
Five Interactive Online Demonstrations

for Robot Motion Planning

by

Shreyas Poyrekar

A submitted to the Department of Department of Electrical and Computer

Engineering,

College of Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in Electrical Engineering

Chair of Committee: Dr. Aaron T. Becker

Committee Member: Dr. Mequanint Moges

Committee Member: Dr. Hung “Harry” Le

University of Houston
May 2020

Copyright 2020, Shreyas Poyrekar

ACKNOWLEDGMENTS

I express my special thanks to my guide Dr. Aaron T. Becker who gave me

this opportunity to learn and utilize my skills of Mathematica to generate online

demonstrations hope would be useful learning resources. I thank Arifa Sultana for

giving her valuable inputs while developing them.

iii

ABSTRACT

This thesis presents five interactive online demonstrations for learning and teach-

ing robot motion-planning concepts. These include four published Wolfram Demon-

stration projects built for this Master of Science program, and an additional demon-

stration that is under review.

These Demonstrations illustrate robotic motion planning algorithms from S. M.

Lavalle’s classic book “Planning Algorithms”, namely, Minkowski Sum of Convex

Polygons, Visibility Polygon, Art Gallery Problem and Motion Planning Demon-

strations. The aim of using Mathematica to implement these demonstrations is to

provide curated, online interactive tools that can be used worldwide to understand

and teach concepts from robotics and engineering.

By generating these demonstrations, a useful learning resource is made available

in the robotic field.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF FIGURES vi

1 INTRODUCTION 1

2 RELATED WORK 3

3 MINKOWSKI SUM OF CONVEX ROBOT AND OBSTACLE 5
3.1 Background . 5
3.2 Algorithm . 5
3.3 How to Use . 8
3.4 Screenshots . 10

4 VISIBILITY REGION OF A POLYGON 15
4.1 Background . 15
4.2 Algorithm . 15
4.3 How to Use . 17
4.4 Screenshots . 17

5 ART GALLERY PROBLEM 22
5.1 Background . 22
5.2 Algorithm . 22
5.3 How to Use . 27
5.4 Screenshots . 27

6 BASE CONVERSIONS FROM BASE 2 THROUGH 100 USING
RADIX POINTS 37
6.1 Background . 37
6.2 Algorithm . 37
6.3 How to Use . 41
6.4 Screenshots . 42

7 MOTION PLANNING FOR TRANSLATING POLYGONAL
ROBOT 45
7.1 Background . 45
7.2 Algorithm . 46
7.3 How to Use . 48
7.4 Screenshots . 50

8 CONCLUSION 57

BIBLIOGRAPHY 58

v

LIST OF FIGURES

1 Minkowski Sum of Convex Sum: “static” tab. 8
2 Minkowski Sum of Convex Sum: “move around Minkowski” tab. . . 9
3 Minkowski Sum of Convex Sum: Regular pentagon robot and obsta-

cle. 10
4 Minkowski Sum of Convex Sum: Irregular convex robot and obstacle

example 1 in “static” tab. 11
5 Minkowski Sum of Convex Sum: Irregular convex robot and obstacle

example 1 in “move around minkowski” tab 12
6 Minkowski Sum of Convex Sum: Line robot and polygon obstacle

example 2 in “static” tab. 13
7 Minkowski Sum of Convex Sum: Line robot and polygon obstacle

example 2 in “move around minkowski” tab. 14
8 Visibility Region of a Polygon: Example 1 18
9 Visibility Region of a Polygon: Example 2 19
10 Visibility Region of a Polygon: Example 2 continued 20
11 Visibility Region of a Polygon: Example 2 completed algorithm . . . 21
12 Art Gallery Problem: Cubicle environment. 28
13 Art Gallery Problem: Irregular environment. 29
14 Art Gallery Problem: Movable obstacles environment. 30
15 Art Gallery Problem: Cubicle environment with 6 guards. 31
16 Art Gallery Problem: Irregular environment with 6 guards. 32
17 Art Gallery Problem: Irregular environment with two guards. 33
18 Art Gallery Problem: Movable obstacles environment with one guard

inside the obstacle. 34
19 Art Gallery Problem: Cubicle obstacles environment with eight guards

to cover the outside of the polygon. 35
20 Art Gallery Problem: Movable obstacles environment with seven

guards. 36
21 Base Conversion: Input 228 in base 7 output in base 2. 41
22 Base Conversion: Input 9775.445 in base 100 output in base 36. . . . 42
23 Base Conversion: Input 0 in base 36 output in base 2. 43
24 Base Conversion: Input 100 in base 10 output in base 60. 44
25 Motion Planning: “Work space” . 49
26 Motion Planning: “Configuration Space” 50
27 Motion Planning: Example 1 shows the work space of a triangle robot

in a square boundary environment. 51
28 Motion Planning: Configuration space for Example 1. 52
29 Motion Planning: Example 2 shows the work space of a square robot

in a triangular boundary environment. 53
30 Motion Planning: Configuration space for Example 2. 54
31 Motion Planning: Example 3 shows the work space of a square robot

in a pentagonal boundary environment. 55
32 Motion Planning: Configuration space for Example 3. 56

vi

1 Introduction

This thesis presents and explains five Mathematica demonstrations built to ex-

plain and explore robotics concepts [13, 10, 11, 12]. Each demonstration is a separate

chapter that goes through the background of each demonstration; the algorithm is

explained with short snippets of Mathematica code and provides information and

description on how to use the demonstrations and include example screenshots that

cover some of the boundary cases and conditions. Each of these demonstrations is

useful in different aspects of robot motion planning.

Mathematica is a mathematical programming language used for simulation and

visualization of engineering concepts. These demonstrations are online on the Wol-

fram Mathematica Demonstration website, https://demonstrations.wolfram.com/.

It is an open-source resource sharing website to create and share such exciting

demonstrations. This thesis should be read by those who wish to obtain detailed

information on each of the demonstrations. Also, those who want to generate such

demonstrations can find some valuable insights into building a demonstration.

Chapter 1 is the introduction, Chapter 2 informs about the related work in

building Wolfram Mathematica demonstrations for education and visualization of

the concepts. Chapter 3 presents the “Minkowski sum of Convex Polygons” demon-

stration, which is a visualization of the algorithm. The Minkowski sum is crucial

in motion planning to find the optimal path for polygonal obstacles and robots.

Chapter 4 explains the “Visibility Region of a Polygon” demonstration. The visibil-

ity region of a polygon is a sophisticated algorithm, and the demonstration serves

to visualize how the visible area is generated. Chapter 5 shows the“Art Gallery

Problem” demonstration, which uses the visibility region of a polygon algorithm

to envision the number of guards needed to simultaneously see every position in a

2D polygonal art gallery. Chapter 6 describes the “ Base Conversions from Base

2 through 100 Using Radix Points” demonstration, which is can convert a number

from any base to any base (between 2 and 100) and can be used as a calculator to

1

https://demonstrations.wolfram.com/

find the conversions up to base 100. Chapter 7 is a motion planning demonstration

“Motion Planning for Translating Polygonal Robot”, which describes how the short-

est possible path for a polygonal robot is obtained in an environment with polygonal

obstacles. Chapter 8 provides the conclusion on this thesis.

2

2 Related Work

The Internet is a good source for education and has many online resources sharing

platforms available. The use of online video lectures and tests have increased, along

with online degree programs in many fields.

