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Abstract 

With the boom in shale plays, rate transient analysis has become the most 

important tool for the analysis of shales. Due to low permeability of shales, wells remain 

in a transient flow regime for long times (months or years) and even after several years, 

boundary dominated flow (usually from complete fracture interference or actual 

boundary) may not be observed. This prolonging of transient flow also prolongs the 

transition period between the end of linear flow (primary or compound linear flow) and 

the onset of complete boundary dominated flow, thus becoming a flow regime in itself. 

This study will develop an analytical model for the transition flow regime. We 

expect that it will be influenced by the spacing, length, and lack of uniformity in 

hydraulic fracture characteristics in horizontal wells with multiple fractures. Inflow from 

unstimulated matrix beyond the fractured region will also influence the characteristics of 

this transition flow regime.  We will call this flow regime the transboundary flow regime.  
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Nomenclature 

A2r
2n = Mathieu function Fourier coefficients  

B= formation volume factor, bbl/stb 

Ce2n= Radial Mathieu function 

ce2n = π-periodic Mathieu function 

Cr= Dimensionless fracture conductivity 

Ct= total compressibility, psi-1 

ε = Radial elliptical co-ordinate 

ε0 = Elliptical co-ordinate for boundary 

Fek2n= Radial Mathieu function 

h= thickness of the reservoir, ft 

k= permeability, md 

kf = fracture permeability, md 

m(p)= Pseudo Pressure, psi2/cp 

η= angular elliptical co-ordinate 

p= pressure, psi 

pD = dimensionless pressure 

pD
- = dimensionless pressure in laplace space 

pi= initial reservoir pressure, psi 

pwD = dimensionless wellbore pressure 

pwD
- = dimensionless wellbore pressure in laplace space 

Q,q= flow rate, bbl/D, Mscf/D 

qD = Dimensionless flowrate 

qD
- = Dimensionless flowrate in laplace space 
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s = laplace paramtere 

t= time, hrs 

tDxf = dimensionless time 

µ= viscosity, cp 

wf = fracture width, ft 

x= Cartesian co-ordinate, ft 

xf = length of fracture, ft 

xe = distance between two fractures, ft 

y = Cartesian co-ordinate, ft 

yD = dimensionless Cartesian co-ordinate 

yeD= dimensionless Cartesian co-ordinate for reservoir boundary 

ϕ= porosity 
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Chapter 1 : Introduction  

The recent downturn in the petroleum industry which is the result of 

increased supply of oil and gas, has been attributed to the boom in shale 

exploitation. This started due to increased energy demand worldwide which also 

led to continuous advances in drilling and completion techniques for the 

exploitation of unconventional reservoirs. Unconventional reservoirs are those that 

cannot be produced at economic rates without massive stimulation jobs or other 

recovery processes like steam injection for heavy oil reservoirs or actual mining 

for tar sands. SEC’s (Securities and Exchange Commission) defines 

unconventional sources as “sources that involve extraction by means other than 

“traditional” oil and gas wells. These other sources include bitumen extracted from 

oil sands, as well as oil and gas extracted from coal and shales, even though some 

of these resources are sometimes extracted through wells, as opposed to mining 

and surface processing” (SEC,2008). 

This study focuses on analyzing rate and pressure data from shale 

reservoirs. Shales are sedimentary rocks composed of fine grained sediments. 

Typically shales are source rocks which act like primary kitchens of oil and gas 

supplying it to a reservoir rock (e.g., sandstone or limestone), but due to the 

advances mentioned above it is possible to produce from them and thus act as self-

sourcing reservoir rocks. Due to the ultra-low permeability of these reservoirs, it is 

difficult to produce economically from it using conventional methods. Recent 

advances in drilling and completion technology have allowed commercial 

exploitation of shales. Horizontal wells completed with multiple-fracturing stages 
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are the most widely used method for exploiting shale reservoirs. Multiple fractures 

help to compensate for the ultra-low permeability of these reservoirs. Therefore, 

development of analysis methods for analyzing production data from these wells 

has gained tremendous attention in the last decade.  

1.1 Motivation 

The most important thing for an oil company is to determine how much 

they can produce and how fast they can produce. To know that, it is critical to 

predict what the production rate is going to be in the future, how and how much is 

the reservoir pressure going to decline and what are the properties of a reservoir. 

All the above things could be predicted if we could identify and predict the flow 

regimes. The other challenge is to find a reasonable completion and drilling 

scheme in these reservoirs in order to achieve best economic result. Therefore, 

there is a need to develop methods which help us to identify, interpret and predict 

flow regimes for multiple-fractured horizontal wells. In the last decade, there has 

been a lot of research to develop methods for analyzing the performance of these 

wells and quantifying reservoir and hydraulic fracture properties. As a result, 

significant advances have been made in the development of different methods for 

rate transient analysis. As discussed by Clarkson (2013), the analysis methods that 

have been commonly used for shale reservoirs can be categorized as follows: 1. 

Straight Line Methods 2. Type Curve Methods 3. Analytical and Numerical 

Simulation 4. Empirical Methods 5. Hybrid Methods  

The use of multiply-fractured horizontal wells is expected to create a 

complex sequence of flow regimes (Chen and Raghavan, 1997; Clarkson and 
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Pederson, 2010). The proper identification and interpretation of these flow regimes 

is necessary for obtaining information about the hydraulic fracture stimulation and 

the reservoir. Thus it is of paramount importance to construct a model for 

transition between different regimes for which no analytical solution exists till 

now. 

1.2 Problem Description  

In conventional reservoirs wherein pressure transient testing is performed 

the transition regimes last for a short duration (minutes or hours) making their 

analysis difficult and futile. While in unconventional reservoirs the transitions 

could last for days to years, which means without any model for them one would 

have no understanding of what is going on during such long periods of time. It also 

restricts one’s ability to predict what would happen in future. In some of the older 

shale plays (e.g., Barnett) one can observe wells being in transition flow regime 

and with lack of an appropriate model the only thing that could be done is to fit 

empirical models. 

