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Abstract

In this dissertation, we propose energy management methods for power systems in

the context of smart grids. In this regard, we consider new management problems for

various configurations of smart grids, microgrids, as well as the power system genera-

tion. For different scenarios, we consider grid connection and distributed generations

such as photovoltaic cells, wind turbine, and microgas turbines as energy sources. In

addition, the effects and advantages of storage devices in smart grids operation are

investigated by including them as one of the system components.

For microgrids operation, we consider a microgrid both in islanded mode and

grid-tied mode of operation. In these modes, we develop and solve new optimization

problems which aim to minimize the cost of energy within a microgrid to supply the

load and maximize the lifetime of battery units simultaneously. Next, we extend the

concept and consider a network of microgrids which are able to collaborate with each

other. By proposing a cooperative optimization problem for microgrids network, we

will show that the total cost of energy would be minimized.

On the generation side, we investigate the economic dispatch problem for power

systems which include renewable sources among energy providers. In this case, we will

illustrate that conventional approaches for considering renewable energy sources in

the dispatching problem will not be functional anymore. In addition, we will develop

a new method which can be an appropriate alternative for conventional approach.

Finally, we will investigate the advantages of storage devices in the aforementioned

economic dispatch problem.

Model predictive control (MPC) policies, in both deterministic and stochastic
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forms, are employed to solve the underlying optimization problems. Several solution

methods such as stochastic dynamic programming, linear programming, etc., will be

employed to solve the MPC optimization problems. Numerous testbeds and experi-

mental data including IEEE 14-bus system and California ISO data will be utilized

to demonstrate the efficiency and optimality of the proposed energy management

methods.

x



Table of Contents

Acknowledgments v

Abstract ix

Table of Contents xi

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 Electrical power systems . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Smart grids vs. traditional power systems . . . . . . . . . . . . . . . 2

1.3 Recent Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Model Predictive Control 14

2.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 MPC Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Optimality Criterion (Objective Function) . . . . . . . . . . . 16

2.2.3 Optimization Horizon & Receding Horizon Policy . . . . . . . 17

2.2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 MPC Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 MPC Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



3 A Stochastic Control Method For Microgrid Management in Is-

landed Mode 23

3.1 System Modeling & Problem Formulation . . . . . . . . . . . . . . . 24

3.2 Stochastic Control Method . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Empirical Mean . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Stochastic Model Predictive Control Algorithm . . . . . . . . 30

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Multi-Objective Energy Management Method for

Grid-tied Microgrids 37

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Model Predictive Control Utilization . . . . . . . . . . . . . . . . . . 45

4.3 Simulation Results & Discussion . . . . . . . . . . . . . . . . . . . . . 46

5 An Optimal Cooperation Method for Network of Microgrids 54

5.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Optimal Control Method . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Augmented Model . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Prediction of State and Output Variables . . . . . . . . . . . . 59

5.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Power System Dynamic Scheduling with High Penetration of Re-

newable Sources 67

xii



6.1 Power System Economic Scheduling: Problem Statement and Formu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Considering 10% renewable generation with no transmission

congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2 Considering 20% renewable generation with transmission con-

gestion constraint . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Conclusions and Future Work 90

7.1 Current Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 95

xiii



List of Figures

1.1 Traditional configuration of power system . . . . . . . . . . . . . . . 2

1.2 Unidirectional power flow from generation side to demand side . . . . 3

1.3 Smart grid topology [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Forecasted and real load profiles . . . . . . . . . . . . . . . . . . . . . 8

3.1 The microgrid’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 (a) The daily forecasted power generation profile of wind turbine; (b)

the daily predicted load profile . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Noisy load profile and optimized microgrid’s total generated power

(from wind turbine, battery and micro gas turbine) . . . . . . . . . . 35

3.4 (a) power generated by wind turbine and battery; (b) power generated

by micro gas turbine; (c) battery state of charge . . . . . . . . . . . 36

4.1 Schematic of a typical microgrid . . . . . . . . . . . . . . . . . . . . . 39

4.2 Daily Profiles of grid electricity price (blue line), demand (black line),

and renewable generation (red line) . . . . . . . . . . . . . . . . . . . 47

4.3 Error propagation along the forecasting horizon . . . . . . . . . . . . 48

4.4 Balance between supply and demand . . . . . . . . . . . . . . . . . . 49

4.5 Operational cost based on MPC management and static management

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Extracted power from the grid for sending directly to load for both

MPC and static methods versus load . . . . . . . . . . . . . . . . . . 51

xiv



4.7 (a) Demand & renewable generation, (b) Battery charging power, and

(c) Battery SoC related to static method . . . . . . . . . . . . . . . . 52

4.8 (a) Battery charging power based on MPC method, (b) Battery SoC

based on MPC method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Estimated battery lifetime over one month operation of microgrid . . 53

5.1 An example illustrating the cooperation between microgrids in a net-

work [51] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Demand profile for each microgrid of network . . . . . . . . . . . . . 63

5.3 Rnewable generation at each microgrid of network . . . . . . . . . . . 64

5.4 The reference trajectory of each microgrid with and without collabo-

ration opportunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 The generated power from the micro gas turbine in the three microgrids

vs. the residual demand . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Estimated wind generation as a proportion of power consumption [66] 68

6.2 United States renewable portfolio [66] . . . . . . . . . . . . . . . . . . 69

6.3 Flowchart of MPC implementation as applied to the DES problem . . 80

6.4 Configuration of a 12-bus power network [71] . . . . . . . . . . . . . . 81

6.5 (a) Total demand in KW, (b) Total renewable generation in KW . . . 82

6.6 Profiles of demand (solid line), total supply power considering renew-

able generation sources at buses 2 and 4 as negative loads (dashed

line), and total supply power considering renewable generation sources

to be dispatchable (dash-dotted line) . . . . . . . . . . . . . . . . . . 84

6.7 Total available and dispatched amount of renewable power . . . . . . 85

xv



6.8 Configuration of a 12-bus power network considering transmission line

constraints and distributed loads . . . . . . . . . . . . . . . . . . . . 86

6.9 Profiles and demand and total supply considering transmission capac-

ity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.10 Total available and dispatched amount of renewable generation . . . . 88

6.11 Total available and dispatched amount of power from renewable sources

with and without storage devices . . . . . . . . . . . . . . . . . . . . 89

6.12 State of Charge for the storage device located at the 4th bus . . . . . 89

xvi



List of Tables

4.1 Characteristics of Intensium Flex High Energy Lithium-Ion battery

package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Characteristics of the generation sources . . . . . . . . . . . . . . . . 82

xvii



Chapter 1

Introduction

1.1 Electrical power systems

An electrical power system is an interconnected assemblage of elements and

networks in order to generate, transfer, and consume the electrical energy. Power

system components are divided into three general categories: generators, transmission

and distribution network, and consumers:

• Generators: A generator, which is the main component of each power plant,

converts different types of energy into electrical power. Most of the generators

burn fossil fuels such as natural gas, oil, and coal to produce electricity, and

some of them utilize nuclear energy, but the usage of renewable sources such

as wind, solar, geothermal, bio, and hydroelectric has been increasing in recent

years as well.

• Transmission & distribution network: Transmission system carries electri-

cal energy from suppliers in generation side to electrical substations in demand

side. Using the transmission network, electricity is transferred at high voltage

(110 kV and higher) in order to decrease the power loss during the transmis-

sion of the power. Overhead power lines are usually utilized as transmission

networks. Underground power lines are used just in the city or sensitive areas

because they have higher cost and operational restrictions.

At the final step, the distribution network receives electrical power in substa-

tions from transmission lines. After reducing the level of voltage (less than
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50 kV) by substations, distribution system delivers electricity to consumers in

demand side. Figure 1.1 illustrates the power system in its traditional config-

uration. Transmission and distribution networks are shown by blue and green

color, respectively.

Figure 1.1: Traditional configuration of power system

• Consumers: The last component of power systems is consumers. Consumers

or loads receive electrical power from distribution network as end users. The size

of loads varies from small household appliances to huge industrial machinery.

1.2 Smart grids vs. traditional power systems

The topology of the conventional power system is unidirectional as shown in Figure

1.2. In this hierarchical configuration, a failure in any component is transferred to

other components in the chain and may result in poor power quality such as power

cuts or even blackouts. In this system, just 33% of fuel energy is converted into

electricity and 8% of generated power is lost in transmission lines over long distances
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from power plants to consumers [1]. In addition, 20% of power plants’ capacity is

kept to balance peak demand which only happens 5% of the time.

 

 

 

 

Figure 1.2: Unidirectional power flow from generation side to demand side

Furthermore, continuous increase in the electricity consumption around the world

places considerable stress on aging power system. It is projected that electricity usage

in the United States will increase from 3873 TWh in 2008 to 5021 TWh in 2035 [2].

Summer peak demand in the U.S. is expected to increase by 40% from 2008 to 2030 as

well [3]. Environmental pollution and global warming due to the use of fossil fuels for

electricity generation and depletion of fossil fuel reserves have already raised serious

concerns about sustainable operation of power systems in the future.
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To address those issues, in recent years, power systems around the world are pop-

ulated by a variety of non-conventional/renewable energy sources and energy storage

devices such as solar photovoltaic (PV) systems, wind turbines, fuel cells, combined

heat and power (CHP) systems, microturbines, batteries, etc. Continuous decline in

the manufacturing cost combined with the incentives offered by governments and util-

ity companies have contributed to widespread utilization of these technologies. Only

in 2010, the U.S. installed 887 MW of grid-connected PV which is a 104% growth

from 2009 [4]. These installations include large scale PV power plants and wind farms

directly connected to the transmission system, and distributed generations (DGs) and

storage devices connected to low and medium voltage distribution networks with ca-

pacities less than 50 MW [5]. Up to the year 2007, more than 12 million DG units

were already installed across the U.S. with a total capacity over 200 GW. In 2003,

these units generated approximately 250000 GWh [6]. By spreading the distributed

generations in different levels, power system makes its future generation, or the so-

called smart grid [7]. Hence, in smart grid context, the unidirectional form of power

system will change to a bidirectional form in which all participants in the system will

be able to interact with each other and manage their generation and consumption.

Moreover, distributed generation and storage provide following technical, economic

and environmental benefits over centralized power generation [5]:

• Due to the non-conventional/renewable nature of most DGs, their implementa-

tion can decelerate depletion of fossil fuels in the world.

• Exploitation of DGs is expected to considerably increase the generation of eco-

friendly clean power with much lesser environmental impact.

4



• Physical proximity of generation and load can considerably enhance electric

efficiency of the system due to minimal losses in transmission lines. Also, DG

provides a better scope for co-generation and utilization of waste heat for other

applications which in turn increases overall efficiency of the system.

• DGs and storage devices provide the flexibility of supplying the load while

disconnecting from the grid (islanded operation) in case of any blackouts or in

remote areas where the electricity grid is not accessible. This in turn increases

power quality and reliability of electricity for end-users.

The development and evolution of the smart grids will result in the plug-and-play

integration of intelligent structures called microgrids (MG) that will be linked with

each other through particular channels for power, information, and control signals

exchange [8, 9, 10]. An MG can be a residential place like a house or a commercial

area such as a huge shopping center or even a bigger place. Figure 1.3 shows the

aforedescribed topology. Typically, a microgrid includes one or multiple sources of

on-site distributed generations (DGs), an energy storage unit, a variety of electric

loads (such as AC units and lighting system in a building), and a utility connection

to import/export power from the grid if necessary. From the operation point of view,

microgrids can be operated in two modes. They might work in islanded-mode which

are disconnected from the grid and operated as independent entities; or, they might be

operated in the form of a microgrid which interacts with the grid as a single aggregated

system. This mode is called grid-tied or interconnected mode. Globally, according to

[11] total capacity of microgrids currently operating or in the development phase is

more than 1.8 GW which resulted in total revenue of approximately $200 million in

2011. The market is expected to grow to 3 billion dollars in 2016. Figure 1.4 shows
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Figure 1.3: Smart grid topology [1]

the general structure of a grid-tied microgrid with both power and data flow among

different components of the system. Batteries are the most favorable option for energy

storage and also the most expensive components in microgrids. From the market point

of view, having the capability of storing electricity is beneficial to both utilities and

electricity consumers. Utility companies can centrally manage distributed storages in

a network to provide frequency regulation and ancillary services for power systems.

