and keep track of state

transitions of defferent processes. Process scheduler decides

which of the processes receives the processor and at what time.

Traffic controller keeps track of the status of each process.

When a terminal user signs-on, his process is assigned READY

state. Next, the process controller in conjunction with

the traffic controller assigns it to the physical processor

and labels its state as RUNNING. While it is running the

traffic controller continuously updates the status information

on other concurrent processes. When the process requests an

I/O, it is put into WAIT state until the I/O request is

complete, and then it is assigned READY state again. Each

process has an identical state diagram. It is worthwhile to

note here, that all the processes are identical since they

all execute the same program. Secondly, as will be discussed

later, no time slice allotment was employed, and hence in the

state diagram, there is no direct path from RUNNING state to

READY state.

12

Figure 2.1

13

2.2 Design Implementation

Now that general design concepts have been presented,

let us probe deeper into how these were implemented in the

QUERY system.

The overall flow chart for the segments of the

original QUERY program is shown in Figure 2.2. In brief ,

the functions of each of these segments can be described as :

. QYERY : This is the main program to which control is

given by DOS directive from system console to initiate

the QUERY program. It is a dummy main program for

loading purposes and establishes a common block of 128

words for use throughout QUERY.

. QSEG1 : This overlay segment initiates operator commu­

nication through the system console, checks the validity

of disc packs to be used, and verifies the active

terminals by L.U.N. (logical unit number) and initializes

certain common buffers and flags.

. QSG1A : This overlay segment polls all terminals for

attention to sign on, and once a terminal has signed on,

it transfers control to QSG1B for query commands.

. QSG1B : This overlay segment is responsible for

controlling the operation of the query functions and does

all user communications. It accepts and performs the

14

Figure 2.2

15

various query commands entered at the terminal. And prior

to doing any I/O or EXEC calls, it checks to see if other

terminals are requesting attention.

. QSEG2 & QSEG3 : These two overlay segments actually

handle the search on data base based on entered charac­

teristics. In the time sharing system these run to

completion before releasing control, therefore these do

not have appreciable effect on the object of incorporating

time sharing in the system and they need not be further

elaborated.

It can be seen from the above description that since segments

QSG1A and QSG1B handle the terminal sign on procedure and

user communications, these will have to be modified in order

to implement time sharing. Minor modifications can also

be envisioned in QUERY and QSEG1.

Segment QSG1A polls the terminals for attention

to sign on, and transfers control to QSG1B when a terminal

signs on. It is very possible that after a process for one

terminal has reached QSG1B, some other terminal would want

to sign on. In this case, switching control from one terminal

to another would require jumping back to segment QSG1A, and

hence would require swapping of overlays between main memory

and disc storage. This would also require files to be opened

and reset, and certain buffers to be initialised in each

16

segment each time they were swapped. Hence to prevent this

unnecessary overhead, it was pertinent to combine QSG1A and

QSG1B into one overlay segment QSG1. And since QSG1A was

comparatively small segment, the combined segment QSG1 did

not overflow the memory.

Now let us discuss the information management

required for multiprogramming QUERY, ie. the context block

for each process. In the original version of QUERY, all the

variables which were modified during the execution of QUERY,

were assigned a common block of 128 words. However there

were some unused locations in this block. These came in

handy for assignment to certain variables local to QSG1, such

as loop variables and flag variables. The idea was to

maintain a copy of this common block for each process and

swap them whenever control was switched from one process to

another. Hence it was necessary to store all the variables

that were manipulated during QSG1, in this common block.

A second common block was inserted to store certain

status variables for the terminals and for process scheduling

queue, and buffers in which information read from differnt

terminals could be stored. Also included in this common

block was a 128 x 6 word array , in which a copy of the first

common block for each terminal could be stored. Detailed

17

description of all these variables and arrays is given in

Chapter 3, but the object behind this brief mention here

is to indicate the division of information storage area into

two blocks, one of which needs to be swapped each time the

processes are switched, and the other which maintains the

status of each process and can be modified or tested during

execution of any process.

The file structure of CRIME File System was not

of much consequence in this project, hence is not discussed

in detail. However there are certain files whose mention

is very pertinent here. The characteristics that are

entered during execution of QSG1 are stored in a master

interface file ’MIF', and when control is passed on to the

search routines, search is performed based on parameters in

this file. The hits encountered in the search are passed

back to QSG1 in a master hit file 'MHF*. There are also

six hit files 'HITl' to 'HITS', one for each terminal, for

saving the hits for future reference once that terminal user

gives the 'END' command to end his query job. With the

inclusion of multiprogramming, search parameters can be

concurrently entered from many terminals, and hence a sepa­

rate interface file was created for each terminal - 'MIF1'

to 'MIF6'. Each of these is 96 words long. Since hits

obtained during search routines also need to be saved for

18

each terminal, information in MHF on return to QSG1 from

search routines, is immidiately transferred to appropriate

hit file 'HIT#1. In the original system, the size of file

HIT1 was 8192 words while HIT2 to HITS were 256 words long.

These same sizes are maintained, however if the number of

hits in MHF is greater than the size of file HIT#, a

warning to that effect is printed on the appropriate

terminal so that the investigator can rerun the search with

more parameters, thereby reducing the number of hits.

At this stage the above mentioned sizes of hit files was

considered suitable, however if need be, it would not be

too difficult to increase the sizes of these files.

Now let us discuss the general approach employed

in scheduling and switching control from one process to

another. In general, conversation of the system with the

terminal user follows a sequence. The system asks a

question of the user or it just gives a prompt requesting

further information, and the user responds with the

information. The system processes this input and outputs

a prompt for signaling next input or comments on the previous

entry and then outputs a prompt. It was observed, as could

be expected, that system response to user's input was

instataneous from user's standpoint, therefore it was

considered unnecessary to assign fixed time slices to the

19

process steps. Hence here, alloted time slice was the time

interval, beginning when the user input was accepted by the system

for processing, to the time the system response to this

input was output to the user's terminal. Thus time slices

were defferent for each process step, but could not be

recognised by the user. The strategy was to utilj.se the

time, while the system is awaiting a terminal user's input,

in polling other terminals and employing round robin

scheduling for switching control to another process.

As mentioned before, there are two important

routines, process scheduler READA and traffic controller

POLL. Mow let us consider the significance of these.

QSG1 is divided into 29 program steps ie. there

are 29 entry points." These entry points are given statement

numbers 5201, 5202, 5229. VThenever the

program reaches a point where it needs to read from the

terminal, READA is called. The general pattern of coding

at this point is :

NSTMT *• ##

CALL READA

GO TO 5200

52##

Here NSTMT is the next statement number for the current

20

process, that is passed on to READA. On exit from READA

NSTMT holds the next statement number for the new process.

Statement numbered 5200 is:

5200 GO TO (5201,5202, 5229)NSTMT

Hence on exit from READA, control will be transferred to

appropriate entry point for the new process. A similar

coding pattern is also employed where PRINT directive from

the terminal user is processed, to interleave printing of

the entries in 'hit files'. This will be clear when we

consider an example later in the Chapter. Traffic contro­

ller is called from within READA and also at several places

in the QSG1 program. It updates the status information of

various terminals and the scheduling queue.

Each of the terminals has two status flags assigned

to it, they are IOCMND and IOSTAT. IOCMND when set, indicates

that I/O READ EXEC routine is to be called for that terminal

when that I/O device becomes free. While IOSTAT when set,

indicates that the process is ready to be scheduled for

running ie. ready to be included in the scheduling queue,

when the I/O device becomes free. These two flag variables

are employed to provide concurrent I/O on the terminals.

The object was to be able to replace all Fortran READ and

WRITE statements by l/O EXEC calls which would initiate the

I/O and then without waiting for completion, transfer

21

control to he next instruction in the program. The

flow charts for RE^DA and POLL are shown in Figures 2.3 and

2.4, and in conjunction with the above discussion they

become quite self explanatory'-. There are however couple of

things that may need elaboration. The KOMON area mentioned

in Figure 2.3 is the common block which is individual to

each process and needs to be swapped each time processes

are switched. Secondly each terminal is assigned a buffer

of 36 words into which information from that terminal is

read. And before exiting from READA, contents of the

appropriate buffer is transferred to a local buffer of

36 words in the KOMON area.

At this point let us digress to an important

aspect of the extent to which time sharing is to be provided

in QUERY. During the time that search is being executed

(ie. control is being transferred to QSEG2 and QSEG3 as in

Figure 2.2), there is no system - user conversation. Further,

it was observed that for most cases the time required for

searching was not intolerably long. Hence it was decided

to allow search to be performed uninterrupted. However

consider a case where one user has given the PRINT command

and while the hit list is being printed on his terminal,

some other user enters the search segments. Since printing

is interleaved, it is possible that in between printing of

22
RE ADA

Figure 2.3

23

step up the queue.

POLL

call READ EXEC for process(I)

set IOSTAT(I)Z P=
clear IOCMND(I)

Figure 2.4

24

two lines, the other terminal may enter search implementing

routine, causing noticable time lag between two lines.

This was considered undesirable and hence PRINT was given

priority by introducing the feedback loop in READA, as shown

in Figure 2.3.

2.3 Example.

Now let us consider an example to get a clear

picture of how process switching and concurrent I/O is

achieved. For simplicity, let us assume time sharing

between just two users. As shown in Figure 2.5, say

process 1 has reached statement 15, and next transfers

control to READA, where immediately NSTJ5T(1) is set to 3.

At this instant say, next statement for process 2 is 520?

ie. NSTMT(2) is 2, and there is a READ EXEC call pending on

terminal 2. Let IOSTAT(1) , IOCJ®ID(2) , IOCMND(1) be reset and

IOSTATC2) be set to 1, and the scheduling queue be empty.

READA will set IOCMND(1) and call POLL. In POLL, since

there is no I/O pending on terminal 1 and since IOSTAT(1)

is 0 & IOCMND(l)is 1, a READ EXEC call will be given on

terminal 1, and now IOSTAT(1) will be set and IOCMND(1)

reset. If terminal 2 has still not completed its input,

now both terminals are busy, hence queue remains empty.

Thus READA will keep on calling POLL till one of the two

25

PROCESS 1

15 NSTMT=3

CALL READA

GO TO 5200

5203 .

CALL POLL

C I/O WRITE

CALL EXEC(2

GO TO 15

PROCESS 2

NSTMT=2

CALL READA

GO TO 5200

5202 .

CALL POLL

338 IOSTAT(IORDN)=1

KONWDfOUT16,17) C I/O WRITE

CALL EXEC(2,KONWD,ODT24,8)

NSTMT=16

CALL READA

GO TO 5200

5216 .

CALL POLL

GO TO 338

Figure 2.5

26

terminals completes input.

Assume that terminal 2 completes input first.

Since IOSTATC2) is 1, it will be included in the queue, and

READA will swap the appropriate KOMON blocks before transf-

ering control to process 2. Process 2 now say has to process

the PRINT directive, hence after certain amount of processing

and calling POLL to check if terminal 1 has completed its

input, it reaches an I/O WRITE EXEC call. At statement 338

IOSTAT(2) is set, before the WRITE EXEC call. This EXEC

call starts write operation on terminal 2 and immidiately

proceeds to next statement. Now process 2 transfers control

to READA vzhj.ch in turn calls POLL. It should be noted that

the queue is stepped up the first time POLL is called after

switching processes. Hence once again the queue is empty.

Now terminal 1 has an incomplete READ call on it while

terminal 2 has an incomplete WRITE call on it, and until

one of them completes, control will switch back and forth

between READA and POLL.

Next, say input on terminal 1 is completed, and

since IOSTAT(1) is set, terminal 1 is included in the queue

and both IOSTAT(1) and IOCMND(1) are cleared. READA swaps

the appropriate KOMON blocks, and process 2 starts executing

and reaches an I/O WRITE EXEC call. It starts WRITE operation

27

and continues executing till it again transfers control to

READA. In READA, I0CMND(2) is set and control transferred

to POLL.

Now terminal 2 completes its WRITE operation

first, and since IOSTAT(2) is set, it is put on the queue.

Both IOSTAT(2) and I0CMND(2) are cleared and after swapping

KOMON areas, control is switched to process 2. Process 2

continues to execute, initiates another WRITE EXEC call and

again transfers control to READA after setting IOSTAT(2).

READA in turn calls POLL.

Now if terminal 1 is the first to complete the

WRITE operation, POLL issues a READ EXEC call on terminal 1

since IOSTATCD is cleared and IOCNND(1) is set. Then

IOSTAT(1) is set, IOCMND(1) cleared, and control returned

to READA. Still the queue is empty, hence till terminal 2

finishes its WRITE operation or terminal 1 completes READ

operation, control oscillates between READA and POLL.