In this thesis an attempt has been made to solve this problem and solutions 

have been provided in forms of analytical models. 
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1.3 Objectives 

Below listed are the objectives of the present thesis: 

a. To identify the flow regime between the end of primary flow and the 

onset of boundary dominated flow 

b. To develop an analytical model for this transition flow regime  

c. To develop a better way to determine flow regimes with new type curves 

1.4 Organization of Thesis 

The thesis is divided into 6 chapters. This chapter, Chapter 1, is the 

introduction and contains the motivation behind the study as well as the 

background to the study.  

Chapter 2 presents the literature review related to the present thesis 

Chapter 3 and 4 are the most important chapters in the thesis. Chapter 3 

discusses different types on transitions and elaborate the combination of regimes 

that give rise to that transition.  Chapter 4 presents the analytical solution for the 

transitions. 

Chapter 5 deals with analysis of the presented analytical equation on 

simulated data 

Chapter 6 discuss the application of the analytical equation on field data 
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Chapter 2 : Literature Review  

2.1 Well Testing in Hydraulically Fracture Wells 

Well testing is conducted to determine properties of the reservoir like 

reservoir permeability, skin, reservoir volume, reservoir pressure, determine 

boundaries and faults etc. It is primarily conducted by changing the flow rate of the 

well by closing a flowing well or an injection well respectively for buildup or 

falloff test or by producing well at a constant rate for a drawdown test. This change 

of rate creates a pressure disturbance in the reservoir which can be measured from 

the same well or an adjacent well in form of interference testing. Below is list of 

some of the well tests that exist: 

• Drawdown test: In this test we aim to produce at constant rate while 

measuring the bottomhole pressure versus time. Most of the time it’s unsuitable to 

use drawdown test data.  

• Build-up test: In this test we are shut-in the well, thus flowing at “zero-

rate” while measuring the bottomhole shut-in pressure. The well needs to be 

flowing for a sufficient time before it could be shut in. 

• Injection test / fall-off test: In this process fluid is injected which lead to 

increase in bottomhole pressure till the fall-off period and shut-in operation is 

performed.  

• Interference test and pulse test: The pressure is measured in a shut-in 

well which is adjacent to a producing well. This test is conducted to determine if 
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the two wells are connected in the reservoir or if there is a barrier between them. 

For pulse testing, the active well is opened for production with a number of short 

flow and shut-in periods, the recorded pressure vibrations are analyzed in an 

observation well. 

In shale wells conducting a pressure transient test is unfeasible as the wells 

stay in transient for years so rate transient analysis is conducted instead. 

Based on the test data, flow regimes could be identified. Below is the list of 

flow regimes typically seen in hydraulically fracture wells. 

Bi-linear flow: A bi-linear flow is observed when fracture linear flow and 

formation linear flow exist together i.e the influence of formation linear flow could 

be seen on fracture linear flow. This is possible only if we have finite fracture 

conductivity. Bilinear flow was identified by Cinco-Ley and Sameniego (1981) by 

using the solution given by Cinco-Ley et al(1978). Cinco-Ley et al. (1978) in turn 

extended the solution presented by Gringarten et al. (1974) to investigate 

hydraulically fractured vertical wells with a finite conductivity vertical fracture. 

The equation for Bi-linear flow (Lee, 1989) is 

and 

 

 

𝑝𝐷 =
1.38

√𝐶𝑟
𝑡𝑥𝑓𝐷

1
4   2.1 

𝑡𝑥𝑓𝐷
𝑑𝑝𝐷
𝑑𝑡𝑥𝑓𝐷

=
0.345

√𝐶𝑟
𝑡𝑥𝑓𝐷

1
4    ,  2.2 
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here 

 

and 

 

It can be seen from equation 2.2 that a log-log plot of pressure derivative vs 

time should exhibit a quarter slope when bi-linear flow exists. Generally bi-linear 

flow occurs during very early times and in most cases may not be seen at all, as it 

could get masked by wellbore storage and skin effects. 

 

Linear flow: Linear flow exists when flow from the reservoir goes into the 

fracture when fracture has infinite conductivity. The equation that would represent 

linear flow (Lee, 1989) is given by 

and 

𝑡𝑥𝑓𝐷 =
0.0002637𝑘𝑡

𝜙𝜇𝑐𝑡𝑥𝑓
2   , 2.3 

 

𝐶𝑟 =
𝑤𝑓𝑘𝑓

𝜋𝑘𝑥𝑓
 , 2.4 

 

𝑝𝐷 =
𝑘ℎ (𝑝𝑖 − 𝑝)

141.2𝑞𝐵𝜇
      . 

2.5 
 

𝑝𝐷 = (𝜋𝑡𝑥𝑓𝐷  )

1
2
  2.6 

𝑡𝑥𝑓𝐷

𝑑𝑝𝐷
𝑑𝑡𝑥𝑓𝐷

=
1

2
(𝜋𝑡𝑥𝑓𝐷)

1
2
    . 2.7 
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It can be seen from the equation 2.7 that a log log plot of pressure 

derivative vs time should give a half slope. Gringarten et al. (1975) presented type 

curves to analyze transient pressure behavior of infinite conductivity hydraulic 

fractures.  

 

Elliptical Flow: Elliptical flow exists between linear flow and pseudo 

radial flow. Amini et al., 2007 gave analytical solution in laplace space for 

hydraulically fractured wells. But no solution in real space exists. This thesis has 

derived an equation for elliptical flow in real space. 

In all the above cases the fluid and rock properties are assumed to be 

constant. This assumption does not work in cases of gases thus diffusivity equation 

for gases is non-linear and needs to be linearized by taking pseudo pressures. To 

extend the analytical solutions derived for oil to gas, Al-Hussainy and Ramey 

(1966) and Al-Hussainy et al. (1966) introduced the idea of real gas 

pseudopressure. Real gas pseudopressure is a process by which the diffusivity 

equation for gas is linearized using a variable transformation. 

