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Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder

in the US, with a prevalence of 1% in the population over 60 years old and an annual

economic impact estimated in 23 billion dollars in direct costs only. Deep Brain

Stimulation (DBS) is an e�ective surgical treatment for advanced PD in patients who

developed a resistance to the pharmacological medication. DBS procedure allows the

recording of electrophysiological signals known as Local Field Potentials (LFP) from

deep brain structures such as the Subthalamic Nucleus (STN). LFP represent the

synchronized activity of a relatively large population of neurons and have been shown

to correlate with many PD symptoms and contribute with their use to the success

of DBS practice. However, the pathophysiology of PD remains unclear.

In this work, long-term STN LFP recordings of ten PD patients were analyzed

using classical as well as recently developed methods to investigate: (i) the spatial

distribution of spectral activity and nonlinear cross-frequency coupling in the STN

in medicated and unmedicated conditions, (ii) the pattern of spectral changes follow-

ing medication intake, and (iii) the correlation of features extracted from LFP with

clinical scores and sensory data during resting state and movement execution. The

main �ndings showed that cross-frequency coupling is stronger in the superior part

of STN and that the timings of changes in LFP spectral power after pharmacological
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treatment are frequency-dependent. The results support and integrate existing evi-

dence that LFP analysis may assist in the target localization during DBS surgery and

contribute to the development of smarter algorithms for next generation closed-loop

DBS applications.
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Chapter 1

Introduction

1.1 Organization

The present manuscript is structured in �ve chapters. The �rst serves as introduc-

tion and explains the purpose of the work and its presentation. The second chapter

describes the background and includes a review of Parkinson's disease, deep brain

stimulation and local �eld potentials. The third chapter depicts the experimental

protocol and the mathematical methods used in the work, including data collection,

pre-processing and analysis in the time and frequency domains using linear as well

as nonlinear methods. The fourth chapter illustrates the results obtained. Finally,

the �fth chapter contains the discussion and conclusive remarks with future devel-

opments.
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1.2 Aim of the Work and Motivation

Parkinson's disease (PD) is the second most common neurodegenerative disorder

a�ecting older American adults. Pathophysiologically resulting from the loss or de-

generation of dopaminergic neurons in the substantia nigra pars compacta and the

development of neuronal Lewi bodies, it is associated with both motor and non-

motor symptoms such as tremor at rest, rigidity, bradykinesia, postural instability,

and depression, anxiety, and dementia respectively.

The etiology of PD is still unknown, with the majority of patients presenting an

idiopathic condition and a minority where it is possible to relate with known genetic

factors. In the past decades several pharmacological therapies have been developed to

address the motor symptoms of Parkinson's disease, with important but increasingly

insu�cient results and collateral e�ects when the symptoms worsen. More recently a

surgical treatment, the deep brain stimulation (DBS), has been introduced as alter-

native and complementary therapy in advanced PD cases. The treatment consists of

the unilateral or bilateral placement of multi-contact macroelectrode leads in deep

brain structures - usually the subthalamic nucleus (STN) - and consequent chronic

voltage stimulation provided by a device placed in a subcutaneous chest pocket. Since

the leads insertion and neurostimulator placement are performed in di�erent surgical

operations, researchers are o�ered the unique opportunity of recording neurosignals

coming from the deep brain, known as local �eld potentials (LFP), while the contacts

2



are still externalized. LFP represent the synchronized activity of a relatively large

ensemble of neurons and have been extensively analyzed in the last two decades to

achieve a better comprehension of the abnormal neural dynamics caused by PD and

other motor disorders, for example, Essential Tremor and Tourette's syndrome, for

which DBS is also used.

The data analyzed in this work originate from an investigator-initiated project

lead by Dr. Aviva Abosh and Dr. Nuri F. Ince and funded by Medtronic, Inc. Usu-

ally, the LFP data collection in untreated and medicated PD conditions is performed

soon after the surgery in separate time periods before and after the drug adminis-

tration or DBS therapy, making it possible to investigate the modulation patterns of

LFP in di�erent clinical conditions, but not allowing to detect time-depending LFP

modulations. In this scheme, the experimental protocol of the study required 10 PD

patients to be hospitalized; data collection was performed continuously for 24 hours.

Therefore, the aim of the present work is to analyze the space and time and

frequency-dependent interactions and modulations of LFP recorded in the context

of the aforementioned study, in order to contribute to understanding the pathophys-

iology of PD and correlate the extracted information with clinical scores as well as

sensory data.
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Chapter 2

Background

2.1 Parkinson's Disease

In his 1817 work �An essay on the shaking palsy�, James Parkinson was the �rst to

provide a detailed description of the clinical syndrome named after him [Parkinson,

2002]. More than 100 years passed before it was recognized that patients su�er from a

loss of cells in the substantia nigra (1919) and more than 140 before the research team

of Carlsonn - who won the Nobel Prize in Medicine in 2000 - discovered dopamine

as a putative neurotransmitter in 1957 [Bjorklund and Dunnett, 2007]. Parkinson's

disease is the second most common neurodegenerative disorder after Alzheimer's

disease and, in developed countries, its prevalence is approximately 0.3% with an

increase to 1% in individuals above the age of 60 and a peak of 4% in the population
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older than 80 [de Lau and Breteler, 2006]. The incidence is between 8 and 18 new

cases every 100,000 inhabitants per year [de Lau and Breteler, 2006]. The economic

impact of PD results in direct costs estimated to be around $ 10,000 per patient per

year, for a total of 23 billion dollars in the US alone [Findley, 2007]. The indirect

costs, although not quanti�ed, could be high as well due to the loss of productivity

of the patients and the need for assistance, resulting in a reduction of the quality of

life caused by the debilitating symptoms of the disease [Findley, 2007].

The term parkinsonism refers in general to a number of disorders and medical

condition that give rise to symptoms similar to the ones of Parkinson's disease, but

are di�erent in etiology and pathophysiology.

2.1.1 Symptoms

Usually classi�ed as a motor disorder, the four cardinal features of PD are: tremor

at rest, rigidity, bradykinesia (or akinesia), and postural instability. Tremor is ap-

parently the most well-known symptom, though around 30% of the patients do not

show it at the disease onset. It is usually present at rest, with a frequency in the

range 4-6 Hz, disappearing during the execution of voluntary movement and sleep

[Jankovic, 2008]. Bradykinesia, the slowness of movement, is characterized by dif-

�culties along the whole motor process starting from the planning to the initiation

and �nal execution of the movement. Rigidity is the sti�ness and resistance to limb
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movement resulting from an increase of the muscle tone, and is frequently associ-

ated with joints pain, that represents an initial manifestation of PD in most cases

[Jankovic, 2008]. Postural instability, �nally, leads to impaired balance and causes

frequent falls, with 40% of the patients experiencing at least one fall and 10% once a

week [Yao et al., 2013]. Other motor features including postural deformities (�exed

neck and elbows and trunk posture) and freezing, i.e. motor blocks frequently occur.

However, Parkinson's disease also causes a number of equally impairing cognitive

disorders and neuropsychiatric disturbances, such as disorders of mood and sleep,

anxiety, apathy, depression and hallucinations [Ondo et al., 2001, Aarsland et al.,

2007, Jankovic, 2008].

To clinically assess the severity of the symptoms, the uni�ed Parkinson's disease

rating scale (UPDRS) is used. The scores range from 0 to 4, with higher scores

representing worse symptoms. It is based on six criteria:

I. evaluation of mentation, behavior and mood;

II. self-evaluation by the patients of activities of daily life (speech, swallowing,

handwriting, dressing, hygiene, falling, salivating, turning in bed, walking, and

cutting food);

III. clinician-scored evaluation of motor state (tremor, rigidity and bradykinesia,

evaluated in the upper and lower limbs);
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IV. complications of therapy;

V. prognostic evaluation using the Hoehn and Yahr scale;

VI. disability evaluation using the Schwab and England scale.

2.1.2 Etiology and Pathology

Parkinson's disease is represented for the majority of the cases as an idiopathic con-

dition, meaning that there are no known causes. Factors such as pesticide exposure

and head injuries have been associated with an increased risk of developing PD,

but no causal relationships were demonstrated [Noyce et al., 2012, Van Maele-Fabry

et al., 2012]. However, with 15% of the patients having a �rst-degree relative who

developed the disease, genetic studies conclusively showed that mutations in speci�c

genes cause PD, such as the ones that code for alpha-synuclein, parkin, dardarin,

PINK1, DJ-1, and ATP13A2 [Davie, 2008, Lesage and Brice, 2009].

In terms of pathophysiology, PD is characterized by the death of dopamine-

secreting cells caused by abnormal intraneuronal accumulation of alpha-synuclein

protein in the brain in the form of Lewis bodies [Dickson et al., 2009]. This loss of

neurons takes place in the substantia nigra pars compacta (SNpc, Fig. 2.1). The

dopamine (3,4-dihydroxyphenethylamine) is a neurotransmitter of the catecholamine

and phenethylamine families that plays an important modulatory e�ect especially in
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the circuit of the basal ganglia (BG, Fig. 2.2), which is a group of subcortical brain

structures in the central nervous system. It comprises the striatum, the pallidum,

the substantia nigra, and the subthalamic nucleus (STN).

The striatum is the largest structure in the group, and is composed by 96% of

GABAergic cells, meaning that the great majority of its neurons use γ-Aminobutyric

acid (GABA) as neurotransmitter, which has an inhibitory e�ect on the target

[Stocco et al., 2010]. The sector of the striatum that is most important for the

BG system is called the putamen. It receives inputs principally from the cortex and

the thalamus and has projections to the pallidum and the substantia nigra.

The pallidum is also a large structure that can be divided in globus pallidus and

ventral pallidum; the globus pallidus has two parts with distinct functionality called

internal (GPi) and external (GPe) globus pallidus. The external segment receives

signals from the striatum and projects to the STN, while the GPi also receives

inputs from the putamen but with two di�erent pathways, direct and indirect. GPi

represents one of the two outputs of the basal ganglia, and has e�erent connections

to the dorsal thalamus, the centromedian complex, and the peduncolopontine.

The substantia nigra is divided in the pars compacta, where, as mentioned, the

death of dopamine-secreting neurons occur, and the pars reticulata (SNpr). The

main input of SNpr comes from the putamen and projects to the thalamus and

caudal nuclei, it being the other output of BG system.
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The subthalamic nucleus, whose small size is estimated to be 3x5x12 mm [Yelnik,

2002], has a�erent connections mainly from the GPe, but receives neuromodulatory

inputs via dopaminergic axons from the SNpc and additional inputs from the pe-

duncolopontine. Most of the neurons have multi-targeted, excitatory outputs - that

use glutamate as neurotransmitter - projecting to the pallidum and the SNpr. The

STN is anatomically divided in three areas with di�erent functionality, namely, the

sensorymotor part (dorsolateral position), the associative area (venteromedial local-

ization), and the limbic part (in medial position).

Overall, the basal ganglia system is connected through �ve major pathways to

the motor, oculo-motor, associative, limbic, and orbitofrontal circuits. The loss of

dopaminergic input to the BG system determines alterations in these pathways,

explaining the symptoms of PD [Obeso et al., 2008].