This example is typical of the process swapping

and concurrent I/O that would be expected in normal

execution of QUERY. It is important to note here the

difference between coding for issuing an I/O WRITE EXEC call

in the two processes. This is so, because process 2 is shown

28

to be responding to a PRINT directive from the user. In

all places except in PRINT processing, a WRITE EXEC call

is issued without either setting IOSTAT or calling READA.

In all these cases there is a definite pattern of alternat­

ing READ and WRITE EXEC calls. Hence if WRITE is initiated

and then if READ needs to be initiated on the same terminal,

IOCMND is set, and routine POLL on detection of completion

of WRITE , imrnidiately issues a READ EXEC call. Hence

knowing the pattern of WRITE being followed by READ, there

is no need to wait for completion of WRITE until a READ

EXEC call is to be issued. On the other hand during

processing of PRINT directive, two WRITES can occur conse­

cutively or a WRITE may be followed by READ; hence it is

necessary for that process to wait till each WRITE is

complete. The waiting time is utilised in polling other

terminals for attention, by calling READA.

23

CHAPTER 3

DOCUMENTATION

This chapter gives the documentation of the

modified QUERY program segments. Segments QUERY, QSEG1 and

QSG1 are documented in their entirity, and since the remaining

segments have very few modifications, the reader is referred

to 'Oakland Police Department CRIME System Internal Maintenance

Specifications', for their documentation.

3.1 QUERY

3.1.1 Program Objectives : A dummy main program written in

Fortran IV for loading purposes. It establishes two common

blocks, ICOMM of 128 words and IKOMM of 1017 words.

3.1.2 Flow of Control : Receives control from DOS-M executive

and immediately transfers control to segment QSEG1.

3.1.3 Internal Arrays : INAME is a 3 word integer array that

contains the name of the segment to which control is to be

transferred - QSEG1.

30

3.2 QSEG1

3.2.1 Program Objectives : An overlay segment written in

Fortran IV to which control is given by an EXEC call from

QUERY. It initiates operator communication through the

system console and checks the validity of disc pack labels

for use in the CRIME system. It sets up and verifies the

active terminals by LUN and initializes certain common

buffers and flags. It also initializes 6 context blocks,

one for each terminal.

3.2.2 Flow of control : Receives control from QUERY. After

performing its function, control is transferred to QSG1.

3.2.3 Interface Parameters in First Common Block :

1. ITYPE is a simple integer variable that contains the code

for the data file to be queried 'MS1, ’FP1 or 'VF' in ASCII.

2. ICMND is a simple integer variable that contains the current

command (first two characters only) in ASCII.

3. IERRNO is a simple integer variable that is set to the EFMP

error return code.

4. IYEAR is a simple integer variable that contains the last

two digits of the current year.

5. ILUN is a simple integer variable that contains the L.U.N.

of the currently active terminal.

31

6. NICKNM is a 5 word integer array that contains a subject

nickname in ASCII or zero in the first word.

7. LUM is a 6 word integer array that contains the active

terminals by Logical Unit Number (L.U.N.).

8. IBUFFR is a 6 word integer array. It is really 6 one word

input buffers, one for each possible terminals.

9. IHITN is a 3 word integer array that contains the name of

the current 'hit* file in ASCII, such as HIT1, HIT2, etc.

10.IFILEN is a 3 word integer array that contains the name

of the current 'hit' file or file ’MHF' in ASCII.

ll.IORDN is a simple integer variable that contains the

ordinal number of the terminal (1-6) with respect to array

LUN.

12.IDISPN is a 6 word integer array that contains a pointer

(or displacement from the beginning) to the next entry in

the ’hit' list (file HIT#) for use with the DISPLAY

function for each of the 6 possible terminals.

3.2.4 Interface Parameters in Second Common STATEI4ENT :

1. LINET is a 36x6 word integer array that provides 36 word

input buffer space for each of the 6 terminals.

2. LSTAT is a 128x6' word integer array that constitutes address

areas for the 6 terminals where the first common block

of 128 words for each terminal is stored.

32

3.2.5 Internal Simple Varibles :

1. IOLDUS is a simple integer variable that contains the old

user status code.

3.2.6 Internal Arrays :

1. IOPNTB is a 128 word integer array that contains the EFMP

Opened t- File Table.

2. ITPBUF is a 256 word integer array that contains the EFMP

Temporary Record Buffers.

3. INAME is a 3 word integer array that contains the name of

segment QSG1 in ASCII.

4. IST?jrB is a 10 word integer array that contains the EFMP

status of disc pack.

5. IFNAME is a 3 word integer array that temporarily contains

the name of an EFMP file.

6. KOMON is a 128 word dummy array, equivalenced with the

first common block for the purpose of swapping this block

on switching terminals.

7. NOTRB is a two word integer array for specifying number

of temporary buffers in DEFINE EXEC call.

3.2.7 Diagnostics Produced :

1» EFMP ERROR NUMBER ##

2. LOGICAL UNIT ### IS DOWN AND SO WILL NOT BE USED.

33

QSEG1

BEGIN QUERY SEARCH.

ENTER THE "CURRENT YEAR 19##/

no

yes
v—

ENTER THE USER STATUS CODE

no
-Y-

STOP 3 J

I

NOTE : The symbols used in the flow charts are the
used in the Oakland Police Department CRIME System
Maintenance Specification (Form 19601A).

same as those
Internal

Initialize and store the parameters of the
2nd Common stayement.

Do an I/O READ w/o wait on each
terminal.

.USER STATUS CODE DOE
\ NOT MATCH. /

Any
terminals u

Illega
L.U.N. 5

LOGICAL UNIT ## IS /
DOWN & WILL NOT BE/'yes^^down ?.
\USED. /

yes
IDENTIFY THE ACTIVE TERMINALS BY,\ L.U.N. /

\ QUERY SYSTEM NOW OPERATIONAL.
?-.

ode match ?

Between
^4972 & 1999

yes

no

*

Status

yes NO TERMINALS UP AND
AVAILABLE.

34

3. THERE APE NO TERMINALS UP AND AVAILABLE.

QUERY TERMINATED.

STOP 3

3.3 QSG1

3.3.1 Program Objectives :

a. QSG1 : An overlay segment written in Fortran IV, and is

'reentrant'. It accepts and performs the various query

commands entered at the terminals. It is responsible for

controlling the operation of the query functions and does

all user communication.

b. READA : A subroutine written in Fortran IV. This is the

process scheduler. It is responsible for switching control

from one process to another, and swapping appropriate

address areas.

c. POLL :A subroutine written in Fortran IV. It serves as the

traffic controller, continuously polling the terminals for

attention and consequently updating a scheduling queue.

3.3.2 Flow of control :

a. QSG1 : It receives initial control from QSEG1 . Then on,

flow is controlled by the process scheduler and traffic

controller routines PEADA and POLL. It transfers control

to QSEG2 when any terminal enters the DONE command, to

35

terminate the query codes for a SEARCH. Control is always

returned from segment QSEG2 or QSEG3, following a search

on the data base for ’hits*. Whether control is transferred

from QSEG1 or either of QSEG2 or QSEG3, is decided by

variable IERRNO.

b. READA : It is called by QSG1. Control is returned to

QSG1.

c. POLL : It is called by segment QSG1 and subroutine READA.

Control is returned to the caller.

3.3.3 Interface Parameters for First Common Statement :

a. QSG1 :

1. ITYPE is an integer variable that contains the code for

the data file to be queried: ’MS', 'FP' or 'VF' in ZaSCII.

2. ICMND is a simple integer variable that contains the

current command (first two characters only) in ASCII.

3. IERRNO is a simple integer variable that is set to the

EFMP error return code. It is also used to determine

whether the current call to segment QSG1 is from segment

QSEG1 or is from completed search procedure (QSEG1 or

QSEG3). The initiation call from segment QSEG1 sets

IERRNO to -1. If IERRNO contains a number greater than -1,

then it is the number of 'hits' found as the result of a

search.

4. KFILEF is a 28 word integer array. This array is a set of

36

Key File flag words which correspond directly with the

28 MIF records in the Master Interface File.

5. NICKNAM is a 5 word integer array that contains a subject

nicknam in ASCII or a zero in the first word, if there is

none.

6. LTO is a 6 word integer array that contains the active

terminals by L.U.N.

7. I,J,K,L,M,N are local integer varibles . These are included

in this common block since they need to be saved for each

process, and swapped when processes are switched.

8. IBUFFR is a 6 word integer array . It is really 6 one word

input buffers, one for each possible terminal.

9. IYEAR is a simple integer variable that contains the last

two digits of the current year.

10.ILUN is a simple integer variable that contains the L.U.N.

of the currently active device.

ll.IHITN is a 3 word integer array that contains the name of

the current 'hit* file in ASCII, such as HIT1, HIT2-, etc.

12.IFILEN is a 3 word integer array that contains the name of

the current 'hit* file or file 'MHF' in ASCII.

13.I0RDN is a dimple integer variable that contains the

ordinal number of the terminal (1-6) with respect to array

LUN.

14.IDISPN is a 6 word integer array that contains a pointer

to the next entry in the 'hit1 list (file HIT#) for use

37

with the DISPLAY function for each of the 6 terminals.

15.ITHV is a simple integer variable. It contains the limit

of threshold value to be searched by the QSEG2 procedure.

That is, if the number of 'hits' on the first pass of a

query search is greater than the threshold value (ITHV) then

the search is to continue by the QSEG2 method for the next

set of characteristics, otherwise the QSEG3 method is to

be performed for the remainder of the search parameters.

16.LINE is a 36 word array where the most recent input data

for the current terminal is stored.

b. READA :

Same as that for segment QSG1.

c. POLL :

Same as that for segment QSG1.

3.3.4 Interface Parameters for the Second Common Statement :

a. QSG1 :

1. LINET is a 36x6 word integer array that provides 36 word'

input buffer space for each of the 6 terminals .

2. LSTAT is 128x6 word integer array that constitutes address

areas for the 6 terminals to store the first common block

of 128 words, one for each terminal.

3. STMT is a 6 word integer array that saves the next statement

number for each terminal.

4. KUEUE is a 6 word integer array that constitutes the

38

scheduling queue.

5. NEXT is an integer variable that holds the number of the

next terminal that is to take over control.

6. NSTMT is an integer variable that contains the statement

number to be executed next, for the process currently in

control.

7. LAST is an integer variable that specifies the last valid

entry in the queue KUEUE.

8. NBYTES is an array of 6 words where the number of characters

read in from the terminals are stored.

9. IOSTAT is a 6 word integer array which when set, indicates

that the corresponding process is ready to be included in

scheduling queue.

10.IOCMND is a 6 word integer array which when set, indicates

that I/O READ EXEC call is to be issued when the device

. becomes free.

b. READA :

Same as that for QSG1.

c. POLL :

Same as that for QSG1.

3.3.5 Internal Simple Variables :

a. QSG1 :

1. CII contains the subject I.D. number in C.I.I. format

(seven digits). This variable is double precesion floating

39

point.

2. IFINGR is an integer array. It contains an offset value

used in computing the subscript value for reference in

array ICOM! (a scratch area). In this application it is

associated with the 10 finger codes.

3. OPD is a real variable that contains the subject I.D.

number in O.P.D. format (six digits). It is equivalenced

to CII to conserve space.

b. READA :

None

c. POLL :

None

3.3.6 Internal Arrays :

a. QSG1 :

1. IOPNTB is a 310 word integer array that contains the EFMP

Opened - File Table.

2. ITRBUF is a 768 word integer array that contains the EFMP

Temporary Record Buffers.

3. NOTRB is a 2 word integer array for specifying number of

temporary record buffers in the DEFINE statement.

4. IMIF is a 3 word integer array that contains the name of

file MIF1 or MIF2 orMIF6 in ASCII.

5. NAME is a 3 word integer arxray that contains tile name of

segment QSEG2 in ASCII.

40

6. IMHF is a 3 word integer array that contains the name of

file MHF in ASCII.

7. ISUBJ is a 3 word integer array that contains the name of

file SUBJF in ASCII.

8. IMVEHF is a 3 word integer array that contains the name of

file MVEHF in ASCII.

9. IKEYSB is a 3 word integer array that contains the name of

file KEYSB in ASCII.

10.IMAKEM is a 15 word integer array. Each entry contains a

number that corresponds to those automobile make numbers

that can have optional models. The numbers are arranged

in ascending order and are taken directly from the VFI

form. For example, the entry 3 is for American Motors, 12

is for Buick, etc.

ll.IMAKEM is a 15 word integer array. This array corresponds

directly with array IMAKEM. Each entry indicates the number

of models possible for the corresponding make of automobole.