Distributed storage can also be used for transmission and distribution investment

deferral and congestion management which allows a two- to four-year capital deferral

of new equipment such as transformers, as well as new lines in rural and urban areas

where load growth is low and capital expenditures are very large [12]. In regions with

non-flat electricity rates (e.g., time of use rates), energy customers can store cheap

electricity from the grid during off-peak hours in the battery and use it during peak

6



Figure 1.4: Microgrid

hours to reduce their electricity bill. Storage units can also provide peak-shaving

capability which reduces the demand charge for energy consumers. In areas with

feed-in-tariffs lower than electricity retail price, storing excess distributed generation

in a local storage unit instead of selling it back to the grid results in more cost savings.

It is predicted that within the next five years, the electricity storage market only in

commercial building applications can reach $1 billion globally [13].

Electric loads can vary significantly based on the time of the day, season and load

type (residential, commercial, industrial, etc.). Renewable distributed generation

outputs also change continuously depending on the irradiation level, wind speed and

other meteorological parameters. The pattern of change in DG power outputs can be

totally independent of the changes in the load. Forecasting tools have been widely

developed and used to estimate the future generation and demand profiles.

Forecasted data can be used to schedule generation from local dispatchable sources
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Figure 1.5: Forecasted and real load profiles

(if any) or importing a certain level of power from the grid to a microgrid on a

long time-frame basis (e.g., hourly) to supply the shortage in renewable generation.

However, forecasting errors and fast variations (e.g., minute by minute) in the load

and DG power outputs always introduce uncertainty to smart grids’ operation. The

difference between a forecasted load profile and a real load profile is depicted in Figure

1.5.

Unpredictable variations in the load profile and intermittent nature of most DGs

such as wind and PV results in a significant uncertainty in the operation of smart grid

and microgrids. This makes the conventional unit commitment and economic dispatch

strategies more erroneous and unreliable since they are open-loop control policies, and

hence, there will be no real-time control over any deviation from forecasted load and

renewable generation profiles. Therefore, a real-time power management framework

as a supervisory control is an absolute necessary procedure in smart grids similar

to the various regulatory actions in conventional power systems. In this regard,

many research studies have been conducted in recent years in power system and
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control engineering academic societies. Some of these studies and methods will be

discussed in the next section. The real-time management system should be able to

not only satisfy the operational constraints and supply-demand conditions but also

to guarantee the optimality in performance of the system. To this purpose, we have

selected model predictive control (MPC) technique to design the framework of a real-

time management system. MPC is a powerful control method that uses a model to

project the behavior of the system. Based on this model, it can predict the future

response of the system to various control actions and forecasted profiles to obtain the

optimal decision. For problems such as energy management of power systems and

smart grids which highly depends on the forecasted value of demand and renewable

energy productions, this method is very effective. In addition, due to its closed-loop

nature, MPC can correct errors in load and renewable energy generations prediction

and improve system stability and robustness [14, 15].

1.3 Recent Works

In recent years, different types of management systems have been proposed and

published to control and solve the various problems of smart grids and microgrids.

Authors in [16] solve the economic dispatch problem for microgrids. In this paper,

they try to handle the uncertainty problem of distributed generation by defining re-

serve requirement constraints in the dispatch problem. In addition, they consider

additional reserve for microgrids to guarantee the stability in islanded mode of op-

eration. In [17], a method is proposed to co-optimize the consumption of different

types of energy within a microgrid such as electricity, gas, and heating systems. In
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this regard the correlation between different energy infrastructures is taken into ac-

count as operational constraints. An optimal power flow problem is designed to solve

the economic scheduling of the combined heat and power microgrid system. In or-

der to reliable operation of microgrids in power systems, a management system has

been developed in [18] which is called intelligent distributed autonomous power sys-

tems (IDAPS). This system enables the microgrids to operate in both normal and

emergency situations such as power systems outages and natural disasters. In [19] a

hierarchical model for smart grids is considered. Based on this model, a distributed

control scheme is proposed which not only solves the economic dispatch problem but

also guarantees the frequency regulation for the smart grids.

Due to deregulated characteristic of power systems, economic operation of smart

grids and microgrids also affects the electricity markets subjects such as energy mar-

ket design, locational marginal pricing, financial transmission rights, ancillary services

markets, etc. Authors in [20] and [21] propose a pricing methodology for microgrids

to participate in day-ahead and spot local markets. In this way, microgrids will be

able to maximize their revenue by energy trading capability in local energy markets.

A control solution for microgrids is introduced in [22] which works based on game

theory methods. The scheduling problem is solved through defining a game between

loads and generators in smart grids. This algorithms aims to eliminate the role of

central management system and consequently increase the system reliability. In [23],

a dynamic structure for wholesale energy markets is designed in which the intermit-

tent nature of renewable sources is taken into account. Moreover, a methodology is

described in this framework for real-time pricing of electricity. The pricing algorithm

employs a state based game approach and includes locational marginal price and its

10



congestion component. The stability of market equilibrium in the presence of load

and renewable generation fluctuations is also proved.

Authors in [24] have designed a day-ahead electricity market structure for smart

grids. To this end, they introduced new concepts such as microgrids’ reputation score

and trustworthy model for microgrid market. The obtained market system handles

microgrids electricity transactions to improve their economic operation. In [25], mi-

crogrid is identified as a power system which can implement an electricity market

within itself. The management system in this configuration is interpreted as an in-

dependent system operator (ISO). It receive different bids for selling and purchasing

energy, and conducts day-ahead and real-time market to calculate the market clear-

ing price and manage the microgrid in real time. Authors in [26] investigated the

advantage of using storage devices in electricity market. They have shown that the

flexibility of storage devices to charge and discharge can be an effective tool for load

aggregators. Aggregators would be able to obtain a more efficient energy cost by

compensating their day-ahead load forecasting errors in real-time market through

charging or discharging the storage devices.

The operation of large wind farms and large solar farms also results in new chal-

lenges in dispatching problem. In [27] and [28], authors have considered the inte-

gration of wind farms in economic scheduling problem at generation side of power

systems. They proved that it is more efficient to consider the wind generation as a

dispatchable source of energy. In this way, system operator can utilize the high ramp

rate characteristic of wind power and solve the short-term dispatch problem more

economical.
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1.4 Organization of the Thesis

This dissertation is divided into 7 chapters. In chapter 2, we will provide a general

overview of Model Predictive Control concept. We will explain how this control tech-

nique calculates the most efficient current control inputs by optimizing an objective

index defined on a finite time horizon.

In chapter 3, we will develop a centralized controller for managing a microgrid in

islanded mode to minimize the cost of operation. Because of uncertainties in forecast-

ing load and renewable generation profiles, a stochastic model for the microgrid will

be obtained. Hence, to design the energy management system, a stochastic version

of MPC is proposed that utilizes dynamic programming and empirical mean tools to

find the optimal solution.

Chapter 4 proposes a multi-objective energy management method for grid-tied

microgrids which include local generation sources, grid connection, energy storage

units and various loads. Minimization of energy cost and maximization of battery’s

lifetime in an interconnected microgrid are considered as two main objectives which

are optimized simultaneously.

Chapter 5 presents a power flow management method for a network of cooperating

microgrids within the context of a smart grid by formulating the problem in the

model predictive control framework. In order to reliably and economically provide

the required power to the costumers, the proposed method enables the network of

microgrids to share the power generated from their renewable energy sources and

minimize the power needed from the micro gas turbines.

In chapter 6 we investigate the effects of renewable generations in operation of

power systems. In this regard, we develop a model predictive control (MPC) based
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method for dynamic economic power scheduling in power grids. The proposed method

is first applied to the power systems with relatively low penetration of renewable

generation sources. The proposed MPC-based optimization method is then extended

to the case, where a high penetration of renewable sources is expected. In the latter

case, instead of considering power generated from renewable sources as a negative

load, the system operator (SO) takes these sources into account as dispatchable in

solving the dispatching problem. Various constraints pertinent to power systems

including transmission congestion and generators capacity are also considered in the

optimization process. Consequently, we will show that the use of storage devices will

be an effective way to reduce the cost of generation in the future generation of power

systems.

Chapter 7 summarizes the tasks completed in this dissertation and explains our

findings on energy management problems and the significant impact that they can

have on the operation of future smart grids. In addition, it introduces future work

that can be pursued and explored based on current research.
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Chapter 2

Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy which has been

utilized in industries such as chemical processes and petroleum refineries since 1980s.

In order to perform the control task, MPC employs a dynamic model of the system

under control. Based on this model, MPC predicts behavior of the system over a

finite prediction horizon based on the latest measurements collected from the plant.

Based on these measurements, MPC solves an optimization problem at each sampling

time and calculates a control input sequence, from which only the first element is

implemented. At the next time instant, the procedure is repeated. The following

example explains the concept of MPC application in real life.

2.1 Example 1

In a company, the manager of a research team decides to complete a project in

a business day with the help of team members [29]. We assume the business day

begins at 9 o’clock and consists of 8 hours which means a finite time period. The

completion of project depends on different parameters, such as the level of attempt

of members, the quality of teamwork, requesting some helps from other departments.

These parameters are controllable or decision variables. On the other hand, there are

some restrictions such as the level of knowledge of members about the project, how

many members are expert in applying different tools for solving the problem, etc.. In

order to accomplish the project with the best performance, the manager has to take

into account all control variables and different limitations.
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After having a meeting with the people in the team, the manager assigns the task

for each member for each hour of the day based on project decision parameters and

restrictions. According to this assignment, the project will be finished at the end of

the day.

After one hour working on the project, the manager asks every one to send him

a feedback about their achievements. He compares these achievements with their

assigned expectations. For various unpredicted reasons including the Internt discon-

nection, phone calls, etc., the feedback is not the same as expectations. Hence, the

project cannot be completed on time. Based on updated information about members

performance at the end of the first hour, the manager plans another assignment for

each member at 10 o’clock for the rest of the day. Again at 11 o’clock, the manager

assesses the team members’ results and plans another tasks for them. The process of

updating, planning, and working procedure is repeated until the goal of the project

is achieved by the end of the day.

2.2 MPC Components

Based on example 1 (EX1), we are now able to identify the elements of MPC. This

section describes different components of MPC.

2.2.1 Modeling

To accomplish the controlling task, MPC needs to project the future response

of the system to different control actions. To this purpose, a model of the system

is used to show the relations between system outputs, inputs, and other variables.

This model can be a linear or nonlinear, deterministic or stochastic one. In EX1,
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to plan the assignment of team members, the manager needs a model which shows

the dependencies of project progress as system output to decision parameters such as

members attempts, teamwork level, etc..

It should be noted that MPC uses the model only for calculating the future outputs

which are under control. Therefore, the model does not need to be a complete model

of the system from different perspectives. It only requires to be accurate enough to

illustrates the relation between interested outputs and inputs. for instance, in EX1,

the manager only needs to consider the knowledge of members which is directly related

to the project, not their general knowledge. Hence, in various practical situations,

although the real system is completely nonlinear, but it would be sufficient to consider

an appropriate linear model of that system.

2.2.2 Optimality Criterion (Objective Function)

In order to perform a task such as completing the project in EX1, there might be

some different ways or input sequences that achieve the goal. For example, the man-

ager can either hire 10 people to finish the project in 4 hours and pay more money, or

hire 5 people to finish it in 8 hours and pay less. Therefore, the optimality criterion

in accomplishing a task should be determined in advance. In MPC policy, this opti-

mality criterion is called objective or cost function. By optimizing the cost function,

MPC not only selects the control inputs to perform a task like finishing a project,

but also guarantees that selected inputs are optimal with respect to predetermined

objective function such as minimum payment or minimum time.
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2.2.3 Optimization Horizon & Receding Horizon Policy

Optimization horizon is the time window that MPC is able to look into future

for predicting the system response. Longer the optimization horizon, MPC can have

longer range of prediction and make a better or more efficient decision. On the

other hand, considering a very big horizon increases the complexity of the problem.

Assume that the project in EX1 was supposed to be completed in a week. If the

manger considers the whole hours of the week as optimization horizon, it will be very

difficult to plan the assignment of members for each hour of the week.

To address this issue, MPC utilizes the receding horizon strategy. Based on reced-

ing horizon strategy, MPC optimizes the behavior of the system over the optimiza-

tion horizon; but at the next sampling time when information and measurements are

updated, it again calculates the optimal control inputs for the next upcoming opti-

mization horizon period. In EX1, if the project requires one week to accomplish, the

manager can still consider one business day or 8 hours as his optimization horizon,

but at the beginning of every hour he will update his information and plan for the

next 8 business hours. This procedure continues until the end of the project lifetime.