2.1.3 Diagnosis

There is no speci�c clinical test able to diagnose early Parkinson's disease with suf-

�cient accuracy . Physicians state their conclusions after a number of observations

including medical images, clinical records, and medication trials. This process is

mainly used to rule out disorders that exhibit similar symptoms to PD: atypical and

secondary parkinsonian syndromes (caused for example by cerebral infarction, hy-

drocephalus, or traumatic and toxic injuries) and non-dopamine de�cient syndromes
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Figure 2.1: Semi-quantitative assessment of pigmented neurons in the SNpc. Left
images show templates of the distribution of pigmented neurons in healthy controls
(A) and in patients with PD with mild (B), moderate (C), or severe (D) loss of pig-
mented neurons. Abbreviations: 3n, exiting 3rd nerve �bres; cp, cerebral peduncle;
R, red nucleus. Reproduced from Dickson et al. [2009].
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Figure 2.2: Detailed description of the basal ganglia circuit in normal and parkin-
sonian states. Red arrows represent excitatory outputs and blue arrows indicate
inhibitory projections. The thickness of the arrows is proportional to the �ring
rate activity of the connection. Dashed arrows indicate the lesion of the subsys-
tem. Abbreviations: CM, centromedian nucleus; CMA, cingulate motor area; GPe,
globus pallidus, external segment; GPi, globus pallidus, internal segment; M1, pri-
mary motor cortex; PMC, pre-motor cortex; PPN, pedunculopontine nucleus; SMA,
supplementary motor area; SNc, substantia nigra pars compacta; SNr, substantia
nigra pars reticulata; STN, subthalamic nucleus; VA/VL, ventral anterior/ventral
lateral nucleus. Reproduced from Smith et al. [2012], who modi�ed from Galvan and
Wichmann [2008].
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(benign tremor and drug-induced PD). The main step in the diagnosis consists in

showing evidence of striatal lesions (using magnetic resonance imaging, MRI) and

sequentially dopamine de�ciency in the same structures, since it receives inputs from

the SNpc, where the dopamine cells death occur. After this, a trial with dopaminer-

gic medication is attempted, and depending on its result, PD is diagnosed [Brooks,

2010]. Generally, the diagnosis is so di�cult that some authorities suggest to re-

view it periodically, when the tracked progress of the disease may provide useful

information on the nature of the symptoms [Jankovic, 2008].

2.1.4 Treatment

Although there is no cure for Parkinon's disease, enormous progress has been made in

its treatment over the last 50 years. Drug-based medication relies mainly on the use

of L-DOPA (L-3,4-dihydroxyphenylalanine, or levodopa), which is a chemical that

is converted in dopamine by dopa decarboxylase in dopaminergic neurons. Since in

PD a striatal lack of dopamine is observed, the external input of L-DOPA diminishes

the symptoms. However, only 5% to 10% of the administered levodopa crosses the

blood-brain barrier, and the remaining part has to be metabolized elsewhere. To

overcome this issue, the medication contains carbidopa or Benserazide, chemicals able

to inhibit the peripheral dopa decarboxylase, thus decreasing dopamine availability

in peripheral neurons.
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Despite this precaution, long-term L-DOPA administration gives rise to a number

of collateral e�ects that become equally impairing as the disease's symptoms. The

main side e�ect are dyskinesia, i.e. involuntary movements that range from slight

tremor to uncontrollable upper limb or lower extremities movements, and severe

�uctuations in the symptoms relief after medication intake. For this reason, levodopa

doses are kept to a minimum while still e�ective, and the treatment of early PD

is initiated with other drugs based on dopamine agonists and MAO-B inhibitors.

Dopamine agonists (such as pramipexole, ropinirole, apomorphine, and lisuride) bind

to dopaminergic post-synaptic receptors in the brain and have similar e�ects to

levodopa, although not being as e�ective in the control of the motor symptoms

and generating signi�cant side e�ects including hallucinations, insomnia, nausea,

and constipation, that may occur even with the minimal dose. MAO-B inhibitors

increase the level of dopamine in the basal ganglia by blocking its metabolism and

have the same characteristics as the dopamine agonists in terms of e�cacy in the

treatment of PD [National Collaborating Centre for Chronic Conditions, UK, 2006;

Jankovic and Aguilar 2008].

In advanced PD, a surgical treatment known as deep brain stimulation (DBS) has

been developed and performed on patients after that collateral e�ects of prolonged

sole drug treatment compromised its e�cacy. To maximize its bene�ts, DBS in usu-

ally used in conjunction with drug medication, although in greatly reduced dosages
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compared to drug treatment alone.
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2.2 Deep Brain Stimulation

Deep brain stimulation is an e�ective surgical treatment used in patients who devel-

oped a resistance to the pharmacological medication. It consists of the unilateral or

bilateral implantation of multi-contact macroelectrode leads in deep brain structures

and consequent chronic voltage stimulation provided by a device placed in a subcu-

taneous chest pocket. It is performed not only in patients with Parkinson's disease

but also Essential Tremor and Tourette's syndrom. In particular, it was approved

by the Food and Drug Administration (FDA) in 2003 for PD patients in STN and

Gpi as anatomical targets.

2.2.1 Origin

Deep brain stimulation is an evolution of functional stereotactic neurosurgery tech-

niques, initially used to produce selective lesions of speci�c deep brain structures

(thalamic and cerebellar nuclei) [Sironi, 2011]. In fact, ablation of the Gpi (pallido-

tomy) and regions of the thalamus (thalamotomy) using radio frequencies has been

performed since the 1940s, before the discovery and availability of levodopa [Starr

et al., 1998]. Such procedures were found to improve motor symptoms related to

tremor and rigidity, although generating side e�ects a�ecting the speech, muscular

tone, and visual-spatial defects [Starr et al., 1998]. Of course, the main drawback of

ablative procedures was their irreversibility.
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The turning point arrived with the work of the neurosurgeon Alim-Louis Ben-

abid and colleagues in Grenoble, France. He was using electrical stimulation in PD

subjects for both target localization and prediction of lesioning e�ects after ablation

of the target. Since the stimulation seemed to reduce tremor and other symptoms

itself, he tested various frequencies of stimulation - from 1 Hz to more than 100 Hz

- and concluded that, in the upper part of the frequency range, the result of the

stimulation would mimic the ablation without having to perform it [Williams, 2010].

Since then, the DBS procedure has been developed and eventually approved by the

Food and Drug Administration (FDA) in di�erent years and for di�erent pathologies.

2.2.2 Surgical Protocol

The surgical procedure of DBS allows implanting macroelectrode leads precisely in

certain brain areas through a combination of stereotactic and neuroimaging tech-

niques. A subcutaneous external pacemaker lets the electrodes send electrical im-

pulses to the brain. The components of the surgery are therefore three: the leads,

their extensions, and the implanted pulse generator (IPG).

The leads consist on a coiled wire insulated in polyurethane, and generally have

4 platinum-iridium low impedance macroelectrodes or contacts (Fig. 2.3). The

extensions are insulated wires that connect the leads to the IPG, which is a battery

powered voltage stimulator encased in a titanium housing (Fig. 2.3).
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There are two predominant technical approaches to placing DBS leads: frame-

based stereotaxy (Fig. 2.4) and frameless neuronavigation�guided implantation using

a skull-mounted aiming device, in conjunction with bone-implanted �ducial markers.

In both techniques, brain images used for targeting (CT and/or MRI) are obtained

preoperatively. Surgical planning software is used to register brain targets (STN or

Gpi in PD) in an image space (stereotactic space) de�ned by the frame geometry

or by bone-implanted �ducial markers. Placement of the DBS leads subsequently

takes place in a standard operating room by navigation in stereotactic space, which

is assumed to remain immobile with respect to the brain target.

Frequently, the initial anatomical target is re�ned by intraoperative microelec-

trode recordings (MER), that are inserted in multiple location (from 3 to 5) to

explore the neural activity around the target area. Single-unit activity (relative to

a small number of neurons) as well as local �eld potentials (regarding the ensemble

activity of thousands of neurons), are recorded and visually inspected to retrieve

useful information for the targeting [Starr et al., 2010].

Implantation may occur bilaterally (in both the cerebral hemispheres) or unilat-

erally (just one), depending on the clinical case. The implantation of the IPG takes

place from a few days to a few weeks after the lead implantation, and consists in

the placement of the device into a subcutaneous pocket, usually in the chest, which

is eventually connected with the lead extensions. After the installation, the IPG

17



Figure 2.3: Figure A shows two four-contacts leads with di�erent inter-contact
spacing. Model #3387 on the left and #3389 on the right, both manufactured
by Medtronic, Inc. Figure B shows the Active SC implanted pulse generator, by
Medtronic, Inc. Image reproduced from http://cabellhuntington.org/.

is calibrated by a neurologist to optimize symptoms suppression and control side-

e�ects [Volkmann et al., 2002]. The stimulation parameters are voltage (range 0-5

V), frequency (range 130-200 Hz), and pulse width (60-90 µs).

2.2.3 Results and Limitations

Results from a plethora of studies showed that DBS, in addiction to drug treatment,

is superior to drug medication alone [Deuschl et al., 2006, Williams et al., 2010,

Bronstein et al., 2011]. Improvement in motor function, as assessed by motor di-

aries and UPDRS sub-scales, was signi�cantly greater in patients undergoing DBS.

Of particular importance is the improvement in mobility by 7.6-9.6 hours per day

[Deuschl et al., 2006, Weaver et al., 2009]. However, the limitations of DBS - cost,
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Figure 2.4: Stereotactic frame by Leksell (Leksell Streotactic System). It includes
a three-dimensional reference system and a center-of-arc instrument positioning sys-
tem, used to as a guide for the insertion of exploratory microelectrodes and �nal
macroelectrodes leads. Reproduced from http://www.elekta.com/.

long-term bene�t, and risk of serious adverse e�ects - must be taken into account

before DBS can be recommended to PD patients.

Since DBS is expensive [McClelland, 2011], cost must be considered when de-

termining risk versus bene�t. Signi�cant reduction in the use of drug medication

is an advantage provided to patients undergoing DBS, which leads to a reduction

of both collateral e�ects and cost of treatment. The long-term bene�t is also to be

considered, since it has been shown that DBS does not alter the progression of the

disease [Bronstein et al., 2011], and that UPDRS III (motor) scores are signi�cantly

higher 10 years after the surgery compared to 5 years [Castrioto et al., 2011]. Serious

adverse e�ects consist in surgical complications due to DBS, including intracranial

19



hemorrhage (0-10% of the cases), stroke (0-2%), infection (0-15%), lead erosion (1-

2.5%), lead fracture (0-15%), lead migration (0-19%), and death (0-0.4%) [Bronstein

et al., 2011].
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2.3 Local Field Potentials

Since the lead insertion and the IPG placement occur in surgical operations that may

be separated by a few days to a few weeks, it is possible during this time interval to use

the lead extension to record neurosignals coming from the area where the electrodes

have been implanted. As the impedance of the electrodes is low, it is possible to

record the activity of a relatively large tissue volume (thousands of neurons). Net

ionic currents generated by neuronal activity cause changes of the electric potential

of extracellular medium; the recorded signal, the local �eld potentials measured in

Volts or sub-multiples (Fig. 2.5), is the e�ect on the surface of the electrode of the

sum of all these local currents.

LFP represent the synchronized activity of the population of neurons nearby the

electrodes, and are classi�ed as stochastic signals recorded in the time domain.

2.3.1 Subthalamic Nucleus Local Field Potentials in Parkin-

son's Disease

Following DBS approval by the FDA, researchers started to record LFP activity

in the STN and analyze it using the standard signal processing tools. In particu-

lar, given the oscillatory nature of local �eld potentials, they were �rst analyzed in

the frequency domain by means of power spectral density. Early studies reported
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Figure 2.5: An example of local �eld potentials recorded in STN.

excessively synchronized activity in the beta frequency range (8-35 Hz) while pa-

tients were o� the medication, to be reduced signi�cantly after levodopa-based drug

administration; conversely, gamma oscillations (60-90 Hz) were found to increase

in power after medication, while being absent in pathological condition (Fig. 2.6)

[Brown et al., 2001, Brown, 2003, Brown and Williams, 2005]. The power of the

beta band was also found to be suppressed during the movement planning and exe-

cution (mechanism known as event related desynchronization, ERD) and the level of

modulation correlated with motor performances and clinical scores (Fig. 2.7) [Kuhn

et al., 2004]. Moreover, gamma activity was found to synchronize during movement

execution [Brown, 2003] and correlate with clinical scores [Kuhn et al., 2004].

Subsequent studies pointed out that the activity in the beta region can be divided

in two further ranges, namely low beta (13-20 Hz) and high beta (21-35 Hz), that
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Figure 2.6: A) and B) show two LFP signals in �OFF� and �ON� medication respec-
tively. The di�erent oscillatory nature of the signals is clear and corroborated by the
power spectral density in C) and D). Reproduced from Brown and Williams [2005].
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Figure 2.7: Correlation between UPDRS sub-scale scores and beta band modulation.
Adapted from [Kuhn et al., 2006].

exhibited rhythms that are believed to be substantially di�erent in nature [Marceglia

et al., 2006, Lopez-Azcarate et al., 2010]. In fact, while low beta power decreased

after medication intake, the activity of high beta wasn't signi�cantly modulated.