For example, the make American Motors (*3) can have six

possible models.

12.ISFM is a 48 word integer array. This buffer is used to

read the records from master Subject or Vehicle EFMP files.

The masters files are retrieved for the OPD, CII, PRINT

and DISPLAY functions.

13.IMIFD is a 96 word integer array. It is the buffer used

for processing the query entry data and transferring it to

41

EFMP file m.if for processing by segments QSEG2 or QSEG3.

14.Arrays 149, 150 and 153 are scratch areas. They are

equivalenced together in common block array ICO.MM to

conserve space.

15.IKEYMV is a 3 word integer array that contains the name of

the file KEYMV in ASCII.

16. KOMON is a 128 word integer array that is equivalenced to

the first common block for the purpose of swapping the

address areas when processes are switched.

17. Arrays OUT1, OUT2, OUT3, OUT32 serve as output

buffers.

b. READA :

1. NFLAG is 6 word integer array that indicates whether the

contents of the individual input buffer are to be transferred

to the local buffer LINE, or not. This is necessary since

READA is also called during processing of PRINT command,

at which time there is no input from the terminals.

c. POLL :

None.

3.3.7 Diagnostics Produced :

a. QSG1 :

1. EFMP ERROR NUI4BER

STOP 5.

2. CURRENT ‘HIT* LIST IS LONGER THAN THE ENTRIES SAVED.

42

3. I.D. NUMBER NOT IN THE SUBJECT FILE.

b. READA :

None.

c. POLL :

None.

3.3.8 Special Features :

a. QSG1 : The operator can cause the termination of the

printing initiated by the PRINT command, by changing the

state of the switch register bit 15. This feature is

used to terminate the listing of the 'hit' list in the

event the user does not wish to continue after having begun.

It does not matter whether switch register bit 15 is turned

from off-to-on or on-to-off.

b. READA : None.

c. POLL : None.

43

FLOW CHART FOR QSG1

(Includes pages 44 to 60)

5202

MOTE :
tALL\EADA \—>indicates that the next
*###)/ statement to be executed

'''--- ' by the current process
is ###*.

aS
s

4;

Open files HIT# and
MIF# for all terminals
that have reached 5202,
except IORDN.

"Reset MIF# and

Transfer the 'hits' from
file MHF to file HIT#.

i _________
CURRENT HIT LIST IS LONGER /
THAN THE ENTRIES SA^D. / NUMBER OF ENTRIES SAVED=## /

46

yes
VF ?

no

ENTER 'PRINT', 'SEARCH'
'END', OR QUERY CODES.

ENTER 'PRINT', 'SEARCH'
'DISPLAY', 'OPD* OR
'CII'.

ENTER 'PRINT', 'SEARCH'

ENTER 'PRINT', 'DISPLAY'
'OPD', 'CII', OR QUERY
.CODES

yesVF ? >---

nocontrol
from QSEG1 ?

yes

no

47

Decode line.

no

ENTRY ERROR. |

15)

48

ID NOT

Read the KEYSB record.)

IN SUBJECT FILE.

____________y_____;_____
|Read the data from SUBJF.

Assemble the data for printing.

Print the fiche address.|

49

*

\ POLL

Read the hit referance number.|

XRead from file SUBJF. Read from file
Assemble data for printing.

NOTE : Part of this flow chart
represents more than one segment
of program coding. Hence the
actual statement number will
depend on the segment of coding
being executed.

Assemble data for printmg7|

E.O.F.
or

erminated 2

(5214^„ ___
V ' r Save bit 15 in SSW~ j

£1) *---- 7=1-a

VF ?
no.

no yes

/CALI\
/ READAX

*\(52##)/

\Print the VF data line/

poLy

■■ CALL\
/re ADA \
\(5204j/

\ ,
Decode line.7 ______________x_______________Output start character/

/call\
(READA)
\(522?)

50

| Wait for relay to react. |

| Wait for relay to react.
7----- --------31-------------------------
X BUFFER OUTPUT COTTLETE^/

51

Specify the hit file to he
________ MHF.

Reset the old hit file HIT#.
__________________i___________
Reset the new hit file MHF,

Do an EFMP POST. |FS/CALIA
\poll/

52

53

no Read the MIF record J

DUPLICATE ENTRY ACCEPTED

Write MIF data record.

caiA
(POLL>

Duplicatie~> no
_e n t r

 .'^.yes

FP
query ’

code
____________ i yes
Process question mark for j

finger number. I

54

33
55

A 56

57

58

59

60

Is
finger #
-^a ?? 2/'

no

NOTE ; Flow charts for Subroutines READA and POLL are shown

in Figures 2.3 and 2.4 .

61

CHAPTER 4

CONCLUSION

The design objective of incorporating time sharing

capability in the QUERY portion of the CRIME File System was

achieved. System - investigator conversation was made

concurrent for all the query terminals, however actual data­

base search was allowed to execute uninterrupted.

The system was implemented at the Image Analysis

Labratory. A synthetic data base was generated for test

purpose, and the system was successfully demonstrated using

this data base.

The author would like to make a closing remark

here that the system was designed and implemented using

FORTRAN IV programming language, and employing HP's DOS-Ill

system which is not particularly designed for concurrent

multiterminal operation.

62

REFERANCES

1. CRIME File System Project Report, Research & Development

Division, Oakland Police Department, 1972 (Federal

Discretionary Grant # 71-DF-1067).

2. Oakland Police Department CRIME System Internal Maintenance

Specification (Form 19601A), Hewlett Packard Co., Cupertino,

California, 1973.

3. Source listing of CRIME programs.

4. Hewlett Packard 2100 Series Computers DOS III Disc Operating

System, Cupertino, California, 1973.

Timesharing System Design Concepts - Richard W. Watson,

New York (McGraw-Hill Book Co.),1970.

Operating Systems - Stuart E. Madnick and John D. Donovan,

New York (McGraw-Hill Book Co.), 1974.

7. Nguyen Ha, A Computer System For The Mugfile Problem,

MSEE Thesis, University of Houston, August 1976.

APPENDIX A

(PROGRAM LISTING)

63

C201M JULY 23, 1976
FTN,L, T

PROGRAM QUERY(3)
DIMENSION INAMEC 3)
COMMON IC0MMC128)
COMMON IKOMMC1017)
DATA INAME/2HQS,2HEG,1H1/

C CALL SEGMENT QSEG1
CALL EXEC (8,INAME)
END

ENDS

JULV ? s, k <7-'.FT i^o.■ 3'-. ;i()!'I ’•< \ ".I ...J I a" I ■ (1 , I T-r-UF (T , I .’..-H. I 'K i'-i (, LU ' (() ,L I • 11 T K i) t Ic IL •• I :) , ! I i , I 2 TA 1 • (1 ■) , I F v A >-(•)* v T ' y I 2) ,
1KL-' ' (1?<)L nv I TYP ., I'.1 'J , l < ■.,!■. ' (1?;)I J.1-!' ‘ LT- U '• ,<) .LJ TA I (1 , I M ’.’'(S')-2QUI ,'AL . K. - (I r. TAT ().)), (I •.•.•••• f 11), T F=‘T (1)> , (Un:,,,(lA1),[L'iJ-.), (1 . । I?-).1; I >-■■ (j)) , (I _ ' a) , i i! . (])) , (iy>. '(.<),I■') , (I C (ArJ , | Y A!) , (I L v , 7) , I LL .J) , (I (+<) , 1 1 IT " (1)) , (I C' ■" (1) , I I L fl)), (I 1 ' ' (5 , I 1 S J • (1))-.,IK ••• Uf 1) , [TYi<) , (I ! A) , l~.->), ("'(a?) , ILUU)I AT I , ’/.LAS ,2U ,.,/H /,II./'i /.•' 1 ? /.'TIT-' (1,1)1 F'')-” .. I (/"r A". I'.: TV •: , ")

A b’P IT’- (L , ?)2 AT (/'- •- ,T I" H * k.titK_'.'T Y'a' 1 'k ")
P'?a_ (!,■•) (Y-. ■IF (I V- ,p. LI . 7/ . .JP. 1 Y-,.- . IT. » 1)4 , <L aF' p r./i," ([." rT .j - T:-- br- HV r,.;z F-.. j TV I T. ? "< i'bFTRS ' T aPLC-S.)

. ,;fiT > , (1) =1

.HT- 'M 2) = 3CALL -y l" 2 (-/•», I, ir.n F A, 1 '-a, ! T;.AiiF,:'rT- (1) , ? , I EP < J)IF (I " -> 14 I. LT .1) d .r,E iV II . (1,7) I ‘h •. << =7 FilT’ AT (/'’EF' >: , I ?)PALP" '..ALL5 I 'll .1/^ 1 .It. ». c I T - (1,17)17 Pfip/A f I- 11.- 'TATU' CJ1'!?: ICITS 11t .2 '-)D = A. (1 , ■) 1 'I "'113IF (HL. (b'L ‘liL) .'>T . F'TF)) 1 A , 1 F"IP ISTAT/d)=1:.fl 13 1 d, j,l
L 2F"D SI ATU* (TA '-TAJ T'lF '.-J'A ^F T'j: 1ST, FILE UL- PACK.), 1ST AT?, I'-" -P jr)

ivui,:,= ^■■,'T,‘.r' r. I1 TI- - ■: 1;'-CTLr'.Y nw
, I r.r.'> T , IL*’. ■’J'l)

c :ut an ",/?/," j p ■-'a use? jiti.", " , 2 /" jj:;■ y T2 •’vi ,r. ff , ••)

I ; ' -'I'.’.LS ' Y L" ■ I"** T,; -) , ", ii)

? -) ? 7 , / -
Z';. IC(L I," (i).-:,. 7)1. U”(i) = ;■j'T 1=1,.., 1

CALL (^-, 1 ,5,1^ A -. I, JIF (I-P.-J". .T. ');. .?u CF-P S I r TUK 1 (J- /Ii 2 . LL I'T JC ■' TIL:-,)2 CALL E X J (/- . I , 1, 1 F ■ V -, I. JIF (I - 12 • a. J t.,?l
21 IF (la a.- ('J . : , jrr. .UD 1
2 2 .. P. I T !■ (,,?-.) 1 , 1 S T A 1 (d24 i UP" Al (/"i :_ •' r 1 ’.TU Ci?.I " J?1 ?. C ; P ■ ", I 1 , - I 3 ", I ,

ltc -> 719 cm i rili-27 aaT-" (i,z2)2? f-'n . AT (/>• II, 'Tiry T1'- ALTIV7.'1 ?■_ I-l,-.,l21: L'jr j I) = (< a- (1, *a Lif!r' a I = l,t.,l(L*? '(I) . LT . 7 . ?"a I I) . 7i .

c

DO 21 J=I+1,6,1I F(LU*! (I).E6.LU\(J))LUN(J) =029 CONF IDUE1LUD=O _ITYPE=2HDO 2 1=1,6,1IF (LUN'l I) ,LT.7) 30,31I/"I STATUS EXEC CALL31 CALL FXEC (1, LU.m i I) , J ,K)IF (I VJU(J, ;V. > ■!?) JLT..6J00GB)30,323 2 KPI IE (1,33) LUU <I)33 FORi-.ATl/"LOGICAL UNIT *",I2," IS DOaN AND SC WILL NOT BE USED.*') LUNT I)=.30 CONTINUEL"T 3 4 1 = 1,6, 1IF (LUN(I).GT.3)35,3434 CONTINUEWRITE (1,36)3o FORMAT (//'THERE ARE NO TERMINALS UP AND A V AI L AB LE . " , 2/’’ QU'ER Y TERMIN 1ATED.")
3528

A P.39

STOP 3
SYSTEM

IF (J.LT.7)37,38 WRITE (J,39) 0035378 FOPrAT(/» ",A2)
read exec call

IS NOW OPERATIONAL.'')