An online demonstration can be a useful tool in illustrating concepts in both

online and offline based courses. By interacting with the demos, students can gather

valuable insights. As the online industry began, many interactive online games were

built and shared. Most of these small applications were Java-based applets that ran

at breakneck speed and used 3D hardware acceleration, which made them well-suited

for computation-intensive visualization. Today, many of the online-education-based

platforms are moving into web-based visualizations as an interactive tool.

“Wolfram Demonstration Project”1 is such an online, demonstration-sharing,

open-source platform that uses dynamic computation to illuminate concepts in sci-

ence and engineering. It uses the Mathematica programming language to gener-

ate online demonstrations. There are currently 12,000+ interactive demonstrations

available on the website.

Robot motion planning deals with the problem of computing a continuous path

that connects the starting configuration of a robot to the goal configuration of the

robot while avoiding all collisions with the obstacles in the work space. A simple

approach to solving the motion planning is to uniformly sample the configuration

space of the workspace, label each sample as ‘in collision’ or ‘free’, and then perform

a breadth-first search to find a path that connects the starting configuration to the

goal configuration, or determine that no path exists. Such approaches are called

resolution-complete planners, because they are accurate up to the resolution (or

granularity) of the uniform sampling. However these require a number of samples

that increases exponentially with the resolution of the grid.

1https://demonstrations.wolfram.com/

3

https://demonstrations.wolfram.com/

There are many grid-based algorithms that can solve low-dimensional path plan-

ning problems. Exact approaches do not depend on the resolution. however, exact

algorithms have higher computation complexity and can be difficult to understand.

Using interactive demonstrations to illustrate the algorithm can be useful in under-

standing and learning of these algorithms. The “Wolfram Demonstration Project”

has many demonstrations available, listed under the robotics section of engineering

and technology2.

2https://demonstrations.wolfram.com/topic.html?topic=Robotics&limit=20

4

https://demonstrations.wolfram.com/topic.html?topic=Robotics&limit=20

3 Minkowski Sum of Convex Robot and Obstacle

This chapter explains a demonstration built to teach how the Minkowski sum

of a robot and an obstacle is constructed [12]. In Section 3.1 a brief explanation

of Minkowski sum is provided. Section 3.2 describes the algorithm used and goes

through the parts of the Mathematica code. Section 3.3 offers information on how

to use the online demonstration, and Section 3.4 includes screenshot examples.

3.1 Background

The Minkowski sum was named after German mathematician Hermann Minkowski

(1864−1909). Knowing this region simplifies robot motion planning. The Minkowski

sum is the set of all coordinates in which one polygon overlaps another. The

Minkowski sum is useful for robot navigation because, once it is computed, the

problem of finding a collision-free path for a polygon-shaped robot moving through

a work-space filled with obstacles is reduced to finding a path for a point-shaped

robot through a configuration space populated by the Minkowski sums of the robot

and each obstacle [12, 7].

3.2 Algorithm

The Minkowski sum is a convolution between the robot and the obstacle. The

interior of this region is the set of robot coordinates where the translated robot

intersects the obstacle region. The solution provided here is valid for any 2-D world

with convex robots and convex obstacles. To handle non-convex polygons, they can

be modelled as a union of convex polygons.

The procedure has four steps. First, compute the convex hull of both the robot

and the obstacle polygons. The convex hull of polygon is a polygon converted such

that no vertex bends inwards or forms a non-convex shape. The convex hull is com-

puted by the Graham Scan Algorithm, which has O(n log(n)) time complexity [4].

5

The time complexity of the algorithm is not dependent on the size of the hull. The

following is the implementation in Mathematica. The scan starts from the bottom-

most point, then sorts the points based on the angle between the bottom-most point

and each other points. After sorting, step through all the remaining points and join

all the points which form counterclockwise rotations. The function clockWiseQ

takes three input points and returns true if the points form a clockwise rotation.

convexHullGrahamScan takes all the points which form a non-convex polygon and

returns a set of points which represent a convex polygon [4, 12].

1 clockwiseQ[p1: {x1_, y1_}, p2: {x2_, y2_}, p3: {x3_, y3_}] :=

2 Chop[((x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1))];

1 convexHullGrahamScan[pts_] :=

2 Module[{n = Length@pts, sortedP = Sort[pts, #1[[2]] < #2[[2]] &],

3 p, m = 2, i},

4 p = Join[{sortedP[[1]]}, Sort[sortedP[[2 ;; n]], ArcTan[#1[[1]]

5 - sortedP[[1, 1]], #1[[2]] - sortedP[[1, 2]]] < ArcTan[#2[[1]]

6 - sortedP[[1, 1]], #2[[2]] - sortedP[[1, 2]]] &]];

7 For[i = 1, i <= n, i++,

8 While[(clockwiseQ[p[[m - 1]], p[[m]], p[[i]]] <= 0),

9 If[m > 2, m = m - 1, If[i == n, Break[], i += 1]]];

10 m += 1; p[[{i, m}]] = p[[{m, i}]];];

11 p[[1 ;; m]]]

The second step is to obtain the normals for the obstacle edges and the robot

edges. The normals for the obstacles points outwards and point inward for the robot.

The normalVector function returns a normal vector to the polygon side [12].

1 normalVector[{{x2_, y2_}, {x1_, y1_}}] :=

2 Normalize[{(-y2 + y1), x2 - x1}]

The third step is to merge the robot and obstacle normal’s and sort them by in-

creasing magnitude of their angles. The code below merges the robot and obstacle

6

normals. The ArcTan function is used to get the angle. An association is used to

allocate keys to each side and the values are the normals and the angles [12].

1 orderOfNormals = Sort[{If[! (#[[1]][[1]] == 0 && #[[1]][[2]] == 0),

2 ArcTan[#[[1]][[1]], #[[1]][[2]]], None],

3 #[[1]], #[[2]], #[[3]], #[[4]]}

4 & /@ Join [robotAssignedNormal,obstacleAssignedNormal],

5 #1[[1]] < #2[[1]] &];

6 sortedVectors = Values[orderOfNormals];

The first point in the Minkowski sum is arbitrarily chosen as a point where the

centroid of the robot lies at one of the vertex-vertex contacts of the obstacle and

robot. The vertex-vertex contact is when either the robot vertex meets the obstacle

edge or when the obstacle vertex meets the robot edge. The code below calculates

the position of any arbitrary vertex-vertex contact obtained and calculates the point

where the Minkowski sum starts [12].

1 (*Get the Sequence position where \[Alpha] and \[Beta] meet*)

2 pos = SequencePosition[sortedVectors[[;; , 4]],

3 {"\[alpha]", "\[Beta]"}][[1, 1]];

4 orderOfNormalsKeys = RotateLeft[Keys@orderOfNormals, pos];

5

6 (*Calculate the Prev Value based on the position*)

7 prev = rc + sortedVectors[[pos + 1]][[5]][[1]] -

8 sortedVectors[[pos]][[5]][[1]];

Finally, the Minkowski sum is generated by adding each edge in the order spec-

ified by the normal’s. Robot edges are added in the clockwise direction, obstacle

edges in the counterclockwise direction [12].

1 (*Get the Minkowski by adding the vectors in the sorted order*)

2 minkowskiPointswithSide = {Chop[prev = prev - #[[3]]], #[[4]]}

3 & /@ RotateLeft[sortedVectors, pos - 1];

4 minkowskiPoints = (#[[1]] & /@ minkowskiPointswithSide);

A significant observation is that every edge of the Minkowski sum polygon is a

translated edge from either the obstacle or the robot polygon [12].