This observation lead to the hypothesis that the low beta rhythm is pathological

(i.e. generated as the consequence of lack of dopamine in the basal ganglia network)

while the high beta is physiological. More recently, other groups of oscillations, the

high frequencies (150-450 Hz, also called HFO), have been studied in both medicated

and unmedicated states.

High frequency oscillations were �rst discovered in the medicated state as broad

300 Hz activity [Fo�ani et al., 2003], but were also recently found in the unmedicated

PD condition [Lopez-Azcarate et al., 2010, Ozkurt et al., 2011], although in a di�erent
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Figure 2.8: Spectral characteristics of LFP in unmedicated (OFF) and medicated
(ON) states, during rest condition. Reproduced from Lopez-Azcarate et al. [2010].

frequency range (around 250 Hz). The power of the high frequencies present in the

medicated condition, was found to increase during motor execution [Fo�ani et al.,

2003]. High frequency activity in the unmedicated state is commonly referred to

as sHFO (slow HFO), whereas in the medicated condition as fHFO (fast HFO). A

visual comparison of the LFP spectral characteristics in medicated and unmedicated

states, during rest condition, is shown in Fig. 2.8.

In addition to classical analysis by means of power spectral density and event

related synchronization/desynchronization, LFP recorded in the basal ganglia have

been studied with more sophisticated tools. Analysis performed using bispectrum

and bicoherence (Fig. 2.9) showed that in the unmedicated state, di�erent rhythms,

especially low and high beta, are non-linearly correlated through phase coupling; this
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Figure 2.9: Comparison of bispectra obtained from LFP recorded in STN in untreated
(A) and medicated (B) PD states, along with the power spectral densities of the
signals in both conditions. The bispectrum is the 2-D Fourier transform of the third-
order cumulant (the skewness) of a time series. A peak at the frequency pair (f1, f2)
in the bispectrum means that the peak at the frequency f1 +f2 in the power spectral
density of the time signal is produced by the phase coupled rhythms at f1 and f2.
Reproduced from Marceglia et al. [2006].

interaction was lost after levodopa administration [Marceglia et al., 2006].

A similar result was achieved through the analysis of phase-amplitude coupling

(PAC) between frequencies in the beta range and HFO, which is a type of nonlinear

interaction that was found to play a role in physiological processes such as memory

and behavioral tasks, especially at the cortical level [Mormann et al., 2005, Voytek

et al., 2010]. Phase-amplitude coupling is believed to be a mechanism for the infor-

mation transfer between neuronal populations of di�erent scales with di�erent �ring

patterns. Phase-amplitude coupling was revealed at the STN level during untreated

pathological condition in PD, and was highly reduced after medication (Fig. 2.10),
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Figure 2.10: Phase-amplitude coupling between beta and HFO in untreated (�OFF�)
and medicated (�ON�) states, computed in three di�erent bipolar con�gurations from
a four-contacts electrode placed in the STN. Bipolar pair 0-1 is at the bottom of the
STN, pair 1-2 in the middle and 2-3 at the top. Reproduced from Lopez-Azcarate
et al. [2010].

showing again that in the clinical �ON� state rhythms are more segregated and in-

dependent [Lopez-Azcarate et al., 2010]. It was also found in invasive motor cortex

recordings [de Hemptinne et al., 2013] in untreated PD state, while it disappeared

after medication and DBS therapy. However, another study showed the consistent

presence of PAC in medicated state, although in a di�erent frequency range [Ozkurt

et al., 2011].

Taken together, all these evidence shows the reliability of the use of LFP to assess

the clinical condition of the patients. Nonetheless, the analysis of local �eld potentials
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not only aims to improve the understanding of the neurophysiophatological mecha-

nisms underlying PD, but also to contribute and support the decision-making process

regarding the DBS therapy. Intraoperative recording of LFP may be used during the

leads placement to help surgeons navigate through the basal ganglia structures and

identify the anatomical target borders [Chen et al., 2006, Telkes et al., 2014] and,

after the implantation, postoperative LFP recording can be used to assist the IPG

device programming, since evidence demonstrated that the anatomical location of

beta and higher frequencies activity can predict the optimal stimulation contacts

[Ince et al., 2010].

In most of the studies the collection of LFP data takes place intraoperatetively

or in the days right after the lead insertion; importantly, there's evidence supporting

the fact that LFP analysis provide reliable results even after years from the lead

implantation. Long-term recordings happening up to 7 years after the DBS surgery

showed that, although smaller in amplitude, LFP activity had the same modulation

patterns in response to movement as early recordings [Abosch et al., 2012]. This

feature supports the idea that LFP may be used in next generation closed-loop DBS

applications.
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Chapter 3

Methods

3.1 Mathematical Methods

3.1.1 Filtering

3.1.1.1 FIR and IIR �lters

Raw signals are commonly �ltered in order to remove oscillations that are solely

attributable to noise or are not of interest in the analysis. There are two �lter

implementations widely used for this purpose: Finite Impulse Response �lters (FIR)

and In�nite Impulse Response �lters (IIR) [Oppenheim et al., 1999].

Let xn, n = 0, ..., N − 1 be a real valued discrete sequence obtained sampling a

continuous process x(t) such that xn = x(n4t), n = 0, ..., N − 1 with 4t being the
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sampling period (the inverse of the sampling frequency). Digital �lters are commonly

described with a di�erence equation in the time domain that relates the �lter output

ynwith the input xn in the following way:

yn =
1

a0
(
P∑
i=0

bixn−i +

Q∑
j=1

ajyn−j) (3.1)

or, equivalently using the transfer function formulation:

H(z) =
Y (z)

X(z)
=

∑P
i=0 biz

−i∑Q
j=0 ajz

−i
, (3.2)

where P is the feed forward �lter order, Q the backward �lter order, bi, i = 0, ..., P

are the feed forward �lter coe�cients and aj, j = 1, ..., Q are the backward �lter

coe�cients. Xz and Yz are the Z-transform of xn and yn respectively, obtained as:

X(z) =
∞∑

n=−∞

xnz
−n (3.3)

z being, in general, a complex number. In the frequency domain the parameters

of interest are represented by the magnitude response of the �lter and its phase

response, computed as the frequency varies. In particular, if the transfer function of

a �lter is H(z), its magnitude response is:

∣∣H(ejω)
∣∣ =

√
Re{H(ejω)}2 + Im{H(ejω)}2 , (3.4)
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and its phase response:

∠H(ejω) = atan(Im{H(ejω)}/Re{H(ejω)}), (3.5)

where z = ejω. If aj = 0∀j 6= 0, then the �lter is a FIR �lter. Otherwise, there's

a recursive component in the output of the �lter and it represents a IIR �lter. The

advantages associated with the use of FIR �lters are that they are always stable and

that it's easy to design them in a way that the phase response is linear. However,

to meet desired speci�cations such as stop-band attenuation and pass-band ripple

attenuation, the �lter order and consequently its length has to be high. On the other

hand, IIR �lters, when stable, o�er better performances even with low �lter orders,

which allows faster computation since the number of total operations in the �ltering

process is lower. The important drawback of their use is that the phase response is

not linear, meaning that oscillations at di�erent frequencies in the output are not

delayed of the same amount of time samples. This is a serious issue, especially when

they are applied to electrophysiological signals, where the morphology of the signal

itself is fundamental.

3.1.1.2 Zero Phase Filtering

The non-linearity of the phase response of IIR �lters can be corrected if the signal

processing is done completely o�ine, which means that all the samples of the time
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sequence are available at the time of �ltering. In fact, a forward-backward �ltering

technique can be implemented in order to get a IIR �ltering stage whose phase

response is uniformly zero, avoiding therefore any type of distortion [Gustafsson,

1996]. Let Y
′
(ejω) be the output, in the frequency domain, of the �rst �ltering stage

such that:

Y
′
(ejω) = X(ejω)H(ejω) (3.6)

Applying now time-reversal in the frequency domain (an operation that brings to

a loss of causality and therefore is not suitable in online applications), which is

represented by replacing ω with −ω, and applying again the �lter, the result is:

Y
′′
(ejω) = Y

′
(e−jω)H(ejω) = X(e−jω)H(e−jω)H(ejω) = X(e−jω)

∣∣H(ejω)
∣∣2 . (3.7)

Re-applying time-reversal the �nal expression of the �ltering stage is:

Y (ejω) = X(ejω)
∣∣H(ejω)

∣∣2 , (3.8)

since |H(ejω)|2 = |H(e−jω)| · |H(ejω)|. |H(ejω)|2 represents also the transfer function

of the system that, being completely real valued, has therefore a null phase response.
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3.1.2 Power Spectral Density Estimation

Neuroelectrophysiological signals in the time domain, such as LFP, are well suited to

be represented in the frequency domain, since they present oscillatory-like activity.

The main idea behind the frequency domain representation of a time domain signal

lies in the consideration that, by means of harmonic analysis, a time series (real or

complex valued, continuous or discrete) can be decomposed into a linear combination

of individual sinusoidal components, each consisting of amplitude, frequency, and

phase. A common way to display the frequency information hidden in the time signal

of interest is computing the power spectral density (PSD, or power spectrum), that

shows the power associated with an oscillation as the frequency changes. There are

two main families of methods used to compute the PSD: the parametric methods and

the non-parametric methods. Parametric methods will be brie�y described since they

haven't been used in this work, while a more detailed treatment of non-parametric

methods will follow [Oppenheim et al., 1999].

3.1.2.1 Parametric methods

Parametric methods assume that the signal can be considered as the output of a

system whose parameters (order and coe�cients) are unknown and have to be es-

timated using model identi�cation techniques. Three steps are needed in order to

estimate the power spectral density of a signal using a parametric approach:

33



i. choice of the family of models;

ii. estimate the model parameters using the available data;

iii. compute the PSD from the theoretical expression associated with the particular

model chosen at the beginning.

Families of models usually used in this context are autoregressive models (AR), mo-

bile average models (MA), and autoregressive mobile average models (ARMA). Once

the family is chosen, the order of the model can be estimated using algorithms such as

Final Prediction Error (FPE), Akaike Information Criterion (AIC), and Minimum

Descriptive Length (MDL). The estimation of model coe�cients results from the

minimization of the expected squared prediction error; the set of model coe�cients

can be �nally plugged in the theoretical expression of the PSD for the chosen model

to obtain an estimation of the power spectral density of the signal. The main advan-

tage of a parametric approach in the PSD estimation is that the frequency resolution

is high and does not depend on the length of the available data; the drawbacks are

high computational cost and uncertain results when a high level of noise is present

in the data. For these reasons, the spectral analysis of LFP is usually carried out

using non-parametric methods.
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3.1.2.2 Non-parametric Methods

Non-parametric methods require no a priori knowledge about the system that gener-

ated the signal of interest, and use the Fourier transform to estimate the PSD. This

can be obtained using a direct or indirect method.

