
PARALLEL I/O FOR SHARED MEMORY

APPLICATIONS USING OPENMP

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Kshitij V. Mehta

August 2013

PARALLEL I/O FOR SHARED MEMORY

APPLICATIONS USING OPENMP

Kshitij V. Mehta

APPROVED:

Edgar Gabriel, Chairman
Dept. of Computer Science

Barbara Chapman
Dept. of Computer Science

Jaspal Subhlok
Dept. of Computer Science

Lennart Johnsson
Dept. of Computer Science

Lei Huang
Prairie View A&M University

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgments

I am deeply obliged and thankful to Dr. Edgar Gabriel, my PhD advisor, for his

motivation and help throughout my PhD. A master’s thesis under him motivated me

to pursue a PhD and I have learnt a lot from him over the past few years.

My sincere thanks to my wife Swaroop, for her patience and support all these

years. She has been a strong support, and I am very thankful to her.

I am grateful to my parents and my sister who have been supportive of me. Also,

I would like to thank my close friends for their encouragement.

iii

PARALLEL I/O FOR SHARED MEMORY

APPLICATIONS USING OPENMP

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Kshitij V. Mehta

August 2013

iv

Abstract

I/O is a major time-limiting factor in high performance computing (HPC) appli-

cations. The combined effects of hard drive latency and bandwidth make I/O the

slowest operation in a system. A lot of work has been done in the field of par-

allel I/O for scientific computing, specially for distributed memory machines. As

shared memory systems gain popularity with the increasing number of cores in a

node, implementing efficient parallel I/O for shared memory machines has become

an important challenge. Currently, popular shared memory programming models

like OpenMP do not provide a framework for implementing parallel I/O. This thesis

provides a parallel I/O specification for shared memory architecture. In particular,

focus has been laid on implementing parallel I/O for OpenMP. In the process, the

characteristics of shared memory machines and the behavior of parallel file systems

have been studied and an effort has been made to optimize parallel I/O. Also, this

research provides insights into semantic analysis of data using the HDF5 technology

suite.

v

Contents

1 Introduction 1

1.1 Parallel Programming Models . 2

1.1.1 MPI . 2

1.1.2 Threads . 3

1.1.3 OpenMP . 3

1.2 Factors affecting I/O Performance . 5

1.2.1 Buffering and Prefetching Data 6

1.2.2 Disk Striping . 6

1.2.3 Access Patterns . 8

1.2.4 File Pointers . 9

1.3 Low Level I/O . 9

1.3.1 POSIX . 10

1.3.2 C I/O . 11

1.3.3 Fortran I/O . 11

1.4 Challenges . 12

1.5 Goals . 15

vi

2 Background and Related Work 18

2.1 I/O Options in Parallel Applications 18

2.1.1 Independent I/O . 18

2.1.2 Collective I/O . 19

2.2 Client- and Server-side Optimizations 20

2.2.1 Two-phase I/O . 20

2.2.2 Data Sieving . 21

2.2.3 Disk-Directed I/O . 21

2.2.4 Compiler-Directed I/O . 22

2.3 Parallel File Systems . 23

2.3.1 PVFS2 . 23

2.3.2 Lustre . 25

2.3.3 GPFS . 26

2.3.4 PLFS . 27

2.3.5 IOFSL . 28

2.4 Parallel I/O Specifications . 29

2.4.1 MPI-I/O . 29

2.4.2 UPC . 31

2.5 External libraries and software . 32

2.5.1 ROMIO . 32

2.5.2 OMPIO . 33

2.5.3 ADIOS . 34

2.5.4 HDF5 . 35

vii

2.5.5 NetCDF . 37

2.6 Summary . 37

3 Parallel I/O for OpenMP 39

3.1 I/O options in multi-threaded applications 39

3.2 Specification . 41

3.2.1 Directive based interfaces vs. Runtime based library calls . . . 41

3.2.2 Individual vs. Shared file pointers 42

3.2.3 Collective vs. Individual interfaces 42

3.2.4 Synchronous vs. Asynchronous interfaces 44

3.2.5 Algorithmic vs. List I/O interfaces 45

3.2.6 Error Handling . 46

3.2.7 Introduction to the annotation used 46

3.2.8 File management functions . 47

3.2.9 Different Argument Interfaces 48

3.2.10 Common Argument Interfaces 49

3.3 Implementation . 50

3.3.1 The OpenUH compiler and its runtime 51

3.3.2 A multi-threaded parallel I/O library 53

3.3.3 Integration of I/O library with the OpenUH compiler 56

3.3.4 Optimizing Collective I/O operations 57

3.3.5 Alternative low-level interface functions 59

3.4 Evaluation . 61

3.4.1 Description of Benchmarks . 61

viii

3.4.2 Description of the platforms used 63

3.4.3 Results . 65

3.4.4 Determining smin and Active Threads 69

3.5 Comparing OpenMP-IO with MPI-IO 77

4 High Performance I/O in HDF5 79

4.1 Introduction . 79

4.2 Semantic Analysis of Data . 81

4.2.1 Active Analysis . 83

4.2.2 Semantic Restructuring . 84

4.3 A Plugin for Shared Memory Parallelism 85

4.3.1 Design . 85

4.3.2 Evaluation . 86

4.4 A Plugin using MPI-IO . 90

4.4.1 Design . 90

4.4.2 Evaluation . 90

5 Summary 94

Bibliography 96

ix

List of Figures

1.1 OpenMP fork-join model. 4

1.2 Disk striping. 7

1.3 Data layout in memory and file. 8

2.1 PVFS2 system view. 24

2.2 Converting N-1 access pattern into N-N in PLFS. 28

2.3 A sample HDF5 file. 36

3.1 Architecture of the I/O Library. 54

3.2 Shared file (left) and individual file write microbenchmark(right) on

PVFS2. 66

3.3 Shared file (left) and separate file (right) write microbenchmark on

PVFS2-SSD. 67

3.4 Shared file (left) and separate file (right) write microbenchmark on

Lustre. 67

3.5 Shared file (left) and separate file (right) read microbenchmark on

PVFS2. 68

x

3.6 Shared file (left) and separate file (right) read microbenchmark on

Lustre. 68

3.7 Determining smin and active threads on PVFS2. 70

3.8 Determining smin and active threads on Lustre. 71

3.9 Performance of omp file write all (left) and omp file read all (right)

on PVFS2. 72

3.10 Performance of omp file write all (left) and omp file read all (right)

on PVFS2-SSD. 73

3.11 Performance of omp file write all (left) and omp file read all (right)

on Lustre. 74

3.12 Comparing MPI-IO and OpenMP-IO on PVFS2. 77

3.13 Comparing MPI-IO and OpenMP-IO on Lustre. 78

4.1 HDF5 Virtual Object Layer (VOL) 80

4.2 HDF5 data stored using the plugin 82

4.3 Active Analysis of Data . 84

4.4 Semantic Restructuring of Data . 85

4.5 Write (left) and Read (right) performance of a multi-threaded plugin

for HDF5 on PVFS2 . 88

4.6 Write (left) and Read (right) performance of a multi-threaded plugin

for HDF5 on PVFS2-SSD . 88

4.7 Write (left) and Read (right) performance of a multi-threaded plugin

for HDF5 on Lustre . 89

4.8 Write performance of the HDF5 plugin using MPI 92

xi

4.9 Read performance of the HDF5 plugin using MPI 93

xii

List of Tables

1.1 Memory access times. 6

3.1 OpenMP I/O general file manipulation routines 50

3.2 BTIO results showing I/O times (seconds). 75

3.3 MSG write times (seconds). 75

3.4 MSG write times (seconds) on Lustre with 2 active threads. 76

xiii

Chapter 1

Introduction

In the last couple of decades, the use of multi-core and multiprocessor architectures

has become popular for building systems with high computational power. Supercom-

puters have been built that can perform operations at the rate of a few petaflops per

second [1]. However, performance of storage and memory technologies has essentially

fallen behind. This growing disparity between CPU and memory speeds outside the

chip is what is called the memory wall [2].

There are many high performance scientific (HPC) applications that work on

tremendous volumes of data. For such applications, a serious scalability limitation

comes from the performance of I/O operations. This is mainly due to the fact that

current hard drives have an order of magnitude higher latency and lower bandwidth

than any other component in a computer system. Most popular hard drives have

latency in the range of 7-12 ms and average sustained bandwidth of less than 150

MB/sec [3]. Although various techniques such as buffering and caching, RAID con-

figurations, etc. have been used to improve I/O performance, the I/O performance of

1

an application varies and depends largely on the characteristics of the storage device,

the file system being employed, the network interconnect between compute nodes and

storage, and the I/O pattern of the application. In the following sections, popular

parallel programming paradigms along with techniques for performing parallel I/O

are discussed.

1.1 Parallel Programming Models

Parallel computer systems can be divided into two categories, namely, distributed and

shared memory systems, on the basis of their architecture. While distributed memory

machines have traditionally been of more importance in HPC, recent advances in

multi-core architectures have made shared memory machines equally important.

1.1.1 MPI

Applications for distributed memory machines typically use the message-passing

model. MPI (Message Passing Interface) is a message-passing library interface speci-

fication [4]. An MPI program spawns processes, which communicate with each other

by passing messages between them. MPI was developed with the goal of achiev-

ing high performance on distributed memory systems, while making applications

portable at the same time. There are multiple implementations of MPI, such as

OpenMPI [5], MPICH [6], etc.

The Parallel I/O feature introduced with MPI-2 [4] refers to a collection of func-

tions designed for managing I/O on distributed systems. Some important features

of MPI-I/O are collective I/O, non-blocking and split-collective I/O, etc. We shall

2

look at MPI-I/O in detail in the next chapter.

1.1.2 Threads

Threads are the programming model of choice on shared memory systems. A thread

represents an execution context within a process. It is represented by a thread-id that

identifies the thread within a process, a set of register values, a stack, a scheduling

priority and policy, a signal mask, and thread-specific data. Everything within a

process is shared amongst the threads in the process. Threads require fewer system

resources than processes themselves. Inter-thread communication is more efficient,

and in many cases easier to use than inter-process communication [7].

The POSIX threads interface is a standardized programming interface for creation

and implementation of threads. It has been specified by the IEEE POSIX 1003.1c

standard [8]. Implementations which adhere to this standard are referred to as

POSIX threads, or Pthreads.

Unix is designed such that when a process forks an additional thread, the thread

inherits the attributes of the parent process including file pointers. As such, a file

pointer is shared amongst threads and is not unique for every thread.

1.1.3 OpenMP

OpenMP (Open Specifications for Multi Processing) is an Application Program In-

terface (API) that may be used to achieve multi-threaded, shared memory paral-

lelism [9]. It supports shared memory parallel programming in C, C++, and For-

tran. OpenMP is a portable, scalable model which was jointly defined by a group

3

of major computer hardware and software vendors. It gives shared memory parallel

programmers a simple and flexible interface for developing parallel applications.

Most parallelism in OpenMP is specified through the use of compiler directives

which are inserted in the source code. OpenMP requires explicit parallelization by the

programmer, and hence is not automatic. An underlying OpenMP implementation

would typically use threads as a means of achieving parallelism, using the fork-join

model of parallel execution, as shown in Figure 1.1. OpenMP currently does not

provide a way to perform I/O in parallel. Performing I/O in parallel in an OpenMP

application can be a difficult task.

Figure 1.1: OpenMP fork-join model.

Another set of programming models includes Partitioned Global Address Space

(PGAS) languages like UPC [10], Co-array Fortran [11], etc. which focus on pre-

senting a single shared, partitioned address space where variables may be directly

4

read and written by any processor, but each variable is physically associated with a

single processor. Unified Parallel C (UPC) [10] is an extension of the C programming

language designed for high performance computing on large-scale parallel machines.

The language provides a uniform programming model for both shared and distributed

memory hardware. The programmer is presented with a single shared, partitioned

address space, where variables may be directly read and written by any processor,

but each variable is physically associated with a single processor. UPC uses a Single

Program Multiple Data (SPMD) model of computation in which the amount of par-

allelism is fixed at program startup time, typically with a single thread of execution

per processor. UPC has a parallel I/O specification which is similar in terms with

the MPI-IO specification.

1.2 Factors affecting I/O Performance

I/O can play a significant role in the overall time to completion for many parallel

applications that read and write high volumes of data from disk. I/O is often a

bottleneck in compute-intensive applications. The combined effects of latency and

bandwidth cause I/O to be the slowest operation in a system, which is a critical factor

in applications whose performance is largely measured by the time to completion.

Table 1.1 shows the typical access times for different types of memory.

Although I/O is always much slower than computation, a combination of high-

speed I/O hardware, appropriate file-system software, and a suitable programming

interface (API) for I/O can improve I/O performance. Caching, buffering of data,

5

Table 1.1: Memory access times.

Memory type Size Access Time (cycles)
Backup (Tape) Terabytes, Petabytes seconds
Primary data storage(disk) ∼ 100GB > 106

Main Memory 1-4 GB 100-1000
Caches 1-4MB 2-50
Registers < 256 words 1-2

and disk striping are important techniques that are applied to improve the perfor-

mance of I/O.

1.2.1 Buffering and Prefetching Data

Data buffers are memory regions that are used to temporarily store data while it

is being moved. Data buffers play an important role when the data transfer rates

between the transferring units are not the same. Hence, data buffers are useful in

hiding the disk latency for write operations.

Prefetching is a technique that hides latency for read operations. It predicts future

data accesses and requests data before it is requested. It thus overlaps computation

with fetching data, but only works for contiguous access patterns.

1.2.2 Disk Striping

The concept of disk striping lays the foundation for parallel I/O and parallel file

systems. Disk striping is the use of multiple hard disks in a file system such that file

data are broken down into blocks of data and distributed on different hard drives.

Typically, these hard drives reside on separate nodes so that the system can provide

6

high degree of parallelism during file I/O.

Figure 1.2: Disk striping.

Figure 1.2 shows an example of disk striping. The number of disks in this simple

striping scheme is called the stripe factor. The stripe factor determines the degree

of parallelism.

