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ABSTRACT

The thesis is composed of two essays on smart contract platforms presented as the two sections of

this document. The essays represent the major chunk of my core research work during the course

of my Masters program. My research journey started with learning about Bitcoin, blockchain and

smart contract programming back in the fall of 2019 and spring of 2020. After studying and pub-

lishing work related to smart contract programming vulnerabilities in Vyper and Solidity [27], I

moved on to studying more about blockchains at L1 as well as about semantic web and event-

driven programming models in the summer of 2020. This inspired the first essay of the thesis

which explores the design and implementation of a smart contract platform that is designed on

the event-driven execution model and compares it to the traditional smart contract platforms that

employ the transaction-driven execution model. The resulting work was published in the fall of

2020 and is presented here as the first essay i.e. Part I.

During the design and testing phase of our event-driven smart contract platform, we identi-

fied the deployment and adaption of oracles as one of the biggest use-cases to benefit from our

proposed design. Naturally, this lead to a comprehensive study of oracle usage on the Ethereum

mainnet to identify and quantitatively predict the improvements that our proposed design might

bring to the usage of smart contract oracles. This study is presented as the second essay i.e. Part II.

Although, both the studies can be viewed and read independently, the second study was done

as a supplemental project to our first project and should be viewed as such.
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1 Abstract

Blockchain-based smart contract platforms have traditionally employed the transaction-driven ex-

ecution model. This chapter presents an alternate framework for blockchain-based smart contract

execution called EDSC. Our platform design presents a novel approach to tackle the scalability

and performance challenges facing the smart contract ecosystem. We base EDSC’s design on the

Ethereum template, and it can be readily implemented for other existing smart contract platforms.

To evaluate our design, we perform an experimental implementation using the Ethereum client.

Our experiments with performance modeling show, on average, a 2.2 to 4.6 times reduced total

latency of event-triggered smart contracts, demonstrating the effectiveness of the design in sup-

porting time-sensitive applications. Additionally, we comment on the design’s potential security

aspects and demonstrate its utility by discussing potential use cases.
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2 Introduction

The advent of Bitcoin, in late 2008, demonstrated how a digital payment system could be imple-

mented using a novel decentralized public data structure, i.e., a blockchain [40]. Additionally,

Bitcoin also incorporated a built-in scripting framework that could be used for controlling the

tokens, storing data, and specifying logic on the blockchain itself. This was a decentralized im-

plementation of smart contracts [45]. Smart contracts are essentially pieces of code that enforce

the terms and procedures of an agreement or protocol digitally. However, Bitcoin’s smart contract

functionality was limited in its application, and it was not until the introduction of Ethereum [10]

that smart contracts took center stage in the cryptocurrency arena. Ethereum offered an integral

Turing-complete programming language to create blockchain-based smart contracts, allowing for

their employment in a wide range of potential use cases [29].

Presently, smart contracts continue to grow in their utility and outreach. Since the launch of

Ethereum, many alternative smart contract platforms have also emerged, which have gained consid-

erable adaption and sizeable user bases [21] [7] [31] [30] [37]. The majority of these platforms aim

to overcome or readdress Ethereum’s limitations and trade-offs, e.g., achieving higher throughput,

decreasing computation costs, deploying a different consensus mechanism, etc. Although initially

limited to token control and on-chain data access, smart contracts today are increasingly interfac-

ing with real-world data and events, rapidly extending their application sphere. This interaction

is enabled through oracles [4], which are services designed to provide external information in the

smart contract environment. In order to avoid a single point of compromise for such integration,

many recent oracle projects [20] [43] [42] are adapting a decentralized approach for collecting and

aggregating data.

Despite numerous innovations and advancements, the smart contract ecosystem’s evolution has

been stifled by various impediments, mostly prevailing in transaction performance (e.g., latency,

throughput) and scalability domains. Although several projects [3] [46] [48] have sought to address

these concerns through imaginative solutions like sharding and execution parallelization; many
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complex design challenges remain unsolved for practical purposes. With the recent unprecedented

growth of decentralized financial services (DeFi), an ever-increasing percentage of smart contracts

are interfacing with oracle networks to fetch real-world information [34] [28]. Since this interfacing

is accomplished through two-way transactions on most platforms, the trend is bound to further

burden an already congested system [38].

In the smart contract space, most existing popular platforms conform to the transaction-driven

execution model. This means that all contract executions on these platforms are triggered by ini-

tiating transactions on the system through non-contract accounts. In this chapter, we present an

alternative smart contract platform design built on the event-driven execution model. We call our

design EDSC (an Event Driven Smart Contract platform). The event-driven architecture pattern

is a simple yet powerful distributed architecture pattern, proven to produce highly scalable and

adaptable applications. The model enables communication by allowing participants to publish noti-

fications of occurring events, along with subscribing to events of interest and being asynchronously

notified of their occurrence by the system. The event-based methodology has previously been

extensively studied in the context of systems and software engineering [22] [41] [44]. We reason

that a smart contract platform framework centered around the publish/subscribe paradigm will

be a good fit for many emerging smart contract applications that demand or can benefit from

timely execution. We also demonstrate that it will be, by design, better positioned to address the

aforementioned issues hampering the ecosystem’s progression.

This chapter intends to describe an event-driven smart contract platform’s architectural layout

and implementation. We use the Ethereum architecture as the base template and outline the

modifications required in its design to actualize our system. The rationale for this approach is

that we assume most readers to be acquainted with Ethereum’s mechanics, given that it is the

pioneering and most widely used smart contract platform to date. This familiarity, we hope, will

allow the readers to draw parallels between the two models while enabling us to communicate our

design succinctly. It is worth mentioning that although presented using Ethereum as the reference,

the concept of event-driven smart contracts illustrated in this work can be extended to other smart
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contract platforms, consensus protocols, and programming models with trivial adjustments. The

proposed design also has numerous advantages over the prior art that attempted to support events

in the application layer. To the best of our knowledge, the proposed system is the first smart

contract platform designed upon the event-driven execution model. We hope that our work will

inspire further research in the direction of applying the event-driven communication paradigm to

blockchains.

To summarize, the main contributions of the work and this chapter are:

• We propose an event-driven smart contract platform with native support for real-time event

processing.

• We provide the design of an event-based system using Ethereum as a reference target.

• We describe the design’s advantages in potential use cases and comment on its security aspects.

• We have performed an implementation using the Golang Ethereum client and conducted ex-

periments where performance modeling results show on average a 2.2 to 4.6 times reduction

in total latency of event triggered smart contracts, which demonstrates its effectiveness for

supporting contracts that demand timely execution based on events.

The remainder of the chapter is organized as follows: We begin by giving an overview of related

work in Section 3. Then in Section 4, we provide the basic description of an event-based platform

and its desired functionality. In light of the functionality description, we comment on the benefits

and limitations of such a system in Section 5. Section 6 presents our proposed system design and

details the alterations it makes to a transaction-driven framework. Section 7 provides commentary

on the design’s security aspects. We present our experimental implementation in Section 8 and

discuss the results and findings in Section 9. Section 10 discusses potential use cases and examples

to explain the design. Finally, we present our concluding remarks in Section 11.
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3 Related Work

In recent years, the advancement of blockchains, smart contracts, and decentralized infrastructures

have created an emerging frontier that combines traditional concepts of event-driven systems with

blockchains. As such, there have been ongoing efforts to harness the benefits of this paradigm in

blockchain-based smart contracts. Oracles and subscription-based payment models have sought

to achieve this but have encountered limitations. Currently, oracle systems typically follow a pull-

based model with the client contract requesting data from an off-chain source. Present designs favor

off-chain implementations to incorporate the event-based subscription model and then interact with

the blockchain.