7

3.3 How to Use

This demo is available online3. The “View” Option lets you choose between the

“Static” and “Move Around Minkowski” Tabs. In the ”Static” tab, you can manage

the parameters for the robot and obstacle polygons and visualize the calculation

of the Minkowski sum. In the “Move Around Minkowski” tab, you can see an

animation of the robot centroid moving around the Minkowski sum while avoiding

entering the obstacle. In Figure 1 you can see the the “View” option set to “static”

with the robot edges set to 3 and the obstacle edges set to 5..

Figure 1: Minkowski Sum of Convex Sum: “static” tab.

In the “Static” tab, you can drag the locators to make any arbitrary two-

dimensional robots and obstacles—the restriction to the locators is such that they

always form a convex polygon. The sides of the robot and obstacles are labeled as

3demonstrations.wolfram.com/MinkowskiSumOfConvexRobotAndObstacle/

8

https://demonstrations.wolfram.com/MinkowskiSumOfConvexRobotAndObstacle/

α and β, respectively. The “Show Normals” checkbox enables/disables the normals

displayed on the manipulate window. The ”Enable Locators” checkbox enables/dis-

ables the access to change the shape of the polygon. You can change the robot and

obstacle edges from one up to five. In Figure 2 you can see the the “View” option

set to “move around minkowski” for the configuration in Figure 1.

The robot is colored blue, and the obstacle is colored red. The Minkowski Sum

is colored green with the edges colored red or blue depending on if the polygon edge

was taken from the robot or the obstacle. The lower-left image shows the sorted

normals. In the “Move Around Minkowski” tab, you can trace the region of the

Figure 2: Minkowski Sum of Convex Sum: “move around Minkowski” tab.

Minkowski sum by choosing ”move around Minkowski” slider to animate the robot

moving around the edge of the obstacle.

9

3.4 Screenshots

Figure 3 shows a case where the robot and the obstacle are both regular pen-

tagons. Figure 4 and 5 shows the screenshot example 1 for a three edged robot and

five edged obstacle. Figure 6 and 7 shows the screenshot example 2 for a line robot

and a four-edged obstacle.

Figure 3: Minkowski Sum of Convex Sum: Regular pentagon robot and obstacle.

10

Figure 4: Minkowski Sum of Convex Sum: Irregular convex robot and obstacle ex-
ample 1 in “static” tab.

11

Figure 5: Minkowski Sum of Convex Sum: Irregular convex robot and obstacle ex-
ample 1 in “move around minkowski” tab

12

Figure 6: Minkowski Sum of Convex Sum: Line robot and polygon obstacle example
2 in “static” tab.

13

Figure 7: Minkowski Sum of Convex Sum: Line robot and polygon obstacle example
2 in “move around minkowski” tab.

14

4 Visibility Region of a Polygon

This chapter explains a demonstration built to teach how the visibility region

inside a polygon from any point is constructed [13]. In Section 4.1, a brief expla-

nation of the visibility region of a polygon is provided. Section 4.2 describes the

algorithm used and goes through the parts of the Mathematica code. Section 4.3

offers the information to use the online demonstration, and Section 4.4 includes

screenshot examples.

4.1 Background

The parts of a polygon reachable by straight lines from a point without hitting

a wall are called the visibility region. The visibility region is useful for finding

accessible paths. The accessible path is the shortest visible path which a robot can

translate. The visibility region is the set of points in a polygon that are visible from

a reference point p. Imagine standing at point p holding a flashlight in a building

whose walls are the polygon. The visibility region is the region illuminated by your

flashlight [2].

Calculating the visibility region is necessary for solving the art gallery problem,

a canonical computational geometry problem discussed in Chapter 5. The visibility

region is also often used for robotic motion planning (see Chapter 7).

4.2 Algorithm

The visibility region of a polygon from a reference point p can be calculated as

described in [2], which goes as follows: First, construct an infinite ray parallel to

the x axis, starting from point p. The code below generates a line parallel to the

x-axis; in this case, the infinite line is limited up to the workspace boundaries.

15

1 (*get a Line Parallel to x axis*)

2 infiniteLine = {p, {0.1,

3 0} + {Max@(#[[1]] & /@ (Join[workspace, complexPoly])), p[[2]]}};

Next, find the intersection of all the polygon lines with this infinite ray and add each

intersecting line to a list commonly called the J list. Sort the J list by distance from

p. The closest line is visible at this intersection point. Next, sort all the polygon

vertices by the polar angle from p:

1 (*Sort the lines based on the angle w.r.t to point p*)

2 sortedList =

3 Sort[Join[vertexList@(workspace), vertexList@(complexPoly)],

4 angleSortCond[p, #1, #2] &];

5

6 (*get the intersection of lines for the Infinteline*)

7 If[SegmentIntersectionQ[{infiniteLine, #}],

8 AppendTo[jList, Reverse@#]] & /@ listofAllLines;

9

10 (*Store the sorted values in jList*)

11 jList = Sort[jList, distSortCond[infiniteLine, #1, #2, p] &];

Then step through each vertex in this loop. For each vertex, we must update the

J list. Construct a ray to the vertex and add the lines that extend in the clockwise

half-plane into the J list and remove the lines that extend in the counterclockwise

half-plane from the J list. The current vertex is visible only if it is at the top of

the J list. The getClockwiseAngle function returns the angle between two vectors

and the leftorRight returns if point p lies on the right or left side of a line. Using

these two functions we can find the lines that extend in the counterclockwise half-

plane [13].

1 (*clockwise angle between two vectors*)

2 getClockwiseAngle[p1_, p2_, p3_] :=

3 Module[{a = (p3 - p2), b = (p1 - p2)},

4 AppendTo[a, 0]; AppendTo[b, 0];

5 If[(Cross[a, b][[3]]) < 0, Chop@(2 Pi - VectorAngle[a, b]),

6 Chop@VectorAngle[a, b]]]

16

1 (*returns true if the point p lies on the right side else false*)

2 leftOrRight[a : {x1_, y1_}, b : {x2_, y2_},

3 p : {x_, y_}] := ((x \[Minus] x1) (y2 \[Minus]

4 y1) \[Minus] (y \[Minus] y1) (x2 \[Minus] x1)) >= 0

4.3 How to Use

This demo is available online4. Figure 9 shows a non-complex polygon with

a square boundary and a blue colored reference point p. The visible region from

the reference point p is colored light-yellow. A line parallel to the x-axis from the

reference point is seen, it is required at the start of the algorithm to get the initial

J-list. The edges of the polygons colored in green are the lines in the J-list. The

slider “vertices sorted by angle” steps through all the sorted vertices of the polygon.

As the slider is moved, the line from the reference point and the current point is

updated and drawn as a blue line. The J-list is also updated as you move from one

point to another, and the region covered thus far during this angular sweep from

0◦ is colored dark-yellow. This can be seen in Figure 9, which shows the region

included in the visible region at each point. All the visible vertices are colored red.

The reference point p is a locator which can be dragged by the use. users can move

the reference point inside or outside of the polygon, and can move the slider and

observe how the visible region is computed.

4.4 Screenshots

Example 2, pictured in Figure 9-11, shows the computation of the visible region

and updated set of lines J-list as the slider is moved from point to point. Figure 11

shows the completed algorithm with the final set of lines in the J-list, which is

similar to that at the start of the algorithm.