Disk striping is utilized in parallel file systems. In parallel file systems, multiple,

dedicated nodes serve as I/O nodes and are connected to the rest of the cluster. An

application can now access multiple file data chunks in parallel from different I/O

nodes. Parallel file systems will be discussed in detail in the next chapter.

7

1.2.3 Access Patterns

Access patterns play an important role in the I/O performance of an application.

An access pattern can be classified as contiguous or noncontiguous depending on the

layout of memory blocks in memory or in file. As shown in Figure 1.3, contiguous

I/O moves data from a single memory block into a single file region. Contiguous

I/O is generally easy to manage and perform. Noncontiguous I/O often becomes a

limiting factor in achieving good system throughput since it requires issuing many

small I/O requests. Memory latency contributes significantly when noncontiguous

I/O is a dominant pattern.

Figure 1.3: Data layout in memory and file.

8

As will be discussed later, popular parallel I/O libraries try to perform various

optimizations on noncontiguous data to overcome the effects of memory latency.

1.2.4 File Pointers

A file pointer defines the current position in the file. File pointers to the same file

in a parallel environment may be independent or shared. Each process may have an

independent file pointer that is updated independently of the other processes. To

avoid overlapping file accesses, each process needs to know what part of the file the

others will use.

There are situations in which all processes need a common view of the file pointers,

in which case the I/O library provides shared file pointers. Shared file pointers allow

coordinated access to the pointer between processes.

In scientific applications, many processes access the same file concurrently. They

read and write data to a file simultaneously, instead of one process performing I/O

while other processes wait on it.

A good parallel I/O library would allow multiple processes to perform I/O to/from

a common file efficiently.

1.3 Low Level I/O

In this section, we look at the low level interfaces available for performing I/O.

9

1.3.1 POSIX

POSIX provides a list of functions for performing I/O that include basic file manip-

ulation, regular I/O primitives, list I/O functions, memory mapping etc.

• File Manipulation:

The open function creates and returns a new file descriptor for a file. The close

function closes the file associated with the input file handle.

• Basic I/O primitives:

Functions read and write perform I/O on an input file handle that was opened

using the open function call. Data are read from or written to the position

in file pointed to by the file handle. The pread and pwrite functions provide

similar functionality, except that a user provides an explicit offset in file to

these functions.

• File Positioning:

The lseek function allows to set the file position of an open file to a value

specified by the user as an input argument.

• List I/O:

The readv and writev functions scatter/gather data into buffers in memory.

These functions accept a list of data pointers as input argument and provide

the functionality of performing more I/O tasks in a single function call than

regular I/O primitives.

• Memory mapping:

This set of functions allows mapping a file to a region of memory. When this is

10

done, the file can be accessed just like an array in the program. This could be

more efficient than read or write, as only the regions of the file that a program

actually accesses are loaded. Accesses to not-yet-loaded parts of the mmapped

region are handled in the same way as swapped out pages.

• Asynchronous I/O:

This set of functions allows a program to initiate one or more I/O operations

and then immediately resume normal work while the I/O operations are exe-

cuted in parallel. This feature can significantly reduce the time an application

spends waiting at I/O.

POSIX semantics dictate that a file can be connected to multiple processes/threads

at a time. Writes to a file must be immediately visible to all other processes, and all

file accesses must be performed in an atomic manner.

1.3.2 C I/O

The C standard I/O library exports a set of functions that work on file data as

streams. It provides functions like fopen, fclose, fwrite, fread etc. The main difference

is that a data stream is associated with an open file and the I/O is buffered. It is

overall similar in many aspects to POSIX, though POSIX provides a larger set of

functions that facilitate greater control on file I/O.

1.3.3 Fortran I/O

Fortran I/O defines a file as a sequence of records. In fortran 2008 [12], a file is

composed of either a sequence of file storage units (stream file) or a sequence of

11

records. to be a record.

A file in Fortran may be accessed in a sequential or direct manner. When con-

nected for sequential access, the order of the records is the order in which they were

written. When connected for direct access, each record of the file is uniquely identi-

fied by a positive integer called the record number. The order of the records is the

order of their record numbers.

Programming in Fortran is inherently sequential, it does not support a multi-

threaded programming model. An extension to Fortran 95 is co-array fortran [11],

which provides an explicit notation for data decomposition for MPI-style SPMD

programming.

1.4 Challenges

Traditional low level I/O functions were originally written keeping the sequential

execution model in mind. These functions do not cater to performing I/O in parallel

easily; for example, when multiple processes call an I/O routine, it is the program-

mer’s responsibility to make sure that simultaneous calls to these functions do not

yield undesired results. As such, these I/O routines are not best suited for being

used directly in applications for parallelizing I/O.

A significant amount of work has been done in achieving high performance I/O in

distributed memory systems through the use of specifications like MPI-IO. Various

techniques and optimizations for parallel I/O have been studied and implemented

in MPI-IO, which are discussed in the next chapter. However, shared memory sys-

tems differ fundamentally from distributed memory machines. The techniques and

12

optimizations applied in a cluster of computers for high performance I/O cannot be

translated directly to a shared memory system. While message passing along with

I/O are the main contributing factors to the I/O performance in an MPI applica-

tion, one should note that exchanging messages or sharing data in a shared memory

system is relatively much cheaper.

Further, the recent past has shown a rising interest in incorporating shared mem-

ory machines in HPC systems, since space constrains, power constraints and limita-

tions of message passing limit our ability to use clusters with fewer cores per node

effectively in reducing application run time. In short, one cannot stack up thousands

of few-core machines to attain desired compute and I/O bandwidth. Parallel I/O in

shared memory systems remains widely unexplored and it is only a matter of time

when it becomes the pushing need of the hour.

The following points are recognized to pose challenges in developing a parallel

I/O model for shared memory architecture.

• Lack of a parallel I/O framework for shared memory programming models:

With the increasing number of cores in a single node and the tremendous

I/O requirements of scientific applications, provision of parallel I/O in paral-

lel programming models for shared memory systems will become a necessity.

Currently, popular shared memory parallel programming models like OpenMP

do not provide support for parallel I/O.

• Performance:

The performance of I/O depends on a variety of factors, ranging from architecture-

dependent features like number of threads, amount of main memory, thread

13

affinity,etc. to the behavior of parallel file systems being utilized. As such,

providing an optimized implementation of parallel I/O is a non-trivial task

and requires us to work on various levels of an HPC system.

• System and application specific parameters:

Thread-based parallel I/O can be different from process-based parallel I/O as

in MPI, since threads share all resources on a single node. It is challenging and

important to understand the influence of factors like thread affinity, number of

threads as I/O aggregators, size of data chunks being read to or written, etc.

Behaviour of I/O also changes with variation in system configuration, such as

amount of main memory, type of network interconnect, number of I/O servers,

etc.

• Scalability:

As the number of cores in a single node keeps on increasing, a parallel I/O

implementation must prove to be scalable with the increasing number of threads

in an application. Providing scalability guarantees is a challenging, as various

other factors apart from number of threads need to be considered to ensure

scalability with optimal system throughput.

• Robustness:

As we think about designing a parallel I/O framework that is aimed to work

with a shared memory programming model like OpenMP, it is necessary to

understand how a parallel I/O library should work in collaboration with the

features of OpenMP, as well as how OpenMP is likely to evolve in the future.

14

As an example, it is important to decide how the parallel I/O library should

work with OpenMP loops, sections, tasks, nested parallelism, directives and

runtime calls, etc. Also, upcoming versions of OpenMP could introduce the

notion of subteams of threads, asynchronous tasks, etc. Hence, a parallel I/O

framework must be designed keeping these features in mind so that it can

adapt gracefully to such changes without requiring large-scale modifications to

the parallel I/O implementation.

• Hybrid programming:

As scientific applications are ported on large clusters that contain fat nodes,

it would be necessary for distributed memory technologies like MPI to col-

laborate with shared memory paradigms like OpenMP. Constructing a hybrid

programming model is a challenging task.

• Novel methods for storing Exascale data

As we get closer to the era of exascale computing, the amount of data generated

by applications is expected to rise, possibly even exponentially. Low level

libraries would have to analyze data and store it accordingly, and not just

focus on ways to improve performance of I/O. Libraries like HDF5 that serve

data centric applications are candidates that can benefit from such techniques.

1.5 Goals

This thesis aims to develop a parallel I/O framework for shared memory systems.

While it is not possible to work on all challenges associated with parallel I/O as

15

discussed in the previous section, focus has been laid on developing concepts and an

exhaustive framework along with optimized algorithms.

• Parallel I/O Specification for OpenMP

This thesis aims to propose a parallel I/O specification for OpenMP. We aim

to explore various possibilities of incorporating parallel I/O in OpenMP in

conjunction with its existing constructs. In particular, the specification should

be portable across various unix-like platforms.

• Parallel I/O library for shared memory machines

This thesis aims to develop an optimized parallel I/O library for shared memory

machines. This implementation would allow threads to write to the same file

without explicitly having to lock the file handle. As such, we aim to surpass

the traditional issues seen when threads write to the same file, and hence also

avoid requiring threads writing to separate files to exploit maximum available

bandwidth.

• Identifying I/O Optimizations for Shared Memory Applications

This research studies the I/O characteristics of various file systems including

PVFS2, Lustre, and how the performance of parallel I/O differs on each of these

file systems specifically from the point of view of shared memory I/O. Factors

such as the optimal number of threads required to perform I/O, best I/O prac-

tices for different file systems, optimal size of data chunks being read/written,

etc. are studied.

• Improving I/O performance and enabling semantic analysis of data in shared

16

memory applications

Finally, this thesis aims to propose ways to facilitate applications to perform

semantic analysis on data in an application library like HDF5. The objective

is to store data in a more object-based format rather than a linear array of

bytes, and improve performance of I/O at the same time.

The rest of this document is organized as follows: Chapter 2 gives an overview

of the current state of the art. It includes the various techniques, optimizations and

other developments in the field of parallel I/O. Chapter 3 provides details about

proposed parallel I/O extensions for OpenMP as part of this research. It includes

details about a parallel I/O library developed for shared memory machines and its

integration with the OpenUH compiler. Chapter 4 describes plugins developed for

the HDF5 technology suite that provide multi-threading to obtain parallel I/O and

store data in an innovative manner. Chapter 5 provides a summary of the research

performed and concludes by highlighting areas of future research in the field.

17

Chapter 2

Background and Related Work

In this chapter, we look the current state of the art in parallel I/O. We discuss

various techniques and optimizations performed to implement parallel I/O in high

performance computing systems.

2.1 I/O Options in Parallel Applications

This section describes the two basic techniques for processes in an MPI application

to perform I/O, viz. independent and collective I/O.

2.1.1 Independent I/O

Independent I/O is a technique in which each process/thread of an application issues

I/O requests independently of other processes/threads. It is a straight-forward form

of I/O which has traditionally been used in many applications.

18

Independent I/O suffers from a few important disadvantages when used in par-

allel applications. First, a process or a thread does not collaborate with other pro-

cesses/threads and issues its own I/O requests. In a scientific application, this can

soon lead to a large number of small I/O requests being spawned, which are typically

harmful for performance of I/O operations. Second, unless the system is configured

with sufficient I/O channels with enough network bandwidth to satisfy the applica-

tion’s requirements and a number of parallel disks, threads may experience conflicts

while accessing data that resides on the same disks.

Independent I/O does not capture the complete data access pattern of a parallel

application, which causes the underlying parallel I/O library to lose the opportu-

nity of performing optimizations with the knowledge of multiple processes/threads.

This is in contrast to collective functions, which allow I/O requests from multiple

processing elements to be serviced together.

2.1.2 Collective I/O

When applications spawn a large number of small I/O requests, they are often in-

terleaved such that they together span large contiguous portions of a file. Collective

I/O [13, 14] is a class of optimizations that improves performance by merging sepa-

rate I/O requests. Collective I/O merges requests across multiple processes/threads.

The semantics of collective I/O require all threads to call a collective routine. Collec-

tive write operations gather data from multiple threads into large, contiguous chunks

before storing it to disk. Collective read operations retrieve large chunks of disk and

distribute this data to multiple requesting threads. This reduces the number of disk

19

accesses and makes each access more efficient.

Collective I/O has generally been explored in two different ways. Two-phase

I/O performs collective I/O at the client side, whereas disk-directed I/O employs

collective I/O at the disk or the I/O server level.

2.2 Client- and Server-side Optimizations

In this section, we look at various techniques adapted at the client- and server-side

to implement parallel I/O or make improvements to it.

2.2.1 Two-phase I/O

On the client side, two-phase I/O [15] is an optimization technique that uses collective

I/O in two phases. The first phase consists of the communication phase in which

processes/threads analyze their independent I/O operations to determine what data

regions must be transferred between them. These regions are then split up between

a set of aggregator processes that interact with the file system. Thus the first phase

consists only of communication between processes/threads. In the second phase, the

aggregator threads perform the actual read or write operations.

The advantage of two-phase I/O is that by making all file accesses large and

contiguous, the I/O time is reduced significantly. The added cost of interprocess

communication for redistribution is small compared with the savings in I/O time.

20

2.2.2 Data Sieving

Data sieving is a technique introduced in ROMIO [13], a portable implementation

of MPI-IO. Data sieving works in a way that when processes/threads make requests

for noncontiguous chunks of data, the underlying implementation actually fetches a

big contiguous block starting from the first byte upto the last requested byte into a

temporary buffer in memory. It then puts the requested data from the temporary

buffer into the calling process’s/thread’s buffer. The advantage of using such a

technique is that we now make fewer I/O requests to disk, and hence, performance

deterioration due to combined effects of I/O latency are alleviated. Although we

read more data than is required, the holes between the required chunks might not

be too large, and the cost of reading additional data is negligible as compared to the

cost of issuing multiple I/O requests.

A problem with this algorithm could be satisfying the memory requirements. The

size of the temporary buffer must be as large as the total amount of data being read

spanning the user’s request. The system could run out of memory is this requirement

is too large.