2.2.4 Constraints

One of the most important points about MPC is its ability to handling different

kinds of constraints in the problem. By handling, we mean MPC can satisfy problem

constraints while it optimizes the system performance. The constraints can be either

static or dynamic. Static constraints are constant over the time. In EX1, the avail-

ability of tools for using in the project is a static constraint. Dynamic constraints

are dependent on the period of time they are considered and usually described in the
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form of an inequality or equality differential equation. In the example, the progress of

each hour working is limited and also depends on the results on previous hour. This

constraint is defined as a dynamic constraint in the problem.

2.3 MPC Formulation

Based on basic ideas and concept of MPC, the standard formulation of MPC is

presented in this section [30].

In this dissertation, the systems under control by MPC are modeled in discrete

time. Therefore, the typical system can be described here in terms of a general

difference equation as

x(t+ 1) = f(x(t), u(t)), (2.1)

where x(t) ∈ Rp is the state variable and u(t) ∈ Rq is the system input at time t,

t ∈ {0,∞}. The function f : Rp × Rq → Rp is a continues function and its initial

value is zero. General form of constraints are also as follows:

x(t) ∈ X ,

u(t) ∈ U ,
(2.2)

which means both state variables and system inputs are restricted by X and U sets

respectively.

The primary task for MPC is to navigate the state variable to a set point. This

navigation should be accomplished in an optimal way. Optimality is calculated by

measuring the performance of the system which is described by a cost or objective

function. Hence, optimal control of the system means controlling the system to the

set point while the cost function is optimized by MPC as well. It should be noted
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that set point is not necessary constant in time. Time varying set point is called

reference trajectory and the problem which includes a reference trajectory is called a

tracking problem.

The cost function is optimized over the finite interval of optimization horizon,

k ∈ [0, T ] where T > 0. The future behavior of the system is calculated in terms of

forecasted state variables, x̂(k), as

x̂(k + 1) = f(x̂(k), ρ(k)). (2.3)

Initial value of predicted state variable is equal to measured value of system state at

current time, t. It means

x̂(0) = x(t), (2.4)

and ρ(k) is control input at k ∈ [0, T ]. The forecasted state at k, x̂(k), is prediction

of the system state x(t + k) and the control input ρ(k) corresponds to the system

input at time t + k, u(t + k). After each time solving the optimization problem, a

set of T elements, Ω, is obtained which shows the value of ρ(k) for each moment

of optimization horizon. It should be noted that both predicted state variables and

control inputs belong to X and U sets respectively.

The cost function, C : Rp × Ω→ R is expressed in general form as

C (x̂, ρ) :=
T∑

k=0

c(x̂(k), ρ(k)), (2.5)

with initial condition x̂(0) = x(t). The function c : Rp × Rq → R+ is a continues

nonnegative function and its initial value is equal to zero.
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By using the measured state variable as initial condition for predicted states, MPC

solve the optimization problem to find the optimal solution, ρ?, such that

C (x̂(0), ρ?) ≤ C (x̂(0), ρ) ∀ ρ ∈ U . (2.6)

The optimal solution, ρ?, is a sequence of T elements as

ρ? := {ρ?(0), ρ?(1), ..., ρ?(T − 1)}, (2.7)

from which only the first element is implemented as the control command or system

input at time t as

u(t) = ρ?(0). (2.8)

By applying u(t) to the system, state variable vector at the next time step, x(t+1),

is obtained. This measured output is considered as initial condition for optimization

problem in the next iteration based on receding horizon policy. It should be added

that since u(t) is calculated based on measured output, x(t), it can be stated using a

function with respect to x(t) as

u(t) = ϕ(x(t)). (2.9)

Hence the integration of system and MPC makes a closed loop control system as

x(t+ 1) = f(x(t), ϕ(x(t))). (2.10)

There are various analytical and numerical methods to solve the MPC optimization
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problem such as dynamic programming, linear programming, dynamic matrix control,

etc.. In addition, the solution methods can be either deterministic or stochastic. In

the following chapters, based on the nature of the system and formulation of the

problem, these methods will be utilized to solve the optimization problem.

2.4 MPC Advantages

The advantages of employing MPC are itemized as follows:

• MPC is functional and applicable for controlling various types of systems such as

time domain or frequency domain systems; continuous or discrete time systems;

linear, quadratic, or nonlinear systems.

• Generally, control methods for solving optimization problems with linear and

nonlinear systems and constraints are open loop. But, based on receding horizon

strategy, MPC performs a closed loop control algorithm which increase the

system robustness.

• MPC is able to include different types of constraints in terms of control inputs

and state variables. Also, this method is one of the few algorithms which can

handle both static and dynamic constraints.

• MPC guarantees the stability of closed loop system for linear and nonlinear

systems with input and state variable constraints [31].

• MPC’s capability in tracking task is good since it employs predicted reference

trajectory for a finite horizon in calculating the optimal decision.

• MPC is an adaptive method for dealing with changes in the system and con-

straints parameters since optimization problem is solved repeatedly in MPC
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strategy. In MPC, fixed information and coefficients are only required for a

finite horizon and can be changed in next iteration, while optimal control meth-

ods which include infinite horizon have to know all future parameters on the

problem in the beginning time.

• MPC has been widely used in industries such as chemical processes and oil re-

fineries due to its properties such as finite horizon control, control input and

state variable constraints, closed loop behavior, etc., accord with the require-

ments of real physical systems.
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Chapter 3

A Stochastic Control Method For Microgrid Management in

Islanded Mode

Using the plug-and-play feature of a microgrid, it can operate in two modes: grid-

connected mode or islanded mode, i.e., separated from the grid [32], [33]. In this

chapter, we mainly focus on the islanded mode operation.

To efficiently accomplish the management task of microgrids, there will be a need

to a microgrid central controller (MGCC) to control the operations and perform op-

timizations so as to minimize the power generation cost. In other words, an MGCC

tries to optimize the future behavior of the grid to meet the predicted demand based

on forecasted renewable generations. Therefore, due to the nature of this problem,

one of the effective tools to achieve the optimized operation is model predictive con-

trol (MPC) [34]. There are several ways to solve a model predictive control (MPC)

problem. In the problem under study in this chapter, the stochastic terms appear

due to the uncertainties in the prediction of demand or renewable energy genera-

tions. Therefore, dynamic programming (DP) method [35] is selected to solve the

MPC problem. The advantage of using DP is that by extending it into a stochastic

dynamic programming (SDP), this method can be employed to deal with stochastic

terms [36]. This method is essentially an extension of Bellman’s equations. Solving

SDP using stochastic version of Bellman’s equations is not, however, easy if there

exist state or control input constraints.

Contribution of this chapter is as follows [37]: we first consider a 3-node graph
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associated with a microgrid with different generation and storage options. The mi-

crogrid is in islanded mode and disconnected from the grid. To solve the microgrid

power management problem taking into account the stochastic disturbance inputs

and various constraints imposed by the distribution lines and battery level of charge,

we propose a solution method to the stochastic MPC problem motivated by [30] using

the empirical mean and dynamic programming tools.

3.1 System Modeling & Problem Formulation

The islanded microgrid we consider in this chapter is assumed to be a graph con-

sisting of three nodes as illustrated in Figure 3.1. The first node represents the

renewable energy generation sources such as a wind turbine and a battery unit. The

power generated in this node is

P1(t) = Pwind(t) + wwind(t) + P batt(t), (3.1)

where P1(t) is the total power generated in node 1 at time instant t, Pwind(t) is the

power generated by the wind turbine (or a wind farm in general) at time instant t,

and wwind(t) is a disturbance term representing the uncertainty in the wind profile

prediction. The latter is assumed to have a gaussian distribution. In addition, P batt(t)

is the power generated by the battery unit. The change in battery state of charge

(SOC) can be described by a linear difference equation as [38]

SOC(t+ 1) = SOC(t)− P batt(t). (3.2)

It is noted that P batt(t) can be either positive or negative, where a negative value

24



Figure 3.1: The microgrid’s graph

implies that the battery is being charged. Due to a limit on the battery level of

charge, we have the following constraint for SOC

0 ≤ SOC(t) ≤ SOCmax. (3.3)

Node 2 in Figure 3.1 represents the load connected through the transmission line to

Node 1. The total generated power P1(t) should not exceed the line capacity. This

constraint can be mathematically represented by

0 ≤ P1(t) ≤ Lmax
12 , (3.4)

where Lmax
12 is the maximum power allowed to be transferred through the line between

nodes 1 and 2. In addition, the demand profile is forecasted in advance but there

will be some perturbation around the predicted profile. This can be described by a

disturbance term in the load equation, and we assume a normal distribution for this
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term. We choose the demand model as

D(t) = d(t) + wd(t), (3.5)

where D, d, and wd represent the actual load profile, the load profile prediction,

and demand prediction disturbance, respectively. Finally, the third node includes a

micro gas turbine, whose amount of generation P gas(t) is commanded by MGCC.

The generated power P gas(t) is transferred to the demand node via the line between

nodes 2 and 3. Hence, the constraint imposed by the line capacity is

0 ≤ P gas(t) ≤ Lmax
32 , (3.6)

where Lmax
32 is the maximum power allowed to be transferred through the line between

the nodes 3 and 2. The graph shown in Figure 3.1 is a directed graph with two edges

from nodes 1 and 3 to the node 2. The direction of edges shows the direction of

power flowing from supply to demand in the MG. Obviously, the ultimate goal is for

the MGCC to set the generation source power such that the supply could meet the

demand. The latter statement can be mathematically described by

P1(t) + P gas(t) = D(t). (3.7)

This should be achieved so that the cost of generation be minimized and the battery

SOC is kept as high as possible by scheduling the micro gas turbine generated power.
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To take these design objectives into account, we define the following cost function

J =
1

2
(SOCmax − SOC(T ))TP (SOCmax − SOC(T ))

+
T−1∑
t=0

[
1

2
(SOCmax − SOC(t))TQ(SOCmax − SOC(t))

+
1

2
(P gas(t))TRP gas(t)]. (3.8)

The above optimization problem is a finite horizon problem with T being the horizon

length. P , Q, and R are weighting matrices. As described before, we will formulate

our grid management problem in an MPC form. First, we convert the above cost

function to a standard MPC quadratic cost function form by changing the variable

SOC(t) as

z(t) = SOCmax − SOC(t). (3.9)

So, (6.12) is now rewritten as

z(t+ 1) = z(t) + P batt(t), (3.10)

and (3.3) is written as

0 ≤ z(t) ≤ SOCmax. (3.11)

Consequently, the cost function in (3.8) becomes

J =
1

2
z(T )TPz(T )

+
T−1∑
t=0

[
1

2
z(t)TQz(t) +

1

2
(P gas(t))TRP gas(t)]. (3.12)
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Therefore, for the microgrid management, the goal is to solve the following MPC

problem

min
Pgas

J :=
1

2
z(T )TPz(T ) +

T−1∑
t=0

[
1

2
z(t)TQz(t) +

1

2
(P gas(t))TRP gas(t)]

subject to:

P1(t) = Pwind(t) + wwind(t) + P batt(t),

0 ≤ P1(t) ≤ Lmax
12 ,

D(t) = d(t) + wd(t),

0 ≤ P gas(t) ≤ Lmax
32 ,

z(t+ 1) = z(t) + P batt(t),

0 ≤ z(t) ≤ SOCmax.

(3.13)

In the next section, we will describe a solution method to the above stochastic model

predictive control problem by taking advantage of dynamic programming.

3.2 Stochastic Control Method

In this section, an algorithm is proposed to solve the stochastic model predictive

control problem described in the previous section considering the input and state

constraints. To this end, we first combine the constraints in (3.13) to reduce the

number of constraints and put them in a compact form. Using (3.1), (3.5), (3.7),

(3.10), and (3.11), the following constraint is obtained

z(t+ 1) = z(t) + d(t) + wd(t)− Pwind(t)

− wwind(t)− P gas(t).
(3.14)
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In addition, by combining (3.1), (3.4), (3.6), and (3.7), we determine that

max{D(t)− Lmax
12 , 0} ≤ P gas(t) ≤ Lmax

32 . (3.15)

Therefore, the optimization problem to be solved is now in the following form

min
Pgas

J :=
1

2
z(T )TPz(T ) +

T−1∑
t=0

[
1

2
z(t)TQz(t) +

1

2
(P gas(t))TRP gas(t)]

subject to:

0 ≤ z(t) ≤ SOCmax,

z(t+ 1) = z(t) + d(t) + wd(t)− Pwind(t)− wwind(t)− P gas(t),

max{D(t)− Lmax
12 , 0} ≤ P gas(t) ≤ Lmax

32 .