Raghavan et al. (1997) and Chen and Raghavan (1997) developed 

analytical pressure transient solutions for multiply fractured horizontal wells in 

homogeneous reservoirs. Also proposed the possibility of compound linear flow, 

where in a linear flow is established in the region beyond the fracture tips. 
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Transitions: Transitions are not well studied as they are not considered to 

be flow regimes. Most of them are shorter than one log cycle. Generally type 

curves include the transitions. The type curves for transition from primary linear 

flow to compound linear flow are created by Nobakht et al., 2011 and Liang et al., 

2012. 
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Chapter 3 : Types of Transition 

Transitions occur when there is a change in flow regime and thus their 

behavior is dictated by both the flow regimes. This implies a single model won’t 

work in defining all kinds of transitions. But having these different models for 

transition regimes would help in predicting the next flow regime and could yield 

important properties even before the next regime starts. 

3.1 Fully Penetrating fractures 

A fracture penetrating the full reservoir would be here-on described as fully 

penetrating fracture. The flow regimes observed in such a case would be primary 

linear flow followed by a transition eventually leading to a boundary dominated 

flow(BDF). The transition in such cases can be modeled by a full solution for 

linear flow with a no-flow boundary condition (outer boundary condition) and with 

a constant pressure or  constant rate at the wellbore (inner boundary condition) 

depending upon if rate transient analysis is being done or a pressure transient 

analysis.  The full solution of linear flow with a rectangular boundary would 

exhibit no transition as shown in appendix c plot for numerical inversion of linear 

flow solution but a solution with non-rectangular boundary would exhibit 

transition.   Figure 3.1 shows a repeating block of a multiply fracture horizontal 

well with fully penetrating fractures. 
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Figure 3.1: Multiply fracture horizontal well with fully penetrating fractures 

Below is a representative log-log rate vs time plot for multiply fractured 

horizontal well with fully penetrating fractures, it can be observed that it starts 

with a linear flow and undergoes a short transition and ends with a boundary 

dominated flow. Figure 3.2 shows the dimensionless rate plot for a horizontal well 

with fully penetrating fractures where transition is represented by the orange 

section. 

  

Figure 3.2: log-log dimensionless rate plot for fully penetrating fracture 
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Qd is dimensionless rate and TDxf is the dimensionless time 

Below is the list of Regimes that would be observed in this case: 

Primary flow: Linear flow 

Transition 1: Boundary Influenced Linear flow 

Compound flow: None 

Transition 2: None 

(Note: Transition 1 occurs after fracture interference and Transition 2 occurs after 

compound flow) 

 

3.2 Partially Penetrating fracture 

When the fractures don’t completely penetrate the reservoir leaving a 

matrix beyond the fractures such fractures would be termed as partially penetrating 

fractures. Partially penetrating fractures can show multiple transitions of different 

types based on what the permeability difference is between the matrix and the 

stimulated reservoir volume(SRV) as well as how far is the boundary from the 

fracture tip (i.e., distance to the boundary from SRV) and if there exists space on 

the sides of an SRV. When we have partially penetrating fractures there is always 

an influence from the unstimulated matrix beyond the fracture tips. To what extent 

it affects would be checked in the following cases. This influence beyond from the 

matrix can alter the flow regime in turn altering the transition regime. 

3.2.1 With SRV (Stimulated Reservoir Volume) 
 

When the ratio of permeability of matrix to permeability of SRV is very 

low, the influence from beyond the fracture is minimal and could only be seen at 
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later times. In such cases a primary linear flow is observed which goes to transition 

ending up in a boundary dominated flow(due to fracture interference). Based upon 

the location of boundary beyond the SRV a compound flow might be observed or 

may not be observed. Also this compound flow can be either an elliptical flow or a 

linear flow based on if there exists space on the sides of SRV. This compound flow 

will eventually transition to a BDF (due to actual reservoir boundary) when the 

reservoir boundary is seen. Now the model for transition from compound flow to 

BDF would be influenced by the type of compound flow namely elliptical or 

linear.  

a) When the reservoir boundary is near 

When the reservoir boundary is near we would observe an elliptical flow 

after fracture interference. The elliptical flow will transition into BDF (due to 

reservoir boundary). 

Figure 3.3 shows a horizontal well with partially penetrating fractures with 

SRV and a close reservoir boundary. The green colored region represents SRV 

while the blue section is unstimulated matrix. 

The elliptical flow includes two specific sections which can be termed as 

different flow regimes which would be discussed in subsequent chapters. The 

boundary influenced elliptical flow which is a flow regime where in boundary has 

been seen would be discussed in later chapters. This particular flow regime would 

not be seen when we encounter a situation similar to present case with reservoir 

boundary being very near. 
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Figure 3.3: Partially penetrating fractures with SRV and a near boundary 

The transition from fracture interference to BDF (reservoir boundary) can 

be divided in two parts first being sustained elliptical flow and second being 

boundary influenced elliptical flow. Both of these would be discussed in 

subsequent chapters. 

 

 

Figure 3.4 : Log log Dimensionless rate vs dimensionless time plot for partially 

penetrating fracture with near reservoir boundary 

Below is the list of Regimes that would be observed in this case: 
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Primary flow: Linear flow 

Transition 1: Elliptical flow followed by Boundary influenced elliptical flow 

Compound flow: None 

Transition 2: None 

 

b) When the reservoir boundary is far 

When the reservoir boundary is far a transition from fracture interference to 

compound flow can be observed. This transition is primarily sustained elliptical 

flow. This elliptical flow could be sustained and become compound elliptical flow 

if there is support from sides of SRV or would turn into compound linear flow if 

there is no support from sides of the SRV. This compound flow will then transition 

to BDF (reservoir boundary). This transition can be modeled with boundary 

influenced linear flow or boundary influenced elliptical flow based on the 

compound flow regime. 