Similarly, data sieving can be used for writing data. A read-modify-write must

be performed, to avoid destroying the data already present in the holes between the

contiguous data segments.

2.2.3 Disk-Directed I/O

Disk-directed I/O [16] is a feature in which compute nodes collectively send a request

to all I/O processors, which then arrange the flow of data to optimize disk, buffer,

21

and network resources. The I/O processors control the order and timing of the flow

of data. When an I/O processor receives a data request, it first determines the set

of file data local to it. It then determines the file blocks needed and sorts them to

optimize disk movement, and as each block arrives from the disk, it sends it to the

appropriate compute node.

Some of the improvements that disk-directed I/O shows are that now the I/O can

conform to both the logical, as well as the physical layout of the data in file. There

is only one request submitted to each I/O server. Also, disk scheduling is improved,

thereby improving performance of I/O overall. Although disk-directed I/O has not

yet been implemented extensively in many I/O intensive systems, experimental sim-

ulations have shown that it is a promising technique.

2.2.4 Compiler-Directed I/O

Another technique for improving parallel I/O performance can be applied at the

compiler level [17]. The idea stems from the fact that while independent I/O can

be seen to be harmful for performance for many cases, applying collective I/O in-

discriminately can also deteriorate performance. Hence, it can be beneficial to let a

compiler select the cases where independent I/O should be used, and where collective

I/O should be preferred.

In compiler-directed I/O, the compiler analyzes the data access patterns of an

application and determines suitable file storage patterns and I/O techniques. The

compiler implements collective I/O only when necessary. For other cases, it defaults

22

to an application’s naive implementation of I/O, where processes perform indepen-

dent I/O.

Compiler-directed I/O can be complicated as it requires working at the core

compiler level. Analyzing of the source code of the application and the file storage

patterns can be non-trivial.

2.3 Parallel File Systems

One of the important pieces of hardware that largely affects the performance of

parallel applications are parallel file systems. Here we look at some of the file systems

that have been popularly used with scientific applications.

2.3.1 PVFS2

PVFS2 provides a high-performance and scalable parallel file system for clusters [18].

PVFS2 is open source and released under the GNU General Public License [19].

PVFS2 provides four important capabilities in one package:

• a consistent file-name space across the machine

• transparent access for existing utilities

• physical distribution of data across multiple disks in multiple cluster nodes

• high-performance user space access for applications

Figure 2.1 shows how nodes might be assigned for use with PVFS2. Nodes are

divided into compute nodes on which applications are run, a management node

23

Figure 2.1: PVFS2 system view.

which handles metadata operations, and I/O nodes which store file data for PVFS2

file systems.

There are four major components to the PVFS2 system:

1. Metadata server (mgr)

2. I/O server (iod)

3. PVFS2 native API (libpvfs)

4. PVFS2 Linux kernel support

The metadata server and the I/O server are daemons which run on nodes in the

cluster. The metadata server, named mgr, manages all file metadata for PVFS2 files.

Metadata describes a file, that is, its name, its location in the directory hierarchy,

24

its owner, and how it is distributed across nodes in the system. The I/O server

handles storing and retrieving file data stored on local disks connected to the node.

These servers create files on an existing file system on the local node, and use the

traditional read(), write(), and mmap() operations for access to these files.

The PVFS2 native API provides user-space access to the PVFS2 servers. It han-

dles the scatter/gather operations necessary to move data between user buffers and

PVFS2 servers, while keeping it transparent to the user. For metadata operations,

applications communicate through the library with the metadata server. For data ac-

cess, the metadata server is eliminated from the access path and instead I/O servers

are contacted directly.

Finally, the PVFS2 Linux kernel support provides the functionality necessary to

mount PVFS2 file systems on Linux nodes. This allows existing programs to access

PVFS2 files without any modification. This support is not necessary for PVFS2 use

by applications, but it provides an extremely convenient means for interacting with

the system.

2.3.2 Lustre

Lustre is an open-source, distributed parallel file system [20]. It is an object-based file

system. It consists of three main components: clients, metadata servers (MDSs), and

object storage targets (OSTs). It allows data access through standard POSIX calls.

Lustre provides essential file system services through distributed lock management.

A client creates a file through an MDS. The MDS creates objects on all OSTs. The

clients now communicate with the OSTs directly, without requiring the help of the

25

metadata server.

Lustre stripes file data between a number of OSTs. Striping can be specified

on a per-file or a per-directory basis. The configurable parameters are stripe size,

stripe width, and stripe index. Lustre serializes data access to a file using distributed

lock management. All processes first have to acquire a lock before they can update

a shared file. Thus processes performing I/O on a Lustre file system are likely to

see effects of lock contention. In Lustre, each I/O server maintains locks for the

file stripes its stores. If a client requests a lock currently held by another client,

the lock holder is requested to release the lock. Lustre uses an extent-based locking

mechanism for granting locks. When a client requests a lock, the file system makes

an effort to grant the lock for the largest file region possible. For example, the first

requesting process to a file is granted a lock on the entire file. When another process

makes a request for a non-overlapping part of the file, the first process will relinquish

that part of the file to the requesting process. The lock granularity of a file system,

defined as the smallest size of file region a lock can protect, is generally set to the

file stripe size for Lustre.

2.3.3 GPFS

The IBM General Parallel File System (GPFS) [21] is a commercial file system.

Applications can access files through standard file system interfaces. GPFS provides

data access in case of node failures. Unlike Lustre, data and metadata servers are

not separated and can be handled by the same servers. It uses token passing to

implement file locking. Like Lustre, GPFS is POSIX compliant.

26

Other popular parallel file systems include GFS [22], Panasas [23], etc.

2.3.4 PLFS

PLFS (Parallel Log-Structured File System) is a middle-ware virtual file system

developed at Los Alamos National Lab (LANL) [24]. It is situated between the

application and the parallel file system responsible for the actual data storage. PLFS

was developed to tackle the issue of poor I/O performance exhibited by certain

parallel file systems when certain conditions arise.

Popular parallel file systems like Lustre, GPFS [21] etc. are known to exhibit sub-

standard performance when multiple processing elements access a common, shared

file (this access pattern is generally referred to as the N-1 pattern) [25, 26]. In con-

trast with the N-1 access pattern, the N-N pattern is known to demonstrate better

performance. Here, N processes access N files, that is, one file per process. Although

N-N performs better in general than N-1, many applications prefer to write data to

a single file rather than modifying the application’s data pattern to fit N-N access.

PLFS was specifically designed to obtain optimal I/O throughput in these appli-

cations without requiring them to make changes in the way the application stores

data.

PLFS is an interposition layer that transparently rearranges an N-1 access pattern

into an N-N pattern. It converts writes to a shared logical file into writes to multiple

physical files. As shown in Figure 2.2 it transforms N-1 into N-N, where every process

participating in I/O writes data to its own, separate file. The basic operation of PLFS

is as follows. For every writer to a logical file, PLFS creates a unique physical file on

27

Figure 2.2: Converting N-1 access pattern into N-N in PLFS.

the underlying parallel file system and maintains sufficient metadata to recreate the

shared logical file in the correct order of writes issued.

Users can interface with PLFS directly by using the PLFS API or by using its

MPI-IO driver (ad plfs). PLFS has demonstrated benefits of converting this N-1

access pattern into N-N for a variety of applications and parallel file systems.

2.3.5 IOFSL

At this point, it would be worthwhile to mention the concept of I/O forwarding.

I/O forwarding is the technique of forwarding I/O requests from compute nodes

28

to dedicated I/O nodes that perform I/O to a parallel file system on behalf of the

compute processes. Generally, a subset of compute nodes maps to an I/O node which

invokes the corresponding file system calls. There are many advantages related to

this scheme. The I/O traffic between compute nodes and the file system is regulated

and the load on the file system is reduced since the file system sees fewer clients.

Secondly, data can be cached at the I/O nodes which allows them to aggregate and

reschedule I/O requests. The IO Forwarding Scalability Layer (IOFSL) is a scalable,

unified high-end layer that implements I/O forwarding that addresses the issue of

the lack of a portable, open source implementation. It supports multiple network

interconnects and parallel file systems.

2.4 Parallel I/O Specifications

2.4.1 MPI-I/O

MPI-IO [4] refers to a collection of functions designed for managing I/O on dis-

tributed systems. It also allows files to be easily accessed in a patterned fashion

using the existing derived datatype functionality.

In this section, we look at parallel I/O techniques provided by MPI-IO.

Definitions:

Communicator: An MPI communicator specifies a group of processes inside which

communication occurs.

Etype: An etype (elementary datatype) is the unit of data access and positioning.

29

File View: A file view defines the current set of data visible to a process and acces-

sible from an open file. Each process has its own view of the file.

MPI I/O functions can be categorized into the following classes:

1. Simple I/O for File Manipulation:

e.g. MPI File open - A collective routine for opening an MPI file.

MPI File close - MPI routine for closing a file.

2. Data-Access Routines:

Data are moved between files and processes by issuing read and write calls.

There are three orthogonal aspects to data access: positioning (explicit offset

vs. implicit file pointer), synchronism (blocking vs. nonblocking), and coordi-

nation (non-collective vs. collective).

Examples:

MPI File read at - explicit, blocking, non-collective

MPI File read at all - explicit, blocking, collective

3. Collective I/O:

Collective functions are called by all processes in the communicator. For ex-

ample, MPI File read all is called by all processes in the communicator that

was passed to the MPI File open function with which the file was opened.

Examples:

MPI File read all, MPI File write all

4. Non-blocking I/O and Split Collective I/O:

Non-blocking functions allow overlapping I/O with other computation/communication

30

in a program. MPI supports non-blocking versions of all independent read/write

functions.

For collective I/O, MPI supports only a restricted form of non-blocking I/O

called split collective I/O. To use split collective I/O, a user must call a begin

function to start the collective I/O operation and an end function to complete

the operation.

2.4.2 UPC

Amongst other features for parallel computation, UPC provides functionality for

parallel I/O [27]. All UPC-IO functions are collective and must be called by all

threads collectively. Collective UPC-IO accesses can be done in and out of shared and

private buffers, thus local and shared reads and writes are generally supported. In

each of these cases, file pointers could be either common or individual. UPC-IO also

provides file-pointer-independent list file accesses by specifying explicit offsets and

sizes of data that is to be accessed. Non-contiguous accesses may be performed using

lists of explicit offsets and lengths in the file using list I/O interfaces. I/O operations

can be synchronous (blocking) or asynchronous (non-blocking). Synchronous calls

block and wait until the corresponding I/O operation is completed. On the other

hand, an asynchronous call starts an I/O operation and returns immediately.

UPC consistency semantics state that data written by a thread is only guaran-

teed to be visible to another thread after all threads have called upc all close or

upc all file sync. Writes from a given thread are always guaranteed to be visible to

subsequent reads by the same thread.

31

2.5 External libraries and software

2.5.1 ROMIO

ROMIO is a high-performance, portable implementation of MPI-IO [28]. ROMIO is

designed to be used with any MPI implementation and is included as part of several

MPI implementations. It utilizes an Abstract-Device Interface called ADIO [14] for

file system specific operations. ADIO allows to reduce the number of functions that

have to be modified for a file system. This approach allows users to use the high

level interface whereas ADIO maps it to the file system desired.

ROMIO provides a client-side collective I/O implementation, based on the two

phase strategy described previously. Two phase I/O consists of two steps; one where

processes exchange information about data patterns and second, the I/O step. It

uses data sieving where large chunks of data, starting from the first offset requested

upto the last offset, are read/written taking care to make sure the holes are left

unmodified.

ADIO is an abstract-device interface for parallel I/O [29]. It enables any paral-

lel I/O API to be implemented on different file systems by implementing the API

portably on top of ADIO. The usability of ADIO stems from the fact that instead of

having a number of different APIs supported by different vendors, it is more advan-

tageous to have a single API. This enables users to run applications on a wide range

of platforms, regardless of the parallel I/O API used in the applications. It is not

intended to be used directly by application programmers, but is a strategy for imple-

menting other APIs. ADIO consists of a small set of basic functions for performing

32

parallel I/O. It must be implemented in an optimized manner on each different file

system. The functions included in ADIO cover the following functionality:

Opening and closing of files, noncontiguous reads and writes, nonblocking reads and

writes, collective reads and writes, seeking, test and wait, file control, and some other

miscellaneous routines.

Some of the advantages of using ADIO are:

• Portability

ADIO provides a single API that users can use over different file systems.

The underlying implementation must be optimized for each file system. The

application programmer is freed from the intricacies of writing optimized I/O

routines for each file system.

• Experiment with new APIs

ADIO enables users to experiment with new APIs and new file-system inter-

faces. Once a new API is implemented on top of ADIO, it becomes available

on all file systems on which ADIO has been implemented.

2.5.2 OMPIO

OMPIO [30] is the parallel I/O architecture of Open MPI [5]. OMPIO separates par-

allel I/O functionality into frameworks. This allows to encapsulate various aspects

of parallel I/O into smaller functional units, such as dealing with file system specific

operations, individual I/O, collective I/O, or shared file pointer operations. Each

framework typically has multiple modules providing the required functionality, each

module being designed for different scenarios. The selection criteria that determines

33

which module is being used is highly dependent on the functionality provided by a

framework and on external parameters such as the file system utilized, hardware con-

figuration, process placement by the batch scheduler or application characteristics.

It is a highly modular and flexible architecture that allows one to dynamically choose

a different module in each framework independent of other aspects of the parallel

I/O library.

2.5.3 ADIOS

The Adaptable IO System (ADIOS) [31] provides a simple, flexible way for scientists

to describe the data in their code that may need to be written, read, or processed

outside of the running simulation. A user can set various options in an XML file that

tell the library how to process data. For example, the user could select MPI individual

I/O, collective I/O or POSIX I/O and simply restart the application, without having

to recompile the code. Having an XML file allows scientists to change how the IO

in their code works simply by changing a single entry in the XML file and restarting

the code. ADIOS provides the advantage of switching to a different I/O method for

a different platform in a simple manner, since different methods show variations in

their behavior over different HPC environments. The XML file allows switching to

the best I/O method known for a particular platform without change to the source

code.