(3.16)

The presence of the stochastic disturbance inputs in the problem under study brings

a challenge in solving the MPC problem. Second challenge is due to the existence of

input and state constraints resulting in the minimization of the cost function expected

value over a finite horizon to become difficult to solve. In these situations, where an

analytical solution does not exist, Monte Carlo methods have received attention in

controls theory [39, 40, 41]. For this section, we propose an algorithm to solve the

described MPC problem using empirical mean and dynamic programming tools to

handle the constraints and expectation value computation.
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3.2.1 Empirical Mean

The expectation of a cost function, i.e., EJ , can be appropriately approximated

using its so-called empirical mean ÊJ . By choosing n independent, identically dis-

tributed samples from w, empirical mean can be computed as

ÊJ = 1
n

∑n
i=1 J(wi). (3.17)

Such an approximation is valid only if the error defined by |EJ− ÊJ | can be somehow

evaluated. Due to the stochastic nature of the empirical mean function, this error can

be measured in a probabilistic way. For example, we can guarantee with a probability

of α that the estimation (3.17) has the accuracy γ if |EJ−ÊJ | < γ. This lower bound

on the probability, i.e., α, can be computed through Chebyshev inequality as [42]

Prob(|EJ − ÊJ | < γ) ≥ 1− σ(J)

nγ2
= α, (3.18)

where σ represents the variance. It is trivial to show that as n → ∞, the empirical

mean converges to the expected value.

3.2.2 Stochastic Model Predictive Control Algorithm

The well-known dynamic programming method can be employed to solve the opti-

mization problem corresponding to the MPC problem backwards from t = T to t = 0

at each horizon. For the stochastic systems, we have to compute the cost function

expected value which is an easy task only for the first stage corresponding to t = T .

However, this calculation is not straightforward for other stages since the expected
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value of the cost function is not a quadratic function anymore. Hence, by having a

sufficient number of samples, empirical mean can be utilized as an appropriate alter-

native to estimate the expected value. We describe below the steps of the proposed

solution method for the stochastic MPC problem using the concept of empirical mean

along with the dynamic programming method:

Step 1: Compute n using the Chebyshev inequality (3.18).

Step 2: To solve the DP problem using empirical mean, generate a sufficient

number of disturbance samples and consequently state samples. To this end, n sam-

ples of disturbance are arbitrarily extracted at the first stage, i.e., t = 0. Having

the initial conditions corresponding to state (z(0)) and control input (P gas(0) = 0)

along with the wind and load profiles, we can determine n possible z(1), namely

zi(1), i = 1, 2, ..., n, through (3.14). For each zi(1), there will be n possible dis-

turbance samples. So, we will have n2 possible z(2), namely zi(2), i = 1, 2, ..., n2.

Continuing this process, nT−1 possible z(T − 1) in the final stage will be obtained.

We call z(0) the root node, zi(j) for i = 1, ..., nj, j = 1, ..., T − 2 intermediate nodes,

and zi(T − 1), i = 1, ..., nT−1 leaf nodes. Using the notation described, a tree is con-

structed for stochastic dynamic programming stages based on disturbance samples.

Step 3: Solve the MPC problem starting from the last stage using the dynamic

programming policy. To this purpose, compute the cost function for each leaf node
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as

J(P gas(T − 1)) =
1

2
z(T )TPz(T )

+
1

2
z(T − 1)TQz(T − 1)

+
1

2
(P gas(T − 1))TRP gas(T − 1),

where z(T ) can be found in terms of P gas(T − 1) using (3.14).

Step 4: Calculate the empirical mean over cost functions corresponding to each

n leaf nodes connected to the same intermediate node.

Step 5: Minimize the empirical mean value of cost functions obtained in Step 4

over P gas. The achieved optimal value will be the terminal cost for the next step.

Step 6: For each intermediate nodes t = T − 2, ..., 1, compute the cost function

value using the terminal cost of Step 5, find the empirical mean over the obtained

cost functions corresponding to the same node in their previous stage, minimize the

achieved empirical value, and consider this minimum value as the terminal condition

for previous stage.

Step 7: At t = 0, consider the calculated minimum value of the cost function as

the minimum value of (3.12) at this iteration. If the difference between this value and

the minimum value obtained in the previous iteration is lower than γ, the stochastic

MPC problem has been solved and this value is chosen as the optimal solution. Oth-

erwise, based on the new value of P gas, we update z(t) for each node of tree and go

back to Step 3.
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(a) The daily forecasted power generation profile of wind turbine
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(b) The daily predicted load profile

Figure 3.2: (a) The daily forecasted power generation profile of wind turbine; (b) the
daily predicted load profile

3.3 Simulation

In this section, we demonstrate the viability of the proposed microgrid management

method described in the previous section using an illustrative example, where we first

generate artificial data for MG graph and the corresponding cost function. It should

be noted all the values reported in this section are converted to per unit (p.u.). For

simulation purposes, the daily power generation profile of the wind turbine in node 1

is generated using a random distribution. This profile is shown in Figure 3.2(a). The

uncertainty in the wind power forecast is also modeled by

wwind(t) ∼ N (0, 0.05). (3.19)

In addition, maximum capacity of battery SOCmax is assumed to be 0.5, and
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maximum capacity of the distribution lines, i.e., Lmax
12 and Lmax

32 , is considered to be

1.3 p.u.

In node 2, we assume a load, whose daily load profile is also generated randomly

for the simulation purposes. This profile is shown in Figure 3.2(b). In addition, the

uncertainty in load prediction is described by

wd(t) ∼ N (0, 0.03). (3.20)

The penalty coefficients in cost function are assumed to be

P = 12, Q = 10, R = 12. (3.21)

The first step in the algorithm described in the previous section is to find an

acceptable number of samples n through Chebyshev inequality. Choosing γ = 0.1,

we obtain n = 7. By having a sufficient number of samples, we can implement the

stochastic MPC algorithm described before. Due to the computational limitations in

MATLAB, we set T = 4. The final calculated state, i.e., z(4), will be considered as the

initial state for the next set of data. In addition, IBM ILOG CPLEX Optimization

Studio 12.2 [43] is used for performing minimizations required in steps 5 to 7. Since

the defined cost function is convex, CPLEX determines an optimal solution. A mex

function is coded and employed to link CPLEX and MATLAB. Next, we describe the

performed analysis and simulation results.

Figure 3.3 illustrates the demand profile of load in node 2, as well as the total

power generated in microgrid by wind turbine and battery in node 1 and micro gas

turbine in node 3. As observed, the generated power, i.e., supply, follows the demand
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Figure 3.3: Noisy load profile and optimized microgrid’s total generated power (from
wind turbine, battery and micro gas turbine)

curve closely, and hence, the primary design objective is satisfied.

Shown in Figure 3.4(a) is the total power generated in node 1 of the microgrid

that is supplied by the wind turbine and battery. This power is transferred to the

demand side through the line between nodes 1 and 2. As observed, the power is

always below the maximum line capacity, i.e., Lmax
12 = 1.3 p.u. This implies that the

line capacity constraint has also been met. We have shown in Figure 3.4(b) the power

generated in node 3 supplied by the micro gas turbine. Examining this figure implies

that the MPC algorithm has tried to keep this generation as low as possible as it was

one of the objectives in the defined cost function. Furthermore, the power generated

in this node is transferred to the demand node through the line between nodes 3 and

2. As expected, the transferred power is always below the maximum line capacity,

i.e., Lmax
32 = 1.3 p.u. Hence, the line capacity constraint between the nodes 2 and 3

is met as well. Finally, shown in Figure 3.4(c) is the battery state of charge SOC.

As indicated before, one of the design objectives was to keep the SOC as close as
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Figure 3.4: (a) power generated by wind turbine and battery; (b) power generated
by micro gas turbine; (c) battery state of charge

possible to its maximum value (which is 0.5 p.u. for the example discussed here). As

illustrated in Figure 3.4(c), this goal is met as well.
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Chapter 4

Multi-Objective Energy Management Method for

Grid-tied Microgrids

The first objective for management system of microgrids is real-time dispatching of

energy generations in a way that minimizes the operational cost while it guarantees

the balance between supply and demand at the presence of unpredictable variations

of distributed generations (DGs).

In order to relax the issue of sudden unforecasted unbalances between supply and

demand, energy storage devices are normally utilized. Among various types of storage

devices, battery is the most favorable option and also one of the most expensive

components of microgrid. In grid-tied microgrids, any shortage in the supply-side

(power outputs from DGs and the scheduled power from the grid) should be met

whether by the battery or by purchasing extra power from the grid or a combination

of both. At the first glance, it might be preferred to use battery first. But irregular

discharge pattern of a battery might shorten its lifetime and incur a replacement cost

for battery. Authors in [44] described three parameters mainly affecting a battery

lifetime: 1) depth of discharge (DoD), 2) discharge power, and 3) temperature. It is

shown how discharge power in different DoDs can determine the battery life period.

Based on this idea, in microgrids operation, it is beneficial to utilize battery’s power

in a way that maximizes its lifetime. Therefore, maximizing the battery’s life span

should be considered as another important objective in addition to minimizing the

micorgrid’s operational cost.

To solve this problem, a novel multi-objective management system for real-time
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controlling of microgrids using MPC strategy is proposed in this chapter. Simulation

results show the effectiveness of the proposed method in adjusting the battery lifetime

and minimizing the cost of energy.

4.1 Problem Statement

The microgrid considered in this chapter is a directed graph which includes four

nodes as follows:

• Node 1: Demand (D(t))

• Node 2: Imported power from the grid (PG(t))

• Node 3: Battery unit

• Node 4: Total generated power by renewable sources such as PV and wind

turbine (Prenew(t))

As illustrated in Figure 4.1, PG(t) can be sent directly to demand node, PD
G (t), and/or

stored in battery, PB
G (t). Hence, the following equality holds at each time, t,

PG(t) = PD
G (t) + PB

G (t). (4.1)

Since Prenew(t) is uncontrollable with almost free marginal cost, it is beneficial to con-

sume it directly by load, PD
renew(t) , and/or store it in battery unit, PB

renew(t), as much

as possible. PB(t) is battery discharge power which supplies the load. Considering

the microgrid’s graph and its elements, an optimization problem is defined in order

to optimally dispatch different energy sources within the microgrid. Similar to other

optimization problems, the proposed mathematical formulation has two main parts:
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Figure 4.1: Schematic of a typical microgrid

Objective function which should be optimized, and static and dynamic constraints of

microgrid which should be satisfied.

4.1.1 Objective Function

As mentioned above, there are two objectives for the proposed microgrid scheme

that should be optimized: 1) minimizing the cost of energy, and 2) maximizing the

battery lifetime.

4.1.1.1 Energy Cost Minimization

In every power dispatching problem, primary objective is to schedule the generators

output to reliably supply the power requested by end users. This scheduling should

39



be implemented in a cost-efficient way. In Figure 4.1, cost of energy for the microgrid

is equal to the cost of importing power from the grid. Hence, first objective function

J1 is the grid power cost over the optimization window. We assume the marginal cost

of grid power for any level of generation is constant. Therefore, J1 is modeled by a

linear equation as

J1 :=
T∑
t=0

CG(t)PG(t), (4.2)

where T is optimization horizon, PG(t) is imported power from grid at time t, and

CG(t) is grid power marginal price at time t based on time-of-use rates.

4.1.1.2 Battery Lifetime Maximization

To formulate the objective of battery lifetime maximization and integrating it with

energy cost minimization, the maximization problem is translated into a minimization

one. To this purpose, we need to estimate battery lifetime using its cumulative

discharges and its DoD [44]. For a battery cell which has been operated for a certain

period of time, τ , and experienced k discharge events, the estimated lifetime, BL,

can be calculated as

BL =
LRDRCR

k∑
i=1

deff (i)

τ ,
(4.3)

where CR is rated amp-hour capacity at rated discharge current, DR is DoD for which

rated cycle life was determined, and LR is cycle life at rated DoD and rated discharge

current. deff (i) is the effective discharge (ampere-hours) for a particular discharge

event i and is calculated as

deff (i) = (
DoD(i)

DR

)x1e
x2(

DoD(i)

DR

− 1) CR

CA(i)
dact(i),

(4.4)
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where DoD(i), CA(i), and dact(i) are DoD, actual capacity of a battery, and measured

discharge ampere-hours for ith discharge event respectively. Coefficients x1 and x2 are

calculated by applying a curve fitting procedure to cycle life versus DoD data that

are available from the battery data sheet. To perform curve fitting task, particle

swarm optimization (PSO) technique is employed [45]. PSO is a curve fitting tool

compatible with nonlinear battery characteristics.