We take as a case study the implementation of the IBM blockchain, which is built on Hyper-

ledger [11]. Prior work by Hull [24] shows how event-based processing is used for data-centric

applications. The commercial implementation and offering by IBM [25] uses Java micro-services

to listen for events from the blockchain using OpenLiberty. Blockchain provides the integrity of

the process, whereas the java micro-service layer and OpenLiberty ensure it can have event-based

transactions. However, apart from the implementation layer, it does not use the smart-contracts

for any event-based transactions. Another commercial offering is provided by Amazon [9], which

uses the Hyperledger Fabric and Ethereum as the underlying layer. Their implementation allows

three distinct kinds of events to interact with the blockchain network, namely: (i) Block event,

which occurs when a new block is added to the ledger; (ii) Transaction event and; (iii) Chaincode

event, which can hold conditions for triggering events. The triggering mechanism for these events

relies on AWS Fargate to act as an event listener and then on Amazon Simple Queue Services to be

processed by lambdas. Just like IBM, Amazon’s implementation also relies on a layer of auxiliary

services to enable event-driven architecture.

Recent works remedying this limitation include EventWarden [33], where the authors propose

a decentralized event-driven proxy that can interact with Ethereum-like blockchain networks and

pass the transactions. This approach eliminates the use of auxiliary services similar to what IBM
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and Amazon were employing since this can be implemented directly onto the Ethereum network. It

allows a user to create a proxy smart contract describing an event into the contract. Anyone in the

blockchain network can trigger a release of the reserved transaction by calling the proxy contract

and showing that the concerned event has been recorded into blockchain logs.

Another recent work Ethereum Alarm Clock [39] allows a user to deploy a request contract

with a future time limit on the Ethereum network. However, this project supports only one type of

event, the arrival of a predefined time-frame. Work by Chao and Palanisamy [32] takes a similar

approach to handle only events based on time.

In contrast, this work tackles the fundamental limitations seen in [25, 9, 39, 32] by proposing

a smart contract platform based on the event-driven execution model, complete with a pub-sub

scheme, which can be applied as a modification on the present Ethereum architecture or other

smart contract platforms.

4 Overview of EDSC- Event-Driven Smart Contract Platform

EDSC is built on the event-driven execution model using the publish/subscribe communication

paradigm. In the publish/subscribe interaction scheme, components subscribe to events of interest,

or to a pattern of events, and are subsequently asynchronously notified by the system when any

event published matches their registered interest. In order to incorporate this paradigm into a

smart contract platform, the platform design should provide the following basic features to the

participating smart contracts and external accounts:

• Event Definition: Any external account or smart contract in the system is able to de-

fine/register new and unique event types in the system. This is analogous to defining a class

in an object-oriented programming paradigm.

• Event Subscription: Any smart contract in the system is able to subscribe or unsubscribe

to a particular event type that is already defined in the system. At the time of subscription,

the subscriber contract may specify additional logic that will be used by the system to evaluate
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whether to invoke it in response to the event of interest’s occurrence in the system.

• Event Publishing: Any smart contract is able to publish an event that has already been

defined in the system.

In order to provision the three fundamental features mentioned above, the smart contract system

needs to incorporate the following functionality specific to the event-driven execution model:

• Event Definition Maintenance: The event templates are saved immutably in the system.

This may be achieved in practice by referencing the event definitions on the blockchain itself,

similar to how smart contract code is stored on-chain by reference in Ethereum.

• Subscription Information Maintenance: The subscription information is also saved im-

mutably in the system. This can also be achieved in practice by referencing the subscription

information on the blockchain itself, similar to how smart contract code is stored on-chain by

reference in Ethereum.

• Event Matching: Every time a published event is processed, the system determines all the

smart contracts which are subscribed to that particular event. The system also evaluates

the corresponding subscription logics of all those subscriptions to determine which smart

contracts to invoke in response to the publishing event.

• Event Queueing: Based on the event matching, the system queues all the matching sub-

scribed smart contracts for execution. Since the system is asynchronous, there are no guar-

antees as to when the subscription triggers will be executed. The system guarantees the

queueing of these executions.

Since the publish/subscribe method is an anonymous and indirect communication paradigm, the

system decouples the communicating entities i.e., the smart contracts in space and execution flow:

• Space Decoupling: The publishing and the subscribing smart contracts do not need to

know each other since they are not required to address each other for communication. Hence,
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the event publisher does not maintain a record of all the smart contracts which will be evoked

in response to its event publication. Likewise, the subscriber may subscribe to events from

multiple sources without specifying them individually.

• Time Decoupling: There is no provision for the publisher or the subscriber to run within any

time constraint. The subscriber execution can be queued for a later time window (depending

on future events).

• Execution Flow Decoupling: The inherently asynchronous communication decouples exe-

cution flow from inter-contract communication. A smart contract is not blocked when sending

a notification to an external contract. The system can handle the subscriber execution in re-

sponse to the notification by running it concurrently or queueing it for later. The subscriber

and publisher of events do not have to be synchronized in their execution.

5 Advantages of EDSC

Based on our basic design framework from Section 4, the proposed smart contract system will offer

attractive advantages to the ever-evolving ecosystem of smart contracts:

• Lower Fee for All: We reason that the proposed platform will result in a majority of the

system participants having to pay a lower gas fee for their executions, especially in a system

that is highly interfaced with external oracle systems through oracle contracts. User smart

contracts only pay for the gas for executing themselves. In other words, the transaction

cost, which is now the cost of putting the event on-chain, is shared by all the subscribers

collectively.

• Improved Security: Ethereum smart contracts developed in Solidity have been marred

with security issues centered around reentrancy and unexpected reverts [16]. This is because,

by design, an Ethereum transaction has to complete the contract execution in the current as

well as called contracts before the transaction is considered complete. On the other hand,
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the event-driven paradigm is free from such vulnerabilities, since events are asynchronously

published without waiting for the subscriber contracts to run. This offers better security

guarantees.

• Less Network Clogging: Having multiple smart contracts subscribe to a single event

translates to lesser network usage as opposed to smart contracts requiring transactions to be

broadcasted every time they need to execute or interface with an oracle provider. Also, only

a single event needs to be recorded on-chain as opposed to multiple transactions. This is

beneficial for freeing up vital network bandwidth, which has recently been clogged [38].

• Better Scalability: We also claim that an event-driven system based on the proposed

basic design is better positioned for employing parallel-processing and sharding solutions for

scalability. This is because all executions are restricted in context to the currently executing

contract, and event-based subscription triggering occurs asynchronously. All events can be

posted to a shared global non-sharded trie for inter-shard communication borrowing from a

similar concept in the Zilliqa project [46].

In contrast to the advantages offered, the proposed platform also has the following limitations

compared with the transaction-driven model:

• System State Predictability: Once the proposed system gets large enough, it becomes

more computationally expensive to predict beforehand, a single event’s effects on the entire

system state.

• Increased node costs: Compared to the transaction-driven model, running and maintaining

a node will be more computationally expensive in the event-driven model. As mentioned

in Section 3, each node has to maintain the subscription and event definition state of the

entire system. Each node also performs evaluations related to subscription logic and has to

maintain the triggered subscriptions’ execution buffer. However, we argue that the increased

throughput and scalability, along with the decreased network traffic will justify this trade-off.
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6 EDSC System Design

We present the detailed design of the event-driven smart contract system based on the current

Ethereum design framework. The rationale for this approach is that Ethereum is arguably the

simplest and unarguably the most widely adopted smart platform to date. Using Ethereum’s

design as the base reference will allow the readers to grasp the design proposals clearly and draw

parallels between the two approaches. Note that the design presented is general and independent

of any specific platform.

6.1 Event Definition Trie

All events have to be defined in the system before smart contracts can subscribe to or publish them.

The event definitions must be stored in the system immutably and free from loss. In the Ethereum

context, this may be achieved by requiring all nodes to maintain the global event definition data

locally. This event definition data can then be referenced on the blockchain for immutability. This

is analogous to how the current Ethereum design maintains the state of the system. In other words,

the event definition trie will need to be added to the Ethereum system, as illustrated in Figure 1.