34

2.5.4 HDF5

Hierarchical Data Format (HDF5) is a technology suite for efficient management

of large and complex data [32]. It supports complex relationships between data

and dependencies between objects. HDF5 is widely used in industry and scientific

domains, in understanding global climate change, special effects in film production,

DNA analysis, weather prediction, financial data management etc. [33] Parallel HDF5

(PHDF5) [34] enables developing high performance, parallel applications using stan-

dard technologies like MPI in conjunction with HDF5. HDF5 is a versatile data

model containing complex data objects and metadata. Its information set is a col-

lection of datasets, groups, datatypes and metadata objects. The data model defines

mechanisms for creating associations between various information items. The main

components of HDF5 are described below.

File: In the HDF5 data model the container of an HDF5 infoset is represented by

a file. It is a collection of objects that also explains the relationship between them.

Every file begins with a root group ”/”, which serves as the ”starting-point” in the

object hierarchy.

Dataset: HDF5 datasets are objects that represent actual data or content. Datasets

are arrays which can have multiple dimensions. A dataset is characterized by a datas-

pace and a datatype. The dataspace captures the rank (number of dimensions), and

the current and maximum extent in each dimension. The datatype describes the

type of its data elements.

Group: A group is an explicit association between HDF5 objects. It is synony-

mous with directories in a file system. A group could contain multiple other groups,

35

Figure 2.3: A sample HDF5 file.

datasets or datatypes within it.

Attribute: Attributes are used for annotating datasets, groups, and datatype

objects. They are datasets themselves, and are attached to existing objects they

annotate.

For example, as shown in Figure 2.3, the file ”Sample.h5” contains the root group

which itself contains a group G1 and two datasets, D1 and D2. Group G1 contains a

dataset D3. Attribute A1 is linked to dataset D1. The objects and the relationships

between them can be represented as a B-tree, which is used internally by HDF5 to

index its objects.

An HDF5 file is a self-describing format which combines data and metadata. It

is a container in which users typically store multiple HDF5 objects alongside their

metadata.

36

HDF5 supports parallelism using MPI. A PHDF5 (Parallel HDF5) application has

multiple processes accessing a single file (i.e. N-1 access pattern). PHDF5 exports

a standard parallel I/O interface which itself uses MPI’s parallel I/O functionality.

This is used along with parallel file systems to achieve high performance I/O in data

centric applications.

2.5.5 NetCDF

NetCDF [35] is an abstraction that views data as a collection of array-oriented ob-

jects. The file format is self-describing in the sense that the NetCDF file contains

header information that describes the data in the file. It exports an interface for

storing and retrieving data in the form of arrays from files. NetCDF has many sim-

ilarities to HDF5, but while HDF5 is hierarchical, PNetCDF presents a linear data

layout. PNetCDF provides a parallel interface for accessing NetCDF datasets. The

underlying parallel I/O utilizes MPI-IO to achieve high performance gains through

the use of collective interfaces.

2.6 Summary

As described in the previous sections, the most widely used parallel I/O specification

is based on the Message Passing Interface (MPI) [36], which has introduced the notion

of parallel I/O in version two. Secondly, UPC provides an abstraction for parallel

I/O [27] mostly following the MPI I/O specification.

However, no specification for parallel I/O exists yet in shared memory program-

ming models like OpenMP.

37

iHarmonizer [37] by Weng et al., optimizes I/O operations in multi-threaded

applications. It uses a scheme where a separate I/O thread is used to prefetch data

according to information provided by other threads. It accesses data in the order

most friendly to the disk. However, it uses a single thread dedicated for prefetching

data and does not address HPC type I/O workloads.

38

Chapter 3

Parallel I/O for OpenMP

In this chapter, we discuss various design alternatives for parallel I/O interfaces in

OpenMP, followed by the actual specification and its implementation in the OpenUH

compiler.

3.1 I/O options in multi-threaded applications

I/O options are limited as of today for applications using shared memory program-

ming models such as OpenMP [38]. Most OpenMP applications use the routines

provided by the base programming languages (e.g. Fortran, C, C++) for accessing

a data file. In order to maintain consistency of the resulting file, read and write

operations are performed outside of parallel regions. In case multiple threads are ac-

cessing a file, access to the file handle is protected within an omp critical construct

to avoid concurrent access by different threads. If serialized access in thread order

is required, one could use an ordered omp for with a static schedule. Unfortunately,

39

this would be considered non-conforming even though it is technically consistent with

the OpenMP 3.0 API specification. Facilitating an arbitrarily complex scheme might

require some very creative combinations of worksharing constructs and locks. This

however would quickly become unsightly, non-conforming and unmaintainable. Even

with tricks, some common approaches may not be possible since the primary goal

of OpenMP is to make worksharing and reasoning about program correctness easier

for the programmer. At no point, however, does it attempt to address cross-cutting

issues such as I/O.

Another approach has each thread utilizing a separate file to avoid race conditions

or synchronizations when accessing a single, shared file. While this approach often

leads to a better performance than the previously discussed methods, it has three

fundamental drawbacks. First, it requires (potentially expensive) pre- and post-

processing steps in order to create the required number of input files and merge the

output files of different threads. Second, it is difficult to support application scenarios

where the number of threads utilized is determined dynamically at runtime. Third,

managing a large number of files often creates a bottleneck on the metadata server of

the parallel file system. Congestion on the metadata server might not be an issue for

a smaller number of threads, but it could become relevant in the near future as the

number of cores of modern micro-processors is expected to grow into the hundreds

or even thousands. This will lead to an according increase in the number of threads

used by parallel applications.

40

3.2 Specification

In this section, we discuss the various alternatives for implementing a parallel I/O

framework in OpenMP, followed by the actual specification.

3.2.1 Directive based interfaces vs. Runtime based library

calls

As discussed before, a user can express parallelism in OpenMP using directives. The

primary design decision while designing a framework for parallel I/O is whether to

use compiler directives to indicate parallel execution of read/write operations, or

whether to define an entirely new set of library functions. The first approach would

have the advantage that the changes made to an application are minimal compared

to using an entirely new set of functions. Furthermore, it would allow an application

to execute in a sequential manner in case OpenMP is not enabled at compile time.

On the other hand, there are well known idioms for hiding OpenMP runtime

functions. For example, in Fortran, one may hide arbitrary code in conditional

compilation lines behind a sentinel, such as !$. Similarly, C/C++ codes may check

to see if OPENMP is defined.

Additionally, the syntax of the directive based parallel I/O operations are im-

plicitly assumed to behave similar to their sequential counterparts. This poses

the challenge of having to first identify which functions to support, e.g. C I/O

style fread/fwrite operations vs. POSIX I/O style read/write operations vs.

fprintf/fscanf style routines. Furthermore, due to the fact that OpenMP also

41

supports Fortran and C++ applications, one would have to worry about the differ-

ent guarantees given by POSIX style I/O operations vs. the record-based Fortran

I/O routines or how to deal with C++ streams. Because of the challenges associ-

ated with the latter aspects to a parallel I/O library, an entirely new set of library

functions has been defined.

3.2.2 Individual vs. Shared file pointers

The notion of parallel I/O implies that multiple processes or threads are performing

I/O operations simultaneously. A preliminary question when designing the interfaces

is whether to allow each thread to operate on a separate file pointer, or whether a file

pointer is shared across all threads. Due to the single address space that the OpenMP

programming model is based on, shared file pointers seem to be the intuitive solution

to adapt. Note, that the overall goal is that all threads are able to execute I/O

operations on the shared file handle without having to protect access to this handle.

3.2.3 Collective vs. Individual interfaces

A follow-up question to the discussion on individual vs. shared file pointers is whether

threads are allowed to call I/O operations independent of each other or whether

there is some form of restriction on how threads can utilize the new I/O functions.

Specifically, the question is whether to use collective I/O operations, which require

all threads in a parallel region to call the I/O operations, or whether to allow each

thread to execute I/O operations independent of each other. Although collective

I/O operations sound initially very restrictive, there are two very good reasons why

42

to use them. First, collaboration among the threads is a key design element to

improve the performance of I/O operations. The availability of multiple (application

level) threads to optimize I/O operations is only guaranteed for collective interfaces.

Second, individual file I/O operations could in theory be implemented on a user

level by opening the file multiple times and using explicit offsets into the file when

accessing the data. Therefore, collective I/O interfaces have been supported in the

current specification.

Using collective I/O interfaces requires a specification of the order by which the

different threads access the data. The current specification read/writes data in the

order of the thread-id’s. However, relying on a thread’s id is not a robust method

of coordinating file operations implicitly among threads. The official OpenMP spec-

ification makes it clear that relying on thread id order for things such as prede-

termining the work a thread gets from a worksharing construct is at best benignly

non-conforming (as in the case of a static schedule used by a parallel loop). Further-

more, in the cases of nested parallelism, each nested parallel region encountered by

a thread creates a new thread team of the specified number of threads; within this

new subteam, thread ids are assigned starting at 0. Therefore, in order to get a truly

unique thread id that may then be used to provide a true total order over all threads

in a nested situation, one must know the local thread ids of all ancestor threads1.

Despite this fact, implicit ordering among threads on the total thread id order

has been chosen due to the lack of useful alternatives. If the order of data items can

be determined using a different mechanism in an application, interfaces that allow

each thread to specify the exact location of the data item in the file are also provided.

1OpenMP provides for runtime functions to determine this

43

Our future work exploring parallel file I/O in OpenMP will consider it in the context

of nested parallelism and explicit tasks, particularly as the latter continues to evolve

and mature.

3.2.4 Synchronous vs. Asynchronous interfaces

Synchronous I/O interfaces block the execution of the according function to the point

that it is safe for the application to modify the input buffer of a write operation, or

the data of a read operation is fully available. Asynchronous interfaces on the other

hand only initiate the execution of the according operation, and the application

has to use additional functions to verify whether the actual read/write operations

have finished. On the operating system level, the aio read/aio write functions

provide examples for asynchronous I/O operations. These functions however also

highlight the implementation challenges of these operations, since they very often

imply spawning of additional threads in order to execute the according read/write

operations in the background. In a multi-threaded programming model, where the

user often carefully hand-tunes the number of threads executing on a particular pro-

cessor; creating additional threads in the background can have unintended side affects

that could influence the performance negatively. For this reason, the initial version

of the OpenMP I/O routines only support synchronous I/O operations. However,

this might change in the near future, specifically with the notion of asynchronous

tasks gaining popularity in OpenMP.

44

3.2.5 Algorithmic vs. List I/O interfaces

A general rule of I/O operations is, that the more data an I/O function has to deal

with, the larger the number of optimizations that can be applied to it. Ideally, this

would consist of a single, large, contiguous amount of data that has to be written to

or read from disk. In reality however, the elements that an application has to access

are often not consistent neither in the main memory nor on the disk. Consider

for example unstructured computational fluid dynamics (CFD) applications, where

each element of the computational mesh is stored in a linked list. The linked list

is in that context necessary, since neighborhood conditions among the elements are

irregular (e.g. a cell might have more than one neighbor in a direction), and might

change over the lifetime of an application. The question therefore is how to allow

an application to pass more than one element to an I/O operation, each element

pointing to potentially a different memory location and being of different size.

Two solutions are usually considered: an algorithmic interface, which allows one

to easily express repetitive and regular access patterns, or list I/O interfaces, which

simply take a list of <input buffer pointers, data length> as arguments. Due to

the fact that OpenMP does not have a mechanism on how to express/store repeti-

tive patterns in memory (unlike e.g. MPI using its derived data types), supporting

algorithmic interfaces would lead to an explosion in the size of the interfaces that

would be cumbersome for the end-user. Therefore, list I/O interfaces have been sup-

ported in the current specification, but not algorithmic interfaces. We might revisit

this section however, since Array shaping [39] is being discussed under the context of

OpenMP accelerator support.

45

3.2.6 Error Handling

As of today, OpenMP does not make any official statements or has any constructs

to recognize hardware or software failures at runtime; though there is active in-

vestigation of this topic by an OpenMP ARB subcommittee. Dealing with some

form of failures is however mandatory for I/O operations. Consider for example

that a common scenario in reading data from a file is to continue reading until the

end-file-marker(EOF) has been returned by the corresponding I/O function. Simi-

larly, recognizing when a write operation fails, e.g. because of quota limitations, is

paramount for many applications. Therefore, all I/O routines return an error code.

The value returned is either 0 in case of success, or -1 in case the routine has encoun-

tered a problem. The model can be refined by more precise error codes in subsequent

versions.

3.2.7 Introduction to the annotation used

In the following, we present the C versions of the parallel I/O functions introduced.

Since all functions presented here are collective operations, i.e. all threads of a

parallel region have to call the according function, some input arguments can be

either identical or different on each thread. Furthermore, the arguments can be either

shared variables or private variables. For convenience, we introduce the following

annotation to classify arguments of the functions:

• [private]: The argument is expected to be a private variable of a thread, values

between the threads can differ.

46

• [private’]: Argument is expected to be different on each thread. This can be

either achieved by using private variables, or by pointing to different parts of

a shared data structure/array.

• [shared]: The argument is expected to be a shared variable.

• [shared’]: An argument marked as shared’ is expected to have exactly the same

value on all threads in the team. This can be either accomplished by using a

shared variable, or by using private variables having however exactly the same

value/content.

3.2.8 File management functions

As of now, this category consists of two routines to collectively open and close a file.

All threads in a parallel region should input the same file name when opening a file.