Having the estimated lifetime, we can evaluate the number of battery replace-

ments, NBR, during the total life of the project, Yproj. According to number of

required replacements, equivalent uniform annual cost (EUAC) is calculated as

EUAC = RBC[(CC +RC
NBR∑
n=1

1
(1+iact)

n×Yrep )CRF (iact, Yrep) +OMC(1 + f)n],

(4.5)

where RBC is rated battery capacity (kW ), CC is capital capacity ($/kW ), RC is

replacement cost ($/kW ), and Yrep is replacement year. iact is actual interest rate

(%) and is obtained as

iact =
inom − f

1 + f
, (4.6)

where inom is nominal interest rate (%) and f is inflation rate (%). Finally, CRF is

capital recovery factor and is calculated as

CRF (iact, Yrep) =
iact(1 + iact)

Yproj

(1 + iact)Yproj − 1
. (4.7)

Once the EUAC is determined, the battery usage price, BUP , can be calculated
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by dividing EUAC by the expected annual kWh usage of the battery as [46]

BUP =
EUAC

8760×RBC
. (4.8)

If the battery is charged by renewable generation, price of power extracted from the

battery, CB is equal to BUP because marginal cost of power from renewable sources

is almost free. In the case of charging the battery by other generator assets such as

a diesel generator or grid, CB can be written as

CB = BUP + Ccharge, (4.9)

where Ccharge is the cost of charging the battery ($/kWh). In summary, the cost of

discharging battery power (second objective, J2) can be modeled as

J2 :=
T∑
t=0

CBPB(t), (4.10)

where PB(t) is battery discharge power obtained from measured discharge ampere-

hours at time t.

By transferring battery lifetime maximization problem into a battery power cost

minimization problem, we are able to embed the objectives (4.2) and (4.10) into a

single optimization problem in which the objective function, J , can be written as

J :=
T∑
t=0

CG(t)PG(t) + CBPB(t). (4.11)
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4.1.2 Constraints

The operational and physical constraints of problem are listed as follows:

1) Supply-Demand balance which is an equality constraint and the primary task

of management system. This constraint is formulated as

PD
G (t) + PB(t) + PD

renew(t) = D(t), (4.12)

which means the summation of generated power by grid, battery, and renewable

source should be equal to demand at each time.

2) Battery state of charge (SoC) difference equation is given by

soc(t+ 1) = soc(t)− αPB(t) + αPB
G (t) + αPB

renew(t), (4.13)

in which soc(t) is battery SoC in ampere-hour (Ah) at time t, and α is a coefficient

which changes kW unit into Ah.

3) Upper and lower bound for battery SoC which by considering the SoC difference

equation (4.13) will be a dynamic inequality constraint as

socmin ≤ soc(t) ≤ socmax, (4.14)

4) All decision variables (PD
G (t), PB

G (t), PD
renew(t), PB

renew(t), and PB(t)) are phys-

ical variables. Therefore, they are always greater than or equal to zero, and can be
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expressed as

PD
G (t) ≥ 0, PB

G (t) ≥ 0, PB(t) ≥ 0,

PD
renew(t) ≥ 0, PB

renew(t) ≥ 0.

(4.15)

5) Renewable inequality constraint which states that the summation of PD
renew(t)

and PB
renew(t) should be less than or equal to available renewable generation at each

time. Thus,

PD
renew(t) + PB

renew(t) ≤ Prenew(t), (4.16)

in which Prenew(t) is the available renewable power at time t based on forecasted

profile of renewable generations.

6) Peak shaving inequality constraint which provides the management system with

the ability of performing peak shaving task. By satisfying this constraint, manage-

ment system guarantees that the total imported power from the grid at each time is

less than a predetermined constant value, PPSH . Therefore, we state this inequality

constraint as

PD
G (t) + PB

G (t) ≤ PPSH . (4.17)

It should be noted that this constraint is an optional objective for management system

and is not a mandatory task for normal type of operation.

For defining and solving optimization problem, it is sufficient to pick PD
G (t), PB

G (t),

PD
renew(t), PB

renew(t) as decision variables since other variables can be described based

on this parameters. Hence, we can summarize the optimal dispatching problem for
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the finite horizon T as

min
PD
G , P

D
renew,

PB
G , P

B
renew

J :=
T∑
t=0

CG(t)PG(t) + CBPB(t)

subject to: (4.12)− (4.17).

(4.18)

4.2 Model Predictive Control Utilization

In this section, the proposed real-time management problem is embedded into the

framework of MPC. In order to build the MPC model, we need to have some in-

formation about the system. In the management problem under study, for making

the model of operation for microgrid, some current and future information such as

forecasted load and renewable generations profiles, time-of-use grid electricity rates,

current battery SoC, SoC model for battery charging and discharge, battery power

pricing model, etc. are required. In this way, MPC will be able to perform the

real-time management task based on following steps:

Step 1: Current system information and system response to previous inputs are

measured. In addition, forecasted profiles of load, renewable generations, and grid

electricity rates are updated for new optimization horizon.

Step 2: Based on update information, system model, optimization objective func-

tion, and constraints are updated.

Step 3: The proposed economic dispatching problem is solved which results in a

sequence of control actions (output power of each energy source in different nodes)

for each time instance of optimization horizon.

Step 4: The first control action is implemented which means the output of each
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energy source and battery is determined for current time. The rest of the control

sequence will be ignored.

Step 5: System response (new level of battery SoC, battery power price, etc.) to

control commands is measured and utilized as a feedback for next iteration to improve

system performance.

Steps 4 & 5 together help the management system to perform a closed-loop control

algorithm. As mentioned before, closed-loop characteristic increases the reliability for

dealing with errors in system modeling and forecasting the renewable generations and

load profiles.

Step 6: Horizon control recedes just one time step and MPC repeats the algorithm

by going back to step 1.This step lets MPC to act as an on-line manager for microgrid

which optimizes its behavior in every time step.

4.3 Simulation Results & Discussion

For simulation purposes, a grid-tied microgrid is considered in this study which

includes wind turbine and PV solar panels as DG resources, grid connection, a stor-

age package, and a load. To highlight the effectiveness of proposed method, first, we

illustrate the simulation results for one day operation of microgrid. To this purpose,

24-hour profiles of time-of-use grid electricity rate, load, and renewable generation

have been extracted based on real data and are illustrated in Figure (4.2). As it can

be seen, based on three different grid electricity tariffs during the day, three different

types of region have been introduced which are named off-peak time, partial peak

time, and peak time. An Intensium Flex High Energy Lithium-Ion battery package

has been selected as the storage unit for simulation purpose. Table (4.1) describes
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Figure 4.2: Daily Profiles of grid electricity price (blue line), demand (black line),
and renewable generation (red line)

the specifications of battery package. Model predictive optimization horizon is 12

hours and receding step is 20 minutes which means optimization problem over the

next 12 hours is solved and repeated every 20 minutes. In addition, it is assumed

that 12-hour prediction of renewable generation is not a perfect forecast and has

some uncertainty. To consider the uncertainty of forecasting, a random prediction

error profile is generated and combined with renewable generation daily profile. This

profile states that the error propagates up to 50% during the 12 hours of forecasting.

Figure (4.3) shows the error propagation along the optimization window. Finally it

should be mentioned that since we focus on cost minimization and battery lifetime

maximization objectives, peak shaving constraint is excluded from the MPC prob-

lem. However, adding peak shaving task to the management system responsibilities is

47



Table 4.1: Characteristics of Intensium Flex High Energy Lithium-Ion battery pack-
age

Nominal voltage of each cell, V 48
Rated capacity, Ah 45
Rated lifetime at +20 ◦C, year 20
Rated life cycle 3000
Rated DoD 80%
NO. of cells in series, and parallel 18, and 1

Figure 4.3: Error propagation along the forecasting horizon

straightforward and does not change the formulation. Detailed dynamic models of mi-

crogrid components are developed in MATLAB environment along with the proposed

management framework. In addition, MATLAB optimization toolbox is utilized to

solve the MPC problem. Figure (4.4) illustrates the first task of management system

which is the balance between total generation and demand. It means that the total

output of energy sources, e.g. grid connection, renewable generations, and battery

equals to demand at each time instance.
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Figure 4.4: Balance between supply and demand

In order to evaluate the performance of proposed energy management system,

we compare the results of this method with the outcomes of static algorithm pro-

posed in [45]. Authors in [45] have tried to optimize the operational cost and battery

lifetime as well; but they optimize microgrid performance at each time instance in-

dependently and without considering the future conditions and information. Figure

(4.5) illustrates the operational cost for one day operation of microgrid based on two

management strategy, the proposed MPC management method and static algorithm

in [45]. As it shows, initially the operational cost for MPC method is higher but this

cumulative cost will stay below the operational cost curve of the static method after

6 : 00pm. The total operational cost for static method is $8.27 while the total oper-

ational cost for MPC method is $6.48. It means utilizing the proposed management

method will create the opportunity for 21.6% more saving in one-day operational

cost.

Now, we investigate the reasons which help the proposed management method to

reduce the operational cost. To this end, we track the flow of power from microgrid

energy sources. Figure 4.6 shows the extracted power from the grid for sending

directly to load, PD
G , for both MPC and static methods versus load. It shows that

the static method extracts much more power from the grid in peak time in which the

49



Figure 4.5: Operational cost based on MPC management and static management
strategies

grid electricity price is in its maximum rate period. Figure 4.7.b illustrates the power

that charges the battery based on static algorithm. By looking at figure 4.7.a we find

that the battery is charged only when there is some exceeded renewable power. In

this way, static method could charge the battery up to 70% of its full capacity, figure

4.7.c. Since the static method does not utilize any future information, the stored

power will be discharged as soon as there will be any mismatch power for balancing

the demand.
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Figure 4.6: Extracted power from the grid for sending directly to load for both MPC

and static methods versus load

On the other hand, figure 4.8.a shows the battery charging power based on MPC

management method. Since, this method can forecast the availability of renewable

generation, it predicts that in peak time there is not enough renewable power to

compensate the load. Hence, there will be need to import some power from the grid.

To minimize importing expensive grid power in peak time, MPC stores some grid

power but in off-peak period in which grid power is cheaper. This power has been

shown by dashed line in figure 4.8.a. MPC stores this power up to a level that allows

fully utilization of exceeded free-of-charge renewable power. Figure 4.8.b depicts that

MPC employs the full capacity of battery (100%SoC) and discharges all permitted

battery power (80%DoD) in peak period in order to obtain the minimum operational

cost.

For investigating the performance of the proposed management method in extend-

ing the battery lifetime, we need to operate the system for a longer time period. To
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Figure 4.7: (a) Demand & renewable generation, (b) Battery charging power, and (c)
Battery SoC related to static method

Figure 4.8: (a) Battery charging power based on MPC method, (b) Battery SoC
based on MPC method
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this purpose, the microgrid is operated for 30 days using the monthly profiles of time-

of-use grid electricity rate, load, and renewable generation. In addition, in order to

demonstrate the advantage of considering battery lifetime maximization objective in

MPC management algorithm, we run the MPC once with battery lifetime extension

objective, and once without it.

Figure 4.9: Estimated battery lifetime over one month operation of microgrid

Figure 4.9 shows estimated battery lifetime over one month operation of microgrid

for both cases. It shows that if battery lifetime extension objective is not included

in our management strategy, battery lifetime will be around 18 years based on the

obtained one-month usage pattern of battery. On the other hand, by including the

battery lifetime maximization goal in MPC objective function, the proposed manage-

ment system is able to utilize the battery package for its whole rated life span which

is 20 years.
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Chapter 5

An Optimal Cooperation Method for Network of Microgrids

As discussed in previous chapters, a microgrid is able to manage its operation in

both islanded and interconnected modes. In addition to the ability for self-managing,

the microgrids in a neighborhood can collaborate through information exchange and

power channels. Taking advantage of self-managing and collaborating capabilities,

microgrids can compensate for the deviations from predicted demand or forecasted

renewable generations through buying or selling surplus power of other microgrids’

renewable energy. This will allow them to less participate in spot market for trading

electricity power, and they will only buy a predetermined needed power through

forward contracts for the entire day including peak hours in a much lower rate.