Direct Method Let xn, n = 0, ..., N−1 be a real valued discrete sequence obtained

sampling a continuous process x(t) such that xn = x(n4t), n = 0, ..., N − 1 with 4t

being the sampling period. The Discrete Fourier Transform of xnis a N -periodic

sequence Xk of complex numbers in the form:

Xk =
N−1∑
n=0

xne
− 2πjnk

N , k ∈ Z (3.9)

Each Xk encodes both amplitude and phase information of a sinusoidal component of

xnwith frequency ω = k
N
cycles per sample. The DFT is usually computed using the

Fast Fourier Transform algorithm, that speeds up a computation that by de�nition

would need O(n2) operations to only O(Nlog2N). The periodogram Sf can then be

computed as the squared modulus of the DFT of xn:

Ŝ(f) =
4t
N

∣∣∣∣∣
N−1∑
n=0

xne
−2πjnf

∣∣∣∣∣
2

,−fn < f ≤ fn (3.10)
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where f in now the frequency in cycles/second, fn = 1/24t is the Nyquist frequency,

and the frequency resolution 4f = 1/N4t. The periodogram as described in this

simple formulation has two main problems: the �rst one is that it is not consistent

estimator, meaning that the Ŝ(f) does not converge to the real PSD S(f) as N →∞,

and the second one is that it su�ers from very high spectral leakage, since xn can

be thought as a rectangular windowed segment of a in�nite signal. Moreover, the

variance of the PSD estimated with this method is high and it requires xn to be

stationary and ergodic; this is often not the case when dealing with electrophysio-

logical signals. To address these problems, various solutions have been adopted: the

most famous and widely used is Welch's modi�ed periodogram. It consists of the

division of the signal xn intoM segments of length L, overlapping each other of D of

samples. If D is 0, the overlap is said to be 0%, if D = L/2 is 50% and so on. After

the segmentation, each segment xml , l = 0, ..., L− 1 is then multiplied with a window

function in order to mitigate the spectral leakage. Finally, a periodogram Ŝm(f) is

computed for every segment m = 1, ...,M and the �nal estimation of the PSD of xn

is given by:

S̄(f) =
1

M

M∑
m=1

Ŝm(f) (3.11)

The modi�ed periodogram method has several advantages, the �rst being that the

variance of the estimation of the PSD reduces as M increases. Additionally, if L is
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chosen to be much smaller than N , the requirements of stationarity and ergodicity

for xn are more easily satis�ed. However, since the computation of Ŝm(f),m =

1, ...,M is done on segments of length L, the frequency resolution of S̄(f) is 4f =

1/L4t, which means that the shorter are the M segments, the poorer will be the

frequency resolution. The choice of L is therefore determined by a trade-o� between

the reduction of the variance of the PSD estimation and the resulting frequency

resolution.

Indirect Method The indirect method estimates the PSD of xnas the DFT of its

autocorrelation function R̂, and is therefore usually referred to as autocorrelogram.

This equivalence is guaranteed by the Wiener-Khinchin theorem. An unbiased esti-

mation of R̂ is:

R̂p =
1

Np

N−p−1∑
p=0

xn+pxn , (3.12)

where p is the sample (time) lag and p < N . The estimation of the PSD is then:

Ŝf =
4t
N

N−1∑
p=0

R̂pe
−2πjpf (3.13)

Since a higher amount of variance is associated with higher order lags, windowing is

used. This leads to the same observation made for the Welch's modi�ed periodogram

in terms of frequency resolution. When using a non-parametric approach to estimate
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the PSD of a signal, the direct method is most widely used.

3.1.3 Time-varying Spectral Estimation

When, during the processing, not only the frequency content of a signal is of interest

but also how it varies with time, the methods previously described for the PSD

estimation have to be modi�ed. One of the most widely used techniques to generate

time-varying spectral maps (also called time-frequency maps) implements the use of

the short-time Fourier transform STFT [Mitra, 2001].

Let xn, n = 0, ..., N − 1 be a real valued discrete sequence obtained sampling a

continuous process x(t) such that xn = x(n4t), n = 0, ..., N − 1 with 4t being the

sampling period. The STFT X(m,ω) of xn is de�ned as:

X(m,ω) =
N−1∑
n=0

xnwn−me
−jωn, (3.14)

where w(n) is a window function and m is a shift in samples. The spectrogram of

xn, which is the representation of its time-frequency map, is computed by simply

squaring the STFT of the signal:

spectrogram(m,ω) = |X(m,ω)|2 (3.15)

The size of the window function is crucial since the time and frequency resolutions
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of the spectrogram depends on it. In fact, the higher the window size, the higher

the frequency resolution, since more samples are available to compute the DTF.

However, the time localization is poorer, so it's not possible to discriminate with

accuracy when a change in the frequency content occurs. On the other hand, small

window length allows a better time localization with the drawback of having a poor

frequency resolution, meaning that close spectral peaks cannot be distinguished.

The relationship between time resolution 4t and frequency resolution 4f of the

estimate spectrogram is indirectly related with the Heisenberg uncertainty principle

and it follows the law:

4t4f ≤ 1

4π
. (3.16)

3.1.4 Phase-Amplitude Coupling Estimation

The phase-amplitude coupling (PAC) is a nonlinear interaction between oscillations

occurring at di�erent frequencies ranges, such that there exists a faster wave whose

amplitude envelope is modulated by the phase of a slower one (Fig. 3.1). There is

actually no golden standard for the estimation of the strength of this type of inter-

actions; however, several methods have been proposed. Three of them (Mean Vector

Length [Canolty et al., 2006], Coherence Value [Colgin et al., 2009], and Phase-

Locking Value [Penny et al., 2008, Cohen, 2008]) will be described in detail and a

39



comparison of their performances will be discussed once both applied to neuroelec-

trophysiological signals.

3.1.4.1 Mean Vector Length

Let zn, n = 0, ..., N − 1 be a real valued discrete sequence obtained sampling a con-

tinuous process z(t) such that zn = z(n4t), n = 0, ..., N − 1 with 4t being the

sampling period (the inverse of the sampling frequency). Suppose that the slow,

modulating (or phase) frequency is fΦ, and the fast, modulated (or amplitude) fre-

quency is fA. Let xn be the output of a band pass �lter (with linear phase response,

or used forward and backward) applied to zn, such that xn contains only a narrow

range of frequencies around fΦ that are believed to modulate, with their phase, the

amplitude envelope of yn. Similarly, yn is the output of a band pass �lter (with linear

phase response, or used forward and backward) applied to zn, such that yn contains

only a range of frequencies around fΦ. By means of Hilbert transformation, it is

possible to obtain the analytic representation of xn and yn. Generally, the analytic

representation t
′
n of a signal tn, n = 0, ..., N − 1 is de�ned as:

t
′

n = tn + jt̂n (3.17)

where t̂n is the result of the convolution between tn and the impulse response hn of

the Hilbert transformer [Johansson, 1999]:
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Figure 3.1: Example of PAC in LFP recorded at the STN level. At the top, the fast
oscillation (around 250 Hz) is represented together with the slow one (around 15 Hz).
It is possible to notice how the amplitude of the fast wave is modulated depending
on the phase of the slow oscillation (in this example, higher amplitude is associates
with the crests of the slow wave). In the bottom, the same oscillations are �ltered
and shown superimposed, where the e�ect of the modulation is even clearer.
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t̂n =
N−1∑
m=0

hn−mtm (3.18)

with

h(n) =


2
N
sin2(πn

2
)cot(πn

2
)

1
N

(cot(πn
N

)− cos(πn)
sin(πn

N
)
)

for N even

for N odd

(3.19)

From its analytic representation, the instantaneous phase and the instantaneous

amplitude (envelope) of a signal can be extracted. In particular, let Φx(n) be the

instantaneous phase of xn computed as:

Φx(n) = arg(x
′

n) (3.20)

and Ay(n) the instantaneous amplitude of yn, computed as:

Ay(n) =
∣∣∣y′

n

∣∣∣ (3.21)

Now, a composite signal g(n) can be created as follows:

g(n) = Ay(n)e
jΦx(n)

(3.22)
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The sequence g(n) consists in a complex sinusoidal function modulated, in amplitude,

by the envelope of the fast oscillations at the frequency fA and, in phase, by the

instantaneous phase of the slow oscillation at the frequency fΦ. Every value of g(n)

is, then, a point in the complex plane. It's reasonable to assume that, if no phase-

amplitude coupling occurs, g(n) for N large enough is distributed symmetrically

around the center of the plane, since Ay(n) and Φx(n) are independent. On the

contrary, if a PAC occurs, it means that Ay(n) is higher for some phases Φx(n) than

others. This leads to a loss of circular symmetry around the zero of the complex

plane, since some points of g(n) will be concentrated in a speci�c region. A natural

way to quantify this observation is to take the absolute value of the mean of g(n),

creating then a functionMV L(fΦ, fA) that measures the strength of phase-amplitude

coupling between fΦand fA:

MV L(fΦ, fA) = |〈g(n)〉| , (3.23)

where 〈· 〉 denotes the mean over all samples n = 0, ..., N − 1. MV L(fΦ, fA) is a real

number that tends to zero when no PAC occurs at the considered pair of frequencies,

whereas the existence of coupling leads to larger mean vector lengths. Of course,

it's di�cult to know a priori the pair of frequencies where the coupling occurs, so

a common practice is to iterate the process described (Fig. 3.2) varying fΦ and/or

fA. To be more precise, although the MV L measure is able to investigate only
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two frequency ranges at a time (i.e. an (fΦ, fA) pair), it can be used to build the

a phase-amplitude comodulogram plot, a visual tool that reports the strength of

coupling among multiple bands simultaneously. The comodulogram is constructed

scanning multiple frequency band pairs and computing the PAC measure for each

one. The �nal result is a color coded plot where the horizontal axis represents the

frequencies analyzed as fΦ whereas fA is represented in the vertical axis. Hotter

colors are associated with stronger PAC.

3.1.4.2 Coherence Value

The coherence value CV is computed based on the consideration that, if Ay(n) is

modulated by Φx(n), then the power spectral density of Ay(n) should present a peak

at fΦ. Moreover, the phase of Ay(n) at fΦ should have some relationship with Φx(n)

if the phase-amplitude coupling phenomenon is consistent. A function that is able

to take into consideration both requirements is the magnitude squared coherence,

computed, in particular, between Ay(n) and zn. The magnitude squared coherence

[Carter et al., 1973] is a function of frequency f that quanti�es the linear transfer in

the frequency domain between two time sequences, and is de�ned as:

Cαβ(f) =
|Sαβ(f)|2

Sαα(f)Sββ(f)
, (3.24)
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Figure 3.2: Algorithm for the detection of PAC in a signal using the MVL. From
top to bottom: extraction of phase and amplitude frequency components from the
original signal with adequate bandpass �lters, estimation of the phase of the slow
wave and amplitude envelope of fast wave and generation of the composite signal
g(n), represented in the complex plane. The points of g(n) with amplitude smaller
than 2 have been removed for sake of clarity. The thick red arrow represent the
magnitude of the phase-amplitude strength between the two frequencies considered.
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where αnand βn are two real valued discrete time sequences, Sαα and Sββ are the re-

spective autospectra, and Sαβ is the cross-spectrum which is obtain from the DFT of

the cross-correlation of the two sequences. For the proper estimation of Cαβ(f), the

signals αnand βn should be segmented in several windows (whose length will de�ne

the frequency resolution of the estimation), then compute and average the autospec-

tra and the cross-spectra over the windows, and �nally apply the de�nition given.

The magnitude squared coherence ranges from 0 (no linear relationship between the

two signals at the chosen frequency) and 1 (perfect linear relationship). The use

of the magnitude squared coherence between Ay(n) and zn, referred as CAyz(f), to

quantify phase-amplitude couplings is interesting since it allows the visualization of

all the possible modulating frequencies for a certain fA in a single plot; whereas in

the MV L method previously described, it is necessary to �rst choose the candidate

fΦ since the computation of that PAC measure requires the �ltering of zn, also in

the phase frequency range. To obtain a measure of the in�uence of the phase at

the frequency fΦ in the modulation of the amplitude at fA, a function known as

coherence value CV (fΦ, fA) can be derived averaging CAyz(f) over a narrow range

centered in fΦ:

CV (fΦ, fA) =
1

K

fΦ+s∑
f=fΦ−s

CAyz(f), (3.25)
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where 2s is the frequency resolution for the phase frequencies and K is the number

of samples of CAyz(f) contained in 2s. The higher the CV values is, the stronger

is the phase-amplitude coupling at the considered frequency pair. A visualization of

the algorithm is shown in Fig. 3.3. By averaging the values of CAyz(f) over di�erent

frequency bins and repeating this process for di�erent fA, it's possible to generate a

comodulogram plot equivalent to the one described for the MV L measure.