CALL EXlC(1,J+02040EP,LINET(1,I),-2) 37 CONTINUENICKNMd)=•/[>D 4'3 I =2,5,1
-rO 'iICKNV(J) = 2HIHITTH 1)=2HHIIHI 7N(2)=2HTOI HITN(3) = 1HIFILENt1)=2HMHIFILEN(2)=2HFIF I L E N (3) = 1HSTORE 2'H) COMMON PLr’CK INTO 6 ADDRESS AREAS.DO 6. 1=1,6,1IF(LL'.N(I) .LT. 7)30 TO 60UJPDN=IILUM=LUN(I)DO 55 J=1,128LST A T(J , I) =K0.M0N(J)55 CONTINUE60 CONTINUEIERRNO=-1 CALL SEGMENT CALL EXEC END END$

OSSI (ft, INANE)

C2C-3M JULY 2 3,1976FIN PROGRAM QSGK5)UnUtLt P£ZC I SI O'! ■ CI IINTEGER STrF.riUT 1(7) ,OtlT2(1P),ODT3(7) ,OI!TA(16) ,OUT5(3) ,v. CUT., (^4) , CUTt C (->) , OUT7(14) , DU T A (3 A) , OUT 9 (21) , Dll 110 (AO) ,v LU I!1(2 7) ,OuTl3(?4),CU1vC(3)tOUTlU(1) ,rjT16(17) ,- ourrzm ,[’UT1U! 1) ,6IIT19(1) ,0UT2 (1 5) ,0UT21 { 2.-) ,00122(1) ,^11140(3) ,-DUT4 0(3) , 0UT6..J 3) , 0U13D(3) ,* rnji2-!(l ;) ,CUT2‘t(16) ,rUT2?(4) , OUT 26 (2),DUT27(2) , OUT 2 « (14),* UUT2-)(1 7) ,f3UT > J(^) ,fJUT31 (3) , OUT? 2 (32) ,CUT33(4)DIMENSION 1CPNT 6(31), I T5U F (76 3) ,M.)TRP (2) , I 'i I F (3) , I MJ-F (3) , 1IKEYSC (.'.) , 1 KE Yr V(3) , lSUr.JF(3) , IMVbHFt 3) , I VAKEM(15), 1MAKSN1 15), ILP'E (36) , I 4 y(4) , I 5C(J) ,1 5 3(8) ,1 ''IFi)(-»C) ,KCMCN(128) (3) ,1 ISFi' K8) , I ST AT (2)CDMMCN I TYpL , IC:- ID, I cRROO, KF ILEF (28) , 'IICKN? (5) , L UN (6) , I , J, K , L, M, M 1 I YE 7-A t J L UN , I; 11 T' (3) , I p I L 5 U (_.) , I OhDN , 1 DI SPN (t) , ITHV, I COvy (54)COr"<P.N L INET (36,6) ,LSTAT (128,6) , STM T (6) ,KUEUE(6) , X T , NST’IT , LAST 1 ,N8YTES (, INST.' T (6) , I(lCMNiH6)EOUI VAL. !CE (ICl'MVj }) , I S F Y (1) , L I NE (1)) , (I CONY (49) , Cl I,DPD, 149(1)) 1 (I COvv (i■ j) , I 49 (?) , I: ■' (1) , I F I NUR) , (1 C Ci-'M (5 3) , I 5 4 (1)) , 1 (ICr-M‘-(<,4) ,KULW.) , (KC'”Gu (1) . I TYPE } ,1 (OUT AC (1) ,ulJT4 (1 1)),(NUT7,c i 1) , CUTS (3 3)) , (OU 1 3C (1) , OUT 1 4(19)),1 (OUT^Dt 1) ,UUT4(1^)) , (r UT Of’ (1) ,CjUT6(42)) , (CUI 3U(1) , CUT1 3 (22)) DATA lY) F (1)/2HM/, K’IF(3)/2H /,1IMHF /2HHi, 1HF , 1H /, [SU2 J F/2 HSU. 2H0 J , 1 HF/ ,11MVE HF/2H,:v, 2HEH, 1HF / , I k E Y3B/2HKE , 2H Y S , 1 HR/ , I DAKEy/.i ,12,13,15,1 16,19,23,3 2, :6, 3-^, ^3, 44, ^-6, 3 1/, I'lAKEN/S, 2,1, 12, 1,4 , 11,3»"2,11,8,0,2-1/ , NOTR _./l ,4/, IK EY / 2 HK t, 2 HYE., 1HV/ ,A'l E / 211. S , 2HE3, 1H2/
DATm HUT 1 / 122,2';?? , 2H?2 ,0 3'6-*12L , 41? rj , .'57 J4n? ,0u? 5378/DAT A OUT 2 / . 64 122 , 2f<N, 2HTE , 2HR. , 2H ' N , 2'! S ' , ?u , , 2H ’ F , 2hP• ,2H , ,1 2ti:P,2F ' , 2H7 F, 2h • ,, J541 25, ?')641 23, 357C4?: , C','^5 373 /
DATA CUT 3/0.64 11 ■’ , ?Lr E , 2 H AD , 2H Y , jC 5 >12 F, 35 7 3>CU', '•''3 53’7 6/ UATA OUT a / 64 126 2H'-‘o ,2UER,2H 0,2HF , 2H ' H , 2HI T , 2 HS • , 2 H =/DATA GUTS /. ■ .'’-AA 1 2 6, .■ 5 7 0-rn r , ")'|3 5 3 7rVUAT4 OUTS /.-)c412^,2;-)CU,?HR!-' ,2HZN,2NT , 2H 1 H, 2HIT , 21!-L , 2H I S , 21 IT 1 ,1 2H I,2HS ,?HLC,2uHC.,2HEr. ,?H T,2H||A,2HN ,2HEL,2HTR,2 2HIl,2HS ,2hSA,23VE,2H.«.,: '.’6 A 123,2H >!U , 2li NR , 2i;tR , ?H 0,3 2HF ,2H’H,PHIT^HS' ,2H S , 2 HA V ,/HEU, 2H =/DATA CUT? / A o412P, 2HST, 7HA,< ,2HT , 2 H NE , 2 H X T , 2 H U « PHU E , 2HRY , 2H. , 1 541/8, 64128, . 57 -A’-., '3537'2/DATA CUTS / J15412E ,2HEN, 2HT:_,2hR , 2 h ', 21IR I , 2HN T , 2H PH ',2HSE,1 2HAR ,2HCN ,?H' , ,21! 1 , PH'-'I , 2HSD, 2HL A , 2i1Y 1 ,2 F, ,?H’C,2 2HPI), 2H', , ?H • , 2H0 I , 2HI ' , pH, ,2HOR,2H '.PHEN^HD',3 2H, ,OS'.5^12L, "57'4oH, 3:j3-37E'/DATA LUT9 /u .4412/,,H-i;,2HTo ,PUR , PH 1 P ,/HR I , 2 HUT , 21 i1 ,, 2 H e,2HSE,1 pUAh , 2HCu,?H' , ,2ti (J,PH? , 2H'= ,2‘INl ,2H''64128,2 704 CF,. 035372/DATA CUTlO/v J(:412L',/HEN,2HTF ,PHR , 2 H 1 P , 2 HR J , 2HNT , Pi 11 , , PH «,2HSE,1 2HAR,2HCH,?H1 ,,2H ’ , PHO I , 2HSP,PHLA,2HY1 ,2H, ,2H'C,2 /.HP'S, 2H 1 , , PH 1,2HC I , PHI 1 , 211, , 2H ’ 6,2H3lO , PH2H 0,3 ZliP. , 2H0U , 2HER , 2HY , 2HCO, 2HDE , PH . , J 5-.4 1 28 , !5 704CT ,4 -.''•3 5_.7r/DATA 0UT11/ 64128,PHlN,?HT5,2HR ,2H•P,2HPI,2HNT,2H* , ,2i I *,2HSE,1 2HAR,2HCi-.,2H‘, ,2H • , 2H EN . 2 HD ', PH, , 2H0R , PHO U, 2HER ,2 PHY ,2HC.’;,2H:>E ,2ii. ,'364128, ?57040F, j JOSEYS/DATA 0I.IT13/. 64123,2HHU,2H,".o,2HER,2H 0,2HF , PHEN , 2HTR , 2 HI F , 2 HS ,1 2HIN.2F ',2HHI,2HT-,2HLI,2HST,2H• ,2H= /
DATa 0UT15/.2 1 5 3 78/ LATA OUT 16/.?«. 6-12R, 2HID, 2H i,2H N,PHOT,PH I,2HN , 2HSU , 2HBJ , 2 HEC,

1 2liT ,2!IFI ,2HLE,2II. , 005412B, 5570408,0335 7B/r,4TA nuri7/3:71.'=7P/BAFA 0uri8/ 5^128,2HFN,2HTB,2HY ,2HER,2H»O,2HR,/DAT/-. GUI IO/'.'.-TdjTD/DATA Oht^O/ZHBU,2HFF ,?HZP. ,2H C , 2HUT , 2 HPU , 2HT , 2HC0,2 HMP, 2HL E ,1 2HTE,2H. , 333412R ,D37G4CR ,1">?3537P/DATA ni)T21/ 64 1 2 P t 2 Hr'i, 2 HT E » 2h3 , 2iljU, 2iiER , 2HY , 2HS D , 2Hi'-E , 2H(S ,1 2H) , 2HTH v PH2r>| ,2H ’♦ 2 HDO , 2 , 2H03 e>4 12 E» 0 5 7040 8,2 d5 av /DATA OUT 22/. ^>65373/DATA 0UT23(1)/Oj6 412 IV ,OUT23(6)/020340B/DATA OUT25(1)/32C04.B/DATA OUT 2c/ ."'6^128, : 2 304 "B/DAT a 0UT27 (2)/-J AT^O. !'/DATA nuT28(n/0 2 004: VJ ,nUT2P(5)/320357R/,OUT28(7)/023057P/,* CUI 28 (3) /u2CC4 ".h/,UUT28 (11) /020 3 5 7P / , OU 128 (1 3) / 02 3 3 5 7 B/DATA CUTEOd)/' A412F:/DATA OUT30 (1)/O'. 64128/DATA rUT4D/>. 6^1 2P, ?573^ jP<j;3537B/DATA CUTCD/. c.412F, 6 7 ,-r ‘ 3, . ' 3 53 7B /DATA 0U1 3ij/.'C6412n, ?573^CB, 0 J3537B/[■ATA OIJT32/2D5U,2!IPL,2HIC,2HAT,2HE , 2HE\', 2HTR , 2HY ,2HAC,2HCE,2HPT,2UED,2H. /
N=IERRNGC EFMP DEFIMECALL EXEC(-2-,l,IOPUTPf313,ITRBUF,NOTRB(1),2,IERRN0)IF(IERROC.CE.l)30 Tu 2C EFMP OPEN (DAKE FILE ACCESSIBLE) CALL E XC 0 (2-r, 4 , I Ch’F , 2 , 1,0,1 , I ERRNO) I F (I EPR-’O.GT. ■) >0 TO 2C EF-r.P OPEN (uAKE FILE ACCESSIBLE)CAIJ. 6 X_C (24,4,J KE YOE , 1 , 1,0,1 , I ERRNO)I F(I FRRCfJ.GT .)oh T.j 2C EFMP OPf-K (CAKE FILI ACCESSIBLE)CALL CX.-C (2h ,4, I YEY8V,3,1 , 3,1,1 ERRMQ) IF(I cRR'.O.Gr, ')CC t.I 2C EFRP OPEN (F AKE FILE ACCESSIBLE)CALL E XEC (24,4 , J y^EI IF ,3,1,3,3 , IERRNO) IFdrPR.JJ.GT.OGU TC 2C EFPP OPEN (DAKE FILl ACCESSIBLE)CALL EXEC (24,4,ISUP.JF,1,1,0,3, IERRNO) IF(I ERR'.’O.CT, 0) 30 T(. 2