The flags argument controls how the file is to be opened, e.g. for reading, writing,

etc.. It is a bit mask whose value can be set using the bitwise OR operation of the

appropriate parameters (using the | operator in C). The returned file descriptor fd is

a shared variable. Note, that it is recommended to use as many threads for opening

the file as will be later on used for the according read-write operation. However,

a mismatch in the number of threads used for opening vs. file access is allowed,

specifically, it is allowed to open the file outside of a parallel region and use the

resulting file handle inside of a parallel region. Having the same number of threads

when opening the file as in the actual collective read-write operation could however

have performance benefits due to the ability of the library to correctly set-up and

initialize internal data structures.

47

Note also, that a file handle opened using omp file open all can not be used for

sequential POSIX read/write operations, and vice versa.

3.2.9 Different Argument Interfaces

The routines specified in this section assume that each thread in a collective read/write

operation passes different arguments, except for the file handle. Specifically, each

thread is allowed to pass a different buffer pointer and different length of data to be

written or read. This allows, for example, each thread to write data structures that

are stored as private variables into a file.

In the explicit offset interfaces, i.e. interfaces that have the keyword at in their

name, each thread should provide the offset into file where to read data from or write

data to. If two or more threads point to the same location in the file through the

according offsets, the outcome of a write operation is undefined, i.e. either the data

of one or the other thread could be in the file, and potentially even a mixture of

both. For read operations, overlapping offsets are not erroneous.

For implicit offset interfaces, data will be read or written starting from the posi-

tion where the current file pointer is positioned. Data will be read from the file in

the order of the threads’ OpenMP assigned IDs.

All functions also take an argument referred to as hint. A hint is an integer value

that indicates whether buffer pointers provided by different threads are contiguous

in memory and file, or not. The according constants are CONTIG, NONCONTIG,

NULL. The latter constant indicates that user does not know whether data are

contiguous or not. All threads must pass the same value for the hint. Providing an

48

indication that data are contiguous across threads could lead to performance benefits

since it allows the parallel I/O library to skip certain code steps internally.

The List I/O interfaces, i.e. the functions taking more than one pair of < buffer

pointer, length> arguments, have an addition keyword list in the name. For example,

the collective file read function with list input is omp file read list all, data will be

read from file in order of the threads’ OpenMP assigned IDs starting from the current

position of the file pointer. buffer is in this case a pointer to an array of iovec

structures, which contains an argument for a buffer pointer and a data length. The

offsets argument is a pointer to an array of offsets. The length of both arrays is

defined by the argument size.

3.2.10 Common Argument Interfaces

The interfaces discussed in this subsection define functions where each thread has

to pass exactly the same arguments to the function calls. The main benefits from

the perspective of the parallel I/O library is that the library has access to multiple

threads for executing the I/O operations. Thus, it does not have to spawn its own

threads, which might under certain circumstances interfere with the application level

threads.

Both, single argument and list I/O versions of all read and write operations have

been defined in this section as well, for both implicit and explicit offset operations.

Table 3.1 lists the functions described above. Only read functions are shown in

the table for the sake of brevity.

49

File Management Interfaces
int omp file open all([shared] int *fd, [shared’] char *filename, [shared’] int flags)
int omp file close all([shared] int fd)

Different Argument Interfaces
int omp file read all ([private’]void* buffer, long length, [shared]int fd,

[shared’]int hint)
int omp file read at all ([private’]void* buffer, long length, [private’]off t offset,

[shared]int fd, [shared’]int hint)
int omp file read list all ([private’]void** buffer, int size, [shared]int fd,

[shared’]int hint)
int omp file read list at all ([private’]void** buffer, [private’]off t* offsets, int size,

[shared]int fd, [shared’]int hint)

Common Argument Interfaces
int omp file read com all ([shared]void* buffer, [shared’]long length, [shared]int fd,

[shared’]int hint)
int omp file read com at all ([shared]void* buffer, [shared’]long length,

[shared’]off t offset, [shared]int fd, [shared’]int hint)
int omp file read com list all ([shared]void** buffer, [shared’]int size, [shared]int fd,

[shared’]int hint)
int omp file read com list at all ([shared]void** buffer, [shared’]off t* offsets,

[shared’]int size, [shared]int fd, [shared’]int hint)

Table 3.1: OpenMP I/O general file manipulation routines

3.3 Implementation

This section presents a prototype implementation of the interfaces in the OpenUH

compiler. Internally, the parallel I/O operations are based on a POSIX threads based

I/O library. In the following, we discuss first the OpenUH compiler, I/O library as

well as the integration of the two components.

50

3.3.1 The OpenUH compiler and its runtime

OpenUH [40, 41], a branch of the Open64 4.x compiler suite, is a very high quality,

fully functional C/C++ and Fortran optimizing compiler under development at the

University of Houston that supports the bulk of the OpenMP 3.0 API, including

explicit tasking. It is freely available and used primarily as a basis upon which

language extensions (e.g., Co-array Fortran [42]) and new ideas for better supporting

OpenMP during both the compilation and runtime phases are explored. OpenUH

was first realized when Open64 was extended to support OpenMP 2.5 [41]; and from

this point, it has been used as a platform for conducting compiler research.

Examples include selective performance instrumentation [43] of a source program

during the different phases of the compilation and the only known open source im-

plementation of the OpenMP ARB sanctioned Collector API [44]. The Collector

API is an event-based framework used to enable the creation of ”collector tools” -

custom written dynamic libraries that may be registered and called during specified

events triggered by the OpenMP runtime during program execution. In addition to

supporting most of the OpenMP 3.0 API, novel extensions have been designed and

implemented to provide greater scalability when mapping work to many cores [45].

Barrier, serialization and reduction enhancements have been implemented [46] and

allow the user to employ these enhancements at runtime. Creating compiler-based

tools is also a main use of OpenUH [47], and research into providing a more flexible

basis for doing this and for enabling better compiler/tool interactions is being heavily

pursued. Other work includes the implementation of full OpenMP 3.0 compliance

and the full support of nested parallel sections.

51

OpenUH supports OpenMP through two means. The first is during the compila-

tion of the source program containing OpenMP directives. When the program is first

compiled, it is put into the very highest level of the Open64’s intermediate represen-

tation, WHIRL. The WHIRL nodes in the IR tree representing OpenMP regions are

first lowered into a type of WHIRL node supporting more generic multi-processor,

or ”MP” program units. Over the course of various optimization and IR lowering

phases, these MP program units are transformed into explicitly multi-threaded code,

aided by the insertion of internal runtime functions available to the compiler through

the OpenMP runtime library. For example, the beginning of a parallel region, de-

noted in C with the #pragma omp parallel directive, corresponds directly with a call

to ompc fork, which manages the creation or waking of threads during program

execution. Included in the call to this function is a function pointer to the code

contained inside of this parallel region, which at this point has itself been turned

into a series of functions through a compiler technique called inlining [41]. There are

similar runtime functions that make the transformation into explicitly threaded code

and dynamic management of work easier, such as those associated with workshar-

ing, synchronization and barriers, cache flushing, atomic writes to shared variables,

mutual exclusion, task creation, and the facilitation of private and shared data en-

vironments.

The object code resulting from source that contains OpenMP includes with it,

the framework necessary to direct the execution of the multi-threaded program as

described through the use of the very high level OpenMP directives and the external

facing runtime library functions which are designed to be used directly by the user

52

in their code; thus OpenMP is not only a set of directives that the compiler may

use for transformations during compilation, but it’s a set of runtime functions the

user may directly call to explicitly query and modify the execution environment. An

example of an external interface is, omp get thread num, which returns the unique

thread id of the thread in a thread team making this call. Below, the integration of

the the parallel I/O library with the OpenUH compiler is discussed.

3.3.2 A multi-threaded parallel I/O library

The parallel I/O library used internally provides collective I/O operations based

on POSIX threads. The architecture of the library consists of the following main

components as shown in Figure 3.1. In the following, each component has been

discussed in detail.

• Initializer:

The initializer routines are called when threads open a file. The init routines

initialize various data structures required by the library on a per-file level.

Some important tasks of the init routines include opening the file multiple

times and to internally maintain a list of file descriptors to the file. Note that

only a single file descriptor is returned to the calling program. POSIX mutexes

and condition variables are declared and initialized for the threads operating

on the file.

• Base Function:

The base function is the first internal library function called by the collective

I/O interfaces. It collects the input arguments provided by all threads in a

53

Figure 3.1: Architecture of the I/O Library.

single array. It then redirects all but one thread, the slave threads, to the

wait state, while the master thread analyzes the input arguments and redirects

control to the contiguity analyzer or the work manager accordingly. Finally,

the master thread proceeds towards executing an I/O task, if necessary.

• Contiguity Analyzer:

The contiguity analyzer is called by the main thread. It performs the opti-

mization of merging buffers by scanning the input array of memory addresses

to look for contiguity between them. For those interfaces that accept file offsets

explicitly, the analyzer looks for contiguity both in memory as well as in file.

If the analyzer finds discontiguity between buffers, it passes the contiguous

block found so far to the work manager and proceeds with the scan on the rest

54

of the array. Once the entire array has been scanned, it sets a FINISH flag,

and the remaining block of contiguous memory addresses is passed to the work

manager.

• Work Manager:

The work manager performs the task of assigning blocks of data to be read/written

to threads. Once it accepts a contiguous block of data from the contiguity an-

alyzer (or from the base function), it assigns the block to the next available

slave thread and sets the ASSIGNED flag for the thread. It also manages the

internal file offset used for those interfaces that do not accept a file offset explic-

itly. The work manager can be programmed to wake up a thread immediately

once an I/O request is assigned to it or wake up all threads once the contiguity

analyzer completes its analysis and the FINISH flag is set. Currently, for list

I/O interfaces, the work manager waits for the FINISH flag to be set whereas

for the single argument interfaces, it wakes up a slave thread immediately.

• Thread-State Handler:

Slave threads enter a wait state after they call the base function. They sleep

on a condition variable until they are explicitly invoked by the master thread

(through the work manager). Once a slave thread is invoked from its sleep

mode, it checks to see if it has been assigned an I/O request. All slave threads

that have been assigned an I/O request proceed to access the low-level I/O

interfaces while those that do not have an I/O assignment exit the function.

• Access Work Assignment:

55

This module allows a thread to configure some data structures before proceed-

ing to the low level IO functions. As an example, a thread with multiple I/O

assignments can create an array of struct iovec to enable performing list I/O.

• Low-Level I/O Interfaces:

The low level interfaces list the functions available to a thread for performing

I/O. As an example, for a thread with multiple I/O assignments, it creates an

array of struct iovec and calls the readv / writev routines. The pread and pwrite

functions allow the programmer to specify a file offset along with a memory

address and the length of the data to be read/written.

3.3.3 Integration of I/O library with the OpenUH compiler

Since the collective I/O interfaces were originally developed as part of a stand-alone

library for POSIX threads, integration of the library with the compiler and providing

the OpenMP syntax discussed previously required some modification. For example,

data structures were originally introduced to map POSIX IDs to OpenMP style IDs

(0,1,2..). Further, private routines were written to mimic the behavior of OpenMP

runtime functions like omp get thread num() to query the data structures holding

this information. These routines were not required anymore after the integration

with the compiler.

The main bulk of the integration work was to take advantage of the functionality

of the compiler’s OpenMP runtime within the parallel I/O library. This includes

using the runtime’s functionality to determine the number of threads in a parallel

region, thread ID’s etc.. Furthermore, the parallel I/O library has been modified

56

to take advantage of the highly optimized synchronization routines among threads

instead of the original implementation in the parallel I/O library.

In the following, we discuss two aspects of the library which have a strong influ-

ence on the performance in more details.

3.3.4 Optimizing Collective I/O operations

As discussed previously, collaboration among the threads is a key design element

to improve the performance of I/O operations. Collective I/O interfaces provide an

abstraction from the actual implementation of the operation, allowing to use multiple

approaches/algorithms without requiring any modification in the user code. The

actual approach taken to implement a collective read or write operation will depend

on the input parameters of the operation, i.e. amount of data to be read/written by

each thread and offset into the file, as well as characteristics of the underlying file

system and storage.

The implementation used in the library presented here is based on two funda-

mental concepts. First, there is a minimal data size smin required to saturate an

individual file stream. For example, if multiple threads request to write a small

amount of data each, it might be beneficial to combine the items of all threads and

issue a single, larger write request. This approach reduces the number of context

switches and improves the overall performance of the I/O operations [48].

Secondly, one data stream might not be able to saturate the read/write bandwidth

of a storage system. The consequence of this assumption is that a very large I/O

request might need to be split into multiple smaller requests. This distributes the

57

work among multiple threads, and generates multiple, parallel data streams to/from

the storage, which often improves the performance again. The precise meaning of

’large’ data blocks depends on various factors, mainly the underlying parallel file

system being used.

The library further provides the notion of ”active threads”, which is the number

of threads that participate in I/O. A user can set the number of active threads in

a config file. This feature can be used so that only a subset of threads participates

in I/O, whereas remaining threads can proceed with program execution. When the

number of active threads is less than the total number of threads available, the first

active threads number of threads are chosen for I/O based on their OpenMP IDs.

As an example, if an OpenMP program spawns eight threads, out of which two are

set to be active, threads 0 and 1 will be chosen as active threads. The advantages

of having active threads are two-fold: depending on the number of cores, external

workload, network interconnect etc., not all threads may be required to obtain the

best I/O performance; a smaller number of threads participating in I/O may prove to

be sufficient. In fact, having all threads participate in I/O could have a negative effect

on the I/O performance. Active threads allow us to overlap I/O with computation,

thereby accomplishing the main advantage provided by asynchronous functions.

To determine the minimal data size smin as well as a reasonable number for the

active threads, two simple benchmarks are used. The first one writes various data

sizes repeatedly (ensuring that no caching effects occur). Plotting the bandwidth

obtained over the data size used allows to determine the minimal data saturation

58

point. A second benchmark is used to repeatedly write data of size smin with in-

creasing number of threads. The combined bandwidth of all threads writing data is

then used to determine the ideal number of active threads, which we define as the

minimal number of threads obtaining the maximum bandwidth observed.

As of today, a user can set these values in a configuration file that is read by the

library whenever a file is opened. Algorithms which allow to determine (close to)

optimal values for these two parameters are currently being discussed and evaluated.