 

Figure 3.5: Horizontal well with partially penetrated fractures with SRV and a far 

boundary 
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Case 1: There exists no space beyond the SRV 

Below is the list of Regimes that would be observed in this case: 

Primary flow: Linear flow 

Transition 1: Elliptical flow 

Compound flow: Linear flow 

Transition 2: Boundary Influenced linear flow 

Case 2: There exists space beyond the SRV 

Below is the list of Regimes that would be observed in this case: 

Primary flow: Linear flow 

Transition 1: Elliptical flow 

Compound flow: Sustained Elliptical flow 

Transition 2: Boundary Influenced Elliptical flow 

 

3.2.2 Without SRV 

When the permeability of SRV and the unstimulated matrix is very similar 

it can treated as if there is no SRV and with a partially penetrated fracture, the flow 

regime is primarily elliptical. The transition to BDF (fracture interference) would 

thus be boundary influenced elliptical flow. After fracture interference either a 

compound elliptical or compound linear flow would be observed depending upon 

if there exists space on the side of the horizontal well in the direction of the 

horizontal well. 

a) If there exists space on the side of the horizontal well 

If there exists space on the side of the horizontal well the compound flow 

would most likely be elliptical in nature. And the transition from compound 



 

17 

 

elliptical flow to BDF (reservoir boundary) is going to be boundary influenced 

elliptical flow. Figure 3.6 shows a multiply fracture horizontal well with partially 

penetrating fractures and having space beyond the horizontal well. 

 

Figure 3.6: Multiply fractured horizontal well with partially penetrating fracture 

and space on the sides of horizontal well 

Below is the list of Regimes that would be observed in this case: 

Primary flow: Linear flow followed by Elliptical flow 

Transition 1: Elliptical flow  

Compound flow: Elliptical flow 

Transition 2: Boundary Influenced Elliptical flow 

b) If there exists no space on the side of the horizontal well 

If there exists no space on the side of the horizontal well the compound flow would 

most likely be linear flow and the transition to BDF(reservoir boundary) can be 

described by boundary influenced linear flow which can be extracted empirically 

from full linear flow solution.  

Figure 3.7 shows a multiply fractured horizontal well with partially penetrating 

fractures and no space on the side of the horizontal well. 
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Figure 3.7 : Multiply fractured horizontal well with partially penetrating fractures 

and no space on the side of the horizontal well 

Below is the list of Regimes that would be observed in this case: 

Primary flow: Linear flow followed by Elliptical flow 

Transition 1: Elliptical flow  

Compound flow: Linear flow 

Transition 2: Boundary Influenced Linear flow 

Note: Only broad and limited cases have been discussed in this chapter, multiple 

more cases can be made and analyzed. 
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Chapter 4 : Model Development 

The full solutions in Laplace space with constant pressure/constant rate 

inner boundary condition and no flow outer boundary condition for the cases of 

elliptical flow and linear flow is presented in Appendix A and Appendix B 

respectively. These solutions can be easily inverted using numerical methods, 

while analytical inversion poses difficulties. The analytical inversion of elliptical 

flow solution is not available and thus this chapter tries to determine the equations 

in real space for sustained elliptical flow and boundary influenced elliptical flow 

using short time and longtime approximation. A matlab code for numerical 

inversion is provided in Appendix-C. 

4.1 Sustained Elliptical Flow 

Sustained Elliptical flow is the region where elliptical flow can be clearly 

observed. As elliptical flow moves further away it turns into radial flow as the 

nature of elliptical flow cannot be observed when the flow is coming from a farther 

distance. In an infinite acting reservoir outer boundary condition elliptical solution 

the region up to which elliptical flow can be observed would be termed as 

Sustained Elliptical flow. Analytical inversion of the full solution of both infinite 

acting and no-flow boundary reservoirs is difficult and thus a semi-analytical 

inversion using short time approximation on a no-flow outer boundary condition 

reservoir and constant pressure inner boundary would be conducted and equation 

for sustained elliptical flow would be obtained.  
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The pressure solution for sustained elliptical flow for a constant rate case can be 

given as 

And a rate solution for constant bottomhole pressure can be given as  

and xe is distance between fractures and xf is fracture half length. 

The behavior of the following term  

is very unique and for ε0 values greater than 2 it can assumed to be a constant of 

value 0.775314. 

𝑝𝑤𝐷 =

(
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   , 

4.2 

where 

𝜖0 = sinh
−1(

𝑥𝑒
2𝑥𝑓
) 

4.3 

𝐹𝐻 =
(
8
3𝜋) (𝑒

−(
3
4
)𝜖0)

(
𝜋 sinh(2𝜖0)

2 )
−
3
8
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Figure 4.1: Relation between FH and ε0 

From the above plot ε0 of 1 translates to xe/xf of 2.35 i.e for xe/xf>2.35 ε0 is a 

constant. Based on the above the equations for PwD and QD can be written as 

 

Note: The above equations are only valid for xe/xf>2.35, in case this condition is 

not satisfied use the full equations with ε0 as mentioned in equation 4.1 and 

equation 4.2. 
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4.2 Boundary Influenced Elliptical Flow 

The transition from elliptical flow to boundary dominated flow is termed as 

boundary influenced elliptical flow, the region can be identified in full solution of 

elliptical flow for a case of no-flow boundary. The equation for the same is 

for a pressure solution with constant rate. 

Equations 4.2 and 4.7 are solutions of equation A.28 for early intermediate and late 

intermediate times respectively. 

4.3 Boundary Influenced Linear Flow 

The transition from linear flow to boundary dominated flow is termed as 

boundary influenced linear flow, the region cannot be identified in full solution of 

linear flow for a case of no-flow boundary as it is too short to be observed in an 

analytical solution. But it can be observed in simulations where the boundary is 

non rectangular for a linear flow. The equation for the same has not been derived 

𝑞𝐷 = (
9

𝜋4
) (1 + (

2𝜋

3
) 𝑒−(

3
4
)𝜖0)

𝑡
𝐷𝑥𝑓

−
2
3

(
𝜋 sinh(2𝜖0)

2 )
−
2
3

 

4.7 

for a rate solution with constant bottom hole pressure and  

𝑝𝑤𝐷 =

(

 
 (

𝜋 sinh(2𝜖0)
2 )

−
2
3

(
6
𝜋3
) (1 + (

2𝜋
3 )𝑒

−(
3
4
)𝜖0)

)

 
 
sin (

2𝜋

3
) 𝑡
𝐷𝑥𝑓

2
3  

4.8 
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in the present thesis and more work is needed to determine an analytical solution. 