ST^T (I) = 1I OST AT (I)=1 IOC?- ND(I) = 0 KUEUClI)=0 LAST=1 MEXT=O

IFfU.CE,)GJ TO 1 24 INITIAL I ZE -.ECO ID CC’-’MCN STATEMENT

ILUN=OIL 1 CALL POLLIF(NEXT.EQ.J)GO TC 1031I=MEXTI0RDN= IILU‘J = LUN(I)KUEUE(1)=0

LAST=1NEXT=OGO TO 1JC3C rriT^Y P-'INT JOR ChArjGE 13F TERMINAL. 52 .. 1 1OC3
I' VH
10.8

11-13
C EFMP READ1_16 CALL EXEC(24,6, IKCYS'8, 1, J, IERRNO)1.20 IF (I EPR-\C.GT. u) 3G TO 2I THv = IFI X(FLOAT(I AMj(ISSk(15) ,0003378))/32.* FLOAT(J)) IF(ITHV,LT.l)ITHV=J/2 N=-lGO TO 1-023C EFMP READ1 12 CALL '2XEC(2A, .5, IKEYvV, 1, J, IERRMO) GO TO 1020ll'J? ITYPE=2HC I/O i^RITECALL EXbC(2,K0NV.'D,CUTl,7) GO TO 1.10C I/O RRIFE1. 5 CALL EXEC(2,KONliU,OUT2,18)1010 LI HlT(1,1)=2H riST'-'T= 1 CALL READA CO TO 52021^24 DO 1022 I=1,6,1IF(I IOR:/.,fJR .ST ‘T(I) .EO. DGC TO 1-22 IMIF(?)=2HFj+IIH I T'-(2) =2HTC-+IC EFMP OPEC (.'AKL FILE ACCESSIBLE)CALL EXEC(24,4, 1MIF,2, 1,0,1, IERRMO)I F (I ERPHC.GT.)).,[! TO 2C FFMP OPEN (1 AKE FILE ACCESSIBLE)CALL EXECt 2-t, 4, IHIT-J, 2, 1, i , 2, IERRMO)I F (1 RRRMC.GT. j)GC TO 2 1022 tir-'TIMUE
U2d IHITH(?) = 2HTr + I3RDNIMIR(2)=2EFj+IOROMC EFMP STATUS CALLi»LL =X. C(2'^, 10,2, I.il r.j.P^aSTAT.IERRNO) IF (I ERR j’J.GT, IGO TO 2IF(I STAT(2).FC.1)GO TO 16C EFMP OPOM (MAKE FILM ACCESSIBLE)CALL EXLtC(2^,^, IHITH. 2, 1, . ,2, IERRNO)C EFMP OPEN (f AKE FILE AC . S S I r.L t)CALL CX:C (2-t,4,I OIF ,? ,1,0,1 , IERRHC) IF(I ERRC'O.GF. 0)GG TO 2C EFMP RESET (TO RESET TFF HIGHEST RECORD POINTER FOR A FILEC TO LOUER VALUE)16 CALL EXEC(2-r, G, I-.IF, 2,0, IERPNO) I F (I ERR,-JO. GT .) GO TO 2 IMIF(2)=2HF

I=inRDMKrJHU'D = 32D20'"-2 + ILUNIF(LIU-T(1,1).EJ.2HHE) 1
I F (I TYPE ,-Jt.2HMS. AND. I T Y D E . H E . 2hFP . AN D. ITYP E .N E . 2HVF) 1007, 1UO8 IHITr.'t 2)=I + 2HT0 DO 1013 J= 1,3,1I F I L (J) = I ti I TN (J)IF(I TYPE.EQ.2HVF)1012,1016

GO TO 12 wRIT E (1,3) IEKR.GLI3 FQRf- AT (/"EFrIP ERROR GUMl'ER , 12) PAUSE 5CALL QUCkY1 IF(.J.LT.0)3O TO 1027 i)0 1C28 I = 1,3,11 2H IFILEG(I)=IH1TN(I)I =0C EFMP RESET (TO RESET THE HIGHEST RECORC ACCESSED POPJTERFOR A FILEC TO A LOuER VALUE)CALL EX EC(24,9, I FIT j,2,D, IERRNO)IF(IERRN0.GT.0)2,13291029 1=1+1CALL POLL(I)EX1)C -EFMP READ (TO R-FRIrVE THE HEXT RECORD FROM A FILE) CALL EXECI 24,6,1MHF,I,J,IERRNO) IF{I FROND.ED.21)1027, 10301 3" IF(I [RR\;j.GT. J)2,1-3 11C EFMP WRITE (TO WRITE INTO THE M.EXT RECORD OF A FILE)1331 CALL rX-Z€(2-, P,IHIT i,I ,J,IERRNO) IF <IEPRsG.EU.Rl)1 32,133310'33 IF(I tRR JC.3T. C')2,1029
1uj2 1=1-1CALL POLLCALL COLEWRITE(riUT6C,26) I26 FOR*’AT (16)IDSTATlIORDN)=1C I/O WRITECALL EXEC(2,K0Nt.J,0UT6,41)MSTr1T = 2CALL REAUA CO TO"5200 C I/O wRITE 32 2 CONTINUEC EFMP RESET (TO RESET TH- HIGHEST RECORD
1 -27

56
48

C
3jO

329
112

C I/O
15

139

10 A LO^ER VALUE)CALL EX EC (24, 4, I'-.HF, 2, IERRNO)1 F(1 ERRrjC.GT.3)2,5DO c 1=1,28,1K F IL E F (I) = '.IF(I TYPE.EC.2HVF)111,48NICK CM(1)=3DO 4 J 1 = 2, 5,1NICKNMlI)=2HIF (N.GT.-l 1329,3 30WRITECALL EXEC(2,K(-lHwD,OUT3,7) -CO TO 15CALL CODEWRI 1 E(OUT'fC, 112)NFORMAT(16)KON!WD = D2G2G jC + I LUNWP I T i"CALL EXCC(2,K0M+D,0UT4,16)CALL POLLDO 139 I=1,6,1L INET(I, I '.'RDN) = 2HNSTMT=3

ACCESSED POINTER FOR A FILE

CALL READA GO TO 52 CO

C

c

c

c

c

c

c

Fi\T°Y POINT FOR CHA'jGE OF TERMINAL.2C 3 I CMND = L L’lc (1)IF (ICMNC. I-..;. 2HHE)9,1'31: IF (ICMN5.N.-:.?Hr?nil,2u20 CALL DGLi.EFMP POST (PHYSICALLY ..RITE 00 THE DISC.)CALL EXEC (2-, U, IE;<RMO)IF (I F.RRNG.DT .0) 2,1919 CALL POLL I/O WRITECALL EXEC(2 ,K0NWL',CUT7,14)CALL POLLLINST(1, IORDN) = 2HNSTPT=1CALL READACO TO 52009 CALL POLLIF (N.GT..3 1113,114114 IF (1TYPE.EG.2HVF)8,17I/O v.R ITE .17 CALL EXrC(2,KUNv-D,0UT8,34)30 TO 15I/O .mRITE8 CALL EXEC(2,KD,^.D,00T9,21)CO TO 15113 IF (ITYP2.EG.2HVF)115,116I/O WRITE116 CALL EX-:C(2,K0Nr. D, OUT 10,40)CO TO 15I/O WRITE115 CALL EKEC(2,K0Nm),0UT11, 27)GO TO l.>11 IF (ICM 1').EC. 2l-ri<) 27,282b IF (I0i''3H>.Ls;.2HSE)29,3L30 IF (I TYPE.FG.PHVF)3u,3838 IF (ICM3D.cL.2ii! P)31 ,3232 IF (IC^-.'J.E). 2HuI)33,3454 IF (ICy JJ.E J,2O'jI)3' ,3636 IF (IFRRNC.3T.8.OR.,\.LT.11121,120120 CALL CO.EREAD (LINF,119) 153119 FORf'AKBRl)

IF (ITYPE.E v.2IIVF)lz2,123123 IF (I53(1) .GT .C..C1 0 IB. AND. I 5 3 (1) . LT. J 301 32 F. AND. 153 (1) LAND.153(1).HE. 117R.ANU.I53(2).GT.' X .638.m<D.I53(2) 2124,125125 IF (H.LT.3)126,121121 CALL POLLI/O v-RITECALL EXEC(2,KCNwU,0'JTl,7)b0 TO 1D27 IERRNO=NN=-lIF (lERRNC.ST.U) 276,277
ef':p status i

!E. 3 .0 1UB.LT.CCCG72E)

277
C I /C)1110

256
2j5

0 I/O

CALL EXcC (2^« ,1.'. ,1 , IFILc11),? I F (I crpx-G.gt, ,) 2,25A 1F(L I\'E(1) ,LT. 1) 111'" , 256WRITE:CALL hXEC(2,K0rjWr),CUT4D,3)60 TO 15CALL COUEVjR I T E (OU 13C , 2 5 5) L IN c (10) FORMAT!I 6)IOSTAT(]ORD^)=1WP I T ECALL EXEC(2,KCC'y.,D,0UT13,21)NST.*'.T = 4CALL READA

I,LINE,IERRNO)

C ENTRY POINT FOR CHANGE CF TERMINAL.
d20A CONTINUE276 1=3 M=IAND(ISSkllD),100^003)41 1=1+1CALL POLLC EFf'P REAU (TO RETRIEVE THE NEXT RECORD FRO’-i A FILE.) CALL EXEC (2+,6,I FILEN,I,J,IER2N0)IF (IERXN0.EU.21.0R.:i.NE. IA\u(I SSw(lE) ,10000TB). AND. 1 ,4242 IF (IERRN0.3T.C)2,4d4 3 IF (I T Y 2 r: < l. L • 2 H V r) 4 u 5C EF.-'P READ (TO RET!-’ I-=VF THE NEXT RECORD FROM A FILE.)45 CALL EXEC (2-^ , 5 , ISU L J F , J , 13 F M , I E RRNO)IF (IERkmO.jT.^)2,46‘t 6 IF (I S Ff (1) , 0 T. - 1. A on, i S F ‘1 (2) . 6 T. -1) 5 0,5151 J = ICPS(1SFM(2)) + 10: j K=-ISFM(1)L=2HC052 CALL CODEWRITE (I 50,:,3) J53 FORMAT!1X,15)K = K + l-?3 j CALL CODE WRITE (I49,5A) K54 FORMAT!14)ICO :'■.(4 9) = I0-> (I A,ND! I COM" (49) ,) 3573) ,L)1.0 sd J=14,3,-lIF (I SFi- (J) . \E. 2H)56,5 555 CONTINUE STOP 1 • CALL POLLt.'O mi k=i,^,i Kl=k+1 CUT23(K1) = I4) (K)1111 CONTINUEDO 1112 K=3,J, 1 l; 1 = K +4 OUT23(Kn=I5FM(K)1112 CONTINUEIOSTAT!1ORDN)=1C I/O WRITE-CALL EX-2C(2,KONV.O,OUT23,18) NSTMT=5 CALL READA CO TO 5200

I ERFNO.LT.1)15

C rNTP.Y PUINT FOR CHANGE OF TER.MPIAL.
32.5338

1115
C I/O

GO TO 8.11 = 000 1115 J=22,28,211=I 1 + 1CUT2^t(Il)=G23GA0.811=11+1K=J+21OUT 2 (I 1) = I At; 0 (I COr-'(K), '0" 5 778) 0L»T2A (I 1) =IOR (CUI 24 (11) , 02C?C0B) K=J+32 11=11+1OUT24(Il) = ICOVM (K)I 1 = 11 + 1OUT 24(11)= I SFU(J)CONT INOEIOSTAT(I CRDN) =1.ir.R I TECALL EXEC(2,KCUbO,OUT24, 16) NSTVT=6CALL READA GO TO 52C0C ENTRY POINT FOR CHANGE OF TERMINAL.52C6 GO TO 41340 OUT25(2)=1ANd(IUn^M(49),0C0377B) OUT25 (2) = I OR (OUT 25 (2) , v.25^5^. 6) OUT25(3)=ICU-M(-0) OUT25(4) =1 3FM(3 J) IOSTAT(lORLiX1) = 1C I/O v.RITECALL EXEC(2,K.0NhD,CUT25,4)r^5TMT = 7CALL PEAfJA GO TO 5203C ENTRY Pf ir-T FOR CHANGE OF TERMINAL.5 2u751.. GO TO 41J = ISFV(2) +luC-30K=ISFH(1) L=2HPGO TO 52EFr'P READ (TO Pt-TPIEVE THE NEXT RECORD FROM A FILE.)44 CALL -XCC (2^,6,IMVlHF,J,I5Fv,IERRNO) IF (JFRrJvO.GT) 2, 5L58 ICOf.w(4) =lHi-'IF (I£FH(10) . LT. 3) I C OIVM (49) =1HFIC0'’i-(5)= I ANu(ISF'-M IF (ICCi*-(>_■) .LT .2) IF (ICC:iM(5.) .LT. 3) IF (ICOMNt 5 -) .LT.'t) IF (IC0Mf?(5 .) .LT .5) IF (I CO'-K'(5 ?) . L I". 6) IF (ICO '''I 5C) .LT. 7) IF (ICn:-O'(5).LT.P)

1"), ?74„,B)/256 ICO'-'^ (>•_•) = 1HW I0CMM(5l)=1HN icrj,-iO(5:) = ihm I0(, H’(5'-)= 1HI ICC'-’MJOJ)=1HC ICOr*.'A(5r) =1HJ
IC(r-'-'(5) = 1HOI CO’-’-M (5 1) = I AND (I S FM (11) , D003378)ICOMH 32) = IA-V:(I SFV(11) ,CC074CE)/32 ICO’-.."{5;)=IAND(ISFM(11), 77 C'.L)/512IF (ISFf (11).LT . J) ICnM,-.(53) = ICOMF-(5D)+G0010CBICOMM(5^)=I/\'-tj(I SFM(12) ,C0d73^B)/64IC0""(55)= I4M J(I SF'-,(12) , 74 „B)/2248ICn,3l-'(56)=IANl)(ISF'-'t 12), 330v77P) + 72

cn j =
if (I$FV(J) ,'IE.2h)61,6"oC CONTINUEJ = 1bl CALL POLL IOSTAT I1ORDN) = 1C I/O LPITECALL EXCCI 2,KDNti),CUT26,2) NST?’T=1E CALL RE ADA CO TO 52 COC EIJRY Pi.INT FOK CHANGE l)F TERMINAL.5 2.8 K = 1