4demonstrations.wolfram.com/VisibilityRegionOfAPolygon/

17

https://demonstrations.wolfram.com/VisibilityRegionOfAPolygon/

Figure 8: Visibility Region of a Polygon: Example 1

18

Figure 9: Visibility Region of a Polygon: Example 2

19

Figure 10: Visibility Region of a Polygon: Example 2 continued

20

Figure 11: Visibility Region of a Polygon: Example 2 completed algorithm

21

5 Art Gallery Problem

This chapter explains a demonstration built to teach how the visibility polygon

from multiple points can be used to fully cover a given polygon [11]. In Section 5.1

a brief explanation of the art gallery problem is provided. Section 5.2 describes the

algorithm used and goes through the parts of the Mathematica code. Section 5.3

offers the information to use the online demonstration, and Section 5.4 includes

screenshot examples.

5.1 Background

The art gallery problem, also called the museum problem, is a visibility region

problem. Art gallery problems deal with the minimum number of guards or cameras

required such that the union of each guard’s visibility region covers a 2D polygonal

region completely. The visibility graph is the set of intervisible points such that

when a line drawn from these points does not intersect any obstacle. The art gallery

problem can be resolved by getting the visibility graph.

Chvátal’s art gallery theorem states that for a simple polygon with n vertices,

bn/3c guards (or cameras) are sufficient to guard it [15]. Fisk’s short proof indicates

that the vertices of the triangulation graph of the polygon may be 3-colored, meaning

that the vertices with any one color form a valid guard set [3]. Proofs provided by

the [15, 5, 14] state that only bn/4c is required for an orthogonal polygon whose

edges meet at right angles. This demonstration can provide a visual proof for the

theorems above.

5.2 Algorithm

The “Art Gallery Problem” is an NP-Hard problem. Computing the visibility

graph of the points which represent the guards can solve the problem. This demon-

stration is similar to the “Visibility Region of a Polygon”, demonstration, except

22

that there are up to eight guards or reference points, and the visibility region from

each of the points is computed for the same polygon.

1 (*This generates the visible region seen by a point at pm in an \

2 environment with the polygons in polys.*)

3 visiblePolys[polys_, pm : {x_, y_}] :=

4 Module[{p, listofAllLines, infiniteLine, length = Length@polys,

5 orderedList, sortedList, jList = {}, visibleList = {}, wi = False,

6 wip = False, lvLine, a, b, c, abcList, ba, bc, pb, pbaAngle,

7 pbcAngle, startJlistInt, m, bcVisiInt, gLine, giList, giPoint,

8 giLine, abNotGlaInt, abNotVisInt, bcNotVisInt, i = 1, prevA, prevB,

9 prevC, postA, postB, postC, tb, index, theta, gFlag = False,

10 pprevbAngle, pbAngle

11 },

12 (*Check if point p lies on any of the lines in the environment,

13 if so then shift it by a very small offset.*)

14 p = pm;

15 Table[If[(pointOnSegmentQ[#, pm]),

16 p = pm - 0.00001 normalVector[#]] & /@ (lineList@

17 polys[[k]]), {k, 1, length}];

18 (*Check if point p lies on any of the vertices of the polygons in \

19 the environment, if so then shift it by a very small offset.*)

20 If[Or @@

21 Table[Or @@ ((index = Flatten@Position[polys[[k]], #];

22 pm == #) & /@ polys[[k]]), {k, 1, length}],

23 p = pm +

24 0.00001 (Flatten@polys[[1, index - 1]] +

25 Flatten@polys[[1, index + 1]])];

26 (*get a line parallel to x axis*)

27 infiniteLine = {p, {0.11,

28 0} + {MaximalBy[Flatten[polys, 1], First][[1, 1]], y}};

29 (*reverse the order of the list representing a polygon if point p \

30 is inside the polygon*)

31 orderedList =

32 Table[If[testpoint[polys[[i]], p], Reverse@polys[[i]],

33 polys[[i]]], {i, 1, Length@polys, 1}];

34 (* make a list of all lines*)

35 listofAllLines = Flatten[Join[(lineList@#) & /@ orderedList], 1];

36 (*sort the lines based on the angle w.r.t to point p*)

37 sortedList =

38 Sort[Flatten[Join[(vertexList@N@#) & /@ orderedList], 1],

39 angleSortCond[p, #1, #2] &];

40 (*number of vertices in the environment*)

41 m = Length@sortedList;

42 (*get the intersection of lines for the infiniteLine*)

43 If[SegmentIntersectionQ[{infiniteLine, #}],

44 AppendTo[jList, Reverse@#]] & /@ listofAllLines;

23

45 (*store the sorted values in jList*)

46 jList = Sort[jList, distSortCond[infiniteLine, #1, #2, p] &];

47 lvLine = First@jList;

48 (*find the line which is closest and also visible*)

49 Table[

50 If[SegmentIntersectionQ[{lvLine, jList[[i]]}],

51 startJlistInt = N@LineIntersectionPoint[{lvLine, jList[[i]]}];

52 If[noIntersection[p, startJlistInt, listofAllLines],

53 AppendTo[visibleList, startJlistInt];

54 If[startJlistInt[[2]] > p[[2]], lvLine = jList[[i]]]]

55], {i, 1, Length@jList}];

56 (*loop around all the vertices of all the polygons*)

57 For[i = 1, i <= m, i++,

58 (*intialize all the variables*)

59 {a, b, c} = sortedList[[i, 1 ;; 3]];

60 {prevA, prevB, prevC} =

61 If[i != 1, sortedList[[i - 1, 1 ;; 3]], sortedList[[m, 1 ;; 3]]];

62 {postA, postB, postC} =

63 If[i != m, sortedList[[i + 1, 1 ;; 3]], sortedList[[1, 1 ;; 3]]];

64 pbAngle = getAngle[{p, b}]; pprevbAngle = getAngle[{p, prevB}];

65 (*for collinearity between current vertice,

66 next vertex and point p then make them non-collinear*)

67 tb = N@

68 If[pointOnSegmentQ[{p, postB}, b],

69 If[postB == a || pbaAngle <= Pi/3,

70 b + 0.00001 normalVector[{a, p}],

71 b - 0.00001 normalVector[{postB, p}]], b];

72 (*get all the angles and the lists*)

73 abcList = {a, tb, c};

74 ba = {b, a}; bc = {b, c}; pb = {p, b};

75 pbaAngle = Re@getClockwiseAngle[p, b, a];

76 pbcAngle = Re@getClockwiseAngle[p, b, c];

77 (*conditions to determine whether a vertex is visible or not*)

78 If[intersectInteriorQRev2[p, abcList], wi = False,

79 If[i == 1 || Not@pointOnSegmentQ[pb, a],

80 If[noIntersection[p, b, jList],

81 If[i != 1,

82 If[pbAngle != pprevbAngle, wi = True,

83 If[b == prevA || b == prevC || b == postA || b == postC ||

84 gFlag, wi = True, wi = False]], wi = True], wi = False],

85 If[wip, If[noIntersection[b, a, jList], wi = True, wi = False],

86 wi = False]]];

87 (* if the vertices are visible*)

88 If[wi,

89 (*Check if there is an intersection with lastest visible line \

90 with the bc line. The intersection is appended in visible list.*)

91 If[SegmentIntersectionQ[{lvLine, bc}],

92 bcVisiInt = N@LineIntersectionPoint[{lvLine, bc}];

24

93 If[noIntersection[p, bcVisiInt, listofAllLines],

94 AppendTo[visibleList, bcVisiInt]]

95];

96 (*Glancing blow condition.*)

97 If[(glancingBlow[p, abcList]), gFlag = False, gFlag = True];

98 (* If glancing blow and previous vertes does not lie on the line \

99 pb*)