As mentioned in Section 4, any smart contract or external account in the system has the ability

to define a new event type. This can be done by posting a special type of event that is already

predefined in the system. The special event’s payload consists of the definition of the new event’s

template. Any node of the network, when processing this event, adds the event definition to their

local event definition database. An event definition consists of the attributes listed in Table 1.
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Table 1: Event definition attributes.
Attributes Description

Event Identifier This is a unique identifier for every event type that is defined in the system. One possible
implementation is to use the hash of the entire event definition.

List of Variables A list of variables and their types which are posted as payload whenever this event is published
in the network.

Comments This part is for documentation purposes and can be used to write a description of the event,
document the variables in the payload, for specifying other information for potential subscribers
like event generation frequency or for any other information which the event definition originator
desires.

6.2 Event Subscription Trie

Once an event has been defined in the network’s subscription trie, the system participants, i.e.,

the smart contracts, can subscribe to such events. Subscribing to an event allows a smart contract

to be executed in response to the particular event getting posted in the network. Whenever the

subscribed event occurs, the subscriber smart contract’s default callback function is asynchronously

invoked, and the event’s unique identifier and the payload are passed as arguments. The smart

contract can then execute the desired functionality accordingly.

Like event definitions, event subscription information also needs to be stored in the system

immutably and without loss. We propose storing the subscription information in a similar manner

to the event definition storage where it is stored across all nodes and referenced on the blockchain.

In fact, the event definitions and subscription information can be combined into one trie which can

be referenced on-chain, as shown in Figure 1.

Like event definition, event subscription also occurs through a special type of event that is

predefined in the system. Smart contracts post this event to signal their desire to subscribe to a

particular event type, which is passed as the payload of this predefined subscription event. The

nodes of the network then update their subscription trie when this event is processed. In addition to

the event type, the system also allows subscribers to specify other parameters of their subscription

which are summarized in Table 2.

All the subscription parameters are stored in the subscription trie against each subscription

and used by the system to determine which subscriptions to trigger in response to a generated

event. Every time a smart contract makes a subscription to an event type, an entry against that
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Figure 1: Subscription Trie addition to Ethereum design.

event type is added in the subscription trie with the subscriber smart contract’s address and all

the subscription parameters provided.

6.3 Event Generation

Events can be generated in the system in three ways. Firstly, by external or non-contract accounts,

which is similar to generating a transaction in the Ethereum system. An external account has to

digitally sign such an event, similar to Ethereum transactions. Such events are generated outside

the system and then broadcast in the network. Secondly, events can also be generated by smart

contracts using a specific event generation opcode. Such events can be thought of as the analogous

functionality for the CALL opcode in the Ethereum domain but working asynchronously. Thirdly,

certain special events can be generated by the system itself as described in Section 6.4. The second

and third types of events do not have to be digitally signed and only exist in the execution envi-

ronment. Only the external account generated events are recorded on-chain, similar to Ethereum’s
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Table 2: Event subscription attributes.
Attributes Description

Event Identifier The unique identifier for the event to subscibe to.
Gas Rate Each subscriber contract at the time of subscription specifies the gas price that they will pay for

their execution as a result of the subscription. The nodes decide which subscriptions to execute
based on the gas price that they are willing to pay. So setting a higher gas price decreases
the delay between event generation and subscription execution. Note that the design can be
adapted to other public blockchain systems that apply alternative incentive mechanisms for
running smart contracts.

Subscription Fee The maximum fee that the subscriber is willing to pay the event publisher in order to be triggered
by its generation (e.g., gas limit for event subscription in Ethereum).

Publisher Iden-
tifier

The subscriber also has the provision to only subscribe for execution when the event is published
signed by a specific public key. This feature exists to allow a subscriber to only run in response
to event publishers which they trust and to prevent spamming in the system. A subscriber may
provide more than one public key.

Block Rate The subscriber can also specify a block rate to run the subscription. For example, a subscriber
may only want their subscription to be executed once every one hundred blocks for a frequently
occurring event.

Event Rate The subscriber can also specify the event rate to run the subscription. For example, a subscriber
may only want their subscription to be executed once every hundredth instance of a specific
event being generated.

Subscription
Logic (Con-
straints)

The subscriber may also use the subscription logic field to specify any complex expression in-
volving the block number, block time, event payload, event publisher public key, etc. This
expression can then be evaluated to determine if the corresponding subscription should be trig-
gered. The computational cost of evaluating the expression will be paid out of the subscriber’s
account at a fixed system rate.

Table 3: Event message attributes.
Attributes Description

Event Identifier The unique identifier of the event in the system.
Publisher Iden-
tifier

The public key of the event publisher is required when generating an event. The subscribers
may use this information to subscribe to events from specific entities only. If the event is
generated through an external account, then a digital signature corresponding to that public
key is required to establish identity.

Payload The event object also contains the event’s payload arguments as defined in the event definition.
Subscription Fee This is the fee that any contract which subscribes to this event must pay to the event publisher

when it runs in response to the event. This is different from the gas fee which is paid to the
miners as the computation, network, and storage costs of running the smart contract. The
subscription fee exists purely to incentivize event publication on the network.

Inclusion Fee This is the fee that the publisher is willing to pay the miners for the inclusion of their generated
event in the block. This is only required of external account generated events.

transactions. More on the topic follows under Section 6.8.

An event generation message needs to contain the parameters summarized in Table 3.

6.4 Special Event Types

In addition to event definition and subscription/unsubscription events, there are two other special

types of events in the system: the transaction event and the deploy event. A transaction event is an

event to which every smart contract is subscribed by default and is triggered if the event contains

that smart contract’s address in its payload. The transaction event is used to transfer tokens
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from one account/contract to another. The system automatically increments and decrements the

receiver and sender’s balances depending upon the value specified in the payload when this event

is processed. Since the transactions are also now events, the proposed system processes all transfer

of tokens asynchronously too.

The deploy event is used to deploy a new smart contract in the system and specifies the contract

code in its payload. It is analogous to using a transaction in Ethereum to deploy a new contract.

In addition to these two events, there can also be other special events that are system generated.

Currently, we propose to have one special system generated event, which is the new block event.

This event can be generated by the system once for every block and contain information like the

block number and other block parameters. This special event does not need to have an Inclusion

and Subscription fee, and neither requires a signature. Smart contracts in the system may subscribe

to this event, in order to be triggered automatically at certain block intervals.

6.5 Gas Fee for Computation

In a transaction-based system, the entity that generates a transaction has to pay for the gas fee

associated with the computation, storage, and other costs of any smart contract code executed

due to the transaction. This includes the contract code to which the transaction is sent and those

contracts that the recipient code calls or invokes.

Such a design cannot be adapted with an event-driven model to avoid subscriber spamming.

Hence, the natural design is to have any subscriber pay for the gas fee associated with running its

code. This is also in line with the event-driven paradigm’s space decoupling since the publisher does

not have to concern itself with the subscribers to its event. The event publishers pay an inclusion

fee (specified as part of the event data structure) each time they publish an event to the chain.

This fee is specified explicitly if the event is published externally. In case the event is published

internally, i.e., through a smart contract, the fee is determined by the gas fee being paid by the

publisher contract for its execution.

The other side of this problem is a malicious contract spamming the network with events and
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draining subscriber contracts of their ether. This can be addressed by allowing smart contracts

to specify, at the time of subscription, to only run for events if generated by a particular public

key (contain the corresponding digital signature) as described under heading 6.3. Such a system

works, for example, even if an oracle platform has multiple nodes because they can all still generate

events with the same public key signature. Additional logic and using the block rate and event rate

variables also help prevent these spams from occurring.

All smart contracts specify at the time of subscription the gas price they are willing to pay

for their execution. The system prioritizes subscription execution, depending upon the gas price

offered. Perhaps in the future, a provision can also be made for a floating gas price, with a maximum

value and a weight value defined in the subscription parameters and the gas price computed by the

network dynamically based on the variable system traffic and the constant weight parameter.

6.6 Incentivization for Event Publishing

Smart contracts that publish events have no incentive to do so unless they are being compensated.

For example, an oracle interface contract providing external data to the system through events needs

to be compensated for its services. In a transaction-based system, this is pretty straightforward.