65 OUT27(1)=1SFM(K) lOSIATIIORDN)=1C I/O WRITECALL EXEC(2,M')NV,D,0UT27,-3) NSTAT=9CALL READA GO TC 52j"C ENTRY POINT FOR CHANGE CF TERMINAL. 52C9 K=K+1IF(K.GT.J)62,63c2 CO 1113 J = l,2,1 J1=J+A8 OUT 28(J) = I A JU(I COMM(J 1),177rOCB) OUT2?(J)=OiJT2^(J)/255 OUT2E(J) =IU.<(CUT2B(J) ,0200008)1113 CONTINUE Jl=3^ CD 1114 J=4,14,2-J1=J1+1 CALL CODE V PIT EINTEMP,^1 ICOMM(Jl) OUT 28 I J) =NTEi'P

C I/O

(LINE,66) OPD

111-4 CONTINUE39 FORMAT(12)lOSTATIIORJN)=1H STf; T = 1 0CALL FXECI2,K0NaD,0UT28,14)CALL RtADA

u6 FORMAT(-PF6.?) CALL NEW IQ

C ENTRY POINT FOR CHANGE CF TERMINAL 5211 OPD=-1CALL OLDIOCALL COuE

C ENTRY POINT FOR CHANGE CF TERMINAL 521C GO TO 41N=-lCALL POLLWR I TECALL FXECI 2,KONwD,OUT 15,1) 20 55 1=1,3,16 5 LINETII ,IORL"'I)=2Hr.lSTMT= 11 rALL REALA

IF (rpf). LT.). .OR .OPb.DT. 99. o<399. OR. I ERRNO.GT.6) 67,68

C

C

C

C

1

c

68 L=IFIX((iPD)K=L+1O91r.= IFIK((JPu-PLO'. T(L) l*l'"eC. + ,5)tF'.P R-hD (TO RETFI5VF THE79 CALL EXEC (24 ,6 , I KEYS P,,IF (ItKP'iri. ; r.u)2,7171 IF (K.Ew.l)72,7EFOP READ (TO .-h IP I EVE THE

\EXT RECORD1,1,1ERRNO)
MEXT RECORD73 CALL EXFC (24 , c,I KETSF,K,J,IERRHO)IF (lERPMO.3T.O)2,7174 IF (J.Nc. 172,7575 CALL POLL

FROM

FROM

I/O W-?ITECALL EXEC1 2, KHN-,.0,00716, 17)GO TO 1572 IF (J.3T.I175,77EF'-:P READ (TO RETRIEVE THE HEXT RECORD FRO'-77 CALL EXEC (2-^ , c , I SO r, J F, J , I SF M, I ER ROO 1IF (IERkNC.3T.u)2,7e78 J=J+1IF (L.ME.ISFH(l)175,7979 IF (M.HE , ISFVH2 1 172,8080 IF (ITYPE.EC.2HFP181,3282 K=491)0 c3 J = 21,27,2IF (ICFr- (J).LT.?)R4,8585 ICOMi-'t K) =1 SFM(J) + 1C•.;<?
8483

86
33 9

1 16
I /O

GO TO 83I CDFM(K)=0K=K+ 1CALL CODELRITF (153,56) (!COvf,(J) , J = 4g,52, 1)FDP'-AT(4I4)CALL POLLIF (ICW\C.ED.2HPR)338,33911=1CO 1 Uf. 0 = 22,28,211=11+1CUT 29(1 1)=02040 JB

OUT 29(11) = IcCI,M(K)11=11+1OUT29(I 1) = I CFM(GOUT IDUEI OST AT (ICRD'J) =1
J)

'•••RITECALL FX.ECt 2,K0M,.D,0UT29, 17)NST-VT = 12CALL PEADACO TO 5200ENTRY POINT FOR CIUCGE OF TERMINAL.21281

98

30 10 IdJ=I$FM(29)+100uCALL COuEFRITE (149,54) JCALL POLLIF (ICMND.E^. 2HPR) 34’3,98IF (ICM3D.Eu.2Hl; I) 9b, 341

A

A

FILE.)

FILE.)

FILE.)

341 CIUT3C(2) AuO (ICCW (4.)) , 300377B) fiUTj-Cl 2) = I UK ('TUT jC(?) , 020CCUE) OUT2' (3) = ICu) OUT3 J(4)^I5F.v(3 j)
iostak nxuu) =1C I/O WRITCCALL EXLC (2 , KC1NV, l3 v Ot IT 30 v 4) MST?-;T = 1 3CALL REAOA30 TO 52.'?C EUTPY POINT FOR CHANCE GF TERMINAL.L213 CO TO 1533 N=-l CALL POLLC I/O WRITECALL EX_"C(2,K0NV<D,CUT15» 1)DO R9 1^1,E9 I. INET(I , I0Rl>\i)=2HNST?-T=14CALL READAGO TO 52.CC ENTRY POINT FOR CHANCE OF TERMINAL.5214 CII=-1.I?CC'

C

C

C

C

C

CALL OLuIOCALL CODE
REAl) (LI ME, 90) CI I90 FOR:-'AT ("rPD7« C)CALL .N E w 10IF (CI I . LT. j. DOv .OR. CI I. GT .9 99.9999 300 .OR . IERR.NO.91 L = -IUriT(CI I)l< = L + l'.' .N=IL.IMT((CI I+DBLb (FLOAT (L)))* 10000 . D03+, 5DC0)IF (L.tL.j) M=-NJ=1

I/O WRITECALL EXEC(2,KON..D,OUT18, 1C)GO TO 1535 L=IuIS3U(IORDM)IF (ITYP E.NL-, 2HFP) 1 D I SP.\'(I(lRDN) =0N=-lCALL POLLIGSTAK I URDN) =1I/O WRITECALL EXEC(2,KCNFD,0UT17,1)NSTMT=15' CALL READAGO TO 52. •ENTRY POINT FOR CHANGE OF TERMINAL.5215 DO 243 1=1,37,1243 CALL POLLDO 39 K=L,L+99,1EFM3 RlAO (TO RE TRI EVE THE NEXT RECORD FROM A FILE.) CALL EXEC (2-^,6, IFILFM,K,J,IERR*JO) IF (IERRNil.EU.21)93,9494 IF (IERR.NO. CT.0)2,95 EFMP READ (TCI RETRIEVE THE95 CALL EXEC (2^- , c, ISUi.JF, JIF (IERRN0.3T.C)2,227
NEXT RECORD FROM, ISFM,IERRNO) A FILE.)

T. 7)67,91

2219 7

96

296
245

yyy

C I/O

5216ICG99

IF (ITYPE.EU.2HFP)81,97
J = CDO 295 1 = 21,27,2IF (JSF-'(I) .LT, .)24o,96ICO^I't 1 + F) =] SFM (I) + IODOP=M- 1IF (J, GT. 23) ISFI'J J) = I SFM(1 +1)J = J + 2GO TO 245p = M-2IF (J.LT.29) J=I + 1CONTINUECALL COuEWRITE (153,86) (1 CO .0 (J) , J =9 9 , M+2 8,1)J = N--2'I DI 3P'j(I CRD.'j) =11 I SPN (ICRDN) + JIF (IUI SPl!(l(jRD‘.) .GT. ICC) J = J+1 9 3-1 DI SPN (I ORDN) CALL POLLIF(J.LE.j)GO TO 100M = 22I=M+31ITE5T=2-J+2jCiUT33(1) =IA ?J(Il OPP{ I) ,0003778)(JUT2 3(1)=OUT3 3(1)«256 1 = 1 + 1NTEr-’P = I AN3(ICC'D' (I) ,17740GB)*!TENP = N Te-'P/Z 36OUT ?■ 3 (1) = I ()9 (CUT 3 3 (1), NT EMP) \'TEl P = irjR(ICOV?-‘(I) ,-003778) UUT3 3(2) ='1TEL,P+256NTEi'P= I AMU (ISFLJP), 1774 .8)NT E"- o = NTL^P/2 56PUT 33(2)=I03(OUT33(2) ,NTENP)(1UT.3 3(3) = I9..D{ I. F'M) , C--3377B)CUT33(3)=OUT33(3)~2j6f’UT33(3) =1 Ua(CUT33 (<) ,0000408)|.IUT3 3(9) = ?2j137BV=M+2IOSTAT(IORDN)=1UR I TECALL rXL-C(2,K(:N,-.U,0UT33,4)NSTDT=loCALL READAGO TC 5203I F (•■'. GT » IT EST) 1 ',999I F (I 01 5 y \ (1 OP i)N) . GT . 1 0 J) 1C1,3 9r-UT^K 1) =1 A\ (IlOPPI ^9) , ''C03778)
OUTjK 1)=0UT31(1)^?-6
NTEpp=I.'-.i\'D (ICOf-'O (50) , 1774008)UTEVP = 'l IEJ-'P/256
f'UTOK l) = Iur-'. (0UT3K 1) ,NTEf-'P)’•iTE.*P= ICR (I CC '-’I' (9u) , C 0037 78)OUT3' 1(2) =NTEyp-2 56>iTEe’P=IAr!D(I 3CN(30) , 177-rOOB)NTEvP=NTE,-’P/2 55CIJT3K2) = I CP (CU I 3 1 (2) , NT EMP) r-UT 51 (3) =1 AUDI I SFF(:3 O) , 3003778) OUT., 1(3)=GIJT51(3) +2 36GUT31(3) = ICR(CUT 31(3),0301378)

c
I OSTATI IORD\} = 1I/O UR ITTCALL EXEC (2 , KOOV.-D, CUT3 1,3)OSTh’T=17>CALL READA GO TO 52 - "C ECTKY POINT FOR CHm.CGE OF T-RMINAL.>217 CONTINUE39 CALL POLLI DI E P\'(I CRD D =L + 1GOGO TO 1C292 IDISP'K IOP.UN) = 1GO TO 1231C1 I D I E P- ! (I OR D: 1) =K10'3 CALL POLLI OST AT (I ORD!N) = lC I/O WRITECALL EXEC (2»KT.\".Ju ,CUT19,1)NSTMT=1‘3CALL READACO TO 5220C ENTRY POINT FOR CHAN'GE CF TERMINAL.5218 CO 1'9 1=1,37,11C9 CALL POLLC I/O WRITECALL EXEC(2,KO.NkD,OlJT2';, 15)^0 TO 1529 IDI SPN(IORD'4) =1 DO 18A 1 = 1,^, 1189 I F IL E: 1 (I) = I 1HF (I)C cFMP RESL-T (TO R-’SET THE HIGHEST RECORD ACCESSED POP'TEC TC A LUnEX VALUE.)CALL EXEC (29,9, IHT^:, 2, 0, IERRNO)IF (I ERR NO.IT.0)2,1 -PC EFf;P RESET (TU '--ES.T THE HIGHEST RECORD ACCESSED POINTEC TU A LOW EP VALUE.)1^9 CALL EXEC (29 ,9 . P-'HF , 2 , j , I ERRNO)IF(I EP Run.GT.j)2,19 2192 CALL POLLC I/O WRITECAIL FXEC(2,KOUWD ,CUT5,3)92 H=-lDO 138 1 = 1,5, 1138 LINE T(I , lOR'DN) =2Hr!STLT=19CALL REaDA GO TO 5203C ENTRY POINT FOR CHANGE OF TERMINAL.2219 ICPi.C=L INC(1)IF (1 ERRNO.vT.8)126, 1 71C7 IF (ICMNU.EJ.2HI E)U5,lv6luc IF (ICM ?hi 0) 12?, 108K-e IF (NICKf^'t 1) ,NE.')28: ,3?93C9 DO 279 I=1,28,1IF (KFILEF(I).3T.O)280,279279 CONTINUE126 CALL POLLC I/O WRITECALL EXEC(2,KUHaD,OUT1,7)CALL POLL