But its behavior can be identified as probably exhibiting a slope of ¾ as observed 

from the simulation data. The full linear flow solution inversion is shown in 

Appendix-C in the figure C.2. It can be observed in this inversion that no transition 

exists even when we have higher distance to the boundary. This shows that it 

would be difficult to define the transition unless the coordinate system transformed 

to account for non-rectangular boundary. 
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Chapter 5 : Validation on Simulated Results 

Chapter 3 deals with types of transitions and Chapter 4 gives equations for 

different flow regimes which combined together forms different kinds of 

transitions. In this chapter we would apply them on simulated data to check if it 

actually works. 

5.1 Boundary Influenced Elliptical Flow Transition 

Below are simulations which exhibit a boundary influenced elliptical flow 

transition. Most of the transitions don’t comprise of full log cycles and won’t be 

called a flow regime while if we look at them in terms of time for a typical shale 

well, they last for 3 to 10 years which is large enough in time domain though it’s 

not a full log cycle. 

 

Figure 5.1: Log-log plot of pressure & derivate vs time for cases of near and far 

boundaries for a fractured well in a rectangular reservoir 
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The figure 5.1 shows two simulation cases, the dotted one signifying a near 

boundary case while the solid line showing the far boundary case. It can be 

observed from this, that a near boundary case doesn’t exhibit a boundary 

influenced elliptical flow. This is because it is very short on a log-log plot. The far 

boundary case exhibits a boundary influenced elliptical flow for a very long period 

and can be easily identified in the log-log plot as the section exhibiting a 2/3 slope. 

Below figure shows the boundary influenced elliptical flow for the far boundary 

case using the blue line. 

 

Figure 5.2: Log-log plot of pressure & derivate vs time showing boundary 

influenced elliptical flow (blue line-2/3 slope) 
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5.2 Sustained Elliptical Flow Transition 

A sustained elliptical flow would be present before a boundary influenced 

elliptical flow. Thus the transition would be divided in 2 parts elliptical flow and 

boundary influenced elliptical flow. Below are the cases that exhibit a sustained 

elliptical flow transition. An elliptical flow would either exist in place of a linear 

flow or after a linear flow period. 

 

Figure 5.3: Log-log plot of pressure & derivate vs time showing sustained 

elliptical flow (blue line-3/8 slope) 

It can be seen that in both the cases i.e, when boundary is near or far the 

linear flow is followed by sustained elliptical flow. 
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Chapter 6 : Application on Field Results 

In this chapter the flow regimes described earlier would be applied on field data to 

yield properties such as permeability and fracture half length. 

Below described is shale well with 12 fractures and lateral length of 3900 ft. 

 

Figure 6. 1: Rate vs time plot for a shale well 

 

Figure 6. 2: Pressure vs time plot for a shale well 
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It can be observed from the rate plot above that the well exhibits a sustained 

elliptical flow behavior. Below is the plot showing the sustained elliptical flow 

behavior. 

 

Figure 6. 3: Sustained elliptical flow on the rate plot of shale well 

Applying equation 4.6 on the above plot we determine that 

 

Solving equation 6.1 for the present case gives the relationship 

 

This gives the following values for xf (ft) and k(md) 

Xf= 100 (ft) would be k=0.00194 md 

100

1000

10000

100000

100 1000 10000 100000

Fl
o

w
 R

at
e 

(M
sf

/D
)

Time (hrs)
Actual flow rate Sustained Elliptical flow

1422𝑇𝑞

𝑘ℎΔ𝑚(𝑝)
= 0.77534(𝑡)−

3
8 (
0.0002637𝑘

𝜙𝜇𝑐𝑔𝑥𝑓
2 )

−
3
8

, 

 

where 
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Xf=200 (ft) would be k=0.00084 md 

Xf=300 (ft) would be k=0.00052 md 

Thus sustained elliptical flow can be used in the same way as linear flow which 

yields a relationship k and xf. 

Another workflow to determine k and xf relationship can also be used where in 

once you have identified the line with slope of 3/8 extrapolate it to time t=1 hour 

and use the intercept in the equation given as 

 

Below is the rate vs time log-log plot for another well. 

 

Figure 6. 4: Rate vs time plot for well2 

The above plot shows both the flow regimes of sustained elliptical flow and 

boundary influenced elliptical flow as shown in the plot below 
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Figure 6. 5: log-log rate vs time here, black line: Sustained elliptical flow, Red 

line: Boundary influenced elliptical flow 

 

If fracture spacing is known then the following procedure can be used to determine 

the start time of boundary influenced elliptical flow which can be given as 

Thus allowing us to predict when boundary influenced elliptical flow will start, 

this has big implication on future rate predictions. So as soon as we observe 

sustained elliptical flow we can calculate when boundary influenced elliptical flow 

will start and boundary influenced elliptical flow lasts only for 1 log cycle and thus 

based on distance between two parallel horizontal wells we can predict which flow 

regime would show up after boundary influenced elliptical flow and thus all future 

rates can be accurately predicted.  
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Chapter 7 : Results 

The Results of the thesis can be broadly stated as listed below: 

 Transitions for fractured wells (vertical or horizontal) are combinations of 

sustained elliptical flow, boundary influenced elliptical flow and boundary 

influenced linear flow.  

 Sustained elliptical flow would exist in place of linear flow or will occur 

after a linear flow for the case of primary linear flow. 

 Sustained elliptical flow can be identified by the slope of 3/8 on a log-log 

plot of rate vs time or pressure derivative vs time 

 Boundary influenced elliptical flow would occur only if sustained elliptical 

flow exists before it. 

 Boundary influenced elliptical flow can be identified by the slope of 2/3 on 

a log-log plot of rate vs time or pressure derivative vs time 

 Information about extent of the reservoir can be determined from boundary 

influenced elliptical flow 

 Boundary influenced linear flow would occur only if linear flow exists 

before it. And it can probably be identified by 3/4 slope on a log-log plot of 

rate vs time or pressure derivative vs time. 
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Appendix-A 

Derivation of elliptical flow model: 

Elliptical flow solutions can be derived by converting the diffusivity equation into 

elliptical co-ordinate system. 