100 If[gFlag && (Not@pointOnSegmentQ[pb, prevB]),

101 (*extend the glancing line pb*)

102 gLine = extendedLine[p, tb];

103 (*check for intersection between all the lines in Jlist and the \

104 extended line. Get the intersection point nearest to p*)

105 giList = Sort[(DeleteCases[

106 (If[

107 SegmentIntersectionQ[{gLine, #}] ||

108 And[b != #[[2]], pointOnSegmentQ[gLine, #[[2]]]] ||

109 And[b != #[[1]], pointOnSegmentQ[gLine, #[[1]]]],

110

111 If[SegmentIntersectionQ[{gLine, #}], {N@

112 LineIntersectionPoint[{gLine, #}], #},

113 If[And[b != #[[2]],

114 pointOnSegmentQ[gLine, #[[2]]]], {#[[2]], #},

115 If[And[b != #[[1]],

116 pointOnSegmentQ[gLine, #[[1]]]], {#[[1]], #}]

117]]] & /@

118 DeleteCases[DeleteCases[listofAllLines, {b, _}], {_, b}]

119), Null]),

120 EuclideanDistance[p, #1[[1]]] <

121 EuclideanDistance[p, #2[[1]]] &];

122

123 If[giList != {},

124 (*giPoint is the closest point of intersection between the \

125 extended glancing line and the lines in Jlist.

126 Where the giLine is the line for the intersection point *)

127 giPoint = giList[[1, 1]]; giLine = giList[[1, 2]];

128 (*condition to decide the order of appending the vertex and the \

129 intersection point*)

130 If[(pointOnSegmentQ[lvLine, giPoint] &&

131 Chop[getAngle[pb]] != 0) || (i == 1 && pbaAngle <= Pi/2)

132 || (SegmentIntersectionQ[{gLine,

133 lvLine}] && (LineIntersectionPoint[{gLine, lvLine}] ==

134 giPoint)) || giPoint == lvLine[[2]],

135 visibleList = Join[visibleList, {giPoint, b}]; lvLine = ba,

136 visibleList = Join[visibleList, {b, giPoint}]; lvLine = giLine]]

137 ,(*if not glancing blow then just append the vertex*)

138 If[(pbAngle != pprevbAngle), AppendTo[visibleList, b]];

139 lvLine = ba;

140 (*Check if there is an intersection with any line in Jlist with \

25

141 line ba. The intersection is appended in visible list.*)

142 Table[If[SegmentIntersectionQ[{ba, jList[[i]]}],

143 abNotGlaInt = N@LineIntersectionPoint[{ba, jList[[i]]}];

144 If[noIntersection[p, abNotGlaInt, listofAllLines],

145 AppendTo[visibleList, abNotGlaInt];

146 lvLine = jList[[i]]]], {i, 1, Length@jList, 1}];

147](*If it is not a visible vertex*)

148 (*check if there is an intersection of lastest visible line with \

149 the pb line.*)

150 , If[SegmentIntersectionQ[{pb, lvLine}],

151 (*If the line ba lies on the left side of line pb then check \

152 the intersection of line ba with the lastest visible line.

153 Append the intersection in visible list. *)

154 If[pbaAngle < pbcAngle,

155 If[Not@leftOrRight[p, b, a] ,

156 If[SegmentIntersectionQ[{lvLine, ba}],

157 abNotVisInt = N@LineIntersectionPoint[{lvLine, ba}];

158 If[noIntersection[p, abNotVisInt, listofAllLines],

159 AppendTo[visibleList, abNotVisInt]; lvLine = ba]]]];

160 (*If the line bc lies on the left side of line pb then check \

161 the intersection of line bc with the lastest visible line.

162 Append the intersection in visible list. *)

163 If[pbcAngle < pbaAngle,

164 If[Not@leftOrRight[p, b, c],

165 If[SegmentIntersectionQ[{lvLine, bc}],

166 bcNotVisInt = N@LineIntersectionPoint[{lvLine, bc}];

167 If[noIntersection[p, bcNotVisInt, listofAllLines],

168 AppendTo[visibleList, bcNotVisInt]; lvLine = bc]]]]

169 ,(*If there is no intersection of lastest visible line with the \

170 pb line then search in Jlist for a line intersecting with lastest \

171 visible line and append the intersection in visible list.*)

172 If[SegmentIntersectionQ[{#, lvLine}],

173 AppendTo[visibleList, LineIntersectionPoint[{#, lvLine}]];

174 lvLine = #] & /@ jList

175];

176];

177 (*Update the Jlist & wip*)

178 wip = wi;

179 (*choose a line to be added in Jlist if the line is in the \

180 counterclockwise direction*)

181 If[pbaAngle < Pi, AppendTo[jList, ba]];

182 If[pbcAngle < Pi, AppendTo[jList, bc]];

183 (*remove the line which is already in Jlist and has the ending \

184 vertex same as the current point in the loop*)

185 jList = (DeleteCases[jList, {_, b}]);

186];(*return the visible list*)

187 visibleList

188]

26

The function visiblePolys returns the visible polygon for a reference point pm and a

2D environment represented by a set of polygons poly, is Mathematica function used

in this demonstration. The function visiblePolys follows the steps to compute the

visibility region of a polygon that are described in Chapter 4.

5.3 How to Use

This demonstration is available online5. In this demonstration, you have an

option to change the number of guards, and you can choose up to eight guards.

There are three different environments to select. In Mathematica, a locator is a

movable point6. Each guard is represented by a small disk-shaped locator, and the

region covered by it is colored in a color similar to the color of the locator. All the

guards are locators and can be dragged in the manipulate window.

In Figure 12, you can see the cubicle environment, Figure 13 shows the irregular

environment, and Figure Figure 14 shows the movable obstacles environment in

which two obstacles regular polygon (square and triangle) which are movable. In

Figures 12—14 there is only one guard, drawn with a blue color.

5.4 Screenshots

Figure 15 shows a screenshot of the demonstration having six guards in the “cu-

bicle” environment. The region covered by both the light blue guard and the yellow

colored guard is shown in an olive green color. Figure 16 shows the “irregular” en-

vironment with six guards that completely cover the interior and the exterior of the

polygon. Figure 17 shows “irregular” environment with two guards to completely

cover the interior of the polygon. Figure 18 shows the “movable obstacles” environ-

ment with two guards, one inside the square obstacle. Figure 19 shows the “cubicle”

environment with eight guards to completely cover the exterior of the cubicle poly-

gon. Figure 20 shows the “movable obstacles” environment with seven guards, one

5demonstrations.wolfram.com/ArtGalleryProblem/
6https://reference.wolfram.com/language/ref/Locator.html

27

https://demonstrations.wolfram.com/ArtGalleryProblem/
https://reference.wolfram.com/language/ref/Locator.html

Figure 12: Art Gallery Problem: Cubicle environment.

28

Figure 13: Art Gallery Problem: Irregular environment.

29

Figure 14: Art Gallery Problem: Movable obstacles environment.

30

Figure 15: Art Gallery Problem: Cubicle environment with 6 guards.

31

guard inside each obstacle, and the rest used to cover the exterior.

Covering the exterior of a polygon is known as the Fortress problem, and requires

dn/2e guards [3, 1].

Figure 16: Art Gallery Problem: Irregular environment with 6 guards.

32

Figure 17: Art Gallery Problem: Irregular environment with two guards.

33

Figure 18: Art Gallery Problem: Movable obstacles environment with one guard
inside the obstacle.