FOP A FILE

FOR A FILE

30 TD 92C EF^'.P POST CALL EXEC (26 , , IEPPNO)IF (I FRR*\n.GT.u)2,266 266 CALL POLLC CALL SECPF'Jr OSEG2 CALL EXlu(8,N&ML) STOP 12105 CALL POLLC I/O WRITECALL EXEC(2 ,K0NwD,C'JT21,20) CALL POLL GO TO 92122 IF (153 (1) .LT .(> ?0 101E ,0R . 153 (1) .GT. 0 00110B.OR, I 5 3(2) . L T. OOC C 61B . OR1. I 5 >(2) .GT. .,:j.?C71?) 125,127127 GO TO (iy?, 121,132,13d,136,135,135,137) , I 53(1)-ODO 109B131 1=22160 IF (IERRNO.'IE.2.OR.155(2).GT.C000o2!3)161,140 160 K=I5"-M 2)-0uC361oIF (I.LT.22)153,334 334 K=K+1IF (K.GT.l) K=Glo3.J=l167 IF (KFILEFl I) .LT . 1) 163,166166 I.MTF (2) =2HF..+ IORDNC EFKP RtAO (TO RETRIEVE THE HEXT RECORD FROM A FILE.)CALL EX-C(2-,6, r IF, I, r-IFU, IERR.UC)IF (IFRR.XC.GT.0)2,145 163 KFILEFtI)=1LO 12B I ERR.10=1,96, 1128 iriFTK IERRNU)=-1 165 CALL POLLIP (ICM'lJ.NE. 2HY1) 317, 326 326 I ERR C'0= I + •47 3IF (ICO^-'U III AG R) .31 . jC 2 3713. AHri, (IH IFD(1) .3T.-1 . AN', . 10 IFD (4) .LT. G l.OR. IERkHD.EG. ICC:py(IFI'!3R + 5).CR.IERRN0.FC. ICGM'M IFiNGR + 12)))315,3 226326 IF (ICO L’K IFrJGR).GT.009/'713)327,323
3 27 I MI FC(6)=■317 IF(IMIFD(J).EC.-1.C:R.I.3E.26)GO TO 5220 IDSTATtIDRDJ)=1C I/O WRITECALL FXEC(2,K0i^L,C'.JT32, 13)NSTHT=2v CALL P.EAUA GO TC 520"C I/O hRITE5 2 20 IF (I .HE.2.OR.J.GT. 1)273,332332 DO 333 K=2,9,l333 IMIFC(K)=-1276 IHIFIX J) =LriE(J)J = J + 1IF (LL'IE(J).CT.-1)276,275 .273 II'IFLH J) =KIF (L.'Jl.-l) I MI FD(J+ 1) =LIF (M.Mt.-I) II’I FIJ(J+2) = m275 IMIF(2)=2HF .+IORDNC EFMP WRITE (TO WRITE I'.TO THE HEXT RECORD OF A FILE.)

253173131
] 6C I/C
148

CALL E<rC(24,8, IVIF, I,]•-' IFD, IERRNO) IF IF I F I F .NE.0009613)141,146CALL POLLv. R IT ECALL EXbC(2,KON'AU,OUT15, 1)UO 148 1=1,7,1LIMET(I , ir]RjM) = 2i1NST6’T = 21CALL REAUAGO TO 5200
c entry point for change of terminal.3 221 IF (I ERR',0.iM_.6.AVJP. 1 ERRNG.NE. 13) 141, 149149 00 150 1=49,55,1150 IC9MM(I)=-1CALL CCCEREAD (LINE,151) (I CL1 v M (I) , I =49,5 5,1)151 FDRMAT(312,Al,312)

I = 49J = 5 9K = 51155 IF (ICrr-1Y(I) . LT. 1. CK. I COMM (I) . G T. 31 . OR . I C O'"1 (J) . LT. 1 . OR . I COM M (J) . G IT. 12 ,CR . ICO (K) .LT . 72.0'9 . I COMM (K), GT. I YEAR) 14 1,152152 IF (lERPNO.LT.13.CR.I.GT.49)153,154154 IF (IC^HMl 52) .N,:. 1H ,) 141,156156 1=53J = 54K = 55IF (IC9NM(51) .GT. ICr-MM(-,5) .02. I COMM (51) . EQ. TCCMM (55) . AN::. 1) .GT .ICO'0-1 (54) .f)R, JCOMMI) . EC. ICCjM'1 (54) . AND . I COMM (s 9) . GE 2)1)141,155153 1=22K=IOP (ICR (2 348# I C0‘';0 (50,64# I C M (4 9)) , I C 01"-' (51) -7?)L = KIF (IERRNO.31.6)999>7,28799997 L=lJR(ILk(2j48*1 CONY(54) , 64#ICO^M(53)),I COMM(55)-72)287 J=2GO TO 147132 IF (IFR.h<NO.;\'E. 2. OR. 153(2). ME. 000-0618)141,157157 CALL POLLC I/O V.RITECALL E XE C(2,KONDD,CL T15,1)LINE T(1, inRl?Li) = 2HNST('T = 22CALL PEADAGO TO 52 COC ENTRY Pr-INT FOR CHANGE JF TCRMINAL.

C I/O WRITECALL C-XcC (2,K0NWD,0UT18,10)CALL POLLIFIN.LT. ■)92,15

1222 IF(IERRNC.NE.2)141,158158 1=21CALL CODEREAL' (LINE, 159) K159 FORMAT(12)IF (K.GT.-l.AND.K.LT.IYEAR+2>178,141141 CALL POLL

(ICONM(50.ICCNM(53

186

133177

179
is;183

181C I /□

IF (IER<N0.GT.3) 141,177CALL OLuinCALL CODEREAD (Li DE,186) KFDRy.ATt 1 X, I 2)CALL ME^IDIF (K.L I.1.OR.K,87.67)141,179Dfi IPS J = 1,15,1IF (K.Eu.I'iAKE.'J J) 1181,180 CONI LNULI =21IF (L.LI>1) L =- 1DO TO 163CALL POLLWRITECALL FXECt 2,KDNi-.D,OUT15,l)LINET (1, IORd.N) = 2HNSTVT=2ACALL READAGO TO 520?C ENTk'Y point FOR change OF terminal.5223 IF(IERRNO.GT.2)141,182182 CALL CjLuIOCALL CODE
RLAl:- (LINE, 159) LCALL 'IE w 10IF (L.LF.' .OR.L.GT.IMAKEiN(J)) 141, 183134 IF (IERK.NO.3T.3) 141,162162 C ALL OLD IOCALL CODERE-Au (LINE, 186) KCALL NEWIO
1 = 2-.)
IF (K.LT.l.OR .h.bT. 1- 1141,178135 IF { IFR!-N0.3T .7.UR. 1FPRN0.E0.4) 141, 164164 IF (IERR-ICi.bi.3) 165,166166 CALL OLD IOCALL COuEREAU <LI.\E,186) K CALL NEWIOL = O167 1=2'IF (K.LT.1.OR.K.GT.1?.) 141,16316 5 CALL COi'EREAU (LINE,-) K,LIF (L,LI . 1 .08.L.GT,1?)141,lo7 .136 1=19GO TO loO137 IF (IERRNiO.nE.2.()R.Ic3{2).NE.G-:061P.)141,168168 CALL POLLC I/O WRITECALL EX EC (2 , K ONv.L , OUT 1 5 , 1) CO It9 I = 1,3,1169 LIMETd , IGRlR‘)=2HNSTM.T=2^t CALL READA GO TO 5200C ENTRY POINT FOR CHANGE OF TERMINAL.3 2 24 JF(I ERR ,u,GT.E)1^1,17"170 CALL COuE

REAU (LI'iE,17l) (ICUMM(I) ,)171 F9R AT(LRl)l***5

i ’ i f212 L=I53{5)-CC3:.'6CbIF (L , LT . 1 . OR . L . GT » 5 . OR , K . Eu .L . OR . I 5 3 (3) * NE . 153(4))141,215190 IF (IFRRND.-JE.2.0R. I 53(2) . NZ . COOOAld) 141,216216 CALL POLLC I/O k'RITECALL EX£C(2,KON',-D,f?UT15,l) [;0 217 1 = 1,3, 1217 LINLT(I, IGRuG)=2HMsrr;T=2-: CALL READA GO TO 52C ENT»Y POINT FOR CHANGE OF T-R^INAL,.5 225 IF(I 5 3(D.EG. Ou .134I-) 191,22622b IF (IERRl'iO.;ME.2.AND.IER"-NiO.NE.5) 141,218218 IF (IERKNO.mT.2)219,220220 CALL CODEREAL' (LINE, 159) K L = K224 IF (K.LT.1)141,233233 IF (I53(1).LT.0301068) 221,257257 J=13235 1=2GO TO 147221 IF (K.LE.IYEAR.AND.L.GT.IYEAR)141,335

LO 1 7^- 1 =^9,5,4,1IF (ICDHM(I).NE.OC3j77B)175,174174 CONTI*'llJL"00 TO 141175 DO 3 31 1 =49,1 r:RRNC+4 8,1IF (ICO” 1(I) . LT. CCCOfcOB.OR. I CG.M”(I) , GT. 700 37 IB. AOD. I COW (I) .LT. <300 IK IB.A'k,. IC0W(i) .ME . . j. j773 .fjR.lC0'1.,-,(I) .GT.l . ' 132B) 141,331331 COMTINUt1 = 2 3172 K=ICOMOfI+2o)GO T C 163176 IF (K.EO.J677B) KFILEF(I)=O1 = 1 + 1IF (I.GT.28)142, 172124 IF (I53(1).LT.ujOlllB) GOTO (138,189,190,190,192,1)0,194,189), 15 1 3(1)-T3 j 120699999 IF (153(1).GT.-. ,1173) GO TO (2 1,2 2,2 3,2 1,2)2,2 2,2 1,2 2,2j9, 1219), I:,3(1)-C0:117t'9)998 GO TO (196,197,198,1)9,198), 153(11-0031118188 1=1GO TC 160189 IF (IERR00.-ML.2. AND. IERRM0.GE.5)141,2U211 K = I~3(2)--9C 3 "'60BIF (lERR'MO.GT .2) 212, 187187 L=-2215 195 242 178
IF (K.LT.1.OF.K.OT.5)141,195 IF (153(1) .LT.C, 11 8)214,242 1=3J=3GO TO 147

OR I 53 (D.iNE.I

33 5225 IF (K,GT.IYcAR)336,225K=IYFAR-KL=IYEAR-L337 J=4GO TC 222336 K = I YEAR-K-HOO L=IYFAR-L4-1, GO 10 337219 CALL COuEEE Al* (LIME, 22 3) K,I,L223 FORMAT(12,Ml,12)IF (I. NL. 11-:,. OR. L. LT. 10. OR. F. GE. L 114 1,2 24191228 IF (I ERR MO. it . 1. AMD. I ERF MO.. ;E. 3. AMD. I ER.RNC. N E. 5) 141,22 8CALL COuEREAD (LIME,22^) (I C'j^F (I) , I =49, I ERRM0+4 8 , 1)229 F0RMAT(5Rl)L=-2M = -3
IF (IER'RNO-3) 23?,231 ,232232 M=ICOMI'(53)-: ■';€ 2 bCBIF (ICnMvi(52) .ME. V",. ' 543.DR.M.LT. j.JR.M.GT. 5) 141,2312 31 L = ICCVM(51)-jOC'C6?PIF (ICO, <M(5,)) , j:.C0??54?.0R. L. LT. C'. OR. L. GT . 5 . OR. L . EC . M) 141,23023. K= ICO'-’M {‘.9)- ? 6" 8IF (K . L T . 0 . OR . K , GT . 5 . OR. K . EQ . L . OR . K . EQ . t‘) 14 1, 129129 1 = 8GO TO 16319224 8

2dO

IF (IFRRN0.GT.7.OR.IERR00.E0.4)141,248 IF (lERR.JO.ul .3)249,250CALL OLiaCCALL COuEREAD (LINE,186) KCALL '''HC2 >1 252 2 602 59 278

IF (K.LT.1.OR.K.GT.33)141,252J=1IF (K.GT.5.A ND.K.ME.8.A ID.K.ME.14.AND.K.ME. 19)258,259IF (K.GT.4)282,278L INC(J) = 5J = J+1GO TO 2582622o5 IF (K.GT.5)263,265DO 2 64 I=1 ,4,1LINE(J)=I264 J = J4 1GO TO 258263267 IF (K.3 I. 14)266,267L INE(J)=K-2J = J + 1GO TC 269266 DO 268 1 =15,1 7,1
linl:(j) = i2682 59 258
J=J + 1K = K-1LINE(J)=KK = LL=-lJ = J+1IF (K.GT.-1)260,261261 L INC (J) = -lIF (J.LT.4)271,272