The user contract pays the interface contract when it interfaces with it, i.e., generates the first

transaction. In an event-driven system, this can be achieved by having the publisher describe

a compensation rate each time it publishes an event. This is done through the subscription fee

parameter in the event data structure. Each subscriber then has to pay the publisher the set fee

in order for the system to execute the subscriber contract code’s subscription. So the subscriber

pays both the miners and the publisher for the subscription execution. Subscribers specify the

maximum rate they are willing to pay through the subscription fee field at the time of subscribing.

6.7 Execution Independence and Atomicity

In the event-driven paradigm, smart contracts only interact with each other through posting and

listening to events. Smart contracts do not have to make calls and wait for the execution of other
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smart contracts before resuming their execution. This is the execution flow decoupling which the

event-driven paradigm provides. Hence, once a smart contract starts executing in the proposed

system, it completes its execution independently of other smart contracts. The system must ensure

that the currently running smart contract finishes its execution before any new contracts triggered

by the completed contract are run. The system guarantees atomicity in smart contract execution,

and any exceptions raised in execution result in the current smart contract execution being reverted.

However, no other contracts and their state is affected by the reversion.

This approach saves the systems from many troubles that exist in the transaction-based systems

like cyclic executions and execution livelocks/deadlocks. This paradigm also prevents the publisher

contract’s execution state from being reverted by any subscriber contracts running out of gas or

throwing an exception.

The system can still allow the reuse of smart contract code by having a similar opcode like that

of DELEGATECALL in Ethereum. Since the called contract’s code is executed in the state of the

current contract, this will not violate the system’s paradigm.

6.8 Subscription Execution and Selection

In a transaction-based system, the selection of contracts to execute is relatively straightforward.

Upon receiving a new block, any node begins executing transactions in the order that they are

present in the block transactions list, and for each transaction execution, all subsequent in-lying

smart contract calls and executions are executed first in the form of a LIFO stack.

The situation is somewhat trickier in an event-based system. If executing a smart contract

generates one or more events, we have to decide which subscriptions to execute first. The previous

heading has already established that a running smart contract execution will complete before any

other subscriptions are processed. Hence in the event-driven system, a buffer is maintained of all

pending subscription executions and events to process. We mandate that the list is ordered based

on whichever subscriptions pay more gas fee. If two subscriptions pay the same gas fee, then the

older defined subscription gets the preference.

17



Whenever a new event is generated while running a smart contract, all its subsequent relevant

subscriptions are added to the execution buffer, which is somewhat similar to the pending trans-

action pool in Ethereum. Subscriptions go into the buffer list, and their position is determined by

the gas fee that they are paying. Whenever a subscription execution completes, the system will

pick the next subscription from the list to execute. This buffer is not discarded between blocks and

allows event-triggered subscription from previous blocks to run too, provided space is available.

However, unlike the transaction-based model, there is no guarantee of a subscription being exe-

cuted in the current or even succeeding blocks. Subscriptions paying more gas fee will always get

the precedence in the system. Events that are generated externally have to be processed indepen-

dently. The processing of an external event refers to determining the corresponding subscriptions

to execute against it. External events also exist in the execution buffer competing for processing

with subscription triggers, and the inclusion fee specified when generating these events determines

when the system will process them. Once an event is processed by the system, its corresponding

subscription triggers replace it in the pending executions buffer as illustrated in Figure 2.

Having a deterministic fee-determined execution rule allows us to do away with putting all

events on-chain. Since the system follows a gas price determined precedence rule for subscription

executions, all nodes will arrive at the same state, and there is no need to put contract generated

events on-chain. This allows the system to be as efficient in its chain space usage as the transaction-

based system in the worst-case scenario. Any advantage provided by using event subscriptions is a

bonus.

6.9 Block Validation

For block validation, each node looks at only the events generated by the external accounts present

in the event list for the current block. The node then proceeds to place these events in the pending

subscription buffer. It then begins subscription executions/event processing from the pending

subscription buffer, and subscription triggers for all the internal events generated by contracts

are also placed in the buffer as they occur. The node keeps on executing subscriptions/event
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Figure 2: Event processing in execution buffer.

processing until the block gas limit is reached, or the buffer is empty. The node then compares the

state, receipt, and event subscription/definition trie references to the ones provided in the block.

If they match, the block is approved.

6.10 Parallel Processing and Sharding

The system design allows it to be a better candidate for sharding and parallelization solutions than

transaction-driven models. Since a smart contract being executed is not dependent on other con-

tracts’ states, other contracts can be simultaneously executed in parallel on other shards. Because

contract execution atomicity is guaranteed, there is no need for state locks. In case sharding is to

be implemented, we propose having a shared subscription/event definition trie between the shards

and a shared pending execution buffer. The shards can then divide contracts among themselves

and only execute the relevant ones. Since the pending subscription execution list will be shared,

they will have visibility to any events generated for the contracts in their domain. Any new events
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generated will be broadcast on the network for all shards to see.

A summarized comparison between the transaction-driven execution model and the event-driven

design proposed in this section is presented in Table 4.

Table 4: Comparison of Transaction-driven and Event-driven models.
Transaction-driven model Event-driven model

Communication Smart contracts and external accounts com-
municate through transactions.

Smart contracts and external accounts com-
municate through events.

Execution Trigger Smart contract executions are triggered by
transactions initiated through external ac-
counts.

Smart contract executions are triggered by
events generated by external accounts and
smart contracts.

Computation Cost Execution costs of the triggered contract and
all its calls are paid by the transaction initia-
tor.

Subscribing smart contracts pay for their own
execution costs and specify the gas fee when
subscribing.

Synchronization All communication between participants is
synchronous with the triggering transaction.

All communication between participants is
asynchronous.

Token Transfer Tokens are transferred between participants
through transactions.

Tokens are transferred between participants
through a special transaction event.

Direct On-chain
record

Only external account generated transactions
are directly recorded on-chain.

Only external account generated transaction
events are directly recorded on-chain.

Indirect On-chain
record

The root of the transaction trie, state
trie(includes storage trie) and receipts trie is
referenced on chain.

The root of the transaction trie, state
trie(includes storage trie), event state trie (in-
cludes event definition and event subscription
trie) and receipts trie is referenced on chain.

Inter-contract
Sends

Inter-contract token transfers are completed
when triggering transaction is processed.

All inter-contract token transfers are asyn-
chronous.

Transaction/Event
Queueing

A pending transactions pool stores all the
transactions that are yet to be processed.

A pending buffer stores all the events and sub-
scription triggers that are yet to be processed.

Transaction/Event
Ordering

Miners are free to decide the order of the trans-
actions in a block.

Miners order the events/subscription triggers
based on the gas price offered.

Transaction/Event
effects

A transaction’s effects on the system state only
occur when the transaction is processed.

An event’s effects on the system state may
occur indefinitely (until the queueing buffer
clears).

7 Security Considerations

The event-driven smart contract platform design offers numerous security benefits over a traditional

transaction-driven model. For instance, when EDSC is integrated with Ethereum, the system

can prevent inter-smart contract communication-related vulnerabilities, including reentrancy and

denial-of-service attacks [16]. Since the proposed design provides execution flow decoupling, smart

contract execution independence and atomicity, these vulnerabilities are no longer present in such

a design. Aside from these vulnerabilities at the programming and toolchain layer, EDSC can also

mitigate vulnerabilities arising from transaction ordering dependence [36]. EDSC achieves this by

enforcing an order for event processing and subscription execution based on the gas fee. This design
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choice also provides the additional benefit of not having to put smart contract generated events

on-chain and allows for reduced block confirmation times. Below, we discuss some attack scenarios

and mitigation approaches.