3.1.4.3 Phase-Locking Value

The rationale behind the use of the phase-locking value PLV to estimate phase-

amplitude coupling lies on the same consideration about the oscillatory properties

of Ay(n) described in section 3.1.4.2. This measure does not directly use Ay(n);

however, it's based on the relationship between the phase of the wave at frequency

fΦextracted from Ay(n) with Φx(n). Since no amplitude values are used in the

computation of the PLV , it is said to be an amplitude-free measure. Given that the

ΦA(n) is the phase of the component of Ay(n) at the frequency fΦ (estimated with

the methods previously described), a composite function d(n) can be constructed as

follows:

d(n) = ej[Φx(n)−ΦA(n)] (3.26)
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Figure 3.3: Algorithm for the detection of PAC using the Coherence Value. From
top to bottom: the raw signal is �ltered in the amplitude frequency range and its
envelope is estimated. Then the magnitude squared coherence is computed between
the envelope sequence and the raw signal. The measure of coupling strength is
obtained integrating coherence value in small bins.
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In the complex plane, d(n) is represented by a cloud of points, all with unitary

radius and phase dependent by the di�erence between Φx(n) and ΦA(n). If they

are independent and no coupling occurs, the points of d(n) will be symmetrically

distributed around the origin, while if it is present, the points distribution will be

biased towards certain privileged directions, since the phase di�erence tends to be

constant. A natural way to extrapolate a PAC measure is to average all points of

d(n) and then take the absolute value:

PLV (fΦ, fA) = |〈d(n)〉| , (3.27)

where〈· 〉 denotes the mean over all samples n = 0, ..., N − 1. Similarly to the MLV

measure, a comodulogram can be constructed scanning multiple frequency band pairs

and computing the PAC measure for each of them.

3.1.4.4 Signi�cance Analysis

For both the methods described to detect PAC, it's necessary to test if the value

obtained as a measure of the strength of the coupling is di�erent from what would

be obtained by chance [Tort et al., 2010]. In order to do so, a surrogate analysis

is performed. In particular, a certain number R ≥ 100 of surrogates of Ay(n) is

generated by dividing the original sequence into 1000 equally long segments and

randomly rearranging them for each surrogate. The PAC measure (MV L or CV ) is
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then calculated for all the surrogate series, leading to a distribution of surrogate PAC

measures. De�ning µ̄ as the experimental PAC value measured with the data and µs

the mean of the PAC surrogate distribution, assuming normality for this distribution

it's possible to perform a t-test with the following hypotheses:

H0 : µs = µ̄

H1 : µs 6= µ̄

(3.28)

The common use of a signi�cance level α = 0.05 is not well suited for this applica-

tion. In fact, to investigate the existence of PAC in a signal, a comodulogram plot

(described earlier) is usually generated. If the phase frequencies range is divided in

P narrow bands and the amplitude frequencies range in Q bands, the total number

of (fΦ, fA) combinations and therefore tests needed to generate the comodulogram

is PQ, which is usually much greater than 50. It is clear that a correction for the

number of comparisons is necessary, and it is usually performed by means of Bon-

ferroni's correction, which lowers the signi�cance level of each test to α = 0.05/PQ.

If the signi�cance test is not passed for a certain pair (fΦ, fA), then the related PAC

measure is arbitrarily set to zero; otherwise, it maintains its experimental value.

The main drawback of the signi�cance testing performed through hypothesis

testing is that the number PQ may be really big, making it nearly impossible to

detect a signi�cant phase-amplitude coupling when α becomes very small. A solution
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Figure 3.4: Overall processing �ow to estimate PAC using the MVL method. HF
are the high (amplitude) frequencies whereas LF are the low (phase) frequencies.

for this problem is to standardize the experimental PAC value obtained in (fΦ, fA)

subtracting the mean of the PAC measures obtained with surrogates and dividing

by its standard deviation. This method also allows results to be compared among

bipolar derivations and subjects.

The �ow charts that describe the process to obtain PAC measures with signi�-

cance testing are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6.

3.1.5 Statistical Analysis

Statistical analysis in this work was performed by means of hypothesis testing and

correlation between variables [Stuart et al., 2008].
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Figure 3.5: Overall processing �ow to estimate PAC using the CV method. HF are
the high (amplitude) frequencies whereas LF are the low (phase) frequencies.

Figure 3.6: Overall processing �ow to estimate PAC using the PLV method. HF are
the high (amplitude) frequencies whereas LF are the low (phase) frequencies.
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3.1.5.1 Hypothesis Testing

The process of statistical inference performed with hypothesis testing can be divided

in three cases: one-sample testing, two-sample testing, and testing more than two

samples. In any case, tests can be performed using parametric tests, meaning that

some assumptions about the distribution of the variables considered is made, or

non-parametric tests, where little or no assumptions are necessary. In general, basic

assumptions like independence of observations, a su�cient sample size, and absence

of extreme outliers are needed.

The hypothesis of tests are two: the �rst one is indicated as the null hypothesis

H0, and usually states that a particular parameter of the population sample un-

der exam (indicator of location or shape) is not signi�cantly di�erent from a �xed

number (in the case of one-sample tests) or from the same parameter estimated

from another sample (two-sample test or more). The other hypothesis, known as

alternative hypothesis H1, is the complementary of H1.

Associated with hypothesis testing is the p-value, that quanti�es the probability

that the experimental outcome (that's being tested) results from the assumption that

H0 is true. When the p-value is smaller than a signi�cance level α (usually 0.01 or

0.05 in case of single comparisons) than H0 is rejected and H1is accepted, otherwise

H0 holds.

One-sample tests commonly used are:
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� parametric t-test, to compare the sample mean with a �xed number, under

the assumptions that the population follows the normal distribution and its

standard deviation is unknown;

� parametric χ2 test, to compare the sample variance with some value, under the

assumption that the population is normal;

� Kolmogorov-Smirnov test to check if a sample is drawn from a normal distri-

bution;

� non-parametric Wilcoxon Signed Rank test, to compare the sample median

with a speci�ed value.

Two-sample tests used are, among the others:

� parametric t-test, to compare two sample means, under the assumptions that

the populations from which the samples are drawn are normal with equal but

unknown variances;

� parametric Welch's t-test, to compare two sample means, under the assump-

tions that the populations from which the samples are drawn are normal with

unequal and unknown variances;

� parametric F -test, to compare the variances of two samples under the assump-

tion of normality;
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� non-parametric Mann-Whitney U -test, to check if two samples come from the

same population;

� non-parametric Squared Ranks test, to compare the variances of two samples.

Common tests for more than two samples are:

� parametric one-way ANOVA (analysis of variance), to compare sample means

under the assumptions of normality and equality of variance between samples

populations;

� non parametric one-way Kruskal-Wallis analysis of variance, to test if three or

more samples originate from the same distribution.

Analysis of variance can be presented in terms of general linear modeling and can

be enriched using, for example, blocking factors. It is important to notice that the

output of a ANOVA or Kruskal-Wallis testing does only indicate if there's a di�erence

in the test parameter between the groups, not where it occurs.

When used in this work, signi�cance and p-value of the tests have been speci�ed.

3.1.5.2 Correlation

To quantify the amount of linear dependence between two samples belonging to

the random variables X = {x1, ..., xN} and Y = {y1, ..., yN}, it is possible to use

Pearson's correlation coe�cient rxy de�ned as:
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rxy =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, (3.29)

where x̄ is the sample mean of X: x̄ = 1
N

∑N
i=1 xi and analogously for ȳ. The

correlation coe�cient ranges from -1 to 1. Values close to|1| mean that in the scatter

plot of (X, Y ) the data points of X and Y lie on a line and are therefore linearly

correlated. Negative values represent negative linear correlation, meaning that the

more positive becomes a variable, the more negative becomes the other. Similarly,

a positive correlation coe�cient represent the tendency to grow with the same sign.

Finally, values close to 0 represent the absence of linear relationship.

Associated with the correlation coe�cient is a p-value which indicates the signif-

icance of the correlation; if smaller than a speci�ed level (usually 0.05) then there is

no signi�cant correlation between the variables considered, whatever the correlation

coe�cient may be.
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3.2 Dataset and Experimental Protocol

The data analyzed in this work were recorded at Fairview Hospital, University of

Minnesota, in 2008 from 10 PD patients who provided informed consent and, with

the approval of the University of Minnesota Institutional Review Board, were then

enrolled in the study. The study was supported by a Medtronic, Inc. grant for an

investigator-initiated project lead by Dr. Aviva Abosh and Dr. Nuri F. Ince. All

the subjects carried a diagnosis of Parkinson's Disease and underwent DBS surgery

per routine protocol (see section 2.2.2) which allowed the unilateral implantation of

macroelectrodes #3389 (manufactured by Medtronic Inc, Fridley, Minnesota, Fig.

3.7) in the STN. The surgery was performed in such a way that middle contacts of

the electrode (�1� or �2�) were placed inside of the STN.

LFP recordings were made during an extended inpatient hospitalization taking

place three weeks after the lead implantation, during which patients underwent 24

hours (over two solar days) of continuous LFP recording from the implanted DBS

electrode with concurrent videotaping (Fig. 3.9) . In addition to LFP data, elec-

troencephalographic, electromyographic, and tremor accelerometry recordings were

obtained using the EMU40 system (XLTEK-Natus, San Carlos, California) at a

sampling rate of 1024 Hz with 16 bit of Analog-to-Digital Converter resolution. All

channels were analogically high-pass �ltered at 0.1 Hz. LFP data were recorded from

all four contacts of the macroelectrode. Data collection was performed by a team
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including neurosurgeon, electrical engineers, a clinical nurse, and EEG technician.

The recording period included periods of sleep and wakefulness in each patient. All

patients underwent 3 �OFF� periods (unmedicated state) and 3 �ON� periods (med-

icated condition) during the 24-hour monitoring sessions. Each medication intake

(L-DOPA-carbidopa based) occurred at late morning and late afternoon of the �rst

day and early morning of the following. Patients were instructed to verbally inform

the nurse when, after drug administration, they started to feel the e�ect of the med-

ication; UPDRS III (motor) scoring by a nurse followed to con�rm the clinical �ON�

state. Patients were asked to stay in a resting condition for at least 120 s in each

state. During the recording period, patients also performed a movement task that

consisted in tapping alternatively two speci�c keys of a keyboard in a �xed amount

of time (30 seconds) preceded by 10 s of rest. This task was repeated twice for every

�OFF� and twice for every �ON� state. All the key presses as well as errors (i.e.

wrong key press) were registered together with their timings. A scheme of the motor

experimental protocol is shown in Fig. 3.8).
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Figure 3.7: Schematic representation of DBS lead model #3389 by Medtronic, Inc.
The four platinum-iridium contacts are indicated with numbers from 0 (the most
caudal) to 3 (the most rostral). Distances and size of the components are expressed
in millimeters. Reproduced from Darvas and Hebb [2014].

Low beta High beta Gamma HFO

12-20 Hz 21-35 Hz 60-90 Hz 150-450 Hz

Table 3.1: De�nition of frequency bands.

3.3 Data analysis

3.3.1 De�nitions, Common Parameters, and Measures

The frequency bands of interest in the data analysis are de�ned in Table 3.1.

Other quantities are indicated as follows:

� fLB is the frequency corresponding to the maximum of spectral power in the

low beta range (low beta peak);
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Figure 3.8: Experimental protocol (motor part). The thick arrow represents the �ow
of time. The recordings start before the �rst �OFF� state and end after the last �ON�
state. A 120 s long resting period is included in each state.
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Figure 3.9: Room setup for the long-term recordings. In this screenshot, the patient
is engaged in the keyboard tapping task, assisted by a nurse.
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� fγ is the frequency corresponding to the maximum of spectral power in the

gamma range (gamma peak);

� HFO frequency region presents two di�erent activities depending on the clin-

ical condition, but it's di�cult to clearly separate them since they overlap

extensively (section 2.3.1). f offHFO indicates the frequency corresponding to the

maximum of spectral power in the HFO range detected in the unmedicated

state (�OFF� HFO peak), whereas f onHFO represent the same quantity but de-

tected in the medicated state (�ON� HFO peak);

� indicated with Ŝf the power spectral density of the signal, the low beta peak

power was computed as:

PLB =

fLB+2∑
f=fLB−2

Ŝf (f) (3.30)

� indicated with P12:35 the sum of the power spectral density of the signalŜf from

12 to 35 Hz (beta band), the low beta peak relative power was computed as:

PN
LB =

PLB
P12:35

(3.31)

� the gamma peak power was computed as:

Pγ =

fγ+2∑
f=fγ−2

Ŝf (f) (3.32)
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� indicated with P60:90 the sum of the power spectral density of the signalŜf from

60 to 90 Hz (the gamma range), the gamma peak relative power was computed

as:

PN
γ =

Pγ
P60:90

(3.33)

� the HFO peak power was computed as:

PHFO =

fHFO+24∑
f=fHFO−24

Ŝf (fHFO) (3.34)

� indicated with P150:450 the sum of the power spectral density of the signalŜf

from 150 to 450 Hz (the HFO range), the HFO peak relative power was com-

puted as:

PN
HFO =

PHFO
P150:450

(3.35)

The power in the low beta and gamma peak bands was calculated in a frequency

range of 5 Hz centered on the peak frequency because the relative peaks are narrow.