34

Figure 19: Art Gallery Problem: Cubicle obstacles environment with eight guards
to cover the outside of the polygon.

35

Figure 20: Art Gallery Problem: Movable obstacles environment with seven guards.

36

6 Base Conversions from Base 2 through 100 Using

Radix Points

This chapter explains the demonstration built to teach base conversion [10].

In section 6.1 a brief explanation of the base conversion is provided. Section 6.2

describes the algorithm used and goes through the parts of the Mathematica code.

Section 6.3 offers the information to use the online demonstration, and Section 6.4

includes screenshot examples.

6.1 Background

The base is the unique scalar used to represent numbers in a positional numeral

system. Radix is a synonym for the base of a number in arithmetic. Binary, Octal,

Decimal, Hexadecimal are commonly used number systems, corresponding to base

2, 8, 10, and 16. The radix point is the symbol ‘.’ used to separate the whole number

from the fractional part. In base 10, the radix point is called the “decimal point”,

and in base 2 it is called the “binary point”. Every positive integer can be expressed

in the form as

ab = rmb
m + rm−1b

m−1 ++ r1b+ r0 , (1)

where, 0 < rm < b, and 0 ≤ ri < b (2)

and i = 0, 1, ...,m− 1 and r ∈ Z+. (3)

Here b ∈ Z+ is the base of representation and a is the number in the base form [8].

6.2 Algorithm

A number written in a base form can be converted into any other base form.

Given an integer in base b, the decimal value is obtained by multiplying the ith

digit by b(i−1) and summing the result. Digits to the left of the radix point are

37

multiplied by b to increasing powers, starting at b0. Digits to the right of the radix

are multiplied by decreasing powers of b.

For example:

ab4d.e616 = a× 163 + b× 162b+ 4× 161 + d× 160 + e× 16−1 + 6× 16−2 (4)

= 10× 163 + 11× 162 + 4× 161 + 13× 160 + 14× 16−1 + 6× 16−2 (5)

= 10× 4096 + 11× 256 + 4× 16 + 13× 1 +
14

16
+

14

256
(6)

= 40960 + 2816 + 64 + 14 + 0.875 + 0.0546875 (7)

= 43854.9296875 (8)

To convert a decimal number to base b, let n be the integer part of the decimal

number and f be the fractional part. First compute the integer part. Divide n by b;

the remainder is the least significant digit of the integer. The process repeats: divide

the quotient by b, and use the remainder as the next most significant digit of the

integer part. The process terminates when the quotient is 0, and the last remainder

is the most significant digit. Next, compute the fractional part. Let a = f × b; a is

always less than 2b. The integer part of a is the next digit to the right of the radix

point of the number in base b. This digit may be zero. Continue multiplying the

fractional part of a by b until the fractional part is zero or a sufficient resolution is

reached.

For example, 0.4410 to base 6:

0.4× 6 = 2.64, giving the answer to one digit precision of 0.26

0.64× 6 = 3.84, giving the answer to two digit precision of 0.236

0.84× 6 = 5.04, giving the answer to three digit precision of 0.2356

0.04× 6 = 0.24, giving the answer to four digit precision of 0.23506

0.24× 6 = 1.44, giving the answer to five digit precision of 0.235016

0.44× 6 = 2.64, giving the answer to six digit precision of 0.2350126

0.64× 6 = 3.84, giving the answer to seven digit precision of 0.23501236

. . .

38

The remainder repeats:

0.2350123501235012350123501235012350123501235012350123501235012350 . . .6.

The Mathematica function parseNumericStringBase below takes the input base

in decimal as a string and returns the number in the output base specified.

1 parseNumericStringBase[strIn_, base_, baseOut_, res_] :=

2 (*convert strIn, which is a string of a number in base

3 'base' (and may have a '.' with fractional values) into *)

4 Module[{ complement, charstonum, parsedNum, parsedStrDrop

5 , periodPosition =

6 Flatten@Position[Characters[strIn],

7 "."](*get the decimal position*)

8 , baseVals =

9 Join @@ CharacterRange @@@ {{"0", "9"}, {"a", "z"}, {"A",

10 "Z"}, {"\[Alpha]", "\[Omega]"}, {"\[CapitalAlpha]",

11 "\[CapitalNu]"}}(*list of all base values 0 to \[Omega]*)

12 , outputNum = "NaN"(*when no output*)

13 } ,

14 charstonum =

15 AssociationThread[

16 baseVals -> Range[0, 99]];(*associate char with num*)

17 (*check if there is no more than 1 "."*)

18 If[Length[periodPosition] > 1 , Return[{StringForm["\!\(*

19 StyleBox[\"``\",\nFontColor->RGBColor[1, 0, 0]]\)\n Error:\nNo more \

20 than 1 \".\" in the input number", strIn], outputNum}]];

21 (*check that the string only has values from 1 to base *)

22 complement =

23 Complement[Characters[strIn], {"."}, baseVals[[1 ;; base]]];

24 If[Length[complement] > 0, Return[{StringForm["\!\(*

25 StyleBox[\"``\",\nFontColor->RGBColor[1, 0, 0]]\)\n Error:\nThe \

26 value(s) `` were in this string.\nFor base ``, the only valid \

27 characters are\n``", strIn, complement, base, baseVals[[1 ;; base]]],

28 outputNum}]];

29 parsedStrDrop =

30 StringDrop[strIn, periodPosition];(*remove decimal point*)

31 If[Length[periodPosition] == 0,

32 periodPosition = {StringLength[parsedStrDrop] + 1}];

33 parsedNum =

34 Characters[parsedStrDrop] /.

35 charstonum;(*Get respective num for char*)

36 (*find the decimal number*)

37 outputNum =

38 Total@N@(baseRtoP[parsedNum, base, periodPosition, #] & /@ (Range@

39 Length[parsedNum]));

40 (*return the num in required base form*)

39

41 Return[{Pane[

42 Style[StringForm["`` = \n``", Subscript[strIn, base],

43 pr[convertToBase[N@outputNum, baseOut, res], Infinity]],

44 LineIndentMaxFraction -> 0], 250], outputNum}]

45]

1 baseRtoP[n_, b_, p_, i_] :=

2 Return@(n[[i]]*(N@(b^((First@p) - i - 1))))

The function baseRtoP computes the formula, as mentioned in equation 6.1 - 6.2.

convertToBase shown below is the Mathematica function which uses the internal

built-in function BaseForm to convert any base less than 36 to decimal 10, and the

rest from 36 to 100 are converted using the algorithm mentioned above. All the input

and output performed in the Mathematica functions use string manipulation [10].

1 (*convert decimal to any base up to base 100*)

2 convertToBase[numIn10_, base_, decimalRes_] :=

3 Module[{p, r , a = 0, b, n = IntegerPart[numIn10],

4 m = FractionalPart[numIn10], intOut = "", fOut = "",

5 baseVals =

6 Join @@ CharacterRange @@@ {{"0", "9"}, {"a", "z"}, {"A",

7 "Z"}, {"\[Alpha]", "\[Omega]"}, {"\[CapitalAlpha]",

8 "\[CapitalNu]"}}},

9 If[base < 36, Return@baseRes[numIn10, base, decimalRes],

10 While[m > 0 && a < decimalRes, a = a + 1; b = N@(m*base);

11 p = N@IntegerPart[b];(*convert the fraction part*)

12 m = N@FractionalPart[b];

13 fOut = StringJoin[fOut, baseVals[[p + 1]]]];

14 While[n > 0, {n, r} =

15 QuotientRemainder[n, base];(*convert the Integer part*)

16 intOut = StringJoin[baseVals[[r + 1]], intOut]];

17 If[StringLength[intOut] < 1, intOut = "0"];

18 Return@(Subscript[

19 StringJoin[intOut, If[FractionalPart[numIn10] != 0, ".", ""],

20 fOut], ToString@base])]]

40

6.3 How to Use

This demo is available online7. In this demonstration, there are three sliders

“input base”, “output base”, “resolution”. The input and output base can be up to

100. Because string input is not allowed for online demonstrations, a keypad entry

method is used instead. The keypad is shown on the left side of the demonstration,

and the keys in it change as per the input base. There is a “delete” key to delete

the previously entered digit, and a “clear” key to clear all the input.