Following is the diffusivity equation in Cartesian co-ordinates 

 

The assumptions for this equation are: 

1) Isotropic, homogenous, horizontal reservoir with uniform thickness of h, 

porosity of ϕ, permeability of k. 

2) The total compressibility of the system is ct and the reservoir fluid is 

slightly compressible and the viscosity of the fluid is µ. 

3) There is no gravity effect and the flow inside the reservoir is laminar 

Now to transform the above Cartesian diffusivity equation into elliptical co-

ordinates we use the following transformation: 

and 

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
=
𝜙𝜇𝑐𝑡
𝑘
(
𝜕𝑝

𝜕𝑡
)  . A.1 

𝑥 = 𝑥𝑓 sinh(𝜖) sin(𝜂)   A.2 

𝑦 = 𝑥𝑓 cosh(𝜖) cos(𝜂) . A.3 
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Figure A. 1: Elliptical co-ordinates 

As shown above here ε represents a family of confocal ellipses. The focal length of 

these ellipses is 2xf. The η represents a family of confocal hyperbolas. The co-

ordinates ε and η are orthogonal to each other. The transformed diffusivity 

equation is 

 

Now converting the above equation in dimensionless form using the following: 

𝜕2𝑃

𝜕𝜖2
+
𝜕2𝑃

𝜕𝜂2
=
𝜙𝜇𝑐𝑡𝑥𝑓

2

2𝑘
(cosh(2𝜖) − cos(2𝜂))

𝜕𝑝

𝜕𝑡
   . A.4 
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and 

So the equation becomes: 

 

 

To solve the above diffusivity equation following conditions would be used 

Initial condition: 

 

 

In dimensionless form it is 

 

 

Boundary conditions are: 

𝑝𝐷 =
𝑝𝑖 − 𝑝

𝑝𝑖 − 𝑝𝑤𝑓
  A.5 

𝑡𝐷 = 0.0002637
𝑘𝑡

𝜙𝜇𝑐𝑡𝑥𝑓
2   . A.6 

𝜕2𝑝𝐷
𝜕𝜖2

+
𝜕2𝑝𝐷
𝜕𝜂2

=
1

2
(cosh(2𝜖) − cos(2𝜂))

𝜕𝑝𝐷
𝜕𝑡𝐷

   . A.7 

lim
t→0
𝑝 = 𝑝𝑖 . A.8 

 lim
𝑡𝐷→0

𝑝𝐷 = 0   . A.9 
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i.e.,  

 

Taking Laplace of diffusivity equation 

 

 

Laplace of initial and boundary conditions is 

lim
𝜖→𝜖0

𝜕𝑝

𝜕𝜖
= 0  A.10 

lim
𝜖→𝜖0

𝜕𝑝𝐷

𝜕𝜖
= 0  ,  

 

A.11 

  

 lim
𝜖→0

𝑝𝐷 = 1 ,  0≤η≤2π , 

 

A.12 

lim
𝜂→

𝜋

2

𝜕𝑝

𝜕𝜂
= 0   ,   

and 

A.13 

lim
𝜂→0

𝜕𝑝

𝜕𝜂
= 0  .  

 

A.14 

𝜕2𝑝𝐷
−

𝜕𝜖2
+
𝜕2𝑝𝐷

−

𝜕𝜂2
=
𝑠

2
(cosh(2𝜖) − cos(2𝜂))𝑝𝐷

−  . A.15 
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and    

 

 

To solve the diffusivity equation we would use the method of separation of 

variables which can be given as 

Using this in equation A.13 we get 

This gives us two separate ordinary differential equations: 

lim
𝑡𝐷→0

𝑝𝐷
− = 0 , A.16 

lim
𝜖→𝜖0

𝜕𝑝𝐷
−

𝜕𝜖
= 0,  0≤η≤2π , A.17 

lim
𝜖→0

𝑝𝐷
− =

1

𝑠
, 0≤η≤2π . 

 

A.18 

pD
− = 𝑋(𝜖)𝐻(𝜂)  . 

 

A.19 

1

𝑋

𝜕2𝑋

𝜕𝜖2
−
𝑠

2
cosh(2𝜖) = −

1

𝐻

 𝜕2𝐻

𝜕𝜂2
−
𝑠

2
cos(2𝜂) = 𝑎    . 

 

A.20 
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These equations has solutions in terms of modified Mathieu functions. Therefore 

for the ODE of H equation we take π as the period and select the even function 

where  

 

Now to solve for the outer boundary condition equation A.15 of no-flow boundary, 

two types of Mathieu functions satisfy this boundary condition. So solution to X 

can be given as 

Now applying the boundary condition equation A.15 we get 

𝜕2𝐻

𝜕𝜂2
+ (𝑎 +

𝑠

2
cos(2𝜂))𝐻 = 0 A.21 

 

and 

𝜕2𝑋

𝜕𝜖2
+ (𝑎 +

𝑠

2
cos ℎ(2𝜖))𝑋 = 0 . 

A.22 

Hn(𝜂) = 𝑐𝑒2𝑛(𝜂, −
𝑠

4
) , 

 

A.23 

ce2n (𝜂, −
𝑠

4
) = (−1)𝑛∑ (−1)𝑟𝐴2𝑟

2𝑛 cos (2𝑟𝜂)
∞

𝑟=0
    . A.24 

𝑋𝑛(𝜖) =𝐵𝑛𝐹𝑒𝑘2𝑛 (𝜖, −
𝑠

4
) + 𝐷𝑛𝐶𝑒2𝑛(𝜖, −

𝑠

4
)    . A.25 

Bn 𝐹𝑒𝑘2𝑛
′ (𝜖, −

𝑠

4
) + 𝐷𝑛𝐶𝑒2𝑛

′ (𝜖, −
𝑠

4
) = 0  , A.26 
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thus 

 

To calculate Dn we use the inner boundary condition A.18 to yield the final 

solution 

Above solution is in laplace space for constant bottomhole pressure and thus a 

solution for rate has to be determined and inverted to yield the full solution for 

elliptical flow in the case of no flow boundary. 