In this chapter, we assume that there is a network of microgrids which are not tied

to the grid, but they can collaborate with each other. Each microgrid in the network

has the ability to predict its own daily load curve and renewable energy generation

profile. Due to the low cost of power generated from renewable sources, each microgrid

first tries to supply the requested power by using the renewable sources and then, if

needed, it uses its micro gas turbine that is a controllable generation source within

the microgrid. Moreover, if at some point the amount of produced renewable power

within the microgrid i is higher than the demand, it can find a neighbor, say microgrid

j, whose renewable generation is less than its demand; in this case, microgrid i will

sell the surplus power to the microgrid j. Based on this cooperation, the total cost

of energy will be minimized through solving an appropriately defined optimization

problem [47].
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5.1 System Description

In this section, we consider a network of microgrids including n nodes as illustrated

in Figure 5.1. It is assumed that each node contains a micro gas turbine, as well as

a renewable source such as a PV generator or a wind turbine. The power from the

gas turbine is controllable, while that from the renewable sources is uncontrollable

[48]. In our formulation, we denote the total power generated by ith microgrid, the

power generated by ith micro gas turbine, the power produced by ith renewable source

and the demand of ith node by Gi(t), ui(t), G
renew
i (t) and Gref

i (t), respectively. For

the node i, the generated power Gi(t) at each time instant depends on its generated

power at previous sampled time, its renewable generation power, its neighbors’ surplus

renewable power and its micro gas turbine output. The objective is to keep Gi(t) as

close as possible to Gref
i (t) for all the nodes. The daily load profile Gref

i (t) can

be obtained in real-time using short-term electricity demand forecasting techniques

[49, 50]. In addition, since the renewable source outputs are not controllable and

their future profiles over a certain finite horizon time interval can be obtained in real-

time using weather forecasts, it can be considered as negative load in the scheduling

problem. Hence, the problem can be formulated as that of minimizing

||Gi(t)−Gsetpoint
i (t)||, (5.1)

where

Gsetpoint
i (t) = max[0, (Gref

i (t)−Grenew
i (t))]

+
∑

j aij min[0, (Gref
j (t)−Grenew

j (t))],
(5.2)
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in which aij are coefficients defining the portion of ith node power that comes from

the surplus power of jth node. The coefficients can be determined through a forward

contract. The state equation corresponding to each microgrid can be described as

Gi(t+ 1) = Gi(t) + ui(t) + wi(t), for i = 1, 2, ..., n, (5.3)

where wi(t) is the zero-mean white noise used to describe the uncertainties from

Figure 5.1: An example illustrating the cooperation between microgrids in a network
[51]

either the power generated by the uncontrollable sources or the errors in demand

forecast curve. The output equation for each node is the power measurement, i.e.,

yi(t) = Gi(t), (5.4)

assuming that the measurement noise is neglected. Moreover, there exists a physical

constraint resulting from the limitation on the micro gas turbine generation as

0 ≤ ui(t) ≤ umax
i . (5.5)
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Putting the system difference equations described in (5.3) and (5.4) together for all

the microgrids results in

G(t+ 1) = AG(t) +Bu(t) + Fw(t),

y(t) = CG(t), (5.6)

in which, for the specific network shown in Figure 5.1

G(t) = [G1(t), G2(t), ..., Gn(t)]T ,

u(t) = [u1(t), u2(t), ..., un(t)]T ,

w(t) = [w1(t), w2(t), ..., wn(t)]T ,

y(t) = [y1(t), y2(t), ..., yn(t)]T , (5.7)

and the system matrices A, B, C and F are n× n identity matrices.

5.2 Optimal Control Method

To cope with the input constraints, as well as the proposed model characteristics,

a suitable control methodology is receding horizon or model predictive control, which

has become popular using state-space design methods in recent years [52, 53, 54]. To

solve the MPC problem, an analytical approach [29] is employed which need some

changes in mathematical modeling of the system.
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5.2.1 Augmented Model

We first transform the standard state-space representation described earlier into a

form appropriate for MPC design purposes, in which an integrator is also embedded

[29].

G(t+ 1)−G(t) = A(G(t)−G(t− 1))

+ B(u(t)− u(t− 1)) + F (w(t)− w(t− 1)). (5.8)

The addition of the integrator is to ensure the reference trajectory tracking. By

defining

∆G(t) = G(t)−G(t− 1),

∆u(t) = u(t)− u(t− 1),

ε(t) = w(t)− w(t− 1), (5.9)

we obtain  ∆G(t+ 1)

y(t+ 1)

 =

 A 0

CA I


 ∆G(t)

y(t)


+

 B

CB

∆u(t) +

 F

CF

 ε(t)
y(t) =

[
0 I

] ∆G(t)

y(t)

 .
(5.10)
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Choosing a new state variable vector as x(t) = [∆G(t)T , y(t)T ]T , we have

x(t+ 1) = Mx(t) +N∆u(t) + Eε(t)

y(t) = Hx(t). (5.11)

5.2.2 Prediction of State and Output Variables

Based on the augmented model derived in section 5.2.1 , we calculate the predicted

plant output using future control inputs as the adjustable variables. Suppose that

at the time instant t, the state vector x(t) is available through measurement. The

future control trajectory is denoted by [29]

∆u(t), ∆u(t+ 1), . . . , ∆u(t+Nc − 1), (5.12)

where Nc is the control horizon which determines the number of future control ac-

tions. The future state variables and outputs are predicted for Np steps (prediction

horizon) through given information x(t). The parameter Np is also the length of the

optimization window and Nc ≤ Np. The chain of future state variables is

x(t+ 1|t), x(t+ 2|t), . . . , x(t+Np|t), (5.13)

where x(t+Np|t) represents the predicted state at the time instant t+Np using the

information at current time x(t), which is equal to

x(t+Np|t) = MNpx(t) +
Nc−1∑
j=0

MNp−1−jN∆u(t+ j). (5.14)
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Note that in the equations above used for prediction, since the disturbance is white

noise and its expected value is zero, the term related to disturbance does not appear.

The prediction of outputs can be found by the use of predicted state variables as

y(t+Np|t) = HMNpx(t) +
Nc−1∑
j=0

HMNp−1−jN∆u(t+ j). (5.15)

By defining new vectors as

Y = [y(t+ 1|t)T , y(t+ 2|t)T , . . . , y(t+Np|t)T ]T ,

∆U = [∆u(t)T , ∆u(t+ 1)T , . . . , ∆u(t+Nc − 1)T ]T , (5.16)

we obtain

Y = Γx(t) + Φ∆U, (5.17)

where

Γ =



HM

HM2

.

.

.

HMNp


, (5.18)

60



and

Φ =



HN 0 ... 0

HMN HN ... 0

HM2N HMN ... 0

.

.

.

HMNp−1N HMNp−2N ... HMNp−NcN



. (5.19)

Finally, it should be noted that all of the predicted variables (states and outputs) are

calculated in terms of the current system state x(t) and the future control actions.

5.2.3 Optimization

In this section, we define an objective function resulting in the control inputs to

keep the predicted output as close as possible to a set-point signal r(t). By solving

the problem of minimizing this cost function, an optimal control trajectory ∆U will

be obtained that minimizes the error between set-point and the predicted output.

Suppose that the set-point vector is

Rs =

[
r(t)T r(t+ 1)T ... r(t+Np − 1)T

]T
. (5.20)

Having the set-point vector Rs, the objective function J can be defined as

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U, (5.21)
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where R̄ is a tuning matrix used to shape the desired closed-loop performance. By

expanding the vector Y , J can be rewritten as

J = (Rs − Γx(t))T (Rs − Γx(t))− 2∆UTΦT (Rs − Γx(t))

+ ∆UT (ΦTΦ + R̄)∆U.

Taking the first derivative of the cost function J and using the necessary condition

for minimization yield

∂J

∂∆U
= −2ΦT (Rs − Γx(t)) + 2(ΦTΦ + R̄)∆U = 0, (5.22)

from which the optimal control trajectory is determined as

∆U = (ΦTΦ + R̄)−1ΦT (Rs − Γx(t)). (5.23)

Although the optimal solution vector ∆U contains the control inputs ∆u(t), ∆u(t+

1), ∆u(t + 2), . . ., ∆u(t + Nc − 1), based on receding horizon control principle, we

only implement the first sample of this sequence, i.e., ∆u(t) and ignore the rest of

the sequence. When the next sampled data arrives, the more recent measurement is

used to form the state vector x(t + 1) for calculation of the new sequence of control

input. This procedure is iterated to provide the receding horizon control law.

62



10 20 30 40 50 60 70 80 90
0.5

1

1.5
x 10

4 Demand at each Microgrid (KW)

M
ic

ro
gr

id
 #

 1

10 20 30 40 50 60 70 80 90
0.8

1

1.2
x 10

4
M

ic
ro

gr
id

 #
 2

10 20 30 40 50 60 70 80 90
0

1

2
x 10

4

Time step (15−min interval)

M
ic

ro
gr

id
 #

 3

Figure 5.2: Demand profile for each microgrid of network

5.3 Simulation

In this section, the simulation results are demonstrated using a numerical example

to examine the effectiveness of the proposed microgrids collaboration method de-

scribed in the previous sections. In this regard, we consider a network which includes

three microgrids. For each microgrid, 15-minute interval forecasted demand has been

extracted based on the data from November 5th, 6th, and 7th, 2011 provided in Cal-

ifornia ISO website [55]. We have assumed that the third microgrid has no power

consumption during the first 9 hours. These load profiles are shown in Figure 5.2. In

addition, 15-minute intervals prediction of the renewable power is calculated based

on California ISO data for the same days [55]. This profile is shown in Figure 5.3.

If microgrids operate in islanded mode, which implies that there is no collaboration

within the network, the difference between demand profile and renewable generation
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Figure 5.3: Rnewable generation at each microgrid of network

curve is used to generate the reference trajectory for each microgrid; this difference

needs to be compensated for using micro gas turbine power. The reference trajectories

are shown in Figure 5.4 by solid lines. Since microgrids cannot collaborate with each

other, there will be no chance to utilize the surplus renewable power at the third

microgrid which has been illustrated by dash dotted line. By taking advantage of the

proposed method, that provides an opportunity for the microgrids to collaborate, this

surplus power can be transferred to the neighbors to reduce the generated power of

micro gas turbines. It is assumed that the surplus power is split equally between the

neighbors, which in our case means aij = 0.5. The reduced power needed by micro

gas turbines is shown in Figure 5.4 by dashed lines for first and second microgrid,

and by solid line for the third one.

Finally, it should be noted that the length of the optimization window Np and
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Figure 5.4: The reference trajectory of each microgrid with and without collaboration
opportunity

control horizon Nc are assumed to be the same and equal to 5. Figure 5.5 illustrates

the power generated by micro gas turbines in each microgrid calculated using MPC

design strategy versus reference trajectory. As it can be inferred, the generated power,

i.e., supply, compensates for the residual load reasonably well. In addition, the

marginal cost for a gas unit has been considered to be $130/MWh, and we have

assumed the marginal cost for a renewable source is free. Therefor, the total cost of

generation of microgrids in network is $5.4872×104 when each microgrid is in islanded

mode. By adopting the developed MPC based cooperation method, we could reduce

the generation cost to $5.1346 × 104. It implies an approximately 6.43% reduction

in electricity cost of generation which is the result of utilizing inherent capability

of employing future system behavior and providing the collaboration opportunity
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vs. the residual demand

between the microgrids in the network.
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Chapter 6

Power System Dynamic Scheduling with High Penetration of

Renewable Sources

The scheduling problem in power systems is defined as determining the outputs of

power generation units to balance supply and demand considering the power network

constraints. In economic scheduling, an optimization problem is solved by system op-

erator (SO) to minimize the generation cost. Utilizing concepts from control theory,

dynamic economic scheduling was first introduced in 1970’s [56], in which the demand

prediction over a period of time was taken into consideration at each optimization

step. Moreover, the method was shown to handle the ramp rate constraint of gen-

erators which is a dynamic constraint [57]. Obviously, dynamic economic scheduling

(DES) can be more realistic and useful in long term compared to the solution obtained

from a static economic scheduling problem [58, 59].

There have been several approaches proposed to address the DES problem. In

[60], dynamic programming has been suggested for solving the optimization problem

corresponding to DES. However, the computational time and dimension of scheduling

problem based on dynamic programming would increase with the dimension of the

power system. In 1980’s, DES problem was transformed into the minimization of

entire generation cost on a particular period of time interval, known as dynamic

economic dispatch (DED) [61, 62]. Different methods were proposed to solve the DED

problem including gradient projection method, Lagrange relaxation, etc. [63, 64].