272

249

2 7 C271

237

1942 360 1/0

1'0 273 I = 1,J-2,1DO 27 r-I+1,J-l,1IF (LINrl I K) . FC. I. INE (I) ./v'JD.L IME (K) . 3T 1) L IN E (K) =1 I ?JE (K+1) CONTINUE^J=1GO TO 235CALL CODEREA:.' (LICE,*) K,LIF (L .LT , 1 .03 .1 .GT. 33.0>< .K.EL?. L) 141,251IF (.2 .OR . 153(2) .NE .C3G0613) 141,236

CALL FXEC (2,K[)Nv.D,0UT15, 1)DO 237 1=1,4,1LIO.:T(I , I0RD\')=2HNS TF- T=26CALL REALAGO TC 5260C ENTRY POINT FOR CHANGE OF TERMINAL.
d 2 2623824 0
193241
23 9

1972ti6
2 88 2 CO
198199 2 31 289
323 291

IF(I ERR ,0,LT,2.C <.IERRNO.GT.7.OR.I ERRNO.EO.4)141,238 IF (IERRNO.OT.3)239,240 CALL COLERE Au (LINE,-^) KL = KIF (K.LT.1)141,241 1 = 3 GO TO 163 CALL C0uc READ (LINE,--1) K,L IF (L.GT.K)193,141IF (1FR.<NCI. IE. 2 .AND. I ERRNO .N E . 5 . AND . IERRN0.NE.8) 141,213K = I 53 (2) -C0.K C.'.-CIF (IFRrNO.GT.2)281,314L=-ZM=—3IF (K.LT . l.iJR.K.GT. 9. OR. K.EG.L.OR.K. EQ. M) 141,283 1 = 4GO TC 163I =1 53(5) -OOJ."i6GLIF (IERRNO.GT.5)284,316
r.=-3
IF (L.LT.l.OR.L.GT.9.0R.L.E0.M.0R.I53(3).NE.GOO)54R.QR 1001128)1^1,2420= 153(8)- :<_ . . 6, LIF (^.LT.1.02.N.GT.9.OR.I 53(6).NE.000054P.OR.I 53 i 7).NE 1,285IF (I ERL! NO. NE. 2. OR. I 53 (2).GT.C?jO62 3) 141,28 61=5K=I53(2)-GOjuCOhIF (153IF (153 (1) - C- C (1) .LT , 1148)163,287,2881163)178, 2v<'J=4GO TO 147IF (IERRNO.NE.2.08.153(2).GT.CC 10633)141,286IF (IFRRNO.NL.2.OR.153(2).GT.CD 30648)141, 286IF (IERRNO.NF.2.AND.1 ERRNO.NE.5)141,289K = I 5 j(2)-8 J.vjcuLIF (IERkNO.GJ ,2) 29'-, 3 23L=-2IF (K.LT.1.or.K.GT.-t) 141,292

I 53(4).ME.0
0031128)141

2'32 IF (I53(l)-„ 1236)293,29^,295295 1=3
294 I=6GO TO 296293 1=6GO TC IB290 L = I 53(5)-00 Ji)606IF (L.LT. 1.CX .1 .GT. ^.OR. K.EO.L.OR. I 53 (3) . NE. •9000 54 6. OR. I 53 (1) . NE. I153(4))141,291232 IF (IERR00.G2.2.0R.I53(2).GT.C0')064B)141,204204 K=I53(2)-Ou^96C5IF (153(1).GT.. "1213)2 7,2^5205 1=6GO TO 178207 1=7IF (153(1)-:. 125P)163,2R7,178203 IF (IERPN0.GT.2.0R. Id3 (2) . \'E .000061 3) 141,298298 K=11 = 6GO rc 2002C9 IF (IERR9O.3T.2.OR. I 53 (2) .\'= .v0-30613) 141,299299 CALL POLLC I/O 'a RITECALL lXEC(2,K0NaD,CUT22,1)co ::c i 1 = 1, v, i3.1 LINET(I, I0RJ\) = 2H:\STfiT=27CALL REAJAGO TO 5?300 ENTRY PGI'.'T FOR CHANGE GF TERMINAL.-22 7 1 F(I ER9 CJ. 31 . L.) 141 ,3 023 0 2 IF(NICK-G-i(1) . CJ.CJGO TO 5228I OST AT(IDN) = 1C I/O WRITECALL EXEC(2,K0t!W,D ,CUT?2,13)NSTMT=26CALL READA

C I/O52283 0 3
21‘2C6C I/O
2 0 8

CO TO 52 COWRITEJO J-3 I=l,>, 1NICKN’M I) =LI''1E(I)GO If: 1^,2IF (IERRNG.GT,2»OR.I53(2).NE.OCCALL POLLHR I T ECALL FXFC(2,KON>.U,OUT15, 1)DO 208 I=1,9,1LINET(I , IC!RuN)=2HNSTMT=29CALL READA30 TO 52 COC ENTRY POINT FOR CHANGE OF TERMINAL.5229 ICO* ’'.(55)=-lI COMM(61)=-2

.615) 141,2-36

ICO^Mf 67)=-lI COM,:/(7.•,)=-!IF (IERPN0.NE.5.AND,IERRNO.NE.ll.AND.IERRNO.NE. 17)141,234 234 IF (IERRNO-11)2?7,305,3u6

3 06 CALL CO1./EREAD (LINE»3 3C7 FDR?-AT(17R1) 7)

321

(ICI) , 1^49,65,1)
1.■'.C . C . 3.OR,1COMM(I), GT. 0n71B.AND.ICQVM(I).NE.000

IF (ICO •■!•■(6) .NE.CC", 73". .DR, I CO-r-'(62) . NE. C-rv'‘543. CR» IC0'1.''(61). LT.O 1 TOOoCR.OR. (51), GT . J3'?J7 IB. AND. IC (e 1) . N E. 0 CO . 7 7? .03.1 CONI'(6 23) .t€. Cu 00 7 7'2 . A’-J. I 201'1'(64) . E Q . 00 ,)j 7 7 3. AND. I CONN (65 1 .EG. 00 00 ?"iP.) 14 o i, 3 :■«3.. 5 C ALL CODEREAD (L1NE,3?9) (I CONN(I),1 = 49,59,1)309 F9R6AT(11R1)3-. 8 i.)0 125IF (ICOFF (I) . LT . 0390608. OR. I CCN.M (I) . GT . G0C07 1B . AN D . I COMO (I) .Nt. 000 Lv77P)141,325325 CONTINUEIF (ICO •<?(54) .NE ,03 373 3 .OR. ICO.NM(56) ,NE . 000054R . OR. I COM*-* (55) .LT. 0 1C0C5CF . CJR. I COV.V (55) . GT . v 3037 1 H . AND . I COM?’ (55) .NE . 0-30.) 77P .(>R . I COMN (5 27) .lQ.0v3377B.A'<D. ICO’-'Mt 58) . EG. GG3377B. AND. I COMM (5 9) . ED. 330 377 8) 1431,31..297 CALL CODEREAn (LINE,311) (I COMM(I) ,I=49,53,1)311 FOR,-AT(5R1)310 DO 3 22 1=51 ,d3,1IF (I C (I) . LT. 330.638. OR. I COMM (I) . GT . 00007 18 . A 1D . I COMf' (I) .ME. 000 13778)141,322222 CONTINUEIF (I CODM (53) . N-.03- C54-" .PR. I COMP (4 9) .EG. I CO MM (5 5) .OR. I COMM (49) . EQ 1. ICCr'I’t 1) . 3R . U0MM(55) . pa, 1 COM.V (61) . OR. ICn,-,M(49) . LT . ?0 2 ' 6 0 B . OR . I C 2nMM(49).GT. ■ ■. 7113. AND. I CONN (49) .NE . " ' ? 7 73 . OR . I C 0 (5 1) . E 0. j-3 " 773 3, AND. I (. OMR (52) .EC. 3 3 30 7 7F;. AND. ICOMM (53) . E0.u00'3 77 3) 141,31231.2 IFI’.'GR = 49320 1= ICUMMt IFING!!)-vCC 478IF (I.GT.18) 1=0K=ICCN.M(I F I '!OR+Z)-9003608L=icoy.:-(ifingr + 3)-c"006jbM=ICCVM(IFImGR+“)-O. J'-ul'BGO TO 163315 IF (ICntiM IFI NGR) .GT. 0030713. AND. I .LT.18)318 ,319219 IFINGR=IFINGF'+6IF (IFIN3R.GT.61.GR.IC0MM(IFIKGR).LT.3)142,320318 1=1+1GO TO 1h7

END

C THI3 STATEMENT DIRFCTS PROCRAM EXECUTION TO APPROPRIATE ENTRY POINT C AFTzR CONTROL HAS BEEN SWITCHED FROM ONE TERMIMAL TO ANOTHER.5230 CO TO (52G1,d202,52C3,5204,5205,52C6,52 7,15236,52„ 9,52L , 5 211,5212,521 3, 5214, 5215, .5216,5217,15218,521 9,5220, ;;221,5222,5223,5224,5225,5226,5227,5228,
C *>4 n* -*1* a- 4' 4* *1* • ' *1* *.• •r* n* a* • - 4* *- *■* *r* -v •<* *v- *»* -r* *r 3r ■,c *** -v* *?■ -i* *<' -r* -r* *r -r 4* SUBROUTINE RE ADAC lA-ir.-ir-'.- Jj: jp i.Y: y * * * v y * * -> * * * ■$,: *
C PROuESS SCHlOULc^ R'JLTINE.INTEGER STMT,LImE(36),KOMON(128),NFLAG(6)COMMON 1 COMM(128)COMMON LINET(36,6),LSTAT(128,6),STMT(6),KUEUE(6) NEXT,NSTMT,LAST

1, MP,YT ES (6), lUSfiTC 6) , ICCvNl)(6) EC'Ul VALE'JCr (I O' /1‘U 1), KOMON (1)),(ICOMM(57), IORDN) ,1(icur-'t 65) ,ir;E (1)) , (Knm?,) , IFRRMD) "IFLACJ K2!.,'n = IGSTAT(11. JRU N)STMT(I OR DN)=NSTMTI OC.'-.NDt 1 CRDN) =11 CALL POLLIFIUFXT. EQ..') 1,22 N1=C'EXT QEXT=-1 ‘JST:'T=ST*'T(i\L)IF (:STMT .\E.19.rR.L IN ET (1, N 1) .ME. 2HOO) 5,66 l'O 7 11 = 1,6IF(S TMT (I 1) .GE. -t. ANU. ST’- T (I 1) . LE . 1 0. OR. ST^T (11) . EQ. 1 2 . CR .’-STMT (II) .EQ. 13)F, 78 I OSTAT(ND =1 CO TO 17 CONTINUEC SkAP KOI GN AREA ,5 J 1=1 ORDNi)O 5 I 1= 1, 128LSTAT(IL, JI) = KO,,ON(II) KOMC'Ni I 1)=L6TAT(II,ND3 CONTINUEC I ERRN’O=NBYTES (Ml)IF(NFLAC,(IORL'N) .EC.l }G0 TO 10[0 I 1= 1, 36, 1 LINE! I1)=LINET(I 1,IORDN)4 CONTINUE10 RETURNEND
Q w * V * * -V * * 3- * * * * T: " V — * * « # X« A V A v * * * * * * * * * " *SUPROUTINE POLL
C TRAFFIC CONTROLLER ROUTINE.INTtCL-R 5TM1 ,LL:,'(6)COM'- L’N I CGR’< (123)CO^’TN L I NET (3 6,6), L STAT (128 , t>) , S TMT (o)',KUEUE(6) , ME X T, N ST^ T , L A ST 1 ,NEYTES(6) DOST -T(6) , IGCMNL'(6)ECU I VALENCE (IC< MM(E7) , L UN (1)) , (I CO ^IM (5 C-) , I LUN) , (I COM M (5 7) , lIORi’N)

C I/O4
6C I/O7

IF(60 XT
J 1 = I 1 +1KUEUEfII)=KUEUE(JI)CONTP'UEKUEUE(6) =0LAST=LAST-1UO 10'3 11 = 1,6,1IF(LLf-l(I 1) .LT. 7) ICO, 4STATUS CALLCALL EXEC(13, LU.'H II) , J 1, NBYTESt I 1))IF(JI.LT.0)1.TO,5IF (ICSTATt I D .MH. 1)6,8IF(ICCMOD(II) .EL.1)7, 1C,READ CALLCALL EXlC(1,LUM(1 1) + 0204008,LI MET(1,11) ,-72)ICSTATt U) = l

R r-n 9 J 1= 1,LA5T, 1IF(KUFUE(J 1).EQ. Il)K,99 CONTINUE.KUEUEdA ST) =1 1LAST=LAST+1I OST AT(11) = J10 lOCf-NDd 1)=DICO CONTINUENEXT=KUEUE(1)RETURNENDENDS