Figure 21: Base Conversion: Input 228 in base 7 output in base 2.

The resolution of the output can be up to 10 values past the radix point. The

manipulate window shows entered input highlighted in blue and respective output

highlighted in red, along with a list of the converted number in each base up to 100.

The figure 21 shows an example where the input is 228 in base 7, and the output is

in base 2 with the output resolution of 10 places.

7demonstrations.wolfram.com/BaseConversionsFromBase2Through100UsingRadixPoints/

41

http://demonstrations.wolfram.com/BaseConversionsFromBase2Through100UsingRadixPoints/

6.4 Screenshots

Figure 22 shows an example with the input is 9775.445 in base 100 with output

in base 36. Figure 23 shows an example with the input is 0 in base 36 with output

in base 2. Figure 24 shows an example with the input is 100 in base 10 with output

in base 60. All the examples have a resolution set to 10 places.

Figure 22: Base Conversion: Input 9775.445 in base 100 output in base 36.

42

Figure 23: Base Conversion: Input 0 in base 36 output in base 2.

43

Figure 24: Base Conversion: Input 100 in base 10 output in base 60.

44

7 Motion Planning for Translating Polygonal Robot

This chapter explains a demonstration built to teach motion planning for a

translating polygonal robot. The demonstration has been submitted, but is yet

to be published8. In Section 7.1 a brief explanation of the motion planning is

provided. Section 7.2 describes the algorithm used and goes through the parts of

the Mathematica code. Section 7.3 offers the information on how to use the online

demonstration, and Section 7.4 includes screenshot examples.

7.1 Background

Robot motion planning deals with the problem of computing a continuous path

that connects the starting configuration of a robot to the goal configuration of the

robot while avoiding collision with any of the obstacles in the work-space. Motion

planning requires computing if a given path would cause a collision with an obstacle.

Planning in the work-space is challenging because collision checks seemingly require

sweeping the polygonal robot along the path, and continuously checking for collision.

A common trick in motion planning is to perform the planning in the configuration

space for the robot. In the configuration space, the robot’s configuration is repre-

sented by a point at its (x, y) center. The polygonal obstacles map to regions in the

configuration space. These obstacle regions are calculated using the Minkowski sum.

The shortest path is then the line from the initial configuration to the destination

configuration that does not intersect the obstacle regions in the configuration space.

This same line represents the shortest path in both the configuration space and the

work-space [7].

8https://demonstrations.wolfram.com/preview.html?draft/54742/000124/

MotionPlanningForTranslatingPolygonalRobot

45

https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot
https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot

7.2 Algorithm

This Demonstration computes the path for a polygonal robot that can translate

inside a bounded workspace populated by polygonal obstacles. A valid path for a

2D robot in a 2D environment can be computed in four steps as follows:

Firstly, check whether the robot’s initial or final position collide or enter any

obstacle or are out of the workspace. If so, then there exists no possible path. This

is done by using the testpoint function shown below.

1 (*true if pt is inside polygon*)

2 testpoint[poly_, pt_] :=

3 Round[(Total@

4 Mod[(# - RotateRight[#]) &@(If[(pt - #) != {0.0, 0.0},

5 ArcTan @@ (pt - #), 0.0] & /@ poly), 2 Pi, -Pi]/2/Pi)] != 0.0

Secondly, compute the Minkowski sum of all the obstacles and the inverse Minkowski

sum of the boundary. The Minkowski sum is the polygon generated from the robot

and the obstacle such that the robot centroid can move along this polygon without

colliding or entering the obstacle. Computing the Minkowski sum requires that the

robot and the obstacles are convex polygons. The Minkowski sum algorithm used

is the same as explained in chapter 3. The inverse Minkowski is used to find the

configuration space of the robot. The configBoundaryFunc function returns the

configuration space of the robot at a point r.

1 (*Compute the configuration space defined by the outer boundary.*)

2 configBoundaryFunc[borderpoly_, robotPoly_, r_] :=

3 Module[{borderpolyA, boundMidpts, boundNormal, boundaryOffsets, ip1},

4 borderpolyA = Join[borderpoly, {First@borderpoly}];

5 boundMidpts = ((borderpolyA[[#]] + borderpolyA[[# + 1]])/2.0) & /@

6 Range@Length[borderpoly];

7 boundNormal =

8 Normalize[{borderpolyA[[# + 1, 2]] - borderpolyA[[#, 2]],

9 borderpolyA[[#, 1]] - borderpolyA[[# + 1, 1]]}] & /@

10 Range@Length@borderpoly;

11 boundaryOffsets =

12 Table[First[

13 MaximalBy[(# - r[[1]]) & /@ robotPoly[[1]],

46

14 N[Dot[boundNormal[[i]], #]] &]], {i, 1, Length[borderpoly]}];

15 (ip1 = If[# < Length[borderpoly], # + 1, 1];

16 linelineInt[{borderpoly[[#]] - boundaryOffsets[[#]],

17 boundMidpts[[#]] - boundaryOffsets[[#]]}, {borderpoly[[ip1]] -

18 boundaryOffsets[[ip1]],

19 boundMidpts[[ip1]] - boundaryOffsets[[ip1]]}]) & /@

20 Range@Length[borderpoly]

21]

Thirdly, draw visible bitangent lines from the vertex of each Minkowski polygon

and the centroids of the robot’s initial and final positions. Bitangent lines are the

lines whose ends are reflex vertices. Reflex vertices are the vertices of the polygons

whose exterior angles are greater than π (also called convex vertices). The function

reflex returns true if the three vertices of a polygon form a reflex vertex.

1 (*Function Gives whether a point is reflex or not, Chop is used to \

2 round of to the nearest integer. From Motion Plannning Book by Steven \

3 M.LaValle*)

4 reflex[{x1_, y1_}, {x2_, y2_}, {x3_, y3_}] := Chop[Det[({

5 {1.0, x1, y1},

6 {1.0, x2, y2},

7 {1.0, x3, y3}

8 })]] > 0.0

The biTangent function shown below returns true if the line drawn from the vertices

of two different polygons is a bitangent line.

1 (*If the given points are reflex then the function returns whether \

2 the line between the two points is bitangent or not. From Motion \

3 Plannning Book by Steven M.LaValle*)

4 biTangent[{p1_, p2_, p3_}, {p4_, p5_, p6_}] :=

5 Or[Xor[reflex[p1, p2, p5], reflex[p3, p2, p5]],

6 Xor[reflex[p4, p5, p2], reflex[p6, p5, p2]]]

To obtain the visible bitangent lines, calculate the visibility graph, and compute

the intersection of the visibility graph and the bitangent lines. Form a graph of

the visible bitangent lines and the Minkowski polygon lines. The visibility graph

is generated using the visibility region of a polygon, as described in Chapter 4.