Unfortunately, DED violates the ramp rate constraint of generation units [65]. More

importantly, DED strategy is an open-loop control policy, and hence, there will be no

67



control over any deviation from the forecasted demand or any disturbance affecting

the generation units’ outputs. In this chapter, MPC strategy is employed to solve the

DES problem.

Figure 6.1: Estimated wind generation as a proportion of power consumption [66]

Renewable energy sources affect the operation of the power systems. Intermittency

and uncontrollability of these sources have made them different from traditional power

generation sources from the operation point of view. Similar to the demand profile,

renewable sources production should be predicted ahead of the operation. Power

generation from renewables is currently counted as a small portion of supply; for

example, the estimated wind generation in the United States as a proportion of power

consumption was less than 2.5% in 2010 (see Figure 6.1). Due to this low percentage,

the most common approach in using renewable production in power system operation

is to consider them as a negative load; some examples can be found in [67], [68], and

[37]. On the other hand, the fossil fuels’ price and the trend for reducing the carbon

footprint are increasing. Due to these reasons, many countries have officially targeted

the goal of increasing the renewable energy generations. For example, United States
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has targeted to raise its power generation from wind source to 20% by 2030 [69]. The

State of California has also passed a renewable electricity mandate to reach 33% by

2020 [70]. The renewable portfolio and goals for different states is shown in Figure

6.2.

Figure 6.2: United States renewable portfolio [66]

With an increase in penetration of the renewable sources in supplying power, the

use of negative load approach will not be appropriate anymore. There are a number of

reasons that prohibit SO from fully utilizing renewable generations. In [28], authors

have illustrated that it is not efficient to dispatch the maximum capacity of renew-

able generations when 30% of the total power is provided by wind power. They have

shown that by considering intermittent sources as dispatchable units, the efficiency

of economic dispatching problem can be improved since they can increase the genera-

tion of cheap and slow-response units such as coal and nuclear power and decrease the

generation of expensive but fast-response units such as gas power plants. This advan-

tage arises from the almost cost-free generation and high ramp rate characteristics of

renewable sources and in particular wind power.
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In this chapter, we examine the impact of high penetration of renewable gener-

ation sources on the future generation of smart grids from different points of view.

We will show that due to the constraints on capacity of the transmission lines, SO

can no longer interpret renewable sources as negative loads and dispatch their total

power generated. Instead, we show that this issue can be handled by considering

the renewable sources to be dispatchable units in the underlying optimization prob-

lem. In addition, we study the effect of integrating storage devices (and in particular

batteries) with renewable sources on power scheduling problem. The use of storage

devices will not only enable us to schedule the power from intermittent sources but

also utilize their maximum capacity of production. It is noted that, here, the impact

of market, e.g., price bidding won’t be considered. Instead, the objective is for SO to

only minimize the cost of production of the generation units. Following the rationale

and power scheduling principles proposed in this chapter, the problem of economic

dispatching in a day-ahead market can be addressed, in which locational marginal

pricing (LMP) for each generation unit will be among the decision variables. In the

latter case, renewable sources might not be allowed to offer their total generations in

financial day-ahead market due to the transmission congestion constraints; but they

can offer major portion of their generation and act as dispatchable units. Moreover,

they can schedule to store the uncommitted portion of their generation and offer it

in the same day-ahead market.

6.1 Power System Economic Scheduling: Problem Statement

and Formulation

In power scheduling problem, SO’s primary objective is to schedule the generators’

output to reliably and efficiently supply power requested by the end users. This
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scheduling that aims to minimize the cost of generation should be implemented in a

cost-efficient way. To this purpose, we first consider an objective function defined as

J :=
∑

iCi(Gi(t)), (6.1)

where Ci(Gi(t)) is a general cost function corresponding to ith generator at time

instant t that depends on its generation Gi(t). The relation between generator output

at time instant t+ 1 and time instant t is described as a state equation

Gi(t+ 1) = Gi(t) + ui(t), (6.2)

where Gi(t) is the system state and ui(t) is the generator ramp rate considered to be

the system input. The objective function is often assumed to be affine or quadratic

to ensure the convexity of the underlying problem.

We next describe the typical constraints imposed on the power systems.

Constraint 1: Supply-demand constraint illustrates the balance of demand and

supply at each time instant as

∑
iGi(t) = L(t), (6.3)

where L(t) is the total load consumed at time instant t.

Constraint 2: Generators’ capacity constraint is considered as

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t). (6.4)
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For conventional suppliers such as coal and gas units, the minimum and maximum

capacities, denoted respectively by Gmin
i (t) and Gmin

i (t), are constant; however, for

renewable generation sources, these values change based on their forecasted profile.

Constraint 3: Ramp-rate constraint : A substantial mechanical stress in the prime

mover can be created due to over increasing or decreasing the output of the generators.

This immoderate stress can cause a serious long term harm to the unit and eventually

leads to a shorter life span [58]. To avoid this, a dynamic constraint is imposed on

the rate, at which a generator can increase or decrease its output as

Gi(t+ 1)−Gi(t) ≤ Ru
i

Gi(t)−Gi(t+ 1) ≤ Rd
i ,

(6.5)

in which Ru
i and Rd

i represent ramp-up and ramp-down limits, respectively. We next

describe the problems we will address in this paper.

Problem 1 Scheduling problem with infinite-capacity transmission network : Assum-

ing that there is no transmission loss and no restriction on the capacity of transmission

lines, one can interpret that all the suppliers and consumers are connected to the same

bus. To pursue the discussion, we divide generators into two sets: (i) conventional

generators such as coal and gas units represented by C, and (ii) renewable generation

sources such as wind and photovoltaic units represented by R.

Problem 1.1 Renewable generation as fully dispatched resources : Considering that

renewable sources are treated as fully dispatched resources acting like negative loads,

the power scheduling problem can be addressed by solving the following optimization

72



problem

minui(t)|i∈C J :=
∑

i∈C Ci(Gi(t))

subject to:

Gi(t+ 1) = Gi(t) + ui(t), i ∈ C∑
i∈C Gi(t) = L(t)−

∑
i∈RGi(t)

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t), i ∈ C

Gi(t+ 1)−Gi(t) ≤ Ru
i , i ∈ C

Gi(t)−Gi(t+ 1) ≤ Rd
i , i ∈ C.

(6.6)

Problem 1.2 Renewable generation as dispatchable resources : Considering renew-

ables as dispatchable generation sources, the power scheduling problem can be ad-

dressed by solving the following optimization problem (for any i ∈ C ∪ R)

minui(t) J :=
∑

iCi(Gi(t))

subject to:

Gi(t+ 1) = Gi(t) + ui(t)∑
iGi(t) = L(t)

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t)

Gi(t+ 1)−Gi(t) ≤ Ru
i

Gi(t)−Gi(t+ 1) ≤ Rd
i .

(6.7)

It is noted that in Problem 1.2, maximum and minimum values corresponding to the

renewable generations come from forecasted daily profile. The dependency of these

upper and lower bounds on time is an implication of the power variability of the
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renewable sources.

The next problems we formulate correspond to the cases, where the transmission

lines are constrained in terms of the allowable line capacity.

Problem 2 Scheduling problem with finite-capacity transmission network : This con-

straint imposed by the limitation of transmission lines can be represented by

|Fij(t)| ≤ Fmax
ij , (6.8)

where Fij is the power transmitted through the line between buses i and j and is

a function of power injected by contributing buses in the network, and Fmax
ij is the

maximum capacity of the transmission line between buses i and j. The relation

between the lines’ power vector denoted by F (t) and buses’ power vector denoted by

P (t) can be expressed as

P (t) = AF (t), P ∈ RN , F ∈ RK (6.9)

where N is the number of buses, K is the number of lines and A is a constant

matrix. Notice that each element in vector P (t) equals to generated power in the bus

corresponding to that element minus its demand at time instant t. For instance, if

bus i generates Gi(t) and consumes Li(t), we have Pi(t) = Gi(t)− Li(t).

Problem 2.1 Renewable generation as fully dispatched resources (negative load) with

transmission constraint : This problem can be formulated similar to Problem 1.1 by

adding the line capacity constraint. The optimization problem we solve in this case
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is given by

minui(t)|i∈C J :=
∑

iCi(Gi(t))

subject to:

Gi(t+ 1) = Gi(t) + ui(t), i ∈ C∑
i∈C Gi(t) = L(t)−

∑
i∈RGi(t),

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t), i ∈ C

Gi(t+ 1)−Gi(t) ≤ Ru
i , i ∈ C

Gi(t)−Gi(t+ 1) ≤ Rd
i , i ∈ C

|F (t)| ≤ Fmax.

(6.10)

Problem 2.2 Renewable generation as dispatchable resources with transmission con-

straint : The optimization problem corresponding to this case can be described similar

to Problem 1.2 by adding the line capacity constraint as (for any i ∈ C ∪ R)

minui(t) J :=
∑

iCi(Gi(t))

subject to:

Gi(t+ 1) = Gi(t) + ui(t),∑
iGi(t) = L(t),

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t),

Gi(t+ 1)−Gi(t) ≤ Ru
i ,

Gi(t)−Gi(t+ 1) ≤ Rd
i ,

|F (t)| ≤ Fmax.

(6.11)
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The last problem we address in this chapter corresponds to the integration of the

renewable generation sources with storage devices. To mathematically formulate the

problem, we first develop a model to represent the dynamics of the battery as the

storage device. It is noted that the model considered here is a simple one that can

capture the dominant characteristics of a battery. We use the following equation to

describe the dynamics of the battery state of charge (SOC) for jth battery (j ∈ R):

SOCj(t+ 1) = SOCj(t) +
(
Gmax

j (t)−Gj(t)
)
ηj

− udchj (t)(1/ηj), j ∈ R, (6.12)

in which SOCj(t) is the state of charge at time instant t, udchj (t) is discharged power

that is injected to the grid, and the difference Gmax
j (t)−Gj(t) is the charging power

that represents the undispatched portion of the jth renewable source, which would

be stored. Finally, ηj is the round-trip efficiency of jth battery, which we assume is

split between charging and discharging. It should be noted that SOCj(t) (for all the

batteries) will be augmented with Gi(t) (for all the generation sources) as the new

state vector in the underlying optimization problem. Also, udchj (t) will be augmented

with ui(t) as the new vector of decision variables. The battery capacity is limited by:

SOCmin
j ≤ SOCj(t) ≤ SOCmax

j , (6.13)

in which SOCmin
j and SOCmax

j denote minimum and maximum capacity, respectively.

Remark 1 : There are two additional constraints on charging and discharging limits

as
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0 ≤ Gmax
j (t)−Gj(t) ≤ P ch

j βc
j (t)

0 ≤ udchj (t) ≤ P dch
j βj(t), (6.14)

in which P ch
j and P dch

j are maximum values for charging and discharging limits,

respectively. In addition, in discharge mode, βj(t) = 1, and in idle and charge modes,

βj(t) = 0. Also, in charge mode, we have βc
j (t) = 1, and in idle and discharge modes,

βc
j (t) = 0 . To avoid the battery charging and discharging at the same time, we

impose an additional constraint as

βc
j (t) + βj(t) ≤ 1. (6.15)

The aforedescribed constraints should be checked to ensure that they always hold true.

Problem 3 Scheduling problem considering renewable generation as dispatchable re-

sources, transmission line constraints and storage devices : Considering storage de-

vices integrated with the renewable sources, the power scheduling problem can be

addressed by solving the following optimization problem as follows:
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minui(t)|i∈C∪R, udch
j (t)|j∈R J :=

∑
iCi(Gi(t))

subject to:

Gi(t+ 1) = Gi(t) + ui(t),∑
i∈C∪RGi(t) +

∑
j∈R u

dch
j (t) = L(t),

Gmin
i (t) ≤ Gi(t) ≤ Gmax

i (t),

Gi(t+ 1)−Gi(t) ≤ Ru
i ,

Gi(t)−Gi(t+ 1) ≤ Rd
i ,

|F (t)| ≤ Fmax,

SOCj(t+ 1) = SOCj(t) +
(
Gmax

j (t)−Gj(t)
)
ηj

− udchj (t)(1/ηj), j ∈ R

SOCmin
j ≤ SOCj(t) ≤ SOCmax

j , j ∈ R.

(6.16)

6.2 Model Predictive Control

In the economic scheduling problem under study in this chapter, the system model is

described by a linear difference equation for each generator and for each storage device.

These equations represent the relation between generator outputs and battery state

of charge as described by (6.2) and (6.12), respectively. In addition, the states and

control inputs are restricted to belong to a set that satisfies the equality and inequality

constrains corresponding to the optimization problems introduced in Section 6.1 such

as (6.16).