3.3.5 Alternative low-level interface functions

The goal of the parallel OpenMP I/O interfaces is to allow a user to perform I/O to

a common file in an efficient manner without having to manage and lock a (shared)

file handle. However, different file systems react differently when multiple threads

perform I/O to a shared file. PVFS2 allows for efficient I/O when multiple threads

access a common file, whereas Lustre does not scale at all when multiple threads

access the same file [49]. In this case, we perform an optimization at an intermediate

level to extract better I/O bandwidth from the underlying file system.

The Parallel Log-structured File System (PLFS) is a virtual file system developed

by Los Alamos National Laboratory [50]. It remaps the data layout of an applica-

tion into one optimized for the underlying file system. Specifically, it transparently

rearranges the pattern where N data streams are targeting one file into a pattern

where each data stream accesses a separate file. Thus, the application still has a

single logical file that it can operate and access, however from the underlying file

systems perspective there are multiple files. This prevents contention when trying to

59

lock a file for write operations [51] to ensure consistency, and thus greatly improves

performance without sacrificing usability on some file systems such as Lustre.

PLFS is a virtual file system situated between the parallel application and an

underlying parallel file system responsible for the actual data storage. PLFS creates

a container structure on the underlying parallel file system. Internally, the basic

structure of a container is a hierarchical directory tree consisting of a single top-level

directory and multiple sub-directories. Multiple threads opening the same logical file

for writing share the container, although each thread gets a unique data file within

the container into which all of its writes are appended. When the thread writes to

the file, the write is appended to its data file and a record identifying the write is

appended to an index file. A file created using the PLFS API can either be read by

regular POSIX I/O routines in case the FUSE daemon has been installed, or using

the PLFS API otherwise.

PLFS has been incorporated into the parallel I/O library as an alternative im-

plementation of the low level interfaces described above. Thus, the library has the

ability to choose between the PLFS read/write functions and the POSIX I/O inter-

faces depending on the file system being used. Currently we allow the user to choose

the PLFS API instead of the regular low level I/O routines by specifying it in the

config file. In the future, the library will be able to detect the type of the underlying

file system and choose the appropriate low level interface functions automatically.

60

3.4 Evaluation

The performance of the new interfaces and the according implementation is evalu-

ated with a set of micro-benchmarks on various platforms, storage systems and file

systems.

3.4.1 Description of Benchmarks

As part of this dissertation, we developed a set of micro-benchmarks that provide

commonly used I/O patterns in OpenMP applications and/or options to express I/O

patterns in OpenMP applications.

Writing/Reading in parallel to/from one file using the ordered directive

In this benchmark threads perform I/O to the same file. Since the file descriptor is

shared between all threads, access to it needs to be exclusive to a thread at any given

instance of time for file is opened for writing. This restriction is not implemented

for read tests. Threads access non-overlapping parts of a large shared buffer in a

ordered for loop. Note that access to the file descriptor can also be protected using

OpenMP’s critical section. The ordered clause was not necessarily used to achieve

ordering between the threads. For write purposes, this test exposes the performance

drawback that can be seen when access to a shared file needs to be exclusive. As

such, this is a worst case scenario when threads write to the same file. For reading,

this test highlights the effects of multiple threads accessing the same file (no explicit

locking or synchronization).

61

Writing/Reading in parallel to/from separate files Here, all threads perform

reads and writes to separate, individual files. Each thread has exclusive access to its

own file and can perform I/O freely, without contention with other threads. Access

to each file descriptor does not need to be protected via locks for writing. Threads

read/write non-overlapping parts of a large, shared matrix in a loop. This benchmark

targets exploring the maximum I/O bandwidth available to the application.

Collective I/O using omp file write all/omp file read all This benchmark

aims to evaluate the collective interface omp file write all/omp file read all. The file

is opened using omp file open all. Threads read/write non-overlapping parts of a

large, shared matrix from/to a common, shared file. For write tests, the shared

matrix is ultimately written multiple times using a for loop to achieve the desired

file size. Note that access to the open file does not require synchronization between

threads.

Application Benchmarks Further, we evaluate the performance of our interfaces

using a version of the NAS parallel benchmarks and an image processing application.

BT I/O: The new OpenMP I/O routines have also been evaluated with two

OpenMP applications. We present here results obtained with the Block-Tridiagonal

(BT) NPB benchmark [52], which has in its MPI version an I/O performance compo-

nent. An OpenMP version of the BT benchmark is available since version 3 of NPB,

however without the I/O part. We extended the NPB OpenMP BT benchmark to

include I/O in a way similar to its MPI-IO implementation. Note, that subtle dif-

ferences remain between the two implementations. NPB-MPI writes a slightly lesser

62

amount of data and reads it back for verification.

Experiments have been performed with the class D benchmark, where approxi-

mately 128 Gigabytes of data are written over the course of the program (approxi-

mately 2.5GB of data over 50 iterations).

MSG: Multiscale Gabor (MSG) is an image processing application used to analyze

smear sample from fine needle aspiration cytology, with the overall goal being to

assist medical doctors in identifying cancer cells [53]. The challenge imposed by this

application is due to the high resolution of the microscopes and the fact that images

are captured at various wave-length to identify different chemical properties of the

cells. For a 1cm×1cm sample with 31 spectral channels the image can contain overall

up to 50GB of raw data. Furthermore, the code has the option to write the texture

data into output files to facilitate future processing steps in realizing a complete

computer aided diagnosis (CAD) solution. This makes the application compute and

I/O intensive.

We performed experiments with an image containing 8192 x 8192 pixels and 21

spectral channels. The application writes 13 files, each of size 256 MB, hence a total

of 3.25 GB.

3.4.2 Description of the platforms used

For the experiments, two PVFS2 (v2.8.2) [18] file system installations and a Lustre

file system [20] were used.

PVFS2 over the Crill Compute Cluster (PVFS2): The Crill compute cluster

consists of 16 nodes, each node having four 2.2 GHz 12-core AMD Opteron processors

63

(48 cores total) with 64 GB main memory. Each node has three 4x SDR InfiniBand

links, one of them being reserved for I/O operations and two for message passing

communication. A PVFS2 file system has been configured over the Crill nodes such

that all 16 Crill nodes act as PVFS2 servers and clients, and a secondary hard drive

on each node is used for data storage.

PVFS2 over SSD (PVFS2-SSD): Apart from regular hard drives, the Crill cluster

has a RAMSAN-630 Solid State Disks (SSD) based storage from Texas Memory

Systems. This SSD is made of NAND based enterprise grade Single Level Cell (SLC)

flash. The SSD installation has four 500GB cards, thus making a total of 2TB. It

has two dual port QDR Infiniband cards, and we use one of two ports on each card.

The peak I/O bandwidth of the SSD storage is 2 GB/s. The PVFS2 parallel file

system configured over the SSD employs two separate I/O servers, each I/O server

serving exactly half of the SSD storage.

Lustre: The Atlas cluster at the University of Dresden employs nodes with a

maximum of 64 cores. The file system is connected to the compute nodes using an

SDR Infiniband link. The cluster has 92 AMD Opteron nodes with 64 cores each

and 64 to 512 GB memory. The storage consists of 12 OSTs and the stripe size was

set to 1MB. The Lustre version used is 1.8.

Tests have been executed multiple times. To avoid effects of data caching, all data

are flushed to disk using fsync before closing a file. The maximum of the bandwidth

values observed across all runs has been presented. The variance of measurements

on these two file systems was generally low.

64

3.4.3 Results

Results using the Microbenchmarks

First, the results of the first two micro-benchmarks described above are shown. These

benchmarks allow us to set upper and lower bounds for the expected performance of

the collective OpenMP I/O interfaces.

Fig. 3.2 shows the performance of the write benchmark on the PVFS2 file system.

The left part of the figure shows the write bandwidth obtained on the PVFS2 file

system when threads perform I/O to a shared file. The I/O bandwidth observed

reaches a maximum of 212 MBytes/sec, independent of the number of threads used.

This can be explained by the fact that the benchmark serializes the access to the file

handle and therefore the I/O operation itself. The right part of the figure shows the

results obtained with the second micro-benchmark where threads write to individual

files. The bandwidth obtained in this case is significantly higher than when threads

write to a shared file, reaching a maximum of almost 500 MBytes/sec. This value is

an indication of the upper bound on the I/O performance that can be achieved from

a single node on this machine.

As discussed before, most scientific applications require a separate merge step to

consolidate data from separate files into a single file. This is done in a sequential

manner and causes the overall I/O performance to drop significantly. As an example,

we see a maximum bandwidth of 496 Mbytes/sec when eight threads write separate

files of 2 Gigabytes each on PVFS2. However, on merging all those files into a single

16 Gigabyte file, the sustained bandwidth drops to 101 Mbytes/sec.

Results of the microbenchmarks on the PVFS2-SSD (see Figure 3.3) and the

65

Figure 3.2: Shared file (left) and individual file write microbenchmark(right) on
PVFS2.

Lustre file systems (Figure 3.4) show a similar trend, where we see performance

limitations when threads write to a shared file, but higher bandwidth when they

write to individual files.

The read performance of these benchmarks is discussed below. Fig. 3.5 shows the

effect of multiple threads reading from a common/separate files. The figure shows

that there is virtually no difference between the two cases on the PVFS2 file system.

Note that for reading purposes, a file is not locked by a thread. On PVFS2, there

are no real benefits of reading from multiple files as opposed to reading from a single

file.

66

Figure 3.3: Shared file (left) and separate file (right) write microbenchmark on
PVFS2-SSD.

Figure 3.4: Shared file (left) and separate file (right) write microbenchmark on Lus-
tre.

67

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
48 threads

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
48 threads

Figure 3.5: Shared file (left) and separate file (right) read microbenchmark on
PVFS2.

Figure 3.6: Shared file (left) and separate file (right) read microbenchmark on Lustre.

68

Fig. 3.6 shows the read performance on the Lustre file system. In contrast with

PVFS2, accessing the same file on Lustre results in limited performance whereas

reading from separate files shows improvements in bandwidth, specially for large

number of threads.

3.4.4 Determining smin and Active Threads

As discussed previously, the size of a data chunk at which the best performance for a

single thread is achieved is called smin. Similarly, active threads denote the minimum

number of threads required to obtain the optimum bandwidth from a node. These

values are determined by a brute force method, where the value of smin is determined

by testing the I/O performance for one thread using various data sizes. We start

with a size of 8KB and increment it in multiples of 2, upto a maximum size of 1GB.

Similarly, these tests are performed for different number of threads to determine the

number of active threads. Figure 3.7 shows these values for the PVFS2 file systems.

It can be seen that the smin value is 2MB and the number of active threads is 8.

Similarly, Figure 3.8 shows the values for the Lustre file system. The graph on

the left shows the test performed to determine smin, whereas on the right is the test

for active threads. It can be seen that although the smin value here is 1MB, the

performance for smaller data sizes like 8KB is reasonably high. On Lustre, active

threads is a more important parameter. The active threads for Lustre as seen in

the graph is 4. Although the performance obtained using two threads is similar, the

performance using four threads is better when the data size equals smin value. Also,

it must be noted that the microbenchmarks perform the simple task of only writing

69

Figure 3.7: Determining smin and active threads on PVFS2.

data, and hence exhibit a pattern different from real applications which may have a

computational component, which could have an influence on the value observed for

active threads. Also, since PLFS creates a file per thread, for an application that

creates many output files, the overhead of creating files can also have an impact on

the performance of I/O. There are subtle differences seen in the two graphs for the

single thread case. This is mainly attributed to the fact that the file system is a

shared resource.

70

Figure 3.8: Determining smin and active threads on Lustre.

Results using Library Interfaces

The left part of Figure 3.9 shows the performance of omp file write all on PVFS2.

Note that omp file write all is a collective function where every thread provides a

fixed amount of data and the data points shown on this graph (segment size) indicate

the total amount of data written across the threads by each omp file write all call.

The results indicate that our implementation of the OpenMP I/O interfaces achieved

a bandwidth in excess of 500 Mbytes/sec. Performance for 1, two threads reaches

a maximum of 214 Mbytes/sec and 360 Mbytes/sec respectively, whereas it is much

higher for a larger number of threads. The benefits of multiple threads performing

I/O are clear in this case. For these tests, all threads were used as active threads.

It can also be seen that increasing the segment size, i.e. the amount of data writ-

ten in a single function call, results in better performance. However, the bandwidth

obtained does not necessarily increase beyond a certain threshold. For the PVFS2

71

file system, the main limitation comes from how fast data can be transferred out of

the node, while for the SSD storage the limitation is sustained write bandwidth of

the storage itself.

The right part of the figure shows the read performance on PVFS2. Similarly,

Figure 3.10 shows the performance of the functions on PVFS2-SSD.

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m512m

B
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
48 threads

Figure 3.9: Performance of omp file write all (left) and omp file read all (right) on
PVFS2.

72

Figure 3.10: Performance of omp file write all (left) and omp file read all (right) on
PVFS2-SSD.

Despite the fact that omp file write all writes to a shared file, its performance is

consistently better than when writing to a shared file using explicit serialization. The

collective I/O routines perform typically close to the performance of the benchmark

where threads write to separate files, which as discussed, often represents a best-case

scenario. Furthermore, taking into account that the ’separate files’ scenario would

require an explicit merging step after executing the application, the new routines

clearly represent the best of three solutions evaluated in the corresponding micro-

benchmarks.

In Figure 3.11, the performance improvements using multiple threads are clearly

seen. Note that by using PLFS, the library creates multiple files at the file system

level to take advantage of Lustre’s performance improvements demonstrated by the

use of PLFS. The absolute value of the bandwidth is greater than that observed

73

using the microbenchmarks. This can be attributed to the fact that Lustre is a

shared resource and the results obtained are subject to the load on the file system

due to other applications accessing it.