On the other side, the HFO activity is broadband in both �OFF� and �ON� states so

a frequency range of 50 Hz has been chosen.

The normalization of the peak powers was performed in order to decrease the

inter-subject and intra-subject variability in terms of power associated to the signals.
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3.3.2 Pre-processing

All the analysis performed on the LFP signals were done o�ine, using the software

MATLAB version R2015a (Mathwork, Natick, Massachusetts), using custom scripts

after pre-processing of the data. Pre-processing included a transformation of the

reference and �ltering.

3.3.2.1 Re-referencing

The four monopolar signals, indicated as LFP 0, LFP 1, LFP 2, and LFP 3, were re-

referenced in three bipolar derivations by subtracting the activity of adjacent contact,

indicated as LFP 0-1, LFP 1-2, and LFP 2-3. The re-referencing was performed in

order to increase the spatial resolution and remove part of the correlated activity of

the signals.

3.3.2.2 Filtering

After re-referencing, each of the three bipolar LFP were �ltered with a high pass

�lter at 2 Hz using a second-order Butterworth IIR �lter (Fig. 3.10) in conjunction

with zero phase �ltering technique. The same principle was applied while using eight

fourth-order Butterworth IIR notch �lters (Fig. 3.11) to remove power line artifacts

at 60 Hz and harmonics up to 480 Hz. The whole pre-processing stage is shown in

Fig. 3.12.
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Figure 3.10: Magnitude and phase responses of the high pass �lter applied to the
data. The phase response is shown just for clarity, since the nonlinear behavior
represented is not maintained when using zero phase �ltering techniques.

Figure 3.11: Example of notch �lter applied to the data stopping the oscillations at
60 Hz. The considerations on the phase are the same as Fig. 3.10.
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Figure 3.12: Pre-processing of the LFP data. Raw monopolar derivations (A) were
transformed in bipolar references (B) that were sequentially �ltered using eight notch
�lters and a high pass �lter (C). Note that signals in di�erent plots have di�erent
amplitude scales.

66



3.3.3 Rest Analysis

The rest analysis refers to the analysis of the signals recorded when the patients

were in resting condition, meaning that no other tasks (motor or cognitive) were per-

formed. Continuous LFP data 120 s long were extracted for each state (three �OFF�

and three �ON�) for every patient and visually inspected to detect clear artifacts that,

if present, were removed. The rest analysis focused on the characterization of the

LFP activity in terms of spatial distribution of spectral power across the subthalamic

nucleus, phase-amplitude coupling and its spatial distribution, and correlation with

clinical scores.

3.3.3.1 Spatial Distribution of Spectral Activity

Spatial information about the localization of STN LFP sources of activity can be re-

trieved by analyzing the spectral power distribution across the three bipolar deriva-

tions LFP 0-1, LFP 1-2, and LFP 2-3. They are de�ned in such a way that they

represent the localized activity in the bottom, intermediate, and top of the STN

respectively. Since the STN is anatomically divided into three areas with di�erent

functionality, non-homogeneous distribution in spectral power in speci�c bands may

provide clues about the role of certain rhythms expressed by the neuronal popula-

tions in the structure. The spatial characterization interested both the �OFF� and

�ON� states but with di�erent features.

67



�OFF� State The LFP data recorded during the �OFF� states were divided into

three groups based on their spatial provenience: bottom, intermediate, or top STN.

For each signal, the power spectrum was computed using the Welch's modi�ed pe-

riodogram with 1024 samples long Hanning windows and 50% overlap, to get a

frequency resolution of 1 Hz. The frequencies fLB and f offHFO were detected as the

frequency corresponding to the maximum activity in low beta and HFO range. If

present in at least one of the three bipolar LFP for each resting period considered, the

low beta peak relative power PN
LB and HFO peak relative power PN

HFO were computed

for all bipolar derivations. Group-wise statistical analysis followed to investigate the

spatial distribution of low beta and HFO activity in the unmedicated state among

patients.

�ON� State The LFP data recorded during the �ON� states were divided into

three groups based on their spatial provenience: bottom, intermediate, or top STN.

For each signal, the power spectrum was computed using the Welch's modi�ed pe-

riodogram with 1024 samples long Hanning windows and 50% overlap, to get a

frequency resolution of 1 Hz. The frequencies fγ and f onHFO were detected as the

frequency corresponding to the maximum activity in low beta and HFO range. If

present in at least one of the three bipolar derivations for each resting period consid-

ered, the gamma peak relative power PN
γ and HFO peak relative power PN

HFO were
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computed for all bipolar LFPs. Group-wise statistical analysis followed to investigate

the spatial distribution of gamma and HFO activity in the unmedicated state among

patients.

3.3.3.2 Phase-Amplitude Coupling Analysis

This analysis aimed to investigate the presence and spatial distribution of nonlinear

cross-frequency interactions in terms of phase-amplitude coupling in the unmedicated

and medicated states. It has already been shown [Lopez-Azcarate et al., 2010] that

phase-amplitude coupling may be a pathological mechanism for PD since it is present

only in untreated condition; however another study also reported its presence in

medicated state, although in di�erent frequency regions [Ozkurt et al., 2011]. Also,

little is known about its topological distribution across STN or about the localization

of rhythms that produce the coupling.

The signals were �rst divided in two groups depending on whether they were

recorded during the �OFF� or �ON� state. As described in section 3.2, for each pa-

tient, three �OFF� states and three �ON� states were available. For each of these

states, the three bipolar derivation signals were processed together. In particular,

a set of nine comodulograms was computed combining the phase frequencies and

amplitude frequencies extracted from all bipolar LFPs. For example, one comodulo-

gram was computed combining the phase frequencies of LFP 0-1 with the amplitude
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Figure 3.13: The set of nine comoduograms computed in each condition was obtained
combining the provenience of phase and amplitude frequencies across the three bipo-
lar derivations. Every comodulogram has axis as shown in the middle one.

frequencies of LFP 0-1, another comodulogram with the phase frequencies of LFP

0-1 again and the amplitude frequencies of LFP 1-2 and so on, for a total of nine

combinations (Fig. 3.13).

It resulted that for each patient a triplet of nine comodulograms was available for

the �OFF� as well as the �ON� states; the comodulograms belonging to the triplet

were averaged for each combination of phase and amplitude frequencies locations. In

total, for each patient two sets of nine comodulograms were obtained, one describing

the �OFF� state and one the �ON� state (Fig. 3.14), that were then averaged across

patients. The comodulograms were computed using the MLV , CV and PLV meth-

ods in parallel. In all cases, the phase frequencies ranged from 10 to 30 Hz divided

into bins of 1 Hz each (�ltering the signal forward-backward with Butterworth �lters
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of third order and 2 Hz bandwidth centered in the lower frequency of each bin),

whereas the amplitude frequencies ranged from 150 to 400 Hz divided in intervals of

10 Hz (�ltering forward-backward the signal with Butterworth �lters of third order

and 50 Hz bandwidth centered in the lower frequency of each bin). For the CV

measure, the magnitude squared coherence was computed with Hanning windows

2048 samples long and 50% overlap. Experimental PAC measures were standardized

with the mean and standard deviation of the 100 surrogates PAC values generated

for each (fΦ, fA) combination.

A visual comparison of the sets of comodulograms obtained was made to clarify

the presence of phase-amplitude coupling and the di�erence in the quanti�cation of

the nonlinear interaction when three di�erent measures are used.

3.3.3.3 Correlation of Power Spectral Changes with Clinical Scores

The correlation analysis served as control to check, accordingly to many works in

the literature, that features extracted from STN LFP correlate with the severity of

motor clinical symptoms. These are quanti�ed by the UPDRS III (mUPDRS) as the

sum of the scores in the categories bradykinesia and rigidity.

For each medication intake, LFP data and mUPDRS are available regarding the

�OFF� period prior to medication and the �ON� period after the medication had e�ect

on the symptoms of the patient. The LFP activity to correlate with the clinical scores

71



Figure 3.14: Work �ow for the generation of PAC maps. The legend of symbols is
shown in Fig. 3.8. In each state, a set of nine comodulograms was computed from
the combination of phase and amplitude frequencies of the three bipolar derivations
LFP 0-1, LFP 1-2, LFP 2-3. Then, the comodulograms corresponding to the same
combination are averaged to create a single set of comodulograms describing a con-
dition for each patient (�OFF� or �ON� state). In the �gure, only the mechanism for
�OFF� state is shown, but the same work �ow applies for the �ON� state as well.
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was measured in terms of band power, namely low beta and �ON� state HFO. The

low beta and HFO peaks used in this analysis were previously detected in section

3.3.3.1. To correlate the spectral LFP activity and the clinical scores in the form

of mUPDRS testing, percent power and scores changes compared to a baseline were

used. In particular, given that P off
LB is the power of low beta peak in the �OFF�

condition and P on
LB is the power of low beta peak in the �ON� state, the percent

variation of low beta peak power is:

P%
LB = 100

P on
LB − P

off
LB

P off
LB

, (3.36)

where the baseline is P off
LB . The same percent power variation was computed for

the HFO peak around f onHFO. Similarly, if the mUPDRS score in �OFF� state is

mUPDRSoff and in �ON� state is mUPDRSon, the percent variation of mUPDRS

is:

mUPDRS% = 100
mUPDRSon −mUPDRSoff

mUPDRSoff
(3.37)

It is clear that a negative percent variation of power or mUPDRS score means that

the spectral power or mUPDRS score computed in the �OFF� state is higher than in

the �ON� state, whereas a positive percent variation has the exact opposite meaning.

The values of P%
LB,P

%
HFO (where PHFO is the power around f onHFO) andmUPDRS

%
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were used for the correlation analysis.

3.3.4 O�-to-On Transition Analysis

The o�-to-on transition analysis refers to the quantitative description of the power

spectral changes that take place from the medication intake to the clinical �ON�

state.

Continuous LFP data were extracted starting from 30 minutes prior to the med-

ication until 30 minutes after the verbal feel �ON�, for a total of 90 signals after

pre-processing (three bipolar derivations for each of the three transitions per sub-

ject, which were ten). Each signal was divided in non-overlapping segments of 60

seconds. After segmentation, signals were visually inspected to detect clear artifacts

that, if present, were removed. For each segment the power spectral density was

computed using the Welch's modi�ed periodogram with 1024 samples long Hanning

windows and 50% overlap, to get a frequency resolution of 1 Hz.

The choice of performing a segmentation of the entire o�-to-on transition signal

rested on the consideration that, in such a long interval, the parameter of interest

is the slow variation of the spectral power in time due to the medication intake.

Therefore, it is not necessary to compute a spectrogram of the entire signal, as

is commonly used to visualize and quantify relatively fast variation of power among

frequency components. Moreover, the choice of 60 second segments allowed a reliable
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estimation of the power spectrum with the speci�cations aforementioned, even when

part of the signal was removed due to noise that heavily a�icted the recordings, since

in such a long recording period the patients were able to do a number of di�erent

activities that could give rise to artifacts in the signals.

The visual output of the processing is, for each transition and bipolar LFP, a

time-frequency map where the time resolution 4t (in the horizontal axis) is 60 s and

the frequency resolution 4f (vertical axis) is 1 Hz.