Denial-of-service (DoS) is a realistic risk for public blockchains. For instance, an attacker may

try to flood the event processing module with event messages, or launch starvation attacks by

polluting the event buffer. These attacks can be mitigated with a variety of countermeasures, for

instance, imposing a limit on event update and event creation rates for an account. In addition,

event publishing also has a gas cost associated with it, which is paid by the publishers, to discourage

them from publishing events unnecessarily. Depending on the gas limit of an event, a registered

event can be kept in the system for only a bounded number of blocks (limit can be re-fueled later

by the creator with a transaction). Similarly, generating a new subscription/event definition and

deploying a new contract also have an associated gas fee, which the event publisher must pay

analogous to Ethereum’s associated gas fee for deploying a new contract. These fees serve as a

deterrent against spamming and DoS attacks on the system. Furthermore, event manager enforces

that for each event and user account, there is a maximum number of transactions that can be

triggered in each epoch, which prevents event buffer pollution. To further mitigate the risk of event

publishers spamming the system, EDSC allows subscribers to use variables like the Event Rate and

Block Rate as well as the Subscription Logic expression to control their frequency of subscription

execution.

Malicious market exploiting and related cheating behaviors are another type of threats. In

many DeFi applications such as DEX, a smart contract is applied to execute financial transactions.

Such systems are exposed to various market-exploiting behaviors (e.g., frontrunning) [18]. Similar

market-exploiting behaviors may pose a risk to EDSC. For instance, when a node observes an event

update where financial value can be extracted, the node may send a shortcut message that registers

to the event or updates its event registration to boost its priority in the event buffer. Similarly,

when a miner detects an opportunity that value is extractable, the miner may be incentivized to

directly insert a new event subscription or modify existing subscriptions. Since miner controls
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event processing, the miner may take advantage of this position to order events or transactions

generated from event subscriptions in a particular epoch in ways to extract values besides block

reward and transaction fees. In EDSC framework, such attacks are prevented by the global event

subscription state. The event subscription state is protected with Merkle hash tree and the root

hash is included as part of block header. Updates to the global event subscription state are initiated

through on-chain transactions and confirmed using the underlying blockchain consensus mechanism.

The EDSC system enforces minimal delay for changes to the global event subscription state to be

effective (minimal block delay). When a block is propagated and received by a peer, the peer will

validate the transactions that are triggered by events according to the global event subscription

state. This means that any foul play or dishonest manipulation of event triggered transactions can

be detected by other peers and the block will be rejected.

EDSC is also susceptible to “freeloading” risk, i.e., freeloaders in the system can observe the

events being published and copy the payload and publish the same events themselves at a lower

subscription fee. This problem also exists for oracle systems like ChainLink [20]. Several methods

can be applied to address this issue. For instance, ChainLink uses a commitment scheme to prevent

such attack, which can be easily incorporated into EDSC.

Since EDSC can be implemented on any smart contract platform, vulnerabilities that are present

in smart contract itself are not considered. We summarize all the security analysis in Table 5.

8 Implementation

8.1 Event Enabled Blockchain Node

The design of the proposed EDSC model can be implemented by extending Ethereum’s imple-

mentation. We used the Golang implementation of the Ethereum client for these modifications.

Extensions include adding support for messages for event definitions, event subscriptions and event

publishing as well as mechanisms in the client for event and subscription processing and an execu-

tion buffer implementation for queuing subscription and event processing.
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Table 5: Summary of event-driven design security considerations.
Layers Threats Analyses

Economic

Market exploiting attack (from miners or event
subscribers)

Addressed by enforcing block delay for any
update to event subscription states and Merkle
hash.

Miner ordering attack to realize extractable
values

Addressed by validation of scheduling of trig-
gered smart contracts according to the global
subscription states by peers (protected by hash
of subscription states stored in block header).

Programming & Toolchain

Reentrancy Attack
Addressed in the system by execution flow
decoupling and having execution independence
and atomicity.

DoS with unexpected revert
DoS with gas limit exceeded
Unchecked call return value
Call stack depth limit exceeded

Protocol

Transaction ordering dependence
Addressed by having gas price based execution
order for subscriptions and events.

Event publishing freeloading Addressed by commitment scheme.
Event spam attack on subscriber by publisher Addressed by allowing subscriber to specify

subscription logic and frequency.
DoS by event spamming Addressed by having gas fee associated with

event registration and publication.
Fairness Addressed by enforcing upper bounds of trig-

gered smart contracts per user account and/or
per event in each epoch.

Data Various Addressed in the system by execution flow
decoupling and having execution independence
and atomicity.

Consensus Various
Network Various

In Ethereum, the P2P module is responsible for communicating with the underlying P2P net-

work using a gossip-style strategy. It receives and routes various messages by communicating with

its neighbors (nodes that are peers) under protocol manager. In case of EDSC, the blocks and

transactions (now called external events) are propagated similarly. An external event can also be

an event definition (a special type of event). A node receives and delivers external events to the

extended protocol manager module that handles queues them in the execution buffer which is used

to decide the next step of processing. Smart-contract generated (not external) event-related mes-

sages like event definition, event publishing, event subscription, event un-subscription, and event

subscription updates do not have to be propagated on the network similar to Ethereum’s inter-

nal transactions. A gas fee is charged for operations such as creating an event, making an event

subscription, or updating an existing event subscription.

Event messages are signed using the ECDSA and secp256k1 digital signatures by the senders.

There is a nonce in each event-related message. Event definition messages are used to register an

event, identified with a 160-bit long unique identifier (created from the sender’s account address

and the event’s definition). In addition to the event payload data, each event update message
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identifies its associated event identifier and sender’s address.

Each node implements an event buffer and an event manager for processing event messages.

When a new external event message is generated / received, the ProtocolManager module first

sends the new message to the event manager for validation, including verifying the signatures and

checking other constraints and security requirements such as event update rates. When validation

is passed, external event messages will be forwarded to the PendingPool of Ethereum TxPool where

incoming and pending transactions are stored. Internal event messages are handled by the event

buffer (evtBuffer module) because they are not processed as transactions (external events).

The TxPool module and the event manager notify the ProtocolManager module that there

is a new event message that can be forwarded to other neighbors. Then, the ProtocolManager

randomly selects
√
N downstream peers that do not know the event messages as the targets to

forward this message. For the remaining N -
√
N downstream peers, the event message hash will

be forwarded. A peer will receive event message hashes from its neighbors. When a node randomly

selects one of the neighbors that have sent it the new event message each peer receives the hash of

a new message, the node waits for a while (e.g., 500 ms). During this period, if there is no other

neighbor sending the same event message to it, it sends a GetEvt message to the selected neighbor

for requesting the new event message. After the requested neighbor returns the event message, the

node first validates it. After validation, it is added to the TxPool of the node.

The extended protocol manager module processes the received event messages and delivers

them to the evtBuffer module. A node maintains and keeps track of the event subscription state,

as illustrated in Figure 3. This is a map from where the node can retrieve a list of subscriptions

for each event that is published. Each subscription links to a smart contract and a function. For

each event identifier, subscriptions are ranked based on priority (determined by gas price). For

each event identifier, event definition updates are ordered using the nonce. For each epoch, based

on the event subscription state and events in evtBuffer, a new set of internal event messages are

generated. The internal event messages are added to the node’s PendingPool. In the Ethereum

client, PendingPool maintains the pending transactions that have not been included in the blocks
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Figure 3: Illustration of event data structures and states.

on the blockchain but are ready to be packaged into a new block. Similar to how PendingPool

tracks pending transactions for each account, the set of internal events enforces upper bounds for

the number of internal event messages for an account.