A closed form solution for a curved surface area of an ellipse isn’t available so an 

approximation for the same would be used which is 

Bn =−
𝐷𝑛𝐶𝑒2𝑛

′ (𝜖, −
𝑠
4)

𝐹𝑒𝑘2𝑛
′ (𝜖, −

𝑠
4)
     . A.27 

𝑝𝐷
− (𝜖, 𝜂) =∑

(−1)𝑛2𝐴0
2𝑛

𝑠
 ((Fek2n

′ (𝜖0, −
𝑠

4
) 𝐶𝑒2𝑛 (𝜖, −

𝑠

4
)

∞

𝑛=0

− 𝐶𝑒2𝑛
′ (𝜖0, −

𝑠

4
) 𝐹𝑒𝑘2𝑛 (𝜖, −

𝑠

4
))

/ (Fek2n
′ (𝜖0, −

𝑠

4
) 𝐶𝑒2𝑛 (0,−

𝑠

4
)

− 𝐶𝑒2𝑛
′ (𝜖0, −

𝑠

4
) 𝐹𝑒𝑘2𝑛 (0,−

𝑠

4
)) ) 𝑐𝑒2𝑛 (𝜂,−

𝑠

4
)   . 

A.28 

𝐶𝑢𝑟𝑣𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑒

=
𝜋ℎ𝑥𝑓

2
 (2𝑐𝑜𝑠ℎ𝜖 + 2𝑠𝑖𝑛ℎ𝜖) (1 +

𝑁2

4
+
𝑁4

64

+
𝑁6

256
)   ,  

A.29 
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here 

Based on the above curved surface area approximation qD for the ellipse can be 

written as 

for ε 0 which is at the fracture.  

Therefore qD for the present case of no flow boundary and constant bottomhole 

pressure is 

The early intermediate approximation of the above equation can be given as 

 

𝑁 =
(cosh 𝜖 − sinh 𝜖)

cosh 𝜖 + sinh 𝜖
     . A.30 

𝑞𝐷
− = −

cosh 𝜖 + sinh 𝜖

2
(1 +

𝑁2

4
+
𝑁4

64

+
𝑁6

256
)(

1

√sinh2 𝜖 + sin2 𝜂 
 (
𝜕𝑝𝐷

−

𝜕𝜖
))  ,    

A.31 

𝑞𝐷
−

= −
1

2
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1

4
+
1

64

+
1

256
) (∑

(−1)𝑛2𝐴0
2𝑛

𝑠
 ((Fek2n

′ (𝜖0, −
𝑠

4
) 𝐶𝑒2𝑛

′ (0,−
𝑠

4
)

∞

𝑛=0

− 𝐶𝑒2𝑛
′ (𝜖0, −

𝑠

4
) 𝐹𝑒𝑘2𝑛

′ (0, −
𝑠

4
))/ (Fek2n

′ (𝜖0, −
𝑠

4
) 𝐶𝑒2𝑛 (0,−

𝑠

4
)

− 𝐶𝑒2𝑛
′ (𝜖0, −

𝑠

4
) 𝐹𝑒𝑘2𝑛 (0, −

𝑠

4
)) ) 𝑐𝑒2𝑛 (𝜂,−

𝑠

4
) )    .   

A.32 
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The late intermediate approximation of equation A.32 can be given as 

Real space inversion of the equations A.33 and A.34 can be given as 

The above equations A.35 and A.36 can be rewritten without the gamma function 

as 

𝑞𝐷
− ≈ 1.2

(

 
 𝑒−

3𝜖0
4

(
𝜋 sinh(2𝜖0)

2 )
−
3
8

)

 
 
(
1

𝑠
5
8

)    . A.33 

𝑞𝐷
− ≈ (

3

4𝜋
)

(

 
 1 + (

2𝜋
3 )𝑒

−
3𝜖0
4

(
𝜋 sinh(2𝜖0)

2
)
−
2
3

)

 
 
(
1

𝑠
1
3

)    . A.34 

𝑞𝐷 ≈ 1.2

(

 
 𝑒−

3𝜖0
4

(
𝜋 sinh(2𝜖0)

2 )
−
3
8

)

 
 
(

𝑡
𝐷𝑥𝑓

−
3
8

Γ (−
3
8 + 1)

)     A.35 

and 

𝑞𝐷 ≈ (
3

4𝜋
)

(

 
 1 + (

2𝜋
3 )𝑒

−
3𝜖0
4

(
𝜋 sinh(2𝜖0)

2 )
−
2
3

)

 
 
(

𝑡
𝐷𝑥𝑓

−
2
3

Γ (−
1
3 + 1)

)    . 
A.36 

𝑞𝐷 ≈ (
8

3𝜋
) (𝑒

−(
3
4
)𝜖0)

𝑡
𝐷𝑥𝑓

−
3
8

(
𝜋 sinh(2𝜖0)

2 )
−
3
8

   ,   

A.37 
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and 

To convert the above rate solutions for constant bottomhole pressure to a pressure 

solution for constant rate solution we use the convolution theorem which is 

Applying convolution theorem on equations A.33 and A.34 and using an identity 

for gamma functions which is 

we obtain the equation for pwD in real space by inversion of laplace equations as 

and 

 

𝑞𝐷 ≈ (
9

𝜋4
) (1 + (

2𝜋

3
) 𝑒−(

3
4
)𝜖0)

𝑡
𝐷𝑥𝑓

−
2
3

(
𝜋 sinh(2𝜖0)

2 )
−
2
3

   . A.38 

pwD
− =

1

𝑞𝐷
−𝑠2

   . A.39 

Γ(1 − 𝑛)Γ(𝑛) =
𝜋

sin(𝜋𝑛)
 , 0 < 𝑛 < 1 ,  A.40 

𝑝𝑤𝐷 =

(

 
 (
𝜋 sinh(2𝜖0)

2 )
−
3
8

(𝑒−(
3
4
)𝜖0)

)

 
 
sin (

3𝜋

8
) 𝑡
𝐷𝑥𝑓

3
8     

A.42 

𝑝𝑤𝐷 =

(

 
 (

𝜋 sinh(2𝜖0)
2

)
−
2
3

(
6
𝜋3
) (1 + (

2𝜋
3 )𝑒

−(
3
4
)𝜖0)

)

 
 
sin (

2𝜋

3
) 𝑡
𝐷𝑥𝑓

2
3    . 