Timing of Spectral Changes The only parameter of interest in the o�-to-on

transition analysis is the time corresponding to signi�cant spectral changes. Several

studies (section 2.3.1) described the amount of variation in spectral components from

the �OFF� to the �ON� state, but so far no studies attempted to quantify when, after

the medication, they happen. Temporal changes were quanti�ed for the low beta,

gamma, and �ON� HFO bands. The frequencies fLB, fγ, and f
on
HFO were previously

detected in section 3.3.3.1. For each segment of the o�-to-on transition, the peak

powers of low beta, gamma, and �ON� state HFO were computed and indicated with

PLB(n), Pγ(n), PHFO(n), with n the progressive number of segments. The average

�OFF� state peak powers were calculated as the average of the peak powers for each

band in the thirty minutes prior to the medication and indicated as P off
LB , P off

γ , and

P off
HFO. Then, three time series were constructed normalizing the peak powers in the
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three bands in each segment of the transition with respect to the baseline �OFF�

power values:

P%(n) = 100
P (n)− P off

P off
(3.38)

for each of the three bands low beta, gamma, and �OFF� HFO, to get P%
LB(n),

P%
γ (n), and P%

HFO(n). Finally, the time points nLB, nγand nHFO corresponding

to signi�cant changes in the spectral power of the three bands were calculated as

the closest point whose value P%(n) was half of the maximum absolute value of

P%(n) in the corresponding band. This process was performed in case that the

power suppression or increase in the band was greater than 30% in absolute value;

otherwise, no time points were computed for that particular band since it didn't

show any signi�cant increase or decrease in power.

Statistical analysis followed to investigate di�erences in the time of signi�cant

spectral changes between power bands (low beta, gamma, and �ON� state HFO)

and/or location in the STN (determined by the bipolar pairs).

3.3.5 Movement Analysis

The movement analysis was performed to investigate correlation of power spectral

changes in speci�c bands with sensory data and changes of phase-amplitude coupling

caused by the movement execution. Continuous LFP data were extracted from ten
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seconds prior to task beginning until ten seconds after task end; signals were ex-

tracted for each bipolar LFP, clinical state (�OFF� and �ON�), and task repetition,

for a total of 360 signals after pre-processing.

3.3.5.1 Correlation of Power Spectral Changes with Sensory Data

Using the peak frequencies fLB and f onHFO, previously detected in section 3.3.3.1,

the peak power of the corresponding bands was computed in the signals segments

when the task is executed (using Welch's modi�ed periodogram with 1024 samples

long Hanning windows and 50% overlap). The band powers were then averaged

for the repetitions in the same state. The percent change of the power computed

for the �ON� state was calculated with respect to the power in the �OFF� state

relative to the task execution taking place before the particular medication intake.

Similarly, the number of key presses was averaged within repetitions and the percent

change of number of key presses in the �ON� state was computed with respect to the

one obtained in the �OFF� state for each medication intake. Then, the correlation

between the percent change of power in the two bands and percent change of number

of key presses was computed. This process was done for every bipolar LFP.
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3.3.5.2 Phase-Amplitude Coupling Analysis

The bipolar LFP pair with stronger coupling activity was detected from the analysis

in section 3.3.3.2. The phase-amplitude coupling comodulograms were computed in

the ten seconds prior to task beginning and in the thirty seconds of task execution.

The comodulograms were computed using theMLV measure. The phase frequencies

ranged from 10 to 40 Hz and were divided in bins of 1 Hz each (�ltering the signal

forward-backward with Butterworth �lters of third-order and 2 Hz bandwidth cen-

tered in the lower frequency of each bin), whereas the amplitude frequencies ranged

from 150 to 450 Hz divided in intervals of 5 Hz (�ltering the signal forward-backward

with Butterworth �lters of third order and 25 Hz bandwidth centered in the lower

frequency of each bin). Comodulograms were averaged within the �OFF� and �ON�

conditions, and then compared to detect phase-amplitude coupling changes between

rest state and movement execution in unmedicated or medicated conditions. Exper-

imental PAC measures were standardized with mean and standard deviation of the

100 surrogates PAC values generated for each (fΦ, fA) combination.

Spectrograms were also computed for the bipolar derivations showing stronger

coupling using 1024 samples long Hanning windows with 768 samples of overlap, to

visualize the spectral activity during rest and movement execution. Spectrograms

were then averaged within conditions (�OFF� and �ON�) across subjects and then

visually compared to detect modulation patterns.
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Chapter 4

Results

4.1 Rest Analysis

4.1.1 Spatial Distribution of Spectral Activity

�OFF� State Signals related to patient 7 were discarded after visual inspection of

their power spectrum because of the high amount of artifacts. Low beta peaks at

17.4 ± 1.71 Hz were found in all the remaining 9 patients. The spatial distribution

of low beta peak power across STN is shown in Fig. 4.1. Visually it's possible to

notice that there aren't signi�cant di�erences in the power spatial localization, a

result con�rmed by a Kruskal-Wallis test (α = 0.05) which returned a p-value of

0.7794. Non-parametric analysis was performed because the groups showed distri-

butions di�erent from the Gaussian. Three Kolmogorov-Smirnov tests returned a
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Figure 4.1: Spatial distribution of low beta peak activity (left) and �OFF� state HFO
activity (right) across the subthalamic nucleus. The bottom STN is corresponding
to the bipolar derivation LFP 0-1, intermediate STN to LFP 1-2 and top STN to
LFP 2-3. Asterisks represent signi�cant statistical di�erences in the distribution of
spectral power.

p-value smaller than 0.05 in all cases.

�OFF� state HFO peaks at 238 ± 9.88 Hz were detected in at least one bipo-

lar con�guration in 8 patients out of 9. The spatial distribution of low beta peak

power across STN is shown in Fig 4.1. The groups didn't show normal distribution

(Kolmogorov-Smirnov tests, p-value< 0.05), and the Kruskal-Wallis (α = 0.05) test

returned a p-value of 1.67 · 10−7, meaning that there are signi�cant di�erences in

the spatial distribution of HFO power. Subsequent tests (Mann-Whitney U , with

α = 0.05), showed that the HFO relative power in middle and top STN is signi�cantly

di�erent from the one in the bottom (p-values 1.47 · 10−6 and 3.67 · 10−6).

�ON� State Gamma peaks at 78.25 ± 2.63 Hz were found in 4 patients out of

9 in the �ON� state signals. Kruskal-Wallis test (α = 0.05) returned a p-value of
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Figure 4.2: Spatial distribution of gamma and �ON� state HFO activity across STN.

0.07 which, with the signi�cance level chosen, means that there are no statistical

di�erences in the distribution of gamma power activity across STN (Fig. 4.2). Even

though the distributions seem to be visually di�erent, statistical testing did not

con�rm this observation, probably due to the small sample size.

�ON� state HFO peaks at 314.25 ± 31.19 were found in 8 patients out of 9.

Kruskal-Wallis test with α = 0.05 showed a p-value of 0.9119, making it clear that

in the dataset the distribution of HFO spectral activity in the medicated state is

uniform across the subthalamic nucleus (Fig. 4.2).

4.1.2 Phase-Amplitude Coupling Analysis

4.1.2.1 Mean Vector Length

The analysis of phase-amplitude coupling across bipolar derivations showed the pres-

ence of clear nonlinear cross-frequency interactions in unmedicated condition, which
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disappeared after e�ective drug treatment (average coupling maps Fig. 4.3). Accord-

ingly with the results shown in section 4.1.1, the PAC is stronger when the amplitude

frequencies are extracted from the top and intermediate STN bipolar derivations,

where the highest amount of �OFF� state HFO power was detected. Interestingly,

the cross-frequency coupling is shown not only when combining amplitude and phase

frequencies that belong to the same bipolar derivation, but also (and with similar

strength) when, �xing the location of the amplitude frequencies, the phase frequen-

cies are taken from bipolar pairs all over the STN. This is again coherent with the

results shown previously, since the stronger coupling happens in the beta range (as

phase frequencies), and it has been demonstrated that the low beta activity was

widely distributed in the STN.

The frequency ranges showing coupling were 15-25 Hz for phase frequencies and

200-300 Hz for amplitude frequencies.

Comodulograms relative to a single subject are shown in Fig. 3.1. The PAC

amplitude coupling is more localized compared to the average maps.

4.1.2.2 Coherence Value

The considerations expressed in section 4.1.2.1 hold when using the CV to compute

the phase-amplitude coupling comodulograms and evaluate its spatial distribution

(Fig. 4.5). The cross-frequency coupling is stronger when combining the amplitude
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Figure 4.3: Spatial distribution of phase-amplitude coupling in STN in untreated (A)
and medicated condition (B) using MV L. Hotter color is associated with stronger
coupling.
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Figure 4.4: Example of spatial distribution of phase-amplitude coupling in �OFF�
state for a representative patient. The ranges of phase and amplitude frequencies
where PAC occur are more localized compared to the average maps.

frequencies extracted from LFP 2-3 (top STN) with the phase frequencies of all other

bipolar pairs.

The frequencies ranges showing coupling were 17-25 Hz for phase frequencies and

200-350 Hz for amplitude frequencies. A qualitative comparison with the comodulo-

grams computed using theMV L method shows that the regions with strong coupling

in the CV maps are smaller but of greater normalized intensity.

4.1.3 Phase-Locking Value

The spatial distribution of comodulograms computed with the phase-locking value

showed again the pattern described for the other two cross-frequency coupling mea-

sures. In this case, the coupling occurred between 15-25 Hz as phase frequencies and
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Figure 4.5: Spatial distribution of phase-amplitude coupling in STN in unmedicated
(A) and treated condition (B) using CV method. Hotter color is associated with
stronger coupling.
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LFP 0-1 LFP 1-2 LFP 2-3
Low Beta Peak 0.61 0.49 0.66

HFO -0.16 -0.26 -0.10

Table 4.1: Correlations of low beta peak power changes with mUPDRS score changes
between unmedicated and medicated states. In bold the signi�cant correlations.

225-300 Hz as amplitude frequencies.

4.1.4 Correlation of Power Spectral Changes with Clinical

Scores

Percent low beta peak power change between �OFF� and �ON� resting states showed

signi�cant correlation with percent mUPDRS score change in the two clinical con-

ditions, while �ON� state HFO power changes did not show signi�cant correlation

(Table 4.1 and Fig. 4.7).

4.2 O�-to-On Transition Analysis

Data relative to patient 7 were discarded due to the high amount of artifacts. A sig-

ni�cant change in power between unmedicated and medicated conditions was found

in all bipolar derivations in 17 out of 27 o�-to-on transitions for low beta peak band,

in 13 out of 27 for �ON� state HFO, and 8 out of 27 for gamma peak band. Kruskal-

Wallis testing showed the presence of signi�cant di�erences in the timing of power

changes in the three bands (p-value 3.88 · 10−7). Further tests (Mann-Whitney U)
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Figure 4.6: Spatial distribution of phase-amplitude coupling in STN in unmedicated
(A) and treated condition (B) using PLV method. Hotter color is associated with
stronger coupling.

87



Figure 4.7: Scatter plot showing the correlation of low beta peak power change in
LFP 2-3 (top STN) with mUPDRS score change between unmedicated and medicated
conditions. The thick line represents the regression line.

Low Beta VS Gamma Low Beta VS HFO Gamma VS HFO

LFP 0-1 1.45 · 10−4 5.21 · 10−4 > 0.05
LFP 1-2 1.16 · 10−4 4.21 · 10−4 > 0.05
LFP 2 -3 1.17 · 10−4 2.98 · 10−4 > 0.05

Table 4.2: P-values of tests comparing the timings of changes between low beta,
gamma and �ON� state HFO peak powers.

showed a signi�cant di�erence in the time of change of low beta peak power com-

pared to the times of change of gamma peak power and �ON� state HFO power, that

was consistent among bipolar derivation (Tab. 4.2 and Fig. 4.8 A). On average, the

low beta peak power suppression happened 21 minutes before the HFO power rise

and 25.9 minutes before the gamma peak power rise.

Fig. 4.8 B shows the power changes in the considered bands following levodopa

medication. The time-frequency maps in two representative o�-to-on transitions
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LFP 0-1 LFP 1-2 LFP 2-3
Low Beta Peak -0.48 -0.49 -0.34

HFO 0.35 0.62 0.35

Table 4.3: Correlations of low beta peak power changes with mUPDRS score changes
between unmedicated and medicated states. In bold the signi�cant correlations.

depicting the behavior in the higher and lower frequencies are shown in Fig. 4.9.