After event messages are added to the PendingPool, the way they are sorted and picked for

execution and block creation very much follows the same design as that of the Ethereum client. In

case of proof of work consensus, the incentives for the miners to process and include the messages in

the next block, are the block reward and the transactions fees. A miner uses the gas cost mechanism

to calculate the fee for executing the subscribing smart contracts. To determine the fee for event

subscription executions in a block, it uses the two attributes: gas limit and gas price. In short, the

used gas multiplied by the gas price, corresponds to the fee that the miner receives, where used

gas depends on the computational requirements of the smart contract [8, 5], but never exceeds the

gas limit of the block. This is analogous to Ethereum’s implementation. The complete algorithm

is given in Algorithm 1 and the corresponding operations described in Table 6.
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Algorithm 1: Event processing algorithm.
Input : tx pool txPool , event updates newEvts, event subscription state evtSubState
Output: block , updated txPool

1 Create a new empty block
2 Set tmpEvts = newEvts
3 While
4 stop when txPool is empty
5 stop when block limit is reached (gas limit or block size)
6 Set tmpEvts = validate-and-filter-evts(tmpEvts)
7 Set newTxs = create-tx-based-on-evts(evtSubState, tmpEvts)
8 Set txPool = merge newTxs with txPool
9 Set pendingTxs = tx-filter(txPool)

10 Set sortedTxs = sort(pendingTxs)
11 Set selectedTxs = pick top n best txs from sortedTxs
12 block, tmpEvts = execute-txs(selectedTxs, block)
13 End while loop

Table 6: Operations.
Operation Meaning

validate-and-filter-evt Validate and filter events including verification of signatures and constraints
such as rate of event updates.

create-tx-based-on-evts Create txs based on event subscription states (enforce rules such as k txs at
most for each event based on priority).

tx-filter Filter pending txs, for instance m txs at most for each account.
sort Sort txs based on priority (e.g., gas fees).
execute-txs Execute pending txs and add to block.

8.2 Modeling Tools

For modeling EDSC’s functionality and experimenting with the design options in a scalable manner,

we extended BlockSim [6], a framework and software tool based on discrete-event dynamic models

for blockchain systems 1. BlockSim supports the analysis of a variety of blockchain deployments

as well as for design exploration and experimentation. It implements models for Bitcoin, Ethereum

and other consensus algorithms. Results of BlockSim have been validated by comparing them with

design properties and measurement studies available from real-life blockchains such as Bitcoin and

Ethereum (see Table 7 for some results comparing real measurements). We modified BlockSim’s full

modeling technique for Ethereum to support the EDSC framework and event triggered transactions.

The model includes all the design features i.e. external and internal events, event subscriptions

and definitions, blocks, transaction pool, and the blockchain ledger. Transactions (external event

messages) created by a node are propagated to all other nodes in the network. Upon receiving a

1The reason to use Blocksim in addition to a private testnet is that Blocksim can model Ethereum transactions
at a large scale and the tool is validated against real-world data.

26



Table 7: Blocksim result fidelity according to [6]
Measured Modeling result

Number of blocks included to the chain (per day) 6083 6079
Stale (uncle) rate 12.56% 12.55%
Throughput (transactions per second) 5.99 6.96

transaction, the recipient node appends it to the corresponding pool/buffer for event processing.

The high level process workflow is shown in Figure 4.
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Figure 4: Model process after extending Blocksim.

9 Experiment Results and Analysis

We performed experiments with the extended clients and the BlockSim modeling tool. The imple-

mented model of BlockSim for Ethereum has been validated using real data [6]. The model takes a

set of parameters as inputs. This current implementation of the Ethereum baseline model compro-

mises of 12.42s block intervals and a 2.3s block delay [6]. The model is configured to use the same
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parameters as currently in Ethereum. The results are based on the averages of independent simula-

tion runs of about 10,000 blocks. We compared the EDSC smart contract’s delay of execution with

the baseline delay of oracle based smart contracts in Ethereum. For this purpose we implemented a

simple oracle contract that fetches external data for a smart contract once requested, and submits

the fetched data in a new transaction. The delay is measured as the time when an event update

is sent out by an oracle node(in case of EDSC) or a transaction for the fetched data is returned

by the oracle node (in case of Ethereum) to the time when the transaction triggering the smart

contract is added to a block of the longest global chain (for both EDSC and Ethereum).

As indicated by the results, EDSC achieves shorter delays for running contracts that subscribe

to events, on average often less than the time of a block interval. In contrast, the baseline model

incurs delays longer than three blocks (similar delays observed in Ethereum contracts in real life

using oracle contracts: +3 block delays - see Figure 10 taken from [28] ). This pattern is observed

under different block intervals, varying from 8s to 60s.
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Figure 5: Block intervals and SC delays (seconds).

Both block delay and transaction(external event) delay can affect the latency between the event

update and inclusion of event messages from the triggered contracts. One can assume that this
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latency likely increases when either block delay or as the event/external event delay grows larger.

Results in Figures 6 and 7 confirm this hypothesis. However, delays in the baseline model appear

to be more affected negatively by block delay or transaction delay increase as illustrated by the

expanding distance between EDSC delay and the baseline model delay.
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Figure 6: Block propagation time and SC delays (seconds).

Other factors may also have an influence on the latency of event driven contracts. Block size

is one such factor. As suggested by results in Figure8, decreasing the block size will negatively

impact contract latency under both models. However, the latency benefit of the EDSC model over

the baseline is not affected.

On average, the delays under the EDSC model could be from 2.2 to 4.6 times less than the

delays of the baseline model (depending on block interval, block delay, etc), which demonstrates

its effectiveness for supporting contracts that demand timely execution based on events.

10 Example Use Cases

The event-driven paradigm is, by design, a better fit for many emerging smart contract applications.

The event-triggered execution, asynchronous communication, and contract execution independence
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and atomicity features are particularly instrumental in building scalable, adaptable, and easy to

maintain applications on the smart contract enabled blockchains. The paradigm also enables these

applications to be more reactive to external or internal triggers without overloading the system.

In particular, financial applications like algorithmic trading, deploying financial instruments, real-

time analysis, or digital asset management are naturally suited for the event-based model. The

model also has been proven instrumental in a diverse application range consisting of supply chain

management, online betting, oracle systems, gaming, etc. [23]. Here we elaborate on the design’s

benefits by discussing two broad real-world smart contract use cases.

Digital Asset Trading and DeFi Applications DeFi applications relay on third parties to

report real-time information about the market price of the assets from real-world (off-chain) sources

[35]. Consider implementing a digital asset trading platform on a blockchain-based smart contract

platform. The system would need regular and timely updates on various market indicators like

stock prices, trade volume, market trends, etc. Most of this external data is retrieved by employing

oracle systems. In fact, the demand for oracle-provided data is dominated by DeFi projects’ demand

for external market price feeds [28]. In a traditional transaction-based system, this would require
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Figure 9: Illustration of DeFi application.

tedious and meticulous interfacing with multiple oracle system interfaces. Regularly managing the

application would also not be easy. The implementer would have to figure out the interfacing details

multiple times and familiarize themselves with the data formatting across multiple interfaces and

providers. The two-way transactions for oracle fetches would burden the system if such applications

were widely deployed.

In an event-driven platform, the integration is much simpler, cleaner, and easier to manage. The

subscriber needs to know only the trusted publisher’s address and the identifier of the event that

they are interested in. The publisher might be a single entity or an oracle system. The event payload
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format and documentation would be available on-chain and would not differ if multiple sources were

publishing the same event. For example, if ten smart contracts are listening for a particular stock

price from a publisher, it would not result in ten or twenty transactions going on-chain. Instead,

only one external event is recorded on-chain, and all ten contracts can run by subscribing to this

one event. In addition to a cleaner interfacing mechanism, easier maintenance, and lesser data on-

chain, the event-driven paradigm also allows subscribers to listen for particular transactions. Since

transactions are just a type of event in our design, participants using such financial applications

might subscribe to transactions only from a particular party, only to a particular party, or random

transactions exceeding a particular amount, etc. This is not achievable in the transaction-driven

model. A transaction model might use external listeners to observe such events on the chain and

then make transactions to trigger specific executions but cannot do it without incurring a block

delay. We looked at the transaction data for ChainLink [20], which is the most popular oracle service

provider for DeFi applications and see it having a 3-4 block delay on average while responding to

oracle requests in the last eighteen months as shown in Figure 10.

Figure 10: ChainLink response average block delay (May 2019 to Oct 2020).