47

Function visBilineRev2 computes the intersection of the lines which are bitangent

and exist in the visibility graph.

1 visBiLineRev2[congifpoly_] :=

2 With[{bitangentLine =

3 N[Flatten[

4 biTangents2polyRev1[#[[1]], #[[2]]] & /@

5 Subsets[congifpoly, {2}], 1], 3]},

6 DeleteCases[Flatten[Table[Table[

7 Intersection[({#, congifpoly[[j, i]]} & /@

8 N[

9 visiblePolys[

10 congifpoly, (congifpoly[[j, i]] -

11 0.001*(congifpoly[[j,

12 If[i + 1 > Length@congifpoly[[j]], 1, i + 1]]] +

13 congifpoly[[j, If[i - 1 == 0, -1, i - 1]]] -

14 2*congifpoly[[j, i]]))], 3]

15), bitangentLine], {i, 1, Length@congifpoly[[j]]}], {j, 1,

16 Length@congifpoly}], 2], Null]]

Finally, calculate the shortest path from the generated graph using the A* search

algorithm using a list of adjacent nodes.

7.3 How to Use

A draft of this demo is available online9. In this demonstration, you can change

the initial and the final position of the robot by dragging the locators. The obstacle

locations can be changed. As seen in F 25 shows the workspace, the initial robot

position is colored in light-blue and the final place as light-green. The boundary is

colored light-yellow. The Minkowski sum of each obstacle with the robot is over-

lapped on each obstacle. The obstacles are light-red in color. The robot sides and

the boundary sides can be changed from three to five. The visible bitangent lines

are colored in blue, the glancing lines from the robot start and end to the Minkowski

vertices are colored in orange and purple. The final path computed is green in color.

The robot, which is orange in color, moves along the path when the “progress” slider

9https://demonstrations.wolfram.com/preview.html?draft/54742/000124/

MotionPlanningForTranslatingPolygonalRobot

48

https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot
https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot
https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot
https://demonstrations.wolfram.com/preview.html?draft/54742/000124/MotionPlanningForTranslatingPolygonalRobot

Figure 25: Motion Planning: “Work space”

49

is moved. If the robot enters the obstacle or is outside the boundary, there is no

path, and the robot start or goal turns red. Figure 26 shows the configuration space

in grey having the Minkowski sums in the space. If the progress slider is moved, a

green color dot representing the robot centroid is moved along the final path.

Figure 26: Motion Planning: “Configuration Space”

7.4 Screenshots

Example 1, as in Figure 27—28 shows a triangular robot in a four-sided boundary

environment in both work space and the configuration space. The slider is in between

the initial position and the end goal seen in the figures as an instance of the robot

in orange.

50

Figure 27: Motion Planning: Example 1 shows the work space of a triangle robot
in a square boundary environment.

51

Example 2, as in Figure 29—30, shows a square robot in a three-sided boundary

environment in both work space and the configuration space. The Minkowski sum

for the same obstacles with different robot sides can be seen in figures 27 and 29.

Example 3, as depicted in Figure 31—32, shows a square robot in a five-sided

boundary environment in both works pace and the configuration space. The Minkowski

difference can be seen in each of the work space as grey border, which is the config-

uration space of the robot.

Figure 28: Motion Planning: Configuration space for Example 1.

52

Figure 29: Motion Planning: Example 2 shows the work space of a square robot in
a triangular boundary environment.

53

Figure 30: Motion Planning: Configuration space for Example 2.

54

Figure 31: Motion Planning: Example 3 shows the work space of a square robot in
a pentagonal boundary environment.

55

Figure 32: Motion Planning: Configuration space for Example 3.

56

8 Conclusion

For this thesis, five Mathematica demonstrations were generated, out of which

four demonstrations are already published on the Wolfram demonstration project,

with the fifth demonstration currently under review.

Students who examine demonstrations after understanding the concepts are more

likely to remember them, and learning concepts is on the student making correct ob-

servations [9]. Online demonstrations provide comprehensive views of the concepts.

Students who watch online videos learn more and enjoy going through it themselves.

We can conclude that online demonstrations are better interactive learning tools [6].

These online demonstrations help visualize and illustrate complex science, engi-

neering and technological concepts. In robotics, these online demonstrations help in

understand the robot configuration space and observe different boundary conditions

and can also simulate the workspace. Complex robotic algorithms like “Minkowski

sum of convex polygons”, “visibility graph”, and “A-star algorithms” can be learned,

and specific cases can be studied. Having such online demonstrations for learning

is a resource for students and enthusiasts all around the world.

57

Bibliography

[1] Chvatal, V. A combinatorial theorem in plane geometry. Journal of Combi-

natorial Theory, Series B 18, 1 (1975), 39–41.

[2] D.-T., L. Proximity and reachability in the plane. PhD thesis, Ph. D. Thesis,

Dept. of Electrical En geneering, University of Il linois at . . . , 1979.

[3] Fisk, S. A short proof of chvátal’s watchman theorem.

[4] Graham, R. L. An efficient algorithm for determining the convex hull of a

finite planar set. Info. Pro. Lett. 1 (1972), 132–133.

[5] Kahn, J., Klawe, M., and Kleitman, D. Traditional galleries require fewer

watchmen. SIAM Journal on Algebraic Discrete Methods 4, 2 (1983), 194–206.

[6] Kestin, G., Miller, K., McCarty, L. S., Callaghan, K., and Deslau-

riers, L. Comparing the effectiveness of online versus live lecture demonstra-

tions. Physical Review Physics Education Research 16, 1 (2020), 013101.

[7] LaValle, S. M. Planning algorithms. Cambridge university press, 2006.

[8] Mano, M. M., and Kime, C. R. Logic and Computer Design Fundamentals

2nd Edition Updated, vol. 6. Chapter, 2001.

[9] Miller, K., Lasry, N., Chu, K., and Mazur, E. Role of physics lecture

demonstrations in conceptual learning. Physical review special topics-physics

education research 9, 2 (2013), 020113.

[10] Poyrekar, S., and Becker, A. T. Base conversions from base 2 through

100 using radix points, Feb 2020.

58

[11] Poyrekar, S., Sultana, A., and Becker, A. T. Art gallery problem, Sept

2019.

[12] Poyrekar, S., Sultana, A., and Becker, A. T. Minkowski sum of convex

robot and obstacle, Apr 2019.

[13] Poyrekar, S., Sultana, A., and Becker, A. T. Visibility region of a

polygon, Sept 2019.

[14] Sack, J.-R., and Toussaint, G. T. Guard placement in rectilinear polygons.

In Machine Intelligence and Pattern Recognition, vol. 6. Elsevier, 1988, pp. 153–

175.

[15] Urrutia, J. Art gallery and illumination problems. In Handbook of computa-

tional geometry. Elsevier, 2000, pp. 973–1027.

59

	 Acknowledgments
	 Abstract
	 List of Figures
	Introduction
	Related Work
	Minkowski Sum of Convex Robot and Obstacle
	Background
	Algorithm
	How to Use
	Screenshots

	Visibility Region of a Polygon
	Background
	Algorithm
	How to Use
	Screenshots

	Art Gallery Problem
	Background
	Algorithm
	How to Use
	Screenshots

	Base Conversions from Base 2 through 100 using Radix Points
	Background
	Algorithm
	How to Use
	Screenshots

	Motion Planning for Translating Polygonal Robot
	Background
	Algorithm
	How to Use
	Screenshots

	Conclusion
	Bibliography