A.42 
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The solution for the case of infinite reservoir and constant bottom hole pressure i.e 

the rate solution for elliptical flow has been derived by Kucuk and Brigham,1979 

for vertical fractured well with infinite conductivity. Also finite conductivity 

fracture solution has been derived by Amini et al., 2007. All these solutions are in 

laplace space and would need numerical inversion to find solutions. 
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Appendix-B 

Derivation of Linear flow model: 

Solution to diffusivity equation for linear flow can be derived by considering flow 

in a single direction thus equation A.1 in X direction can be written as 

 

The initial condition in dimensionless form can be written as (The definitions of 

dimensionless parameters PD and tD remain the same as stated in equations A.5 & 

A.6) 

 

 

The boundary conditions for constant flow rate at wellbore and no-flow reservoir 

boundary can be written as 

𝜕2𝑝

𝜕𝑦2
=
𝜙𝜇𝑐𝑡
𝑘
(
𝜕𝑝

𝜕𝑡
)   . B.1 

lim
𝑡𝐷→0

𝑝𝐷 = 0   . B.2 

lim
𝑦𝐷→0

𝜕𝑝𝐷
𝜕𝑦𝐷

= −1 , B.3 

and  

 

lim
𝑦𝐷→𝑦𝑒𝐷 

𝜕𝑝𝐷
𝜕𝑦𝐷

 = 0 , 
B.4 
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where yD is y/xf, where xf is fracture half-length and yeD is ye/xf where ye is 

reservoir boundary. 

Making the diffusivity equation dimensionless yield the equation 

 

Now taking laplace of diffusivity equation and the boundary conditions yields 

The general solution for equation B.6 can be given as 

 

Now applying boundary condition from equation B.8 

𝜕2𝑝𝐷

𝜕𝑦𝐷
2 = (

𝜕𝑝𝐷
𝜕𝑡𝐷

) . B.5 

𝜕2𝑝𝐷
−

𝜕𝑦𝐷
2 = 𝑠𝑝𝐷

− , B.6 

 

lim
𝑦𝐷→0

𝜕𝑝𝐷
−

𝜕𝑦𝐷
= −

1

𝑠
  , 

B.7 

and 

lim
𝑦𝐷→𝑦𝑒𝐷 

𝜕𝑝𝐷
−

𝜕𝑦𝐷
= 0  . 

B.8 

𝑝𝐷
− = 𝐴𝑒𝑥𝑝(−𝑦𝐷√𝑠) + 𝐵𝑒𝑥𝑝(𝑦𝐷√𝑠) . B.9 

𝐴 =
𝐵𝑒𝑥𝑝(𝑦𝑒𝐷√𝑠)

𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)
  . B.10 
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Now applying boundary condition from equation B.7 

Solving equations B.10 and B.9 would give us A and B as follows: 

Thus the final solution for PD
- would be 

This solution is in laplace space and can be inverted numerically to real space. 

Also a constant pressure solution can be obtained by convolution principle 

 

In the above case PwD=PD for yD=0 and 

 

−𝐴 + 𝐵 = −
1

𝑠√𝑠
   . B.11 

𝐴 =
1

𝑠√𝑠

𝑒𝑥𝑝(𝑦𝑒𝐷√𝑠)

(exp(𝑦𝑒𝐷√𝑠) − 𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)
    B.12 

and 

𝐵 =
1

𝑠√𝑠

𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)

(exp(𝑦𝑒𝐷√𝑠) − 𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)
   . 

B.13 

𝑝𝐷
− =

1

𝑠√𝑠

𝑒𝑥𝑝(𝑦𝑒𝐷√𝑠)𝑒𝑥𝑝(−𝑦𝐷√𝑠) + 𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)𝑒𝑥𝑝(𝑦𝐷√𝑠)

exp(𝑦𝑒𝐷√𝑠) − 𝑒𝑥𝑝(−𝑦𝑒𝐷√𝑠)
  . B.14 

qD
− 𝑝𝑤𝐷

− =
1

𝑠2
   . B.15 

𝑞𝐷 =
141.2𝑞𝐵𝜇

𝑘ℎΔ𝑝
  . B.16 



 

49 

 

Appendix-C 

Numerical inversion algorithm: Gaver Stehfest Algorithm (Villinger, H., 1985), 

(Stehfest, H.,1970) 

Following matlab code can be used to invert functions from laplace space to real 

space. (Srigutomo W., 2006) 

To apply the following code for present case functionname is the function PD
- in 

laplace space. T is dimensionless time tDxf and L is the no of coefficients, by 

default for all analysis in this thesis, L was used as 10. 

function fun1=gavsteh(functionname,t,L) 

nn2 = L/2; 

nn21= nn2+1; 

 

for n = 1:L 

    z = 0.0; 

 for k = floor( ( n + 1 ) / 2 ):min(n,nn2) 

        z = z + ((k^nn2)*factorial(2*k))/ ... 

            (factorial(nn2-k)*factorial(k)*factorial(k-1)* ... 

            factorial(n-k)*factorial(2*k - n)); 
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    end 

    v(n)=(-1)^(n+nn2)*z; 

end 

 

sum = 0.0; 

ln2_on_t = log(2.0) / t; 

for n = 1:L 

    p = n * ln2_on_t; 

    sum = sum + v(n) * feval(functionname,p); 

end  

 fun1 = sum * ln2_on_t; 

 

Figure C. 1: Numerical Inversion Eq A.23 
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Figure C. 2: Numerical Inversion Eq B.14 
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