4.3 Movement Analysis

Data relative to patient 7 were discarded due to the high amount of artifacts and

data relative to patient 10 were not considered in the correlation between �ON� state

HFO power change and improvement in the task execution because they represented

outliers (the power changes were greater than 400%).

4.3.1 Correlation of Power Spectral Changes with Sensory

Data

Percent low beta peak power change between �OFF� and �ON� states showed sig-

ni�cant correlation with the percent change of number of keyboard presses in the

two clinical conditions during task execution. The �ON� state HFO percent power

change showed signi�cant correlation only in one bipolar derivation, LFP 1-2 (Tab.

4.3 and Fig. 4.10).
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Figure 4.8: A) Timing of signi�cant changes in the low beta, gamma and �ON� HFO
peak powers after medication intake (corresponding to time 0). Asterisks represent
signi�cant di�erences in the time of changes between the power band considered.
B) Percent power change in the three bands compared to the baseline (average of
the power in the corresponding band in the thirty minutes prior to the medication
intake) in a representative o�-to-on transition obtained extracting LFP data for 210
minutes to show also the wash-out e�ect of medication in terms of power changes.
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Figure 4.9: A) Representative time-frequency map of a o�-to-on transition (medica-
tion intake at time 0). At the top, the raw map. At the bottom, the spectra have
been computed has percent change compared to the average spectrum of the thirty
minutes preceding the levodopa intake. Accordingly to the pattern shown in Fig.
4.8, the power in the low beta range decreases tens of minutes before the gamma
power increases. B) Representative time-frequency map of a o�-to-on transition (dif-
ferent from the one in A). At the top, the raw map. At the bottom, the spectra have
normalized with respect to the period preceding the drug medication intake (time
0). Two distinct HFO activities are shown: �OFF� state HFO at around 250 Hz and
�ON� state HFO spread around 350 Hz.
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Figure 4.10: Top: scatter plot showing the correlation between the percent low beta
peak power change and the percent change in number of keyboard presses during task
execution for LFP 1-2. Bottom: scatter plot showing the correlation with percent
power change in the �ON� state HFO range for LFP 1-2.
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4.3.2 Phase-Amplitude Coupling Analysis

The phase-amplitude coupling did not show modulations in coupling strength during

task execution when compared to the resting period present just before the task (Fig.

4.11 A) in the unmedicated condition.

In the medicated condition the coupling does not occur in the resting state and

during task execution (Fig.4.11 B).

The spectrograms (Fig. 4.12) showed beta band power desynchronization from

resting condition to motor task engagement in both �OFF� and �ON� conditions.

Although in the medicated state the power decreases almost completely during task

execution, in the untreated state there's still signi�cant activity which is coherent

with the presence of phase-amplitude coupling.
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Figure 4.11: Comodulograms showing the strength of PAC before the task initiation
and during task execution. The comodulogram relative to the pre-task period is
noisier probably because estimated with a shorter data segment (10 s) than the
comodulogram computed on the signals recorded during task execution (30 s). A)
Untreated condition. B) Medicated condition.
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Figure 4.12: Average spectrograms of bipolar derivations showing stronger phase-
amplitude coupling in resting condition. The interval from -10 to 0 s is resting prior
to task execution, which starts at time 0 for 30 s.
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Chapter 5

Discussion and Future Developments

In this work, the frequency content of subthalamic nucleus local �eld potentials

has been analyzed to individuate spatial and timing patterns in spectral power dis-

tribution and nonlinear cross-frequency interactions. Classical as well as recently

developed methods have been used to investigate the link between neuronal activity

recorded at the STN LFP level and Parkinon's disease pathophysiology.

The distribution of spectral power in the low beta, gamma, and �ON� state HFO

bands was found to be widely distributed across STN, suggesting that these rhythms

do not encode a unique functionality in the basal ganglia network, but are probably

related in a variety of motor and cognitive processes. It was, in fact, recently dis-

covered that perimovement STN beta and gamma bands reactivity is modulated by

task complexity [Oswal et al., 2013], showing how motor planning and execution are
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intrinsically related with cognitive processing in the basal ganglia circuit. However,

it is important to consider that, even though re-referencing monopolar signals into

bipolar derivations increases the spatial resolution of the analysis, bipolar derivations

collect neuronal activity in a larger volume; this makes the exact source localization

di�cult. The volume conduction e�ect has also to be considered, especially in high

power rhythms like the beta. Higher frequency rhythms (gamma and HFO, both the

ones associated with �ON� and �OFF� clinical conditions) are instead believed to be

more local, since they have much less power and they are less a�ected by volume

conduction mechanism, since the tissue behaves generally as low pass �lter.

Interestingly, the power of �OFF� state HFO was found to be signi�cantly higher

in the superior and middle parts of STN compared to the inferior part. Upper STN is

where its motor region is located, so the analysis suggests that HFO rhythms in un-

treated condition may be speci�cally related with motor processing, and therefore be

involved with the mechanism of generation of motor symptoms in PD. Consistently,

studies reported that movement related �OFF� state HFO modulation is correlated

with clinical scores [Lopez-Azcarate et al., 2010]. However, a recent study based

on intraoperative LFP recordings showed that HFO activity around 250 Hz was lo-

calized above the superior entry point of electrode tip in STN, suggesting that this

rhythm may not be directly generated in the subthalamic nucleus [Wang et al., 2014].

The �rst major �nding of this work regarded the discovery that low beta peak
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power, which is commonly associated with excessive and pathological activity in un-

treated PD condition, is suppressed many minutes before the increase of power in the

HFO and gamma range after medication intake. The reason why this happen is, how-

ever, unknown. Pharmacokinetics and pharmacodynamics of the drug administered

may be explanatory for the mechanism observed.

Pharmacokinetics refers to the time-dependent concentration of drug in body

�uids after the medication administration. It is possible that certain neuronal pop-

ulations, that are responsible for the generation of lower frequency rhythms, are

a�ected by the medication before other populations whose activity results in high

frequency oscillations. However, the time di�erence between the beta power sup-

pression and HFO power rise was estimated in 21 minutes; this time gap should be

further investigated with respect to drug dosage and its pharmacokinetical e�ect on

neurophysiological oscillations.

On the other hand, pharmacodynamics, which refers to the e�ect caused by the

drug concentration in the body �uids, may represent a possible explanation, since

the STN is an important structure in the basal ganglia circuit. In fact, network mod-

i�cations consequent to medication intake may be resulting from complex patterns

of local modulations in connected structures, leading to delays in the activation of

di�erent neuronal populations. Since subthalamic nucleus receives inputs also from

motor cortex, early low beta suppression may also be a direct e�ect of modulation at
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the cortical level due to drug medication. Local high frequency activity may then be

generated after beta suppression unlocks �ring patterns able to activate the related

sources.

Further studies investigating the synchronous activity in multiple structure of

basal ganglia network and/or motor cortex are needed to fully address these ques-

tions.

The nonlinear cross-frequency coupling analysis obtained combining di�erent

sources for phase and amplitude frequency in terms of spatial localization lead to

important observations, that are discussed after the methodological considerations.

PAC strength have been estimated usingMV L, the CV , and the PLV measures.

The MV L and CV are measures said to be amplitude-dependent, meaning that in

some way the gain of the signal (or signals) used for their computation in�uences

the �nal result. Instead, the PLV is amplitude-free since it involves only the use

of phases. In previous studies arti�cial data have been used to compare the perfor-

mances of the PAC estimators [Tort et al., 2010]; however and in this work they have

been applied to real data and qualitatively compared. Amplitude-dependent mea-

sure have proved to be strong, especially in the quanti�cation of di�erent coupling

strengths, but they're not comparable between di�erent signals when their baseline

power varies considerably. The standardization performed with surrogate parameters

serves not only as signi�cance testing, but also as a tool to make the PAC measures
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more comparable when applied to di�erent signals. Instead, the amplitude-free mea-

sures are highly comparable but have shown less discrimination power in terms of

PAC strength [Tort et al., 2010].

The phase-amplitude coupling in untreated condition was found to be stronger

in the superior and middle STN bipolar LFP derivations, with beta band range

as phase frequencies and �OFF� state HFO as amplitude frequencies. This result

was consistent with the observation that HFO activity in the unmedicated state

was biased towards the superior and middle STN. More interestingly, the PAC maps

showed the same topology when combining amplitude frequencies from top or middle

STN bipolar LFP with phase frequencies extracted from all bipolar LFP derivations.

While it is unlikely that beta activity recorded at the inferior border of STN is

directly coupled with HFO rhythms in the superior STN border, it is possible that

the excessive beta activity typical of unmedicated PD interacts with other rhythms

(maybe not even generated in the STN), causing modi�cations of the physiological

information transfer in the basal ganglia circuit and playing a role in generating the

motor symptoms of the disease.

Accordingly to literature, the PAC vanished in medicated condition. This may

represent a further proof that segregation of neural oscillations and independence of

rhythms represents, to a certain extent, a requirement for the physiological behavior

of neural networks [Marceglia et al., 2006]. However, the mechanism of action of
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STN PAC is still unclear. One hypothesis [de Hemptinne et al., 2013] suggests that

in parkinsonian condition the cortical beta input to the STN is not �ltered as should

happen in physiological state, leading to a pattern of neuronal discharges where high

frequency bursts are tangled with slow beta oscillations, increasing therefore the

cross-frequency coupling mechanism.

The movement analysis aimed to correlate spectral power changes during motor

task execution across states with objective data represented by the number of alter-

native key tapping on a common computer keyboard. The result showed correlation

in terms of low beta power changes from all bipolar LFP and �ON� state HFO from

middle STN bipolar derivation. Since the low beta power change correlated with

performance in all STN locations (top, middle, and bottom bipolar LFP) no speci�c

spatial information could be deducted. Instead, positive correlation with HFO power

change was found only in LFP 1-2, suggesting that signi�cant modulation in high

frequency rhythms power in the corresponding region of STN is involved in motor

execution.

Signi�cant phase-amplitude coupling was found both in pre-task rest condition

and task execution, suggesting that cross-frequency interaction is not directly in-

volved in motor processes, but rather may represent a background mechanism proper

of the basal ganglia network in pathological condition. However, other studies re-

ported a modulation of PAC during motor process [Lopez-Azcarate et al., 2010].
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Figure 5.1: Hypothesis for the presence of abnormal phase-amplitude coupling in
the parkinsonian state. The cortical beta input to the basal ganglia circuit is �ltered
in the physiological state while remains present in parkinsonian condition. This
may lead to a loss of independence between neuronal discharges at di�erent rates.
Reproduced from de Hemptinne et al. [2013].
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This discrepancy may result from the observation that in the untreated condition,

excessive beta activity was still present during task execution, even if with lower

power compared to the rest condition.

There are some limitations related to this work. The most important is rep-

resented by the fact that the recordings took place three weeks after the surgical

implantation of DBS leads. The surgery provoked cerebral tissue lesions and conse-

quently generation of �brous capsule, which makes it harder to detect high frequency

oscillations from nearby neuronal populations. Also, the electrode placement itself,

even if con�rmed by post-operative images, may di�er inter-subjectively. The group

analysis however helps �nding common patterns among patients.

The analysis conducted in this work con�rmed the potential clinical use of local

�eld potentials, since they provide quantitative information about the condition of

the patients. While this work focused on the pathophysiology of Parkinson's Dis-

ease, the methodologies used may be implemented in tools for adaptive deep brain

stimulation and intraoperative decision support. One of the main uncertainties in

the deep brain stimulation surgical protocol is, of course, the correct placement of

the macroelectrode lead. Since it has been showed that nonlinear cross-frequency

coupling and �OFF� state HFO have spatial patterns, depth-by-depth intraoperative

LFP recordings may provide useful information about the localization of the ex-

ploratory electrode in the basal ganglia network and, speci�cally, nearby and inside
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the STN. The adaptive deep brain stimulation [Little et al., 2013, Priori et al., 2013]

is a closed-loop stimulation protocol which delivers therapeutic stimulation based on

a feedback control variables obtained from deep brain recordings. The LFP online

analysis could provide features for the control variables allowing smarter stimulation

protocols.
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