Prediction Market Application Similar to the first scenario, a prediction application on the

blockchain also benefits from an event-driven paradigm’s features. Smart contracts can lay dormant

unless executed by external events like the result of a sports match or an election. For long-term or
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small bets, it might not be feasible to use the transaction model to poll for these external events or

pay the fee for interfacing with an oracle system. The event-driven design makes such applications

more feasible for smaller amounts since the event generation cost (maybe from a reputable news

agency) is spread over numerous participants (subscribers). Again, the model also allows such an

application to, for example, monitor newly placed predictions and adjust odds accordingly.

Hence, it shows that for many use cases, the event-driven design would be more cost-efficient

(both computation and oracle fee), scalable, cleaner to implement, easier to maintain and allow for

applications to have greater visibility on-chain data and token exchange.

It is worth mentioning that research on oracle service is complementary to event driven model

of smart contract execution. These two are related but separate research topics. Our system can

integrate various types of oracle services such as TEE based oracle service [49], oracle service

employing secure multi-party computation [50], decentralized oracle service, etc. In fact, an event

driven smart contract platform can arguably provide better support for integrating oracle services.
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11 Conclusion

We proposed the concept for a novel event-driven smart contract platform with built-in event

processing support on the blockchain. We presented a basic design as well as implementation of

such a system in practice and commented on its potential benefits to smart contract use cases. We

also presented analysis on its security aspects. Experiment results based on BlockSim extension are

shown to illustrate performance advantages of event driven smart contract model. Being the first

attempt to combine the two avenues of blockchain-based smart contracts and event-driven design,

our work paves the way for future research on the subject in various directions. Future work can

explore the application of this paradigm to implementing a sharding solution for scalability.

Acknowledgements: This material is based upon work supported in part by the National Sci-

ence Foundation under award 1433817.
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Part II

A SURVEY OF CHAINLINK

ORACLES USAGE ON ETHEREUM
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1 Abstract

Smart contracts are dependent on oracle systems for their adoption and usability. We perform an

empirical study of oracle systems’ usage trends and adoption metrics to provide better insight into

the health of the smart contract ecosystem. We collect ChainLink usage data on the Ethereum

network using a modified Ethereum client and running a full node. We analyze the collected data

and present our findings and insights surrounding the usage trends, adoption metrics, oracle pricing

and service quality associated with ChainLink on the Ethereum network. We infer that ChainLink’s

usage and growth are dominated by the DeFi ecosystem and for its demand for decentralized price

feeds.

2 Introduction

Since the launch of the Ethereum [10] network in 2015, smart contracts [45] have become one

of the central features of blockchain-based systems. Although initially limited in usage to token

control and on-chain data access, smart contracts today are rapidly expanding their domain of

applications [29] due to the availability of oracles [4]. Oracles provide the interface between the

blockchain’s isolated execution environment and external off-chain data sources, enabling smart

contracts to retrieve and post real-world data and events. Consequently, the potential utility and

future mass adoption of smart contract platforms is inextricably tied to the oracle service providers

within the ecosystem.

Bearing that in mind, the motivation of this study was to survey oracle usage in the smart con-

tract ecosystem. Currently, different projects like ChainLink [20], Provable [43] and Augur [42] are

offering third party oracle services to smart contracts. These projects have adapted a decentralized

approach for collecting and aggregating oracle data, thereby addressing ”the oracle problem” [19] of

having centralized points of failures in blockchain environments. For our survey, we target Chain-

Link, which evidently captures the majority share of the oracle middleware market at the time of

writing. To establish this, we surveyed the top forty DeFi projects by market capitalization [17] and
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found all among them which had a use case for external oracles to be using ChainLink except two

projects. ChainLink provides a comprehensive list of their project integrations on their website [15]

and it includes major DeFi projects such as Aave, Ampleforth, Chiliz, Polygon, Kyber Network and

0x among others. Although ChainLink provides its oracle services over multiple chains, we concern

our study with ChainLink oracle usage on Ethereum since it is the most widely adopted smart

contract platform at this time. We believe that ChainLink oracle usage on Ethereum represents

the significant bulk of oracle traffic on smart contract platforms. Our study finds that Chainlink’s

growth and usage is strongly centered around the DeFi ecosystem where a few projects have been

responsible for most of the oracle service traffic for price feeds. We also show that Chainlink’s price

feeds feature has seen a steady growth since its inception whereas the external API feature has seen

negligible traffic. The oracle traffic statistics and trends provided by this survey can be used to

gauge the adoption and health of the smart contract ecosystem in general. At the time of writing,

we are not aware of any other formal study providing oracle usage insights in the smart contract

environment.

3 Background

ChainLink is an oracle service provider for smart contracts that is currently live on three platforms:

Ethereum, Binance Chain and the Matic Network. ChainLink went live in May 2019 and is currently

the most popular oracle service provider for smart contracts. ChainLink maintains a decentralized

oracle network and aggregates data from multiple oracle nodes on the network to provide data feeds

that do not rely on a single oracle node or data source[12]. ChainLink employs an ERC-20 and

ERC-677 compliant token called LINK which is used by oracle consumers to pay the oracle nodes

for data provision. ChainLink currently provides three features for consumer smart contracts on

the Ethereum mainnet.
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3.1 Price Feeds

are a ChainLink feature to provide different market prices and conversion rates data in the blockchain

environment for usage by smart contracts. ChainLink achieves this by having a decentralized price

feed for each of these data points, which is fed price data through multiple oracle nodes using

different sources. This is implemented by having an aggregator contract for each feed on-chain

which is fed data by multiple oracle nodes through their interface contracts. The feed aggregator

contract then aggregates all the nodes’ answers to provide a final answer to any consumer contract

via public Solidity functions. Consumers of the price feeds data call these aggregator contracts

when the data is desired. The ChainLink documentation lists the aggregator contract addresses

for the available price feeds[13]. The price feeds are sponsored by various projects and currently

available for public usage without any LINK token charge.

3.2 External APIs

is a ChainLink feature that allows smart contracts in the blockchain environment to perform ex-

ternal API calls through ChainLink oracle nodes. These API calls can be HTTP Get Requests on

the web or other APIs provided by the oracle node for different use cases. ChainLink API requests

are currently handled 1:1 by an oracle and ChainLink currently does not provide decentralization

benefits by default for API calls although a user might implement it on their own. The consumers

of ChainLink’s API feature have to pay their request servicing oracle node in LINK tokens for the

service. The cost varies depending on the node and the nature of the request but is around 0.1

LINK on average and the highest being 1 LINK at the time of writing. Commonly used public API

endpoints are available as ”jobs” in ChainLink which allows user to only specify the job ID and

not having to specify the URL, format etc. This makes the consumer side code more succinct and

the implementation easier.
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3.3 Verifiable Random Numbers (VRF)

is a ChainLink feature to provide verifiable random number generation functionality on-chain.

ChainLink achieves this by having off-chain random number verifier contracts which verify the

randomness of the number generated by an oracle node in response to a consumer request. VRF

feature allows for provable random numbers, which protects the consumer from attacks even if the

node servicing the request has been compromised.

4 Study Design

4.1 Data Collection

For both the Price Feeds and the External APIs we collected data from the launch of ChainLink

mainnet in May 2019 up till the end of October 2020 (Ethereum block 11167816). The VRF feature

data was not collected and is not part of this study since it only went live at the end of October

2020 and the resulting data was insufficient for a formal study.

Modified Ethereum Client

For collecting the Price Feed usage data, we looked at the price feed addresses available on the

ChainLink website [13]. There were 88 price feed addresses at the time of writing which are

proxy aggregator addresses. ChainLink has also, since its launch, made upgrades to the aggregator

contracts. The current version of aggregators are labeled as v3. We used the wayback machine web

archives [47] to retrieve old aggregator addresses and had a total of 169 addresses for our study (88

v3, 80 v2, 1 v1). The ChainLink team also later provided us with historical addresses which we used

to verify our list. For capturing the price feed data we could not use the Web3 API since all price

feed consumer requests were direct calls or ”internal transactions”. Hence we modified the Golang

Ethereum client code to log data when internal function calls were made to these 169 addresses.