The MPC problem can be solved to ensure that the states of the controlled system,

generators’ output, converge to a reference trajectory, demand profile, by minimizing
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the power generation cost, which is assumed to be an affine function of the generation

unit powers. The cost function is optimized at each prediction horizon step. Con-

sequently, based on the current information about generations’ power and SOC for

the storage devices, a control input sequence would be obtained that determines the

generators’ ramp rate and storage devices’ output at each sampling time. Based on

receding horizon policy, only the first sample of the control sequence is implemented

as the input to the system difference equations (6.2) and (6.12) at time instant t to

give the updated states at time instant t+ 1. Figure 6.3 is the flowchart showing the

steps involved in implementing MPC algorithm and the corresponding steps for the

DES problem under study here. For the simulation results shown in the next section,

we use MATLAB command linprog to solve the underlying optimization problems.

6.3 Numerical Examples

To examine the effectiveness of the proposed scheduling policy using MPC method,

we employ a 12-bus power network, which is modified from an IEEE 14-bus system

[71] shown in Figure 6.4. Five-minute intervals of the forecasted total demand have

been extracted based on the data from November 1st., 2011 provided in California

ISO website [55]. This load profile is shown in Figure 6.5(a). In addition, 5-minute

intervals prediction of the total renewable power consisting of wind and photovoltaic

units generation is calculated based on California ISO data for the same day [55].

This profile is shown in Figure 6.5(b). Calculations from the data in Figure 6.5 show

that, over the 24-hour period, the average amount of renewable production is 10.2%

of the load average considering a balance in supply and demand. Table 6.1 shows the

specifications of the power generation sources used in Figure 6.4 [28]. Based on the
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Figure 6.3: Flowchart of MPC implementation as applied to the DES problem
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Figure 6.4: Configuration of a 12-bus power network [71]

information provided above, we examine the dynamic power scheduling for different

scenarios discussed in the previous section considering two cases, where the generation

from the renewable sources is either 10% or 20% of the total power demand.
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Figure 6.5: (a) Total demand in KW, (b) Total renewable generation in KW

Table 6.1: Characteristics of the generation sources
Bus Type Capacity Marginal Ramp-up Ramp-down

# (KW) Cost ($/MWh) (KW/5min) (KW/5min)

1 Natural 5000 130 150 180
Gas

2 PV 1000 10 100 120
3 Coal 10000 50 50 60
4 Wind 3000 10 180 220
5 Coal 9000 50 50 60
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6.3.1 Considering 10% renewable generation with no trans-

mission congestion

First, we consider that about 10% of the total power needed to ensure a balance in

supply and demand comes from the renewable sources and that there is no limitation

on transmission lines. Using the profiles shown in Figure 6.5. We discuss the results

obtained by solving the optimization problems associated with the two power schedul-

ing problems introduced in the previous section. The two problems are solved using

the MPC method considering renewable generations as negative load (Problem 1.1)

or as dispatchable sources (Problem 1.2). Figure 6.6 demonstrates that both methods

are capable of meeting the demand. The total cost of generation is also calculated

and for both methods turns out to be the same and equals to $4.3822× 105.

The total renewable power available, which is considered as negative load in Prob-

lem 1.1 and as dispatchable in Problem 1.2, is shown in Figure 6.7. As observed, the

dispatched amount is almost equal to total power when there is no constraint on

transmission line.

6.3.2 Considering 20% renewable generation with transmis-

sion congestion constraint

Next, we investigate the effect of transmission line constraints on power scheduling

problem in the presence of a higher penetration of renewable sources among electricity

providers. For this purpose, we assume a distribution of the total load among buses.

The configuration we study in this example is shown in Figure 6.8. It should be

noted that all the values shown in the figure are in per unit (pu). We first show the
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Figure 6.6: Profiles of demand (solid line), total supply power considering renewable
generation sources at buses 2 and 4 as negative loads (dashed line), and total supply
power considering renewable generation sources to be dispatchable (dash-dotted line)

details for representing the transmission line constraint in terms of the optimization

variables. Considering bus 2, the second row of equation (6.9) becomes

P2(t) = F21(t) + F23(t) + F25(t) + F28(t), (6.17)

based on Figure 6.8. It is noted that we also have P2(t) = G2(t) − L2(t). Next, it

is assumed that 20% of the demand is supplied using renewable sources. For this

purpose, we doubled the renewable generation numbers shown in Figure 6.5(b). Con-

sidering the transmission line constraints, we solve MPC problems corresponding to

problems 2.1 and 2.2. Because of violating the transmission constraints, Problem 2.1

does not provide a feasible solution, and hence we would not be able to consume the
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Figure 6.7: Total available and dispatched amount of renewable power

total available renewable generations at each time instant when they are considered

as a negative load. On the other hand, Problem 2.2 gives a feasible solution, implying

that treating renewable sources as dispatchable could successfully handle the trans-

mission constraints and schedule the available sources to supply the requested power.

Figure 6.9 shows the total supplied power and demand.

Figure 6.10 illustrates the amount of power from renewable sources that is dis-

patched from the total available renewable power. This figure clearly shows the effect

of transmission line capacity constraint on scheduling the renewable generations. It

is inferred that a portion of available renewable generations cannot be scheduled due

to the transmission limits. The total cost of generation in this case is calculated to

be $4.0217 × 105. It is noted that if we could fully dispatch renewable generations,

the total cost would have been $3.7591× 105.
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Figure 6.8: Configuration of a 12-bus power network considering transmission line
constraints and distributed loads

To avoid the loss of undispatched power from the renewable sources, we use storage

devices at buses, in which there are renewable resources installed. We assumed a

round-trip efficiency of 90% for the batteries, which is split between charging (95%)

and discharging (95%), and charging and discharging rates of 250 KW/5-min and

300 KW/5-min, respectively. This approach has been described by Problem 3 in

the previous section. The solution to this problem leads to a demand and supply

profile similar to the one shown in Figure 6.9 that illustrates a balance in supply
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Figure 6.9: Profiles and demand and total supply considering transmission capacity
constraints

and demand. In Figure 6.11, we have shown three profiles. Solid line shows the

24-hour total power available from the renewable sources generated at bus numbers 2

(photovoltaic) and 4 (wind). Dashed line shows the amount of dispatched renewable

power. Due to the transmission congestion limits, the dispatched renewable power

is lower than the maximum power available for time range between midnight and

around 10 AM. Therefore, the difference between these two profiles is scheduled to be

saved in storage devices. After 10 AM, transmission capacity allows system operator

to dispatch not only the maximum available renewable power but also the stored

power in storage devices. The total dispatched power from renewables and battery

outputs is shown by the dash-dotted line. As observed, this profile is higher than

the maximum generation of renewables. The accumulated difference between these

two profiles is slightly less than the amount of power stored in batteries before 10
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Figure 6.10: Total available and dispatched amount of renewable generation

AM. Shown in Figure 6.12 is the profile of SOC for the battery installed in the 4th

bus integrated with the wind turbine. The plot shows the trend of charging and

discharging that is consistent with the profiles shown in Figure 6.11 since the battery

is charged until 10 AM, after which it begins to discharge. We note that due to the

low power production from the photovoltaic cell and the presence of a large load at

2nd bus, battery integrated with this generation source is never charged, and hence

SOC corresponding to this battery is always zero.

Finally, we summarize the simulation results obtained by solving the power schedul-

ing associated with Problem 3. We observed that when there is a constraint on trans-

mission lines, by utilizing the storage devices, unscheduled renewable power can be

stored and later dispatched as shown in Figure 6.11. The adopted strategy in us-

ing storage devices reduces the generation cost from $4.0217× 105 to $3.9288× 105,

implying an approximately 2.3% reduction in the cost of generation.
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Figure 6.11: Total available and dispatched amount of power from renewable sources
with and without storage devices

Figure 6.12: State of Charge for the storage device located at the 4th bus
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Chapter 7

Conclusions and Future Work

In this chapter we summarize the research that has been accomplished in this

dissertation and discuss the future research that can be pursued. We describe our

findings on energy management systems and significant impact that they can have

on the efficiency of smart grid operation. We further discuss problems and solution

methods that can be explored from the current point of research.

7.1 Current Findings

Considering the new technologies and opportunities within the concept of smart

grid, we developed several energy management tools for the new generation of power

systems. To this end, model predictive control strategy was utilized to formulate

the management systems and different approaches were employed to solve the MPC

problems. Various types of distributed generations such as PV, wind, and microgas

turbine were considered besides the grid connection as electricity providers. To in-

vestigate the advantages and optimal operation of storage devices in power systems,

battery units were considered in smart grid structure as well.

In chapter 3, we studied the problem of microgrid management in islanded mode.

To this end, a three-node topology for the power network was considered. Due to

uncertainty terms in load and renewable generation profiles, the formulated manage-

ment problem became a stochastic one. We then proposed a stochastic method based

on the combination of empirical mean and dynamic programming to solve the prob-

lem. The numerical example illustrated the viability of the proposed management
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strategy for islanded microgrids.

In chapter 4, we presented a multi-objective management system to control the

operation of grid-tied microgrids. Two objectives were selected to obtain the optimal

performance of the microgrid. First objective was minimization of energy opera-

tional cost; and the second one was maximization of battery lifetime. To implement

the management algorithm, an MPC based approach was used to solve the underly-

ing optimization problem. To investigate the performance of proposed management

strategy, a microgrid including local renewable generations, grid connection, energy

storage unit and a load was simulated in MATLAB environment. We compared the

performance of MPC algorithm with static method proposed in [45]. It turned out

that MPC method obtains more saving in energy cost. Also, it has been shown that

by considering battery life span maximization objective, MPC is able to operate the

battery for its whole rated life.

Chapter 5 investigated the problem of power flow management for a network of

islanded microgrids. To this end, we defined an optimization problem, which besides

achieving optimal solution for minimum generation cost allows the microgrids in a

network to collaborate with each other. This collaboration minimizes the power

produced by micro gas turbine as a unit with higher cost of generation, and increases

the reliability of providing the required power to the costumers.

Finally, in chapter 6, we examined various power scheduling strategies adopted to

handle the high penetration of renewable generation sources among energy suppliers.

By investigating different power scheduling scenarios, we concluded that:

• With 10% of the total power coming from the renewable sources, these sources

can be considered as either negative load, i.e., fully dispatched, or dispatchable
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sources. In both cases, the total power produced from renewables can be fully

used and cost of generation is almost the same in both cases.

• With 20% of the total power coming from the renewable sources and imposing

a constraint on transmission line capacity, renewable resources cannot be con-

sidered as negative load anymore since their total generation cannot be fully

dispatched. On the other hand, considering renewable sources as dispatchable,

the power scheduling problem has a feasible solution that is not necessarily op-

timal in the sense that a portion of renewable power could be lost due to the

transmission line constraints.

• In order to prevent the loss of renewable power generation, we reformulated the

power scheduling problem by embedding storage devices. Using the proposed

method, we showed that the undispatched portion of the renewable power could

be saved and efficiently used at a later time.

7.2 Future Work

This section includes the overview of future research and possible progressions in

energy management systems for smart grids. Each chapter in this dissertation can

be considered as a starting point for further investigation. We itemize some of the

potential topics and open problems that can be chosen for further advance research.

• In different chapters, it proved that storage devices such as battery units have

important role in efficient operation of smart grids and microgrids. In addition

to those applications, there are other situations that batteries can be effective.

Traditionally, the frequency is regulated in the power systems by employing
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the fast response power plants. The power generated by these power plants

is the most expensive power in the network. Since the batteries are among

fast response power suppliers, they are appropriate for providing frequency reg-

ulation ancillary service as well. Therefore, technical and financial issues of

battery utilization as frequency regulator is an open problem that needs to be

investigated.

• The cooperation strategy proposed in chapter 5 is a central control scheme.

The effect of distributed control schemes, where the microgrids exchange limited

information with only other ones which have a direct connection with, is another

topic which needs to be explored. Using the distributed control scheme, the need

for a central processor will be removed, and consequently, the reliability of the

control will be increased.

• The solution methods and results reported in the chapter 6 can be analyzed

and used for making long term decisions when the power system is expected to

provide a high percentage of its power through renewable sources. There are

several relevant questions including:

– Is it efficient and economical to extend the transmission network to include

higher capacity?

– Is it efficient and economical to keep the current transmission network and

instead utilize storage devices?

– If it is more efficient to utilize the storage devices, what size of storage

capacity will be optimal for each device?
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The optimality and advantage of the different options described above needs to

be investigated in the framework of a new research.
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