 0

 200

 400

 600

 800

 1000

8k 32k 128k 512k 2m 8m 32m 128m 1g 8g 64g

B
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

 0

 200

 400

 600

 800

 1000

8k 32k128k512k 2m 8m 32m128m 1g 8g 64g

B
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

Figure 3.11: Performance of omp file write all (left) and omp file read all (right) on
Lustre.

Performance of BTIO and MSG

Table 3.2 shows the write times for BTIO for all file systems. Note, that in these

tests the number of active threads was set to eight and the smin value used was set

to 2 MB for PVFS2. For Lustre, the number of active threads was set to four and

smin was set to 1MB as determined previously.

The results show that with increasing number of threads but keeping the num-

ber of active threads constant, a consistent performance is achieved. We can see

that using multiple threads significantly improves performance as compared to the

74

sequential case. The runtime for the single thread case was very high on the PVFS2-

SSD and Lustre file systems. Due to limitations on the resource utilization, these

tests have not been run.

No. of threads PVFS2 PVFS2-SSD Lustre
1 398 - -
2 319 725 326
4 173 447 499
8 177 426 564
16 165 425 527
32 156 429 496
48 181 423 -
64 - - 572

Table 3.2: BTIO results showing I/O times (seconds).

No. of threads PVFS2 PVFS2-SSD Lustre
1 12 17 15
2 6 17 8
4 5 13 12
8 5 12 12
16 6 12 11
32 5 12 10
48 7 18 –
64 – – 13

Table 3.3: MSG write times (seconds).

A similar trend can be seen in the write times for MSG in Table 3.3. On PVFS2,

the best performance is seen for two threads, since the maximum performance that

can be obtained has already been achieved (for two threads, the write bandwidth for

PVFS2 is 515 MBytes/sec).

75

No. of threads Lustre
1 14.7
2 8.2
4 12.12
8 7.5
16 8.4
32 10.4
64 10.4

Table 3.4: MSG write times (seconds) on Lustre with 2 active threads.

On Lustre, the two threads case shows the best performance, and the I/O time

seems to increase when more threads are spawned by the application. Table 3.4 shows

the performance when two threads are used as active threads. The performance using

two threads as active threads is better than when using four threads as active threads.

This is because we use PLFS on Lustre, which creates a file for every active thread.

Since MSG creates 13 output files in total, when four threads are used as active

threads, a total of 13*4=52 files are created at the file system, whereas when two

threads are used as active threads, a total of 26 files are created. Since these cases

differ in the sense that the total number of files created at the file system level is

different, it could be one of the reasons contributing towards the difference in the

performance times observed.

Overall, we can see that for both BTIO and MSG, a slowdown in performance

occurs when the application spawns as many threads as the number of cores in the

system. In general, for the Magny-Cours and Interlagos processors, spawning a large

number of threads on a node is likely to have performance drawbacks since it leaves

the operating system with fewer system resources to utilize. Kerbyson et al., discuss

76

the performance characteristics of Magny-Cours processors in detail [54].

3.5 Comparing OpenMP-IO with MPI-IO

It is known that spawning threads consumes fewer system resources as compared

to spawning processes. In this section, we present results that determine if having

multiple threads has advantages over having multiple processes on a node. In this

section, we compare the performance of the MPI and OpenMP versions of BTIO. The

MPI applications were run by spawning all processes on the same node. For the four

process test case, one process was set as the aggregator whereas for all other cases

with more number of processes, four processes were set to be used as aggregators.

Fig 3.12 shows the performance of BTIO on PVFS2. The I/O performance of the

OpenMP based application is clearly better than its MPI counterpart.

Figure 3.12: Comparing MPI-IO and OpenMP-IO on PVFS2.

77

Figure 3.13: Comparing MPI-IO and OpenMP-IO on Lustre.

Fig 3.13 shows the performance on the Lustre file system. It can be seen that as

the number of processes/threads increases, shared memory I/O outperforms MPI-IO.

These tests further stress the importance of having the capability of performing

I/O in parallel in a shared memory programming model like OpenMP. As super-

computing systems continue to grow, a high performance I/O model for a shared

memory programming model can play a crucial role.

78

Chapter 4

High Performance I/O in HDF5

4.1 Introduction

In this chapter, we discuss two plugins developed for HDF5. The motivation behind

developing these plugins is two-fold: a) to provide a novel means of storing HDF5

data on disk that allows for effective semantic analysis of data, and b) provide high

I/O throughput for shared memory applications.

As discussed previously, HDF5 is a data model, library and data format. It

exports an API and provides a means to store data in a hierarchical format. Natively,

all data along with metadata is stored in a single file on disk. This can pose certain

limitations as having the ability to distinguish data objects at the storage level can

have some advantages, as will be described in the following sections.

Recently, a new layer called the Virtual Object Layer (VOL) has been introduced

in HDF5 that allows developing plugins that can store data in a format different from

the native format. VOL is a new abstraction layer internal to the HDF5 library [55].

79

Figure 4.1: HDF5 Virtual Object Layer (VOL)

As shown in Figure 4.1 it is implemented just below the public API. The VOL exports

an interface that allows writing plugins for HDF5, thereby enabling developers to

store objects in a format different from the default HDF5 file format (like native

NetCDF or HDF4 format). Plugin writers provide an implementation for a set of

functions that access data on disk. These include functions for file management,

dataset creation and access, group creation, to name a few.

Parallel HDF5 (PHDF5) allows multiple processes to access data from the same

file, typically using MPI-IO. However, many popular parallel file systems are known

to behave poorly under these circumstances where multiple processes access a single,

shared file. Secondly, since no information is maintained about the various objects

contained in the .h5 file, the file can simply be seen as a linear array of bytes. This

prevents any meaningful analysis to be performed on the data independently of the

HDF5 application. As an example, it is very difficult to parse and analyze individual

80

datasets since the file on disk contains metadata along with raw data, which by itself

can be interspersed through the file.

4.2 Semantic Analysis of Data

Keeping the limitations of the single file format of HDF5 in mind, two plugins have

been developed which store data in a format which enables performing semantic

analysis on the data. Instead of storing all objects in a single file, it stores every

HDF5 object in a separate location, so that data from different objects are not

contained in the same file. In short, a raw mapping of HDF5 objects to the file

system has been provided. HDF5 files and groups are stored as directories, whereas

datasets and attributes, which contain raw data, are stored in files.

Consider the example shown in Figure 2.3. Using the plugin, file Sample.h5 is

stored as a directory. Group G1 is stored as a directory under it, and datasets D1

and D2 are files. Attribute A1 is a file created at the same location as dataset D1

to which it is attached. Additionally, the name of the attribute is stored as dataset

name.attribute name to denote the dataset to which the attribute is attached. Thus

these objects are stored at the following paths as shown in Figure 4.2:

/Sample.h5/

/Sample.h5/G1

/Sample.h5/G1/D3

/Sample.h5/D1

/Sample.h5/D1.A1

/Sample.h5/D2

81

Figure 4.2: HDF5 data stored using the plugin

We can see that the relationship between the objects is represented by their rela-

tive paths at the file system. That is, the path /Sample.h5/G1/D3 tells us that D3 is

a dataset belonging to Group G1 under the root group of the file. This approach gives

us the ability to distinguish HDF5 objects at the storage level. Also, the plugin elim-

inates the need to explicitly store the metadata describing the relationship between

objects. Metadata about datasets, such as the datatype, extent, dimensions etc. are

stored in separate hidden files with the naming system .dataset name.property name.

As such, these files represent unix style Xattributes which represent a key value pair,

the filename being the key and its contents being the value.

82

The above format of storing data allows us to perform at least two different anal-

ysis optimizations. To illustrate via an example, imagine storing a three-dimensional

ocean model within a PLFS file. The storage system sees the file as an opaque linear

array of bytes. With the structure, however, PLFS can provide active analysis as

well as semantic restructuring.

4.2.1 Active Analysis

Active analysis borrows the transducers idea from the Semantic File System [56]

which has since been producticized in Google’s BigTable and Apache Hbase tech-

nologies [22, 57, 58]. With active analysis, the application can ship a data parser

function when it creates the PLFS file. As the data is written into PLFS, PLFS can

apply the data function on the streaming data. The function will output key-value

pairs which PLFS can embed in its extensible metadata (Figure 4.3). In this exam-

ple, one simple function might record the height of the largest wave. Due to PLFS’s

model of storing a logical file across multiple physical files, the PLFS extensible meta-

data can record the height of the largest wave within each physical file. However,

given that PLFS now understands the structure of the logical file, these multiple

physical files, within the PLFS container, are more accurately thought of as shards.

In a future burst buffer architecture [59], these semantic shards will be spread across

multiple burst buffer nodes. Therefore, subsequent analysis of the ocean model can

quickly find the burst buffer containing the shard with the largest wave by searching

a small amount of extensible metadata instead of scanning the entire ocean model.

83

Figure 4.3: Active Analysis of Data

4.2.2 Semantic Restructuring

Semantic restructuring is the idea of reorganizing the data into a new set of seman-

tic shards. This would be done to speed future analysis routines. For example,

assume that the ocean model was originally sharded using a row-order organization

(i.e. across latitude instead of longitude). An analysis routine which will explore

the model along a column-ordering will suffer poor performance with the row-order

organization as its access pattern will result in a large number of small reads from

a large set of semantic shards. However, by knowing the semantic structure, the

analysis routine can request a semantic restructuring (Figure 4.4) which will be a

compact, intuitively described request such as ”restructure into column-ordering.”

Without structural knowledge, a semantic restructuring would be significantly more

complicated: the analysis routine would have to send a large list of logical offsets

84

Figure 4.4: Semantic Restructuring of Data

to PLFS to inform it of expected read patterns. In an exascale system, the list of

logical offsets will be in the order of one billion. Semantic restructuring shrinks the

size of the request to a small constant value. A storage format where datasets are

stored in separate files allows us to make modifications to the storage layout of one

dataset without affecting other datasets and data.

4.3 A Plugin for Shared Memory Parallelism

4.3.1 Design

As of now, HDF5 does not support multi-threading [60]. HDF5 API calls are not

thread-safe. If a user needs to use HDF5 in an OpenMP application, API calls are

required to be placed in critical sections using locks. This provides correctness but

not parallelization, and having locks generally has a negative impact on the I/O

85

performance.

A new plugin has been developed using the VOL that aims to provide parallelism

in shared memory HDF5 applications. This plugin provides a way to parallelize a pro-

cess internally using OpenMP threads. The plugin spawns threads and uses pcollio to

achieve high bandwidth. The current version uses the omp file write/read com at all

interface, where threads provide the same arguments to the function. Thus, the

plugin parallelizes an HDF5 application implicitly using threads without user inter-

vention. The user may set the number of threads spawned inside the plugin using

the OMP NUM THREADS environment variable and set the smin and active threads

parameters as desired. The user may also set the library to use PLFS for file systems

like Lustre. Note that threads are spawned inside the plugin, they are not spawned

by the user application. As such, from the top-level API point of view, HDF5 re-

mains thread-unsafe. Consequently, it implies that multiple threads work on the

same dataset and read/write it in parallel, as opposed to having each thread work

on a different dataset, which requires threads to be spawned in the main application.

This is a simplistic, yet efficient way to achieve high performance I/O in HDF5 when

used on a shared memory machine, specially with large datasets.

4.3.2 Evaluation

Experiments were performed on the PVFS2, PVFS2-SSD and the Lustre file systems.

The Details on the configuration of these file systems can be found in the previous

chapter. These experiments were performed to exhibit improvements in I/O, not

86

to explore the advantages of performing semantic analysis on data. For experimen-

tation, HDF5’s h5perf tool was modified to utilize the new plugin. h5perf allows

configuring various parameters, such as the number of processes, number of datasets,

amount of data read/written by a process in a single I/O call (transfer size) etc. In

this case, a single large dataset of size 64GB was written to file in transfer sizes of

1MB, 4MB, 64MB and 1GB. Experiments were performed with 1,2,4,8,16,32,48,64

threads. Note that PLFS was used to perform I/O on the Lustre file system. All

threads were used as active threads and smin was set to 1MB.

Figure 4.5 shows the performance of the plugin on the PVFS2 file system. The

left part of the figure shows the write performance whereas the right part shows

the read performance. Performance of a single thread is restricted to more than

200MB/s, whereas using multiple threads, a maximum in excess of 600MB/s can be

seen. As seen in previous results with pcollio on BTIO and MSG, a maximum of 8

threads is sufficient to obtain the best possible bandwidth from the system.

87

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
48 threads

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
48 threads

Figure 4.5: Write (left) and Read (right) performance of a multi-threaded plugin for
HDF5 on PVFS2

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

Figure 4.6: Write (left) and Read (right) performance of a multi-threaded plugin for
HDF5 on PVFS2-SSD

88

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

 0

 100

 200

 300

 400

 500

 600

 700

 800

1m 4m 64m 1g

B
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Segment size

1 thread
2 threads
4 threads
8 threads

32 threads
64 threads

Figure 4.7: Write (left) and Read (right) performance of a multi-threaded plugin for
HDF5 on Lustre

A similar trend can be seen on PVFS2-SSD and Lustre, as shown in Figure 4.6

and Figure 4.7. On PVFS2-SSD the performance improvement is limited since the file

system is configured over 2 servers only which limits the amount of parallelization

that can be performed, whereas for Lustre, more than 2x improvement in perfor-

mance can be seen for 8 threads as compared to the single-threaded version.

These experiments clearly show the benefit of multi-threading on a widely used

library like HDF5. This plugin can be used to improve the I/O performance in high

workloads HDF5 applications on shared memory machines using pcollio.

89

4.4 A Plugin using MPI-IO

4.4.1 Design

While the previous plugin was designed to specifically target shared memory ma-

chines, another plugin has been developed to target MPI applications. Since parallel

HDF5 provides a set of API calls that can be used by parallel MPI applications, this

plugin makes the new data format available for these applications.