We captured the block number, calling address, opcode, value and input data parameters for these

internal calls to these addresses and stored them in a local MySQL database.
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Ethereum Full Node and Web3

For collecting data related to ChainLink API usage we used the Web3 API with an Ethereum

full node that we ran locally. ChainLink implements the API feature using the CallAndTransfer()

functionality of the ERC-677 token standard. Every time a consumer requests an oracle, it generates

a ChainlinkRequest event and sends the LINK to the oracle node along with data describing the

API to fetch, the job ID, the format of the output, the callback address and function which the

oracle must respond to and other data if required. The oracle node interface contract generates

an OracleRequest event upon receiving the LINK and data and the external node listens to this

event. It responds with the result after some time and makes a transaction to the callback function

with the data response. The consumer contract then raises a ChainlinkFulfilled event. We use

the Web3 APIs to capture these events and extract the required data which includes: the block

number of the request, the requesting address, the oracle node requested, the job ID specified,

the callback function and address provided, the LINK token paid, the ChainLink request ID, the

request transactions hash, any additional data provided, the response block number, the response

and the response transaction hash. We store the results in our local MySQL database for all such

oracle service request-response cycles on ChainLink.

We used Etherscan [1] to verify various samples of our collected data to ensure that our data

collection process was performed correctly.

4.2 Study Objectives

The study was aimed at providing insights into the usage of ChainLink oracles on Ethereum. For

this purpose we looked at the following five aspects:

• Oracle usage trends and demographics

• Oracle Adoption

• Oracle Pricing

• Oracle Servicing Delays
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Table 8: Price Feeds and API: collected data summary.

Feature Total Requests
Excluding ChainLink
Internal Requests

Distinct Caller
/Consumer Addresses

Distinct Callee
Addresses (Price-
Feeds/Oracle Nodes)

Price Feeds 2409074 N/A 294 129
External APIs 2717049 6634 271 159

5 Results

5.1 Usage Trends and Demographics

After the data collection was completed and the required data was populated into our MySQL

server, we had the quantitative information summarized in Table 8. A total of 2,717,049 API

requests were made to Oracles during the entire duration of our study and in total 2,409,074 price

feed calls were made to ChainLink’s public price feed contracts for fetching the market place data.

Although the numbers appear encouraging at first sight, upon further investigation, we found that

99.75% of API requests to ChainLink oracle nodes were made by ChainLink price feed aggregator

addresses themselves. This is because prior to the v3 aggregator release in August 2020 [14], all

price feed aggregator contracts made API requests to oracle nodes to fetch prices. After removing

these API requests, we are only left with 6634 API requests performed on ChainLink for the entire

18 month period! We also see that the number of distinct users that made use of these features is

very low.

Next, we present a list of the most popular price feeds based on their share of the historical

price-feed traffic in Figure 11 as well as the total calls made to these price feeds in Figure 12. Fig-

ure 13 shows the most regular ChainLink price feeds consumers. We also present the corresponding

consumer projects/contracts of these price feeds ordered by their share of the historical price-feed

traffic. To get the corresponding projects/contracts, we grouped the most regular consumer ad-

dresses (Top 26 addresses, which represent more than 90% of all price-feed traffic) by their public

tags available on Etherscan [1]. Our results show that Synthetix [2], which is a blockchain-based

derivatives trading platform, is responsible for more than 47% of the historic price feed traffic. If

we subtract ChainLink’s internal traffic from the numbers, Sythetix’s share of the historical price

feed traffic rises to 75%.
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Figure 11: Leaderboards: Price Feeds attracting the most traffic and projects generating the most
price feed traffic.

Figure 12: Most popular ChainLink Price Feeds.

5.2 Oracle Adaption in the Market

To study ChainLink oracles’ adaption trends in the market, we look at the historical data for the

average number of price-feed and API requests made to ChainLink oracles per month Figure 14.

Plotting the data, we can see that the price-feed feature appears to be far more popular among

users and has been rapidly gaining more traffic volume. The API feature does not appear to have a

large demand among the users. We believe that this can be attributed to the fact that most projects

and use-cases are able to fulfill their data needs using the ChainLink provided price feeds and do

not have to employ a custom API. We also show in Figure 15 that ChainLink has continuously

increased the number of price feeds being offered to users. The increase in price feed offerings has

kept up with the increase in adaption as evidenced in these figures. In contrast to the price-feeds,

Oracle nodes have not seen a marked increase in the variety of API calls and jobs being requested.
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Figure 13: Most regular ChainLink Price Feeds consumers.

Figure 14: Number of price feed and API requests on ChainLink by month.

5.3 Oracle Pricing

ChainLink is currently providing the price feeds feature to all smart contract users on the Ethereum

chain without cost. These price feeds are sponsored by various blockchain projects using these feeds

in their contracts. A user does need to pay an Oracle node in LINK token if they make a direct

API request. The current cost of ChainLink API usage varies and can be as high as 1 LINK

depending on the oracle and the data being requested. We look at the historical price paid for

running a single API request in Figure 16. We also look at the historical average income which the

data providing oracle nodes from these requests. We see the average LINK paid for oracle requests

on ChainLink is increasing of late, and that coupled with the increase in the LINK token price is

bound to discourage the use of oracle APIs for trivial use cases.
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Figure 15: Number of distinct Price Feeds serviced and active Oracles by month.

5.4 Oracle Servicing Delays

Different smart contract use cases require their oracle service requests to be processed within a time

constraint. For the wide adoption of smart contracts, it is essential that the oracle system is able

to service time-critical requests. We analyze our available API data in Figure 17 to determine the

historical average delay experience on ChainLink API requests. Due to a small number of outliers,

the average obtained was around six hundred blocks. After filtering out these outliers and only

keeping the requests that were serviced within one hundred blocks, we obtained the data shown

in our figures. We can see that for ChainLink oracles most API requests are serviced within the

next four to five blocks with the historical average block delay being close to four Ethereum blocks

which corresponds to roughly one minute.

Figure 16: Average cost of a single API request and the Average fees collected in LINK by oracle
nodes.
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Figure 17: Average response time and response time distribution for API requests.

6 Analysis and Conclusion

Based on our analysis of the collected data, we obtained the following important insights regarding

Chainlink usage on Ethereum in particular and the trends for Oracle systems in general:

• The number of individual users of the ChainLink platform is not very high. Currently, it

is mostly being used by DeFi(Decentralized Finance) projects and applications to provide

market prices to its contracts. This is perhaps indicative of a trend in the smart contract

ecosystem in general.

• Currently, a single DeFi project, Synthetix has been responsible for almost 75% of the historic

price-feed traffic in the ChainLink network (given that we ignore ChainLink’s self-generated

traffic). Synthetix uses various commodity and currency ratio feeds on ChainLink which are

among the feeds that have serviced the most traffic. This dominance of Synthetix related

traffic might fade with ChainLink increasingly integrating with new projects.

• The data shows that there is currently not a big market of people wanting to use oracles

to connect smart contracts to the external world for trivial use cases. Whether it is the

genuine lack of market demand for these applications or whether high Ethereum gas prices

and ChainLink API fees discourage people from doing so will require further investigation.

• While ChainLink’s API feature has not seen increased use with the rise of DeFi, ChainLink’s

price feeds have seen increasing usage since the project’s launch. ChainLink has also managed
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to provide an increasing variety of price feeds to cater to the demands of new DeFi projects

integrating with ChainLink.

• The rising average API cost seen on the network might be attributed to the increased LINK

token price which forces people to only make Oracle API usage for non-trivial cases.

• The average response time of ChainLink’s API feature is seen to remain steady between 4

and 5 blocks which might not be good enough for time-sensitive applications.

In conclusion, at the time of this study, the ChainLink ecosystem on the Ethereum network

appears to be driven purely by DeFi’s demand for decentralized market price feeds [35]. In the

coming future, it would be interesting to see if Oracle platforms like ChainLink take initiatives to

attract other segments of users or tailor themselves more towards fulfilling the needs of the growing

DeFi market.

Acknowledgements We warmly thank the ChainLink team for sharing historical price feed

addresses with us for cross-verification.
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