Traditionally, PHDF5 uses MPI-IO internally to perform I/O. The plugin however

uses PLFS instead. It makes direct calls to the PLFS API and does not use its MPI-

IO driver (called ad plfs). As such, it has specifically been developed to target file

systems like Lustre that benefit from PLFS. All metadata is read/written only by

the root process and currently only individual I/O is used. Support for collective

I/O operations is not provided as of now.

4.4.2 Evaluation

In this section, the performance of our plugin is presented. These experiments are not

targeted towards performing a semantic analysis of data, such as active analysis or

semantic restructuring discussed in the previous section. Experiments only evaluate

the I/O component of the plugin.

For evaluation purposes, HDF5’s h5perf performance tool [61] is used. For the

measurements, 10 1-dimensional datasets were created, and the total file size was

64 GB or more. In every run, every process contributed equal amount of data per

dataset.

90

Tests were performed on the Lustre parallel file system [20] on the Atlas cluster

at University of Dresden. As described previously, the file system has 12 OSTs with

a stripe size of 1MB. Tests were run thrice and we present the average bandwidth

values, which does not include the time taken to open and close the file.

Tests were performed with 1,2,4,8,32 and 64 processes with a maximum of 4 pro-

cesses per node. Reads and writes are either contiguous or interleaved; processes

either access contiguous locations in file or execute a strided pattern. The per-

formance of the default MPI-IO driver, the plugin, and the PLFS MPI-IO driver

(ad plfs) is compared and presented.

The left part of Figure 4.8 shows the write performance for a transfer size of 1MB

for contiguous writes. It can be seen that the plugin regularly outperforms MPI-IO

except for the 64 process case, where the metadata overhead incurred by the plugin is

high. The performance of ad plfs is the best for higher process counts. The right part

of the figure shows the interleaved write performance for an unaligned transfer size

(1M + 10bytes) for a maximum of 8 processes. The write performance of MPI-IO is

quite poor in this case. The plugin easily outperforms MPI-IO and almost matches

the performance of ad plfs. Similarly, Figure 4.9 shows the performance of reads.

Overall, results show that the plugin consistently shows good performance, how-

ever it does not scale as well as ad plfs. This is because the plugin currently only

supports individual I/O operations. For higher number of processes, the metadata

overhead is high since the plugin makes no effort at optimizing those. ad plfs however

does have some optimizations that alleviate the overhead due to metadata creation

for larger process sizes. However it should be noted that there are some MPI libraries

91

tailored to suit specific types of applications and which do not provide an implemen-

tation for MPI-IO. Such libraries can benefit from using a plugin that does not rely

on MPI-IO.

Figure 4.8: Write performance of the HDF5 plugin using MPI

92

Figure 4.9: Read performance of the HDF5 plugin using MPI

93

Chapter 5

Summary

This research explores high performance I/O in shared memory applications. Various

design alternatives have been discussed and a specification has been provided for

parallel I/O in OpenMP. The interfaces provided in the API have been implemented

in the OpenUH compiler developed and maintained at University of Houston. All

interfaces are collective such that all threads are required to participate in the I/O

call. The interfaces are divided into two main categories; one which takes different

arguments and the other takes same arguments from threads. Various optimizations,

including file system dependent ones such as using PLFS for parallel file systems like

Lustre are performed by the library.

Using a set of micro-benchmarks and two application benchmarks the perfor-

mance of the prototype implementation has been evaluated on three different plat-

forms. The results obtained demonstrate significant performance improvements com-

pared to sequential I/O operations for most scenarios. Further, two important pa-

rameters, viz. Smin and active threads have been identified which influence the I/O

94

performance of a shared memory application. These represent the optimal amount

of data to be read/written per call and the minimum number of threads required to

participate in actual I/O respectively.

A comparison of MPI-IO with the I/O library developed for OpenMP shows that

the light-weight nature of multi-threaded applications can have significant advantages

over using applications that spawn many process on the same node.

Also, the performance of the library has been evaluated on the HDF5 technology

suite and a novel way to store data has been proposed for HDF5 which can be of

advantage for performing semantic analysis of data.

This work can be extended in multiple directions. First, the interface specification

itself can be updated to take advantage of recent developments in OpenMP into

account, such as array shaping or explicit tasks. Secondly, a study needs to be

performed to determine the Smin and active threads for a given system configuration.

The library could then tune these parameters dynamically to optimize I/O for a given

system setup. Finally, the library can be utilized with more real-world applications

to determine its true potential.

95

Bibliography

[1] TOP 500 webpage. http://www.top500.org, 2009.

[2] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: implications of the
obvious. ACM Sigarch Computer Architecture News, 1995.

[3] Seagate Desktop HDD Specifications. http://www.

seagate.com/files/staticfiles/docs/pdf/datasheet/disc/

barracuda-desktop-hdd-ds-1770-1-1212us.pdf.

[4] Message Passsing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.2.

[5] Open MPI: Open Source High Performance Computing. http://www.open-
mpi.org/.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789–828, September 1996.

[7] W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX
Environment. Addison-Wesley, 2005.

[8] The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.
http://pubs.opengroup.org/onlinepubs/009695399.

[9] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT Press, Cambridge,
Massachusetts and London, England, 2008.

[10] Berkeley UPC - Unified Parallel C. http://upc.lbl.gov/.

[11] R. Numrich and J. Reid. Co-Array Fortran for Parallel Programming. In
ACM Fortran Forum 17(2), pages 1–31, 1998. http://citeseer.ist.psu.

edu/numrich98coarray.html.

96

[12] N1836, Summary of Voting/Table of Replies on ISO/IEC FDIS 1539-1, Infor-
mation technology - Programming languages - Fortran - Part 1: Base language.
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1836.pdf.

[13] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective
I/O in ROMIO. In FRONTIERS 99: Proceedings of the The 7th Symposium
on the Frontiers of Massively Parallel Computation, page 182. IEEE Computer
Society, 1999.

[14] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the sixth workshop on
I/O in parallel and distributed systems, pages 23–32, 1999.

[15] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved
parallel i/o via a two-phase run-time access strategy. SIGARCH Comput. Archit.
News, 21(5):31–38, 1993.

[16] David Kotz. Disk-directed i/o for mimd multiprocessors. ACM Trans. Comput.
Syst., 15:41–74, February 1997.

[17] Gokhan Memik, Mahmut T. Kandemir, and Alok N. Choudhary. Design and
evaluation of a compiler-directed collective i/o technique. In European Confer-
ence on Parallel Processing, pages 1263–1272, 2000.

[18] PVFS2 webpage. Parallel Virtual File System. http://www.pvfs.org.

[19] GNU General Public License. http://www.gnu.org/licenses/gpl.html.

[20] Lustre webpage. http://www.lustre.org.

[21] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large
computing clusters. In In Proceedings of the 2002 Conference on File and Storage
Technologies (FAST), pages 231–244, 2002.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[23] PANASAS. PANASAS ActivStor Parallel Storage Clusters .
http://www.panasas.com/activestor.

[24] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, and Meghan Wingate. Plfs: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance

97

Computing Networking, Storage and Analysis, SC ’09, pages 21:1–21:12, New
York, NY, USA, 2009. ACM.

[25] J. Logan and P. Dickens. Towards an understanding of the performance of
mpi-io in lustre file systems. In Cluster Computing, 2008 IEEE International
Conference on, pages 330 –335, 29 2008-oct. 1 2008.

[26] I/O Patterns from NERSC Applications. https://outreach.scidac.gov/

hdf/NERSC_User_IOcases.pdf.

[27] Tarek El-Ghazawi, Francois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob
Ross, and Dan Bonachea. UPC-IO: A Parallel I/O API for UPC. V1.0, 2004.

[28] ROMIO. http://www.mcs.anl.gov/research/projects/romio/.

[29] Rajeev Thakur, William Gropp, and Ewing Lusk. An Abstract-Device Interface
for Implementing Portable Parallel-I/O Interfaces. In In Proceedings of The 6th
Symposium on the Frontiers of Massively Parallel Computation, pages 180–187.
IEEE Computer Society Press, October 1996.

[30] Mohamad Chaarawi, Edgar Gabriel, Rainer Keller, Richard L. Graham, George
Bosilca, and Jack J. Dongarra. Ompio: a modular software architecture for
mpi i/o. In Proceedings of the 18th European MPI Users’ Group conference on
Recent advances in the message passing interface, EuroMPI’11, pages 81–89,
Berlin, Heidelberg, 2011. Springer-Verlag.

[31] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich io
methods for portable high performance io. In In Proceedings of IPDPS’09, May
25-29, Rome, Italy, 2009.

[32] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.
An overview of the hdf5 technology suite and its applications. In Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases, AD ’11, pages 36–47,
New York, NY, USA, 2011. ACM.

[33] HDF group. HDF5 Users. http://www.hdfgroup.org/HDF5/users5.html.

[34] Parallel HDF5. http://www.hdfgroup.org/HDF5/PHDF5/.

[35] S. A. Brown, M. Folk, G. Goucher, and R. Rew. Software for Portable Scientific
Data Management. Computers in Physics, 7(3):304–308, May/June 1993.

[36] Message Passing Interface Forum. MPI-2.2: Extensions to the Message Passing
Interface, September 2009. http://www.mpi-forum.org.

98

[37] Yizhe Wang, K. Davis, Yuehai Xu, and Song Jiang. iharmonizer: Improving
the disk efficiency of i/o-intensive multithreaded codes. In Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 921 –932,
may 2012.

[38] OpenMP Application Review Board. OpenMP Application Program Interface,
Draft 3.0, October 2007.

[39] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Du-
ran, Roger Ferrer, Marc González, Francisco D. Igual, Daniel Jiménez-González,
and Jesús Labarta. Extending openmp to survive the heterogeneous multi-core
era. International Journal of Parallel Programming, 38(5-6):440–459, 2010.

[40] The OpenUH Compiler Project. http://www.cs.uh.edu/~openuh, 2011.

[41] Chunhua Liao, Oscar Hernandez, Barbara Chapman, Wenguang Chen, and
Weimin Zheng. OpenUH: An optimizing, portable OpenMP compiler. In 12th
Workshop on Compilers for Parallel Computers, January 2006.

[42] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. An open-source
compiler and runtime implementation for coarray fortran, 2010.

[43] O. Hernandez, R.C. Nanjegowda, B. Chapman, V. Bui, and R. Kufrin. Open
Source Software Support for the OpenMP Runtime API for Profiling. In
ICPPW’09., pages 130–137. IEEE, 2009.

[44] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. White Paper: An OpenMP
Runtime API for Profiling. Technical report, Sun Microsystems, Inc., 2007.

[45] Barbara M. Chapman, Lei Huang, Haoqiang Jin, Gabriele Jost, and Bronis R.
de Supinski. Toward enhancing OpenMP’s work-sharing directives. In Europar
2006, pages 645–654, 2006.

[46] R. Nanjegowda, O. Hernandez, B. Chapman, and H. Jin. Scalability evaluation
of barrier algorithms for OpenMP. Evolving OpenMP in an Age of Extreme
Parallelism, pages 42–52, 2009.

[47] Oscar Hern, Chunhua Liao, and Barbara Chapman. Dragon: A static and
dynamic tool for openmp, 2005.

[48] Mohamad Chaarawi and Edgar Gabriel. Automatically Selecting the Number
of Aggregators for Collective I/O Operations. In Workshop on Interfaces and
Abstractions for Scientific Data Storage, IEEE Cluster 2011 conference, page
t.b.d, Austin, Texas, USA, 2011.

99

[49] Sarp Oral, Feiyi Wang, David Dillow, Galen M. Shipman, Ross Miller, and Oleg
Drokin. Efficient object storage journaling in a distributed parallel file system.
In Randal C. Burns and Kimberly Keeton (Eds), 8th USENIX Conference on
File and Storage Technologies, pages 143–154, 2010.

[50] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, and Meghan Wingate. Plfs: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 21:1–21:12, New
York, NY, USA, 2009. ACM.

[51] Phillip M. Dickens and Jeremy Logan. Y-lib: a user level library to increase
the performance of mpi-io in a lustre file system environment. In HPDC ’09:
Proceedings of the 18th ACM international symposium on High performance
distributed computing, pages 31–38, New York, NY, USA, 2009. ACM.

[52] P. Wong and R. F. Van der Wijngaart. NAS Parallel Benchmarks I/O Version
3.0. Technical Report NAS-03-002, Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division.

[53] Edgar Gabriel, Vishwanath Venkatesan, and Shishir Shah. Towards High Per-
formance Cell Segmentation in Multispectral Fine Needle Aspiration Cytology
of Thyroid Lesions. In 11th International Conference on Medical Image Com-
puting and Computer Assisted Intervention, Workshop on High-Performance
Medical Image Computing and Computer Aided Intervention, page t.b.d., New
York, NY, USA, September 2008.

[54] D.J. Kerbyson, K.J. Barker, A. Vishnu, and A. Hoisie. Comparing the perfor-
mance of blue gene/q with leading cray xe6 and infiniband systems. In Parallel
and Distributed Systems (ICPADS), 2012 IEEE 18th International Conference
on, pages 556–563, 2012.

[55] Virtual Object Layer. https://confluence.hdfgroup.uiuc.edu/display/

VOL/Virtual+Object+Layer.

[56] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole,
Jr. Semantic file systems. In Proceedings of the thirteenth ACM symposium
on Operating systems principles, SOSP ’91, pages 16–25, New York, NY, USA,
1991. ACM.

[57] Jeff Dean. Designs, Lessons and Advice from Building Large Distributed
Systems, 2009. http://www.odbms.org/download/dean-keynote-ladis2009.
pdf.

100

[58] Andrew Purtell Mingjie Lai, Eugene Koontz. Apache HBase. https://blogs.
apache.org/hbase/entry/coprocessor_introduction.

[59] Ning Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn. On the role of burst buffers in leadership-class storage systems. In
Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium
on, pages 1 –11, april 2012.

[60] Thread Safe HDF5. http://www.hdfgroup.uiuc.edu/papers/features/

mthdf/index.html.

[61] h5perf User Guide. http://www.hdfgroup.org/HDF5/doc/UG/index.html.

101

